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Abstract

There are many issues that limit the performance of wireless mobile
multi-hop ad hoc networks (MANETs). One of them is that TCP is not
well adapted to networks where routes can change or disappear often. In
this paper the behaviour of a standard TCP implementation is studied in
situations typical for MANETs and compared to the behaviour of a partial
implementation of a ATCP, a TCP modification that is intended to increase
performance in MANETs.

Simulations with simple scenarios show that TCP easily creates a full
network load which causes send failures and decreased throughput perfor-
mance. In some cases the partial ATCP implementation increases throughput
but more often it causes an increased amount of duplicate retransmissions.
In these scenarios it is unlikely that even a complete ATCP implementation
would increase throughput performance.

A few modifications to ATCP and TCP are analysed. Especially a limit
of the congestion window size shows a large throughput increase.

The results are inconclusive, the simulations are too simple to show if
the results are applicable in more complex scenarios. It is not clear if ATCP
actually is useful in a MANET.
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Sammanfattning

Många faktorer begränsar prestandan i trådlösa mobila multi-hopp ad
hoc-nätverk (MANET:er). En av dem är att TCP inte är anpassat till nätverk
där rutter ofta kan förändras eller försvinna. I den här rapporten studeras
hur en vanlig TCP-implementation uppför sig i typiska MANET-situationer.
Detta beteende jämförs mot en partiell implementation av ATCP, en TCP-
modifiering som är tänkt att öka prestanda i MANET:er.

Simuleringar med enkla scenarier visar att TCP lätt genererar en full
nätverkslast vilket orsakar misslyckade sändningar och en minskad genom-
strömningsprestanda. I vissa fall ökar den partiella ATCP-implementationen
genomströmningen, men oftare ger den en ökad mängd onödiga omsänd-
ningar. I dessa scenarier är det inte troligt att ens en komplett ATCP-imple-
mentation skulle öka genomströmningsprestanda.

Några mindre förändringar av ATCP och TCP analyseras. Särskilt ger en
begränsning av stockningsfönstret en stor ökning av genomströmningen.

Resultaten är ofullständiga. Simuleringarna är för enkla för att kunna visa
om om resultaten är tillämpliga i mer komplexa scenarier. Det är inte klarlagt
ifall ATCP verkligen är användbart i ett MANET.
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1 Introduction

Wireless mobile multi-hop ad hoc networks, orMANETs, offers network connec-
tivity without using any fixed infrastructure. This can be useful in a wide variety of
situations, for example in disaster areas or sensor networks. Since MANETs have
a slightly different behaviour than traditional wired networks, using the standard
TCP congestion control can lead to suboptimal performance.

To avoid the greatest sources of decreased throughput performance a TCP
modification called ATCP [25] has been proposed. It uses a few relatively simple
mechanisms to detect different causes of packet loss and tries to deal with them in
appropriate ways.

In this paper a partial implementation of ATCP for the network simulatorns-2
is studied to see how it behaves in a MANET environment compared to the standard
TCP implementations. The results show that the partial implementation causes
a performance decrease due to it misinterpreting the network state and therefore
deals with it in the wrong way.

The background section contains an introduction to MANETs and the factors
that affect their performance. In the method section the modifications to the TCP
stack are presented and the results of the simulations are shown in the analysis
section. Finally, in the conclusions section, the results are summarised and a few
suggestions for future work are given.

2 Background

2.1 Introduction to ad hoc networks

An ad hoc network is a network where the topology is unplanned and possibly
not even fixed. This is a quite loose definition that can be more tightly specified
by adding the wordswireless, meaning that the nodes use wireless interfaces to
communicate,mobile, meaning that the nodes can move around, andmulti-hop,
meaning that the nodes can communicate with other nodes indirectly by using
closer nodes as relays.

Often the shorter termmobile ad hoc network, or MANET, is used to specify
a wireless mobile multi-hop ad hoc network. The term MANET will be used
throughout this report with this meaning.

2.2 Overview

Several different parts, or layers, are needed for an ad hoc network to work. There
must be a way to physically transport data between nodes and there must be one
or more protocols to ensure that the data arrives at the correct node and the correct
application.

1



These layers interact with each other in a well-defined manner. A layer can
pass data to another layer, which in turn can add or remove its own layer specific
information and pass the result on to the next layer.

The details of how each layer works are usually ignored by the other layers.
However, characteristics like delays and added packet overhead can affect the
performance of other layers in more or less subtle ways.

• Link layer

To build a network there must be some way to transmit data between the
nodes. For MANETs this is usually done with wireless interfaces. These
interfaces can logically be divided into two parts: the physical layer, which
converts data into physical signals (such as radio waves) and back again, and
the link protocol layer, which handles details like who the source and desti-
nation are and when each of the nodes are allowed to send. It is also possible
for the link layer to detect transmission errors and do retransmissions of link
frames.

• Ad hoc routing

In a multi-hop environment there must be some way of finding a route be-
tween two nodes. This is done with an ad hoc routing protocol. Often the
routing protocol operates below the network layer, but still has knowledge
about it.

• Network layer

The network layer is responsible for delivering packets based on the nodes’
network addresses and for knowing which nodes are on the same subnet.
Since compatibility with Internet applications is often desired, most MANETs
are designed with the TCP/IP stack [40] in mind.

A MANET is usually treated as a single IP subnet. This means that on the IP
level all nodes are considered to be directly connected to each other. The ad
hoc routing is hidden by the ad hoc routing protocol and normally normally
can not be seen by higher layer protocols.

• Transport layer

While the network layer is mainly concerned with getting data from one
node to another, the responsibility for sorting incoming data and passing
it on to the correct application falls on the transport layer. The transport
layer can also add features like detection of transmission errors, requesting
retransmission of missing or bad packets, and sorting incoming data so that
it is passed on to the application in the same order as it was sent. Note that
the transport layer error detection and retransmission is usually unaware of
link layer error detection and retransmission mechanisms.
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• Application

Applications that use the network usually have no idea about what the net-
work’s topology is. They are usually aware of who they are communicating
with, but the details of how the data is transmitted are generally invisible
to them. This is good, since it allows programmers to write applications
without worrying about all the different lower layers that could or do exist.
On the other hand, it means that applications can not easily adapt their
behaviour based on lower layer conditions.

Also, there are some other factors that can affect the application layer user’s
perceived performance in different ways. Even though they are not directly in-
volved in the data transmission they must be considered when studying MANETs,
because of their effects on the data transmission.

• Mobility

One of the most prominent useful features of MANETs is that the nodes can
move around freely. On the other hand, this also generates a lot of problems.
The nodes can move in and out of range of each other and in order to
maintain connectivity to specific nodes the ad hoc routing protocol must find
new routes through the network. Even if the nodes that are communicating
with each other are stationary they can still be affected by the movement of
othernodes.

In some cases a node or a group of nodes can move such that there is no
possible route between certain other nodes in the network. In this case the
network is said to be partitioned and no communication is possible between
nodes in the different partitions.

• Topology and environment

The physical location of the nodes can also affect their performance. If a
lot of nodes are located in a small area, there will be a greater amount of
contention for the available transmission capacity in this region, but there is
a decrease in the probability of the network partitioning.

The surrounding environment, for example metal walls or strong electro-
magnetic fields, can affect the link layer performance by hindering radio
waves or by otherwise interfering with the transmissions.

• Network traffic

A network with a high traffic load will naturally have have a higher probabil-
ity of longer delays before a node can transmit and, with link layer protocols
without collision avoidance, a higher probability of collisions. The charac-
teristics of the traffic, such as how well it is distributed over the network,
or if it has a constant data rate or comes in shorter bursts, can also affect the
throughput rate. Collision probability is dependent on MAC protocol details;
there are some protocols which are collision free.
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2.3 Wireless networks

The difference between wired networks and a wireless network is, as the later name
implies, that the nodes communicate without a wired infrastructure. There are
several different technologies that are widely used for wireless communication,
e.g. radio, infrared, and laser links. In MANETs radio interfaces are usually used.

What can make wireless networks more difficult to use is that they both can
cause more interference and are more vulnerable to interference than traditional
wired networks. In a wired network the transmitted data is confined to cables
or fibres, often in point-to-point connections. Even if there can be problems with
crosstalk between wires, the problems are not as prominent as in wireless networks.
In the case of radio communication by mobile nodes the data is often transmitted
with non-directional antennas and can easily be overheard by others within range.
Even nodes outside of the effective communication range can be affected, since
radio transmissions can interfere farther away than they can be correctly received.
Furthermore, for the receiver the effects of various sources of background noise
must be added to the problem of interference by other nodes.

Because of this, wireless frame transmissions can not be considered to be very
reliable. In wired networks the major cause of missing packets is that routers are
congested. In the wireless case the reason can more often be link layer transmission
errors.

There are several different radio technologies that can be used for data com-
munication. The most common today is IEEE 802.11 wireless LAN, but there
are also others such as Bluetooth, GSM (for mobile phones), and a multitude of
experimental technologies designed for MANETs.

2.3.1 IEEE 802.11

IEEE 802.11 wireless LAN networks are by far the most common radios used in
MANET studies. This is because the hardware is widely available and inexpensive.
Both the original IEEE 802.11 standard [17] and the supplement for the higher bit
rate IEEE 802.11b standard [18] are available for free from IEEE [19].

In addition to the higher probability for low link quality that is common to all
wireless communication, there are some characteristics of IEEE 802.11 networks
that can cause problems in MANETs. Xu and Saadawi discuss the following
in [44]:

• No multi-hop awareness

IEEE 802.11 is designed for networks where traffic is routed through access
points or single-hop ad hoc networks. These single-hop networks can be
combined into a multi-hop network by using an ad hoc routing protocol,
but since the link layer is not aware of the traffic outside its own single-hop
network, it can not take it into consideration when deciding when to send
data. This, in combination with the fact that transmissions cause interference
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farther away than they can be successfully received, can cause an increased
probability of incorrect reception.

• Hidden station

There is a collision risk if two nodes are far enough apart that they can’t
hear each others transmissions and both want to sent data to a receiver that
can hear both of them, since the senders don’t know when the other one
is transmitting. This is known as the hidden station problem. In IEEE
802.11 networks this problem is avoided by using request to send (RTS)
and clear to send (CTS) packets. A node that wants to send a packet starts by
broadcasting an RTS packet. The receiver responds by sending back a CTS
packet. In the RTS and CTS packets there is information about how long the
sender needs the medium. All nodes that can hear either of the packets will
avoid transmitting any data for that time. Figure1, 2, 3, and4 illustrate this
process. There is, of course, a probability that two nodes send RTS packets
at exactly the same time but, since these packets are shorter, the probability
of collision is much smaller than for data packets. The performance impact
of such a collision is also much lower than a collision with data packets.

1 2

3

5

4

Figure 1: Node 1 intends to send a data
packet to node 2.

1 2

3

5

4

Figure 2: Node 1 sends an RTS packet
that is seen by nodes 2 and 3.

• Exposed station and instability

While the CTS/RTS mechanism decreases the problem of hidden stations, it
can not do anything about the related problem known as “exposed station”.
In some cases a node may be blocked from sending even though it can’t hear
any other traffic. If the intended receiver is within interference range of other
transmissions, it may not be able to receive the packets correctly or even send
CTS packets. If this continues for long enough, the sender will give up and
assume that a route failure has occurred, which will result in delays while
new routes are unnecessarily discovered.
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Figure 3: Node 2 responds with a CTS
packet that is seen by nodes 1 and 4.
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4

Figure 4: Node 1 can start sending
data. All nodes within communication
range of either node 1 or 2 are silent.

• Unfairness

Another related problem is that of unfairness. If a node fails to send a packet
because the channel is busy, it will wait for increasingly long periods of time
before trying again. This means that in a network with many competing
nodes the node with the last successful transmission will have an advantage
over the others if it tries to send again. This unfairness can also be observed
in wired networks such as Ethernet, which use the CSMA/CD protocol for
channel allocation, even though it does not pose as large a problem in modern
switched networks where most of the traffic is passed through dedicated
point-to-point connections.

2.3.2 Other network technologies

In addition to IEEE 802.11, there are several other network technologies that can
be used for MANETs.

Bluetooth is a communication technology designed for small mobile devices.
The Bluetooth standard covers both the hardware and a communication protocol
stack. Groten and Schmidt [13] claim that Bluetooth shows promise, but still has
some issues that limit its usefulness in MANETs. Primarily this is because multi-
hop support in the standard is incomplete. The Bluetooth standards are available at
the Bluetooth Special Interest Group web site [3].

TDMA is a scheduling algorithm where each node is assigned a transmission
schedule indicating in which of a series of time slots it is allowed to transmit. In the
related protocol Spatial TDMA (STDMA) [28] geographic information is added so
that nodes that are located far enough apart from each other may be assigned the
same time slots.

There are also many experimental protocols designed with MANETs in mind.
Examples are ADAPT [7] and CATS [43] that use different methods for allocating
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transmission slots. Other protocols like PAMAS [38] are designed to use less
energy, which is important for battery powered nodes.

2.4 Ad hoc routing

Several routing protocols for MANETs have been designed, each with its own set
of strengths and weaknesses. Feeney [8] has written an overview of a number of
these and classified them into groups.

2.4.1 DSR and AODV

Two of the more popular routing protocols are DSR [21] and AODV [33].
Both of these are reactive protocols, which means that they wait until the node

wants to send data to another node before trying to find a route to the destination.
The largest difference between them is that DSR finds the complete path to

the destination and includes it in each data packet while AODV nodes only know
which neighbour to forward packets to for each destination. This has the effect that
DSR requires more overhead per packet when sending data and AODV requires
more overhead for discovering routes.

Despite the differences several studies show that DSR and AODV perform
similarly. Broch et al. [4] found that both DSR and AODV worked well, but that
AODV was slightly more expensive in situations with higher mobility. Johansson
et al. [20] found that DSR usually performs better than AODV in situations with
low traffic loads and AODV performs better under high traffic load. Östergren [31]
found that even though AODV causes a higher packet loss following a topology
change there is not a significant difference in throughput for TCP.

2.4.2 Other routing protocols

Proactive protocols like DSDV [34] and GSR [6] are similar to AODV and DSR,
but try to keep correct routing information to other nodes at all times to eliminate
the delay that is otherwise needed before a connection can be established. Non-
uniform protocols like ZRP [16] and CEDAR [39] differ in that all nodes are not
equal with regard to routing. Either the nodes use only some of their neighbours for
routing and forwarding or they can negotiate a hierarchical structure for the routing.
There are also some protocols like GRID [24] that use geographic information for
routing.

Many of the problems in MANETs are caused by the desire to support large
networks. LUNAR [26] is a protocol that has been designed for simple operation
of networks that are small enough (for LUNAR the network size is limited to 3
hops) to avoid these problems.
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2.5 Transport protocols

While the network protocol takes care of getting data packets to the correct nodes,
the transport protocol’s first responsibility lies in extracting the data from these
packets and passing it on to the correct application, i.e. demultiplexing the incom-
ing data.

The most common transport protocols today are UDP and TCP, but other pro-
tocols are also used. UDP is simple enough that there is only one version in use but
TCP has continuously been modified and there exist many different versions of it.

2.5.1 UDP

The User Datagram Protocol [35] is a very simple transport protocol. All that it
provides is multiplexing of application data streams, i.e. the ability to send data
to specific applications on the destination node, and an optional weak checksum
of the transported data. There is no guarantee that the data is ever delivered to the
destination and the data packets can arrive in any order. This may sound bad, but
if there is no need for reliable, in-order delivery, then there is no need to waste
resources on it. The simplicity makes it faster than more complicated protocols
like TCP, since there is very little overhead (only 8 bytes) for each packet.

UDP traffic has been used in many MANET studies, often for sending one or
more data streams with a constant bit rate through a network while other parameters
are varied.

2.5.2 TCP

The Transmission Control Protocol [36] is used when all datamustarrive at the
destination application and do so in the same order as it was sent.

TCP is a connection oriented protocol, which means that before any data can
be sent the two endpoints must establish a connection by sending control packets
back and forth. When the connection is not needed any more it may be closed by
the applications. TCP also supports several congestion control mechanisms that
help the sender to transmit data rapidly while avoiding overloading the network.

As the resulting TCP implementations have shown quite complex behaviour,
a lot of effort has been made to understand TCP’s behaviour. Padhye et al. [32]
have developed a model for estimating the throughput of a TCP flow. Allman and
Falk [1] have made some recommendations about what to consider when evaluating
TCP modifications.

2.5.3 TCP congestion control

There are a few standard implementations of TCP that are often used in experi-
ments: TCP Tahoe [2], Reno [2], and NewReno [9]. These code names are taken
from the UNIX distributions that they first appeared in. The difference between
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these implementations is which flow control mechanisms have been included in
them.

TCP Tahoe works according to RFC793 [36] with the addition of slow start,
congestion avoidance, and fast retransmit from RFC2581 [2]. TCP Reno is the
same as TCP Tahoe with the addition of fast recovery, also from RFC2581. In TCP
NewReno the fast recovery mechanism is modified according to RFC2582 [9].

The slow start mechanism exponentially increases the number of packets si-
multaneously in transit until a variable limit is reached. After slow start, TCP
goes into congestion avoidance mode where the number of packets are increased
linearly until a packet is lost. Fast retransmit means that if the sender receives
three duplicate acknowledgements for a packet, then that packet is assumed to be
lost and that there was no congestion, therefore the sender immediately retransmits
it. Fast recovery means that after a fast retransmit has occurred, the sender goes
into congestion avoidance instead of starting over with slow start.

There is also an extension to TCP called selective acknowledgement (SACK) [27]
that enables the receiver to specify that a certain packet is missing and which
packets after this have arrived successfully.

2.5.4 Enhancements of TCP

The standard TCP implementations have over the years been tuned to the charac-
teristics observed in traditional wired networks. Unfortunately, wireless networks
and, in particular, MANETs behave differently enough to make it difficult for these
implementations to make correct assumptions about the network state.

The main problem is that if a packet is lost in a wired network the cause
is usually congestion somewhere in the network. In wireless networks packet
loss can also be due to transmission errors or broken routes, in which case the
normal reaction of retransmissions and increasing delays may be devastating for
performance.

Because of this, there have been several attempts at creating enhanced TCP
implementations that work better in wireless environments.

Chandran et al. [5] have proposed a feedback-based variant called TCP-F. It
enables the sender to detect route failures by using explicit route failure and re-
establishment notification messages.

TCP-BuS by Dongkyun et al. [22] is similar to TCP-F. The main difference is
that intermediate nodes can buffer packets when a route failure occurs, so that the
packets can be retransmitted faster when a new route is found.

Liu and Singh [25] have proposed an ad hoc variant of TCP called ATCP. It
tries to determine if packets are lost due to bad links, congestion, or route errors
and then deals with these situations appropriately. Congestion is detected by using
explicit congestion notification (ECN) messages and route failures by using normal
ICMP Destination Unreachable messages. If the sender times out while waiting for
an acknowledgement, and no other reason has been determined, it assumes that the
packet was lost due to a bad link.
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2.5.5 Other end-to-end transport protocols

Even though TCP and UDP are the protocols that are usually used when writing
Internet programs today it can in some cases be better to use other transport proto-
cols.

SCTP [42, 41] is a new protocol that combines the features of UDP and TCP
and adds some new functionality of its own. Multihoming makes it possible for a
connection to stay alive even if one of the endpoints’ interfaces becomes unreach-
able. If the host is reachable on another IP address, the connection can reroute
itself there. SCTP can also divide the data stream into message chunks that can be
delivered to the receiver in the order that they arrive.

2.6 Topology

Where the nodes are located and what their local environment is like determines
which nodes can contact each other and the amount of interference from other
nodes.

If the nodes are located close to each other, there will be a greater chance that
the data will not have to make as many hops as in a network where the nodes a
farther apart. On the other hand, in a network with a dense concentration of nodes
there will be more contention for the available capacity and also more interference.
Gupta and Kumar [15] have calculated the maximum capacity of a network with
randomly distributed nodes. If traffic is generated between randomly chosen nodes,
then the capacity per node approaches zero as the number of nodes is increased.
Even if the scenario in their calculations is a bit unrealistic, it still shows that the
risk of decreased performance increases with the network size.

The environment affects the performance in a similar way. Walls and other
objects can dampen, reflect, or otherwise interfere with radio transmissions, Since
these effects usually are unevenly distributed, it is difficult to simulate this. Rap-
paport has written an introduction to indoor radio propagation [37] where the most
common issues are described.

2.7 Mobility

When nodes move around there is a possibility that they will move out of range of
old neighbours or into range of new ones. When that happens the ad hoc routing
protocol may have to find new routes to be able to maintain communication which
involved these nodes.

When measuring mobility it is not the absolute motion of the nodes that is
interesting, but rather how the nodes move in relation to each other. Johansson et
al. [20] have defined a mobility metric that quantifies this motion.

Usually a broken route results in a throughput penalty, since no data can trans-
ported. To minimise this penalty the routing layer should find a new route as
quickly as possible. Goff et al. [12] have studied how throughput can be increased
by initiating route discovery before a link actually fails.
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High mobility is not always a bad thing for MANETs. Both Gupta and Das [14]
and Johansson et al. [20] have observed that mobility can increase throughput by
distributing traffic more evenly over the network.

2.8 Traffic

The traffic patterns consist of information about which nodes are communicating
with each other and how their communication is distributed over time.

Traffic between nodes that are many hops apart will generate more load than
those with fewer hops. Li et al. [23] have seen that large MANETs work best if
most of the traffic is between nodes that are close to each other. As the amount of
non-local traffic grows, the per node capacity decreases.

If the traffic is unevenly distributed over the network, e.g. a single node is the
sender or receiver of the traffic, then that part of the network will have a higher
load than other parts.

It is difficult to do realistic simulations because of the very different possible
situations where MANETs can be used. Johansson et al. [20] simulated some
scenarios with different topology, mobility, and traffic patterns. They found that
the ad hoc routing protocol had a large impact on the performance.

2.9 Simulations

There are several ways to measure various aspects of network performance. Simu-
lations, lab measurements, and live measurements each have their own advantages
and disadvantages [10]. Some advantages of simulations are that they are cheap,
easy to control in detail, and provide the ability to experiment with hardware that
is not available. Disadvantages are that it can be very difficult to create good
simulations and that errors in the simulator can make the results completely useless.

Major network simulation softwares includes the free Network Simulator - ns-
2 [29], the partially free GloMoSim [11], and OPNET [30], which is a commercial
product. All are fairly complex, which one to use depends on if any of them
are already available, their compatibility with other software (e.g. for scenario
generation), which ones colleagues have experience with, and the available budget.

3 Method

The goal for this project was to show how a TCP implementation that is enhanced
for use in a MANET behaves in comparison to a standard TCP implementation. To
do that these steps were needed:

• Select TCP implementations to compare

• Implement enhanced TCP in ns-2

• Run various simulations and compare the results
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3.1 Implementation of enhanced TCP

Ns-2 already has most standard TCP types implemented. To be able to compare
one of them with an enhanced TCP, this enhanced TCP must be implemented.
ATCP was chosen as the enhanced TCP since it has some promising solutions to
the issues in MANETs.

ATCP uses four different states for different situations that can occur.

• Normal

This is the state that ATCP is in when no special situation has been detected.
ATCP behaves like the normal TCP implementation. In this state ATCP must
be able to detect and count duplicate acknowledgements and retransmission
timeouts. All of this is already present in the normal TCP implementations
and all that is needed is to add transitions to the other states.

• Loss

If a segment remains unacknowledged and no other reason can be detected,
then the sender assumes that the packet has been lost during transmission.
ATCP freezes the TCP state and retransmits the unacknowledged segment
until it is acknowledged.

ATCP must be able to change the TCP retransmission timer behaviour and
send segments from TCP’s send buffer without affecting TCP’s state.

• Congested

This state also uses normal TCP behaviour. The only reason for its existence
is to prohibit state changes to the loss state when congestion is detected.

If the source node receives a TCP segment with a notification about conges-
tion, it stops trying to detect packet loss. Since TCP already treats congestion
well, ATCP will not interfere with its normal operation. ATCP stays in the
congested state until a new segment is successfully transmitted.

To implement this the intermediate nodes must generate Explicit Congestion
Notification (ECN) messages and the destination nodes must echo the ECN
information in acknowledgements which the source nodes must detect and
act upon.

– Intermediate nodes
The nodes have to use a queue type which can set the ECN bits in
forwarded IP packets. In ns-2 the interface queues are defined in the ad
hoc routing protocols. Unfortunately, both AODV and DSR are hard
coded to use simple priority queues.
Ns-2 has a RED queue implementation that might be useful if the ad
hoc routing protocol could be persuaded to use it. As an alternative the
hard coded priority queues could be modified to set ECN bits when the
queues are full.
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– Destination node

It is simple to enable ECN at the destination node during simulations.
No modification of ns-2 is necessary.

– Source node

Source node congestion handling is already present in ns-2. ATCP sim-
ply needs to intercept the ECN message and change state accordingly.
It must also be able to detect when a new segment is transmitted.

• Disconnected

When the sender has received anICMP destination unreachablemessage
from an intermediate node it responds by freezing the TCP state until a new
route to the destination can be found.

The routing protocol must be able to inform the source node’s ATCP stack
about broken routes. To follow the ATCP specification would mean imple-
menting ICMP which is currentlynotpresent in ns-2. Besides this, the ATCP
code needs a method that changes the ATCP state when an ICMP message
is received.

– Intermediate nodes

When the ad hoc routing protocol detects a broken route it must send
a message back to the source node. Since ICMP support is practically
non-existent in ns-2, either it must be implemented from scratch or
some other means of informing the source node must be used. The
routing protocol could be modified to send a message back to the source.
Alternatively a cheat solution could “magically” inform the source node
about the broken route, i.e. by directly setting the state in the source
node.

– Source nodes

As in thelossstate, ATCP must be able to stop TCP’s timers. Periodi-
cally it has to probe for for new routes by retransmitting packets from
TCP’s send buffer.

3.2 Changes in ns

The TCP implementation of ns is half-duplex. Each connection has two end-points:
one is a source node which sends data packets and receives acknowledgements and
the other is a destination node which receives data packets and sends acknowledge-
ments. In this case only the source node needs to be modified since the destination
already has all the functionality that is needed.

The TCP implementation that was initially selected to be modified and com-
pared to was TCP Tahoe. It is the simplest of the available implementations and
should serve well as an initial test. Later an implementation using TCP NewReno
was added.
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3.2.1 Tahoe implementation

The existing TCP Tahoe class was extended to add ATCP functionality. Most of
the functionality was added by piggy-backing on existing methods.

• Variables

One variable was added to hold the ATCP state and one to hold the TCP
persist state. A few other variables were added to enable control over specific
parts of the TCP behaviour from the simulation scripts.

• TCP persist mode

TCP persist mode was piggy-backed on the normal retransmit timer. When
the TCP persist flag is set, the timer changes its behaviour to a persist timer.
The differences between the retransmit and persist timers are that persist
mode sets the next segment to be sent to the first currently unacknowledged
segment, and that the receiver’s advertised window is assumed to be zero.
On each timeout one persist probe is sent to see if the receiver accepts more
segments.

• Broken routes

ICMP was intended to be used for indicating broken routes. The routing
protocol was to be changed to send ICMP packets to the source node when
it detects a broken route. When the source node receives this packet it
should call the method atcp_icmp_received() which puts ATCP in the state
Disconnected.

This part was not completely implemented. No ICMP code was added to
ns-2. The only way to enter Disconnected state is to fake ICMP messages
with calls to a TCL command at explicit times in the simulation scripts. This
requires a time-consuming manual inspection of trace files to find the times
at which route breaks occur, and is therefore not used during the majority of
the simulations.

• Congestion

The send queue used by the routing protocol was intended to be changed
to set ECN flags on packets when a packet is dropped due to full queue.
These flags are echoed back from the receiver to the source which in turn
takes appropriate measures in the method ecn(). In the ATCP paper [25] this
means entering the state Congested. In this state the normal TCP congestion
behaviour is used. Since the reference code does not do this and instead uses
the state Normal, the same thing was done in ns-2. All that was needed was
to prevent ATCP from entering the state Loss.

This part was not completely implemented. The changes to TCP were fin-
ished, but the routing protocols werenot modified to generate ECN mes-
sages.
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• Loss

If a retransmit timeout occurs, and the persist flag is not set, ATCP changes
to the state Loss. The same thing happens when too many duplicate acknowl-
edgements have been received, which causes the method dupack_action() to
be called. When loss is detected the congestion window is saved and TCP
persist mode is enabled.

When a new acknowledgement arrives the loss condition is considered to
be over and ATCP changes to the Normal state. This causes the congestion
window to be restored and transmission continues at the rate that was used
before the loss condition.

3.2.2 NewReno implementation

In ns-2, TCP NewReno [9] is implemented as a subclass to the Tahoe implemen-
tation. To add ATCP functionality to it only those methods which overrided the
methods in the Tahoe class needed to be changed. The implementation layout was
the same as in the Tahoe implementation.

3.3 Simulation scenarios

3.3.1 Stationary one hop scenario

The stationary one hop scenario uses the simplest possible layout for a MANET.
Two stationary nodes communicate with each other without any outside interfer-
ence, see Figure5 for an illustration of the layout. With this scenario a maximum
bound for the performance of a given protocol implementation can be determined
for comparison to later simulation results.

0 1

Figure 5: Stationary one hop scenario layout. Both nodes are stationary.

3.3.2 Varying network load

To see how much the network load affects the performance some simulations were
run with a time delay between the generation of each data packet from the constant
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bit rate (CBR) agent. The offered network load can be defined as 1/delaypackets
per second wheredelay is the time between packets. As long as the network can
transfer data at this rate this will result in a constant load, but if the network gets
fully loaded, then packets will become queued in the interface queues.

This method of limiting the network load depends on the application knowing
how high throughput the network can handle, which is not realistic to do for real
applications. It is better to let the transport layer handle the capacity estimation,
for example as TCP does with its congestion window. Shortening the network
interface queues could also let TCP react faster to lost packets since the delays
before actual transmission would be shorter. This, however, has not been tested for
these simulations.

3.3.3 Varying packet loss

In some simulations the amount of packet loss is varied to see how the different
TCP implementations and ad hoc routing protocols cope with it. The node layout
is the same as in the stationary one hop test in order to exclude any other factors.

Packet loss is generated by adding a filter to the reception code at the physical
layer. The filter is set to drop received packets at a given packet error rate (PER).

3.3.4 Increasing distance scenario

To determine the range of the simulated radio transmitter two nodes were simu-
lated. Figure6 shows the layout of the nodes. Node 0 is stationary while node 1
moves away at a constant speed of 1 m/s. In this scenario one node sends data to
the other in a constant packet rate TCP stream. The coordinates of the moving node
are examined at the time of the last successful packet reception. This range could
then be used for setting the distance between nodes in the subsequent increasing
hop count scenario.

This scenario, as well as the stationary one hop scenario, also works as a test
of the raw performance of the combinations of the ad hoc routing protocols DSR
and AODV, and normal TCP and ATCP, when no other factors are involved.

0 1

0 1

t

t

1

2

Figure 6: Increasing distance scenario layout.
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3.3.5 Increasing hop count scenario

To determine the behaviour of the TCP implementations when hop count is in-
creased another simple scenario was simulated. The simulation is similar to the in-
creasing distance scenario, but the velocity of the moving node has been increased
to 10 m/s and extra nodes have been placed along its path at 300 m intervals. The
extra nodes form a linear chain where each node can communicate with its closest
neighbours on each side, but not with any other nodes farther away. As the moving
node moves along this chain more and more nodes are needed to pass packets to it.

0 2 3 4

1

t
1

0 2 3 4

0 2 3 4

1

1

t
2

t
3

Figure 7: Increasing hop count scenario layout. As time progresses more and more
intermediate nodes are needed to maintain connectivity between nodes 0 and 1.

4 Analysis

Most of the simulations were run using the stationary one hop scenario. The
reason for choosing this scenario was to study the behaviour of the protocols with
a minimum of interference involved. Since these results showed a more compli-
cated behaviour than predicted, the amount of simulations with more complicated
scenarios became less than intended.

4.1 Summary of simulation results

4.1.1 General performance

Figure8 shows the transfer progress with the Tahoe implementation. DSRwithout
ATCP gets the best results, while enabling ATCP decreases throughput by 7%.
AODV, both with and without ATCP, experiences a throughput decrease of 28%
compared to DSR without ATCP.

Figure9 shows the transfer progress with the NewReno implementation. DSR
without ATCP still gives the best results. Enabling ATCP decreases throughput
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by only 1%. AODV has the same throughput with and without ATCP, but has a
throughput decrease of 30% compared to DSR without ATCP.

Note that these figures are only taken from one set of simulations. In different
simulations the figures vary, but the general trend is the same for all simulations
that used the one hop scenario.

4.1.2 Congestion window behaviour

The difference in congestion window behaviour in the different TCP implementa-
tions with and without ATCP can be illustrated by Figures10, 11, 12, and13. In
Figure10 we can see a typical TCP Tahoe congestion window behaviour. After a
timeout or three duplicate acknowledgements, the window is reset to 1 and slow
start is restarted. In Figure11this behaviour is modified by ATCP. If the congestion
window was decreased because of duplicate acknowledgements, then it is restored
after the next new acknowledgement arrives. After timeouts (not shown here) the
congestion window is not restored. Figure12 shows how TCP NewReno uses
the Fast Recovery algorithm to avoid resetting the congestion window to 1 after
duplicate acknowledgements. Finally, Figure13shows how ATCP in the NewReno
implementation behaves similar to the ATCP in the Tahoe implementation.

4.2 Effect of full network load

The first thing that can be noted in the results is that creating a network load that
is too high is not good for throughput performance. The data that is transferred
is generated by a constant bit rate (CBR) agent that transmits data as fast as it is
allowed to by the lower network layers. TCP makes estimates about how fast the
network can transmit data and limits the rate at which it sends segments to the
interface queue based on these estimates. Unfortunately, in these simulations the
estimates are a bit too optimistic which results in growing interface queues.

For the simulations an IEEE 802.11 network is used which brings problems
such as those described in Section2.3.1. When more than one node wants to
transmit at the same time one of them will have to wait. If this node has to wait
for too long it will give up and report a send failure to the ad hoc routing protocol.
Also, if a transmission fails because of errors caused, for example, by interference,
a send failure will be reported.

Note that this is not congestion in the usual sense, which is that the interface
queues are filled so that they must drop incoming packets. Send failures caused by
contention for the transmission media can be seen as a sign of congestion at the
link layer. However, it is difficult for the link layer to detect if a send failure is
caused by such congestion or if it is caused by other reasons.
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Figure 8: Stationary one hop. DSR and Tahoe with ATCP.
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and Tahoe 2 without ATCP.
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and Tahoe with ATCP.
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and NewReno without ATCP.
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4.3 Behaviour after send failures

When DSR or AODV receives a send failure report they both react by invalidating
the route used for the transmission. A new route discovery process has to be
finished before the route can be reestablished and used again.

When a node finds that a packet that it tries to transmit is associated with a
broken route, the node has to decide what to do with the packet. Either it can
“recover” the packet by requeueing it, usually at the end of the interface queue, or
it can simply drop it.

Requeueing gives a risk of packet reordering and subsequent unnecessary re-
transmissions while dropping gives a risk of unnecessary retransmission timeouts.
In different situations both DSR and AODV can be affected by any of these prob-
lems, but here a closer at the one hop scenario will be made.

4.3.1 DSR

DSR recovers packets that has originated at same node. Packets from other nodes
are dropped.

In the one hop case this means that DSR will always try to recover the packets.
If there are many packets in the queue, then all of them that are scheduled for
transmission before the route can be reestablished will be requeued. This carries
a risk of packet reordering if one set of packets are requeued so that they are
transmitted later than another set of packets that were originally enqueued later.

Figure14 shows how TCP Tahoe behaves after DSR has encountered a send
failure. Each plus corresponds to a data packet enqueued at the source by TCP. The
crosses show when the data packets arrive at the destination and the stars when the
acknowledgements arrive at the source. Since the interface is always kept filled as
much as the send window allows, it usually takes a while (queue delays of up to
0.2 s are not uncommon) between the enqueueing and the actual transmission (and
reception), and yet some more time before the acknowledgement can travel back.

At 11.59 s a route break is caused by a send failure. During the broken route
handling DSR requeues all packets destined through the route, which reorders the
packets in the interface queue. The resulting packet reordering triggers the Fast
Retransmit algorithm which decreases the congestion window size and enqueues
one packet in the hope that it is the only one missing. Unfortunately, since there are
still a lot of packets in the interface queue, it takes a while until this packet arrives
and by that time the original packet, that was still in the queue, should already have
arrived. As new acknowledgements start to arrive at 11.94 s the congestion window
slowly starts to increase again. The net result is that a route break causes DSR to
mix up the interface queue which leads to unnecessary retransmissions which is a
suboptimal use of network resources.

Figure15 shows the same events with ATCP enabled. The behaviour is the
same as without ATCP up to 11.94 s when the first new acknowledgement arrives.
Here the congestion window is restored to the value it had before the duplicate
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acknowledgements which allows the sender to instantly requeue a lot of packets
that have timed out. The problem with this is that TCP can not react to the
large jump in acknowledgements at 12.06 s, since TCP can not remove redundant
packets from the interface queue. The conclusion is that restoring the congestion
window too quickly, before the network problems are over and any following
confusing is sorted out, can cause TCP to waste network resources.

Figures16 and17 show how TCP NewReno uses Fast Recovery by only re-
sending one of the missing packets and waiting for the result before taking any
further action. This allows TCP to react faster to the jump in acknowledgements at
12.06 s, and reduces the penalty of the ATCP implementation.

4.3.2 AODV

When AODV is used, a node recovers packets if the destination is closer in hop
count, according to the broken route, than the source. Other packets are dropped.
This is based on the assumption that is the packet has passed a majority of its path,
then the trouble of recovering the packet will lower the total network load.

The effect in the one hop case is that AODV drops all packets that experience
route breaks. This causes TCP to wait until the retransmission timer times out
which gives a pause in the transmissions.

Figure18shows TCP Tahoe behaviour after an AODV route failure. At 11.59 s
a route break occurs which causes AODV at node 0 to drop both packets and
AODV at node 1 to drop acknowledgements. This requires TCP to wait for a
retransmission timeout before it can decide that a segment has been lost and make
a retransmission. After the timeout TCP sets its congestion window to 1 and enters
slow start. TCP NewReno has the same behaviour as Tahoe after a retransmission
timeout. ATCP enters the loss state after the timeout but at the first new acknowl-
edgement it returns to normal state and the result is identical to when ATCP is not
used.

4.4 Decreasing network load

Since a fully loaded network results in send failures and subsequent broken routes,
a set of simulations using a slightly lower network load was run.

Figure19 shows how a lower load results in interface queues that are emptied
as fast as they are filled up. This gives transmission delays around 0.014 s which is
much less than for the fully loaded network where the delays can sometimes pass
0.2 s. There are no problems with sending packets and no routes break so all TCP
variants get exactly the same performance.

In this scenario it is the application layer that decreases the offered network
load by setting a limit on how fast data is generated at the application layer. This
means that the maximum throughput is limited by a layer that doesn’t know any de-
tails of the true network capacity. This task is normally done by the transport layer,
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Figure 14: Stationary one hop. DSR and Tahoe without ATCP.
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Figure 15: Stationary one hop. DSR and Tahoe with ATCP.

23



 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 11.6  11.8  12  12.2  12.4
 0

 5

 10

 15

 20

 25

 30

S
eq

ue
nc

e 
nu

m
be

r

W
in

do
w

 s
iz

e 
(p

ac
ke

ts
)

Time (s)

Stationary one hop, DSR, NewReno without ATCP

Data packet sent
Data packet received

Ack received
Data packet dropped

Ack dropped
Congestion window

Figure 16: Stationary one hop. DSR and NewReno without ATCP.
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Figure 17: Stationary one hop. DSR and NewReno with ATCP.
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Figure 18: Stationary one hop. AODV and Tahoe without ATCP.
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i.e. TCP, which only accepts data from the application at a rate that it calculates
that the network can manage.

Trying different delay values showed that a packet generation delay of 0.0161 s
increased throughput by about 4% compared to simulations without a limit. Shorter
delays resulted in interface queues that were filled up and longer delays resulted in
the network being idle for short periods between the packets.

In these simulations this performance increase comes at the cost of having to
estimate the network capacity at the application layer. Also, this scenario is very
simple, in more complex scenarios the capacity may change over time, requiring
the application to update its estimates. If instead TCP can do the rate limiting
satisfactorily, then all applications using TCP will automatically benefit from it.

4.5 Varying packet error rate

When the packet error rate, PER, increases, throughput performance is naturally
expected to drop. At full network load this is also the case in these simulations,
but at lower load the performance decrease is very dependent on how the ad hoc
routing protocol deals with the errors. If there is enough idle transmission time,
then throughput can be increased by the routing protocol attempting to recover the
packets.

Figures20, 21, 22, and23 show how throughput performance degrades under
low network load (10 packets/s.), but with an increasing error rate. DSR, which
in this case recovers the packets, can maintain the transfer rate even with up to
20% PER. AODV, which simply drops the packets, instead sees a huge decrease in
throughput.

4.6 Increasing distance

The increasing distance scenario is very similar to the stationary one hop scenario.
The only thing that lowers performance besides the protocol implementations is
mobility. When the nodes move out of range all communication halts.

In all simulations the transmissions show a relatively even transfer rate until
the nodes move more than 333 meters from each other. No successful reception
is done at longer distances. Since the simulations use an ideal propagation model
(the two-ray ground reflection model) and an ideal world with flat ground and
no obstacles, this is probably a case of the reception power dropping below a
certain threshold. The abrupt halt to communications is unrealistic; normally the
probability of correct reception decreases gradually as the nodes move out of range
of each other.

4.7 Increasing hop count

In general the transfer rate decreases as the destination node moves away from the
source, thus forcing the packets to traverse more hops to reach it. Path lengths
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Figure 20: Stationary one hop. Load is 10 packets/s and PER is 0.05.
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Figure 21: Stationary one hop. Load is 10 packets/s and PER is 0.1.
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Figure 22: Stationary one hop. Load is 10 packets/s and PER is 0.2.
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Figure 23: Stationary one hop. Load is 10 packets/s and PER is 0.5.
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Figure 24: Increasing hop count, data transfer progress. Tahoe.

above 3 do not decrease the throughput much more because several transmissions
can then be made simultaneously at different places along the path.

Since, as in the stationary one hop scenario, the network is loaded as much as
possible, there is a high probability of send failures. When the number of hops
increase, the probability for a send failure somewhere along the route increases.
Since the ad hoc routing protocols often drops the packets in the interface queue
when the route breaks, an increased hop count, especially in the presence of an
increased packet error rate, gives a large throughput penalty.

In Figure 24 it can be noted that AODV performs better than DSR at path
lengths over 2. This is because AODV recovers packets after route breaks if
the destination was closer than the source, while DSR only recovers packets that
originated at the same node.

4.8 Faking ICMP messages

Since ICMP messages were not implemented in ns-2, an alternative way to evaluate
the effect of using the disconnected state was implemented. At explicit times in the
simulation script, ICMP messages were faked which put ATCP into disconnected
state. The times for the faked ICMP messages were found by looking at the trace
files and locating the first sign of a route break. A faked ICMP message was added
for that time and the simulation was rerun to find the next route break. This was
repeated until all route breaks for the first 10 seconds were found.
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4.8.1 DSR

Figures25 and 26 shows the difference in behaviour with DSR. In Figure25
the broken route is not detected by ATCP which leads to the normal behaviour.
After three duplicate acknowledgements, loss state is entered and when a new
acknowledgement arrives, ATCP returns to normal state.

Figure26 shows what happens instead when a faked ICMP message is gener-
ated after the route break. At 12.77 s an ICMP message is faked which puts ATCP
in disconnected state. This puts TCP in persist mode which sets the next sequence
number to be sent to be the first unacknowledged segment. The sender then waits
for a persist timeout to occur or for a new packet to arrive. When a new packet
arrives at 12.80 s ATCP returns to normal state but it now starts transmitting at the
first unacknowledged segment which causes a lot of unnecessary transmissions.

A side effect is the sequence of duplicate acknowledgements that arrive be-
tween 13.24 s and 13.49 s. These acknowledgements are not intended to be du-
plicates, instead they are messages telling that the destination node has already
received the segments that were recently retransmitted. Since the transmission
delay is so long these acknowledgements do not arrive until the sender has started
transmitting higher sequence numbers and therefore they are misinterpreted as
duplicate acknowledgements, causing even more unnecessary retransmissions. As
a result, the throughput drops with 10%.

4.8.2 AODV

With AODV the faked ICMP messages do not affect the throughput much. Figure
27 shows that without an ICMP message, TCP will wait until a retransmission
timeout before retransmitting. In Figure28, ATCP receives a faked ICMP message
and enters disconnected state. After a persist timeout it transmits a persist probe
which, when the receiver acknowledges the segment, returns ATCP to normal state.
Since the persist timer is almost the same as the retransmit timer, the result is that
the throughput is almost the same as without the faked ICMP messages.

4.8.3 Modifications to increase throughput

Based on the results of the faked ICMP message simulations, two further modifi-
cations were tested. Neither of the modifications behave as either ATCP or normal
TCP normally would. They both improve throughput in the stationary one hop
scenario but they must be tested in more situations before they can be suggested
for wider use. Also, they either depend on recovery of packets by the routing
protocol or that the route is reestablished quickly after the route break.

On entry to disconnected state the variable that controls which segment to
transmit next is decreased to the first unacknowledged sequence number. Since
this decrease is unnecessary when DSR recovers packets after a route break, a
simulation was run without it. Figure29 show how ATCP enters disconnected
state after the route break. This decreases the congestion window to 1 and when
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Figure 25: No faked ICMP messages. DSR and Tahoe with ATCP.
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Figure 26: Effect of faked ICMP messages. DSR and Tahoe with ATCP.
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Figure 27: No faked ICMP messages. AODV and Tahoe with ATCP.
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Figure 28: Effect of faked ICMP messages. AODV and Tahoe with ATCP.
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Figure 29: Faked ICMP messages with no decrease of sequence number. DSR and
Tahoe with ATCP.

normal state is reentered, slow start is used. The effect is that the sender is briefly
paused so that the link layer can catch up with the interface queue. After enough
acknowledgements have arrived, the congestion window has grown enough to al-
low the TCP source to start sending more segments. This resulted in a throughput
increase of around 9% compared to the simulation without faked ICMP messages.

For AODV, the problem was instead that TCP waited for a timeout until it could
start sending again. To avoid this, ATCP was changed to do a retransmission im-
mediately on entry to disconnected state. Figure30 shows how this allows TCP to
continue sending data with only a minimal interruption for route reestablishment.
This gave a throughput increase of 48% compared to the simulation without ICMP.

4.9 Limiting the congestion window

An entirely different way, which is much simpler to implement than ATCP, of
increasing throughput is to limit the congestion window size. Since a transmission
in an IEEE 802.11 network can interfere with transmissions from other nodes at
least two hops away, the network must be relatively large before more than one
transmission can be made successfully at the same time. Because of this, using
large congestion windows and queueing many packets is overly optimistic and will
only result in longer delays.
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Figure 30: Faked ICMP messages and immediate retransmission. AODV and
Tahoe with ATCP.

In Figure31an 8% increase in throughput can be seen with DSR when the con-
gestion window is limited to values between 1 and 3 packets. A limit of 5 packets
gives an increase of 7% and higher limits give smaller throughput increases.

Figure32 shows how AODV reacts more to the congestion window size. A
limit of 1 packet gives a 52% increase in throughput compared to when the size is
unlimited. A 2 packet limit only gives an 18% increase and as the limit increases
the throughput quickly approaches the level of the unlimited case.

The cause of the huge throughput increase for AODV is that in the one hop
scenario AODV suffers much by every send failure that occurs. With a congestion
window of 1, TCP has to wait for an acknowledgement after each transmitted seg-
ment, which effectively removes all contention for the transmission media between
transmissions of data and acknowledgements. DSR shows a similar behaviour, but
since it does not give as large performance decrease as AODV after route breaks,
the effect is not as large.

If there had been competing traffic in the network or there had been more hops
between the communicating nodes, then the results would have been different.
However, this clearly shows that using larger congestion windows does not nec-
essarily give higher throughput. Besides giving higher throughput rates, using a
small congestion window leads to shorter round trip times since the packets do not
have to wait in the interface queues for as long as with an unlimited window.

A problem with limiting the congestion window is that if there are other nodes
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Figure 31: Throughput with different limits of the congestion window. DSR and
Tahoe without ATCP.

present which do not limit their congestion windows, then the node with a limit
will be at a disadvantage against unlimited nodes.

4.10 Comparison to experiments by Liu and Singh

The results from these simulations differ quite much from the results presented
by Liu and Singh [25]. Therefore a comparison of the different conditions are
presented here. The conditions are not described in detail by Liu and Singh so the
comparison is based on what can be assumed from their paper.

4.10.1 Scenarios

The experiments by Liu and Singh include scenarios with bit error, congestion,
partitioning, and packet reordering. In all cases they found a throughput increase
when ATCP was used. Of these scenarios, only packet error was explicitly sim-
ulated for this paper. Packet reordering was experienced as a side effect in many
simulations but with opposite results than for Liu and Singh.

Congestion and partitioning would have been interesting to simulate but this
was prevented by lack of time. It is difficult to say how ATCP behaves in those
situations without further simulations.
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Figure 32: Throughput with different limits of the congestion window. AODV and
Tahoe without ATCP.

4.10.2 FreeBSD implementation vs. Simulations

Liu and Singh conducted their experiments on a set of real computers running
FreeBSD with their ATCP patches. Compared to ns-2 simulations where many
parts are simplified this will show a more realistic behaviour. Generally, using real
computers for experiments will give a more realistic result, but it is still important
to know exactly which parts are involved and how they affect each other.

4.10.3 Network technology

Liu and Singh did not use real wireless interfaces for communication, but instead
emulated them using normal Ethernet cards. The transmission delays and error
rates were controlled by filters at the link layer. However, the behaviour of a real
IEEE 802.11 network is more complicated than what they seem to have modelled.
The simulated IEEE 802.11 does not necessarily show a real behaviour either, but
it should still be closer than the emulation used by Liu and Singh.

• Simultaneous transmissions

In an IEEE 802.11 network a radio transmission can interfere with other
transmissions at least two hops away. The total transmission capacity over
the entire network, as defined by how many packets can be successfully
transmitted at the same time, will therefore be very low. Liu and Singh do
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not describe their setup so it can only be assumed that they have not taken
transmission ranges into consideration. This will give their experiments a
total network capacity of at least one packet per link. Also, if they have
not disabled full duplex capability for the Ethernet cards, they will be able
to both transmit and receive at the same time on a link which is impossible
with radio interfaces.

The simulated IEEE 802.11 network uses a radio model to to determine the
success of each transmission. The radio model may not be entirely correct,
but it is still better than not taking interference into account at all.

• Loss and delay modelling

Liu and Singh write that they modelled packet loss and delay by intercepting
packets in the IP code when they are sent and received on the links. The
delays are set by packet size and link speed and the loss is set to a constant
bit error rate of 10−5. They do not take into consideration the effects of
interference by other nodes.

In the simulations, the radio model determines if the transmission succeeds
based on node distance, other transmissions, and surrounding environment.

• Effect of send failures

Liu and Singh do not write about if the act of dropping a packet has any
effects at the link layer in their experiments. In the ns-2 simulations, a
transmission error will first cause retransmission attempts by IEEE 802.11.
If IEEE 802.11 fails for too long, then it reports a send failure to the ad hoc
routing protocol which causes the route to be invalidated.

IEEE 802.11 has no method to determine if the send failure is caused by
temporary problems, which should put ATCP in the loss state, or by true
unreachability, which should put ATCP in the disconnected state. Liu and
Singh tested the disconnected state by explicitly introducing route breaks and
have not presented any method of discerning between loss and disconnection
that can be used in wireless networks. This is a problem that must be solved
before ATCP can be used.

4.11 Possible error sources

There are a number of factors that can affect the validity of the results.

4.11.1 Incomplete ns-2 implementation

Since ICMP messages and ECN marking have not been implemented there are
some effects where the ATCP parts misinterpret the network state and therefore
acts incorrectly.

On many occasions during the simulations there were send failures that caused
route breaks. According to the ATCP specification the source should then enter
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disconnected state, but since it cannot detect this it will assume packet loss. The
simulation results described in Section4.8 shows thatnot entering disconnected
state can actually give a better result than entering it, although this may not always
be the case in other scenarios.

All packet drops that occurred were done by the ad hoc routing protocols
because of route breaks. Since there were no congestion caused by full interface
queues, the effect of not using ECN should be nonexistent. If there had been
congestion the situation might have been different.

4.11.2 Implementation errors

There is always the possibility of errors in the implementation. Simulations run
during the implementation of ATCP sometimes showed very different results. This
is an indication of that TCP performance is very dependent on small details in the
implementations.

Several of the results shown in this report are from simulations that were run
with different snapshots of the code. However, when the code was changed so that
it might have affected the results the simulations were rerun.

4.11.3 Simulation errors

The simulation specification scripts and data analysis scripts can contain errors.
The radio model and many other options that are used are the same as in most

other wireless examples that can be found, so the results should be comparable to
other ns-2 simulations.

4.11.4 Errors in ns-2

Ns-2 is by no means polished software. In each version old bugs have been fixed
and new may have been introduced. There is no guarantee that there are no bugs in
the current version (2.26) that affects the performance estimates.

4.11.5 Simplifications in ns-2

Besides any bugs that may be present in ns-2, there are a number of simplifications
that are made in the simulator. Most notable for these simulations is that all
commonly used TCP implementations in ns-2 are half-duplex and also use some
other simplifications. Because of this, the TCP behaviour in ns-2 may differ from
real TCP implementations.
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5 Discussion

5.1 Problems encountered in the simulations

The problems encountered in these simulations are mainly caused by the inter-
action between TCP, the ad hoc routing protocol, and the interface queues. The
characteristics of the IEEE 802.11 links also play a part in creating the problems.

• Many levels of error handling.

IEEE 802.11 checks that each link layer frame is received properly and
performs retransmissions when problems occur. If the retransmissions fail
the link layer reports a send failure to the ad hoc routing protocol which in
turn can discard the packet or requeue it for transmission with a new route.
Besides this, TCP keeps track of packets at the transport layer level and
performs retransmissions when it thinks it is necessary.

The combination of using all these error handling mechanisms at the same
time leads to less predictable results.

• Send failures caused by high network load.

When there is a high network load in an IEEE 802.11 network, there is also
a high probability of send failures. With DSR and AODV, each send failure
causes the route it is using to be invalidated and forces the ad hoc routing
protocol to restart the route discovery process.

• Packet reordering caused by route failures.

When a route is invalidated, then transmissions of other packets in the in-
terface queue that are using that route will also fail until the route discovery
process has finished successfully. The failed transmissions will cause the
packets to be either dropped or requeued for transmission with a new route.
If the packets are requeued, there is a large risk of them arriving in the wring
order at the destination. This can in turn lead to packets being retransmitted
by TCP.

5.2 Possible solutions

Here are a few ideas for avoiding or decreasing the effect of send failures:

• Decrease the amount of send failures.

– Use another link layer technology.
Since an overloaded network using IEEE 802.11 makes send failures
more common, it could be wise to examine other link layer technolo-
gies that behave better under high load. Technologies that use trans-
mission schedules, e.g. those based on TDMA, suffers much less from
collisions and subsequent send failures.
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– Make TCP more aware of network capacity.

If we still want to use IEEE 802.11, it would be good if TCP could
be made more aware of how fast the network can send packets. By
knowing the capacity and trying not to exceed it, a better behaviour
could be achieved. This can be a difficult task since it is desired that
TCP can be used with many different link layer technologies with
different characteristics. Also, the gain would only be partial if only
one of the connection endpoints use an improved TCP.

– Limit the congestion window.

Since large congestion windows caused a high network load, the con-
gestion window can be limited. If all TCP implementations in the
network use smaller congestion windows, then a smaller number of
packets will be present in the network at the same time which will
give shorter delays where packets wait in interface queues. Shorter
round trip times will also make retransmission timeouts faster which
will make TCP react faster to missing acknowledgements. Note that
there is a risk of unfairness where nodes with a limited congestion
window is at an disadvantage against nodes without a limit.

• Decrease the effect of send failures.

– Use sorted interface queues.

In these simulations, both AODV and DSR use simple FIFO queues
for the interface queues. Instead of this, the queues could be designed
so that they try to transmit packets in the correct order. This would
remove most packet reordering that occurred in these simulations.

– Discard retransmissions of packets still in queue.

Some of the observed performance decreases are caused by unneces-
sary retransmissions. When a packet in enqueued at the link layer a
check could be made to see if an identical packet is already enqueued.
If so, the new packet can safely be discarded. This would remove some
of the performance decrease caused by reordered packets.

– Prioritise route discovery packets.

Some of the requeueing observed in these simulations could be avoided
by giving priority to route discovery packets after a route break. This
would avoid trying to send packets that precedes the route discovery
packets in the interface queue. Trying to send a packet before a new
route is established will only result in the packet being dropped or
requeued.
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5.3 Insights from the work

5.3.1 TCP behaviour changes

Changing the behaviour of TCP is tricky. Changing something to increase perfor-
mance in certain cases can cause performance penalties in other cases. For example
it could be assumed that larger congestion windows would cause a throughput
closer to the maximum network capacity. However, in an error-prone network
like the MANETs, the increased congestion window instead reduces the protocols
ability to react quickly to errors like lost packets or packet reordering. Those who
want to implement changes should be both familiar with the details of the protocol
and with the source code of the implementation that they want to change.

5.3.2 Ns-2

Ns-2 is a large and complicated piece of work. Many network researchers have
contributed to create a program that can simulate many different aspects of net-
works. Unfortunately, even though the entire source code is available, it is quite
difficult to make more than small changes to it. Many parts of the program are
poorly documented and it is hard to get good overview of its overall design.

5.3.3 Simulation results

Even though these simulations seldom showed increased throughput with ATCP,
increased knowledge of the network state can still be used to increase performance
by reacting to different situations in proper ways. Even though the transport layer
is often said to have little knowledge about the lower layers, the current TCP
implementations do probe the network and they make assumptions about its state;
for example by changing the congestion window. While the TCP implementations
of today are usually tuned for wired, low-loss networks, future implementations
could be more adapted to other network profiles.

5.3.4 Network state

To what extent should network state information be explicitly passed around the
network? This is a difficult question. Even though it can be used by the nodes
to make more intelligent decisions, it takes resources from the real data transfers.
The benefit of knowing more the network state must be weighed against the cost
of learning about it. In a world of finite resources, smarter does not always mean
faster.

5.4 Future work

Here are some suggestions for future work:
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• Implementing solutions to problems encountered in the simulations.

One or more of the ideas suggested in section5.2could be implemented and
evaluated. This could be done independent of other TCP modifications.

• Implementing ATCP fully in ns-2.

It would be interesting to redo these simulations and compare them to a
complete ATCP implementation in ns-2. In that way the effects of skipping
parts of ATCP could be observed.

• Doing more extensive simulations of different scenarios.

The simulations made for this paper are very simple and can mostly be
seen as a proof that the implementations are runnable without crashing the
simulator. To be able to draw any real conclusions about the effects of ATCP
more complex situations must be simulated. The next step in complexity
would be adding competing traffic parallel to or crossing the observed path.

• Studying other TCP modifications.

ATCP is not necessarily the best choice for MANETs. Other TCP modifica-
tions like TCP-F [5] or TCP-Bus [22] could be implemented and studied.

• Studying alternatives to TCP.

Even if TCP is the most commonly used protocol, there are other protocols,
e.g. SCTP [42], that could be used in MANETs. One of these could be
implemented and compared to TCP.

6 Conclusions

In this report, TCP and ATCP behaviour has been studied in a MANET environ-
ment. Even though the ATCP implementation is not complete and the simulation
scenarios are simple, the results still show that there can be a large throughput
decrease when TCP behaves in ways that are inappropriate for different MANET
conditions.

In these simulations, the largest problems were caused by the interaction be-
tween TCP, the ad hoc routing protocol, and the IEEE 802.11 network. When
the IEEE 802.11 is at full load, the probability of send failures increases. These
send failures cause route breaks, which in turn can cause either packet reordering
or packet loss. This causes TCP to either make unnecessary retransmissions or
unnecessarily wait for a retransmission timeout, which in both cases decreases
throughput.

Some ideas on how to make the throughput decrease smaller have been pre-
sented.

• Use a link layer technology that performs better under full load than IEEE
802.11.
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• Set a maximum size limit on the TCP congestion window.

• Improve the link layer queue behaviour.

In general, when the partial ATCP implementation was used, throughput per-
formance decreased. This runs opposite to the results presented by Liu and Singh [25]
where ATCP increased throughput drastically. The simulations for this report were
too simple to draw any definite conclusions about the suitability of ATCP, but there
are also some questions about the validity of Liu and Singh’s results.
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