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Abstract—In network-on-chip, computing worst-case delay
bound for packet delivery is crucial for designing predictable sys-
tems but yet an intractable problem due to complicated resource
contention scenarios. In this paper, we present an analysis tech-
nique to derive the communication delay bound for individual
flows. Based on a network contention model, this technique, which
is topology independent, employs the network calculus theory to
first compute the equivalent service curve for individual flows and
then calculate their packet delay bound. To exemplify our method,
we also present the derivation of a closed-form formula to calcu-
late the delay bound for all-to-one gather communication. Our
experimental results demonstrate the theoretical bounds are cor-
rect and tight.

I. INTRODUCTION

Quality-of-Service (QoS) has been a major concern for

Network-on-Chip (NoC) since its birth around the year

2000 [2]. The reason is due to the fact that routing pack-

ets in shared resource networks inherently brings about unpre-

dictable performance. This non-determinism does not meet the

requirement of building predictable communication systems in

which delay bounds must be guaranteed in any case. Appar-

ently many applications such as multimedia, HDTV, set-top

and gaming boxes have stringent requirements on communi-

cation delay bounds [11]. For example, processing 25 high

definition video frames (1680 x 1024, 1920 x 1280, etc.) must

be completed within 20 ms.

There are a number of approaches to address QoS for on-

chip communication [2]. From a service-oriented point of view,

a network may provide best-effort (BE) and guaranteed ser-

vices to satisfy the requirements of different QoS provisions.

To offer strict promises, a guaranteed service typically reserves

resources for exclusive use. This essentially isolates interfer-

ences. For example, Time Division Multiplexing (TDM) vir-

tual circuits (VCs) are proposed for the Æthereal [5] and Nos-

trum [10] NoCs. However, there are two main drawbacks.

First, while such VCs provide guarantees once they are estab-

lished, the setup procedure itself is non-predictable if it is done

dynamically. Second, resources may often be over-reserved,

leading to lower resource utilization. To make a good utiliza-

tion of the shared network resources, BE networks are pre-

ferred. However, BE networks are known in achieving good

average performance, but the worst case performance is ex-

tremely hard to predict. The reasons are that (1) network con-

tention for shared resources (buffers and links) includes not

only direct contention but also indirection contention. They are

difficult to capture in entirety; (2) identifying the worst case is

nontrivial. The worst case is in general unknown or uncertain.

This hard situation leaves designers with simulation as almost

the only tool to find the maximal delay by simulating various

traffic scenarios. While the simulation based approach can of-

fer the highest accuracy but can be very time-consuming. Each

simulation run may take considerable time and evaluates only a

single network configuration, traffic pattern, and load point. It

is difficult, if not impossible, to cover all the system states [9].

In contrast, a formal-analysis-based (mathematical) method is

much more efficient that it provides approximate performance

numbers with a minimum amount of effort and gives insight

into how different factors affect performance [9]. The accuracy

of results can be rough but gives an initial and quick estimation.

A calculated performance bound may be also tight enough.

In this paper, we take the formal analysis approach, aiming

for deriving the worst case delay bound for individual flows,

called tagged flows, for on-chip networks. Our assumption is

that the application-specific nature of on-chip communication

enables to characterize traffic with sufficient accuracy. This

traffic characterization may follow the abstraction of the arrival

curve in network calculus [1, 4]. The router model follows the

abstraction of the service curve. We also assume a determinis-

tic routing, which is cheap to implement and give more deter-

minism.

For a tagged flow, we first construct its contention model.

This model is a contention tree, which captures not only its

contention with other interfering flows along its routing path

but also the indirect contention experienced by the interfer-

ing flows. Based on this tree, we scan the tree to compute

the output arrival curves of each branch in the contention tree.

Then we derive the equivalent service curve for the tagged flow

traversing the trunk of tree and calculate its delay bound. To

show the usage and potential of our method, we take all-to-one

gather communication, which is an important collective opera-

tion for parallel processing, as an example to derive a closed-

form formula to calculate the delay bound.

The remainder of the paper is organized as follows. Section

II reviews related work and summarizes our contributions. In

Section III, we present the general analytical approach for cal-

culating the delay bound for a tagged traffic flow. In Section

IV, we exemplify the potential of the analysis method with the

all-to-one gather collective communication. Experiments are

reported in Section V. Finally we draw conclusions in Section

VI.

II. RELATED WORK

In the context of testing the feasibility of packet deliv-

ery within time constraints in wormhole networks, researchers
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have proposed various ways to capture network contention and

then utilize scheduling theory to find and estimate the worst-

case delay bounds for packets [7, 8]. In [7], the lumped link

model was proposed by which the links that a packet traverses

are lumped into a single link. This model does not distinguish

direct and indirection contention, thus the estimated bounds are

pessimistic. In [8], Lu et al. proposed a contention tree model,

which differentiates direct and indirect contention. More im-

portantly, the tree structure allows further differentiating trunk

contention and branch contention. Both works assume deter-

ministic routing.

In adaptively routed networks, it is a must to avoid live-lock.

The best assurance of live-lock freedom is to make sure that

there exists an upper bound for any packets. Studies have been

carried to analytically compute packet delivery bounds. How-

ever, they consider only special cases that assume very simple

traffic scenarios. For example, [3] considers only batch admis-

sions, which inject traffic into the network once, in a deflection-

routed network.

In general queuing networks, network calculus provides the

means to deterministically reason about timing properties of

traffic flows. Based on the powerful abstraction of arrival
curve for traffic flows and service curve for network elements

(routers, servers), it allows computing the worst-case delay and

backlog bounds. Network calculus has been extremely suc-

cessful for ensuring performance bounds in ATM, Internet with

differentiated and integrated services, and other types of net-

works. Systematic accounts of network calculus can be found

in books [1, 4].

Our work applies the network calculus theory for on-chip

networks. One main reference we use is [6], where a method

for computing least upper delay bound (LUDB) with leaky-

bucket constrained flows and rate-latency service curves for the

aggregates is presented. It derives per-flow service guarantees

from per-aggregate service guarantees at a single node and con-

sists in applying that theorem iteratively to obtain a set of end-

to-end service guarantees for a flow. Then, the LUDB among

all the bounds is derived from each single end-to-end service

guarantee. In fact, each node is characterized by means of a

lower bound on the service it offers. This method yields better

bounds than those previously proposed methods [12, 13, 14].

In our approach, we also start with modeling network con-

tention. Our model is similar to the contention tree in [8]. How-

ever, we extend this model by identifying basic contention pat-

terns for flows. Based on these patterns, any complex con-

tention scenario can be decomposed into the basic patterns.

This divide-and-conquer approach enables to systematically

study the comprehensive network contention scenarios. Fur-

thermore, we derive the equivalent service curve for the tagged

flow under these basic patterns, as we shall see in Section

III. Moreover, we combine the network contention tree model

with network calculus analysis. Consequently, this combina-

tion makes it possible to calculate delay bounds for any tagged

flow in networks with an arbitrary topology. We summarize our

contributions as follows:

• We identify three basic flow contention patterns. Any

complex contention scenario for a tagged flow can be de-

scribed by a composition of these scenarios. Furthermore,

we give formal representations for calculating the equiva-

lent service curve for the three basic patterns.

• We propose an analysis procedure to compute the delay

bound for a tagged flow interfered by other flows. It con-

tains two main steps: (1) construct a contention tree; (2)

scan the tree and compute the equivalent service curve for

the tagged flow.

• We present a case study on all-to-one gather communica-

tion and derive the closed-form formula to compute the

delay bound.

III. THE DELAY BOUND ANALYSIS

We first illustrate the problem, and then detail our delay

bound analysis technique.

A. The Problem Illustration

P

P
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Fig. 1. A problem example.

We use an example to illustrate the problem that we address

and to explain terminology used in the paper. Fig. 1 shows a

network with 16 nodes, numbered from 1, 2, , 16. A node con-

tains a core and a router. We assume deterministic routing for

the network, and routers serve flows in the FIFO order. There

are 5 packet flows sent from five nodes 1, 4, 8, 12 and 16 to

node 15. We denote f(i,j) as the flow injected at router i and

ejected at router j, αi,j as arrival curve at ingress router, α∗
(i,j)

as output arrival curve at egress router, and βi as service curve

of router i. We call the flow for which we shall derive its de-

lay bound tagged flow, other flows that share resources with it

interfering or contention flows. In this example, f(1,15) is the

tagged flow, and f(4,15), f(5,15), f(8,15) and f(12,15) are inter-

fering flows.

B. The Router Service Model

R

Fig. 2. Two flows multiplexing in a router.

Fig. 2 shows a lossless router serving two flows, tagged and

contention, in the FIFO order. Assume the router guarantees

a service curve β to both flows. The tagged and contention

flow have α1, α2 as arrival curve, respectively. We define

ε(β, α2) as the equivalent service curve [4, 6] to the tagged

flow, where ε(., .) is a function to compute the equivalent ser-

vice curve. Thus, according to [4], the output arrival curve of

tagged flow can be derived easily as α∗
1 = α1�ε(β, α2), and its

delay bound is h(α1, ε(β, α2)), where h(., .) is the function to

compute the maximum horizontal distance between the arrival

curve and the service curve.
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C. Interference Patterns and their Analytical Models

Apparently, network flow contention scenarios are diverse

and complicated. A tagged flow directly contends with inter-

fering flows. Also, interfering flows may contend with each

other and then contend with the tagged flow again. This indi-

rect contention may in turn influence the performance of the

tagged flow. To decompose a complex contention scenario, we

identify three primitive contention patterns.

1 g h j k N

1 g h j k N

1 g h j k N

(a) Nested

(b) Parallel

(c) Crossed

Fig. 3. The three basic contention patterns for a tagged flow.

Suppose that a tagged flow f(1,N) traverses a tandem of N
routers from source to destination, and is multiplexed with con-

tention flows. The contention scenarios the tagged flow may

experience can be classified into three patterns, Nested, Paral-
lel and Crossed, as shown in Fig. 3. In the following, we ana-

lyze the three scenarios and derive their basic analytical models

with focus on the derivation of service curve the tandem pro-

vides. Once obtaining the tandem service curve, the output

arrival curve and delay bound can be derived.

Scenario I: Nested contention flows. As illustrated in

Fig. 3(a), contention flow f(h,j) is nested in f(g,k), 1 ≤ g ≤
h ≤ j ≤ k ≤ N . The sub-tandem (h, j) serves the aggre-

gation of f(1,N), f(g,k) and f(h,j) with service curve
j⊗

i=h

βi, if

excluding f(h,j), we can get the equivalent service curve for

f(1,N) and f(g,k) as ε(h,j) = ε(
j⊗

i=h

βi, α(h,j)). Then the ser-

vice curve of sub-tandem (g, k) for the aggregation of f(1,N)

and f(g,k) is computed as (
h−1⊗
i=g

βi) ⊗ ε(h,j) ⊗ (
k⊗

i=j+1

βi), thus

we can derive the equivalent service curve ε(g,k) for f(1,N) as

ε
(
(
h−1⊗
i=g

βi) ⊗ ε(h,j) ⊗ (
k⊗

i=j+1

βi), α(g,k)

)
. Therefore the tan-

dem (1, N) serves f(1,N) with the service curve β(1,N) =

(
g−1⊗
i=1

βi) ⊗ ε(g,k) ⊗ (
N⊗

i=k+1

βi).

Scenario II: Parallel contention flows. As shown in

Fig. 3(b), contention flows f(h,j) and f(g,k) are independent.

Similarly to Scenario I, we can get the equivalent service

curve of sub-tandem (g, h) and (j, k) for f(1,N) respectively, as

ε(g,h) = ε(
h⊗

i=g

βi, α(g,h)) and ε(j,k) = ε(
k⊗

i=j

βi, α(j,k)). Hence

the service curve of tandem (1, N) for f(1,N) can be calculated

as β(1,N) = (
g−1⊗
i=1

βi)⊗ ε(g,h) ⊗ (
j−1⊗

i=h+1

βi)⊗ ε(j,k) ⊗ (
N⊗

i=k+1

βi).

Scenario III: Crossed contention flows. As shown in

Fig. 3(c), contention flow f(g,j) is crossed with f(h,k). We can

see there are two cross points produced by these two flows, one

at the ingress of router h and the other at the egress of router j.

If we cut f(g,j) arbitrarily at the first cross point, i.e. at ingress

of router h, f(g,j) will be split into two flows f(g,h−1) and

f(h,j), as shown in Fig. 4. Then the problem is strictly trans-

formed to the combination of scenario I and II that f(g,h−1)

is separate and f(h,j) is nested in f(h,k). Apparently the ar-

rival curve α(g,h−1) of f(g,h−1) equals to α(g,j) and the arrival

curve α(h,j) of f(h,j) equals to α∗
(g,h−1). To compute α∗

(g,h−1),

we need to get the arrival curve of f(1,N) at the ingress of sub-

tandem (g, h−1) which equals to α∗
(1,g−1) as α(1,N)�(

g−1⊗
i=1

βi).

Then the equivalent service curve of sub-tandem (g, h − 1)

for f(g,h−1) is derived as ε(
h−1⊗
i=g

βi, α
∗
(1,g−1)). Thus we obtain

the output arrival curve of f(g,h−1) as α∗
(g,h−1) = α(g,h−1) �

ε(
h−1⊗
i=g

βi, α
∗
(1,g−1)). With α(g,h−1), α(h,j) and α(h,k) obtained,

we can calculate the tandem service curve for f(1,N) directly as

β(1,N) = (
g−1⊗
i=1

βi) ⊗ ε(g,h−1) ⊗ ε(h,k) ⊗ (
N⊗

i=k+1

βi).

1 g h j k N

Fig. 4. Transform the crossed flows to non-crossed flows.

D. The Analysis Procedure

In Section III-C, we have derived three basic analytical mod-

els for analyzing the delay bound for the tagged flow multi-

plexed with two contention flows in three different scenarios.

For complex scenarios with more than two contention flows in

the tandem, the problem can be split into the basic models and

expressed with a contention tree. The analysis procedure is de-

tailed as follows:

Step 1: Construct a contention tree to model the network con-

tentions produced by interfering flows;

Step 1.1: Let the tandem traversed by the tagged flow be

the trunk;

Step 1.2: Let the tandems traversed by the interfering

flows before reaching the trunk node be branches,

which may also have its own sub-branches;

Step 2: Scan the contention tree and compute all the output

arrival curves of flows traversing the branches using the

basic analytical models iteratively;

Step 3: Compute the equivalent service curve for the trunk

flow (tagged flow) and derive the delay bound.

We use the example in Fig. 1 to explain this procedure.

In Fig. 1, the tagged flow f(1,15) is multiplexed with f(4,15),

f(5,15), f(8,15) and f(12,15). We construct a contention tree

shown in Fig. 5 to model the flow contentions, where the tan-

dem (1, 15) traversed by f(1,15) composes the trunk with the

ingress router 1 up to egress router 15 and the tandems tra-

versed by contention flows before reaching the trunk nodes

compose the branches. At router 15, f(5,15) is first injected

into the trunk and the sub-tandem traversed by f(5,15) builds
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Fig. 5. The contention tree for the tagged flow f(1,15).

the first branch. Branch (5, 14) has sub-branch (4, 7) produced

by its own contention flow f(4,15) as indicated by the dashed

blue line in Fig. 5. Also f(1,15) contends with f(4,15) at the

sub-tandem (3, 7) that builds the sub sub-branch (1, 2) as the

dashed red line indicates for sub-branch (4, 7).
If a tandem containing a sequence of nodes, at the node

where one flow is multiplexed with the traffic coming form the

upstream node, we treat the flows in the tandem as an aggre-

gate flow. For instance, f(8,15) and f(12,15) injected into router

15 produce two branches (8, 16) and (12, 16), where branch

(12, 16) has sub-branch (8, 8). These two branches are com-

posed of the same nodes. Thus, we treat f(8,15) and f(12,15)

as an aggregate flow (f(8,15), f(12,15)) and reserve only one

branch (8, 16) for optimization.

If flows coming from different branches injected into and

ejected out a tandem at the same ingress and egress nodes,

we treat the flows at the ingress node as an aggregate

flow. For instance, since both f(5,15) and the aggregate flow

(f(8,15), f(12,15)) are injected into router 15 and ejected out

router 15 to the core, they can further compose into a larger

aggregate flow (f(5,15), f(8,15), f(12,15)) for the trunk.

f(4,15) contends with f(1,15) twice. It is first injected into the

trunk at router 3 and ejected out at router 7, and then injected

at router 11 again. Hence two branches extend at router 3 and

11 in the trunk.

To derive the equivalent service curve for trunk flow f(1,15),

we scan the contention tree in Fig. 5 using the Depth-First-

Search to first compute the output arrival curves of f(1,15)

traversing the sub sub-branches (1, 2) for sub-branch (4, 7),
then the output arrival curve of f(4,15) traversing the sub-

branches (4, 7) for branch (5, 14), thus the output arrival curve

of f(5,15) traversing branch (5, 14) for trunk (1, 15) is derived

using the basic analytical models. Analogously, the output ar-

rival curves of f(4,15) traversing branch (4, 10) and (4, 4) for

trunk (1, 15) are derived. We compute the output arrival curve

of the aggregate flow (f(8,15), f(12,15)).
After all arrival curves of injected flows are obtained, we

then compute the trunk service curve for f(1,15) and thus delay

bound for f(1,15) can be derived.

We have designed two algorithms, one for constructing the

contention tree and the other for computing the equivalent ser-

vice curves of branches and trunk. Due to space limitation, they

are not presented here.

IV. ALL-TO-ONE DELAY BOUND

To demonstrate the potential of our analysis method, we

study an all-to-one communication case for which we derive

closed-form formula to calculate the delay bound.

A. All-to-one Gather Communication on a Mesh NoC

We consider all-to-one gather communication, which is one

of common collective operations for parallel applications, on

a m × n mesh NoC with the XY routing. We assume a ho-

mogeneous NoC where all cores and routers have the same

capacity. To simplify our discussions, we assume that all

flows from the cores are constrained by an affine arrival curve

αr,b(t) = rt + b and all routers provide a rate-latency service

curve βR,T (t) = R(t−T )+. As there coexist m×n− 1 flows

simultaneously, (mn − 1)r ≤ R, meaning that the sum of the

rates for the flows must be less than or equal to the router’s

service rate.

Fig. 6(a) shows an all-to-one gather communication in a 4×4
NoC with the gathering node (3, 3). Since the NoC is a mesh,

we naturally use 2D coordinates (x, y) to represent a node. We

also define a labeling function l(x, y) = n(x − 1) + y to mark

the nodes with a sequence of numbers. Let node (x, y) be the

gathering node, we use f(n(i−1)+j,n(x−1)+y) to represent the

flow from node (i, j) to node (x, y). Note this is consistent

with the labeling convention for flows in Section III. By the

labeling function, nodes (1, 1) and (3, 3) are labeled as 1 and

11, respectively. Fig. 6(b) depicts the contention tree for flow

f(1,11) considering aggregate flows in the branches.

(3,3)

(2,3)

(1,3)

(1,2)

(1,1)

(1,4)

(2,4)
(2,2)

(2,1)

(3,2)
(3,4)

(3,1)

(4,3)

(4,4)

(4,1)

(4,2)

(a)                  (b) 

Fig. 6. All-to-one gather communication in 4 × 4 NoC and the contention

tree for f(1,11).

B. Closed-form Formula for Delay Bound

Without loss of generality, we set f(1,n(x−1)+y) as the tagged

flow and (x, y) as the gathering node. The contention tree for

f(1,n(x−1)+y) can be built similarly to Fig. 6(b). Next we scan

the contention tree to compute the arrival curves of all injected

aggregate flows coming from branches to the trunk. After that

we can calculate the equivalent service curve of the trunk for

the tagged flow. Finally, the delay bound for the tagged flow

can be derived.

While scanning the tree, we classify the branches into three

types and derive the formulas for computing the output arrival

curves of the aggregate flows injected to the trunk.

For branches (i, 1) → (i, y − 1), i = 2, . . . , m and (i, n) →
(i, y−1), i = 1, . . . , m, shown in Fig. 7, we use Theorem 4.15

in [6] to compute the output arrival curve of the aggregate flow

at egress node (i, y − 1) and (i, y + 1) as follows.

At node (i, y − 1), α∗
(i,y−1) = αr∗

1 ,b∗1 with{
r∗1 = (y − 1)r

b∗1 = (y − 1)(b +
y

2
rT ),
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R(i,1) R(i,2) R(i,y-2) R(i,y-1)

y-1 routers

R(i,n) R(i,n-1) R(i,y+2) R(i,y+1)

n-y routers

(a)

(b)

Fig. 7. Output arrival curves for the aggregate flow at egress node (i, y − 1)
and (i, y + 1).

and at node (i, y + 1), α∗
(i,y+1) = αr∗

2 ,b∗2 with⎧⎨
⎩

r∗2 = (n − y)r

b∗2 = (n − y)(b +
n − y + 1

2
rT ).

(a) (b)

Fig. 8. Input arrival curves for the aggregate flow at ingress node (i, y).

At trunk node (1, j), j = 2, . . . , y − 1, only one flow with

arrival curve αr,b is newly arriving. At trunk node (1, y), the

aggregate flow is the sum of traffic coming from the local core

and a branch as depicted in Fig. 8(a), for that α(1,y) = αr1,b1 =
αr,b + α∗

(1,y+1) and the parameters r1 and b1 is derived be-

low. At node (i, y), i = 2, . . . , x − 1, x + 1, . . . , m, the newly

injected traffic is composed of three incoming flows such as

α∗
(i,y−1), αr,b, α

∗
(i,y+1) as illustrated in Fig. 8(b), thus the ag-

gregate flow’s arrival curve is α(i,y) = αr2,b2 = α∗
(i,y−1) +

αr,b + α∗
(i,y+1) with parameters as follows.

At trunk node (1, y), α(1,y) = αr1,b1 = αr,b +α∗
(1,y+1) with⎧⎨

⎩
r1 = (n − y + 1)r

b1 = (n − y + 1)(b +
n − y

2
rT ),

(1)

and the input arrival curve at node (i, y) is α(i,y) = αr2,b2 =
α∗

(i,y−1) + αr,b + α∗
(i,y+1) with⎧⎨

⎩
r2 = nr

b2 = nb +
n2 + 2y2 − 2ny + n − 2y

2
rT.

(2)

R

(m,y)

R

(m-1,y)

R

(x+2,y)

R

(x+1,y)

m-x routers

(a) (b)

Fig. 9. Output arrival curves for the aggregate flow at egress node (x + 1, y)
and input arrival curve at trunk node (x, y).

Finally, at trunk node (x, y), the newly injected flow

is coming from three branches with the arrival curve

of α∗
(x,y−1), α

∗
(x+1,y), α

∗
(x,y+1) respectively. The branch

(m, y) → (x + 1, y) has sub-branches at each branch node.

Fig. 9(a) indicates the flows aggregated at the branch and the

output at (x + 1, y). The corresponding output arrival curve is

α∗
(x+1,y) = αr∗

3 ,b∗3 , where⎧⎨
⎩

r∗3 = (m − x)r2

b∗3 = (m − x)(b2 +
m − x + 1

2
r2T ).

Hence we get the aggregated branch arrival curve α(x,y),

α(x,y) = αr3,b3 = α∗
(x,y−1) + α∗

(x+1,y) + α∗
(x,y+1) with{

r3 = r∗1 + r∗2 + r∗3
b3 = b∗1 + b∗2 + b∗3.

(3)

R(1,1) R(1,y-1)

y-1 routers

R(2,y) R(x-1,y) R(x,y)

x-2 routers

P(x,y)P(1,1) R(1,y)

Fig. 10. All aggregate flows multiplexed with the tagged flow in the trunk.

Now we derive all branch arrival curves for the trunk. As

shown in Fig. 10, the contention flows are nested. We can apply

the basic analytical model of Scenario I iteratively to derive

the equivalent service curve for the tagged flow. Then we get

Formula (4) for computing the delay bound D̄, which has been

proved to be the least upper delay bound [6].

D̄ =

x+y−1∑
i=1

T+

y−1∑
j=1

b

Rx+y−j ·
y−1−j∏

k=1

1

R + r
· 1

R + r1
·

x−2∏
l=1

1

R + r2
· 1

R + r3

+

b1

Rx ·
x−2∏
l=1

1

R + r2
· 1

R + r3

+

x−2∑
j=1

b2

Rx−j ·
x−2−j∏

k=1

1

R + r2
· 1

R + r3

+
b3

R
.

(4)

V. EXPERIMENT

We design experiments to verify our analytical approach. We

use the all-to-one gather communication. Since we have de-

rived the delay bound formula for all-to-one communication in

Section IV, we conduct simulations to compare observed max-

imum delays in simulations with calculated bounds.

We consider a 4×4 mesh NoC with different gathering node

(3, 3) and (4, 4) and a 5 × 5 mesh NoC with gathering node

(3, 3), (4, 4) and (5, 5). The delay bound for the flow gen-

erated by node (1, 1) to the gathering node is calculated and

simulated. Each flow generated by the core is constrained by

the arrival curve of αr,b(t) = 1t + 4 where the generating rate

r = 1 packet/cycle and the burst b = 4 packets, and each router

guarantees the service curve of βR,T (t) = 25(t − 3)+, where

the serving rate R = 25 packets/cycle and the latency T = 3
cycles.

We build a NoC simulator that each core generates a Pois-

son stream with rate λ = 1.1 packets/cycle, which then passes

through a traffic shaper with leaky rate r = 1 packet/cycle and

bucket size b = 4 packets. We construct the router by rate-

latency server as β25,3 with big enough buffer size. The delay

experienced by a packet of the tagged flow is recorded when

it reaches the gathering node. We assume zero link delay in

experiments.

We run every simulation for 1E+9 cycles and get the calcu-

lated delay bounds using Eq. (4) for different settings. The cal-

culated bounds and experimental maximum delays of all pack-

ets are listed in Table I. We denote calculated delay bound and
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simulated maximum delay as D̄ and Dmax, respectively. For

all results, the unit for delay is cycle.

NoC 4 × 4 Mesh 5 × 5 Mesh

Tagged (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
Flow → (3, 3) → (4, 4) → (3, 3) → (4, 4) → (5, 5)
D̄ 19.97 25.85 25.43 30.36 36.37

Dmax 19 23 23 29 34

TABLE I

CALCULATED BOUNDS AND OBSERVED MAXIMUM DELAYS.

From Table I we can see that the calculated delays bound

the experimental maximum delays tightly. It also shows that

the delay of the same tagged flow becomes larger when the

NoC mesh size increases. When the gathering node is nearer

to the network edge from (3, 3) to (4, 4) and later to (5, 5), the

maximum delay and the delay bound increase since the overall

distance from sources to the gathering node increases.
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Fig. 11. Calculated bound and observed maximum delay for flow

(1, 1) → (3, 3) in 4 × 4 mesh NoC.

We also plot a sequence of 1000 observed delays including

the maximum delay for tagged flow (1, 1) → (3, 3) in 4 × 4
mesh NoC in Fig. 11. The blue circle indicates the delay ex-

perienced by a packet and the red line represents the calculated

delay bound. We can see the simulated delays are totally con-

strained by the calculated delay bound and the bound is tight.

The calculated bound is 19.97 cycles, and the observed maxi-

mum delay is 19 cycles.
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Fig. 12. Delays under different relative supply factors.

We also consider the relationship between the delay and the

service capacity of the routers. Assume the routers have a ser-

vice rate R = (mn−1)·r·(1+η), i.e., η is a relative supply fac-

tor to express the extra service capability of the routers. Fig. 12

reports the calculated delay bounds and simulated maximum

delays for the 4 × 4 mesh NoC with r = 1 packet/cycle, b = 4
packets, T = 3 cycles and η varying form 0 to 1 with step 0.1.

As can be seen, the simulated maximum delays are bounded

by the calculated delay bound. As η increases, the maximum

delay decreases but the decrement is becoming smaller. This

indicates that increasing the service rate can reduce the delay

bound until the delay approaches the propagation delay.

VI. CONCLUSION

Application exerts stringent requirements on on-chip net-

works to ensure performance bounds even under worst cases.

In this work, we present an analysis method to compute the de-

lay bound for tagged flows. This method is the consequence of

synergistically combining the network contention tree model

with network calculus. It assumes deterministic routing but is

topology independent. Thus it can be applied to a variety of

networks with a regular or irregular topology. To exemplify the

potential of our technique, derivation of a closed-form formula

for computing the delay bound for all-to-one communication

is detailed. Our experiments demonstrate the correctness and

tightness of the calculated bounds compared with simulated re-

sults. We conclude that derivation of the delay bound for traffic

flows in best-effort routed NoCs can be well conducted.

Our work has followed the network calculus theory. This

theory allows computing buffer bounds in routers as well. We

shall dig out this in the future. As we have considered feed-

forward networks in this work, investigation on feedback net-

works is another dimension to carry out. This would lead to

capture back pressures for given buffer sizes.
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