
Distributed Control Loop Patterns for Managing Distribute d Applications ∗

Ahmad Al-Shishtawy,1 Joel Höglund,2 Konstantin Popov,2 Nikos Parlavantzas,3

Vladimir Vlassov,1 and Per Brand2

1 Royal Institute of Technology, Stockholm, Sweden.{ahmadas, vladv}@kth.se
2 Swedish Institute of Computer Science, Stockholm, Sweden.{joel, kost, perbrand}@sics.se

3 INRIA, Grenoble, France. nikolaos.parlavantzas@inria.fr

Abstract

In this paper we discuss various control loop patterns
for managing distributed applications with multiple control
loops. We introduce a high-level framework, called DCMS,
for developing, deploying and managing component-based
distributed applications in dynamic environments. The con-
trol loops, and interactions among them, are illustrated in
the context of a distributed self-managing storage service
implemented using DCMS to achieve various self-* proper-
ties.

Different control loops are used for different self-* be-
haviours, which illustrates one way to divide application
management, which makes for both ease of development
and for better scalability and robustness when managers
are distributed. As the multiple control loops are not com-
pletely independent, we demonstrate different patterns to
deal with the interaction and potential conflict between mul-
tiple managers.

1 Introduction

Deployment and run-time management of applications
constitute a large part of software’s total cost of owner-
ship. These costs increase dramatically for distributed ap-
plications that are deployed on dynamic environments such
as unreliable networks aggregating heterogeneous, poorly
managed resources.

The autonomic computing initiative [7] advocates
self-configuring, self-healing, self-optimizing and self-
protecting (self-* thereafter) systems as a way to reduce the
management costs of such applications.

Self-management of a hardware and/or software re-
source (managed resource thereafter) is achieved through

∗This research is supported by the FP6 Project Grid4All funded by the
European Commission (Contract IST-2006-034567) and by theFP6 Net-
work of Excellence CoreGRID funded by the European Commission (Con-
tract IST-2002-004265).

control loops [8]. A control loop continuously monitors
the managed resource and acts accordingly. A control loop
consists mainly of an autonomic manager and touch points.
Touch points enable autonomic managers to sense and af-
fect the managed resource. The autonomic manager func-
tion is divided into four phases. Monitoring the managed
resource through sensors to find symptoms. Analyzing
symptoms and request appropriate change. Planning the re-
quested change. Finally executing the change plan.

Distributed applications require multiple control loops to
manage them. Multiple control loops are needed for scala-
bility, robustness, and to simplify programming. In its sim-
plest form there might be one loop per self-* aspect, per
application nonfunctional requirement, or per application’s
subsystems. Usually these loops are not independent but
interact and affect each other.

In this paper we present different patterns for construct-
ing distributed control loops to manage distributed appli-
cations. These patterns are discussed in the context of a
simple component based distributed storage service called
YASS[1] and implemented using distributed component
management system (DCMS) [1][4].

The rest of this paper is organized as follows. In
Section 2 we briefly introduce DCMS management system
followed by a description of YASS architecture in Section
3. Then in Section 4 we discuss control loop patterns used
to self-manage YASS. Followed by related work in Sections
5 and finally conclusions in Section 6.

2 The Distributed Component Management
System

DCMS[1][4] is a distributed component management
system that facilitates self-management of component
based applications deployed on dynamic distributed envi-
ronments such as community-based Grids.

DCMS separates application’s functional and nonfunc-
tional (self-*) code. DCMS is a runtime system that sup-
ports both parts. It provides a programming model and



a matching API for developing application-specific self-*
behaviours (control loops). It also supports the functional
part by extending the Fractal component model [5] with
the concept of component groups and bindings to groups
that results in “one-to-all” and “one-to-any” communication
patterns , which support scalable, fault-tolerant and self-
healing applications [4].

The DCMS runtime system consists of a set of dis-
tributed containers that can host components (MEs and ap-
plication components). The distributed containers are con-
nected together using the Niche overlay network [4]. Niche
is self-organising on its own and provides overlay services
used by DCMS such as name based communication, dis-
tributed hash table, and Publish/Subscribe mechanism.

The self-* code is organized as a network ofmanagement
elements(MEs) interacting through events. This enables the
construction of distributed control loops. The self-* code
senseschanges in the environment and canaffectchanges
in the architecture – add, remove and reconfigure compo-
nents and bindings between them. MEs are subdivide into
watchers (W1, W2 .. on Figure 1), aggregators (Aggr1) and
managers (Mgr1). There are no exact boundaries but usu-
ally watchers are used for monitoring (they try to find symp-
toms), aggregators are used to analyse symptoms and issue
change requests while managers do planning and executing
change requests.

Figure 1. Application architecture.

An application in the framework consists of a
component-based implementation of the application’s func-
tional specification (the lower part of Figure 1), and
a component-based implementation of the application’s
self-* behaviors (the upper part). The management plat-
form provides for component deployment and communica-
tion, and supports sensing and affecting of components.

3 YASS Functional Architecture

YASS [1] is a simple distributed storage service that we
will use to illustrate and reason about control loops. YASS
stores, reads and deletes files on a set of distributed re-
sources. The service replicates files for the sake of robust-
ness and scalability.

A YASS instance consists out offront-end components
andstorage componentsas shown in Figure 2. The front-
end component provides user interface that is used to in-
teract with the storage service. Storage components are
composed offile componentsrepresenting stored files. The
ovals in Figure 2 represent the available resources in a dis-
tributed environment such as resources contributed to a Vir-
tual Organization (VO) or resources in a cluster. Some of
the available resources are used to deploy storage compo-
nents depending on the required total storage capacity. The
front-end components are deployed on user machines.

The storage components are grouped together in a stor-
age group. A user issues commands (store, read, and delete)
using the front-end. A store request is sent to an arbitrary
storage component (using one-to-any binding between the
front-end and the storage group) that will find somer dif-
ferent storage components, wherer is the file’s replication
degree, with enough free space to store a file replica. These
replicas together will form afile groupcontaining ther dy-
namically created new file components. The front-end will
then use a one-to-all binding to the file group to transfer the
file in parallel to ther replicas in the group. A read request
is sent to any of ther file components in the group using
the one-to-any binding between the front-end and the file
group. A delete request is sent to the file group in parallel
using a one-to-all binding between the front-end and the file
group.

4 Control Loops

YASS can be deployed in different distributed sittings
with different properties such as reliable clusters or dynamic
Grids. This is possible because DCMS separates functional
parts (Front-end, Storage, and File components) from non-
functional parts (MEs forming control loops). Only the non-
functional part needs to be modified in order to run YASS
in different distributed settings. In the following subsec-
tions we discuss the control loops needed to manage YASS
in a dynamic community-based Grid environments, where
resources can join, gracefully leave, or fail at any time.

4.1 Basic Control Loops

A basic control loop is a single loop that senses, man-
ages, and affects a managed-resource. Basic control loops



VO

W
rit

e R
eq

uest

one-t
o-an

y binding

to th
e s

torag
e g

roup

Read Requestone-to-any bindingto a file group

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Front-end

Component

Ax,Bx,Cx = file groups, x is 

replica number in the group.

Ovals = resources.

Rectangles = Components.

Dashed line = YASS storage 

components group.

Figure 2. YASS Functional Part

work independently form each other and they form the ba-
sic building blocks of more complex loops by linking them
together. Below we present two basic control loops used in
YASS.

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

File

Replica

Aggregator

File

Replica

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Failure

Leave

Replica Change

Find and Restore Replica

R
e

p
lic

a
 A

u
to

n
o

m
ic

M
a

n
a

g
e

r

Figure 3. Self-healing control loop.

4.1.1 Self-Healing

Self-healing is concerned with maintaining the desired
replication degree for each stored file. The self-healing
control loop consists of File-Replica-Aggregator and File-
Replica-Manager (Figure 3).

The File-Replica-Aggregator monitors a file group for
fail or leave events of its members. This event is triggered
when the resource where the file component deployed is
about to leave or has failed. The File-Replica-Aggregator
response to these events by triggering a replica change event
to the File-Replica-Manager that will issue a find and re-
store replica command.

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Storage

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Component

Load

Watcher

Storage

Availability

Change

Allocate

& Deploy
S

to
ra

g
e

 A
u

to
n

o
m

ic

M
a

n
a

g
e

r

Load Change

Load

Join

Failure

Leave

Figure 4. Self-configuration control loop.

4.1.2 Self-Configuration

With self-configuration we mean the ability to adapt YASS
in the face of dynamism, thereby maintaining its to-
tal storage capacity and total free space to meet func-
tional requirements. The self-configuration control loop
consists of Component-Load-Watcher, Storage-Aggregator,
and Storage-Manager (Figure 4).

The Component-Load-Watcher monitors the storage
group for the total free space available and triggers a
load change event when the load is changed by a prede-
fined delta. The Storage-Aggregator is subscribed to the
Component-Load-Watcher and fail, leave, and join events.
The Storage-Aggregator analyses these events and triggers
a storage availability change event when the total capacity
or total free space drops below predefined thresholds. The
Storage-Manager response to these events by trying to al-
locate more resources and deploy storage components on
them.



Sensor

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Sensor EffectorEffector

Change

Storage

Autonomic

Manager

Replica

Autonomic

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Figure 5. The stigmergy effect.

4.2 Coordinating Multiple Control Loops

Multiple control loops within the same application are
usually not independent because they are managing the
same system. Therefore they need to interact and coordinate
their actions to avoid conflicts. The interaction take place
either through stigmergy, peer-to-peer management interac-
tion, or hierarchical composition, all which are examplified
in the following sections.

4.2.1 Stigmergy

Stigmergy is a way of indirect communication and coordi-
nation between agents [3]. Agents make changes in their
environment and these changes are sensed by other agents
and causes them to do more actions. Stigmergy was first
observed in social insects like ants. In our case agents are
autonomic managers and the environment is the managed-
resource.

When the utilization of the storage components drops,
i.e. the total capacity is above initial requirements and free
space is more than a predefined ratio, the Storage-Manager
will plan to deallocate some resource. This will be exe-
cuted using stigmergy (Figure 5). The Storage-Manager
will issue a resource leave command. This change in the
managed-resource will be sensed and handled by the File-
Replica-Manager that will move the file components from
the leaving resource to other resources.

4.2.2 Peer-to-Peer Management Interaction

Basic control loops are simple way to achieve self-
management. However having multiple independent loops
managing the same resource can sometimes cause unde-
sired behaviour. For example, when a resource fails, the
Storage-Manager may detect that more storage is needed
and start allocating resources and deploying storage compo-
nents. Meanwhile the File-Replica-Manager will be restor-
ing the files that where on the failed resource. The File-
Replica-Manager might fail in restoring the files due to

Sensor

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Sensor EffectorEffector

Replica

Autonomic

Manager

Storage

Autonomic

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Manager-to-Manager

Binding

Figure 6. Peer-to-peer management interac-
tion.

space shortage since the Storage-Manager did not have time
to finish. This may also prevent the user temporary from
storing files.

If the File-Replica-Manager waited for the Storage-
Manager to finish this problem could be avoided. P2P man-
agement interaction is used to achieve such behaviours, and
can be implemented in DCMS using bindings between the
MEs (Figure 6).

Before restoring files the File-Replica-Manager informs
the Storage-Manager with the amount of storage it needs to
restore files. The Storage-Manager checks available storage
and informs the File-Replica-Manager that it can proceed if
enough space is available or ask it to wait until more storage
is allocated.

P2P management interaction is a way for managers to
cooperate to achieve self-management. It does not mean
that a manager controls the other. For example if there is
only one replica left of a file, the File-Replica-Manager may
ignore the request to wait from the Storage-Manager and
proceed with restoring the file anyway.

Sensor

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Sensor Effector

Effector
Replica

Autonomic

Manager

File

Availability

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

File

Access

Watcher

Access Frequency

Frequency

Change

New Replication Degree

Figure 7. Hierarchical management.



4.2.3 Hierarchical Management

By hierarchical management we mean that some managers
can control other managers. Lower level autonomic man-
agers considered as part of the managed-resource for the
higher level autonomic managers. Communication is per-
formed using touch points. Higher level managers can sense
and affect lower level managers.

A higher level File-Availability control loop can be used
to achieve self-optimization. With self-optimization we
mean that popular files should have more replicas in order to
increase their availability. The control loop consists of File-
Access-Watcher and File-Availability-Manager (Figure 7).

The File-Access-Watcher monitors the file access fre-
quency. If a file is popular and accessed frequently then
it issues a frequency change event. The File-Availability-
Manager may decide to increase the replication degree of
that file. This is achieved by increasing the value of the
replication degree parameter in the File-Replica-Manager
that will start storing more replicas and then maintaining
the new replication degree.

Sensor Effector

A3

A1

A2

B2

B1

B3

C3

C1

C4

C2

Free

Free

Free

Free

Storage

Aggregator

Load

Balancing

Manager

M
a

n
a

g
e

d

R
e

s
o

u
rc

e

Least/Most

Loaded

Move Files
Timer

Figure 8. Proactive manager.

4.3 Proactive Managers

All autonomic managers we discussed so far are reactive.
They receive events and act upon them. Sometimes proac-
tive managers might be also required. Proactive managers
are implemented in DCMS using timer abstraction.

A Load-Balancing control loop can be used for self-
optimization by trying to balance the storage among stor-
age components. The Load-Balancing-Manager (Fig-
ure 8) wakes up everyx minutes and queries the Storage-
Aggregator to get the most and least loaded storage com-
ponents. Then it will move some files from the most to the
least loaded storage component. This will achieve lazy load
balancing. This example also shows that some parts of the
control loop might be shared among different control loop
as the Storage-Aggregator.

5 Related Work

The vision of autonomic management as presented in [7]
has given rise to a number of proposed solutions to aspects
of the problem.

An attempt to analyze and understand how multiple in-
teracting loops can manage a single system has been done
in [9] by studying and analysing existing systems such as
biological and software systems. By this study the authors
try to understand the rules of a good control loop design. A
study how to compose multiple loops and ensure that they
are consistent and complementary is presented in [6]. The
authors presented an architecture that supports such compo-
sitions.

A reference architecture for autonomic compoting is pre-
sented in [10]. The authors present patterns for applying
their proposed architecture to solve specific problems com-
mon to self-managing applications. Behavioural Skeletons
is a technique presented in [2] that uses algorithmic skele-
tons to encapsulate general control loop features that can
later be specialized to fit a specific application.

6 Conclusions

Our distributed component management system
(DCMS) provides a high-level programming framework
for constructing basic management control loops. It is
a event-based framework that provides sensing/affecting
support in a distributed environment and makes use of
groups and group bindings to simplify designing and
constructing management feedback control loops.

In this paper we demonstrate various patterns for control
loops, and discuss possible interactions between them. For
reasons of scalability, robustness, ease of use and separa-
tion of concerns the management of most distributed appli-
cations should consist of multiple control loops, logically
separate and running on different machines. The interac-
tions discussed range from harmless stigmergy to harmful
competition and disruption. In the latter case the solution
patterns of peer-to-peer management interaction and hierar-
chical management are illustrated.

To summarize, we use the DCMS to develop separate
control loops, over, for instance, different aspect of self-*.
We study the interaction between the managers and where
needed make use of one of the described management inter-
action patterns to deal with contention. Our studies, as de-
scribed in this paper, support the position that this approach
is a useful one for developing self-managing distributed ap-
plications.



References

[1] A. Al-Shishtawy, J. Höglund, K. Popov, N. Parlavantzas,
V. Vlassov, and P. Brand. Enabling self-management of
component based distributed applications. InCoreGRID
Symposium, Las Palmas, Spain, August 2oo8.

[2] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi,
P. Kilpatrick, P. Dazzi, D. Laforenza, and N. Tonellotto. Be-
havioural skeletons in gcm: Autonomic management of grid
components. InPDP’08, pages 54–63, Washington, DC,
USA, 2008.

[3] E. Bonabeau. Editor’s introduction: Stigmergy.Artificial
Life, 5(2):95–96, 1999.

[4] P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer,
N. Parlavantzas, V. Vlassov, and A. Al-Shishtawy. The role
of overlay services in a self-managing framework for dy-
namic virtual organizations. InCoreGRID Workshop, Crete,
Greece, June 2007.

[5] E. Bruneton, T. Coupaye, and J.-B. Stefani. The fractal com-
ponent model. Technical report, France Telecom R&D and
INRIA, Feb. 5 2004.

[6] S.-W. Cheng, A.-C. Huang, D. Garlan, B. Schmerl, and
P. Steenkiste. An architecture for coordinating multiple self-
management systems. InWICSA ’04, page 243, Washington,
DC, USA, 2004.

[7] P. Horn. Autonomic computing: IBM’s perspective on the
state of information technology, Oct. 15 2001.

[8] IBM. An architectural blueprint for autonomic comput-
ing, 4th edition. http://www-03.ibm.com/autonomic/pdfs/
AC Blueprint White Paper4th.pdf, June 2006.

[9] P. V. Roy, S. Haridi, A. Reinefeld, J.-B. Stefani, R. Yap,and
T. Coupaye. Self management for large-scale distributed
systems: An overview of the selfman project. InFMCO
’07: Software Technologies Concertation on Formal Meth-
ods for Components and Objects, Amsterdam, The Nether-
lands, Oct 2007.

[10] J. W. Sweitzer and C. Draper.Autonomic Computing: Con-
cepts, Infrastructure, and Applications, chapter 5: Archi-
tecture Overview for Autonomic Computing, pages 71–98.
CRC Press, 2006.


