
Department of Teleinformatics

Distributed
Programming
Toolkit for NUT

V. Vlassov, E. Tyugu, M. Addibpour

Department of Teleinformatics

Distributed
Programming
Toolkit for NUT

V. Vlassov, E. Tyugu, M. Addibpour

This work has been funded by the Swedish National Board for Technical
and Industrial Development (NUTEK) under grant number 9303405-2.

TRITA–IT R 94:34
ISSN 1103–534X
ISRN KTH/IT/R -- 94/34 -- SE

3

Abstract
This document presents the Distributed Programming Toolkit rNUT users’ guide and reference pages. The rNUT toolkit
is an extension of the NUT System version 2.7 developed at KTH in June 1994. It consists of a librarylibrnut and a dae-
monnutd. The librarylibrnut contains low level NUT routines which provide support for building a system of collabora-
tive NUT processes running on the Parallel Virtual Machine, PVM. To support interprocess communication,librnut
contains routines for exchanging classes, scripts and objects between NUT processes. The daemonnutd is an executable
code which is used to manage NUT process spawning and display connections. The synchronization and communication
mechanism of rNUT is based on the Extended Dataflow Actor model, EDA, developed at KTH.

4

Contents
1 Introduction . 5

1.1 Scope and Purpose of this Document. 5
1.2 Other Documents on NUT . 5
1.3 Parallel and Distributed Computing in NUT . 5

1.3.1 Control Structures for Parallel Computing . 5
1.3.2 NUT Processes on PVM . 6
1.3.3 Communication Operations . 7

2 PVM: The Parallel Virtual Machine . 7

3 The EDA Communication Operations . 7

4 Overview of rNUT . 8
4.1 Starting rNUT . 9
4.2 rNUT Processes . 9
4.3 Remote Process Control . 11
4.4 Passing of Classes . 11
4.5 Object Passing . 12

4.5.1 Storing Routines . 12
4.5.2 Fetching Routines . 12
4.5.3 Mutually Exclusive Communication . 13
4.5.4 Object Streams . 14
4.5.5 Write-Once Shared Objects . 15

4.6 Passing of Workspace . 16
4.7 Perform Requests . 17

5 Reference Pages for rNUT Routines . 18

Conclusion . 45

Acknowledgements . 45

References . 45

Appendix A1: Grid and Mygrid Classes . 46
A1.1 Class grid . 47
A1.2 Class mygrid . 49

Appendix A2: A Parallel Search Problem . 52
A2.1 Breadth-First Search . 52
A2.2 Implementation . 53
A2.3 Test Example . 55
A2.4 Texts of Classes . 57

5

1 Introduction

1.1 Scope and Purpose of this Document

This document is an extension of the documentation of the NUT System version 2.7 developed at KTH in June 1994. It
contains a user’s guide and reference pages of functions needed for creating and running communicating NUT processes.
These functions have been programmed in C language and included into the NUT library. The current version of NUT
(version 2.7) extended with the distributed programming toolkit is calledrNUT in the present paper.

The reader of this report is assumed to be acquainted with the principles of object-oriented programming and distributed
computing as well as with the NUT system.

1.2 Other Documents on NUT

● T. Uustalu, U. Kopra, V. Kotkas, M. Matskin, E. Tyugu.The NUT language report.Technical Report TRITA-IT
R 94:14. Dept. of Teleinformatics, KTH. June 1994. Available by anonymous ftp fromit.kth.se , file
Reports/TELEINFORMATICS/TRITA-IT-9414.ps.Z.

● Enn Tyugu.The NUT system. June 1994. Available by anonymous ftp fromit.kth.se , file Software/
CSlab/Software-Engineering/NUT/doc/syst.ps.Z .

● Benjamin Volozh, Mari Kõpp, Enn Tyugu.The NUT Graphics. Technical Report TRITA-IT-R 93:05, Dept. of
Teleinformatics, The Royal Institute of Technology, June 1993. Available by anonymous ftp fromit.kth.se ,
file Reports/TELEINFORMATICS/TRITA-IT-9305.ps.Z .

● Benjamin Volozh.Appendix to The NUT Graphics. March 1994. Available by anonymous ftp fromit.kth.se ,
file Software/CSlab/Software-Engineering/NUT/doc/graphics-new.ps.Z .

● The NUT libraries. June 1994. Available by anonymous ftp fromit.kth.se , file Software/CSlab/
Software-Engineering/NUT/doc/libraries.ps.Z .

● Interoperability of NUT with C and UNIX. June 1994. Available by anonymous ftp fromit.kth.se , file
Software/CSlab/Software-Engineering/NUT/doc/interoperab.ps.Z .

● Bo Andersson, Benjamin Volozh.The user interface of NUT. June 94. Available by anonymous ftp from
it.kth.se , file Software/CSlab/Software-Engineering/NUT/doc/userinterface.ps.Z .

1.3 Parallel and Distributed Computing in NUT

The functions described in the present report support coarse-grained (MIMD) distributed programming in NUT. These
functions use the PVM distributed computing platform [5, 6] for parallel computation at the level of Unix processes,
using message passing for communication. The PVM provides a virtual multiprocessor composed of heterogeneous
computers in a network. Communication and synchronization between the NUT processes can be performed by sending
store and fetch messages complying with the extended dataflow actor model (EDA) [3, 4]. A collection of functions has
been developed also for passing classes, objects and scripts between the NUT processes. Besides the distributed comput-
ing, scalability of the software written in NUT is achieved by the usage of PVM, because spawning the NUT processes
provides an unlimited object memory.

1.3.1 Control Structures for Parallel Computing

The NUT specification language enables one to describe computations in a compositional way, by combining computa-
tions described in subproblems of relations into larger programs [2]. A relation with subproblems can be considered as a
control structure which composes a new algorithm from algorithms for solving subproblems. Using functions introduced
in this report, relations with independent subproblems can be programmed in such a way that they will specify parallel
execution, i. e. they will compose algorithms of parallel computations. This can be visualized graphically, as shown in
Figure 1.

6

The relationr in Figure 1 creates dynamically a number of environments (c’, c”, c’’’) each of which is a copy of the class
c given in the subproblem specification. Using functions for spawning processes, instead of a subproblem call, one can
run computations on classes in parallel. As the Figure 1 illustrates, the parallel computing control structures in NUT can
be used in a nested way. Development of various control structures in the form of relations with subproblems will be a
task of an application software developer. Once preprogrammed, the control structures are expected to constitute a
domain-specific parallel programming toolkit.

Examples of such structures were programmed by Urmas Kopra during his visit to KTH in spring 1994 [7]. He used the
PVM directly for programming operators likepararr for parallel processing of elements of arrays.

1.3.2 NUT Processes on PVM

A distributed program developed by means of the present toolkit represents a collection of dynamically created commu-
nicating processes running on PVM in a network. Each process runs in a separate NUT environment consisting of a NUT
package. The NUT package contains classes, objects and a script in the workspace [1]. Each process can have an open
NUT window where the lists of classes and objects are visible together with the script. The environment of a process can
be changed dynamically by the process itself or by other processes.

The process started first is called aroot process. Any process can spawn, using one function call, a number of new proc-
esses which together with the process starting them constitutes a collection of processes called a grid. Figure 2 shows a
snapshot of a dynamically changing pool of NUT processes (represented by rectangles) running on PVM in a network of
different machines.

Processes in one and the same grid can be identified by their indices in the grid, as well as by theirtask identifiers (tid).
Processes in different grids can be addressed only by their task identifiers which are unique in the running rNUT.

c’ c’’ c’’’

r : [c |- x -> y] a -> b

Figure 1. Relation r with subproblems controls computations on copies of a class

P V M

Sparc DecStation Sparc

a grid

Figure 2. A tree of NUT processes

7

1.3.3 Communication Operations

In the present toolkit, functions are provided for the following kinds of operations

● synchronization and passing objects (EDA communication operations)

● passing classes

● passing scripts

● remote process control.

These operations are described in detail in the following chapters whereas the parallel virtual machine PVM is only
briefly outlined and references are given to its documentation.

2 PVM: The Parallel Virtual Machine

PVM is an integrated framework for heterogeneous computing [5, 6]. A multitasked PVM program runs on a set of net-
worked computers which are composed into a virtual multiprocessor. PVM supports parallel computation at the level of
Unix processes, using message passing for communication.

PVM is composed of the PVM daemon,pvmd, and the PVM library,libpvm. An instance of thepvmd runs on each host
of the virtual machine and provides host-process interactions. Thelibpvm forms an interface between PVM applications
and the run-time system (PVM daemons).

Each task of a multitasked PVM application obtains a unique identifier,tid, which is used to specify the destination
address for message passing. A PVM task can be spawned from another active task. PVM tasks communicate using
tagged messages. A task can send messages asynchronously, and is responsible for receiving messages directed to it
using blocking or non-blocking receive procedures.

The PVM library,pvmlib, includes the following groups of functions.

● Process control functions are used to startpvmd, to spawn new tasks, to enrol into PVM and to exit and halt PVM.

● Informative functions are used to get information about virtual machine configuration, running tasks and incom-
ing messages.

● Configuration functions are used for adding hosts and deleting them from the virtual machine.

● Communication functions are used for packing data and sending messages, receiving messages and unpacking
them.

A detail description of the PVM system can be found in [5].

3 The EDA Communication Operations

This section briefly and informally presents communication aspects of the Extended Dataflow Actor model, EDA, used
for object passing in the rNUT system. A formal description and software implementation of the EDA model can be
found in [3, 4].

EDA is a model of object-oriented multithreaded computation. An EDA object contains local and shared variables and a
thread of control. All shared variables form a space of shared memory which is accessible from each object. In EDA, a
data passing between local memory of objects is presented by set of special store and fetch operations on a spaces of
local and shared variables. An EDA object can store the local data into shared memory and fetch a value of shared varia-
bles into its local memory. A shared variable may be in one of two states: full (containing data) or empty.

EDA defines the following operations on shared variables1.

● x-fetch is a blocking extract operation. It is used for extracting the data from a shared variable to a local var-
iable of an object. If the shared variable has the full state its value is extracted and its state becomes empty. If
the shared variable is empty thenx-fetch request is enqueued on this shared variable, and the executing thread
is suspended until the variable becomes full by the matchingx-store, s-store, or i-store operation.

● i-fetch is a blocking copy operation. It is used for copying the data from a shared variable to a local variable
of an object. If the shared variable has the full state its value is copied and its state remains full. If the shared
variable is empty theni-fetch request is enqueued on this shared variable, and the executing thread is sus-
pended until the variable becomes full by the matchingx-store, s-store, or i-store operation.

1. This list contains only those EDA operations which are used in the rNUT system.

8

● x-storeis a blocking store operation. It is used for storing the data to a shared variable from a local variable
of an object. If the shared variable is empty a local value is simply copied into the shared variable and its state
becomes full. If the shared variable is full thenx-store request is enqueued on this shared variable, and the
executing thread is suspended until the variable is emptied by the matchingx-fetch operation.

● s-storeis a non-blocking buffering store operation. It is used for storing the data to a shared variable from a
local variable of an object without suspension. If the shared variable is empty a local value is simply copied
into the shared variable and its state becomes full. If the shared variable is full then computation in the execut-
ing thread resumes as soon as the local value is buffered. The buffer with the local data is enqueued on this
shared variable until the variable is emptied by the matchingx-fetch operation.

● i-store is a non-blocking store operation, which can be called as write-once. It is used for storing the data to
a shared variable from a local variable of an object without suspension. If the shared variable is empty a local
value is simply copied into the shared variable and its state becomes full. If the shared variable is full theni-
storeoperation is ignored.

Defining shared memory operations, EDA recognizes three kinds of shared variables:x, i ands, each with special syn-
chronization requirements [3]. Semantics of typed shared variable of EDA can be used in rNUT on the level of commu-
nication model and needs an extension in terms of operations to simplify rNUT application design and make it more
convenient and flexible for NUT programming technology.

Based on this argument, we specify the following additional communication operations, some of them have the same
names as EDA operations, but have small differences in their semantics.

● s-fetch is a non-blocking extract operation. It is used for extracting the data from a share variable to a local
variable of an object. If the shared variable has the full state its value is extracted and its state becomes empty.
If the shared variable is empty thens-fetch extracts an empty value.

● u-fetch is a non-blocking copy operation. It is used for coping the data from a shared variable to a local var-
iable of an object. If the shared variable has the full state its value is copied and its state remains full. If the
shared variable is empty theni-fetch copies an empty value.

● u-storeis a non-blocking unconditional update operation. It is used for updating a value of a share variable
with a value local variable of an object.u-store always copies a local value into the shared variable independ-
ently of its state.

EDA operations and extension are summarized in Table 1.

4 Overview of rNUT

The toolkit rNUT consists of a librarylibrnut and a daemonnutd. The synchronization and communication mechanism
of rNUT is based on the Extended Dataflow Actor model, EDA [3].Librnut is a library of low level NUT routines which
provide support for building a system of collaborative NUT processes running on PVM [5]. To support interprocess com-
munication,librnut contains routines for exchanging classes, workspaces and objects between NUT processes. The dae-
monnutd is an executable code which is used to manage NUT process spawning and display connections.

Table 1: Communication Operations

Name Action full empty

x-fetch extract a meaning value from a shared variable to local extract suspend

i-fetch copy a meaning value from a shared variable to local copy suspend

s-fetch extract any value from a shared variable to local extract returnempty

u-fetch copy any value from a shared variable to local copy returnempty

x-store store a local value to an empty shared variable suspend store

i-store store a local value to an empty shared variable skip store

s-store store a local value to an empty shared variable buffering store

u-store update a local value to shared variable update store

9

4.1 Starting rNUT

For some NUT applications, it is more convenient to define a configuration of PVM before starting rNUT. The easiest
way to start PVM and define its configuration is to use the PVM console calledpvm [5]. Two available console command
add anddelete are used for adding and deleting hosts of the virtual machine. The commandconf lists the current config-
uration of the virtual machine. For example, a command:

pvm> add sole stinger bream walrus whale

- adds five hostssole, stinger,..., whale to the virtual machine; The following command deletes two hosts
from the virtual machine:

pvm> delete walrus sole

It is not necessary, however, to start PVM before starting the first NUT process calledroot NUT. The root NUT can be
considered as an ordinary NUT process. Most of routines fromlibrnut enrol the root NUT process into PVM. Each of
them starts PVM if it is not running already, and spawns rNUT daemonnutd on the host which will be used to display
NUT windows.Nutd is responsible for display connection control and for halting PVM when all NUT processes exit or
are killed.

The library of the rNUT contains two routinesrnut_addhosts(nhosts, hosts) andrnut_delhosts(nhosts, hosts) which are
used to change the configuration of the virtual machine. For example, five hosts will be added by

rnut_addhosts(5, [sole, stinger, bream, walrus, whale]);

These routines also notify the daemonnutd about hosts which are added or deleted from PVM.Nutd correspondently
adds or removes given hosts from the list of hosts allowed to connect to the X server to open a display connection.

4.2 rNUT Processes

The Distributed NUT System, rNUT, is structured as a number of collaborative NUT processes running on PVM. The
NUT process starting first is called root NUT process. Any number of child NUT processes can be spawned from any
active NUT usingrnut_spawn(nnut, mode, where, package) routine (see Reference Pages). This routine starts upnnut
NUT processes running in mode defined bymode on a host namedwhere and loads a package namedpackage into all
spawned NUT processes. A child process can be spawned with open or closed window interface. If argumentwhere is
not defined ornil then PVM is responsible to choose the convenient set of hosts to start up new NUT processes. Each
spawned child obtains a unique PVM task identifier,tid, which is used to specify the destination address for data passing
and remote control. Each NUT process running in PVM can get its task identifier usingrnut_mytid() routine, which
returns its tid.

In the following example (see Figure 3) two NUT processes start with open window interface on the host called‘wal-
rus.electrum.kth.se’ with package‘eda.mem’ . An arraytids contains task identifiers of children.

Example 1.
mytid := rnut_mytid();
tids := rnut_spawn(2, 2, ‘walrus.electrum.kth.se’, ‘eda.mem’);

During spawning, the parent NUT sends the task identifiers of its children to the daemonnutd and also to each newly
spawned child in order to notify them about their siblings. Each child can get this information if needed using
rnut_parent() andrnut_mygrid() routines (see Figure 3). The first routine returns tid of the parent, the second one returns
an array of tids of all siblings including the calling NUT process.

Example 2.
parent:= rnut_parent();
stids := rnut_mygrid();

A parent and all its child NUT processes spawned by the same actionrnut_spawn compose a complete connected graph
of NUT processes, which we call agrid. Spawn routine guarantees the same structure of copies of the array of tids which
are distributed among all members of the grid. Each member of the grid can spawn their children and forms a new grid,
being itself a parent. Figure 4 illustrates a process of spawning as a tree, where nodes are instances of NUT and arcs
present spawn relations.

10

Most of rNUT routines use tids as destination addresses for message passing. However, it is more convenient to use a
metrics of integer numbers 0, 1, 2,..., n instead of task identifiersmytid, tids (Example 1) orparent, stids (Example 2) for
addressing of NUT processes from the grid. If a rNUT routine is called from the parent NUT then number 0 is trans-
formed intomytid and numbers 1, 2,..., n - intotids[1], tids[2],..., tids[n], correspondently (see Example 1). If rNUT rou-
tine is called from a child NUT process then number 0 is transformed intoparent and numbers 1, 2,..., n - intostids[1],

stids[2],..., stids[n], correspondently (see Example 2).

Child NUT Processes

Parent NUT Process

Figure 3. Parent and Child NUT Processes

0

1 i n

1

m

1 k

/0

. . .

. .
 .

rnut_spawn(k)

rnut_spawn(n)

rnut_spawn(m)

Figure 4. Spawn tree

11

Appendix 1 contains a specification of classesgrid andmygrid, which are used to simplify the addressing scheme in
rNUT routines. The first relationgettids converts array of numbers of members of the grid (called nodes) into array of
tids. Thegrid class can be used in parent NUT process to specify a spawned grid as an object ofgrid class. Themygrid
class is used in each child NUT process to access its sibling and parent using their numbers. The routinernut_mynum()
can be used to get the instance number of the calling NUT process in the group of its siblings, i.e. in the grid.

The PVM termination is realized using a semaphore innutd. During spawning, the parent NUT notifies the daemon
about its children and the semaphore is incremented by the number of spawned NUT processes. Each NUT process can
exit independently of other processes. When a task exits or is killed, the PVM daemonpvmd notifies the rNUT daemon
nutd, and the semaphore is decremented. When the semaphore becomes zero,nutd halts PVM.

The asynchronous exit of NUT processes can be the reason of deadlock while accessing shared objects, classes or work-
spaces. But interactive nature of the NUT programming technology, as well as remote process control routines give a
possibility to handle these deadlocks and to solve the termination problem.

4.3 Remote Process Control

The librarylibrnut includes routines for remote control of NUT processes (see Reference Pages). There are routines to
close and to open a window interface of the remote NUT (rnut_chmod), to kill (rnut_kill) or to send an exit request to set
of NUT processes (rnut_exit), to load a package (rnut_pack). The remote control of a NUT process from another NUT
process is implemented by sending appropriate control requests, which can be consumed and served when the X-event
loop in the receiving NUT process is idle and the process is not in the Intepreter stage.

A service of the exit request generated withrnut_exitroutine and the package load request generated withrnut_pack rou-
tine notifies a user and asks a permission to exit or to change a package.

All control actions are performed asychronously, i.e without a feed back. It is reasonable, because a control request can
not interrupt the NUT process, to which this request is directed, and a delay between sending the request and receiving a
reply can be quite big.

4.4 Passing of Classes

The librarylibrnut contains routines that enable a NUT process to send a copy of a text of a user-defined class to a set of
NUT processes (rnut_clcpy), and to get a copy of a text of user defined class from another NUT process (rnut_clget).
Both routines allow to rename the copy of the class in the destination NUT processes. In the following example, the first
statement sends a copy of the class named‘grid’ with a new name‘gr’ to processes specified by an arraytids. The next
statement sends a request to get a copy of the class named‘mygrid’ with the same name‘mygrid’ from parent process:

rnut_clcpy(tids, length(tids), ‘gr’, ‘grid’);
rnut_clget(rnut_parent(), ‘mygrid, ‘mygrid’);

Being received the text of the class is automatically compiled. If a NUT process already contains a class named as the
received class then the new class overwrites the old one.

The parse algorithm of NUT Interpreter assumes that all statements, which are chosen from a workspace to be per-
formed, are parsed as one unit. That is why the Interpreter notifies about an error whenrnut_clget routine and objects of
a class which is needed to be got are used in one unit chose from the workspace to be performed. For example when pars-
ing the following set of statements as one unit the Interpreter will notify that classmygrid is empty and can not be used:

% first part
rnut_clget(rnut_parent(), ‘mygrid’, ‘mygrid’);
% second part
myg := new mygrid;
me := myg.mynum;
myg.ustore([me - 1, me + 1], 2, ‘pi’, 3.1415926);

To avoid this conflict the user can perform the given statements in two steps: first performrnut_clget routine and then
perform the second part, as shown with comments.

A user defined class is sent as a text which is compiled by the receiving process. If this process has not got some user-
defined subclass of the received class, then NUT interpreter creates an empty class. To avoid this effect, it is important to
send user-defined classes and subclasses in a correct order. It is safer and more convenient, however, to use package pass-
ing (seernut_pack) instead of passing classes separately.

12

4.5 Object Passing

The library librnut provides communication routines for object passing based on the parallel model, called EDA (see
Chapter 3 for further information).

The librnut contains eight routines of a general-purpose communication and synchronisation package. These are storing
and fetching routines, which can be used in matching pairs:

● rnut_xstoreand rnut_xfetchare blocking communication routines supporting mutually exclusive interproc-
ess communication.

● rnut_sstoreand rnut_sfetchare non-blocking communication routines supporting object streams between
NUT processes.

● rnut_istoreand rnut_ifetchare non-blocking communication routine supporting write-once shared object
for synchronizing single writer-multiple readers.

● rnut_ustoreand rnut_ufetchare non-blocking communication routine for unconditional updating of shared
objects.

The EDA communication model assumes that communication operations are realized on a space of shared and local
objects located in particular NUT processes. A shared (remote) object can be in one of two states: full, i.e. has a value, or
empty, i.e. has the valuenil or does not exist. The remote object is addressed by two componentstid andobjname:

● tid is a task identifier of a NUT process in which given object is located,
● objname is a name of the object.

A storing routine multicasts a request to store a value of a local object into shared objects located in remote NUT proc-
esses. A fetching routine sends a request to extract or to copy a value from a remote object into a local one. All fetching
routines, as well asrnut_xstore routine, block the requesting process until a value or acknowledgments arrives. A
requested remote process can serve the request only if it is not in the Interpreter stage, i.e. it does not perform anything.

4.5.1 Storing Routines

Storing routines have the following synopsis:

rnut_*store(tids, nnut, objname, obj)

Where the asterisk ‘* ’ should be one of four characters:x , s , i , oru.

Storing routines,rnut_*store, can be used to store a value of the objectobj into shared objects, namedobjname, of the
NUT processes, specified by arraytids. A storing routine sends a valueobj to NUT processes defined bytids with a
request to store a value ofobj into shared objects namedobjname. Three routines,rnut_istore, rnut_sstore and
rnut_ustore are non-blocking. It means that computation on the requesting process resumes as soon as all requests are
sent. The routinernut_xstore blocks the requesting process untilnnut acknowledgments have arrived from requested
processes. The received value can be consumed in the receiving process by different ways according to an access type:x,
i, s, or u, and state of the objectobjname. To provide an arbitrary access to shared objects rNUT usesnil value to define
an empty state of an object.

4.5.2 Fetching Routines

Fetching routines have the following synopsis:

obj := rnut_*fetch(tid, objname);

Where the asterisk ‘* ’ should be one of four characters:x , s , i , oru.

Fetching routines,rnut_*fetch, can be used to extract or to copy a value into the local objectobj from the shared objects,
namedobjnameand located in the NUT process, specified bytid. A fetching routine sends the nameobjname to NUT
process defined bytid with a request to extract or to copy a value from an object, namedobjname. Two routines
rnut_xfetch and rnut_sfetch generates an extract request, two other routinesrnut_ifetch and rnut_ufetch generates an
copy request. A requesting process becomes suspended until a value has arrived from a requested process. The received
value is assigned to the local objectobj.

Two routines,rnut_sfetch andrnut_ufetch, are non-blocking. It means that the requested process sends backnil, if the
objname is empty, i.e. has the valuenil or does not exist. Otherwise the requested process sends a value of the object
namedobjnameand resets this object tonil, in case of extract request. Oncenil or the value has arrived, the fetch routine

13

pushes it onto the NUT stack, and the requesting process resumes. Moreover, if the requesting process does not have the
class of the object namedobjname, then it gets this class from the requested process and compiles it.

Two other fetching routines,rnut_xfetch andrnut_ifetch, are blocking. It means that the requested process can execute
fetch request only if the object namedobjname is full, i.e. has a value. Otherwise the fetch request is queued until the
objname becomes full by the matching storing routine. Once a value ofobjname has been sent, the requested process
resets this object tonil, in case of extract request. Once the value arrives, the requesting process pushes it onto the NUT
stack and resumes.

4.5.3 Mutually Exclusive Communication

The EDA model providesx-operations, for accessing critical regions in mutual exclusion and supporting synchronous
producer-consumer relationships [3]. To realise mutually exclusive communication through the space of shared objects
the rNUT library involves a pair object passing routinesrnut_xstore andrnut_xfetch. The storing routinernut_xstore can
succeed if a shared object is empty. Otherwise the store request is queued until the shared object is emptied by an extract
request. The fetching routinernut_xfetch extracts a value from a full shared object. If the shared object is empty then the
extract request is queued until the shared object becomes full by a store request.

Another combination of object passing routines,rnut_xstore andrnut_sfetch, can be used to support the mutual exclusion
relationship in more flexible way. Thernut_sfetch routine is non-blocking. It extracts anil value form an empty object
and a meaning value from a full object.

A NUT process performing thernut_xstore routine sends data withx-store request, as mentioned in 4.5.1. Then the send-
ing process becomes suspended until acknowledgments have arrived from all requested processes. At this stage, how-
ever, the process may serve any remote requests and replies excluding perform requests, which are buffered at the PVM
level. To count acknowledgments, the requesting process uses a semaphore which is incremented by the number of
requests. When an acknowledgment arrives, the semaphore is decremented. When it becomes zero, computation on the
sending process resumes.

A receiving process can store a value and send an acknowledgement back only if the object namedobjname is empty, i.e.
hasnil value or does not exist. In the last case, the receiving process creates an object namedobjname from the same
class asobj and stores the value. Moreover, if it does not have that class, then it gets the class including all subclasses
from the requested process. The consuming of the value is visible in the same manner as creation of an objectobjname

by means ofnew expression. After that a user can use the objectobjname in an ordinary way. However, the user is
responsible for avoiding possible deadlocks, because if the object namedobjname is not empty, then the store request is
queued until theobjname will be emptied by some fetching routine.

To provide a correct synchronization of processes, and to avoid possible deadlocks, it is more convenient to consume
values stored into shared objects by extracting them into local objects using matching fetching procedures:rnut_xfetch or
rnut_sfetch. Each of these routines extracts a value from a full shared object and serves the first store request suspended
in a store request queue of this object. If the waiting request isx-store then fetching procedure sends an acknowledge-
ment to the requesting NUT process.

Figure 5 illustrates an example of using the pair ofrnut_xstore andrnut_xfetch routines. A consumer process running on
a hostsole.electrum.kth.se stores a value of its objectx into objects named ‘shrd_x’ of two consuming processes speci-
fied by tids. Each consumer uses thernut_xfetch to extract the value from shared object named ‘shrd_x’ into its object
myx.

The producing process sends a value into shared objects located in child processes:

rnut_xstore(tids, length(tids), ‘shrd_x’, x);

Each child process consumes data from its shared object:

myx := rnut_xfetch(rnut_mytid(), ‘shrd_x’);

14

4.5.4 Object Streams

A pairs of matching routinesrnut_sstore and rnut_sfetch (or rnut_sstore and rnut_xfetch) can be used to support an
object stream between NUT processes. Thernut_sstore routine is non-blocking communication routine. As soon as thes-
store request and data have been mulicasted, the routine returns.

A receiving process can serve thes-store request if the object namedobjname is empty, otherwise the request is queued
until the objname becomes emptied by the matchingrnut_xfetch or rnut_sfetch routine.

The following example illustrates using ofrnut_sstore routine for sending a set of objects through the same shared object
located in a remote process. The processA sends five objects of different classes into the shared object named ‘sh_buf’
located in the remote NUT process specified bytid_b. The receiving processB extracts this data from the objectsh_buf
usingrnut_xfetch routine.

ProcessA:

dest := [tid_b];
buf := ‘sh_buf’;
rnut_sstore(dest, 1, buf, 5);
rnut_sstore(dest, 1, buf, -1.3);
rnut_sstore(dest, 1, buf, ‘Hello World’);
rnut_sstore(dest, 1, buf, [7, 3.1415]);
rnut_sstore(dest, 1, buf, [‘radio’, ‘-ga’, ‘-ga’]);

ProcessB:

x := new array of any;
me:= rnut_mytid();
for i := 1 to 5 do
x[i]:= rnut_xfetch(me, ‘sh_buf’);
od;

Figure 6 illustrates changing of a value of the object named ‘sh_buf’ and the result value of the local objectx which con-
sumes a stream of values from the process A.

rnut_xstore

rnut_xfetch

Consumers

Producer

Figure 5. Object Passing (rnut_xstore, rnut_xfetch)

15

4.5.5 Write-Once Shared Objects

A pair of routinesrnut_istore andrnut_ifetch (or rnut_istore andrnut_ufetch) supports write-once shared objects which
can be used for synchronizing specific parallel computation schemes, such as single writer-multiple readers and a OR-
parallelism [3].

The storing routinernut_istore is a non-blocking routine, which returns as soon as a store request and a value are multi-
casted to requested processes. A receiving process can store the value if the requested shared object is empty, i.e. has a
nil value or does not exist. Otherwise, the store request is discarded. If several processes try to store values into the same
shared object usingrnut_istore routine, then only one of candidates succeeds.

The fetching routine rnut_ifetch is blocking routine, which generates a request to copy a value from a shared object to a
local one. The request is satisfied if the shared object is full, otherwise it is queued until the shared object becomes full by
a matching store routine.

The following example illustrates using of the pairrnut_istore andrnut_ifetch routines to realise the OR-parallelism. The
processBosschooses the first object from several objects sent to it by its child processesWorker1,..., WorkerN. Each child
process,WorkerI (I = 1,..., N), sends a value of its local objectwork_outinto the shared object named ‘boss_in’ located in
the processBoss specified by a task identifiertid_b. The receiving processB chooses one of several candidates as winner
consuming its data from the object ‘boss_in’ usingrnut_ifetch routine (see Figure 7).

ProcessWorkerI (I = 1,..., N):

tid_b := rnut_parent();
% compute worker_out
worker_out := rnut_mytid();
% send the value of worker_out to the Boss process
rnut_istore([tid_b], 1, ‘boss_in’, worker_out);

ProcessBoss:

. . .
% consume the f irst answer from children
my_in := rnut_ifetch(rnut_mytid(), ‘boss_in’);

rnut_sstore

rnut_xfetch

Figure 6. Stream of Objects (rnut_sstore, rnut_xfetch)

Process A

Process B

Object stream

16

4.6 Passing of Workspace

The librarylibrnut contains routines for passing of a text for the workspace:

rnut_putws*(tids, nnut, ws);
rnut_getws*(tid);

Where the asterisk ‘* ’ should be one of two characters:a (append) orr (replace).

Routines rnut_putws* allow to multicast a text of workspacews to nnut processes specified bytids. Routines
rnut_getws* are used to get a text of current workspace from remote NUT process specified bytid.

The received text is appended to the current workspace of the receiving process, if a routine has a suffixa. The received
text replaces the current worspace of the receiving process, if a routine has a suffixr (see Table 2). In the following
example a parent process multicasts the workspace to its children spawned byrnut_spawn routine.

Parent process:

% spawn 4 processes with open windows somewhere and send them a workspace
tids = rnut_spawn(4, 2, nil, nil);
rnut_putwsr(tids, 4, ‘

mygr := new mygrid;
in := mygr.ifetch(0, ‘‘args’’);

’);
% send class ‘mygrid’, input arguments and a perform request
rnut_clcpy(tids, 4, ‘mygrid’, ‘mygrid’);
rnut_istore(tids, 4, ‘args’, args);
rnut_perform(tids, 4);

Received work space of a child process:

mygr := new mygrid;
in := mygr.ifetch(0, ‘args’);

Process Boss

Process Worker1 Process Worker2

rnut_istorernut_istore

rnut_ifetch
boss_in

Figure 7. Write-Once Shared Object (rnut_istore, rnut_ifetch)

17

4.7 Perform Requests

The routinernut_perform multicasts a request to perform a current workspace of requested processes. The librarylibrnut
also supplies the routines which combine passing of a workspace and a perform request into a single action. The routines
rnut_pputws*, rnut_pgetws* are functions to allow the user to send or get a workspace with a request to perform it.
These routines have the following synopsis:

rnut_pputws*(tids, nnut, ws);
rnut_pgetws*(tids);
rnut_perform (tids, nnut);

Where the asterisk ‘* ’ should be one of two characters:a (append) orr (replace).

The routinesrnut_pputws* multicasts a text of a workspacews to nnut remote NUT processes specified bytids with a
request to perform it. The routinesrnut_pgetws* are used to get a text of workspace from a processtid and then perform
it. The routinernut_perform multicasts a perform request tonnut processes defined bytids (see Example in 4.6). If a
requested process is not suspended then it performs its current workspace.

The user is responsible to provide in advance all data: objects and classes, which are necessary to perform the passed
workspace.

All routines, excludingrnut_perform, which are used for passing workspaces and a perform requests are summarized in
Table 2.

Tabell 2: Routines for passing of Workspaces and Perform Requests

with perform request without perform request

put workspace rnut_pputwsr rnut_pputwsa rnut_putwsa rnut_putwsr

get workspace rnut_pgetwsr rnut_pgetwsa rnut_getwsa rnut_getwsr

replace append replace

18

5 Reference Pages for rNUT Routines
This chapter contains reference pages for all rNUT routines used in the Distributed NUT Environment. Rounites are
listed in an alphabetical oder. Each reference page contains simple examples.

19

rnut_addhosts, rnut_delhosts
Change the configuration of the virtual machine(3PVM).

Synopsis
info := rnut_addhosts(nhost, hosts)
info := rnut_delhosts(nhost, hosts)

Arguments

nhost Integer numeric object specifying the number of hosts to be added/deleted.
hosts Text object array of lengthnhost containing the names of the machines to be added/deleted.

Return values

info Integer numeric object returning the actual number of hosts added/deleted. Values less thannhost indi-
cate partial failure, and values equalnil indicate total failure.

Description

Routinesrnut_addhosts, rnut_delhosts add/delete the computers named in hosts changing the configuration of the
PVM(3PVM). hosts should be an array of host names such as [‘sole.electrum.kth.se’, ‘bream.electurm.kth.se’]. Rou-
tines use thepvm_addhosts(3PVM) andpvm_delhosts(3PVM) functions of the pvm library to add or delete hosts.

The routinernut_addhosts called from NUT process, running on the host (X host), used for display the NUT window
interface, adds given hosts to the list of hosts allowed to connect to the X server to open a display connection. The
routine rnut_delhosts called from NUT process, running on X host, removes given hosts from the list of hosts
allowed to connect to the X server. Ifrnut_addhosts or rnut_delhosts is called from NUT process, running not on the
X host, then the routine sends given host names to the NUT daemon nutd running on the X host.nutd adds or deletes
host names from the X access list, usingxhost(1).

Examples

list := [‘whale’,’walrus’,’cod’];
n := rnut_addhosts(length(list), list);
info := rnut_delhosts(1, ‘bream.electrum.kth.se’);

Errors

Routines returnnil in error situations. In the open user interaction mode, on failure, routines display a window to
notify the user about the error. In the closed user interaction mode routines print an error message tostderr.

20

rnut_chmod
Change a mode of NUT processes.

Synopsis
info := rnut_chmod(tids, nnut, mode)

Arguments
tids Numeric array of lengthnnut containing tids of destination NUT processes. It can contain a tid of the

calling NUT.
nnut Integer numeric object specifying a number of NUT processes to change the mode.
mode Integer numeric object specifying an user interaction mode to set for destination NUT processes. The

parametermode should have one of values:
 Mode value MEANING
1 NUT outside the PVM
2 NUT with open window interface (default)
3 NUT with closed window interface

Return values
info The routine returns the numericmode in info. On failure, it returnsnil.

Description

The routinernut_chmod sends a value of a modemode to nnut NUT processes specified bytids with a request to set
this mode. Each receiving NUT sets this mode. This routine can be used to close or open window interface of collob-
orative NUT processes running in the distributed NUT environment. If mode = 1 then the receiving NUT process
exits PVM, and can not be used for object passing.

Examples
tids := rnut_spawn(3, 2);
. . % prepare and send a work for children tids
rnut_chmod(tids, length(tids), 3);
. . % get a result from children tids
rnut_chmod(tids, length(tids), 2);

Errors

rnut_chmod returnsnil in error situations. In the open user interaction mode, on failure,rnut_chmod displays a win-
dow to notify the user about the error. In the closed user interaction modernut_chmod prints an error message to
stderr.

21

rnut_clcpy
Mulicasts a class copy to remote NUT processes.

Synopsis
info := rnut_clcpy(tids, nnut, rclname, lclname)

Arguments
tids Numeric array of lengthnnut containing tids of destination NUT processes. It can contain a tid of the

calling NUT.
nnut Integer numeric object specifying a number of NUT processes to copy a class.
rclname Text object specifying a new name of the copied class in the destination NUT processes.
lclname Text object specifying a name of the class to copy.

Return values
info The routine returns the namelclname in info. On failure, it returnsnil.

Description

The routinernut_clcpy is used to copy a content of the class namedlclname located in the calling NUT into classes
namedrclname located in remote NUT processes. The routine sends a namerclname with a text of the classlclname
to nnut NUT processes identified bytids. Each receiving NUT creates the class namedrclname with the text of class
lclname and compiles it. If receiving NUT already contains the class namedrclname its old contens is replaced by
received new contents.

Example
tids:= rnut_spawn(3, 2);
rnut_clcpy(tids, length(tids), ‘grid’, ‘ch_grid’);

Errors

rnut_clcpy returnsnil in error situations. In the open user interaction mode, on failure,rnut_clcpy displays a window
to notify the user about the error. In the closed user interaction modernut_clcpy prints an error message tostderr.

22

rnut_clget
Gets a copy of a class from remote NUT process and compiles it.

Synopsis
info := rnut_clget(tid, rclname, lclname)

Arguments
tid Integer numeric objec specifying a tid of the remote NUT process.
rclname Text object specifying a name of the class to get from the remote NUT .
lclname Text object specifying a new name of the class in the calling NUT process.

Return values
info The routine returns the namerclname in info. On failure, it returnsnil.

Description

The routinernut_clget is used to get a copy of the class namedrclname located in the remote NUT specified bytid
into class namedlclname located in the calling NUT. The routine sends a namerclname to NUT identified bytid
with a request to send back a text of the classrclname .

The routinernut_clget is asynchronous, i.e. computation in the calling NUT continues as soon as the request to get a
class is sent to the remote NUT. It is necessary to prevent a dealock if the remote NUT does not jet have the class
rclname. Whenever the text of the classrclname is arrived the calling NUT compiles it with the namelclname. This
rotine can not be used for data synchronization.

Example
rnut_clget(rnut_parent(), ‘mygrid’, ‘mygrid’);

Errors

rnut_clget returnsnil in error situations. In the open user interaction mode, on failure,rnut_clget displays a window
to notify the user about the error. In the closed user interaction modernut_clget prints an error message tostderr.

23

rnut_exit
Multicasts exit requests to remote NUT processes.

Synopsis
rnut_exit(tids, nnut)

Arguments
tids Numeric array of lengthnnut containing tids of destination NUT processes. It can contain a tid of the

calling NUT.
nnut Integer numeric object specifying a number of NUT processes to send exit requests.

Description

The routinernut_exit is used to multicast an exit request to each process from a set of remote NUT processes identi-
fied bytids. Each destination NUT tries to exit, i.e. if it has changed open package it displays a window asking a per-
mission to exit.

When each of running NUT processes exits or is killed the NUT daemonnutd deletes all hosts added to a configura-
tion of PVM from a list of hosts allowed to connect to the root X server. Thennutd halts PVM.

Example
tids:= rnut_spawn(3, 2);
..
rnut_exit(tids, length(tids));

Errors
In the open user interaction mode, on failure (e.g. bad parameters),rnut_exit displays a window to notify the user
about the error. In the closed user interaction modernut_exit prints an error message tostderr.

24

rnut_*fetch

Fetch an object from a NUT process.

Synopsis

obj := rnut_xfetch(tid, objname)

obj := rnut_sfetch(tid, objname)

obj := rnut_ifetch(tid, objname)

obj := rnut_ufetch(tid, objname)

Arguments

tid Numeric task identifier of the requested NUT process.

objname Text object containing the name of the object to be fetched.

Return values

obj Each of the fetch routines returns the objectobj that is a value of the object namedobjname in the
requested NUT process. On failure, they returnnil.

Description

These are fetching routines of a general-purpose communication and synchronization package, based on the parallel
model, calledEDA, developed at the Department of Teleinformatics of the Royal Institute of Technology, Sweden [].
They can be used to fetch a value of the object, namedobjname, from NUT process, specified bytid into an object
obj. This NUT process can be spawned byrnut_spawn(3NUT).

rnut_xfetch is a blocking communication routine supporting mutually exclusive interprocess communication, as well
as object streams between NUT processes. It sends a request to the NUT process specified bytid to extract a value
from an object namedobjname. The routine blocks the calling NUT process until a value arrives. NUT process
receiving the request sends a reply with value as soon as extract operation has been performed. The requested process
can execute extract request only if the object namedobjname is full, i.e. has a value. Otherwise the fetch request is
queued until the objname becomes full by the matchingrnut_xstore(3NUT), rnut_sstore(3NUT),
rnut_istore(3NUT) or rnut_ustore(3NUT). Moreover, if the requesting process does not have the class of the object
namedobjname, then it gets this class from the requested process and compiles it. Once a value ofobjname has been
sent, the requested process resets this object to nil. Once the value arrives, the requesting process pushes it onto the
NUT stack and returns fromrnut_xfetch.

rnut_sfetch is a non-blocking communication routine supporting mutually exclusive interprocess communication as
well as object streams between NUT processes. It sends a request to extract a value from an object namedobjname of
NUT process specified bytid, onto the NUT stack of the requesting NUT process, i.e. into an objectobj. NUT proc-
ess receiving the request sends backnil, if theobjname is empty, i.e. has the valuenil or does not exist. Otherwise the
processtid sends a value of the object namedobjname and resets this object tonil. Oncenil or the value have arrived,
rnut_sfetch pushes it onto the NUT stack and returns.

rnut_ifetch is blocking routine supporting multiple-read from shared objects. It sends a request to copy a value from
an object namedobjname of NUT process specified bytid onto the NUT stack of the requesting NUT process, i.e.
into an objectobj. The routine blocks the requesting NUT process until a value have arrived from the requested proc-
ess. NUT process receiving the request sends a reply with value as soon as fetch operation can be performed. This can
be done only if the object namedobjname is full, i.e. has a value. Otherwise the copy request is queued until the
objname becomes full by the matchingrnut_xstore(3NUT), rnut_sstore(3NUT), rnut_istore(3NUT) or
rnut_ustore(3NUT). If the requesting process does not have the class of the object named objname, then it gets this
class from the requested process and compiles it. Once a value arrives, the requesting process pushes it onto the NUT
stack and returns fromrnut_ifetch. The difference betweenrnut_xfetch andrnut_ifetch is that the last one makes
copy of the object namedobjname and does not reset it tonil, as in the case ofrnut_xfetch.

rnut_ufetch is non-blocking communication routine supporting multiple-read from shared objects. It sends a request
to copy a value from an object namedobjname of NUT process specified bytid onto the NUT stack of the requesting
NUT process, i.e. into an objectobj. NUT process receiving the request sends backnil, if the object namedobjname
is empty, i.e. has the valuenil or does not exist. Otherwise it sends a copy of the value ofobjname. Oncenil or the
value arrives,rnut_sfetch pushes it onto the NUT stack and returns.

25

Examples
p := rnut_parent();
my_a := rnut_xfetch(p, ‘a’);
. .
probe := rnut_sfetch(tid, ‘stream’);
if probe /= nil ->

% use ‘probe’ with new value
. .

true ->
% go do other computing
. .

fi;
. .
b := new myclass;
b.input := [-1.3, ‘minus one point three’];
rnut_ufetch(tids, n, ‘ss’, b);

Errors

Routines returnnil in error situations. In the open user interaction mode, on failure, routines display a message win-
dow to notify the user about the error. In the closed user interaction mode routines print an error message tostderr.

26

rnut_gethost
Gets host names of specified NUT processes.

Synopsis
hosts:= rnut_gethost(tids, nnut)

Arguments
tids Numeric array of lengthnnut containing the tids of NUT processes in question. It can contain the tid of

the calling NUT.
nnut Integer numeric object specifying the number of Nut processes in question.

Return values
hosts Text object array of lengthnnut containing the names of the machines running NUT processes speci-

fied bytids.

Description

The routinernut_gethost returns a list of host names on wich NUT processes identified bytids are located.

Example
tids:= rnut_spawn(5, 3, nil, nil);
hosts:= rnut_gethost(tids, length(tids));

Errors

rnut_gethost returnsnil in error situations. In the open user interaction mode, on failure,rnut_gethost displays a
window to notify the user about the error. In the closed user interaction modernut_gethost prints an error message to
stderr.

27

rnut_getwsa, rnut_getwsr
Get a copy of the text of the Workspace from remote NUT process.

Synopsis
rnut_getwsa(tid)
rnut_getwsr(tid)

Arguments
tid Integer numeric objec specifying a tid of the remote NUT process.

Description

Routinernut_getwsa and rnut_getwsr are used to get a copy of the text of the Workspace from the remote NUT spec-
ified by tid and to place it into the Workspace of the requesting NUT. The routines send a request to get back a text of
the Workspace from the remote NUT.

Routines are asynchronous, i.e. computation in the requesting NUT continues as soon as the request to get the Work-
space is sent to the remote NUT. Whenever the text of the Workspace is arrived the requesting NUT appends it to its
current Workspace in the case ofrnut_getwsa. In the case ofrnut_getwsr the new Workspace from remote NUT
replaces the current Workspace of the requesting NUT.

Example
rnut_getwsa(rnut_parent());

Errors

Routines returnnil in error situations. In the open user interaction mode, on failure, routines display a window to
notify the user about the error. In the closed user interaction mode routines print an error message tostderr.

28

rnut_gsize
Returns a number of siblings of the calling NUT process in its grid.

Synopsis
gridsize := rnut_gsize()

Return values
gridsize Integer numeric object returning a number of siblings of the calling NUT process in its grid.

Description

The routinernut_gzise returns a number gridsize of NUT processes, started by thernut_spawn routine, which has
started the requesting process. The numbergridsize includes the requesting process, but does not include the parent
process. An array of sibling tids can be determined byrnut_mygrid(3NUT) routine.

Example
size := rnut_gsize();

Errors

rnut_gzise returnsnil in error situations. In the open user interaction mode, on failure, the routine displays a message
window to notify the user about the error. In the closed user interaction mode the routine prints an error message to
stderr.

29

rnut_kill
Kills remote NUT processes.

Synopsis
rnut_kill(tids, nnut)

Arguments
tids Numeric array of lengthnnut containing tids of NUT processes to kill. It can contain a tid of the calling

NUT.
nnut Integer numeric object specifying a number of NUT processes to kill.

Description

The routinernut_kill is used to killnnut remote NUT processes identified bytids.

When all of running NUT processes have exited or have been killed the NUT daemonnutd deletes all hosts which
were added to a configuration of PVM from a list of hosts allowed to connect to the root X server. Thennutd halts
PVM.

Example
tids:= rnut_spawn(3, 2);
..
rnut_kill(tids, length(tids));

Errors

In the open user interaction mode, on failure (e.g. bad parameters),rnut_kill displays a window to notify the user
about the error. In the closed user interaction modernut_kill prints an error message tostderr.

30

rnut_mygrid
Returns the tids of the sibling NUT processes.

Synopsis
stids := rnut_mygrid()

Return values
stids Numeric array formed of the tids of the NUT/PVM processes started by the same rnut_spawn routine,

as the calling process.

Description

The routinernut_mygrid returns an arraystids of the PVM(3PVM) task identifiers for each NUT started by the same
rnut_spawn routine, as the calling process. The arraystids includes tid of the calling process, but does not include tid
of the parent process. A number of sibling can be determined bylength or rnut_gsize(3NUT) routines. The PVM task
identifier of the parent process can be determined byrnut_parent(3NUT) routine.

Example
stids := rnut_mygrid();
rnut_xstore(stids, length(stids), ‘xx’, x);
a := rnut_ifetch(rnut_parent(), ‘input’);

Errors

rnut_mygrid returnsnil in error situations. In the open user interaction mode, on failure, the routine displays a mes-
sage window to notify the user about the error. In the closed user interaction mode the routine prints an error message
to stderr.

31

rnut_myhost
Returns the host of the calling NUT process.

Synopsis
myhost := rnut_myhost()

Return values
myhost Text object returning the name of the host on which the calling NUT process is running.

Description

The routinernut_myhost returns the name of the host on which the calling NUT process is located.

Example
%spawn my children on my host
myhost := rnut_myhost();
tids := rnut_spawn(3, 2, myhost);

32

rnut_mymode
Returns a value of the user interaction mode of the calling NUT process.

Synopsis
mymode := rnut_mymode()

Return values
mymode Numeric object returning the value of the user interaction mode of the calling NUT processes.mode

can have one of the values:
 Mode value MEANING
0 NUT is running with open window interface (i.e. root NUT process)
1 NUT is running outside the PVM
2 NUT is running with open window interface
3 NUT is running with closed window interface

Description

The routinernut_mymode returns the value of the user interaction mode of the calling NUT process. This value can
be used for changing the mode of the calling NUT process.

Example
if rnut_mymode() == 2 ->

rnut_chmod([rnut_mytid()], 1, 3); % close my window
fi;

Errors

rnut_mymode returnsnil in error situations. In the open user interaction mode, on failure, the routine displays a mes-
sage window to notify the user about the error. In the closed user interaction mode the routine prints an error message
to stderr.

33

rnut_mynum
Returns the instance number of the calling NUT process in the group of its siblings, i.e. in its grid.

Synopsis
mynum := rnut_mynum()

Return values
mynum Numeric object returning instance number of the calling process in the group of its siblings, i.e. in its

grid.

Description

The routinernut_mynum returns a unique instance number of the calling NUT processin its grid, i.e. in the group of
NUT processes which were spawned by the same routinernut_spawn(3NUT). Instance numbers start at 1 and count
up. Zero number can be used as an instance number of a parent NUT which spawned the grid.

The routinernut_mynum can be called multiple times in NUT application. On its first call from the root NUT proc-
ess,rnut_mynum starts PVM daemonpvmd3(3PVM), if it has not been started already, then starts NUT daemon
nutd on the host, displaing the NUT window interface, as well as adds all PVM hosts to the list of hosts allowed to
connect to the X server.

Called from the root NUTrnut_mynum returns 1. If the calling NUT process was created byrnut_spawn(3NUT),
thenrnut_mynum simply returns its instance number in the group of spawned processes.

Example
stids:= rnut_mygrid();
mynum := rnut_mynum();
mya:= rnut_xfetch(stids[mynum + 1], ‘a’);

Errors

rnut_mynum returnsnil in error situations. In the open user interaction mode, on failure, the routine displays a mes-
sage window to notify the user about the error. In the closed user interaction mode the routine prints an error message
to stderr.

34

rnut_mypack
Returns a name of the package loaded to the calling NUT process.

Synopsis
mypack := rnut_mypack()

Return values
mypack Text object returning the name of the package loaded to the calling NUT process.

Description

The routinernut_mypack returns the name of the package loaded to the calling NUT process. This name can be used
to test, send and change a package name.

Examples
me := rnut_mytid();
if rnut_mypack() == ‘eda.mem’ ->

rnut_pack([me], 1, ‘next.mem’); % change my package
fi;
..
tids := rnut_spawn(3, 2);
%send the name of my package to my children
rnut_pack(tids, length(tids), rnut_mypack())

35

rnut_mytid

Returns the tid of the calling NUT process.

Synopsis
mytid := rnut_mytid()

Return values
mytid Numeric object returning the task identifier of the calling NUT process.

Description

The routinernut_mytid returns a unique PVM tid of the calling NUT process.rnut_mytid can be called multiple
times in NUT application. On its first call from the root NUT process,rnut_mytid starts PVM daemon
pvmd3(3PVM), if it has not been started already, then starts NUT daemonnutd on the host, displaing the NUT win-
dow interface, as well as adds all PVM hosts to the list of hosts allowed to connect to the X server. If the calling NUT
process was created byrnut_spawn(3NUT), thenrnut_mytid simply returns its tid.

Examples
mytid := rnut_mytid();
. .
x := rnut_xfetch(rnut_mytid(), ‘xx’);

Errors

rnut_mytid returnsnil in error situations. In the open user interaction mode, on failure, the routine displays a message
window to notify the user about the error. In the closed user interaction mode the routine prints an error message to
stderr.

36

rnut_pack
Sends a name of a package to remote NUT processes and asks to open it.

Synopsis
info := rnut_pack(tids, nnut, package)

Arguments
tids Numeric array of lengthnnut containing tids of destination NUT processes. It can contain a tid of the

calling NUT.
nnut Integer numeric object specifying a number of NUT processes to send the package name.
package Text object specifying the name of the package to open in the destination NUT processes.

Return values
info The routine returns the namepackage in info. On failure, it returnsnil.

Description

The routinernut_pack is used to open a package namedpackage in remote NUT processes. It sends the name of the
packagepackage to nnut NUT processes identified bytids with a request to load this package for processing. Each
receiving NUT opens this package. If remote NUT already works with another loaded package it displays a window
asking a permission to change the package.

Example
tids:= rnut_spawn(3, 2);
rnut_clcpy(tids, length(tids), ‘grid’, ‘ch_grid’);

Errors

rnut_pack returnsnil in error situations. In the open user interaction mode, on failure,rnut_pack displays a window
to notify the user about the error. In the closed user interaction modernut_pack prints an error message tostderr.

37

rnut_parent
Returns the tid of NUT that spawned the calling process.

Synopsis
parent:= rnut_parent()

Return values
parent Numeric object returning the task identifier of the parent NUT of the calling process. If the calling

NUT is root, i.e. it was not created withrnut_spawn(3NUT), thenrnut_parent returns value -23. This
value means error condition PvmNoParent (seepvm_parent(3PVM)).

Description

The routinernut_parent returns a PVM tid of NUT that spawned the calling process.rnut_parent can be called mul-
tiple times in NUT application. On its first call from the root NUT process,rnut_parent starts PVM daemon
pvmd3(3PVM), if it has not been started already, then starts NUT daemonnutd on the host, displaing the NUT win-
dow interface, as well as adds all PVM hosts to the list of hosts allowed to connect to the X server. Calling from the
root NUT rnut_parent returns the value -23, that means error condition PvmNoParent. If the calling NUT process was
created byrnut_spawn(3NUT), thenrnut_parent simply returns a tid of its parent.

Examples
parent:= rnut_parent();
. .
rnut_xstore([rnut_parent()], 1, ‘xx’, x);

Errors

The routine returnsnil in error situations or -23 if the calling protcess has not a parent, i.e. it was not spawned with
rnut_spawn(3NUT) routine. In the open user interaction mode, on failure, the routine displays a message window to
notify the user about the error. In the closed user interaction mode the routine prints an error message tostderr.

38

rnut_perform
Multicasts a perform request to remote NUT processes.

Synopsis
rnut_perform(tids, nnut)

Arguments
tids Numeric array of lengthnnut containing tids of distination NUT processes. It can contain a tid of the

calling NUT.
nnut Integer numeric object specifying a number of NUT processes to send the perform request.

Description

The routinernut_perform multicasts the perform request tonnut NUT processes identified bytids. Each receiving
NUT executes current NUT code in its Workspace.

Example
% spawn 3 children with closed windows
% copy the class ‘grid’ to children
% multicast the workspace to children
% perfrom the workspace in children
tids:= rnut_spawn(3, 3);
rnut_clcpy(tids, 3, ‘grid’, ‘grid’);
rnut_putwsr(tids, length(tids), ‘

% this is workspace for children:
tids := rnut_spawn(2, 3);
rnut_clcpy(tids, 2, ‘’grid’’, ‘’grid’’);

‘);
rnut_perform(tids, 3);

Errors

In the open user interaction mode, on failure (e.g. bad parameters),rnut_perform displays a window to notify the
user about the error. In the closed user interaction modernut_perform prints an error message tostderr.

39

rnut_pgetwsa, rnut_pgetwsr
Get a copy of the text of the Workspace from remote NUT process and perform it.

Synopsis
rnut_pgetwsa(tid)
rnut_pgetwsr(tid)

Arguments
tid Integer numeric objec specifying a tid of the remote NUT process.

Description

Routinernut_pgetwsa and rnut_pgetwsr are used to get a copy of the text of the Workspace from the remote NUT
specified bytid, to place it into the Workspace of the calling NUT and then perform it. The routines send a request to
get back a text of the Workspace from the remote NUT.

Routines are asynchronous, i.e. computation in the calling NUT continues as soon as the request to get the Workspace
is sent to the remote NUT. Whenever the text of the Workspace is arrived the calling NUT appends it to its current
Workspace in the case ofrnut_getwsa and then performs it. In the case ofrnut_pgetwsr the calling NUT process
replaces its current Workspace by the new Workspace from remote NUT and then performs it.

Example
rnut_pgetwsa(rnut_parent());

Errors

Routines returnnil in error situations. In the open user interaction mode, on failure, routines display a window to
notify the user about the error. In the closed user interaction mode routines print an error message tostderr.

40

rnut_pputwsa, rnut_pputwsr
Multicast the text for the Workspace to remote NUT processes with the request to perform it.

Synopsis
rnut_pputwsa(tids, nnut, ws)
rnut_pputwsr(tids, nnut, ws)

Arguments
tids Numeric array of lengthnnut containing tids of distination NUT processes. It can contain a tid of the

calling NUT.
nnut Integer numeric object specifying a number of NUT processes to send the text for Workspace and the

perform request.
ws Text object specifying the text for the Workspace to mulicast to the destination NUT processes.

Description

Routinesrnut_pputwsa andrnut_pputwsr multicast the text for Workspace tonnut NUT processes identified bytids
with the request to perform it.

rnut_pputwsa sends the textws to specified remote NUT processes with request to append this text to the current text
in their Worspace and perform text ws. Each receiving NUT appends textws to its Workspaceand then performs text
ws.

rnut_putwsr sends the textws to specified remote NUT processes with request to replace the current text in their
Worspace by the textws and perform it. Each receiving NUT replaces its Workspace by the new textws and then per-
forms it.

Example
tids:= rnut_spawn(3, 3, nil, ‘grid.mem’);
rnut_pputwsr(tids, 3, ‘

g:= new mygrid;
NutPrint(‘’I was born just now!’’);

‘);
rnut_pputwsa([tids[2]], 1, ‘

g.clget(rnut_parent(), ‘adder’, ‘adder’);
‘);

Errors

In the open user interaction mode, on failure (e.g. bad parameters), routines display a window to notify the user about
the error. In the closed user interaction mode rnut_perform print an error message tostderr.

41

rnut_putwsa, rnut_putwsr
Multicast the text for the Workspace to remote NUT processes.

Synopsis
rnut_putwsa(tids, nnut, ws)
rnut_putwsr(tids, nnut, ws)

Arguments
tids Numeric array of lengthnnut containing tids of distination NUT processes. It can contain a tid of the

calling NUT.
nnut Integer numeric object specifying a number of NUT processes to send the text for Workspace.
ws Text object specifying the text for the Workspace to mulicast to the destination NUT processes.

Description

Routinesrnut_putwsa andrnut_putwsr multicast the text for Workspace tonnut NUT processes identified bytids.

rnut_putwsa sends the textws to specified remote NUT processes with request to append this text to the current text
in their Worspace. Each receiving NUT appends textws to its Workspace.

rnut_putwsr sends the textws to specified remote NUT processes with request to replace the current text in their
Worspace by the textws. Each receiving NUT replaces its Workspace by the new textws.

Example
tids:= rnut_spawn(3, 3, nil, ‘grid.mem’);
rnut_putwsr(tids, 3, ‘

g:= new mygrid;
NutPrint(‘’I was born just now!’’);

‘);
rnut_putwsa([tids[2]], 1, ‘

g.clget(rnut_parent(), ‘adder’, ‘adder’);
‘);

Errors

In the open user interaction mode, on failure (e.g. bad parameters), routines display a window to notify the user about
the error. In the closed user interaction mode rnut_perform print an error message tostderr.

42

rnut_spawn
Starts new NUT processes on PVM(3PVM).

Synopsis

tids := rnut_spawn(nnut, mode, where, package)

Arguments

nnut Integer numeric object specifying the number of copies of NUT to start.
mode Integer numeric object specifying the initial user interaction mode of NUT processes.mode should

have one of the values:
 Mode value MEANING
nil Start NUT in default mode2
1 Start NUT outside the PVM
2 Start NUT with open window interface (default)
3 Start NUT with closed window interface

where Text object specifying a host name where to start new NUT processes.where can benil or a host name
such as ‘sole.electrum.kth.se’. Ifwhere is nil, then PVM will select the most appropriate host like in
pvm_spawn(3PVM) routine.

package Text object specifying a package name for the spawned NUT processes.package can benil or a pack-
age name, e.g. ‘eda.mem’. Ifpackage is nil, then each of spawned NUT processes starts with an unti-
tled empty package. Ifpackage does not exist, then each of spawned NUT processes also starts with
empty package, but names itpackage.

Return values

tids Numeric array of lengthnnut formed of the tids of the NUT/PVM processes started by this
rnut_spawn routine.

Description

The routinernut_spawn startsnnut copies of NUT.

The hosts on which the NUT processes are started are determined by thewhere argument. On success,rnut_spawn
returns a numeric arraytids of the PVM task identifiers for each NUT started. Otherwise, routine returnsnil.

If the host specified bywhere argument is not in PVM the routine adds it to the configuration of PVM and to the list
of hosts allowed to connect to the root X server. It is, however, more convinient to usernut_spawn with where being
nil, provided a configuration of PVM has been defined before by means ofrnut_addhosts andrnut_delhosts(3NUT)
routines.

rnut_spawn usespvm_catchout(3PVM) to catch output from spawned NUT processes, to tag each line by tid of the
child NUT and to print it to thestderr or stdout files of the root NUT.

Examples

% start two children with open windows on ‘bream...’

% with the package ‘p.mem’

tids := rnut_spawn(2, 2, ‘bream.electrum.kth.se’, ‘p.mem’);

% add two hosts into PVM

% start 4 children with close windows somewhere

rnut_addhosts(2, [‘whale’, ‘cod’]);

tids := rnut_spawn(4, 3, nil, nil);

% start child with the package ‘mypackage’

tids := rnut_spawn(1, 2, nil, ‘mypackage’);

Errors

rnut_spawn returns nil in error situations. In the open user interaction mode, on failure,rnut_spawn displays a mes-
sage window to notify the user about the error. In the closed user interaction modernut_spawn prints an error mes-
sage tostderr.

43

rnut_*store

Store an object to a set of NUT processes.

Synopsis

info := rnut_xstore(tids, nnut, objname, obj)

info := rnut_sstore(tids, nnut, objname, obj)

info := rnut_istore(tids, nnut, objname, obj)

info := rnut_ustore(tids, nnut, objname, obj)

Arguments

tids Numeric array of lengthnnut containing the tids of NUT processes to be stored to. It can contain the
tid of the sending NUT process.

nnut Integer numeric object specifying the number of NUT processes which receive values.

objname Text object containing the name of the object to be stored into.

obj Object to be stored.

Return values

info Each of the store routines returns the objectobj in info. On failure, they returnnil.

Description

These are storing routines of a general-purpose communication and synchronization package, based on the parallel
model, calledEDA, designed at the Department of Teleinformatics of the Royal Institute of Technology, Sweden [].
They can be used to store a value of the objectobj into objects, namedobjname, of the NUT processes, specified by
arraytids. These NUT processes can be spawned byrnut_spawn(3NUT).

rnut_xstore is a blocking communication routine supporting mutually exclusive interprocess communication. It
sends a value of an objectobj to nnut NUT processes specified bytids with a request to store it into their objects
namedobjname. The routine blocks the sending NUT process untilnnut acknowledgments have arrived from all
tids. Each of the receiving NUT processes sends an acknowledgment as soon as the store operation has been per-
formed. Each receiving process can execute store request only if its object namedobjname is empty, i.e. hasnil value
or does not exist. In the last case receiving process creates an object namedobjname from the same class asobj.
Moreover, if receiving process does not have that class, then it gets the class from sender and compiles it. If the object
namedobjname is not empty, then the store request is queued until theobjname becomes emptied by the matching
rnut_xfetch(3NUT) or rnut_sfetch(3NUT). Oncennut acknowledgments have arrived, computation on the sending
process resumes.

rnut_sstore is a non-blocking communication routine supporting object streams between NUT processes. It sends a
value of an objectobj to nnut NUT processes specified bytids with a request to store it into their objects named
objname. Computation on the sending process continues. Each receiving NUT process can execute store request only
if its object namedobjname is empty, i.e. hasnil value or does not exist. Otherwise the store request is queued until
theobjname becomes emptied the matchingrnut_xfetch(3NUT) orrnut_sfetch(3NUT).

rnut_istore is a non- blocking routine supporting write-once shared objects. It sends a value of an objectobj to nnut
NUT processes specified bytids with a request to store it into their objects namedobjname. Computation on the
sending process continues. Each receiving NUT process can execute store request only if its object namedobjname
does is empty, i.e. hasnil value or does not exist. Otherwise the store request is ignored.

rnut_ustore is non-blocking communication routine supporting unconditional updating of shared objects. It sends a
value of an objectobj to nnut NUT processes specified bytids with a request to store it into their objects named
objname. Computation on the sending process continues. Each receiving NUT process always executes store request
independently on status of the object namedobjname.

44

Examples
tids := rnut_mygrid();
n := length(tids);
info := rnut_xstore(tids, n, ‘pi’, 3.1415926);
. .
p := [rnut_parent()];
rnut_sstore(p, 1, ‘stream’, ‘First string’);
rnut_sstore(p, 1, ‘stream’, ‘Second string’);
. .
b := new myclass;
b.input := [-1.3, ‘minus one point three’];
rnut_ustore([rnut_mytid()], 1, ‘ss’, b);

Errors

Routines returnnil in error situations. In the open user interaction mode, on failure, routines display a message win-
dow to notify the user about the error. In the closed user interaction mode routines print an error message tostderr.

45

Conclusion

The approach to parallel programming taken in this project combines distributed computing in a heterogeneous network
of computers with automatic synthesis of programs. Using the extended dataflow actor model as a program model for dis-
tributed computing seems to be very promising. This can be used for programming of parallel computations on various
platforms and with various levels of abstraction. Finally, this can lead to a unified language for specification of hardware
and software for parallel computing.

The functions developed in this report support coarse-grained parallel computing, and combined with the program syn-
thesis in NUT, can be used for programming in a compositional way. An example of a parallel search program presented
in the Appendix 2 shows the feasibility of this approach. After developing a collection of classes for describing search
problems, a particular problem could be specified on a half of a page, using these classes. Sets of high-level control struc-
tures in the form of NUT classes must be developed for various application areas in order to make the present toolkit at-
tractive for users. This, together with development of visual programming tools for distributed computing, can be the next
step of the research in parallel programming at the CSlab of the Teleinformatics Department of the KTH.

Acknowledgments

We wish to express our thanks to Mari Kopp for her patience in consulting us on the matters of internal structures of NUT.
We are thankful to Urmas Kopra who was the first to implement parallel processes in the NUT environment and to test
out the usage of NUT on top of PVM. This work could not been done in the present form without the ideas developed in
the parallel architectures group of the Teleinformatics Department and we wish to thank especially Lars-Erik Thorelli and
Hallo Ahmed for the discussions on the EDA model. We have a pleasure to thank Tarmo Uustalu for many useful discus-
sions on the design of rNUT Toolkit.

References

1. E Tyugu. “The NUT system”.Teleinformatics/KTH 1994 (Internal report).

2. T. Uustalu, U. Kopra, V. Kotkas, M. Matskin and E Tyugu. “The NUT Language Report”.Technical Report TRITA-
IT-R 94:14, Dept. of Teleinformatic, KTH. 1994.

3. L-E Thorelli,“The EDA Multiprocessing Model”.Technical Report TRITA-IT-R 94:28, CSLab, Dept. of Teleinfor-
matic, KTH. 1994.

4. V.V. Vlassov., L-E Thorelli and H. Ahmed,“Multi- EDA A Programming Environment for Parallel Computations”.
Technical Report TRITA-IT-R 94:29, CSLab, Dept. of Teleinformatic, KTH. 1994.

5. G.A. Geist, et al,“PVM3 User’s Guide and Reference Manual”. ORNL/TM-12187, Oak Ridge National Lab. May
1994.

6. V.S. Sunderam, G.A. Geist, J. Dongarra and R. Manchek,“The PVM Concurrent Computing System: Evaluation,
Experiences, and trends”. Parallel Computing, Vol. 20, No. 4, April 1994, pp. 531-546.

7. U. Kopra.“Parallel Implementation of Synthesized Programs in NUT“. Teleinformatics/KTH 1994 (Internal report).

46

Appendix A1: Grid and Mygrid Classes

This Appendix contains examples of texts ofgrid andmygrid classes. Objects from these classes can be used to simplify
an addressing scheme to members of a grid which are spawned withrnut_spawn routine. Each member of the grid, i.e.
the parent and each child, obtains a number which is used for addressing with relations from both classes. The classgrid
can be used in the parent process, classmygrid - in a child. The parent NUT process obtains number 0, children are num-
bered from 1 to n. The first relationgettids in both classes is used to transform an array of numbers (nodes in these exam-
ples) into an array of tids. All other relations use with rNUT routines node numbers, but not tids.

These classes provide a library of rNUT routines which use node number to specify a destination remote NUT process
instead of its tid.

The following examples illustrate a usage of objects ofgrid andmygrid classes.

Example 1.

% SPAWN

g:=new grid;

tids := g.spawn(3, 2);

t := [1, 2, 3];

% CLOSE / OPEN

g.close(t);

g.open([1, 2]);

% WORK SPACE PUT

g.putwsr([2],‘

myg:=new mygrid;

g:=new grid;

g.spawn(2, 2);

t := [1,2];

g.pack(t,’’child1.mem’’);‘);

g.perform([2]);

g.pputwsr([2], ‘g.exit(t);’);

% EDA XSTORE

b:=new grid 1, 2, ‘sole.electrum.kth.se’;

g.xstore([1], ‘aa’, b);

g.xstore([1], ‘aa’, ‘Test string’);

g.xstore([1], ‘aa’, [‘first’, ‘second’, ‘third’]);

%EXIT

tt:=g.tids;

rnut_exit(tt, length(tt));

Example 2.

myg := new mygrid;

myg.clget(0, ‘grid‘);

me := myg.mynum;

g.ustore([me - 1, me + 1], 2, ‘pi’, 3.1415926);

newg := new grid;

newg.spawn(4);

g.sstore([3], ‘xx’, myg);

g.sstore([3], ‘xx’, 5);

g.sstore([3], ‘xx’, -1.3);

g.sstore([3], ‘xx’, ‘Hello world’);

g.sstore([3], ‘xx’, [7, 8]);

g.sstore([3], ‘xx’, [‘radio-’, ‘ga-’, ‘ga-’]);

g.pputwsr([3] ,’

x := new array of any;

for i := 1 to 6 do

x[i] := rnut_xfetch(rnut_mytid(), ‘’xx’’);

od;

rnut_chmod([rnut_mytid()], 1, 2);

‘);

47

A1.1 Class grid

var
size: num; % size of remote NUT grid
imode: num; % initial mode of remote NUTs

% 0 - Rnut_X (root Nut, here not used!)
% 1 - Rnut_onlyX (only X_main_loop)
% 2 - Rnut_openX (PVM & X)
% 3 - Rnut_closeX (PVM & unvisible_X)

ihost: text; % initial host to spawn remote NUTs
ipack: text; % initial pack to spawn remote NUTs

tids: array of num;% tids of child rNUT in the grid

mytid: num; % my tid
myhost: text; % my host
mymode: num; % my mode
mypack: text; % my pack

node: num; % number of node in subgrid to operate
nodes: array of num;% numbers of nodes in subgrid to operate:

% 0 - me
% 1 ... size - rNUT

name: text; % input object name
input: any; % input object
output: any; % output object
wtids: array of num;% array of tids to operate

init
mytid := rnut_mytid();
mymode := rnut_mymode();
myhost := rnut_myhost();
mypack := rnut_mypack();
node := 0;

rel
gettids: nodes, mytid, tids -> wtids {

wtids := new array of num;
i := 1;
do (i <= length(nodes)) & (nodes[i] /= nil) ->

if nodes[i] <= 0 ->
wtids[i] := mytid;
i := i + 1;

|| true ->
n <- nodes[i];
wtids[i] := tids[n];
i := i + 1;

fi;
od;

};
spawn: size, imode, ihost, ipack -> tids {

tids := rnut_spawn(size, imode, ihost, ipack);
};

exit: nodes, mytid, tids, wtids -> output, wtids {
wtids := gettids(nodes, mytid, tids);
output := rnut_exit(wtids, length(wtids));

};
open: nodes, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_chmod(wtids, length(wtids), 2);

};
close: nodes, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_chmod(wtids, length(wtids), 3);

};
gethostname: nodes, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);

48

output := rnut_gethost(wtids, length(wtids));
};
pack: nodes, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_pack(wtids, length(wtids), input);

};
sendclass: nodes, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_clcpy(wtids, length(wtids), input, input);

};
getclass: node, input, mytid, tids -> output {

if node <= 0 -> output := rnut_clget(mytid, input, input);
|| true -> output := rnut_clget(tids[node], input, input)
fi

};
putwsa: nodes, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_putwsa(wtids, length(wtids), input);

};
putwsr: nodes, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_putwsr(wtids, length(wtids), input);

};
pputwsa: nodes, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_pputwsa(wtids, length(wtids), input);

};
pputwsr: nodes, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_pputwsr(wtids, length(wtids), input);

};
getwsa: node, input, mytid, tids -> output {

if node <= 0 -> output := rnut_getwsa(mytid);
|| true ->output := rnut_getwsa(tids[node])
fi

};
getwsr: node, input, mytid, tids -> output {

if node <= 0 -> output := rnut_getwsr(mytid);
|| true ->output := rnut_getwsr(tids[node])
fi

};
pgetwsa: node, input, mytid, tids -> output {

if node <= 0 -> output := rnut_pgetwsa(mytid);
|| true ->output := rnut_pgetwsa(tids[node])
fi

};
pgetwsr: node, input, mytid, tids -> output {

if node <= 0 -> output := rnut_pgetwsr(mytid);
|| true ->output := rnut_pgetwsr(tids[node])
fi

};
perform: nodes, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_perform(wtids, length(wtids));

};
xstore: nodes, name, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_xstore(wtids, length(wtids), name, input);

};
sstore: nodes, name, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_sstore(wtids, length(wtids), name, input);

};
istore: nodes, name, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);

49

output := rnut_istore(wtids, length(wtids), name, input);
};
ustore: nodes, name, input, mytid, tids, wtids -> output, wtids {

wtids := gettids(nodes, mytid, tids);
output := rnut_ustore(wtids, length(wtids), name, input);

};
xfetch: node, name, mytid, tids -> output {

if node <= 0 -> output := rnut_xfetch(mytid, name);
|| true ->output := rnut_xfetch(tids[node], name)
fi

};
ifetch: node, name, mytid, tids -> output {

if node <= 0 -> output := rnut_ifetch(mytid, name);
|| true ->output := rnut_ifetch(tids[node], name)
fi

};
sfetch: node, name, mytid, tids -> output {

if node <= 0 -> output := rnut_sfetch(mytid, name);
|| true ->output := rnut_sfetch(tids[node], name)
fi

};
ufetch: node, name, mytid, tids -> output {

if node <= 0 -> output := rnut_ufetch(mytid, name);
|| true ->output := rnut_ufetch(tids[node], name)
fi

};

A1.2 Class mygrid

var
size: num; % size of remote NUT grid
parent: num; % tid of parent
tids: array of num; % tids of rNUTs in the grid, including me,

% but excluding parent

mytid: num; % my tid
myhost: text; % my host
mymode: num; % my mode
mypack: text; % my pack
mynode: num; % my number

node: num; % number of rNUT to operate:
% 0 - parent
% 1 ... size - rNUTs including me

nodes: array of num; % array of nodes to operate
name: text; % input object name
input: any; % input object
output: any; % output object
wtids: array of num;% array of tids to operate

init
size := rnut_grsize() + 1;
parent := rnut_parent();
tids := rnut_mygrid();
mynode := rnut_mynum();
mypack := rnut_mypack();
mymode := rnut_mymode();
mytid := rnut_mytid();
myhost := rnut_myhost();

rel
gettids: nodes, parent, tids -> wtids {

for i:= 1 to length(nodes) do
if nodes[i] <= 0 ->

wtids[i] := parent;
|| true ->

50

n <- nodes[i];
wtids[i] := tids[n]

fi
od;

};
open: nodes, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_chmod(wtids, length(wtids), 2);

};
close: nodes, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_chmod(wtids, length(wtids), 3);

};
gethostname: nodes, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_gethost(wtids, length(wtids));

};
pack: nodes, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_pack(wtids, length(wtids), input);

};
sendclass: nodes, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_clcpy(wtids, length(wtids), input, input);

};
getclass: node, input, parent, tids -> output {

if node <= 0 -> output := rnut_clget(parent, input, input);
|| true -> output := rnut_clget(tids[node], input, input)
fi

};
putwsa: nodes, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_putwsa(wtids, length(wtids), input);

};
putwsr: nodes, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_putwsr(wtids, length(wtids), input);

};
pputwsa: nodes, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_pputwsa(wtids, length(wtids), input);

};
pputwsr: nodes, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_pputwsr(wtids, length(wtids), input);

};
getwsa: node, input, parent, tids -> output {

if node <= 0 -> output := rnut_getwsa(parent);
|| true ->output := rnut_getwsa(tids[node])
fi

};
getwsr: node, input, parent, tids -> output {

if node <= 0 -> output := rnut_getwsr(parent);
|| true ->output := rnut_getwsr(tids[node])
fi

};
pgetwsa: node, input, parent, tids -> output {

if node <= 0 -> output := rnut_pgetwsa(parent);
|| true ->output := rnut_pgetwsa(tids[node])
fi

};
pgetwsr: node, input, parent, tids -> output {

if node <= 0 -> output := rnut_pgetwsr(parent);
|| true ->output := rnut_pgetwsr(tids[node])
fi

51

};
perform: nodes, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_perform(wtids, length(wtids));

};
xstore: nodes, name, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_xstore(wtids, length(wtids), name, input);

};
sstore: nodes, name, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_sstore(wtids, length(wtids), name, input);

};
istore: nodes, name, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_istore(wtids, length(wtids), name, input);

};
ustore: nodes, name, input, parent, tids, wtids -> output, wtids {

wtids := gettids(nodes, parent, tids);
output := rnut_ustore(wtids, length(wtids), name, input);

};
xfetch: node, name, parent, tids -> output {

if node <= 0 -> output := rnut_xfetch(parent, name);
|| true -> output := rnut_xfetch(tids[node], name)
fi

};
ifetch: node, name, parent, tids -> output {

if node <= 0 -> output := rnut_ifetch(parent, name);
|| true -> output := rnut_ifetch(tids[node], name)
fi

};
sfetch: node, name, parent, tids -> output {

if node <= 0 -> output := rnut_sfetch(parent, name);
|| true -> output := rnut_sfetch(tids[node], name)
fi

};
ufetch: node, name, parent, tids -> output {

if node <= 0 -> output := rnut_ufetch(parent, name);
|| true -> output := rnut_ufetch(tids[node], name)
fi

};

52

Appendix A2: A Parallel Search Problem

In this appendix, we present an example of distributed computing for solving a search problem. The problem is solved by
means of breadth-first search. For solving it, a collection of classes is developed. A description of the particular problem
taken as an example takes only 15 lines and it can be found at the end of the appendix.

A2.1 Breadth-First Search

An idea of the breadth-first search, BFS, is illustrated in Figure A2.1. The algorithm implemented here has a root process
and a process pool containing NUT processes for exploring open nodes of the search tree.

We search in one level and at the same time we produce children in the next level. We don’t start searching in the next
level before we finish the previous level (see Figure A2.2).

Root process has two queues (queue1 & queue2), they contain a number of jobs (each job has all the information about a
tree node to be examined).Queue1 contains all the jobs related to nodes of the actual searching level (levelk in Figure
A2.2). Root process gets a job fromqueue1 finds a free process in the pool and sends the job to that process (see Figure
A2.3). After checking the job, the process will send one of the following three messages to root:

1. more_childs: means that the answer is not found in this node, process produces more children after modifying the
state of node. Root gets the new states (belonging to next level) and puts them inqueue2 and notes that a process is
free.

2. no_more_child: means that the answer is not found in this node and the node is actually a leaf in the tree. Root notes
that a process is free.

3. answer: the answer is found and has the shortest path. Root sends exit message to all processes and notify the
answer.

Root takes the following actions:

1. Making and administrating the process pool.

2. Starting with root state, modifying root state and fillingqueue1 by states of the first level.

3. Sending jobs from queue1 to free processes, if there are no free processes, root waits until one process finishes its
job.

4. When thequeue1 is empty and all the processes are free, fill queue1 byqueue2 and start searching in the next level
(back to point 3)

5. If both queues are empty notify failure in search,

6. If answer is found, kill the process pool and notify the answer.

These were the main principles in our algorithm.

answer

unchecked node

checked node

. . .
. . .

. . .

. . .

Figure A2.1 Breadth-First Search

53

A2.2 Implementation

The package is implemented in NUT. Using rnut functions gives us facilities to use PVM as a message interface and
manager between NUT processes which run in a distributed way. In this section we discuss how we used these tools to
implement our process pool.

A2.2.1 Package Design

The user interface is NUT window itself. By changing two classes (UsrParSearch andWorkSpaces) one can define her
own BFS problem.

level k

level k+1

checked node
unchecked node

node with no child answer

Beam direction

Figure A2.2 Beam Search
(the first beam is searching in levelk,

the second beam produces nodes in the next levelk+1)

.

queue1 queue2

..job ..job ..job ..job..job ..job

ROOT

Process Pool

NUT NUTNUTNUT

NUT

(level k) (level k+1)

Figure A2.3 A Process Pool with Two Queues

54

Message passing and administration of the process pool are managed in other classes and the user don’t need to care
about them. But she can still choose (through scheme editor) which hosts should be connected to PVM and she can also
change the number of processes in process pool.

The program starts in themain NUT process, here we choose that thismain NUT should work as amonitor and spawn
the search root (see Figure A2.4). This is a good choice because the user can still interact with the package during the
root and process pool searching, furthermore if her problem does not fit the BFS search, she can kill the root and modify
her class without risking deadlocks or other crashing problem (see the workspace ofmonitor NUT).

% ### %

% PARALLEL SEARCH SOFTWARE %

% A Project in Knowledge-Based Software Technology %

% Royal Institute of Technology, Stockholm %

% Fall 1994 %

% ### %

% Start PVM by selecting ‘Compute ALL’under ‘Scheme’ after performing the following line:

ClSchemeOpen(‘PVM’);

% Create WorkSpaces for Root & Pool Processes(childs)!

ws := new WorkSpaces;

% Spawn Root:

root := rnut_spawn(1,2,nil,’project/POOL.mem’);

% Put & perform the WorkSpace for creating of the pool:

rnut_pputwsr(root,1,ws.root_make_pool);

% Wait for the pool to be created and then start the search:

rnut_pputwsr(root,1,ws.root_start_search);

% Wait until you get the object “answer”:

NutPrint(answer);

% Kill the root

rnut_kill(root,1);

%Modify UsrParSearch &/or WorkSpaces, remake and Save the package.

% ### %

Figure A2.4 Text in the workspace ofmonitor

A2.2.2 Design of Classes

In this part we present the classes of the package and their main functionality:

UsrParSearch:

After startingmonitor NUT and loading the package, the search problem should be formulated in classUsrParSearch
which contains following relations:

● ROOTSTATE: gives the root state,
● USRMODIFY: modifies the state of current nodes and produce children,
● USRGOOD: becomes true if the state is the search target.

We believe that these relations are general enough to specify a large number of BFS problems.

ParSearch:

This class has relations which call theUsrParSearch, it keeps information about path in the tree and a checklist to avoid
starting duplicate nodes in the search tree. These relations are used:

● MAKEROOT: gets all information about root,
● APPENDPATH: completes path in the tree of the actual node,
● ISGOOD: callsUSRGOOD to check if the answer is found,
● MODIFY: callsUSRMODIFY to modify the state of the actual node and produces children, checks also duplicated

child,
● CHILDSINFO: makes the needed information to start children as a job.

55

Pool:

This class is used by root process for making, administrating and terminating the process pool. It contains:

● MAKEPOOL: creates the process pool and sends their workspaces,

● STARTJOB: sends a job to a process pool,

● FREEPROCESS: note that a process is free,

● EXIT: terminate the process pool.

NodeInfo:

This class gives all the information a process needs to start proceeding a tree node.

List:

This class manages updating of path and check lists, it contains:

● CHECK: checks if a state is duplicate,

● APPEND: extend thepathlist andchecklist with the new state.

WorkSpaces:

Root & pool processes haven’t the same WorkSpaces as themonitor NUT. This class contains texts which replace the
WorkSpaces of root & pool processes. User can change the number of pool processes by simply changing the WorkSpace
of root. This class contains:

● root_make_pool: text;

● root_start_search: text;

● childs_work_space: text;

PVM

The configuration of hosts connected to PVM can be changed in this class, through modifying scheme editor. This class
has only one relation:

● STARTPVM: adds the hosts which are presented in the scheme editor.

A2.2.3 Node Communication

Communication between root and pool processes managed by combining non-blocking store and blocking fetch routines.
Each node suspends, waiting to fetch an object from itself, the other process can now store the object in the suspended
process and unblock it.

All the messages we discussed (no_more_child, answer,...), have been implemented by using this method.

The only object which is being sent between root andmonitor NUT, is the final answer. Because the answer is unique, it
is sent without blocking themonitor by storing in a non-blocking way (see Figure A2.5).

A2.3 Test Example

As a simple example we show aUsrParSearch which describes following problem:

● start with number 46 as the root state

● each node modifies by following three operations:

nystate = state * 2

nystate = state - 2

nystate = state + 2

● search after state = 176

56

TheUsrParSearch which describes this search problem can be formulated as follow:

super
ParSearch;

vir
outo : array of any;

rel
 ROOT_STATE : -> out

{ out := 46; };
USRGOOD : my_state -> out

 { if my_state == 176 -> out := true;
 || true -> out := false;

fi; };
USRMODIFY : my_state -> outo

{ outo[1] := 2*my_state;
outo[2] := my_state-2;
outo[3] := my_state+2; };

Figure A2.6 shows a typical situation on the screen while working with the package. Observe themonitor NUT and
scheme editor on the top of the figure, the root which has started in“bream” and, finally, see a process pool with three
processes running in three different hosts.

sstore

xfetch

ifetch

Pool Process
or

ROOT

Monitor

Pool Process
or

ROOT

Figure A2.5 Node Communication

57

A2.4 Texts of Classes

_WorkSpaces

var
root_make_pool, root_start_search, childs_work_space : text;

init
root_make_pool :=
‘failure := ‘’FAILURE !’’;
sig := nil;
ss := nil;
queue1 := [];
Length := new prog a -> n

{ n:=length(a);
for i to length(a) do

if a[i] == nil -> n := i-1; exit; fi;
od; };

app := new Append;
ws := new WorkSpaces;
pool := new Pool;
p := pool.MAKEPOOL(3, ws);
‘;
% -----------------------------------
root_start_search :=
‘searchpr := new UsrParSearch;
searchpr.MAKEROOT();

Figure A2.6 NUT Screan

58

a := searchpr.mycheck_list;
if (searchpr.ISGOOD()) ->

rnut_istore([rnut_parent()],1,’’answer’’,searchpr.mystate);
|| true ->

c := searchpr.MODIFY();
if(c == nil) ->

rnut_istore([rnut_parent()],1,’’answer’’,failure);
|| true ->

cinfo := searchpr.CHILDSINFO();
k := 1;
do (k <= length(cinfo)) ->

if(pool.n_free_process /= 0)->
pool.STARTJOB(cinfo[k]);

|| true ->
queue1 := app.APPEND(queue1,cinfo[k]);

fi;
k := k+1;

od;
fi;

fi;
answered_proc := 0;
next_level := 0;
this_level := length(cinfo);
L: do true ->

if((this_level == 0) & (next_level ==0)) ->
rnut_istore([rnut_parent()],1,’’answer’’,failure);
exit L;

fi;
sig <- rnut_xfetch(rnut_mytid(),’’ss’’);
if (sig[1] == ‘’more_childs’’) ->

cinfo := sig[2];
next_level := next_level + length(cinfo);
answered_proc := answered_proc + 1;
for i to length(cinfo) do

queue2 := app.APPEND(queue2,cinfo[i]);
od;
pool.FREEPROCESS(sig[3]);

|| (sig[1] == ‘’answer’’) ->
rnut_istore([rnut_parent()],1,’’answer’’,sig[2]);
answered_proc := answered_proc + 1;
answer := sig[2];
pool.FREEPROCESS(sig[3]);
exit L;

|| (sig[1] == ‘’no_more_child’’) ->
answered_proc := answered_proc + 1;
pool.FREEPROCESS(sig[3]);

fi;
if(answered_proc == this_level) ->

queue1 <- queue2;
queue2 := [];
this_level := next_level;
answered_proc := 0;
next_level := 0;

fi;
do ((pool.n_free_process /= 0) & (queue1[1] /= nil))->

pool.STARTJOB(queue1[Length(queue1)]);
queue1[Length(queue1)] := nil;

od;
od;
for i to (pool.n_process - pool.n_free_process) do

sig <- rnut_xfetch(rnut_mytid(),’’ss’’);
od;
pool.EXIT();
‘;
% -----------------------------------
childs_work_space :=’
ss := nil;
sig := nil;
me := rnut_mytid();
L : do true ->

searchpr := new UsrParSearch;
sig <- rnut_xfetch(me,’’ss’’);

59

if(sig[1] == ‘’start’’) ->
searchpr.myinfo := sig[2];
searchpr.APPENDPATH();
minfo := searchpr.myinfo;
if (searchpr.ISGOOD()) ->

rnut_sstore([rnut_parent()],1,’’ss’’,
[‘’answer’’,minfo.path_list,sig[3]]);

|| true -> c := searchpr.MODIFY();
if(c == nil) ->

rnut_sstore([rnut_parent()],1,’’ss’’,
[‘’no_more_child’’,minfo.path_list,sig[3]]);

|| (c[1] == nil) ->
rnut_sstore([rnut_parent()],1,’’ss’’,
[‘’no_more_child’’,minfo.path_list,sig[3]]);

|| true ->
cinfo := searchpr.CHILDSINFO();
rnut_sstore([rnut_parent()],1,’’ss’’,
[‘’more_childs’’,cinfo,sig[3]]);

fi;
fi;

|| (sig[1] == ‘’exit’’) -> rnut_kill(me,1);
fi;

od;
‘;

_PVM

% scheme begin
var

Host4: Host name=’bream’;
Host3: Host name=’manta’;
Host2: Host name=’bonito’;
Host1: Host name=’sole’;

% scheme end
rel

PVMSTART: -> out
{c := self();
for i := 1 to length(c) do

if (c_getclass(c[i]) == ‘Host’) ->
NutPrint(c[i]); host := c[i];
rnut_addhosts(1,[host.name]);

fi;
od; };

_Append

var
q, qq : array of any;

rel
APPEND: q, in -> qq

{ qq := [];
qq := q;
qq[Length(q)+1] := in; };

_Pool

var
process_pool, free_mask : array of num;
n_process, n_free_process : num;

rel
MAKEPOOL : n_process, ws -> process_pool, n_free_process, free_mask

{ process_pool := rnut_spawn(n_process,2,nil,’project/POOL.mem’);
rnut_pputwsr(process_pool,n_process,ws.childs_work_space);
n_free_process := n_process;
for i to length(process_pool) do

free_mask[i] := 1;
od; };

STARTJOB : job,n_free_process,free_mask,n_process,process_pool -> n_free_process,free_mask
{ for i to n_process do

60

if(free_mask[i] == 1) ->
free_mask[i] := 0;
sig := [‘start’,job,i];
rnut_sstore([process_pool[i]],1,’ss’,sig);
n_free_process := n_free_process - 1;
exit ;

fi;
od; };

FREEPROCESS: id,n_free_process,free_mask -> n_free_process,free_mask
{ n_free_process := n_free_process + 1;
free_mask[id] := 1; };

EXIT : process_pool -> { rnut_kill(process_pool,length(process_pool)); };

_List

var
mem : array of any;

vir
in : any;
out,arr : array of any;

rel
CHECK : arr, mem -> out

{ out :=[];
k := 1;
for i :=1 to length(arr) do

found := false;
for j := 1 to length(mem) do

if (mem[j] == arr[i]) & (found == false) -> found := true; fi;
od;
if found /= true ->

APPEND(arr[i]);
NutPrint(k);
out[k] := arr[i];
NutPrint(‘aho’);
k := k+1;

fi;
od; };

APPEND : in -> mem
{ if in /= nil -> mem[length(mem)+1] := in; fi; };

_Host

var
name : text;

_ParSearch

var
myinfo : NodeInfo;
good_childs : array of any;

vir
out : any;
childsinfo : array of NodeInfo;

alias
mypath = (myinfo.path_list);
mycheck_list = (myinfo.check_list);
mystate = (myinfo.my_state);

rel
MAKEROOT : -> myinfo

{ myinfo.my_state := ROOT_STATE();
mypath.APPEND(myinfo.my_state);
mycheck_list.APPEND(myinfo.my_state); };

APPENDPATH : -> myinfo { mypath.APPEND(myinfo.my_state); };
ISGOOD : mystate -> out

{ if USRGOOD(mystate) -> out := true;
|| true -> out := false;
fi; };

MODIFY : myinfo -> good_childs
{ childs_state := USRMODIFY(myinfo.my_state);

61

good_childs := mycheck_list.CHECK(childs_state); };
CHILDSINFO : myinfo, good_childs -> childsinfo

{ for i to length(good_childs) do
childsinfo[i] := myinfo;
c <- childsinfo[i];
c.my_state := good_childs[i];

od; };

_NodeInfo

var
my_state : any;
path_list : List;
check_list : List;

