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Abstract

Performance results of machines with fine-grain synchronization on individual lock-free data items (e.g.,
words), such as the MIT Alewife multiprocessor, illustrate the benefits of supporting fine-grain synchro-
nization. The performance benefits are primarily the result of allowing a dataflow style of computation
in programming models, and maximizing the exposed parallelism by minimizing the possibility of false
dependencies caused by coarse grained synchronization.

In this report we propose a new efficient way to support fine grained synchronization mechanisms on
multiprocessors. We propose to design a full/empty tagged memory hierarchy with aggressive hardware
support for fine grained synchronization that is embedded in the cache coherency mechanism of an SMP
or a NUMA multiprocessor, or a single-chip multiprocessor. We believe that handling synchronization
and coherence together can provide a more efficient execution, reducing the occupancy in the memory
controllers and the network bandwidth consumed by protocol messages.

The fine-grain synchronization mechanism can be implemented with a full/empty tagged shared mem-
ory where a full/empty bit is associated with each word. Such a memory is accessed by special memory
operations (loads, stores and swaps) that may depend on the full/empty state of the target location and can
alter the state. A synchronization fault (we call it a state miss) occurs when the required state of the loca-
tion is not met. Our objective is to improve the performance of the full/empty synchronization mechanism
such as implemented in the MIT Alewife machine, by integrating a cache coherency mechanism with the
full/empty synchronization.

To achieve this, we propose to handle synchronization faults in a similar way as cache misses in a
lockup-free cache. This allows implementation of non-faulting (non-trapping) full/empty memory opera-
tions. In our design, we assume that a full/empty memory operation suspends on a synchronization miss
(by analogy to a cache miss) waiting in the memory while the miss is resolved. An out-of-order processor
and a lockup-free miss-under-miss cache organization allow to tolerate most of the synchronization miss
latency. There are several design issues to be considered for a full/empty tagged memory, such as how to
hide the state miss latency and how to prevent saturation of the memory hierarchy with unresolved state
misses. We also propose to have architecture level support for fine grained synchronization by associating
a full/empty bit with each processor register. This may allow to achieve efficient thread synchronization
on the register rather than on the memory access level.
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1 Introduction

Parallel and distributed computing has emerged to be one of the promising developments that can extend
human capabilities in many fields of activities, such as numeric simulation and modeling of physical
phenomena and complex systems, and different forms of information processing on the Internet.

Performance of parallel and distributed platforms (including cluster of workstations) continues to im-
prove due to technological advances (i.e. improvement in logic density and clock frequency), due to effi-
cient architectural solutions that translate the potential of technology into performance and capability, and
due to efficient software abstractions for parallel applications. Computer architects and compiler writers
continuously try to exploit more of the parallelism available in programs at different granularity levels (i.e.
instructions, threads, and processes) in their quest for higher performance. Some of these techniques such
as control-flow speculation, memory-dependence and value speculation, and fine grained synchronization
support, are designed to maximize the available program parallelism.

Synchronization of parallel processes and threads is an important mechanism in parallel and concur-
rent programming. Synchronization insures correctness of parallel execution by enforcing true data de-
pendencies and timing constraints. In a parallel programming environment based on a shared-memory
programming model, synchronization is provided either as explicit user-level synchronization primitives
such as locks and barriers, or implicitly synchronized data structures such as lock-able L-structures [12, 9]
and write-once I-structures [5]. The performance benefits of supporting fine grained synchronization are
primarily the result of allowing a dataflow style of computation in programming models, and maximiz-
ing the exposed parallelism by minimizing the possibility of false dependencies caused by coarse grained
synchronization.

In this project we propose a new efficient way to support fine grained synchronization mechanisms on
multiprocessors. We propose to design a full/empty tagged memory hierarchy with aggressive hardware
support for fine grained synchronization that is embedded in the cache coherency mechanism of an SMP
or a NUMA multiprocessor, or a single-chip multiprocessor. We believe that handling synchronization
and coherence together can provide a more efficient execution, reducing the occupancy in the memory
controllers and the network bandwidth consumed by protocol messages.

2 Research Overview

A synchronization mechanism can be classified as (i) coarse-grain synchronization where a synchronizing
variable is associated with multiple shared locations and is used to control the order of accesses to these
locations, or (ii) fine-grain synchronization where a synchronizing variable is associated with a single
word or a block of memory. Thus, the granularity of synchronization is measured in the amount of data
that is communicated with the synchronization [12]. The synchronization overhead in a shared memory
multiprocessor includes the following measures: Cost of storage required for synchronization data (locks,
counters, full/empty bits), synchronization latency that is observed on execution of synchronization prim-
itives by one or multiple processes simultaneously, and amount of traffic in the interconnect or amount of
bus transactions in a bus-based multiprocessor caused by synchronization.

One of the advantages of coarse grain synchronization based on locks and barriers is ease of program-
ming, being the reason why such type of synchronization is widely used in shared-memory multiproces-
sors. A number of software and hardware implementations and optimizations were proposed for effi-
cient lock and barrier synchronization in shared memory multiprocessors [15], such as the followings: a
test-test-and-set spinlock, a spinlock with exponential back-off, software queuing locks and cache-based
queuing locks. As reported in [11], a cache-based queuing lock, called QOLB (Queue on Lock Bit), is
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shown be the most efficient coarse-grain synchronization mechanism among others evaluated in [11]. A
semantic weakness of lock synchronization as a basic synchronization mechanism for parallel processing
is that locking simultaneously provides both atomicity and exclusivity of shared memory accesses, while
some of the data protected by lock may not require exclusive rights to access them. Such shared data
are called lock-free. Thus, lock synchronization may expose false dependencies which cause degrada-
tion of parallelism. A pair of instructions load-linked and store-conditional (LL and SC) supports a split
load-modify-store transaction where SC returns a value that deduces whether the transaction initiated by
previous LL was performed atomically. These instructions can be found, for example, in instruction sets of
the MIPS R10000 processor [27]. A similar functionality is achieved with the atomic compare-and-swap
instruction introduced in the SPARC-V8 (V9) architecture [14] and used in combination with ordinary
load. Coarse grain synchronization, such as locking or barriers, can expose false dependencies that cause
degradation of parallelism. Other problems of lock synchronization are priority inversion and convoying
when a process holding a lock is interrupted for some reasons (descheduled or pre-emptied).

Fine-grain synchronization minimizes the possibility of false dependencies caused by coarse grained
synchronization, such as locks and barriers, and maximizes the exposed parallelism. Therefore, fine-grain
synchronization improves the efficiency of parallel execution. A fine-grain synchronization mechanism
can be implemented with a full/empty tagged shared memory (shortly FE-memory) where a full/empty
bit is associated with each word. Such a memory is accessed by special memory operations (loads, stores
and swaps) that may depend on the full/empty state of the target location and can alter the state. The
fine grained synchronization allows the dataflow style of computation. HEP [19], Tera [4, 7], and the
MITs Alewife machine [1] are examples of multiprocessors with full/empty bit synchronization. Perfor-
mance results of the MITs Alewife multiprocessor presented in [28] illustrate the advantage of the fine
grained synchronization on individual lock-free data items (e.g., words). The MITs Alewife machine is a
CC-NUMA multiprocessor with a full-empty tagged distributed shared memory and hardware-supported
block-multithreading. The MIT Alewifes processor Sparcle is an extension of an industry-standard SPARC
v7 processor that is modified to support full/empty synchronization and multithreading partly in hardware
and partly in software. Hardware support includes full/empty bits, special memory operations and a spe-
cial full/empty trap. The software support includes trap handler routines for fast context switching and
waiting for synchronization [13].

As illustrated in [28] for the Alewife machine, the fine-grain synchronization expressed with synchro-
nizing data structures (J-structures) and supported at low-level with the full/empty word-level synchro-
nization, outperforms the course-grain barrier synchronization. The experience reported in [28] shows
that the bulk of the performance advantage due to increased parallelism is caused by expressing and utiliz-
ing synchronization at a fine granularity. Barriers impose false dependencies and thus inhibit parallelism
because of unnecessary waiting. With fine-grain synchronization, unnecessary waiting is avoided because
a consumer waits only for the data it needs.

In the MITs Alewife machine the full/empty synchronization is implemented on top of cache coherency,
i.e. the synchronization protocol is a separate layer on top of the underlying cache coherence protocol.
However, we believe that combining the fine-grain synchronization and cache coherency together can
potentially produce more efficient execution. In Alewife, a synchronization failure that occurs when a
requested full/empty state of a target location is not met, is treated as an error to be handled in software
through a light-weight trap [2]. Handling synchronization faults in software has the advantage of flexibility
though it is expensive. Coarse-grained multithreading supported in hardware is used in Alewife for hiding
latency caused by synchronization failures.

A few other approaches to fine-grain synchronization exist in other research multiprocessors, such as
the M-machine with full/empty tagged registers [10] and a simultaneous multithreaded (SMT) processor
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with hardware-based blocking locks described in [21]. Both mechanisms are proposed for efficient fine-
grain synchronization of threads within a processor. However, these designs do not provide the fine-grain
synchronization across multiple processors.

Our intention is to improve the performance of a fine-grain synchronization mechanism such as the
full/empty synchronization in the shared memory implemented in the MIT Alewife machine and the
full/empty register-level synchronization within a processor proposed for the M-machine. We believe,
that both mechanisms (within a processor and across processors, in the shared memory) must be designed
and considered together in a consistent way. Our first target is hardware support for the full/empty syn-
chronization in the shared memory, i.e. across processors rather than within a processor. To achieve this
we intend to design and to evaluate a full/empty memory hierarchy where a cache coherency mechanism
is integrated with the full/empty synchronization. Combining synchronization and coherence together is
the major feature that differentiates our design from previous. In particular, we propose to handle syn-
chronization faults in a similar way as cache misses in a lockup-free cache. This allows implementation
of non-faulting (non-trapping) full/empty memory operations. In our design, we assume that a full/empty
memory operation suspends on a synchronization miss (by analogy to a cache miss) waiting in the memory
while the miss is resolved. An out-of-order processor and a lockup-free miss-under-miss cache organiza-
tion allow to tolerate most of the synchronization miss latency. We also propose not to send data in the
memory hierarchy on a cache miss if the requested state of a location is not met. We believe, that this
optimization of a coherence protocol allows to reduce the bandwidth demand on system interconnect sig-
nificantly.

In recent super-scalar RISC microprocessors, the parallel execution at the instruction level is both
control-driven (in-order fetch and in-order completion), and data-driven (out-of-order issue and out-of-
order execution). As the FE-synchronization facilitates a dataflow style of parallel execution in a shared
memory model, this type of synchronization, in our view, helps to reduce the gap between the data-flow
style of the instruction-level parallelism and the control-flow style of high-level programmer-oriented par-
allelism when synchronized with locks and barriers in a ”user-controlled” parallel programming environ-
ment. FE-synchronization can also be effectively exploited in parallel compilers.

3 EDA: Extended Dataflow Actor Model

This section contains some of the preliminary work done by the authors at the Royal Institute of Tech-
nology (KTH), Stockholm, Sweden. We briefly present a parallel computation model, Extended Dataflow
Actor (EDA), that has been developed at KTH during last few years [24, 16, 25, 26, 20, 3, 22, 17, 23].

The EDA model was mainly inspired from the data flow model Actors. Its origin is the Ph D work by
Handong Wu [24]. The goal of the development and implementation of the EDA model was to provide
a flexible, effective and relatively simple model of thread (process) communication and synchronization
via synchronizing shared memory. In EDA, a synchronizing shared memory is achieved by a binary
(full/empty) state associated with each shared memory location. The investigator has participated in defin-
ing the EDA language constructs enabling implicit synchronization, and implemented a mapping tool for
EDA programs [17].

The EDA model specifies special synchronization types for shared variables similar to data structures
with special accessors, such as I-structures [5] and M-structures [6], used in a programming environment
for the MIT Monsoon dataflow machine synchronization in data parallelism programmed for the MIT
Alewife shared-memory multiprocessor [1].

In EDA, shared variables are of three different synchronization types, I-data, X-data, and S-data, which
all impose different constraints in the way accesses may be performed. I-data are used for enforcing data
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dependency: a read operation on an empty variable will lead to suspension, and assignment is allowed
only once. A write operation on a full I-data variable will simply be discarded, thus supporting a kind of
OR-parallelism. X-data are used for mutual exclusion and synchronous communication: reads and writes
must be performed in a strictly alternating sequence. A thread attempting an access violating this order
will be delayed until another thread has changed the state of the accessed variable. S-data allow stream
communication. A writing thread (process) can assign successive values to an S-type variable; these will
be enqueued and available for subsequent read operations. Each read removes one value from the stream.
Threads accessing a stream need not be suspended, except in the case of reading from an empty stream.
Figure 1 depicts categories of fetch and store operations defined in EDA.

Figure 1: Categorization of EDA Operations

The EDA model was implemented on top of PVM as a parallel programming environment for multi-
threaded computation [3] and as an extension library for PVM that allows storing, reading and extract-
ing PVM messages from virtual shared cells [22, 23]. The mEDA model and its PVM implementation
(mEDA-2 library) was used in developing of a distributed object-oriented environment NUTS system of
collaborative NUT processes running on PVM, for exchanging classes, scripts and objects among NUT
processes.

The experience of implementating the EDA model and developing EDA based parallel programs and
its optimizations for performance, allowed us to understand the opportunities for efficient support of fine
grained synchronization mechanisms at the architecture, at the language semantics level, and at the com-
piler level. The main objective of our project is to materialize these experiences in order to provide efficient
fine grained synchronization support in future parallel computer systems.

4 Specifying a Full/Empty Tagged Memory

The main goal of this research is the design and evaluation of a full/empty tagged memory hierarchy with
hardware support for fine-grain synchronization embedded in a cache coherency mechanism of an SMP or
a NUMA multiprocessor, or a single-chip multiprocessor. Our objective is to develop an efficient way to
support fine-grained synchronization in multiprocessors.

Hardware-supported fine-grain synchronization has been shown to outperform coarse-grained synchro-
nization such as implemented with barriers [28]. Combining fine-grain synchronization and cache coher-
ence together is the major feature that differentiates our design from previous approaches.

The MIT Alewife multiprocessor supports fine-grain synchronization in hardware [1]. It provides
full/empty bits in memory and special synchronizing instructions with light-weight traps on synchroniza-
tion faults. However, the full/empty synchronization is implemented on top of cache coherency. This
causes unnecessary actions performed in the underlying layer of the coherence protocol in the case of a
synchronization failure detected by synchronization protocol. The synchronization failure is handled in
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software and may require to maintain a queue of threads waiting for synchronization. Handling synchro-
nization failures in software is flexible but very expensive, as a handling routine is on the critical path of
the memory operation.

We believe that integrating the fine-grain synchronization with cache coherency potentially produces
more efficient parallel execution. To achieve this, we propose, in particular, to handle synchronization
faults in a similar way as cache misses in a lockup-free cache. This allows implementation of non-faulting
(non-trapping) full/empty memory operations. In our design, we assume that a full/empty memory op-
eration suspends on a synchronization miss (by analogy to a cache miss) waiting in the memory while
the miss is resolved. In this way, a queue of waiting threads will be naturally maintained as a queue of
outstanding state misses, by analogy to cache misses. Note that most of hardware complexity required by
the lockup-free cache organization that allows multiple outstanding cache misses is already present in the
memory system of modern shared-memory multiprocessors. An out-of-order processor and a lockup-free
miss-under-miss cache organization allow to tolerate most of the synchronization miss latency.

There are several design issues to be considered for a full/empty tagged memory, such as how to hide
the state miss latency and how to prevent saturation of the memory hierarchy with unresolved state misses.
We intend to investigate how the full/empty shared memory can be combined with full/empty tagged
registers of a processor. This combination allow to achieve efficient communication and synchronization
of simultaneous threads on the registers rather than on the memory (cache) level.

This section describes how a full/empty memory hierarchy can be achieved. We start with the specifi-
cation of operations that can be performed on the full/empty tagged memory. Then we introduce memory
instructions which implement the specified operations and discuss how the instructions can be provided.

4.1 Full/Empty Memory Operations

Assume that in a shared memory each word has a full/empty bit (FE-bit) associated with it. We call such
memory full/empty tagged memory or shortly FE-memory. The FE-bit indicates a binary state (FE-state)
of the location: if the bit is set the location is full, otherwise the location is empty. The full state can be
also interpreted as bound, defined, containing a ”top” (meaningful) value from a flat domain. The empty
state can interpreted as unbounded, undefined, containing a ”bottom” (meaningless or ”empty”) value.
FE-memory access operations that may depend on the FE-state and can alter the state can be provided for
fine-grain data-flow-like synchronization performed at the FE-memory.

In general, the FE-memory can be decomposed into three logical parts: (i) a data memory, DM, that
holds data, (ii) a state memory, SM, that holds FE-bits, and (iii) a state miss memory, SMM that holds
pending access requests (state misses discussed later in this chapter). A state of a FE-memory location can
be represented by a triplet

���������
where

�
is a value stored in the DM,

�
is the value of the full/empty bit

associated with the location and stored in SM, and
�

is a list of postponed memory requests (state misses)
awaiting for the required state of the target location.

Figure 2 illustrates a possible logical organization of a full/empty memory and a full/empty cache in a
bus-based shared-memory multiprocessor (only one node is shown). We assume that state misses can be
treated in the same way as cache misses and the information that keeps track of outstanding misses (state
and cache) is stored in miss state holding registers. Note that full/empty bits can be stored together with
tags in the tag-directory of the FE-cache.

A FE-memory operation might access only data (e.g. read), or data and state (e.g. read-and-set-to-
empty), or only state (e.g. set-to-empty). We assume that a memory operation that accesses both, data and
state, is atomic. An operation is called altering if it sets a new state for the target location. Altering reads
and writes set a new FE-state to the location beyond the reading or writing of data. We assume that the
altering read sets the location to empty, and the altering write sets the location to full.
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Figure 2: Organization of a Full/Empty Memory and a Full/Empty Cache

FE-memory operations can be further categorized according to how the result of an operation depends
on the original full/empty state of the location (unconditional versus conditional), how a conditional oper-
ation behaves when the required state of the location is not met (non-waiting versus waiting), and how a
non-waiting conditional operation treats a state miss (non-faulting versus faulting). The categories of the
FE-memory operations are depicted in Figure 3.

Figure 3: Categorization of FE-Memory Operations

Conditional versus unconditional. A memory operation is conditional if its result depends on a state of
a target location. We assume that a conditional read returns a value of the location if and only if the location
is full. A conditional write updates the location if and only if the location is empty. A conditional set alters
a state if the previous state is opposite to the state to be set. A conditional altering operation accesses a
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location and sets a new state for the location if and only if the previous state of location corresponds to
the state required in the operation. For example, the conditional altering read returns a value of location
and sets its state to empty, if and only if the location is full. An unconditional operation always succeeds
regardless of the FE-state of the target location.

Waiting conditional versus non-waiting conditional. If the condition is not met for a conditional
operation, the operation should not be allowed to succeed. We call such situation state miss. We introduce
two types of conditional operations (non-waiting versus waiting) according to how operations behave on a
state miss. A non-waiting operation is allowed to succeed on a state hit, but it is dropped when a state miss
occurs. A waiting conditional operation is postponed in the memory until a state miss is resolved. This
requires that the memory keeps track of outstanding state misses (suspended operations) in a way that is
similar to keeping track of outstanding cache misses. An altering operation can cause a pending operation
to wake up. In general, wakeups should not be on the critical path of the altering operation that causes
them.

Faulting versus non-faulting. Non-waiting conditional operations can be further categorized according
to how a state miss is treated (faulting versus non-faulting). A faulting operation treats a state miss as an
exception (a synchronization fault) which has to be handled in software. The synchronization fault induces
a trap, and a trap handler may either retry the operation immediately (spin) or switch to another context. A
non-faulting conditional operation does not treat a state miss as an error and does not require the miss to be
resolved. Such operation is dropped on a state miss. We assume that each of the FE-operations (Fig. 3) has
a version with a side effect that returns an original value of the full/empty bit associated with the location
(to be used as a full/empty condition code in the processor.

4.2 Implementation Issues

This section describes some of the most important implementation issues to be considered for a full/empty
tagged memory, and their possible solution.

4.2.1 Storing FE-State

One FE-bit per 4 bytes of a memory word implies an overhead of only 3%. Efficient solution for storing
FE-bits was proposed and implemented in the MIT Alewife distributed memory multiprocessor [1]: a
vector of 4-full/empty-bits associated with four words in a memory block are stored in the coherence
directory entry at memory and as an extra field in the cache tag when the block is cached. This way, a tag
(directory) lookup includes tags match and inspection of full/empty bits. In data packets the full/empty
bits are transmitted with the address (in the bottom four bits).

4.2.2 FE-Memory Instructions

The FE-memory operations can be implemented by extending a RISC processor architecture with special
memory instructions, and by embedding the full/empty synchronization mechanism into the memory hier-
archy. We assume that the FE-memory hierarchy of a shared-memory multiprocessor includes a coherent
layer(s) of processor-private FE-caches between processors and the shared memory that can be either
centralized or distributed.

Typically an FE-memory load instruction loads a shared location to the specified register, a store instruc-
tion updates the location by a content of the specified register. An altering FE-memory instruction can set
a new state to the location. A version of a FE-memory instruction with a side effect sets a full/empty
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condition code to the original value of the full/empty bit of a target location at the time the instruction
starts execution.

For example, the MIT Alewife’s processor Sparcle is an extension of an industry-standard SPARC v7
processor, that provides colored integer load and store instructions for full/empty test-and-set operations
in a distributed shared memory of the Alewife multiprocessor [2]. In the Alewife, each 32-bit data word
of the shared memory is supplied with a full/empty bit. In our terminology (Fig. 3), Sparcle provides
unconditional and conditional faulting (non-waiting) loads and stores with the side effect described above.
In Sparcle, the integer synchronization instructions, loads and stores, are mapped to the SPARC alternate
address space instructions with ASI values in the range 0x80 to 0x87 (0x88 to 0x8F is used for uncached
synchronization loads and stores). In this way, opcode is actually extended with the ASI value. An extra
synchronous trap line is provided in the processor-cache interface for a fine-grain synchronization trap that
is induced on a synchronization fault (state miss). The trap line aborts conditional load/store operations
and invokes a fault handler that decides what action to take. It can immediately retry the failed operation
(spin), or switch to another context and retry the operation later when the given context is active again. For
some program-level self-synchronized data structures, such J-structures and L-structures [12], the handler
can maintain a centralized queue of threads waiting for a structure element to be filled or to be emptied.
Handling a state miss in software, as it is implemented in Sparcle, has the advantage of flexibility though
it is expensive. Coarse-grained multithreading supported in hardware is used in Alewife for hiding latency
caused by synchronization failures.

We propose to extend the set of FE-memory instructions defined for Sparcle with non-faulting and
waiting instructions (see Fig. 3). Non-faulting conditional instructions can be useful for OR-parallelism
where, for example, an attempt to write a full write-once variable is not treated as an error and can be
ignored. Waiting conditional instructions are provided as a hardware support.

We can distinguish blocking and non-blocking waiting instructions by analogy to conventional blocking
and non-blocking loads. If a state miss occurs on a waiting operation, the miss stays in the FE-memory
until it is resolved. A waiting instruction might cause the processor to stall whenever a state miss has
occurred. In this case, the instruction is blocking. Non-blocking waiting loads and stores can be provided
that allow an out-of-order processor to continue executing instructions while a state miss is outstanding in
the FE-memory system. By analogy to conventional non-blocking loads and stores that prevent stalls on
data-cache misses, the non-blocking conditional operations in the FE-memory, can prevent stalls on state
misses. This requires a lockup-free FE-cache organization that allows either one (hit-under-state-miss) or
multiple (miss-under-miss) outstanding state misses.

4.2.3 Resolving State Misses

A multiprocessor memory hierarchy allows multiple memory requests (cache misses) to be outstanding in
the memory system. For achieving waiting FE-memory operations, we propose to keep truck of outstand-
ing state misses in a way similar to keeping truck of outstanding cache misses.

A cache controller already provides some support for holding information about outstanding memory
references (cache misses) such as a request table, write buffers, miss information holding registers [8].
A cache controller and a memory controller must also provide buffering for incoming external requests
(reads, updates, invalidations, etc.).

A blocking cache and a lockup-free ”hit-under-miss” cache allow only one outstanding cache miss from
the processor at a time, while a ”miss-under-miss” lockup-free cache allows multiple outstanding cache
misses from the processor at a time.

In a uniprocessor or in a multiprocessor with point-to-point communication, the processor-private cache
keeps truck of only its own outstanding references (cache misses). In a multiprocessor with a split trans-
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action bus that provides broadcast ability, a cache controller needs to keep truck of every outstanding miss
(request) posted on the bus in order to avoid conflicts and collisions of memory requests.

We propose to treat a state miss as a special case of a cache miss. This should allow maintaining queues
of waiters as queues of outstanding cache misses. Design issues to be considers are conflicting misses,
merging of misses, bypassing, etc. Ordering of misses from the same processor should be guaranteed
automatically. We do not have to provide fairness among multiple processors. In a cache coherence
protocol with a full/empty synchronization, we do not need to send data on a read-(read exclusive)-from-
full request if the remote location is empty. We believe that the problem with ”allocate on miss” is solvable
in this case. This optimization allows to reduce the bandwidth demand on a multiprocessor interconnect (a
bus or a network). Finally, we should come up with a cache coherency mechanism that includes full/empty
synchronization. Note that, in general, two logical parts of the FE-memory (see Fig. 2), the data memory
and the state memory, may use different coherency protocols, for example, a write-invalidate protocol for
the data part and a write-update protocol for the state part. With such approach, a coherence mechanism
sees two logical caches: one for data and another for the full/empty bits. We intend to evaluate different
combinations of different coherency protocols for the FE-state memory.

There are many more design questions to be considered in this project:

1. How should a memory-CPU interface be constructed? What does a processor when a waiting in-
struction suspends in the memory? One possible solution is to continue with out-of-order execution
while it is possible.

2. What to do when the processor finally stalls on instruction(s) that depend on waiting instructions
postponed in the memory?

3. What to do when a cache (memory) is saturated with state misses?

4.3 Proposed Evaluation

In order to validate and evaluate the proposed design options, we intend to use a detailed execution-driven
simulator such as RSIM [18], (see also http://www.ece.rice.edu/ rsim/). We plan to build a simulation
model of a shared memory multiprocessor (for both, SMP or NUMA) with a full/empty memory hierar-
chy that provides a cache coherency mechanism with embedded fine-grain synchronization. We intend to
consider and evaluate the use of different coherency protocols in combination with full/empty synchro-
nization, as well as the use of different coherency protocols for two logical parts of the FE-memory, i.e.
the data part and the state part. The functionality of the memory can be verified and evaluated by using
parameterized microbenchmark codes.

The performance of the full/empty memory operations can be also evaluated and examined for mi-
crobenchmark codes. Workload-driven evaluation of a cache coherency mechanism combined with
full/empty synchronization must be done for parallel applications developed (or modified) with use of
fine-grain synchronization such as miccg3d described in [28].

We intend to use the MIT Alewife machine as a base implementation in our experiments. As the Alewife
machine provides special full/empty memory instructions (though a subset of those we introduced and pro-
posed earlier), the binary code obtained on Alewife can be instrumented in order to execute the code on
our simulator. Assume, for example, that an application is developed for Alewife with self-synchronized
data structures such as J-structures and L-structures, that are accessed with a trapping conditional instruc-
tions, such as ”write-and-set-to-full-if-empty-else-trap”. A trap handler that is invoked on a state miss
caused by the write to a full J-structure location, maintains (in software) a centralized queue of threads
(processes) waiting for synchronization. We could replace the trapping faulting instruction of Alewife
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with our non-faulting waiting instruction that suspends in the memory on a state miss to be handled in
hardware.
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