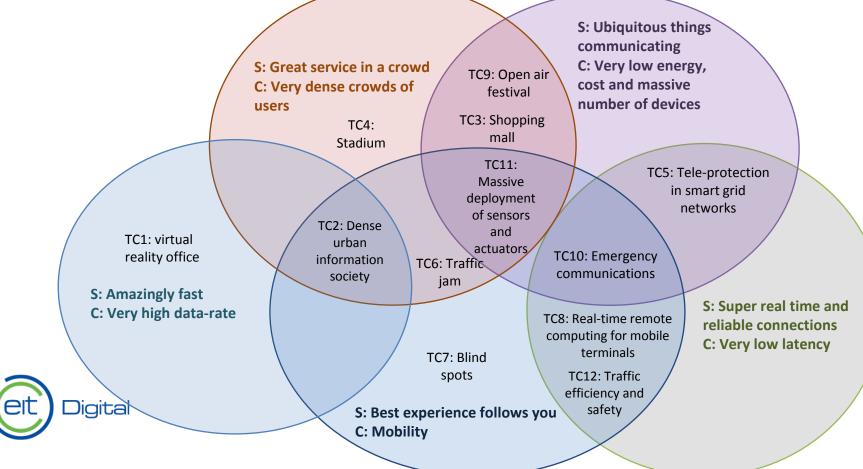


Minimum Cost Deployment of Radio and Transport Resources in Centralized Radio Architectures

F. Tonini¹, M. Fiorani², M. Furdek², L. Wosinska², C. Raffaelli¹, <u>P. Monti²</u> ¹University of Bologna, Italy ²KTH Royal Institute of Technology, Sweden

International Conference on Computing, Networking and Communications (ICNC) Kauai, Hawaii, USA, Feb. 15-18, 2016

Outline


- Capacity to indoor users in a 5G scenario
- Centralized Radio Architectures (CRA)
- Deployment strategies for CRA
- Results
- Conclusions

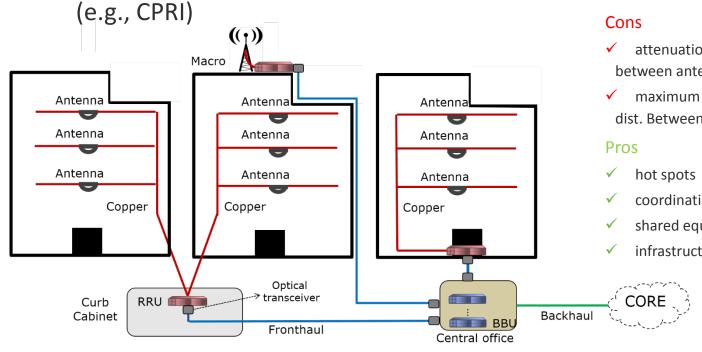
Acknowledgments: European Institute of Technology (EIT) Digital project EXAM ("Energy efficient Xhaul and M2M")

5G wireless paradigm

- EU FP7 METIS 2020 project¹ defined 5G in terms of scenarios (S)
- Each scenario introduces a challenge (C) and multiple test cases (TC)

¹METIS deliverable D1.1, "Scenarios, requirements and KPIs for 5G mobile and wireless system", April, 2013.

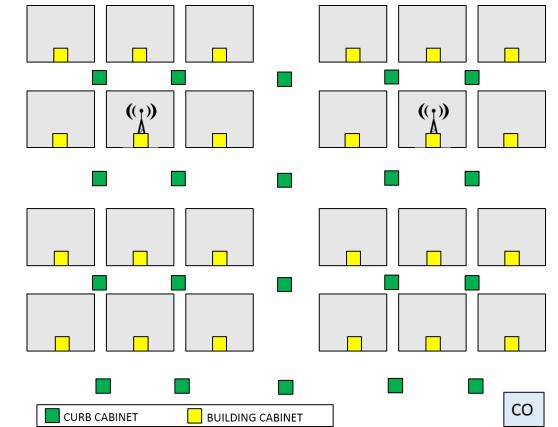
Broadband capacity to indoor users


- Data traffic is expected to reach 24.3 Exabytes/month by 2019 with 70% of this traffic originating from indoor users
- Alternatives:
 - macro densification:
 - ✓ wall attenuation and high costs
 - heterogeneous networks: layer of (pico) cells in addition to MBS
 - no coordination and high interference
- Centralized Radio Architectures (CRA)¹
 - some of the BS physical layer radio functionalities decoupled from the BS site and aggregated in selected locations
 - benefits indoor radio (hot spots)
 - provide coordination (reduced interference)

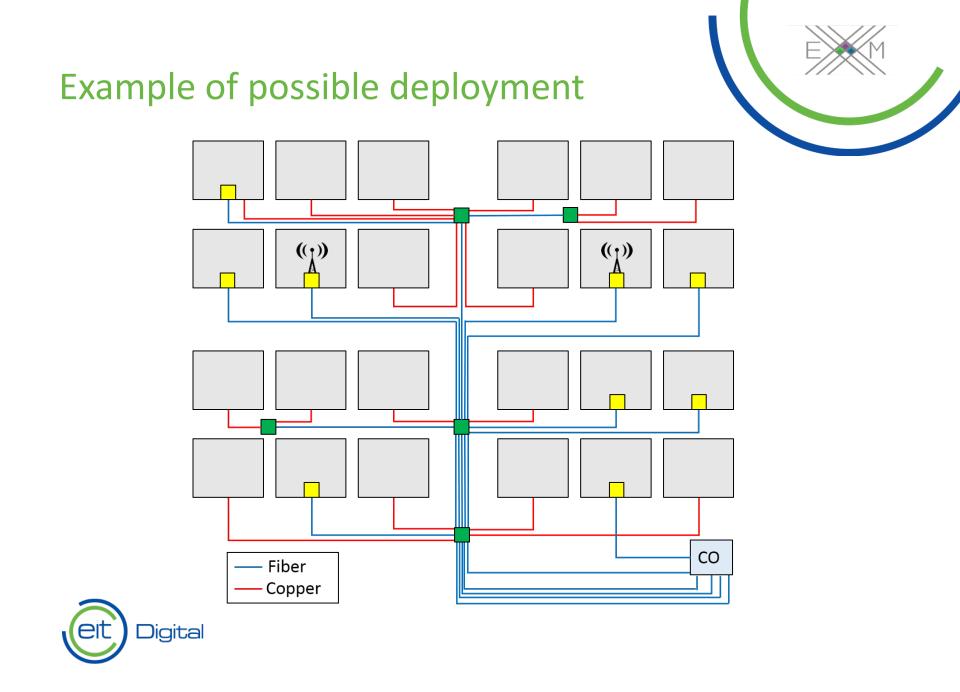
¹Connecting the dots: small cells shape up for high performance indoor radio", Ericsson Review, December 2014.

Centralized Radio Architecture (CRA)

- Three main blocks:
 - antenna: compact, cover large area (100s m²)
 - remote radio unit (RRU): digital signal proc. radio signal, connected to up to k antenna via Cat 5/6/7 copper cables
 - baseband unit (BBU): digital baseband processing (interf mng, cell coord)
- The fronthaul data are transmitted using either A-RoF or D-RoF technology



- attenuation over copper limits max dist. between antenna and RRU
- maximum latency in fronthaul links limit dist. Between RRU-BBU
- coordination
- shared equipment
- infrastructure reuse


Problem description

- Green field scenario
- Given
 - ✓ building/duct layout
 - ✓ antenna # and loc.
 - ✓ possible RRU location
 - ✓ possible CO location
- RRU placement s.t.
 - min network equipment
 - min location to activate (min power supply and cooling)

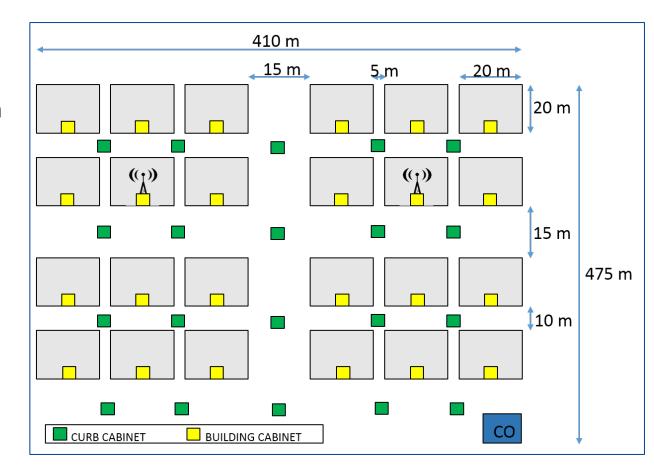
Problem formulation

• The minimum cost deployment of a CRA can be formally modelled via an ILP formulation with the following:

$$\checkmark$$
 objective function: $Minimize \ \alpha \cdot \sum_{i \in R} r_i + \beta \cdot \sum_{i \in R} z_i$

✓ constraints:

$$\sum_{i \in R} C_{ij} m_{ij} = 1, \forall j \in A$$


$$k \cdot r_i \geq \sum_{j \in A} C_{ij} m_{ij}, \forall i \in R$$

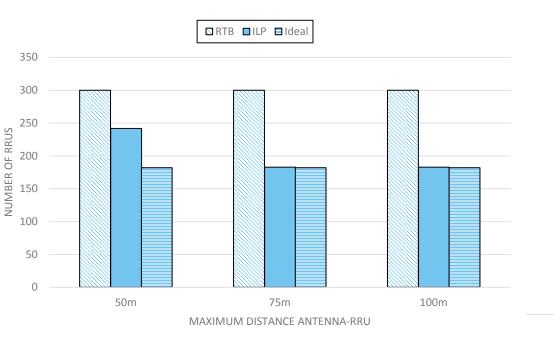
 $M \cdot z_i \geq r_i, \forall i \in R$

Case study

- E
- Manhattan street model, with building arranged in blocks
- 25 blocks organized in a 5 × 5 matrix, single block 6 buildings in a 6 × 2 matrix
- Total size 410x475 [m]
- Buildings 20x20 [m]
- Number of floors in each building = U{1,12}
- 1 antenna for each floor
- Cat 6 copper cable for antenna-RRU link
- Dedicated multimodal fiber for RRU-BBU link
- 2 Macro base stations
- *k*=8
- BBU unit 6 ports

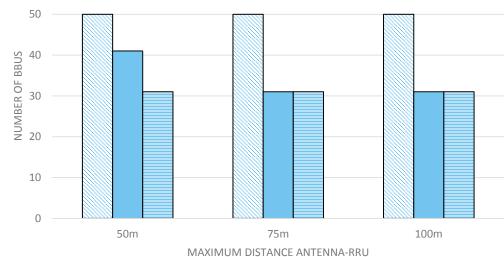
Benchmarking strategies

• Radio-over-fiber To the Building (RTB):

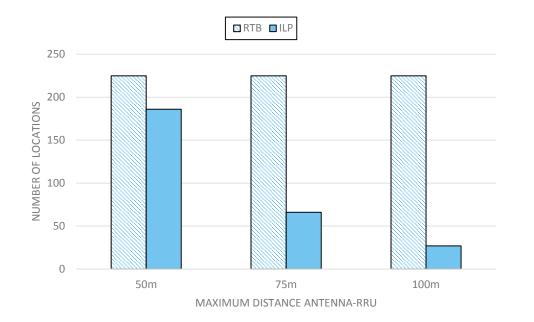

✓ RRUs only inside buildings: no RRU sharing

✓ Fiber need to reach every building

• **Ideal**: theoretical minimum number of RRUs and BBUs required to cover the area (i.e., without any limitation on the length of the copper links)

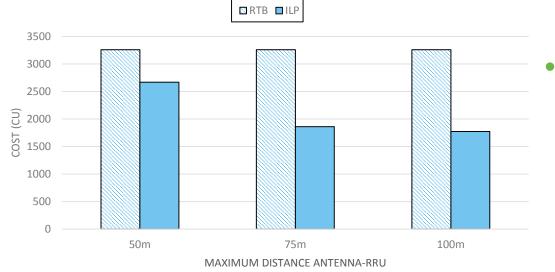

Amount of radio equipment

- Number of RRUs and BBUs required to cover the area very close to Ideal approach
- Almost 50% less than RTB


⊠RTB ∎ILP ∎Ideal

Number of active location and fiber length

2


Digital

- Significant reduction in # of active location
- Less (fiber) cables to be deployed

Algorithm	Copper cable (km)	Fiber cable (km)
ILP 50m	45.1	106.4
ILP 75m	82.0	79.9
ILP 100m	102.3	80.3
RTB	34.9	132.0

Infrastructure cost

Cost reduction of almost 50%

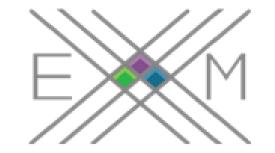
Component	Normalized cost (CU)
SFP+	1
RRU	3.75
BBU	15
Cabinet	2.75
Copper cable (Cat. 6) (km)	1
Fiber cable (MMF) (km)	1

Conclusions

 Proposed a deployment strategy for mobile networks based on the CRA concept where the objective is cost minimization

• Provided an ILP formulation aimed at minimizing both the number of RRUs and the number of active sites in which RRUs are placed in a residential area

- The strategy is capable of significantly reducing the total network cost w.r.t. conventional deployment approach based on RoF to the building (RTB approach)
- Need to develop a heuristic algorithm able to scale to larger deployment scenarios


References

- M. Fiorani, S. Tombaz, F. Farias, L. Wosinska, P. Monti, "Joint Design of Radio and Transport for Green Residential Access Networks." IEEE Journal on Selected Areas in Communications (JSAC), special Issue on Energy-Efficient Techniques for 5G Wireless Communication Systems, to appear, 2016
- P. Öhlén, B. Skubic, A. Rostami, Z. Ghebretensaé, J. Mårtensson, K. Wang, M. Fiorani, P. Monti, L. Wosinska, "Data Plane and Control Architectures for 5G Transport Networks," IEEE/OSA Journal of Lightwave Technology, to appear, 2016
- M. Fiorani, B. Skubic, J. Mårtensson, L. Valcarenghi, P. Castoldi, L. Wosinska, P. Monti, "On the Design of 5G Transport Networks," Springer Photonic Network Communications (PNET) Journal, Vol. 30, No. 3, pp. 403-415, December, 2015
- 1Connecting the dots: small cells shape up for high performance indoor radio", Ericsson Review, December 2014.
- METIS deliverable D1.1, "Scenarios, requirements and KPIs for 5G mobile and wireless system", April, 2013

Minimum Cost Deployment of Radio and Transport Resources in Centralized Radio Architectures

Paolo Monti: pmonti@kth.se