Research/Journal publications

[1] Y. Li, X. Yang, Q. Fu, R. Rojas, M. Yan, and L. Berglund. Towards centimeter thick transparent wood through interface manipulation. J. Mater. Chem. A, 6:1094-1101, 2018. [ bib | DOI ]
[2] Y. Li, Q. Fu, R. Rojas, M. Yan, M. Lawoko, and L. Berglund. Lignin-retaining transparent wood. ChemSusChem, 10(17):3445-3451, July 2017. [ bib | DOI ]
[3] J. Dai, F. Ding, S. I. Bozhevolnyi, and M. Yan. Ultrabroadband super-planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials. Phys. Rev. B, 95:245405, June 2017. [ bib | DOI ]
[4] J. Dai, S. A. Dyakov, S. I. Bozhevolnyi, and M. Yan. Near-field radiative heat transfer between metasurfaces: A full-wave study based on two-dimensional grooved metal plates. Phys. Rev. B, 94:125431, September 2016. [ bib | DOI ]
[5] X. Sun, X. Chen, M. Yan, M. Qiu, L. Thylén, and L. Wosinski. All-optical switching using a hybrid plasmonic donut resonator with photothermal absorber. IEEE Photonics Technology Letters, 28(15):1609-1612, August 2016. [ bib | DOI ]
[6] G. S. Lobov, Y. Zhao, A. Marinins, M. Yan, J. Li, A. Sugunan, L. Thylén, L. Wosinski, M. Östling, M. S. Toprak, and S. Popov. Dynamic manipulation of optical anisotropy of suspended poly-3-hexylthiophene nanofibers. Advanced Optical Materials, 4(10):1651-1656, July 2016. [ bib | DOI ]
[7] G. S. Lobov, Y. Zhao, A. Marinins, M. Yan, J. Li, A. Sugunan, L. Thylén, L. Wosinski, M. Östling, M. S. Toprak, and S. Popov. Size impact of ordered P3HT nanofibers on optical anisotropy. Macromol. Chem. Phys., 217:1089-1095, May 2016. [ bib | DOI ]
[8] J. Dai, S. A. Dyakov, and M. Yan. Radiative heat transfer between two dielectric-filled metal gratings. Phys. Rev. B, 93:155403, April 2016. [ bib | DOI ]
[9] H. Gong, X. Chen, Y. Qu, Q. Li, M. Yan, and M. Qiu. Photothermal switching based on silicon mach-zehnder interferometer integrated with light absorber. IEEE Photonics Journal, 8(2):1-10, April 2016. [ bib | DOI ]
[10] Y. Li, Q. Fu, S. Yu, M. Yan, and L. Berglund. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biamacromolecules, 17(4):1358-1364, March 2016. [ bib | DOI ]
[11] G. S. Lobov, Y. Zhao, A. Marinins, M. Yan, J. Li, M. Toprak, A. Sugunan, L. Thylén, L. Wosinski, M. Östling, and S. Popov. Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution. Opt. Mater. Express, 5(11):2642-2647, November 2015. [ bib | DOI ]
[12] J. Dai, S. A. Dyakov, and M. Yan. Enhanced near-field radiative heat transfer between corrugated metal plates: Role of spoof surface plasmon polaritons. Phys. Rev. B, 92:035419, July 2015. [ bib | DOI ]
[13] S. Dyakov, J. Dai, M. Yan, and M. Qiu. Near field thermal memory based on radiative phase bistability of VO2. J. Phys. D: Appl. Phys., 48:305104, July 2015. [ bib | DOI ]
[14] R. Soltanmoradi, Q. Wang, M. Qiu, S. Popov, and M. Yan. Near-infrared light absorption and scattering based on a mono-layer of gold nanoparticles. J. Eur. Opt. Soc.-Rapid Publ., 10:15031, June 2015. [ bib | DOI ]
[15] S. A. Dyakov, J. Dai, M. Yan, and M. Qiu. Thermal self-oscillations in radiative heat exchange. Appl. Phys. Lett., 106:064103, February 2015. [ bib | DOI ]
[16] Y. Chen, J. Dai, M. Yan, and M. Qiu. Metal-insulator-metal plasmonic absorbers: influence of lattice. Optics Express, 22(25):30807-30814, December 2014. [ bib | DOI ]
[17] X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Optics Express, 22:25233-25241, October 2014. [ bib | DOI ]
[18] H. Gong, Y. Yang, X. Chen, D. Zhao, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu. Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser. Scientific Reports, 4:6080, August 2014. [ bib | DOI ]
[19] S. A. Dyakov, J. Dai, M. Yan, and M. Qiu. Thermal radiation dynamics in two parallel plates: The role of near field. Phys. Rev. B, 90:045414, July 2014. [ bib | DOI | http ]
[20] Y. Shi, X. Chen, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu. All-optical switching of silicon disk resonator based on photothermal effect in metal-insulator-metal absorber. Opt. Lett., 39(15):4431-4434, July 2014. [ bib | DOI | http ]
[21] D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu. Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina. Appl. Phys. Lett., 104:221107, June 2014. [ bib | DOI ]
[22] X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu. Photothermal switching of SOI waveguide-based mach-zehnder interferometer with integrated plasmonic nanoheater. Plasmonics, 9(5):1197-1205, May 2014. [ bib | DOI | http ]
[23] F. Lou, M. Yan, L. Thylén, M. Qiu, and L. Wosinski. Whispering gallery mode nanodisk resonator based on layered metal-dielectric waveguide. Opt. Express, 22(7):8490-8502, April 2014. [ bib | DOI | http ]
[24] R. Soltanmoradi, S. A. Dyakov, Q. Wang, M. Qiu, and M. Yan. Multi-resonator structure based on continuous silver thin films for transparent conductors. Applied Physics Letters, 105(6):061110, 2014. [ bib | DOI | http ]
[25] M. Yan, J. Dai, and M. Qiu. Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J. Opt., 16(2):025002, 2014. ("Paper of the week"; "Featured article on web"; "Highlights of 2014"). [ bib | DOI | http ]
[26] X. Chen, Y. Chen, J. Dai, M. Yan, D. Zhao, Q. Li, and M. Qiu. Ordered au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale, 6:1756-1762, 2014. [ bib | DOI | http ]
[27] Y. Chen, J. Dai, M. Yan, and M. Qiu. Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance. Opt. Express, 21(18):20873-20879, August 2013. [ bib | DOI | http ]
[28] J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, and M. Yan. Light absorber based on nano-spheres on a substrate reflector. Opt. Express, 21(6):6697-6706, March 2013. [ bib | DOI | http ]
[29] M. Yan. Metal-insulator-metal light absorber: a continuous structure. J. Opt., 15(2):025006, February 2013. [ bib | DOI | http ]
[30] Y. Chen, J. Wang, X. Chen, M. Yan, and M. Qiu. Plasmonic analog of microstrip transmission line and effect of thermal annealing on its propagation loss. Opt. Express, 21(2):1639-1644, January 2013. [ bib | DOI | http ]
[31] X. Chen, Y. Chen, M. Yan, and M. Qiu. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano, 6(3):2550-2557, February 2012. [ bib | DOI | http ]
[32] J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt. Express, 19(15):14726-14734, July 2011. [ bib | DOI ]
[33] Q. Li, S. Wang, Y. Chen, M. Yan, L. Tong, and M. Qiu. Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength. Selected Topics in Quantum Electronics, IEEE Journal of, 17(4):1107-1111, July 2011. [ bib | DOI ]
[34] W. Yan, M. Yan, and M. Qiu. Manipulation of light with α transformation media. J. Opt. Soc. Am. A, 28:1058-1066, May 2011. [ bib | DOI ]
[35] Y. Song, J. Wang, M. Yan, and M. Qiu. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. J. Opt., 13:075001, April 2011. [ bib | DOI ]
[36] J. Wang, Y. Chen, J. Hao, M. Yan, and M. Qiu. Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared. J. Appl. Phys., 109:074510, April 2011. [ bib | DOI ]
[37] M. Yan, L. Thylén, and M. Qiu. Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering. Opt. Express, 19(4):3818-3824, February 2011. [ bib | DOI ]
[38] W. Yan, M. Yan, and M. Qiu. Generalized nihility media from transformation optics. J. Opt., 13:024005, February 2011. [ bib | DOI ]
[39] Y. Song, M. Yan, Q. Yang, L. min Tong, and M. Qiu. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Opt. Comm., 284(1):480-484, January 2011. [ bib | DOI ]
[40] Y. Song, J. Wang, M. Yan, and M. Qiu. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. Journal of Optics, 13(7):075002, 2011. [ bib | DOI | http ]
[41] Z. F. Öztürk, S. Xiao, M. Yan, M. Wubs, A.-P. Jauho, and N. A. Mortensen. Field enhancement at metallic interfaces due to quantum confinement. Journal of Nanophotonics, 5:051602, 2011. [ bib | DOI | http ]
[42] T. Ako, M. Yan, and M. Qiu. Design of invisibility cloaks with an open tunnel. Opt. Express, 18:27060-27066, December 2010. [ bib | DOI ]
[43] H. Liu, M. Yan, M. Qiu, D. Liu, X. Yu, , and Y. Zhang. Theoretical investigation on guiding IR light in hollow-core metallic fiber with corrugated inner surface. Opt. Express, 18:21959-21964, October 2010. [ bib | DOI ]
[44] Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Opt. Express, 18:13173-13179, June 2010. [ bib | DOI ]
[45] Q. Li, T. Wang, Y. Su, M. Yan, , and M. Qiu. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express, 18:8367-8382, April 2010. [ bib | DOI ]
[46] J. Wang, M. Yan, and M. Qiu. Photonic crystal surface mode microcavities. Frontiers of Physics in China, 5(3):260-265, March 2010. [ bib | DOI ]
[47] N. A. Mortensen, M. Yan, O. Sigmund, and O. Breinbjerg. On the unambiguous determination of effective optical properties of periodic metamaterials: a one-dimensional case study. J. Europ. Opt. Soc. Rap. Public., 5:10010, February 2010. [ bib | DOI ]
[48] X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. Journal of Optics, 12(1):015005, January 2010. [ bib | DOI ]
[49] W. Yan, M. Yan, and M. Qiu. Generalized compensated bilayer structure from transformation optics perspective. J. Opt. Soc. Am. B, 26:B39-B49, September 2009. [ bib | DOI ]
[50] M. Yan and N. A. Mortensen. Hollow-core infrared fiber incorporating metal-wire metamaterial. Opt. Express, 17(17):14851-14864, August 2009. [ bib | DOI ]
[51] X. Yu, M. Yan, G. Ren, W. Tong, X. Cheng, J. Zhou, P. P. Shum, and N. Q. Ngo. Nanostructure core fiber with enhanced performances: Design, fabrication and devices. J. Lightwave Technol., 27(11):1548-1555, June 2009. [ bib | DOI ]
[52] M. Yan, N. A. Mortensen, and M. Qiu. Engineering modes in optical fibers with metamaterial. Frontiers of Optoelectronics in China, 2(2):153-158, March 2009. [ bib | DOI ]
[53] W. Yan, M. Yan, and M. Qiu. Achieving perfect imaging beyond passive and active obstacles by a transformed bilayer lens. Phys. Rev. B, 79(16):161101, 2009. [ bib | DOI | http ]
[54] J. Tian, M. Yan, M. Qiu, C. G. Ribbing, Y.-Z. Liu, D.-Z. Zhang, and Z.-Y. Li. Direct characterization of focusing light by negative refraction in a photonic crystal flat lens. Applied Physics Letters, 93(19):191114, November 2008. [ bib | DOI | http ]
[55] M. Yan, W. Yan, and M. Qiu. Cylindrical superlens by a coordinate transformation. Phys. Rev. B, 78(12):125113, September 2008. [ bib | DOI | http ]
[56] L. Zhang, M. Yan, and M. Qiu. The effect of transformation order on the invisibility performance of a practical cylindrical cloak. J. Opt. A: Pure Appl. Opt., 10:095001, August 2008. [ bib | http ]
[57] W. Yan, M. Yan, and M. Qiu. Non-magnetic simplified cylindrical cloak with suppressed zeroth order scattering. Appl. Phys. Lett., 93:021909, July 2008. [ bib | http ]
[58] M. Yan, L. Thylén, M. Qiu, and D. Parekh. Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton. Opt. Express, 16(10):7499-7507, May 2008. [ bib | http ]
[59] W. Yan, M. Yan, Z. Ruan, and M. Qiu. Coordinate transformation makes perfect invisibility cloak with arbitrary shape. New J. Phys., 10:043040, April 2008. [ bib | http ]
[60] W. Yan, M. Yan, Z. Ruan, and M. Qiu. Influence of geometrical perturbation at inner boundaries of invisibility cloaks. J. Opt. Soc. Am. A, 25(4):968-973, April 2008. [ bib | http ]
[61] X. Yu, P. Shum, M. Yan, and G. Ren. Silica based birefringent large mode area fiber with a nanostructure core. IEEE Photon. Technol. Lett., 20(4):246-248, February 2008. [ bib | http ]
[62] M. Yan, Z. Ruan, and M. Qiu. Cylindrical invisibility cloak with simplified parameters is inherently visible. Phys. Rev. Lett., 99:233901, December 2007. [ bib | http ]
[63] M. Yan and M. Qiu. Compact optical waveguides based on hybrid index and surface-plasmon-polariton guidance mechanisms. Active and Passive Electronic Components, 2007:52461, December 2007. [ bib | http ]
[64] M. Yan, Z. Ruan, and M. Qiu. Scattering characteristics of simplified cylindrical invisibility cloaks. Opt. Express, 15(26):17772-17782, December 2007. [ bib | http ]
[65] M. Yan and M. Qiu. Analysis of surface plasmon polariton using anisotropic finite elements. IEEE Photon. Technol. Lett., 19(22):1804-1806, November 2007. [ bib | http ]
[66] Z. Ruan, M. Yan, C. W. Neff, and M. Qiu. Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys. Rev. Lett., 99:113903, September 2007. [ bib | http ]
[67] M. Yan and M. Qiu. Guided plasmon polariton at 2D metal corners. J. Opt. Soc. Am. B, 24(9):2333-2342, August 2007. [ bib | http ]
[68] H. Dong, P. Shum, M. Yan, J. Zhou, G. Ning, Y. Gong, and C. Wu. Measurement of mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain. Opt. Comm., 274(1):116-113, June 2007. [ bib ]
[69] H. Dong, P. Shum, Y. Gong, M. Yan, J. Zhou, and C. Wu. Measurement of polarization mode dispersion vectors in optical fibers using a virtual mueller matrix method. Optical Engineering, 46(3):035007, March 2007. [ bib ]
[70] H. Dong, P. Shum, Y. Gong, M. Yan, J. Zhou, and C. Wu. Virtual generalized mueller matrix method for measurement of complex polarization-mode dispersion vector in optical fibers. IEEE Photon. Technol. Lett., 19(1):27-29, January 2007. [ bib | http ]
[71] G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo. Design of all-solid bandgap fiber with improved confinement and bend losses. IEEE Photon. Technol. Lett., 18(24):2560-2562, December 2006. [ bib | http ]
[72] L. Xia, P. Shum, M. Yan, Y. Wang, and T. H. Cheng. Tunable and switchable fiber ring laser among four wavelengths with ultranarrow wavelength spacing using a quadruple-transmission-band fiber bragg grating filter. IEEE Photon. Technol. Lett., 18(17-20):2038-2040, October 2006. [ bib | http ]
[73] M. Yan and P. Shum. Guidance varieties in photonic crystal fibers. J. Opt. Soc. Am. B, 23(8):1684-1691, August 2006. [ bib | http ]
[74] X. Yu, M. Yan, L. W. Luo, and P. Shum. Theoretical investigation of highly birefringent all-solid photonic bandgap fiber with elliptical cladding rods. IEEE Photon. Technol. Lett., 18(11):1243-1245, June 2006. [ bib | http ]
[75] M. Yan and P. Shum. Analysis of perturbed Bragg fibers with an extended transfer matrix method. Opt. Express, 14(7):2596-2610, April 2006. [ bib | http ]
[76] X. Yu, M. Liu, Y. Chung, M. Yan, and P. Shum. Coupling coefficient of two-core microstructured optical fiber. Opt. Comm., 260:164-169, April 2006. [ bib ]
[77] H. Dong, J. Zhou, M. Yan, P. Shum, L. Ma, Y. Gong, and C. Wu. Quasi-monochromatic fiber depolarizer and its application to polarization-dependent loss measurement. Opt. Lett., 31(7):876-878, April 2006. [ bib | http ]
[78] H. Dong, P. Shum, M. Yan, G. Ning, Y. Gong, and C. Wu. Generalized frequency dependence of output stokes parameters in an optical fiber system with pmd and PDL/PDG. Opt. Express, 13(22):8875-8881, October 2005. [ bib | http ]
[79] H. Liu, M. Yan, P. Shum, X. Zhang, and D. Liu. Optimum design of anti-resonant reflecting photonic crystal vertical-cavity surface-emitting lasers. Chinese Optics Letters, 3:210-212, August 2005. [ bib ]
[80] M. Yan, P. Shum, and X. Yu. Heterostructured photonic crystal fiber. IEEE Photon. Technol. Lett., 17(7):1438-1440, July 2005. [ bib | http ]
[81] Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao, and C. Lu. Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber. Opt. Lett., 30(4):367-369, February 2005. [ bib | http ]
[82] M. Yan and P. Shum. Air guiding with honeycomb photonic bandgap fiber. IEEE Photon. Technol. Lett., 17:64-66, 2005. [ bib | http ]
[83] M. Yan, P. Shum, and J. J. Hu. Design of air-guiding honeycomb photonic bandgap fiber. Opt. Lett., 30:465-467, 2005. [ bib | http ]
[84] M. Yan and P. Shum. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design. Opt. Lett., 30(15):1920-1922, 2005. [ bib | http ]
[85] H. Liu, M. Yan, P. Shum, and D. Liu. Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers. Opt. Express, 12(18):4269-4274, September 2004. [ bib | http ]
[86] M. Yan and P. Shum. Antiguiding in microstructured optical fibers. Opt. Express, 12:104-116, 2004. [ bib | http ]
[87] M. Yan, X. Yu, P. Shum, C. Lu, and Y. Zhu. Honeycomb photonic bandgap fiber with a modified core design. IEEE Photon. Technol. Lett., 16:2051-2053, 2004. [ bib | http ]
[88] M. Yan, P. Shum, and C. Lu. Hole-assisted multiring fiber with low dispersion around 1550 nm. IEEE Photon. Technol. Lett., 16(1):123-125, January 2004. [ bib | http ]

This file was generated by bibtex2html 1.96.


Last update: 2018-05-04