

Lecture 4 Ray and Wave Propagation^{*}

Min Yan miya@kth.se Optics and Photonics, KTH

1

01/04/15

* Some figures and texts belong to: O. Svelto, *Principles of Lasers*, 5th Ed., Springer.

Reading

- Principles of Lasers (5th Ed.): Chapter 4.
- Skip: Subsection 4.5.2.
- Warning: Sections 4.6 and 4.7 can be mindtwisting.

Laser

- Mathematical tool for ray/wave behavior (not yet in cavity)
- Single-interface refl./refr. (Brewster angle)
- Anti-reflection coating
- High-reflectivity dielectric mirrors
- Fabry-Pérot cavity

Contents

Content	Time
1. ABCD matrix formulation	15′
2. Reflection and transmission- Single interface- Multiple interfaces	15′
3. Fabry-Pérot interferometer	15′
4. Diffraction optics	10′
5. Gaussian beams	25′
Total:	80′

Contents

Content	Time
1. ABCD matrix formulation	15′
 Reflection and transmission Single interface Multiple interfaces 	15′
3. Fabry-Pérot interferometer	15′
4. Diffraction optics	10′
5. Gaussian beams	25′
Total:	80′

Ray propagation

Assumptions:

- Geometrical optics
- Paraxial propagation

Common ray matrices

Application

 $\begin{bmatrix} r_2 \\ r_2 \end{bmatrix} = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} r_1 \\ r_1 \end{bmatrix}$

Reverse propagation

$$\begin{bmatrix} r_2 \\ \dot{r_2} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} r_1 \\ \dot{r_1} \end{bmatrix}$$

222

01/04/15

Reverse propagation

$$\begin{bmatrix} r_1 \\ r_1' \end{bmatrix} = \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \begin{bmatrix} r_2 \\ r_2' \end{bmatrix}$$
$$\begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} = \begin{bmatrix} D & B \\ C & A \end{bmatrix}$$

where,

Spherical wave

$$r_2 = Ar_1 + Br'_1$$
 $R_1 = r_1/r'_1$
 $r'_2 = Cr_1 + Dr'_1$ $R_2 = r_2/r'_2$

$$R_2 = \frac{AR_1 + B}{CR_1 + D}$$

KT VETENS

Contents

Content	Time
1. ABCD matrix formulation	15′
2. Reflection and transmission- Single interface- Multiple interfaces	15′
3. Fabry-Pérot interferometer	15′
4. Diffraction optics	10′
5. Gaussian beams	25′
Total:	80′

Polarizations

s-polarized

TM: Transverse-magnetic

p-polarized

13

"s" for senkrecht

Single dielectric interface

Normal incidence:

$$r_{12} = \frac{n_1 - n_2}{n_1 + n_2}$$

Oblique incidence:

Angle- and polarization-dependent

1 coating: "pro-" and anti-reflection

Multiple dielectric coatings

Contents

Content	Time
1. ABCD matrix formulation	15′
2. Reflection and transmission- Single interface- Multiple interfaces	15′
3. Fabry-Pérot interferometer	15′
4. Diffraction optics	10′
5. Gaussian beams	25′
Total:	80′

Fabry-Pérot interferometer

Etalon

FP interferometer

Properties

$$E_{t} = \sum_{1}^{\infty} E_{l} = \left[E_{0}t_{1}t_{2}\exp(j\phi') \right] \sum_{0}^{\infty} (r_{1}r_{2})^{m}\exp(2mj\phi)$$
$$E_{t} = E_{0}e^{j\phi'}\frac{t_{1}t_{2}}{1 - (r_{1}r_{2})\exp(2j\phi)}$$

 $T_{FP} = |E_t|^2 / |E_0|^2$

$$T_{FP} = \frac{(1-R_1)(1-R_2)}{\left[1-(R_1R_2)^{1/2}\right]^2 + 4(R_1R_2)^{1/2}\sin^2\phi}$$

Properties

01/04/15

Contents

Content	Time
1. ABCD matrix formulation	15′
 2. Reflection and transmission - Single interface - Multiple interfaces 	15′
3. Fabry-Pérot interferometer	15′
4. Diffraction optics	10′
5. Gaussian beams	25′
Total:	80′

Scalar approximation

Applicability:

Linearly-polarized light (plane wave, or Gaussian etc.) propagating in a homogeneous medium, or guided by a low-index-contrast waveguide.

 $E(x, y, z, t) = \tilde{E}(x, y, z) \exp(j \omega t)$

 $\tilde{E}\,$ is scalar but complex, and satisfies

Solution:

$$\tilde{E}(x,y,z) = \frac{j}{\lambda} \iint_{S} \tilde{E}(x_1,y_1,z_1) \frac{\exp(-jkr)}{r} \cos\theta dx_1 dy_1$$

Fresnel-Kirchhoff integral (Huygen's principle)

Paraxial beam: homogeneous medium

If propagation angle is small

 $\tilde{E}(x, y, z) = u(x, y, z) \exp(-(jkz))$

u is slowly varying along z (*i.e.* d²u/dz=0), and satisfies

$$\nabla_{\perp}^2 u - 2jk \frac{\partial u}{\partial z} = 0$$
 Paraxial wave equation

In integral form

$$u(x,y,z) = rac{j}{\lambda L} \iint\limits_{S} u(x_1,y_1,z_1) \exp\left[-jkrac{(x-x_1)^2 + (y-y_1)^2}{2L}
ight] dx_1 dy_1$$

Paraxial beam: ABCD system

$$u(x,y,z) = \frac{j}{B\lambda} \iint_{S} u(x_1,y_1,z_1) \exp\left[-jk \frac{A(x_1^2+y_1^2) + D(x^2+y^2) - 2x_1x - 2y_1y}{2B}\right] dx_1 dy_1$$

24

01/04/15

Contents

Content	Time
1. ABCD matrix formulation	15′
 2. Reflection and transmission - Single interface - Multiple interfaces 	15′
3. Fabry-Pérot interferometer	15′
4. Diffraction optics	10′
5. Gaussian beams	25′
Total:	80′

y [μm]

x [μm]

y [μm]

x [μm]

Е

50 40 30 20 10 z [µm] 0. -10 -20 -30 -40 -50 20 10 0 10 -10 0 -10 -20 -20

u

35

01/04/15

Derivation

Fresnel-Kirchoff integral form of wave propagation (general ABCD system)

$$u(x,y,z) = \frac{j}{B\lambda} \iint_{S} u(x_1,y_1,z_1) \exp\left[-jk \frac{A(x_1^2+y_1^2) + D(x^2+y^2) - 2x_1x - 2y_1y}{2B}\right] dx_1 dy_1$$

One eigen-solution:
$$u(x, y, z) \propto \exp\left(-jk\frac{x^2 + y^2}{2q}\right)$$

q(z): complex beam parameter

36

Proof: If
$$u(x_1, y_1, z_1) \propto \exp\left(-jk\frac{x_1^2 + y_1^2}{2q_1}\right)$$

One has $u(x, y, z) = \frac{1}{A + B/q_1} \exp\left(-jk\frac{x^2 + y^2}{2q}\right)$ (*)

$$q = \frac{A \ q_1 + B}{C \ q_1 + D}$$
 ABCD law of Gaussian beam propagation

01/04/15

Electric field

Free-space case

A=D=1, C=0, B=z

Assume $R=\infty$ and $w=w_0$ at z=0 (q_1 is known).

With Eq. (\star) on p. 36, Gaussian beam is

$$u = \frac{w_0}{w} \exp\left(-\frac{x^2 + y^2}{w^2}\right) \exp\left(-jk\frac{x^2 + y^2}{2R}\right) \exp\left(j\phi\right)$$
Amplitude Transverse phase Longi. phase

where

01/04/15

w and R

High-order modes

 $u_{l,m}(x, y, z) = (w/w_0)H_l \left[2^{1/2} x/w \right] H_m \left[2^{1/2} y/w \right] \exp \left[-\left(x^2 + y^2\right)/w^2 \right] \\ \times \exp \left\{ -j \left[k \left(x^2 + y^2\right)/2R \right] + j(1 + l + m)\phi \right\} \right\}$

ABCD law for Gaussian beams

A test for a thin lens

$$\frac{1}{q_2} = \frac{C + (D/q_1)}{A + (B/q_1)}$$

$$\frac{1}{q_2} = -\frac{1}{f} + \frac{1}{q_1}$$

$$w_2 = w_1$$

 $\frac{1}{R_2} = \frac{1}{R_1} - \frac{1}{f}$

KT VETENSI

Contents

Content	Time
1. ABCD matrix formulation	15′
 2. Reflection and transmission - Single interface - Multiple interfaces 	15′
3. Fabry-Pérot interferometer	15′
4. Diffraction optics	10′
5. Gaussian beams	25′
Total:	80′

