

SCTP –
performance and security

Course: 2G1305 Internetworking
Gerald Q. Maguire Jr
25/5 -05

Staffan Lundström
Daniel Hassellöf

 2

Abstract

Stream Control Transmission Protocol (SCTP) is a new general-purpose IP transport protocol,
standardized by the Internet Engineering Task Force (IETF). This report about SCTP is the
result of a project in the course 2G1305 Internetworking given by IMIT/KTH. 1

The aim is to give an overview of the protocol and to further investigate some essential
concepts – in particular the four-way handshake, multiple streams and multihoming – as well
as test a specific SCTP implementation.

Our tests show that multiple streams provide significant performance improvement compared
to many independent associations (connections).

Introduction

We choose to deeper study the Stream Control Transmission Protocol (SCTP) for several
reasons. To start with, none of us had previously heard about it. Secondly, it was said to
particularly be designed to enhance time critical applications. Thirdly, we had read that it was
intended to replace both TCP and UDP.

The aim of this project is not to present a complete description of the protocol. Instead, we
intend to give an overview as well as to further investigate some particularly interesting parts
of the protocol.

In order to do so, we describe the SCTP protocol format, before highlighting some essential
differences to its predecessor TCP. The end section of this document is dedicated to practical
tests of an SCTP implementation.

The describing text, the performed tests, the result analysis and the final test report have all
been jointly carried out by the authors.

1 http://www.imit.kth.se/courses/2G1305

 3

Table of contents

Abstract ..2
Introduction ..2
Table of contents ..3
Overview of protocol format..4
New and interesting features in SCTP ...6

Associations in SCTP vs connections in TCP..6
Multiple streams...7
Multihoming...8

SCTP tests ..8
Test environment..8
Test 1 – The four-way handshake ..9

Description and methods..9
Result..9
Conclusion and discussion ...10

Test 2 – INIT/COOKIE_ECHO flooding ..10
Description and methods..10
Result..11
Conclusion and discussion ...11

Test 3 – Multiple streams ...12
Description and methods..12
Results ..12
Conclusion and discussion ...13

Test 4 – Multiple streams performance during heavy traffic13
Description and methods..13
Result..14
Conclusion and discussion ...14

Conclusion..15
References ..15
Appendix A – SCTP state diagram ..16
Appendix B – Source code links ..17

Test 1 ..17
Test 2 ..17
Test 3 & 4...17

 4

Overview of protocol format

SCTP is message-oriented instead of byte-oriented. The difference with TCP is that in TCP
all the data is treated as a stream of bytes whereas the data block boundaries are conserved in
SCTP. An SCTP packet is the equivalent to a segment in TCP. Packets are made up of an
SCTP common header and chunks, as in Figure 1. Chunks are divided into control chunks and
data chunks. Data information is carried as data chunks and control information as control
chunks.

Figure 12 SCTP Packet format

The SCTP common header provides three things: Identification of the association that an
SCTP packet belongs to and transport layer verification of data integrity. An interesting detail
is that the association identification does not only use the source and destination port together
with the IP addresses. The SCTP common header also includes a verification tag in order to

2 http://www.iec.org/online/tutorials/sctp/topic04.html?Next.x=29&Next.y=5

 5

distinguish between two different association instances and protect against a blind attacker
that put data into an existing association. The TIME-WAIT state in TCP is therefore not
necessary in SCTP. This should be compared with TCP where only the source and destination
addresses together with the port numbers identify a connection. Moreover, the Adler-32
checksum provides better integrity check than the 16 bits used in TCP.

Each chunk must end or be padded to the next 32-bit word boundary. The format of a chunk
can also be seen in Figure 1. The 8-bit Chunk type field represents the type of a chunk. Today
13 different types of 256 possible are defined; see
Figure 2 (12 control chunk types and 1 data chunk type). The Chunk flags (8 bits) are
interpreted differently depending on the type of chunk. Any undefined chunk flags are set to
zero. The Chunk length (16 bits) is calculated in bytes and includes these first four obligatory
bytes in the count. The chunk length does not count padded bytes.

In TCP the control information is carried in the header. The SCTP module-based format is
slimmer and more extensible. Packets can be mixed with control chunks and data chunks with
the restriction that control chunks are always placed ahead of the data chunks. In TCP

3 http://www.iec.org/online/tutorials/sctp/topic04.html?Next.x=29&Next.y=5

CHUNK DEFINITION

Data
DATA

The DATA chunk carries a user data payload

Initiation
INIT

The INIT chunk is sent in order to initiate a SCTP association between two endpoints.

Initiation
Acknowledgement
INIT ACK

INIT ACK chunk acknowledges the receipt of an INIT chunk. The receipt of the INIT ACK chunk
establishes an association.

Selective
Acknowledgement
SACK

SACK chunks acknowledge the receipt of DATA chunks.

Cookie Echo
COOKIE ECHO

The COOKIE ECHO chunk is used exclusively during the initiation process and is sent to the peer
endpoint.

Cookie
Acknowledgement
COOKIE ACK

The COOKIE ACK chunk acknowledges receipt of the COOKIE ECHO chunk. The COOKIE ACK
chunk must take precedence over any DATA chunk or SACK chunk sent in the association. The
COOKIE ACK chunk may be bundled with DATA chunks or SACK chunks

Heartbeat Request
HEARTBEAT

HEARTBEAT chunks are sent from one SCTP endpoint to its peer in order to test the connectivity
of a specific destination address in the association.

Heartbeat
Acknowledgement
HEARTBEAT ACK

Every time a HEARTBEAT chunk is received by an endpoint, a HEARTBEAT ACK chunk is sent to
the source IP address in order to acknowledge receipt of the HEARTBEAT chunk.

Abort Association
ABORT

The ABORT chunk is an indication to the peer endpoint to close the association. In addition, the
ABORT chunk informs the receiver of the reason for aborting the association in the cause
parameters.

Operation Error
ERROR

The ERROR chunk is sent to the peer endpoint to report certain error conditions that may exist.
The ERROR chunk may contain parameters that determine the type of error that has taken
place.

Shutdown
Association
SHUTDOWN

The SHUTDOWN chunk triggers a graceful close of an association with a peer endpoint.

Shutdown
Acknowledgement
SHUTDOWN ACK

A SHUTDOWN ACK is used to acknowledge the receipt of the SHUTDOWN chunk at the end of
the shutdown process.

Shutdown Complete
SHUTDOWN
COMPLETE

The SHUTDOWN COMPLETE concludes the shutdown procedure.

Figure 23 Chunk types

 6

sequence numbers are used also in segments with only control information. In SCTP only the
data chunks (the green chunk in Figure 1) are numbered by a Transmission Sequence Number
(TSN), which corresponds to the sequence number in TCP. SCTP acknowledgement numbers
are chunk-oriented and thus refer to the TSN. The control chunks, in the necessary cases, are
acknowledged by another control chunk. For example, an INIT-ACK control chunk
acknowledges the INIT control chunk. An intentional design choice is not to transfer control
chunks reliably and only the data chunks are subject to a reliability mechanism (provided by
control chunks).

Since there can be multiple streams in one association SCTP each stream is identified by a 16-
bit Stream Identifier (SI). To distinguish between different data chunks belonging to the same
stream, each data chunk in each stream is numbered with a Stream Sequence Number (SSN).

New and interesting features in SCTP
Associations in SCTP vs connections in TCP

An interesting difference between TCP and SCTP is the connection/association establishment.
A well-known problem in TCP is the denial-of-service attack SYN flooding. A malicious
attacker can flood a TCP server with SYN segments pretending it comes from different clients
using forged IP addresses. In TCP after receiving a SYN segment the server responds with
SYN + ACK and allocates state resources. Flooded with SYN segments the server will
collapse or at least not be able to serve incoming connection requests.

As the observant reader already has noticed, a connection is in fact called an association in
SCTP, even though the protocol is connection-oriented just like TCP. The initial handshake
procedure with SCTP differs considerably from the procedure used by TCP. Instead of, like in
the case of TCP, a three-way handshake with limited security, SCTP adds a step as well as the
ability to further control the process.

Appendix A – SCTP state diagram shows the states in SCTP, including the state transitions
for establishing an SCTP association. The client initiates an active open of an association by
sending an INIT chunk to the peer endpoint. The client moves from the CLOSED state to the
COOKIE_WAIT.

The server responds with an INIT_ACK packet containing two fields not present in the case
of TCP – a verification tag and a cookie. The cookie contains the necessary state information,
which the server would otherwise have to allocate resources for. The cookie also includes a
signature so that it can be verified as authentic, and a timestamp to prevent replay attacks
using old cookies. Note that the server therefore, at this point, neither moves into a new state
nor allocates resources.

If the client has a forged IP address it will never receive the INIT_ACK chunk, and therefore
it cannot send the third message, a COOKIE_ECHO chunk. The net result is that the
conversation ends without any resources having been allocated at the server side.

 7

Figure 34 Association initiation

However, in the case of an authentic sender, the server will respond to the COOKIE_ECHO
with a COOKIE_ACK chunk and move into the ESTABLISHED state.

Finally, as the client receives the COOKIE_ACK chunk, it will also enter the
ESTABLISHED state, and the association establishment is completed. The whole procedure
is illustrated in Figure 3.

A four-way handshake might seem to be less efficient than a three-way handshake. However,
data chunks can also be exchanged in the third and fourth packet in SCTP, whereas in TCP
the first possible data segment is in the fourth packet.

There are still potential vulnerabilities in SCTP. If the IP address is not forged or no
encryption is used and an attacker can sniff the network, he can still get the cookie and reply
with the third message (COOKIE-ECHO). In order to see how the SCTP.de implementation
respond to INIT/COOKIE_ECHO flooding using valid cookies in the described way, we have
set up a test. See Test 2 – INIT/COOKIE_ECHO flooding.

Multiple streams

According to [STEW] page 209 a web browser uses multiple connections for the
simultaneous transfer of images and other multimedia objects. This way if a piece of an object
is lost during transfer, the other objects will continue loading while the last piece is
retransmitted.

One problem with this solution is that the bandwidth will be unfairly shared between different
applications. Other applications, like a typical FTP-client, use only one connection for data
transfer. A second problem is that congestion information is not passed to other connections.
A third problem is that the server's connection queue can more easily overflow.

4 http://www.iec.org/online/tutorials/sctp/topic05.html?Next.x=42&Next.y=12

 8

A new feature introduced with SCTP to overcome these problems is the concept of multiple
streams. Each association can have multiple streams within it. With one association per
application the scheduling problem is solved. In and Test 4 – Multiple streams performance
during heavy traffic we test the performance of this concept.

Multihoming

Administrators of hosts with high requirements on fault-tolerance often like to introduce
redundancy in the systems. One important concept to achieve this is called multihoming.
Multihoming is when a host can be addressed by more than one IP address, usually assigned
from more than one ISP. Practically, this will normally mean that multiple network interface
cards are used, with each assigned a different IP address. When one path fails another
interface can be used without interruption. Different paths can also be used for load balancing.

In TCP a connection involves the source and one destination IP address. This means that even
if the host is multihomed, only one of the available IP addresses can be used during a
connection. In contrast to TCP, SCTP associations support multihoming; multiple IP
addresses for each end are allowed in an association. An SCTP endpoint is a subset of the IP
addresses on a machine, which forms the SCTP transport address.

Load balancing is not supported in today’s implementations. For example, in the sctp.de
implementation, that we used for testing, a primary must be chosen and the other paths will
only be used if the primary fails.

SCTP tests

Test environment

The test environment consisted of two laptops connected on an Ethernet LAN via a switch.
Both hosts ran the operating system Fedora Linux (kernel version 2.4.22).

Switch:
D-Link DI-804, 4 ports

Host 1 – server:
IBM Thinkpad T40
Pentium M, 1.3 GHz
768 MB DDR-RAM
Intel PRO/100 VE Network Connection

Host 2 – client:
Dell Inspiron 500m
Pentium M, 1.3 GHz
512 MB DDR-RAM
Intel(R) PRO/100 VE Network Connection

 9

We chose an SCTP implementation developed at the Computer networking technology group
of the University of Essen and the Münster University of Applied Sciences in cooperation
with Siemens5. Current version of the SCTP library is 1.0.3. This implementation will
hereinafter be referred to as the sctp.de implementation.

To analyze the network traffic used Ethereal6. To analyze the memory and CPU-usage we
used the Linux Top command.

Test 1 – The four-way handshake

The objectives of the first test were to:

1. Get familiar with the SCTP API
2. To learn how to set up an SCTP association using a C-program
3. Be able to analyze SCTP packets using Ethereal

Description and methods

The first attempt was to install the sctp.de implementation in Windows. We soon realized that
the suggesting way of doing this was ad-hoc; installing in Linux seemed more appropriate.
After numerous hours spent on trying to install in Debian Linux, we made a radical decision
and installed Fedora Linux on the laptops instead. This change turned out to be successful and
we soon had the implementation of SCTP correctly set up for a first dump.

Supplied with the SCTP library was a set of client and server example programs. We used the
program named terminal as the client together with echo_server program.

Result

Using the previously given programs we could easily set up an SCTP association. Here
follows an excerpt of the network traffic, where we clearly see the four-way handshake that
establishes the association.

No. Time Source Destination Protocol Info
1 0.000000 192.168.0.134 192.168.0.155 SCTP INIT
2 0.000873 192.168.0.155 192.168.0.134 SCTP INIT_ACK
3 0.020310 192.168.0.134 192.168.0.155 SCTP COOKIE_ECHO
4 0.020839 192.168.0.155 192.168.0.134 SCTP COOKIE_ACK

5 http://www.sctp.de/sctp.html
6 http://www.ethereal.com/

 10

Conclusion and discussion

We could never have foreseen how problematic the work related to the prerequisites would
be. However, when set up, the implementation worked flawlessly.

The SCTP primitives in the API being most essential for setting up an SCTP association were
the following:

On the server side:

• sctp_registerInstance() is called to initialize one SCTP instance.
• sctp_eventLoop() is then called to listen for incoming events

On the client side:

• sctp_associate() is called to set up an association.
• sctp_eventLoop()

After familiarizing ourselves with and testing the SCTP API we found the functional level
low enough to be powerful, but still easy to use. A more detailed reference of the API is given
by [JUNG].

The sctp.de implementation lacks some documentation, and a few functions were not yet fully
implemented. Though, the overall impression is positive.

Test 2 – INIT/COOKIE_ECHO flooding

The objectives of the second test:

1. Can the concept of a TCP SYN flooding be developed and applied on SCTP?
2. Has the sctp.de implementation any limit concerning the number of allowed

simultaneous incoming association attempts from a given hosts?

Description and methods

As the objective indicates we will repeatedly initiate associations from our client host.
However, we do not want to allocate any resources on the client side.

For this test we had two different approaches. The first included using the GNU Bash shell to
iteratively execute a modified version of the terminal program. The change was to exit the
program right after the COOKIE_ECHO chunk had been sent. This allows us to perform a
repeated association establishment without allocating more resources than one association at a
time on the client side.

The other approach was to add a loop to the terminal program, letting it repeatedly create new
associations. We could not free the resources because the API function required a
SHUTDOWN or ABORT chunk to be sent in order to move to the state where resource could
be freed. Obviously this was not an option to us, as the server also would tear down the
associations, and we intended to overflow it. We solved it by manually restarting the client
program when needed.

 11

Result

The two methods gave similar results. The difference was that the non-Bash method could
send the packets in a much higher rate. After starting the flooding, we noticed the user CPU-
time increase towards 95%. Possibly even more interesting, the memory usage increased
approximately proportionally to time. However, the increase reached a ceiling at 102 MByte
(13.6% of primary memory), after which the value stabilized. Here follows more details from
Top.

[root@localhost local]# top

 12:01:41 up 1:09, 5 users, load average: 1.88, 1.36, 0.70
79 processes: 76 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 90.8% 2.3% 6.7% 0.0% 0.0% 0.0% 0.0%
Mem: 773084k av, 692736k used, 80348k free, 0k shrd, 15824k buff
 131856k active, 482700k inactive
Swap: 377960k av, 0k used, 377960k free 359512k cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
 4501 root 25 0 102M 102M 560 R 82.2 13.6 5:29 0 echo_server

We did not succeed in collapsing the server.

We could see no limitations in the sctp.de implementation concerning the number of allowed
associations between two hosts, ie the number of associations allowed from a certain client IP
address to the server.

We noticed, however not during each flooding attack, how the memory usage dropped after
having stopped the client program.

Conclusion and discussion

Why did we not succeed in collapsing the server? The memory increase stopped due to
dropped associations, which were indicated by the server debug output. This could unlikely
be because of a limit in the number of allowed simultaneous associations, because new
associations should rather have been disallowed than established associations being dropped.

We instead believe the memory increase stopped due to the server sending HEARTBEAT
chunks. These monitor the reachability of the peer host when there is no user data being
transferred. In our case the destination host failed to reply with HEARTBEAT_ACK and the
server considered the association dead. According to [STEW] page 209 an idle association
will be probed with the interval given by the parameter HB.interval. When the number of
reattempts reaches Assoc.Max.Retrans, the server will mark the association inactive. The
source code shows what the book indicates; resources can at this point be freed.

The only conclusion we can draw is that it could withstand this attack. It remains to be
examined how well the SCTP implementation performs on a distributed attack.

 12

Test 3 – Multiple streams

The objectives of the third test:

1. Measure the benefits in terms of startup time using multiple streams instead of
multiple associations.

2. Measure the benefits in terms of memory needs of starting multiple streams instead of
multiple associations.

This test is interesting because multiple streams is a feature not available in TCP. In TCP
multiple connections must be set up to achieve the same effect (see section Multiple streams).

Description and methods

To measure the benefits of using multiple streams instead of multiple associations we set up a
test with 10000 associations with 1 stream in each and compare it with 10000 streams over 1
association. The source code is included in Appendix B – Source code.

Results

 10000 associations with

one stream each:

10000 streams over one
association:

Memory usage: 8.3 % 0.1 %
CPU usage: 0 % idle 95.8 % idle
Run time:
real 0 m 28.644 s 0 m 0.134 s
user 0 m 25.220 s 0 m 0.090 s
sys 0 m 1.930 s 0 m 0.020 s

Here follows more details from Top.

10000 associations:
68 processes: 62 sleeping, 6 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 95.3% 0.0% 4.6% 0.0% 0.0% 0.0% 0.0%
Mem: 773084k av, 750656k used, 22428k free, 0k shrd, 20148k buff
 192056k active, 495432k inactive
Swap: 377960k av, 52924k used, 325036k free 300352k cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
 4081 root 16 0 265M 262M 6664 S 0.0 34.7 4:26 0 ethereal
26950 root 16 0 59752 58M 556 R 33.1 8.3 0:12 0 echo_server

 13

10000 streams:
 22:55:23 up 10:00, 6 users, load average: 0.94, 0.29, 0.09
69 processes: 68 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 2.3% 0.0% 1.7% 0.0% 0.0% 0.0% 95.8%
Mem: 773084k av, 674060k used, 99024k free, 0k shrd, 20140k buff
 203596k active, 407536k inactive
Swap: 377960k av, 52928k used, 325032k free 311600k cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
26468 root 15 0 984 984 556 S 0.0 0.1 0:06 0 echo_server
26467 root 15 0 12080 11M 8548 S 0.0 1.5 0:03 0 ethereal

Conclusion and discussion

There is a dramatic difference in resource allocation. First of all, 10000 associations take 25
seconds to initiate whereas the number of streams is only a field proposed in the INIT and
INIT-ACK chunks for the two channels respectively. In terms of memory the usage is almost
unnoticeable for 10000 streams over 1 association. This can be compared with setting up
10000 associations, which requires a considerable amount of memory.

One can argue that as many as 10000 associations/streams is an unrealistic example. A
comparison between 10000 streams in SCTP and 10000 connections in TCP would also be
more interesting.

We conclude that multiple streams can very efficiently be initiated.

Test 4 – Multiple streams performance during heavy traffic

The objectives of the fourth test:

1. To measure the data transfer performance with multiple streams and compare with
multiple associations with one stream.

Description and methods

To further examine the usage of multiple streams we extended the third test to include the
transfer of data.

We developed two new programs, terminal5 and terminal6. Terminal5 adds code for sending
10,000 chunks of data using one association and 10,000 streams in a round-robin fashion.

Terminal6 adds code for sending 10,000 chunks of data using 10,000 associations with one
stream in each.

Both programs have timers measuring the time consumption of the data sending. The startup
time is in other words excluded.

 14

Result

 10k data chunks/
10k associations/
1 chunk/association
terminal6

10k data chunks/
1 association/
10k streams
terminal5

20k data chunks/
1 association/
10k streams
terminal5

Memory usage: 65 000 KByte 988 Kbyte 988 Kbyte
CPU usage: 0 % idle 72.2 % idle 56.8 % idle
Run time: 9 s 4 s 9 s

Here follows more details from Top.

10k data chunks, 10k associations, chunk/association terminal6
68 processes: 65 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 94.0% 0.0% 5.9% 0.0% 0.0% 0.0% 0.0%
Mem: 773084k av, 471868k used, 301216k free, 0k shrd, 6204k buff
 89408k active, 342392k inactive
Swap: 377960k av, 0k used, 377960k free 175660k cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
 6545 root 25 0 67308 65M 540 R 99.0 8.7 0:24 0 echo_server
 6126 root 16 0 1124 1124 916 R 0.9 0.1 0:03 0 top

10k data chunks, 1 association, 10k streams, terminal5
72 processes: 71 sleeping, 1 running, 0 zombie, 0 stopped
 01:37:34 up 12:42, 6 users, load average: 0.16, 0.19, 0.32
72 processes: 71 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 23.7% 0.0% 3.9% 0.0% 0.0% 0.0% 72.2%
Mem: 773084k av, 474340k used, 298744k free, 0k shrd, 12712k buff
 378212k active, 45224k inactive
Swap: 377960k av, 53672k used, 324288k free 96540k cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
28085 root 16 0 1208 1208 912 R 0.9 0.1 0:00 0 top
28072 root 15 0 988 988 544 S 24.7 0.1 0:01 0 echo_serv

20k data chunks, 1 association, 10k streams, terminal5
23:27:49 up 24 min, 5 users, load average: 0.50, 0.54, 0.47
69 processes: 66 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: cpu user nice system irq softirq iowait idle
 total 37.2% 0.0% 5.8% 0.0% 0.0% 0.0% 56.8%
Mem: 773084k av, 410136k used, 362948k free, 0k shrd, 6204k buff
 94332k active, 275668k inactive
Swap: 377960k av, 0k used, 377960k free 175716k cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND
 6770 root 16 0 984 984 544 R 37.3 0.1 0:02 0 echo_server
 5575 root 15 0 54668 14M 11156 S 0.9 1.8 0:01 0 kdeinit

Conclusion and discussion

Using multiple streams during 9 seconds, we could send twice as many data chunks as we
could using multiple associations. In addition, the memory resources needed for multiple
streams were only a fraction of those needed for multiple associations.

 15

Conclusion

SCTP introduces several new features compared to its predecessors TCP and UDP. The
chunks provide a more modular and extensible packet format, which is advantageous in
particular for real time applications. The four-way handshake using a cookie provides better
resistance against flooding attacks in comparison with TCP. Multihoming provides better
fault tolerance. Finally, our third and fourth tests prove that multiple streams provide
significantly improved performance than multiple associations.

The used SCTP implementation lacks some documentation, but is mainly fully functional.

References

RFC2960 Stream Control Transmission Protocol, Stewart et al, RFC 2960, IETF, 2000

STEW Stream Control Transmission Protocol – A Reference Guide, Randall R.

Stewart, Qiaobing Xie, Addison-Wesley, 2002

FOUR TCP/IP Protocol Suite, Behrouz A. Forouzan, McGraw Hill, 2006

JUNG Documentation of the SCTP-Implementation, Andreas Jungmaier et al,

http://tdrwww.exp-math.uni-essen.de/inhalt/forschung/sctp_fb/sctp-api.pdf,
release: sctlib-1.0, 2001

 16

Appendix A – SCTP state diagram

 17

Appendix B – Source code links

Test 1

Client - http://www.student.nada.kth.se/~u1djajou/SCTP/terminal.c
Server - http://www.student.nada.kth.se/~u1djajou/SCTP/echo_server.c

Test 2

Bash script - http://www.student.nada.kth.se/~u1djajou/SCTP/flood.script
Client - http://www.student.nada.kth.se/~u1djajou/SCTP/terminal2.c
Server - http://www.student.nada.kth.se/~u1djajou/SCTP/echo_server.c

Test 3 & 4

Client (multiple streams) - http://www.student.nada.kth.se/~u1djajou/SCTP/terminal5.c
Client (multiple assoc) - http://www.student.nada.kth.se/~u1djajou/SCTP/terminal6.c
Server - http://www.student.nada.kth.se/~u1djajou/SCTP/echo_server.c

