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Abstract

The IETF 6LoWPAN working group has defined a number of optimizations
to adapt the traditional IPv6 Neighbor Discovery protocol to non-transitive
wireless links. While these optimizations result in a more efficient use of the
resources of hosts within a 6LoWPAN network, they introduce a number of
impediments for communication between nodes in traditional IPv6 networks
and nodes in 6LoOWPAN networks. This document describes how to overcome
these obstacles by providing the necessary proxy mechanisms, leading to a
transparent, seamless, and cost-effective integration of 6LoWPAN nodes into
existing IPv6 network infrastructures. In particular, this document details
the requirements, specification, and implementation of an embedded device
responsible for such integration: a 6LoWPAN Neighbor Discovery Proxy-
Gateway (6LP-GW).

Moreover, this report demonstrates that integrating 6LoWPAN nodes into
existing IPv6 networks by means of a 6LP-GW as described here is both
feasible and convenient in most situations. This convenience can be observed
from both the network and the end-user perspectives:

From the network’s point of view, the solution proposed here integrates
6LoWPAN into an existing IPv6 network. Hence, 6LoPWAN nodes and
traditional IPv6 devices can coexist within the same IPv6 subnet, sharing the
same network prefix. Furthermore, enabling such integration and coexistence
is simple and inexpensive in contrast to other solutions. The main reason
for this simplicity is that the 6LP-GW is completely transparent from both
the network layer and the neighbor discovery protocol’s perspective: while
each type of node still takes advantage of its own specific neighbor discovery
protocol’s features, all of them share the same IPv6 subnet and no node in
the network is able to determine the nature of its neighbors (simply on the
basis of the neighbor discovery protocol).

Each of the above advantages leads to an immediate benefit from the end-
users’ perspective: the integration of the 6LoWPAN network into the existing
infrastructure, frees the user from having to acquire an expensive (and so far
rare) border router. Instead, the end-user simply buys a 6LP-GW which, as
previously mentioned, is inexpensive compared to the former; the 6LP-GW
broadens the existing IPv6 router’s functionality (in contrast to a 6LBR
which would replace it). In addition, it is important to mention that using a
6LP-GW could not be simpler; once attached to an IPv6 router’s LAN port,
no further intervention is required.

As result, the solution proposed here undoubtedly eases and speeds up the
deployment process of 6LoWPAN, enabling immediate use by even the most
inexperienced user.






Sammanfattning

IETF 6LoWPAN arbetsgruppen har definierat ett antal optimeringar for
att anpassa traditionella IPv6-protokollet granneupptéck till icke-transitiva
tradlosa lankar. Medan dessa optimeringar resultera i en mer effektiv anvindning
av resurserna varddatorer inom ett 6LoWPAN nétverk, infora de ett antal
hinder fér kommunikation mellan traditionella IPv6-natverk och 6LoWPAN
nétverk. Denna avhandling beskriver hur man kan 6vervinna dessa hinder
genom att tillhandahalla nodvindiga proxy mekanismer som leder till ett
Oppet, somlds, och kostnadseffektiv integration av 6LoWPAN noder i redan
befintliga [Pv6-ndtverk infrastruktur. I synnerhet denna avhandling beskrivs
de krav, specifikation och implementering av inbdddade enheter som ansvarar
for dessa integration: 6LOWPAN granneupptéick proxy-gateway (6LP-GW).

Dessutom visar denna avhandling att integrera 6LoWPAN noder i befintliga
IPv6-nat genom en 6LP-GW som beskrivs har dr bade mojligt och praktiskt i
de flesta situationer. Denna bekvamlighet kan observeras fran bade natverket
och slutanvéndarens perspektiv. Fran nétverket synvinkel foreslog 16sningen
har integrerar 6LOWPAN i ett befintligt IPv6-natverk. Darfér kan 6LoPWAN
noder och traditionella IPv6-enheter som samexisterar inom samma IPv6-
subnét, att dela samma nétverk prefix. Dessutom mdéjliggor en sadan integration
och samexistens ar enkelt och billigt i motsats till andra losningar. Den
framsta orsaken till denna enkelhet ar att 6LP-GW &r helt transparent
béade fran natverkslagret och granneupptéckprotokoll perspektiv: medan varje
nod fortfarande drar nytta av sin egen specifika granneupptéckprotokoll
funktioner, alla har samma IPv6-subnéit och ingen nod i nédtverket har
mojlighet att avgora vilken typ av sina grannar.

Var och en av ovanstiaende fordelar leder till en omedelbar nytta av
slutanvindarnas perspektiv: integrationen av 6LoWPAN nétet i den befintliga
infrastrukturen, frigér anvindaren fran att skaffa en dyr (och hittills séllsynt)
gransen router. Istéllet koper slutanvindaren helt enkelt en 6LP-GW som,
vilket tidigare ndmnts, ar billig jamfért med tidigare, den 6LP-GW breddar
den befintliga IPv6-router funktionalitet (i motsats till en 6LBR som skulle
ersitta det). Dessutom ar det viktigt att ndmna att med en 6LP-GW kan inte
vara enklare, nar ansluten till en IPv6-router LAN-port krévs ingen ytterligare
atgard behovs.

Som resultat av detta foreslog 16sningen hér underlattar onekligen och
paskyndar distributionsprocessen for 6LoWPAN, vilket mojliggdr omedelbar
anvandning av dven de mest oerfarna anvindare.
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Chapter 1

Introduction

1.1 General introduction to the area

There is an increasing interest in using wireless communication with sensors
and actuators in homes, office buildings, factories, and even outdoors.
Moreover, there is a desire to incorporate these devices as part of the Internet
— so that these devices could be accessed from anywhere.

From this perspective, embedding a TCP/IP stack into these sensing
and acting devices seems an attractive idea, which is reinforced by the new
features IPv6 provides (such as the large address space [26] and address
autoconfiguration [47]). However, the TCP/IP protocol suite was not
originally intended for such devices; its requirements for the underlying link
layers are generally too strong to be carried out by resource-constrained
devices, while certain network layer features are too complex and resource
consuming.

For these reasons the IETF defined 6LoWPAN (IPv6 over Low power
Wireless Personal Area Networks): an adaptation layer which intermediates
between the network and the link layers to provide all the services that the
network layer requires but the link layer can not provide. In particular,
RFC 4919 [30] states the problems and goals for the transmission of IPv6
packets over IEEE 802.15.4 [4] media. These problems and goals are
addressed in RFC 4944 [33], “Transmission of IPv6 Packets over IEEE 802.15.4
Networks”. This latter specification, together with the fact that most resource-
intensive tasks present in the TCP/IP stack (mainly related to TCP) are
usually not required in the applications under consideration for 6LoWPAN,
makes it possible and efficient to implement the relevant subset of IPv6 in
resource-constrained devices.

However, despite 6LoOPWAN having successfully accomplished the tasks
it was intended for, an important feature of IPv6 — specifically the Neighbor
Discovery protocol [34] neither properly fits the characteristics of the underlying
link layer nor meets the power-saving needs of devices that form 6LoWPAN
networks. The reasons for this are:

e The extensive use of multicast in traditional IPv6 Neighbor Discovery.
Multicast traffic is expensive in terms of overall power consumption since
it requires every node in the network to receive and process a packet,
even though such a packet is likely to be of no use for the node and hence
ends up being discarded in most cases. In addition, it is important to
note that a Low power Wireless Personal Area Network (LoWPAN)

1



2 CHAPTER 1. INTRODUCTION

is a set of domains within which broadcasting works, but there is no
LoWPAN-wide multicast. Thus the usual assumption that a network
segment (and hence a subnet prefix) is equivalent to a broadcast domain
is not necessarily valid in the case of a LoWPAN.

e Incorrect assumptions about link properties. LoWPANs may consist of
non-transitive links, i.e., wireless links with undetermined connectivity
properties, as defined in RFC 5889 [8]. This is due to the fact that most
nodes in LoWPANs want to sleep most of the time (to reduce power
consumption) and are likely to be moved around (or even out of) their
environment, leading to lossy links in which nodes may not always be
reachable. In turn, Neighbor Discovery for IPv6 assumes that every node
in the network is always listening to the medium and hence reachable.

e 6LoWPAN needs support for specific features. These features, despite
not being part of the 6LoWPAN specification in RFC 4944, constitute
a significant factor in terms of efficiency and power savings. Due to the
presence of Neighbor Discovery in IPv6 and the traditional functions it
performs, it seems reasonable to extend Neighbor Discovery so that it
fulfils the needs 6LoWPAN devices.

The result is that traditional IPv6 Neighbor Discovery does not fulfil
the requirements of 6LOWPAN networks, some of its features are unsuitable
and/or inefficient, and some others do not work. For these reasons, the
IETF 6LoWPAN working group defined a number of improvements/changes
to RFC 4861 [34] and RFC 4862 [34] in “Neighbor Discovery Optimization for
Low-power and Lossy Networks”, I-D.ietf-6lowpan-nd [43] in order to adapt
the Neighbor Discovery protocol for 6LoWPAN networks.

1.2 Longer problem statement

The optimizations defined in I-D.ietf-6lowpan-nd achieve a more efficient
use of resources, and hence, a reduction in power consumption. However,
these changes to traditional Neighbor Discovery are so significant that the
“Neighbor Discovery Optimization for Low-power and Lossy Network” could
be considered to constitute, in fact, a different Neighbor Discovery protocol
(6LoWPAN-ND from now on) and, what is more, these changes cause both
protocols to be incompatible. Section 2.9 describes the main features and
behaviour of each protocol as well as the key differences between them.
Since the Neighbor Discovery protocol has link-local scope, the
aforementioned incompatibility implies the side effect that 6LoWPAN devices
using 6LoOWPAN-ND can not share the same network link (hence,
IPv6 subnet) as regular IPv6 devices using traditional Neighbor Discovery
for IPv6. Thus, while RFC 4944 enables the use of IPv6 over low-
power, lossy, asymmetric, and non-transitive networks, draft-ietf-6lowpan-nd
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introduces some constraints regarding its deployment, turning the existence
of a 6LoOWPAN Border Router and a new IPv6 subnet into a requirement, for
even the simplest 6LoWPAN deployment.

1.3 Goals

The ultimate goal of this thesis project is to investigate if integrating
6LoWPAN wireless links into existing [Pv6 networks is possible. This
integration should overcome the physical and logical communication barriers
derived from the differences between the two network links without requiring
a single change in the IPv6 network’s infrastructure.

Therefore, this thesis covers all the processes from the initial literature
study, to the final evaluation of results, passing through the necessary steps
of description, formal specification, and implementation of an embedded
Neighbor Discovery Proxy-Gateway for 6LoWPAN-based wireless sensor
networks (6LP-GW). Such a device shall enable the integration of a
6LoWPAN network into an existing IPv6 network in a low-cost, homogeneous,
transparent, and seamless manner, without losing any of the advantages
derived from the use of the Neighbor Discovery protocol optimization for low
power, lossy networks (LLNs).

Additionally, such a 6LP-GW shall furnish proper mechanisms to allow
subsequent further integration of network applications, ranging from network
monitoring and management tools to tunnelling services which would enable
the use of 6LoWPAN devices in non-IPv6 environments. Such mechanisms
consist of the integration of full IPv6 and IPv4 communication stacks, each
with its own protocol-specific autoconfiguration/initial IP address configuration
and address resolution operations.

A side goal of this thesis project, is the implementation and integration of
the “Neighbor Discovery Optimization for Low-power and Lossy Networks”,
specified in I-D.ietf-6lowpan-nd, into the Contiki Operating System. This
was a useful means to demonstrate the correct operation of the 6LP-GW,
as no implementations of this relatively new protocol were available when
this thesis project was first proposed. While it was not strictly necessary to
do it this implementation using Contiki, it was very convenient to be able to
implement and evaluate our solution while still taking advantage of an existing
open-source, well-known, and tested 6LoWPAN implementation.

1.4 Required background knowledge

Throughout this report, the reader will find countless references to different
communication protocols. Naturally, familiarity with these protocols will
ease comprehension of the report. For completeness, Chapter 2 provides an
overview of these protocols, with special attention to 6LoWPAN and Neighbor
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Discovery (in both its flavours), so that any reader with basic knowledge about
computer networks can successfully read this report. In addition, although a
comprehensive list of acronyms and specific terms is provided for clarity on
pages xv - xviii, familiarity with common computing concepts is assumed.

Needless to say, an experienced reader may choose to skip part or all of the
Chapter 2 to directly go to the method proposed in Chapter 3. However, even
such an advanced reader may find it useful to review the description of the
two different Neighbor Discovery protocols along with the differences between
them (Section 2.9, starting on page 19), as a thorough understanding of these
protocols is crucial for a complete understanding of both the proxy operations
described in this document and the motivations behind them.

1.5 Structure of this thesis

This thesis is divided into six chapters which follow a logical sequential order.
These chapters are in turn grouped in pairs where the first pair of chapters is
an introduction pair, the second pair explains the work that has been done,
and the last pair analyses the results of the proposed solution.

The first chapter, “Introduction”, describes the area within which the
problem addressed in this thesis lays, states the problem, and defines the
goals to be achieved by this thesis. In addition, it explains what knowledge is
required for the correct understanding of this thesis and describes the structure
of this thesis. Chapter 2, “Background”, provides a general overview of most
of the protocols, concepts, and previous work related to or relevant to the
subsequent chapters. Chapter 3, “Method”, analyses the requirements of
our application and provides a detailed specification for the operation of
a Neighbor Discovery Proxy-Gateway for 6LoWPAN-based wireless sensor
networks. The following chapter (Chapter 4), “Applying the Method”,
describes the most relevant aspects of the actual implementation of the device.
The fifth chapter, “Analysis”, presents tests that have been performed with
the implemented the device in order to evaluate both its correctness and
performance. The last chapter (Chapter 6), “Conclusions”, analyses the
results obtained in Chapter 5 and summarizes the conclusions reached as result
of the work performed during this thesis project.



Chapter 2

Background

2.1 The Internet Protocol Suite

The Internet Protocol Suite is a set of communication protocols grouped for
the first time in RFC 1122 [11] and RFC 1123 [10]. It is often referred
to as TCP/IP protocol stack due the division into abstraction layers of
the communications suite. In this stack the information flows in both
directions, but in such a way that each layer communicates only with the layer
immediately above or beneath, by encapsulating the data on the way down
and de-encapsulating it on the way up. In order for this communication to
occur, each layer requires the layer underneath to meet certain requirements,
and has likewise to fulfil the requirements of the layer placed immediately
above.

According to RFC 1122, the Internet Protocol Suite is divided into
four abstraction layers: Link Layer, Internet Layer, Transport Layer, and
Application Layer. However, due to the usual mapping of the TCP/IP stack
onto the International Standards Organization’s Open System Interconnect
(OSI) model, it is also common to refer to the Physical Layer as a hardware
layer at the lowest part of the Link Layer. Figure 2.1, illustrates the TCP/IP
protocol stack, including the Physical Layer within its lowest level.

Link Layer Groups the different protocols that operate only
between adjacent nodes in the same link segment.

Internet Layer Is the set of protocols in charge of delivering packets
from the originating host to the destination, traversing
different networks if necessary. Due to the mapping
onto the OSI model, it is also commonly referred to
as “Network layer”.

Transport Layer Provides convenient services such as connection-oriented
data-stream support, reliable end-to-end
communication, flow and congestion control, and
host-level multiplexing.

Application Layer The set protocols involved in the process-to-process
communication.
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Application Layer

Transport Layer

Internet Layer

Link Layer

Physical Layer

Figure 2.1: The TCP/IP stack, including the Physical Layer (dashed)

2.2 IEEE 802.3

IEEE 802.3 [5] is a IEEE working group and a set of standards rather than a
single standard. There are several versions and amendments, with IEEE 802.3-
2008 being the latest revision. IEEE 802.3-2008 defines the physical layer and
data link layer’s media access control (MAC) of a wired Ethernet.

As for the physical layer, this family of standards supports several types of
media, such as different types of coaxial cable, shielded and unshielded twisted
pair, and Fiber-Optics. The supported transmission data rates range from 10
Mbit/s to 100 Gbit/s. Some media support half or full-duplex transmission.

The MAC protocol specified in IEEE standard 802.3 is Carrier Sense
Multiple Access with Collision Detection (CSMA/CD). This MAC protocol
was utilized in the experimental Ethernet developed at Xerox Palo Alto
Research Center. However, new implementations operating in full-duplex
mode no longer utilize CSMA/CD —since in full-duplex mode for a point-
to-point link there is no probability of collisions. This MAC layer consists of
the channel-access portion of the link layer used by Ethernet, but does not
define a logical link control protocol (generally implementations use the IEEE
802.2 logical link layer). Consequently, the standard defines the mapping
between IEEE 802.3 MAC service interface primitives. As result, Ethernet’s
data link-layer protocol can be encapsulated within the MAC Client Data field
of IEEE 802.3 packets (the common set of service interface primitives enables
bridging between IEEE 802 MAC/PHY protocols). Figure 2.2 illustrates this
Ethernet data link-layer into IEEE 802.3 MAC Client Data field encapsulation.
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Note that when used with IEEE 802.2 there is an additional header before the
Length /Type field.

octets:

6 6 2 46 to 1500 0 to 46 4

ETHERNET Destination)  Source \Length/|p . payload [Padding| CRC

data link-layer Address Address Type

octets: 7 1 Variable
Mé(tj Preamble [ SFD MAC Client Data Padding| CRC| Extension
packe

Figure 2.2: Ethernet data link layer protocol encapsulated into a the MAC
Client Data field of a IEEE 802.3 MAC packet

Preamble

SFD

Destination Address

Source Address

Type/Length

Data Payload

Padding

CRC

Extension

Used for synchronization between sender and receiver.

Start of Frame Delimiter. Indicates the end of the
preamble and the start of the packet data. It has
constant value of 0xAB (17119).

48-bit IEEE 802.3 MAC address of the destination of

the frame.

48-bit IEEE 802.3 MAC address of the originator of
the frame.

This field can have two different meanings. If its
value is greater than 1500, then it indicates the type
of upper-layer packet being transported. If the field
value is less than or equal to 1500, it indicates the
length of the payload.

The data being transmitted.

Optional Padding. This is required if the total
Ethernet frame length is less than 64 bytes.

Cyclic redundancy check for integrity verification.
Optional field included only in half-duplex operation

when the frame is shorter than the CSMA/CD slot
time.
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2.3 1IEEE 802.15.4

The IEEE 802.15.4 standard [4] specifies the physical and media access control
(MAC) for low-rate wireless personal area networks (LR-WPANSs). Although
LR-WPANS fall within the wireless personal area networks (WPANs) family
of standards, they may extend the personal operating space; an LR-WPAN
is a simple, low-cost wireless communication network optimized for use
in applications with limited power and limited throughput requirements.
LR-WPANSs aim for low power consumption and low cost, whilst maintaining a
reliable data transfer, short-range communication link, and simple and flexible
protocol.

2.3.1 IEEE 802.15.4 Topologies

The IEEE 802.15.4 standard defines two different device types: full-function
devices (FFDs) and reduced-function devices (RFDs). FFDs can participate
in the Personal Area Network (PAN) as a PAN coordinator, as a coordinator,
or as a device. Even though a network may consist of just RFDs, the presence
of at least one FFD acting as a PAN coordinator is recommended.

An LR-WPAN may operate in either peer-to-peer or star topologies. In
a star topology, all the communication between devices must pass through
the central node, which is the PAN coordinator. The PAN coordinator is
thus responsible for initiating, routing, and terminating the communication
in the network. On the other hand, in a peer-to-peer network, communication
between any two nodes is possible as long they are in range; this topology
offers greater flexibility, allowing all sorts of mesh formations, but at the cost
of increased node power consumption. Peer-to-peer topologies require a PAN
coordinator; however they are also likely to require a suitable routing protocol
in case multihop is needed (i.e. if two nodes are not in range). This routing
protocol should be provided by the upper layers and hence is beyond the scope
of the IEEE 802.15.4 standard.

2.3.2 IEEE 802.15.4 Physical Layer

Since its release in 2003, different amendments have been defined adding new
possible physical layers and/or extending the capabilities of the previously
defined ones. At the time of writing this document (June 2011), the different
unlicensed frequency bands and modulations, together with the supported
data rates defined by the IEEE 802.15.4 physical layer are shown in Table 2.1.
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2.3.3 IEEE 802.15.4 Medium Access Control (MAC)
The MAC layer is responsible for the following tasks:
e Beacon management
o PAN association and disassociation.
o Employing the CSMA-CA mechanism for channel access.
« Handling and maintaining the Guaranteed Time Slot (GTS) mechanism.
o Frame validation
o Acknowledged frame delivery

e Supporting device security.

Table 2.1: IEEE 802.15.4 physical layers, sorted by release date

Physical

Fr Band Bit rat
layer equenicy bat Modulation - rate Description
(MHz) (MHz) (kb/s)
868 — 868.6 20 )
BPSK: Binar,
868/915 902 — 928 BPSK 40 phase-shift keyying'
868 — 868.6 250 | AsK:
868/915 902 — 998 ASK 9250 liker;lipnlétudc—shlft
868 — 868.6 100 | 0-QPSK: Offset
868 915 O_ PSK uadrature
/ 002 — 928 Q 250 | Mhiacesniis keyine
2450 | 2,400 - 2,483.5 0-QPSK 250
250 - 750 851, 110, BPM: Burst
UWB | 3244 — 4,742 BPM-BPSK| 6,810 and | UWB: Ultra-wide
5944 — 10,234 27,240 |
2 450 17000 scpsrgémdcgpi)re%trum
Cgg) | 2400 — 24835 | DQPSK DAPSK:
( ) 250 quadrature
phase-shift keying
780 79— 787 O-QPSK 250
780 779 - 787 MPSK 250 ;%Eggéhl\iﬁolfg;iil .
950 | 950 - 956 GFSK 100 | Sequoncyabme
keying
950 950 — 956 BPSK 20
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In star-topologies, the IEEE 802.15.4 MAC layer provides a beacon-based
synchronization mechanism for data transmission and reception between
devices and the PAN coordinator, which permits nodes to only listen to
the channel at regular intervals, allowing for power saving. In peer-to-peer
topologies, however, this synchronization mechanism is not provided by the
standard and, if required by specific applications, needs to be implement at
upper layers.

The MAC layer defines four different types of frames: beacon frames,
acknowledgement frames, MAC command frames, and data frames. Beacon
frames are used in the synchronization mechanism. Acknowledgement frames,
whose use is optional, are used to acknowledge transmissions. MAC command
frames carry protocol commands, such as “Association request”, or “Data
request”. Finally, data frames are used for all transfers of data. Figure 2.3
illustrates the structure of a data frame.

octets: 2 1 4 to 20 n 2
MAC FCF Sequence Addressing fields|Data Payload | FCS
layer Number
octets: 4 1 1 - 9 to 127
PHY Preamble SFD Frame MPDU
layer Sequence Length

Figure 2.3: IEEE 802.15.4 data frame

Preamble Sequence Used to obtain chip and symbol synchronization with
an incoming message. It is composed of 32 binary
ZEros.

SFD Start of Frame Delimiter. Indicates the end of the
preamble and the start of the packet data. It has
constant value of 0xE5 (2291¢).

Frame Length Length of the MAC protocol data unit (MPDU).

FCF Frame Control Field. Contains information defining
the frame type, addressing modes, and other control
flags.

Sequence Number Used to match acknowledgement frames to data or
MAC command frames

Addressing Fields The IEEE 802.15.4 standard supports short (16 bit)
and long (64 bit) address. In addition, if the source
and destination PAN identifiers are the same, one of
them can be elided. Hence, this field containing the
source and destination addresses as well as the source
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and destination PAN identifier, has variable length,
and it is to be interpreted according to the FCF.

Data Payload The data being transmitted.

FCS Frame Check Sequence for data integrity verification.

2.4 Internet Protocol

The Internet Protocol (IP) is the principal Internet Layer protocol. It is a
connectionless, best-effort, unreliable internetworking protocol which provides
the necessary functions to deliver a packet from a source to a destination (both
identified by fixed length addresses) over a system composed of an arbitrary
number of networks. It also provides mechanisms for packet fragmentation
and reassembly, if necessary.

The Internet Protocol was first defined by Vint Cerf and Robert Kahn in an
IEEE journal paper entitled “A Protocol for Packet Network Interconnection”
[12]. The protocol was later revised and updated up to its fourth version
(IPv4), which is defined in RFC 791 [39], and became the first widely deployed
version of IP.

2.4.1 IPv4

Internet Protocol version 4 (IPv4) is defined in RFC 791 [39] (replacing its
previous definition in RFC 760 [38]). It uses 32-bit addresses, which limits the
total number of IPv4 addresses to 232. Tts header has variable length (due
to the options field), as illustrated in Figure 2.4 and described below. These
two features (address length are variable length), together with the need for
Flow Labelling capability constitute the main shortcomings/limitations of the
protocol, and hence the reasons that have made necessary the definition of
its next version (version 6). These features are explained in more detail in
Section 2.4.2.

Version Internet Protocol version. It has a value of 4 for IPv4.

IHL Internet Header Length in multiples of 4 bytes. It
is required since the header may contain a variable
number of options.

Type of Service The Type of Service (ToS) field provides an indication
of the parameters of the quality of service desired.
It is used to specify the treatment of the datagram
during its transmission. RFC 2474 [35] redefines this
field as the “Differentiated Services field” (DS field)
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012345 6 7 8 91011121314151617 1819 20 21 2223 24 25 26 27 28 29 30 31

Version| IHL | Type of Service [ECN Total Length
Identification Flags Fragment Offset
Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Figure 2.4: IPv4 datagram header. Light grey coloured fields are optional.

ECN

Total Length

Identification

Flags

Fragment Offset

Time to Live

Protocol

Header Checksum

Source Address

due to the limited practical use of the Type of Service
field and the need for a new field by new real-time
protocols.

Explicit Congestion Notification (formerly part of
ToS).

The total length of the packet, including the variable-
length header. This field is needed to calculate the
payload length, and imposes a maximum total packet
length of 2'¢ —1 = 65,535 bytes.

Numeric identifier used to uniquely identify a set of
fragments belonging to the same packet.

Used for fragmentation control, indicating whether a
fragment is the last fragment or not of a packet, or if
fragmentation is allowed for a packet.

Specifies the offset of a fragment relative to the
beginning of the original packet. This field is required
for packet reassembly.

Sets a maximum packet lifetime, to prevent packets
from persisting in the network due to, for example,
routing loops.

Indicates the protocol of the packet encapsulated by
the IP header and transported in the IP payload.

16-bit checksum field, used for header error-checking.

32-bit IP address of the source of the datagram

Destination Address 32-bit IP address of the destination of the datagram
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Options Optional field. It can contain a list of different
options, but it must always be terminated with an
“End of Options” option.

Padding Since the number of options is variable and the length
of each option is also variable, and the header length
field (IHL) is expressed in 32-bit multiples, padding is
needed to ensure that the header contains an integral
number of 32-bit words.

2.4.2 IPv6

The IP protocol version 6 (IPv6) is defined in RFC 2460 [15] (replacing its
previous definition in RFC 1883 [14]). It was defined in 1998 in order to
succeed IPv4, with the goal of overcoming a number of IPv4 shortcomings,
especially, for dealing with the anticipated IPv4 address exhaustion.

The primary changes from IPv4 to IPv6 are an increased address space,
which is 128 bits (allowing for up to 2'2® — about 3.4 x 103®) different IPv6
addresses), a simplified header format, with includes a fixed header-length
and improved support for extension headers and options (allowing for more
efficient packet forwarding and greater flexibility for introducing new options),
flow labelling capability (with which the sender is allowed to request special
handling by routers), and authentication and privacy capabilities. The IPv6
header format is described below and illustrated in figure 2.5.

01234567 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version| Traffic Class Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 2.5: IPv6 datagram header

Version Internet Protocol version. It has a value of 6 for IPv6.
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Traffic Class Identifies different priorities.

Flow Label Used by the source to label sequences of packets for
which it requires special handling by routers, such as
a non-default quality of service or “real-time” service.
This field replaces the “Type of Service” field in IPv4.

Payload Length Length of the IPv6 packet payload, not including the
length of the header (40-bytes fixed length). Note
that extension headers, if present, are considered part
of the payload.

Next Header Identifies the type of header immediately following
the IPv6 header. This next header may indicate any
upper-layer protocol or an IPv6 extension header.

Hop Limit Packet lifetime. Used to prevents packets from
indefinitely persisting in the network. It is specified as
a number of hops (in contrast to the “Time to Live”
IPv4 field, which is specified in seconds, requiring
nodes to perform difficult time computations), which
is decremented at every node where the packet is
forwarded.

Source Address 128-bit IP address of the source of the datagram

Destination Address 128-bit IP address of the destination of the datagram

2.5 The Internet of the Things

The Internet of Things [32] is a paradigm which aims to provide everyday
objects with a unique address, enabling their integration into the Internet.
These objects are expected to provide contextual information and/or perform
certain actions, according to their own interpretation of context and/or the
orders received from remote hosts. This fact makes IPv6 (especially, its
extremely large address space) a perfectly suited protocol for its use in the
identification and communication between these objects and the rest of the
Internet.

It is important to note that these objects do not require special capabilities:
since a unique bar code or unique identifier in a radio-frequency identification
(RFID) tag is sufficient to provide a unique identifier to an object, enabling
every object to be identified and hence, integrated into the the Internet.
However, the more processing capabilities the object has, the wider its
communication capabilities will be; while some of these objects may have
a read-only RFID tag (which may inform others of the object’s location
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when passing RFID readers located in known places), other “things” might
implement a fully-compliant IPv6 protocol stack, becoming “first-class Internet
citizens” capable of sending and receiving information to and from the
Internet, just as any other network attached computer might. Between these
two extremes, a vast range of possibilities exists, in which each object is
required to implement only the minimum features necessary for its specific
application.

Therefore, the Internet of Things concept provides for a large set of
applications such as home automation, security, monitoring, smart metering,
and management among others, providing the means to transform their
environments into a smart, context-aware entity with the ability to sense and
act. Consequently, these applications target many different markets, from
individuals or families to industry.

2.6 6LoWPAN

6LoWPAN is an intermediate layer that allows the transport of IPv6 (see
Section 2.4.2) packets over IEEE 802.15.4 (see Section 2.3) frames. Although
the term 6LoWPAN stands for IPv6 over Low-power Wireless Personal Area
Networks, it may extend the personal operating space, similar to LR-WPANs.
RFC 4919 [30] describes an overview, assumptions, problem statement, and
goals, while RFC 4944 [33] defines the standard itself. Figure 2.6 depicts
how an IPv6 packet is encapsulated into a IEEE 802.15.4 frame using the
6LoWPAN adaptation layer.

The IPv6 standard defines certain requirements for the link-layers over
which it is to be transported. However, the IEEE 802.15.4 MAC layer does not
fulfil these requirements in certain points. Hence, the 6LoWPAN specification
defines not only the frame format for the transmission of IPv6 packets over
IEEE 802.15.4, but also the mechanisms to obtain a unique IPv6 address
from either, 16-bit or 64-bit IEEE 802.15.4 MAC addresses (using Stateless
Address Autoconfiguration—defined in RFC 4862 [47]), and to overcome the
limitations of IEEE 802.15.4 [4].

IPv6

layer

IPv6 packet

6LoWPAN

layer
MAC
layer

Figure 2.6: 6LoWPAN Intermediate layer

6LoWPAN packet

IEEE 802.15.4 frame
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2.6.1 G6LoWPAN Motivations

The minimum Maximum Transfer Unit (MTU) required for a link-layer
transporting IPv6 packets is, as defined in RFC 2460, 1280 octets. This is far
beyond the maximum IEEE 802.15.4 frame size, which is 127 octets. Of these
127 octets, the maximum MAC header size is 25 octets and, if IEEE 802.15.4
link-layer security is enabled, it may use up to 21 additional octets. This
leaves only 81 octets available for IPv6 transport. As the IPv6 header length
is 40 bytes, only 41 bytes are available for transport layers and so on.

In order to meet the IPv6 minimum MTU requirements, 6LoWPAN defines
a fragmentation and reassembly mechanism that allows splitting IPv6 packets
at the 6LoWPAN adaptation layer into smaller fragments that can be handled
by the link-layer, with this process being transparent to the Internet layer.
However, applications using 6LoWPAN are not expected to use large packets,
hence, in order to avoid fragmentation as much as possible, 6LoWPAN defines
an IPv6 header compression mechanism.

2.6.2 6LoWPAN Packet Compression

As previously mentioned, in order to minimize the necessity of fragmentation,
6LoWPAN implements IPv6 and next header compression (IPv6 Extension
headers, UDP, etc.). Although RFC 4944 defines a powerful stateless
compression mechanism, it can only reach its maximum effectiveness in link-
local packet transmissions. This approach is inefficient for most practical
cases, where 6LOWPAN devices communicate with devices external to the
6LoWPAN using routable addresses, hence the header compression mechanism
defined in RFC 4944 is, at the time of this writing, in the process of
being updated by IPHC, a widely accepted new and optimized context-
based compression, defined in RFC 6282 [27]. In addition, there are some
approaches to transport-layer header compression (still works in progress),
such as the specification in I-D.ietf-bormann-6lowpan-ghc [9], which describes
mechanisms for generic header compression.

The TPHC compression mechanism described in RFC 6282 permits
compressing the 40-byte IPv6 header down to 2 octets for link-local
communications and to 3 octets for non-link-local transmissions, which
corresponds to compression rates of 95% and 92.5% respectively. Note that
these 2 or 3 bytes include the 6LoWPAN dispatch bit field (1 octet), which
would be included even if no compression at all is used (in fact, the IPHC
compression mechanism makes use of the 5 rightmost bits of the 6LoWPAN
dispatch bit field for compression rather than for identification). Figure 2.7
illustrates the structure of the 6LoOWPAN IPHC header (as bit fields).

Dispatch 6LoWPAN Dispatch value for IPHC compression, has
a constant value of 0115.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dispatch TF NH HLIM CID [SAC SAM M |DAC DAM

Figure 2.7: 6LoWPN IPHC base header

TF Traffic Class and Flow Label; this field being 115
means that both have a value of 0 and are elided.

NH Specifies whether the next header is carried in-line or
compressed.

HLIM Hop-limit. If different than zero, the hop-limit is
elided.

CID If set, an 8-bit field containing context identifiers

follows this header.

SAC Indicates whether the source address compression is
stateless or stateful.

SAM Indicates the source address compression mode.
M If set, destination address is multicast.
DAC Indicates whether the destination address compression

is stateless or stateful.

DAM Indicates the destination address compression mode.

As previously mentioned, this compression mechanism relies on shared
context, which means that mechanisms to maintain and disseminate such
contexts must be provided. Although RFC 6282 does not specify which
information a context is composed of, or how maintenance and dissemination
of contexts are performed, these features have been further defined in
I-D.ietf-6lowpan-nd [43].

2.6.3 6LoWPAN Fragmentation

In order to comply with the IPv6 specification [15], 6LoWPAN provides
support for packet fragmentation. When an entire IPv6 datagram does not fit
within a single IEEE 802.15.4 MAC frame, such datagrams should be split into
fragments. Each of these fragments needs to be encapsulated into a 6LoWPAN
packet adding a fragmentation header which specifies an IPv6 packet identifier
(so each fragment can be associated with its corresponding IPv6 datagram), an
offset, and the total IPv6 packet length. This fragmentation header adds a 4
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octet overhead for the first fragment, and 5 for the second and subsequent
fragments. Therefore, in order to minimize this overhead, fragmentation
should be avoided as mush as possible.

2.7 Address Resolution Protocol

The Address Resolution protocol (ARP) is defined in RFC 826 [37]. It is used
for resolution of network layer addresses into link-layer addresses. Despite
having been implemented in several combinations of networks and link-layers,
the most popular cases are IPv4 over IEEE 802.3 and IPv4 over IEEE 802.11
(WiFi). ARP uses ARP tables and a request-response mechanism in order to
perform its task. Its main function is fairly simple:

1. Node A (having link-layer address a and IP address x) wants to send a
packet to node B, whose link-layer address is b and IP address is .

2. A searches its ARP table for B’s link-layer address.

3. If found, then the packet can be delivered directly, so A jumps to step
8; if not, then the sender sends an ARP request packet to the link-layer
broadcast address, asking “Who has IP address y?”

4. Breceives the ARP request (since it is a broadcast packet) and identifies
its IP address (y) in the packet’s target address field.

5. B stores the pair <z, a> in its ARP table and responds with an ARP
response packet to A including its link-layer address (b).

6. A receives B’s ARP response and stores the pair <y, b> in its ARP
table.

7. Now, both, receiver and sender know each other’s link-layer address. A
goes back to step 1.

8. A sends its packet to B.

ARP is replaced by the Neighbor Discovery protocol in the IPv6 network
layer (see Section 2.9).

2.8 Dynamic Host Configuration Protocol

The Dynamic Host Configuration Protocol (DHCP) is used to provide
automatic configuration in IPv4 networks. It was first defined in RFC 1531
[17] as part of the Bootstrap Protocol (BOOTP), and later, redefined as a
protocol itself in RFC 2131 [18].
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DHCP uses UDP as its transport layer protocol. Its operation involves
interchanging 4 packets between the host being configured (running a DHCP
client) and the DHCP server: DHCP Discovery, DHCP Offer, DHCP Request,
and DHCP acknowledgement. As the outcome of this message exchange, the
host can acquire a variable set of network parameters, the most important
being its IPv4 address, subnet mask, and router’s IPv4 address. This address
assignment is for a limited lease time specified in the DHCP acknowledgement.
When half the time has elapsed, the host initiates the DHCP renewal process
by sending a new DHCP request to renew its lease.

DHCP’s successor for IPv6 networks is DHCPv6, specified in RFC 3319
[42]. This can be used as stateful counterpart to RFC 4862 “IPv6 Stateless
Address Autoconfiguration” [47] (see Section 2.9.1), either separately or
concurrently with it.

2.9 Neighbor Discovery

The following three sections describe the “Neighbor Discovery for IPv6”
protocol, defined in RFC 4861 [34] and its modified version, “Neighbor
Discovery Optimization for Low-power and Lossy Networks”, which, at the
time of this writing, is specified by the work-in-progress Internet Draft
I-D.ietf-6lowpan-nd [43]. Both protocols, the original and its modified version,
are compared in the third section (Section 2.9.3).

2.9.1 Neighbor Discovery for IPv6

The Neighbor Discovery protocol for IPv6 (IPv6-ND) specified in RFC 4861
[34] provides the mechanisms required to accomplish the following tasks:
Router Discovery, Prefix Discovery, Parameter Discovery, Address
Autoconfiguration (by the means specified in RFC 4862 [47] and RFC 3319
[42]), Address resolution, Next-hop determination, Neighbor Unreachability
Detection, Duplicate Address Detection, and Redirect. Section 2.9.1.1 details
the messages defined by the IPv6-ND protocol and section 2.9.1.2 briefly
describes the protocol’s operation.

2.9.1.1 IPv6 Neighbor Discovery messages

In order to achieve its goals, RFC 4861 defines a number of new ICMPv6 [13]
messages: Router Solicitation (RS), Router Advertisement (RA), Neighbor
Solicitation (NS), Neighbor Advertisement (NA), and Redirect. Table 2.2
depicts these message types. A description of the options noted in this table
is given in sections 2.9.1.2 and 2.9.2.2.
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RS Routers send Router Advertisement (RA) messages periodically.
In order to prompt routers to send a RA immediately, hosts may
send a RS message, enabling faster interface initialization.

RA Routers advertise their presence together with a number of
network parameters via RA messages. These messages can be
sent either periodically or “on demand”, as a response to a
RS message. The parameters these messages announce include,
among others, prefix information, maximum transfer unit, and
hop limit.

NS A Node may send NS messages to a neighbor in order to
determine its link-layer address (Address Resolution) or to verify
its reachability (Neighbor Unreachability Detection). In addition,
NS messages are used in the stateless address autoconfiguration
process for Duplicate Address Detection.

NA NA messages are sent in response to NS messages. They typically
carry link-layer address information in order to complete the
address resolution procedure. In addition, a node may multicast
unsolicited NA messages if it detects that its link-layer address
has changed. This provides a fast (and unreliable) way to spread
the new link-layer address to neighboring nodes.

Redirect Since routers are aware of the network’s configuration, they can
send Redirect messages in order to inform hosts of a better next-
hop towards their destination (or to inform that the destination
is in fact a neighbor).

2.9.1.2 IPv6-ND Protocol Overview

During bootstrapping, hosts need to (1) discover routers and network
information, and (2) configure/autoconfigure their IPv6 interfaces. To
accomplish the first, they send up to MAX_ RTR_SOLICITATIONS RS
messages to the all-routers multicast address [25]. The response from the
routers should be a RA carrying the expected information (prefix and network
parameters). To achieve the second, a host uses either a manually configured
IPv6 address for each interface or generates a link-local IPv6 address as
specified in RFC 4862 [47], section 5.3. Global IPv6 addresses are configured
as specified in section 5.5 of RFC 4862 using the information received in the
Prefix Information Option (PIO) of RAs.

In addition, DAD must be performed for every address prior to assigning
this address to an interface. DAD consists of sending up to
DupAddrDetect Transmits NS messages that carry the address that the node
is checking for duplicates in the Target Address field. The IPv6 source
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Table 2.2: IPv6-ND message types.

Possible .
Message type options IPv6-ND message purpose Defined in
Neighbor Address Resolution, RFC 4861
Solicitation SLLAO | Neighbor Unreachability Detection, tion 4 3’
(NS) Duplicate Address Detection section <.
Neighbf)r Response to NS, RFC 4861,
Advertisement | TLLAO New information propagation section 4.4
(NA)
ROl_lt_er ) Prompt routers to generate Router RFC 4861,
Solicitation SLLAO Advertisement messages section 4.1
(RS)
Router' SLLAO, Prefix and link-parameter RFC 4861,
Advertisement | MTU, dissemination section 4.2
(RA) PIO
) TLIfAO’ Inform a host of a better first-hop RFC 4861,
Redirect Redirect node on the path to a destination section 4.5
Header

address of the NS is the unspecified address and the destination address is
the Solicited-node multicast address [25] of the target. If there is no answer
within a certain period of time (RetransTimer milliseconds), then depending
on the value of DupAddrDetectTransmits, another NS is sent or the address
is assumed to be unique, i.e., that no other node is using the same IPv6
address. Both constants (RetransTimer and DupAddrDetectTransmits) are
defined in RFC 4861 and RFC 4862 respectively, with default values of 1,000
milliseconds and 1 respectively).

After the node’s interfaces are configured, when a node wants to send
a packet to a neighbor, it first sends a NS message to the Solicited-node
multicast address in order to resolve the target’s link-layer address. The link-
layer address will be specified in the NA sent in response and thus, direct
communication will be possible. In order to ensure that a neighbor is still
reachable (or to refresh the information in the Neighbor Cache) a node can
also unicast NS messages.
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2.9.2 Neighbor Discovery Optimization for LLNs

The Neighbor Discovery Optimization for Low power, Lossy Networks
(6LoWPAN-ND) is a set of modifications of IPv6-ND rather than a new
protocol. These modifications were introduced in I-D.ietf-6lowpan-nd [43].
The main goal of these modifications is to optimize Neighbor Discovery for
power-constrained devices that may utilize non-transitive links. A secondary
goal is to provide support for certain features required in 6LoWPAN networks,
such as the context propagation feature to enable the use of context-based
IPv6 Header Compression [27].

2.9.2.1 6LoWPAN Neighbor Discovery messages

The message types in 6LOWPAN-ND remain the same, with the following
exceptions:

e 3 new options are introduced: Address Registration option (ARO),
6LoWPAN Context Information option (6CO), and Authoritative Border
Router option (ABRO). ARO is mandatory, while 6CO and ABRO are

optional.

e 2 new optional message types are introduced: Duplicate Address

Request (DAR) and Duplicate Address Confirmation (DAC).
¢ Redirect messages are not used in route-over topologies.

Table 2.3 shows the message types and options used in 6LoWPAN-ND.

2.9.2.2 6LoWPAN-ND Protocol Overview

During interface initialization, hosts send up to MAX_RTR,__ SOLICITATIONS
(3 by default) RS messages in order to discover routers. In response, routers
send RAs which may include, in addition to other options such as the Prefix
Information option (PIO), one or more 6LoOWPAN Context options (6COs),
and an Authoritative Border Router option (ABRO). Note that both RS and
RA must also carry a Source Link-Layer Address option (SLLAO) [43].

If IEEE’s 64-bit Extended Unique Identifier (EUI-64) based addresses are
used, DAD is not required. Otherwise, DAD is performed via the new Address
Registration feature and, optionally, using the new multihop DAD by means
of DAR and DAC messages.

The Address Registration feature is performed by sending NS and NA
messages carrying the new ARO option, i.e., a host sends a unicast NS with
the ARO option to the router(s). The ARO contains the EUI-64 of the sending
interface, in order to uniquely identify it, and a registration lifetime.

A router that receives such a NS message, tries to register the address
in its Neighbor Cache (NC). If there is no other node using the same IPv6
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Table 2.3: 6LoWPAN-ND message types. New message types and options in

red.
™
=
g
0
=
- g
=
2 5
z g
Possible 8 5
Message type options 6LoWPAN-ND message purpose ~ =
Neighbor SLLAO, | Address Registration,
Solicitation ’ : 1 . §4.3 §4.1
(NS) ARO Neighbor Unreachability Detection
Neighb.0r TLLAO,| Response to NS,
Advertisement ARO New information propagation §4.4 §4.1
(NA)
R01'1t.er ) Prompt routers to generate _
Solicitation SLLAO Router Advertisement messages §4.1
(RS)
SLLAO,
Router. MTU, Prefix, context and link-parameter §4.2;
Advertisement | PIO, dissemination §4.2 §4.3
(RA) 6CO,
ABRO
Duplicate
Address _ Perform multihop duplicate
Request address detection §4.5 §4.4
(DAR)
Duplicate
Address
- Response to DAR
Confirmation P 54:5 544
(DAC)

address in the NC, then the registration succeeds and the router creates a
new Neighbor Cache Entry (NCE) which will remain valid until the lifetime
expires. In contrast, if this IPv6 address was in use by another node (with a
different EUI-64) or if there is no space in the NC for the new entry, then the
registration fails. In both cases a NA containing the same ARO option will be




24 CHAPTER 2. BACKGROUND

sent in response, along with the corresponding status value. The status value
informs the node trying to register its address of the result of its registration
attempt.

If the optional multihop DAD feature is implemented, then this last step
may take a bit longer as a 6LoWPAN Router (6LR) that receives a NS
including an ARO from an IPv6 source address not in its NC, will send a
DAR message to the 6LoWPAN Border Router (6LBR). If the 6LR receives
a positive DAC in response to its DAR, it will send back a NA with the
corresponding ARO and status value to the node that originated the NS.

Hosts (and 6LRs) need to periodically refresh their NCEs in the routers
by re-sending a NS with an ARO specifying a new lifetime. Note that
this registration attempt also confirms that the destination routers are still
reachable and therefore is used also for Neighbor Unreachability Detection
(NUD).

In 6LoWPAN-ND, hosts do not perform address resolution. Thus, when a
host wants to send a packet, this packet is always sent via a router. The router
will determine whether the destination node is reachable or not, according to
its NC. This means that the router is the only direct neighbor for each host.

2.9.3 IPv6-ND vs. 6LoOWPAN-ND

This section describes the differences in the IPv6-ND operations that the
6LoWPAN-ND optimizations introduce and highlights the differences with
the greatest impact in terms of compatibility between the two protocols.

2.9.3.1 Differences

The optimizations introduced by I-D.ietf-6lowpan-nd [43] are enumerated
below and the differences with respect to IPv6-ND are described in Table 2.4.

1. Host-initiated interactions to allow for sleeping hosts.
2. Elimination of multicast-based address resolution for hosts.

3. A host address registration feature using a new option in unicast
Neighbor Solicitation and Neighbor Advertisement messages.

4. A new Neighbor Discovery option to distribute 6LoWPAN header
compression context to hosts.

5. Optional multihop distribution of prefix and 6LoWPAN header compression
context.

6. Optional multihop duplicate address detection using two new ICMPv6
message types.
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Table 2.4: 6LoWPAN-ND optimizations and differences regarding IPv6-ND.

# 6LoWPAN-ND

optimization

IPv6-ND behavior

6LoWPAN-ND
behavior

1 | Host-initiated
interactions to allow
for sleeping hosts

Routers send periodic
RAs and hosts send
multicast NS between
them

RAs sent mainly in
response to RSs; NSs
are not sent between
hosts

2 | Elimination of
multicast-based
address resolution for
hosts

Hosts multicast NSs
to perform address
resolution

All communication
between hosts is via
routers

3| New host address
registration feature
using a new option in

DAD, NUD, and
Address Resolution
performed as specified

The address
registration feature
provides support for

unicast NSs and NAs | in [34] and [47] DAD, NUD, and
Address Resolution.

4 | New Neighbor Not used Context information is
Discovery option to disseminated by 6CO
distribute context options in RAs
information

5 | Optional multihop Not used Enhances the

distribution of prefix
and context
information

distribution of prefix
and enables
dissemination of
context information

6 | Optional multihop
duplicate address
detection

DAD performed as
specified in [47]

Provides support for
non-EUI-64 based
addresses in route-over
topologies

2.9.3.2 Incompatibilities

Some of the differences mentioned in section 2.9.3.1 require special attention
due to the incompatibilities they introduce. An attempt to internetwork
6LoWPAN and IPv6 networks (each of them running their corresponding
ND protocol) without handling these incompatibilities in a proper way would
result, at best, in a misuse of the ND protocol while, in most cases, this
communication would be impossible.

Of these differences, #1, #2, and #3 are the most significant. In IPv6-ND
address resolution is performed by (multicasting) NS and NA messages. In
contrast, address resolution is not performed by 6LoWPAN hosts (although
routers may do address resolution). 6LoWPAN hosts do not even join the
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Solicited-node multicast address; instead, they register with routers by means
of the address registration feature (#3). When a host needs to send a packet,
the packet is delivered via a 6LoOWPAN Router (6R) that is aware of the
target’s link-layer address due to this node’s current registration.

Moreover, non-constrained devices (NCDs) trying to deliver a packet to
a neighboring 6LoWPAN host would first multicast a NS message to the
destination’s Solicited-Node multicast address for Address Resolution. As
6LoWPAN hosts do not join the Solicited-Node multicast group, they will not
be listening to this address, hence the NS will not be answered, therefore the
NCD would assume that the destination is unreachable.

Furthermore, DAD is also performed in IPv6-ND by sending a Neighbor
Solicitation message to the Solicited-node multicast address (as described in
Section 2.9.1). However, no host in the 6LoWPAN network will respond to a
message sent to this multicast address and thus, a NCD would never detect
whether another 6LoOWPAN host has the same IPv6 address it is trying to
use.

In contrast, I-D.ietf-6lowpan-nd states that either DAD is not needed (if
EUI-64 based IPv6 addresses are used) or multihop DAD is used (if there are
non-EUI-64 based addresses in a route-over topology). Note that this assumes
that the EUI-64 based IPv6 address will be unique. Section 3.2 examines some
of the other assumptions that I-D.ietf-6lowpan-nd makes.

2.10 What have others already done?

This section describes a number of related works. This related work is divided
into to neighbor discovery proxies and background material about Contiki (as
this open source software will be used in the developments reported in this
thesis).

2.10.1 Neighbor Discovery proxies

The concept of Neighbor Discovery proxies is not original; previous work
has described some specifications of ND proxies. The proxy operations
described in this thesis were highly influenced by two specific documents:
“Neighbor Discovery Proxies” (RFC 4389) [46] and “6LoWPAN Backbone
Router” (draft-thubert-6lowpan-backbone-router) [48].

RFC 4389 describes the required proxy operations for some special
cases when bridging different types of media requires network-layer support.
Although our case also involves bridging two different types of media and such
bridging requires network-layer support (mainly link-layer address translation
in ND messages), the reasons that make the use of a proxy necessary in
our scenario are significantly different that those described in RFC 4389.
Specifically, the use of a proxy is necessary in our case because each interface
of the 6LP-GW is attached to a network segment that utilizes a different
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ND protocol and, more importantly, these protocols are incompatible. In
contrast, the Neighbor Discovery Proxies specified in RFC 4389 considers the
same Neighbor Discovery protocol on all interfaces.

The Internet Draft “6LoWPAN Backbone Router” describes a situation
very similar to ours. In particular, the scenario depicted in this internet
draft consists of several small 6LoWPAN LLNs connected to a transit link
(Ethernet) by means of a backbone router per LLN. Such backbone routers
perform Neighbor Discovery proxying between the 6LoWPAN networks and
the Ethernet transit link. Figure 2.8 illustrates the scenario presented in
draft-thubert-6lowpan-backbone-router.

Plant Network

Gateway
Transit Link
Backbone Backbone Backbone
router router router
Yo Yo Yo
Yoy, % Yoy, % Yoy, %
Yo % Yo Yo Yo % Yo Yo Yo % Yo Yo
Yo Yo Yo Yo Yo Yo
Yo © Vo\?O Yo ‘o \?o\?O Yo © Vo\?O
Yo Yo Yo
LLN LLN LLN

Figure 2.8: Backbone Routers scenario

While some of the proxy mechanisms described in “6LoWPAN Backbone
Router” are similar to the ones described in this thesis (see Section 3.2), others
differ significantly or are out of the scope of one or the other document.

The most important difference between the 6LoWPAN backbone router
and the 6LP-GW is that the former performs network-layer routing between its
two interfaces, whilst the latter neither routes packets nor performs internet-
layer forwarding, but rather operates as a bridge (although it requires network-
layer support in certain situations). Moreover, while a 6LoWPAN backbone
router defines an IPv6 subnet, the 6LP-GW does not, but rather it is the port
of the IPv6 router (which the 6LP-GW connects to) that defines the subnet.
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Figure 2.9 illustrates this difference.

@
6LOWPAN - IPv6 subnet

%o, %

IPv6 subnet

Router

Yo | Yo

NCD - IPv6 subnet

Figure 2.9: 6LBR vs. 6LP-GW. The figure illustrates the differences in the
topology derived from the use of a 6LBR (left) or a 6LP-GW (right). Note
that the use of a 6LBR necessarily causes the creation of a new IPv6 subnet,
while all the nodes in the network in which the 6LP-GW operate share the
same network prefix.

Furthermore, 6LoWPAN backbone routers are required to operate as a
“distributed database of all the LLN nodes”, while the 6LP-GW maintains a
strictly local database of the LLNs within the 6LoWPAN it is connected to.
The reason for this is that there is no requirement that the 6LP-GW acts as
a mobility anchor.

These differences have their roots in the different problems each device
addresses; while a “6LoWPAN Backbone Router” aims to provide scalable
support for mobility of 6LNs between LLNs without requiring them to register
with each LLN’s 6LBR, the 6LP-GW proposed in this thesis aims to integrate
6LoWPAN LLNs into existing IPv6 infrastructures without requiring a single
change in the existing network infrastructure. This allows the end-user to
literally “attach” a 6LoOWPAN LLN to her/his existing IPv6 router. In
contrast the “6LoWPAN Backbone Router” approach cannot be used in some
settings, for example most home IPv6 routers preclude intra-LAN routing.

In conclusion, while the solution proposed in “6LoWPAN Backbone
Router” targets mobility and scalability in large installations (such as in office
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buildings and/or industrial plants) without considering the problem of home
routers, the implementation proposed here (using the 6LP-GW) aims for rapid
deployment of 6LoWPAN networks at low cost, which involves allowing re-
utilization of existing home routers, but leaves mobility issues out of scope.
Section 6.2, however, provides guidelines for enabling the same mobility
support as provided by draft-thubert-6lowpan-backbone-router while still not
requiring intra-LAN routing (and hence allowing the use of home routers). It
should also be noted that 6LP-GWs can also be attached to multiport Ethernet
switches, enabling their use in settings with such switches. A Power over
Ethernet version of the Ethernet interface of the current hardware prototype
platform in which the 6LP-GW is implemented (Hogaza board v1.2 [50]) is
being designed in a companion Bachelor’s thesis project [22].

2.10.2 The Contiki Operating System

Contiki is an open source lightweight platform-independent operating system
for embedded platforms written in the C programming language. Although
it lacks certain features expected to be present in any operating system (for
example, it does not provide hardware management functions), it provides a
powerful and richly-featured framework for embedded system development.

Among its main features, Contiki provides a memory-efficient abstraction
mechanism for multitasking-like process development called protothreads [21]
controlled by a simple event-driven kernel, different libraries for memory
allocation and management, message-passing-based interprocess communication,
and fully-compliant and lightweight IPv4 and IPv6 communication stacks,
including a 6LoWPAN implementation.

2.10.2.1 Contiki’s protothreads

Protothreads [21] are a programming abstraction that provides a function-
level conditional blocking wait statement: PT_WAIT_UNTIL(). Conceptually,
PT_WAIT_UNTIL() blocks the executing function —protothread— until a
condition (passed as parameter) evaluates to true. This relatively simple
abstraction allows programmers to structure their entire application as a set
of independent processes, rather than a large monolithic one, thus improving
scalability, maintainability, and manageability of the code. Protothreads are
intended to simplify event driven programming, which usually consist of a
state machine. Such a state machine is traditionally implemented by a large
infinite loop with a conditional switch statement inside it. Figures 2.10 and
2.11 (on pages 31 and 32 respectively) illustrate two different implementations
of state machines, comparing the traditional loop-switch and protothreads
approaches.

Protothreads are built on top of an underlying mechanism called local
continuations. Local continuations can be seen simply as a means to store
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the state of a protothread. Local continuations can perform two operations:
set and resume. A set operation stores the current position at which it
is invoked, whereas a resume operation causes the program to jump to the
point previously stored in the local continuation (the point at which the set
operation was invoked).

Hence, we can consider protothreads as C functions which utilize local
continuations to alter their normal execution flow. When the execution
reaches a PT_WAIT_UNTIL() statement, a set operation is performed. If the
condition passed as parameter of the PT_WAIT_UNTIL() is met, then the
function continues executing; otherwise, the control is returned to the caller
function (i.e., the program jumps to the end of the function). The return
value which is produced in this case, informs the caller function that the
protothread has not finished, but rather that it is waiting for something.
The next time the protothread is invoked, a resume operation is performed,
causing the program to jump to the previously stored position and to re-
evaluate condition. Note that the use of protothreads requires the presence
of a scheduler function, which can be as simple as an infinite loop in which
all the protothreaded functions are called sequentially. In addition to the
PT_WAIT_UNTIL() statement, [21] also defines other useful local-continuation-
based mechanisms, such as the PT_YIELD(). The PT_YIELD() statement
performs a single unconditional blocking wait, which causes the protothread to
unconditionally return the control to the caller. The next time the protothread
is executed, it will continue its execution from the point where PT_YIELD()
was invoked.

Regarding the C implementation, protothreads are implemented by means
of macros that expand to a set of instructions which perform the operations of
local continuations (set and resume) and, optionally, evaluate conditions [21].
Local continuations can be implemented in two different ways: using the Labels
as Values GCC compiler extension (which allows storing labels in variables)
together with goto statements, or relying on standard C switch statements
together with the standard __LINE__ macro (which expands to the number
of the line at which __LINE__ is used). The former leads to slightly better
results in terms of code size and speed, but it depends on the availability of
the GCC compiler for a certain architecture, while the latter can be utilized
together with any standard C compiler.

2.10.2.2 Contiki’s kernel

In order to explain how the Contiki kernel works, we introduce the Contiki
process concept. Contiki’s protothreads are wrapped within the process
structure (C struct). This process structure stores a protothread’s context
information, such as the process name, a pointer to the protothreaded function,
the protothread itself (containing its local continuation), the process state, and
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state : {GREEN, AMBER, RED}

void semaphore () {
state = GREEN // set initial state
light (GREEN)
timer_set (GREEN_TIMER)

while (1) {
switch(state) {
case (GREEN):
if (timer_expired (GREEN_TIMER) ||
pedestrian_button_pressed()) {
state = AMBER

light (AMBER)
timer_set (AMBER_TIMER) pt_semaphore:
} PT_BEGIN
case (AMBER): while (1) {
if (timer_expired (AMBER_TIMER)) { light (GREEN)
state = RED timer_set (GREEN_TIMER)
light (RED) PT_WAIT_UNTIL(timer_expired (GREEN_TIMER) ||
timer_set (RED_TIMER) pedestrian_button_pressed())
}
case (RED): light (AMBER)
if (timer_expired (RED_TIMER)) { timer_set (AMBER_TIMER)
state = GREEN PT_WAIT_UNTIL(timer_expired (AMBER_TIMER))
light (GREEN)
timer_set (GREEN_TIMER) light (RED)
¥ timer_set (RED_TIMER)
} PT_WAIT_UNTIL(timer_expired (RED_TIMER))
} }
T PT_END

State machine implemented using a State machine implemented using the
traditional loop-switch mechanism. protothreads abstraction mechanism.

Figure 2.10: Example of the same state machine implemented using traditional
loop-switch statements (left) and Contiki protothreads (right), both in
pseudocode. This state machine represents the operation that controls the
state transitions in a hypothetical street semaphore provided with a button
that can be pressed by pedestrians to trigger a transition from green-light state
to amber first and, eventually red-light state (for the cars that are flowing
perpendicular to the pedestrian.

a boolean variable which indicates whether the process has requested a poll
from the kernel.

This kernel is event-driven, which means that the process to be called
next is chosen depending on whether a process has any pending event.
This approach implies that, a process whose protothread has performed a
PT_WAIT_UNTIL(condition) or PT_YIELD() statement, will not continue its
execution unless another process posts an event addressed to it or if it has
actively requested to be polled by the kernel before executing the blocking
statement. This approach does not take advantage of the variety of returning
values implemented by the protothreads mechanism [21] and requires the
programmer to ensure that no process will enter a permanent sleep state,
but it ensures that processes are not unnecessarily checked repeatedly if they
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state : {0ON, OFF}

main loop:
state = OFF // set initial state
while (1) {
switch(state) {
case (OFF):
if (button_pressed()) {
timer_set (LIGHT_TIMER)
light_on ()
state = ON
¥
case (ON):
if (timer_expired (LIGHT_TIMER) ||
button_pressed ()) {
light_off ()
state = OFF
}
}
}

button_pt:
PT_BEGIN
while (1) {
PT_WAIT_UNTIL (button_pressed())
post_event (light_pt, BUTTON_PRESSED)
}

PT_END
timer_pt:
PT_BEGIN
while (1) {
PT_WAIT_UNTIL (event == TIMER_START)

timer_set (LIGHT_TIMER)
PT_WAIT_UNTIL(timer_expired(LIGHT_TIMER))
post_event (LIGHT_TIMER_EXPIRED)
}
PT_END

light_pt:

PT_BEGIN
light_off ()
while (1) {

PT_WAIT_UNTIL (event == BUTTON_PRESSED)
light_on ()

post_event (timer_pt, TIMER_START)
PT_WAIT_UNTIL (event == BUTTON_PRESSED ||

event == LIGHT_TIMER_EXPIRED))

light_off ()

}

PT_END

State  machine  implemented
using a traditional loop-switch

mechanism.

State machine implemented using the
protothreads abstraction mechanism.
This approach implements 3 different
protothreads, each of them taking care
of a different task.

Figure 2.11: Example of the same state machine implemented using traditional
loop-switch statements (left) and Contiki protothreads (right), both in
pseudocode. This state machine represents an light switch that remains turned
off until a button is pressed. When the button is pressed, it remains turned on
until a timer expires or the button is pressed again. In this case, the version
utilizing protothreads may seem a priori more complex than the traditional
approach. However, it clearly separates each functional block into a different
protothread, which improves modularity and scalability of the application and
hence, simplifies the addition of new states/events. it is important to note that
in this case there are only 2 events and 2 states, but the complexity of the
code would increase exponentially while the number of states/events increases
linearly (the exponential increase occurs because the number of different cases
can potentially be equal to the Cartesian product of events and states).

have nothing to do.

Additionally, Contiki provides a rich set of timer libraries, which in spite
of not being strictly part of the system kernel, play an important role in
most applications. Among these libraries, the Event timer library module is
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tightly coupled to the kernel itself. This library provides an especially powerful
resource which enables processes to set timers. However, this module has the
particularity that it initializes a running process itself, the etimer process,
which will post an event to the process that set the timer when this specific
timer expires. This mechanism provides a useful and safe way for processes
to set a timer and yield the control to other processes, with the certainty that
they will continue their execution after the timer expires.






Chapter 3

Method

This chapter, constitutes one of the main contributions of this thesis. It
includes the specification of the proxy operations required to integrate
6LoPWAN links into IPv6 networks.

Regarding this operational specification, the 6LP-GW’s behaviour is
detailed in a per-message-type basis: this describes the actions that will be
triggered in the 6LP-GW for each of the different ND messages that may arrive
at each of its two interfaces, providing both a comprehensive explanation and
the justification for the specific behaviour that is proposed.

3.1 Assumptions and application scenario

The following two sections describe both the assumptions upon which the
specification and further implementation of the proxy operations described
here are based, and the application scenario of this thesis project.

3.1.1 Assumptions

I-D.ietf-6lowpan-nd states that the Neighbor Discovery protocol optimizations
that it introduces are compatible with both Mesh-under and Route-over
topologies. Although the proxy operation described here does not affect this
compatibility, the remainder of this report will assume a route-over topology.

The link-layer scenario considered here takes account only of IEEE 802.15.4
and IEEE 802.3 links. Nevertheless, the techniques described in this document
may also be applicable to other types of media as long as IPv6-ND is used in
one segment while 6LoWPAN-ND is used in the other, and may even be used
for interconnecting more than two link-layer media, but these considerations
are out of the scope of the present document. Thus for the remainder of this
document we will explicitly only consider a two port device, with one interface
being IEEE 802.3 and the other interface being IEEE 802.15.4.

The terms “MAC address” or “link-layer address” will be used
indiscriminately in the present document, referring to both 64-bit
(IEEE 802.15.4) and 48-bit (IEEE 802.3) MAC addresses (making no distinction
between them) since there is an IEEE defined direct mapping from 48 bit MAC
addresses to 64 bit addresses [6].

Due to the nature of the 6LOWPAN Proxy-Gateway (6LP-GW ), the
availability of a forwarding mechanism between the two interfaces is required.
While the choice of this forwarding mechanism need not impose a specific
network topology (Route-over or Mesh-under) as long as it is applied properly,

35
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a layer-3 forwarding mechanisms would increase both implementation and
network complexity. Therefore, the procedures described in this document
make use of a layer-2 forwarding mechanism in order not to add any complexity
regarding issues which are of low interest for the purposes of this thesis project.

6LoWPAN supports different compression mechanisms which may be used
or not. If compression is used, the 6LP-GW will be responsible for compressing
and decompressing packets as required. In order to maximize the utility (thus
minimizing power consumption) of both 6LoWPAN and 6LoWPAN-ND, the
compression mechanism implemented in the 6LP-GW is that described in
RFC 6282 [27].

6LoWPAN fragmentation and reassembly are currently not supported
by this implementation. The reasons for this are the limited scope of this
thesis project (with its focus on sensor nodes) and the unbalanced trade-off
between usefulness and increased complexity in terms of processing and code
size that would be derived from its implementation. However, if a commercial
application were to implement the procedures described here, this 6LoWPAN
feature should be included in order to comply with the IPv6 standard’s
requirements. Section 6.2 describes how this feature should be implemented.

Some of the new features 6LoWPAN-ND introduces are defined in
I-D.ietf-6lowpan-nd as optional. For the same reasons as explained above,
the implementation described here treats only the 6LoWPAN Context Option
feature, considered of high interest for experimental and practical purposes.
The treatment of the remaining optional features (ABRO option, multihop
DAD, etc.) is out of scope of this thesis project.

The 6LP-GW is required to keep track of the IPv6 and MAC address(es)
of the RR(s) in order to properly forward packets directed to the RR(s) or
generate packets on behalf of the RR(s). Regarding the number of RRs, this
document assumes that there is only one RR in the network: how to carry out
RR-address management for networks with more than one RR is outside the
scope of this thesis. As for the number of addresses of the RR, only its link-
layer address will be used for the purposes of the proxy operations since, as
specified in RFC 4861, that is the only valid address from which RA messages
can be sent.

6LoWPAN nodes may form their IPv6 addresses using their IEEE 802.15.4
long (64 bits) or short addresses (16 bits). When IPv6 addresses derived from
IEEE 802.15.4 short addresses are present in the network, 6LoWPAN-ND
mandates performing duplicate address detection. For practical purposes,
we assume that only EUI-64-derived IPv6 addresses will be present in the
6LoWPAN network.

3.1.2 Application scenario

The 6LP-GW is intended to sit between an IPv6 router (referred to in
the remainder of this document as RR) and a 6LoWPAN network. The
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6LP-GW extends the RR’s functionality by adding an IEEE 802.15.4 interface
in addition to the RR’s existing interfaces (typically IEEE 803.3 and
IEEE 802.11). This added functionality conceptually turns the RR into a
6LBR. This 6LP-GW enables 6LOWPAN devices to be part of the same
network as any other non-constrained device, without requiring any further
special treatment. Therefore the 6LP-GW must perform all the operations
necessary to enable ordinary IPv6 hosts to communicate with 6LoWPAN hosts
and vice versa. Figure 3.1 illustrates the 6LP-GW in this application scenario.

IEEE 802.15.4

IEEE 802.15.4 Y.

LoWPAN

IEEE 802.15.4

IEEE 802.3 Y.
IEEE 802.15.4

@ IEEE 802.15.4
V IEEE 802.11

6LoWPAN Border Router (RR)

Figure 3.1: The 6LP-GW internetworks the LoWPAN and an IPv6 router.

3.2 Proxy Operation Specification

Due to the significant innovation of the approach proposed in this document
concerning Neighbor Discovery proxy operation between two different Neighbor
Discovery protocols, and under-IP internetworking of 6LoWPAN networks, an
Internet Draft (I-D.ietf-maqueda-6lowpan-pgw [31]) describing these procedures
was written and submitted to the IETF. However, this thesis provides a full
description of such procedures for completeness.
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3.2.1 Proxy Operation overview

The 6LP-GW together with the RR will be seen from the 6LoWPAN side as a
6LBR. In contrast, from the IPv6 side, it is impossible to distinguish between
NCDs and 6LoWPAN nodes. Regarding forwarding, the 6LP-GW has to both
keep track of which node is in each segment and apply the required link-layer
address translation between IEEE 802.15.4 and Ethernet addresses. Note that
the 6LP-GW is invisible for any of the link segments it internetworks, meaning
that it does not need to have either an IPv6 address or a MAC address for the
purpose of acting as a proxy or gateway. However, the device considered here
has both IPv6 and MAC addresses associated with its Ethernet interface.
These addresses could be used for management and/or monitoring of the
device (including loading new software into it, node association, etc.) or the
network (number of nodes, traffic, etc.), but this functionality lies outside the
scope of this thesis.

In addition, some ND options carry link-layer addresses (mainly SLLAO
and TLLAO). Packets containing these option require extra processing in order
to translate from 48-bit MAC addresses into 64-bit MAC addresses and vice-
versa, depending on which segment these packets originate from.

Moreover, 6LoWPAN features such as decompression and compression
are performed by the 6LP-GW on incoming and outgoing packets when
appropriate. Therefore, to enable the operations described here, every packet
reaching the 6LP-GW, regardless of the segment where it originated, shall be
processed as required, applying the corresponding compression/decompression
operations.

Note also that the proxy mechanisms described below consider only the
case of packets traversing from one segment to the other. The 6LP-GW does
not forward unicast packets directed to the same segment they came from.

In all cases, validity checks of the incoming ND messages will be performed
as specified in the corresponding ND specification. The specific way to process
a ND message will depend on which segment it originates from and will be
explain in later sections.

3.2.2 Conceptual datastructures and Initialization

In addition to the data structures required for the forwarding mechanism,
the 6LP-GW needs to maintain a Neighbor Cache (NC) just as if it were
a 6LR (or 6LBR). The maintenance procedures for this cache extend those
described in I-D.ietf-6lowpan-nd [43]. This means that the 6LP-GW has to
create/refresh entries when receiving Neighbor Solicitation messages (NS) and
it must also remove Neighbor Cache Entries (NCEs) when their registration
lifetime expires. Receiving an ARO with zero lifetime will cause the 6LP-GW
to immediately delete the corresponding NCE.
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In addition to the information expected to be contained in every NCE,
this specification requires the inclusion of the following elements: an ARO-
pending flag, an awaiting-RA flag, and a Duplicate Address Detection (DAD)
timer. The meanings of these variables will be explained later in this section.
Furthermore, as context-based header compression is used, the 6LP-GW
also needs to perform context information maintenance and dissemination
just as if it were a 6LBR. At bootstrapping, the 6LP-GW initializes all the
data structures needed to create and maintain both a NC and the Context
information table.

3.2.3 Packet Forwarding

The 6LP-GW’s main purpose is to forward IPv6 packets originated in one
segment to the other segment. Since its operation is transparent from both
segments’ standpoint, the 6LP-GW has to promiscuously listen to the physical
media. Therefore, it needs a suitable forwarding mechanism in order to
determine whether a packet’s destination lies on a different segment than
the one where it originated (and, hence, must be forwarded) or its destination
is on the same segment it was sent from (so the 6LP-GW simply drops the
packet).

The mechanism chosen for this operation is a very simple approach to
bridging [1]: The 6LP-GW maintains a bridge table in which each entry is a
pair <MAC address, interface>. For every incoming packet, it checks whether
the source MAC address is stored in the bridge table; if it is not, the pair
<source MAC address, incoming interface> is added to the bridge table. Next,
it checks the destination MAC address: if it is a multicast address, or a unicast
address not having a matching entry in the bridge table, it is forwarded to
every interface, but the incoming interface; if it is a unicast address and there
is a corresponding entry in the bridge table, then the packet is forwarded to
the interface associated with it. For maintenance of this table, a least recently
used (LRU) policy is applied in order to replace old entries by new ones when
the table is full. This behaviour is illustrated in Figure 3.2.
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Figure 3.2: The 6LP-GW Forwarding mechanism

In addition, an appropriate MAC translation mechanism has to be applied
when required, since IEEE 802.15.4 MAC addresses are 64 bits long while
IEEE 802.3 MAC addresses are 48 bits long. The IEEE standard document
“Guidelines for 64-bit Global Identifier (EUI-64™) Registration Authority” [6]
defines a simple and convenient EUI-48 to EUI-64 mapping which perfectly
addresses this application’s needs. This mechanism consists of inserting the
constant value OxFFFE; between the company identifier (i.e., the 3 left-most
bytes of the EUI-48) and the manufacturer-selected extension identifier (i.e.,
the 3 right most bytes of the EUI-48). Figure 3.3 illustrates how an EUI-48
is encapsulated into an EUI-64 MAC address.

field: Company identifier Extension identifier
EUI-48 A BB | CC | 11 22 33
4
field: Company identifier EUI label Extension identifier
EUI-64 A BB | CC | FF | FE 11 22 33

Figure 3.3: EUI-48 Encapsulated in EUI-64
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As for the particular case of the 6LP-GW, every MAC address is considered
to be 64-bits long. Ethernet MAC addresses are converted into their
corresponding 64-bit MAC address as soon as an Ethernet packet arrives
at the 6LP-GW and, only in the very final step of sending a packet out
from the 6LP-GW, it is checked whether the segment where the packet is
to be sent operates with 48 or 64-bit addresses. On the other hand, all the
IEEE 802.15.4 MAC addresses used in our experimental deployment have
their fifth and fourth least significant bytes being OxFFFE. Although this
approach simplifies the link-layer address translation procedure, it must be
noted that the IEEE registration authority forbids this practice (64-bit values
of the form ccccccFFFEeeeeee are never assigned). An approach suitable for
a commercial product could use a simple table in order to keep track of the
IEEE 802.15.4 addresses in the network and remove/insert the fifth and fourth
least significant bytes of addresses in the outgoing/incoming packets directed
to or arriving from the Ethernet segment. However, this and other approaches
are outside the scope of this thesis.

Applying the link-layer address translation mechanism described above
means that further processing (bridging, proxy operation, host operation, etc.)
does not require taking into account the link-layer address length nor its origin;
all addresses are 64-bit long and all of them have their fifth and fourth least
significant bytes being OxFFFE.

3.2.4 Proxy operation

This section describes in detail the ND-proxy’s conceptual operation performed
by the 6LP-GW. All the operations described in this section are applied only
to ND packets arriving at the 6LP-GW; non-ND packets will be forwarded as
described in Section 3.2.3.

3.2.4.1 Processing Neighbor Solicitation Messages

The Neighbor Solicitation messages that reach the 6LP-GW may have been
originated for different purposes. The appropriate way to process them
depends on this purpose and it will differ depending on their origin and
their structure. Figure 3.4 shows the different types of Neighbor Solicitation
messages that may arrive at the 6LP-GW.

Neighbor Solicitation originating in IEEE 802.15.4 segment

As Figure 3.4 shows, we distinguish three different types of possible NS
messages that can arrive from the IEEE 802.15.4 segment: multicast NS and
unicast NS (with/without ARO).
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IEEE 802.3 IEEE 802.15.4
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Figure 3.4: NS message processing. Incoming NS messages are connected by
arrows to the Neighbor Discovery messages that may be generated in response.
The dashed arrows represent conditional responses.

Multicast NS

A multicast NS originated in the IEEE 802.15.4 can only have the purpose
of performing address resolution. As per Section 2.9.2 6LoWPAN hosts
(6Hs) do not perform address resolution, but 6LoWPAN Routers (6Rs) may
optionally do so. However, these multicast NS messages have the sole purpose
of discovering the link-layer address of other 6Rs. As no 6R is present
in the IEEE 802.3 segment apart from the one that is formed by the RR
together with the 6LP-GW (as previously said, they are together seen from the
IEEE 802.15.4 segment as a 6LBR), hence the 6LP-GW will proceed as follows:
upon reception of a multicast NS message originating in the IEEE 802.15.4
segment, the 6LP-GW will examime its target address; if it matches the
RR’s IPv6 address, the packet will be forwarded unchanged (apart from the
appropriate MAC translation); otherwise the packet will be discarded.

Unicast NS not containing an ARO option

As defined in RFC 4861, unicast NS without ARO messages are sent as probes
to test for reachability. 6Hs do not maintain Neighbor Cache Entries (NCEs)
for other hosts, but only for 6Rs. Therefore it is unlikely that any 6H sends a
unicast NS to any node other than a 6R. However, we should keep in mind that
the 6LP-GW together with the RR will be seen from the 6LoWPAN link as a
6LBR and thus, this 6LBR has to respond to such NS messages. Regarding
6Rs, nothing in I-D.ietf-6lowpan-nd precludes 6R’s from sending this type of
message to any other node in the network. Therefore, a unicast NS message
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not containing an ARO option must be forwarded to the IEEE 802.3 interface
unchanged (apart from the appropriate MAC translation).

Unicast NS containing an ARO option

Unicast NS messages containing an ARO option are sent fot two purposes:
(1) as part of the 6LOWPAN-ND registration procedure and (2) to perform
NUD (to determine the reachability of the router to which they are sent). As
these messages are only sent to 6Rs, and the 6LP-GW together with the RR
is seen as a 6LBR, it is likely that the 6LP-GW will receive such messages
having as their destination IPv6 address the RR’s IPv6 address. Therefore,
the 6LP-GW performs the normal operations of a 6R when receiving this
type of message directed to the RR, i.e., the NS message must be processed
as specified in section 6.5 of I-D.ietf-6lowpan-nd in terms of validity and the
NC maintenance procedure, but with some differences as will be explained
below. Should the IPv6 destination address of a NS message including an
ARO not match the RR’s IPv6 address, then the packet will be discarded.
If, for some reason, the RR’s IPv6 address is unknown when the NS arrives,
then the packet will also be discarded.

On the other hand, RFC 4861 requires every node in the IPv6 network
to perform duplicate address detection (DAD). Therefore, performing DAD
on behalf of 6LOWPAN nodes that are to be integrated into the IPv6 link
is necessary in order to comply with the specification. On the other hand,
6LoWPAN-ND only requires performing DAD when non-EUI-64-based 1Pv6
addresses are being used in the network. As previously stated in Section 3.1.1,
the 6LoWPAN nodes present in our scenario will only make use of EUI-64-
based IPv6 addresses (either “real” EUI-64 or EUI-48 encapsulated into EUI-
64), hence nodes in the IEEE 802.3 segment need not perform DAD in the
IEEE 802.15.4 segment.

For the above reasons, the 6LP-GW must perform not only the registration
procedure, but also DAD (in the IPv6-ND way on the IEEE 802.3 interface)
and NUD when receiving a unicast NS with an ARO option. Both operations
(DAD and NUD) are performed on behalf of the 6LoWPAN node that is trying
to register its address.

In order to perform DAD, the 6LP-GW must send a NS, formatted
as explained in Section 2.9.1.2, to the Solicited-node multicast address
corresponding to the source address of the incoming NS. For NUD, the NS
message originated in the IEEE 802.15.4 segment should be forwarded to the
IEEE 802.3 segment so a subsequent NA response will confirm the reachability
of the router.

Unfortunately, DAD is an expensive process as it takes a long time to wait
for messages that are not going to receive responses [51] and it can not be
performed in parallel with NUD due to the risk of duplicate addresses. As
waiting for both to complete sequentially may delay the autoconfiguration
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process excessively, we choose to perform DAD only upon registration and
then, NUD upon re-registration. Figure 3.5 describes the complete address
registration procedure and Section 3.2.4.1 details how DAD is performed.

Unicast NS with valid
ARO and SLLAO

Respond NA including
ARO
status = 2

Create NCE
Same EUI-64? ARO-pending flag = 1
NCE state = TENTATIVE
Yes L

Respond NA including Refresh Lifetime Send multicast NS for
ARO ARO-pending flag= 1 DAD in the IEEE 802.3
status = 1 (duplicate) Forward NS to IEEE segment
802.3 segment Start DAD counter

Figure 3.5: NS with ARO processing diagram.

Considering all of the above, upon receipt of a valid NS message destined
for the RR and containing valid ARO and SLLAO options, the 6LP-GW shall
behave as described below (see Figure 3.5).

The 6LP-GW searches its NC for a NCE with same IPv6 address as the
IPv6 source address of the incoming NS message; if no matching NCE is
found, then the 6LP-GW creates a new NCE for the node being registered. If
there is no space left in the NC, then the registration fails and the 6LP-GW
generates a NA including an ARO with status = 2, as specified in section 6.5.2
of I-D.ietf-6lowpan-nd [43]. If there is space available in the NC, then a new
entry is created with a state value of TENTATIVE and its ARO-pending flag
is set to 1. In this final case a NA is not generated in response, but rather the
6LP-GW performs Duplicate Address Detection (DAD) on the IEEE 802.3
segment on behalf of the node that is issuing its registration. This procedure
is performed similar to the procedure described in section 5.4 of RFC 4862.
The DAD process is detailed in Section 3.2.4.1.

If there is a matching NCE whose EUI-64 value differs from the EUI-64
present in the ARO, then the address is a duplicate and the 6LP-GW
must generate and send a NA message including an ARO with status = 1
(duplicate), as specified in section 6.5.2 of I-D.ietf-6lowpan-nd. If, instead,
the EUI-64 is the same as present in the ARO, then this is the case of a
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re-registration and therefore, the ARO-pending flag must be set to 1, the
registration lifetime must be refreshed with the contents of the ARO option,
and the received NS message is forwarded to the IEEE 802.3 segment in order
to perform NUD (note that the NA message produced in response will need
to be intercepted later as the RR is not able to handle ARO options — see
Section 3.2.4.2).

Note that in certain situations of the above procedure, the 6LP-GW
responds to NSs on behalf of the RR. Therefore, for every such packet being
generated in the 6LP-GW on behalf of the RR, the Router flag must be 1 and
the IPv6 source address must be the IPv6 address of the RR attached to the
6LP-GW. This address already should be known due to the previous RS and
RA exchange.

It is also important to note that TENTATIVE entries should be timed
out TENTATIVE NCE LIFETIME seconds after their creation in order to
leave space in the NC for other hosts, as specified in I-D.ietf-6lowpan-nd [43].

Performing DAD on behalf of IEEE 802.15.4 nodes

DAD is performed as specified in RFC 4862 and we assume the existence of the
variables RetransTimer and DupAddrDetectTransmits, defined in RFC 4861
and RFC 4862 respectively.

The 6LP-GW must maintain a DAD timer for each NCE in the NC. A
DAD timer will be started when the corresponding NS is sent. If no NA is
received in response after RetransTimer milliseconds, then the 6LP-PGW will
either send another NS or end the DAD process, depending on the value of
DupAddrDetect Transmits.

If the DAD process completes successfully, then the 6LP-GW changes the
state of the corresponding NCE to REGISTERED, and the ARO-pending flag
to 0. In addition, the information contained in the NCE is used to generate
and send a NA message including an ARO option with status = 0 (success)
to the node that originated the registration.

If DAD fails, then a similar NA including an ARO option with status = 1
(duplicate) must be generated and sent to the node (in the IEEE 802.15.4
segment) that originated the registration. This message must be sent as
specified in section 6.5.2 of I-D-ietf-6lowpan-nd (i.e., to the link-local TPv6
address formed from the Interface Identifier (IID) derived from the EUI-64 in
the NCE, due to a possible risk of link-layer address collision). After sending
the message, the NCE can be deleted.

Neighbor Solicitation originating in IEEE 802.3 segment

As stated in RFC 4861 and RFC 4862 and as illustrated in Figure 3.4, both
unicast and multicast NS messages originating in the IEEE 802.3 segment
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Figure 3.6: DAD performed on behalf of 6LoWPAN nodes. The diagram

illustrates the process assuming DupAddrDetect Transmits = 1.

may arrive at the 6LP-GW. These messages can be sent with three different
purposes: Address Resolution, NUD, and DAD.

For Address Resolution and DAD, the NS messages are sent to the
Solicited-node multicast address of the recipient while, for NUD, they are
unicast.

As previously mentioned, 6Hs would respond to the unicast NS messages,
but they do not join the Solicited-node multicast address and, therefore, they
will not respond to these multicast NS messages. In contrast, 6Rs must join the
Solicited-node multicast address and thus they must respond to both unicast
and multicast NS messages.

We should note here that the 6LP-GW is aware of every node that is
currently reachable in the IEEE 802.15.4 segment due to the 6LoWPAN-ND
registration process.

Unicast NS

Unicast NS messages are sent for reachability detection (NUD). These
messages could be forwarded unchanged (except for the appropriate MAC
translation) to the IEEE 802.15.4 segment in order that the target nodes could
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respond to the NS with a NA. However, as 6LoWPAN nodes are registered
with the 6LP-GW, the information contained in its NC is a priori sufficient
to generate the response, thus wireless nodes save energy as they neither need
to receive nor send the NS and NA messages, respectively (see the dashed
lines coming out of the blue unicast NS arrow in Figure 3.4 on page 42).
It is important to note that 6LoOWPAN nodes are only required to register
non-link-local addresses with routers. Thus, when receiving a unicast NS, the
6LP-GW will behave as follows:

o If the incoming NS’s target address is not a link-local address, the
6LP-GW will search its NC for a matching entry in the REGISTERED
state. If found, a NA message shall be generated and sent in response
to the NS as specified in section 7.2.4 of RFC 4861, using the matching
NCE’s address as the source address of the message.

o If the incoming NS’s destination address is a link-local address, the
6LP-GW will generate a link-local (EUI-64-based) IPv6 address for every
different EUI-64 (contained in REGISTERED NCEs) stored in its NC.
If one of these EUI-64 generated addresses matches the target of the
NS, then the 6LP-GW will respond with a NA to the NS as specified in
section 7.2.4 of RFC 4861, using the generated link-local address as the
source address of the NA.

In all cases, according to section 5.4.3 of RFC 4862, the 6LP-GW will
not generate a response if the matching address is in the TENTATIVE state.
On the other hand, when sending out NAs on behalf of 6L.Ns, the following
considerations must be taken into account:

e The Router flag must be set to the corresponding NCE isRouter flag
value.

e The Solicited flag must be set to 1, since the NA is responding to a NS
message.

e The Override flag must be set to 1, as recommended for this case in
Section 4.3 of RFC 4861.

Multicast NS

Multicast NS messages are sent to perform either Address Resolution or DAD.
These messages invoke responses from 6Rs, but not by 6Hs (since as noted
earlier 6Hs do not join the Solicted-node multicast group). The 6LP-GW
may be aware of which entries in its NC correspond to 6Rs due to previously
intercepted RA or NA (having its Router flag set) messages and thus, the
6LP-GW could choose to forward these multicast NS messages only to these
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6Rs. However, this approach is unreliable since it requires that all 6R nodes
have previously sent at least one such NA or RA message.

Therefore, this implementation proceeds using a similar approach as
for unicast NS messages; for every multicast NS message arriving on the
IEEE 802.3 interface, the 6LP-GW generates an appropriate NA in response
as follows:

Unless the IPv6 source address of the incoming NS is the unspecified
address, the packet is sent for Address Resolution. In this case, the 6LP-GW
operates exactly as described in Section 3.2.4.1 on page 46, with the following
exception:

The NA generated in response (if any) must include a TLLAO option
containing the link-layer address of the node in the NCE, as mandated in
section 4.4 of RFC 4861 for NAs responding to multicast NSs (the 6LP-GW is
sending this message on behalf of a node receiving a multicast NS message).

Note that RFC 4861 does not preclude the inclusion of the TLLAO option
in NA messages responding to unicast NSs; it simply indicates that it is
unnecessary.

On the other hand, if the source address of the NS is the unspecified
address, then the NS message has been sent to perform DAD. In this case, the
6LP-GW must also search in its NC for a NCE having the same IPv6 address
as the target address of the NS message. If a matching entry is found, then the
sender of the NS is trying to configure a duplicate address and the 6LP-GW
behaviour depends on the NCE’s state: If the NCE’s state is REGISTERED,
then the 6LP-GW shall behave as described in section 7.2.3 of RFC 4861.
This means responding with a NA to the all-nodes multicast address (only
in the IEEE 802.3 segment, since that is the segment affected by the DAD
in progress and, thereby, multicasting such a NA in the IEEE 802.15.4 would
only be a waste of energy).

Conversely, if the NCE state is TENTATIVE, then the DAD timer for
that NCE must be stopped assuming that the registration process for the
corresponding NCE failed. The 6LP-GW must report the registration failure
to the corresponding 6L.N by generating and sending a NA including an ARO
option with status value = 1. As specified in RFC 4862, the 6LP-GW shall
perform no actions on the IEEE 802.3 segment.

3.2.4.2 Processing Neighbor Advertisement messages
As specified in RFC 4861, 2 types of NA messages may be generated:

¢ Unicast solicited NA generated in response to NS messages.

e Multicast unsolicited NA generated.

Figure 3.7 illustrates the different types of NA messages that can arrive at
the 6LP-GW.
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Figure 3.7: NA message processing. Each type of incoming NA is connected
by arrows to the corresponding output this NA will produce.

Neighbor Advertisement originating in IEEE 802.15.4 segment

As explained in Section 3.2.4.1, this implementation opts for having the
6LP-GW respond to NS messages on behalf of 6LNs. Therefore, it is
unlikely that any 6LN sends unicast solicited NA messages in response to
NSs coming from the IEEE 802.3 segment (naturally, this communication is
possible between 6LNs, as long as at least one of them is a 6R, but as direct
communication is possible in that case, this is not a matter of importance
for the 6LP-GW). Hence, if an unicast solicited NA arrives at the 6LP-GW’s
IEEE 802.15.4 interface, then it will be interpreted as an error and the packet
will be discarded.

On the other hand, however, 6LNs could still send multicast unsolicited
NA messages for quick information propagation. According to RFC 4861, if
a node determines that its link-layer address has changed, it may multicast a
multicast unsolicited NA message. It seems unlikely that a 6LN experiences a
need for sending such messages, but as I-D.ietf-6lowpan-nd does not preclude
it, we assume that a 6LN may do so. Thus, unsolicited multicast NA messages
arriving to the 6LP-GW from the IEEE 802.15.4 segment, shall be forwarded
unchanged (except for the appropriate MAC translation) to the IEEE 802.3
segment.

Neighbor Advertisement originating in IEEE 802.3 segment

Likewise in the IEEE 802.15.4 segment, the NA messages originating in
IEEE 802.3 segment that can reach the 6LP-GW may be solicited and unicast,
or unsolicited and multicast, each of them having originated for different
reasons, as explained below.
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Unicast NA

A unicast NA message could only originate as a response to a unicast NS
message sent from the IEEE 802.15.4 segment. The original NS message
could be either a probe sent for reachability confirmation (NUD) or part of
the registration process.

In all cases, when receiving a solicited unicast NA from the IEEE 802.3
segment, the 6LP-GW searches its NC for a NCE matching the destination
(or target) address of the NA. If a matching entry in the REGISTERED
state is found, then the NA will be forwarded to the IEEE 802.15.4 segment.
Otherwise, such an NA should be considered an error and shall be discarded.
However, depending on the value of the ARO-pending flag in the matching
NCE, the 6LP-GW may be required to perform an additional task: if the
ARO-pending flag of the matching NCE is set to 1, that means that the
incoming NA is not the response to a NS sent for NUD, but the final part of
the 6LoOWPAN-ND registration process. In this case, the ARO-pending flag
must be set to 0 and an ARO option containing a status value of 0 and its EUI-
64 field filled with the value in the NCE must be appended to the incoming NA
before forwarding it to the corresponding 6LN in the IEEE 802.15.4 segment.
In all cases, forwarding will require the appropriate MAC translation.

Multicast NA

Unsolicited Multicast NA messages may arrive at the 6LP-GW on the
IEEE 802.3 interface either for quick information propagation if the link-layer
address of the sender changed or as a response to a NS previously sent for
DAD (meaning that there is a duplicate).

If the target address in the NA message corresponds to a NCE whose
state is TENTATIVE, that means DAD failed for that 6LN. In this case, the
6LP-GW must notify the registering 6LN its registration failure by generating
a new NA (on behalf of the RR it is attached to), with an ARO option
containing a status value of 1 (duplicate). This packet shall be sent on the
IEEE 802.15.4 interface according to I-D.ietf-6lowpan-nd section 6.5.2 (i.e.,
to the link-local TPv6 address of the node, that can be generated from the
EUI-64 stored in the NCE).

If there is no TENTATIVE NCE whose IPv6 address matches the
target, then the packet is forwarded unchanged (except for the appropriate
MAC translation), since it may have been generated for quick information
propagation.

3.2.4.3 Processing Router Solicitation messages

This section describes the processing of RS messages. The different types of
RSs that may arrive at the 6LP-GW are shown in Figure 3.8.
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Figure 3.8: RS message processing. The different types of incoming RS
messages are connected by arrows to the outgoing messages they will produce.

In IPv6-ND, RS messages are sent only during bootstrapping and they
are mainly multicast; the IPv6 source address in RAs may be the unspecified
address and the inclusion of a SLLAO is not mandated by in RFC 4861.
In contrast, i-D.ietf-6lowpan-nd specifies that routers are not required to
send periodic RA messages, therefore, hosts will send RS messages more
frequently (instead of doing so only during bootstrapping) in order to obtain
and maintain their prefixes, addresses, and contexts; these RS will be unicast
unless the link-layer address of the router is not known (i.e., for example, when
bootstrapping).

Router Solicitation originating in IEEE 802.15.4 segment

Upon receiving a RS message originating in the IEEE 802.15.4 segment, the
6LP-GW will first check that the source address is not the unspecified address,
and that a SLLAO option is present in the message. If any of these conditions
is not met, the RS will be silently discarded. If both conditions are met, then
the 6LP-GW will search its NC for a NCE corresponding to the source IPv6
address of the incoming message. If no matching NCE is found, the 6LP-GW
will create it. In any case, the awaiting-RA of such NCE will be set to 1
and the RS message will be forwarded unchanged (except for the appropriate
MAC translation) to the IEEE 802.3 segment. If the creation of a NCE is
necessary but the NC is full (and hence the NCE cannot be created), then
the RS message shall be discarded. The treatment of RA messages that will
arrive responding to these RSs is explained in Section 3.2.4.4.
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Router Solicitation originating in IEEE 802.3 segment

6LRs will never be the first hop for any node in the IEEE 802.3 segment since
the RR will always be in between. In order to save energy and processing
time, this implementation chooses to mask the router nature of 6LRs so that
they are seen as simple hosts from the IEEE 802.3 point of view. To do so, the
6LP-GW will silently discard any RS message coming from the IEEE 802.3
segment.

3.2.4.4 Processing Router Advertisement messages

There are fundamental differences between IPv6-ND and 6LoWPAN-ND
regarding the sending and processing of RA messages. Such differences lead to
the processing of such messages as detailed below and illustrated in Figure 3.9.

IEEE 802.3 IEEE 802.15.4
6LP-GW
Unicast RA Unicast RA
Multicast RA Multicast RA
Unicast RA
Multicast RA

Figure 3.9: RA message processing. The different types of incoming RA
messages connected to the outgoing messages they may produce.

Router Advertisement originating in IEEE 802.15.4 segment

As in Section 3.2.4.3, RA messages originated in the IEEE 802.15.4 segment
are of no importance for NCDs, since no host in the IEEE 802.3 segment
can make use of a 6R as its next-hop, nor will the RR route packets into its
LAN subnet. Therefore, such RA messages originated in the IEEE 802.15.4
segment will be silently discarded.

Router Advertisement originating in IEEE 802.3 segment

It seems natural that RA messages reaching the IEEE 802.3 interface should
end up being forwarded to the IEEE 802.15.4 interface. However, due to
the major importance of RA messages in the autoconfiguration process, and
the significant differences between its processing in the two ND protocols for
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which the 6LP-GW provides proxy operations, its treatment by the 6LP-GW
requires certain considerations:

e First, one of the main purposes of I-D.ietf-6lowpan-nd is to reduce
the highly costly multicast traffic in 6LoWPAN networks. Hence, the
Internet Draft states that, in contrast to RFC 4861, 6Rs need not
send periodic multicast RAs. In addition, 6LoWPAN-ND mandates the
inclusion of the SLLAO option in RS messages (which is not required by
RFC 4861) so that 6Rs can respond with unicast-addressed RAs, instead
of multicasting them. Furthermore, I-D.ietf-6lowpan-nd requires that
6Rs always respond to the unicast address of the originator of the RS
(this is possible due to SLLAO option included in RSs). Moreover, such
RAs always include an SLLAO option so that the 6LN soliciting the
RA obtains the link-layer address of the 6R in the same step (instead
of needing further address resolution). Conversely, RFC 4861 suggests
that routers may omit the SLLAO option in RAs, and that RAs may be
sent to the all-nodes multicast address as a response to a RS.

e As for next-hop determination, I-D.ietf-6lowpan-nd states that all
prefixes but the link-local (FE80::) are assumed to be off-link in
6LoWPAN-ND (in contrast to the on-link definition in RFC 4861,
updated by RFC 5942 [45]). Hence, 6Hs will ignore any Prefix
Information option (PIO) option whose ‘L’ (on-link) flag is set. However,
RRs usually advertise global prefixes with the ‘I’ flag set in the PIO
option within the local network. Considering that the PIO option is the
only way hosts have to acquire a global address (if no other mechanisms
such as DHCPv6 [19] are used for address autoconfiguration) and that
the same prefix which is considered to be on-link in the IEEE 802.3
segment is assumed to be off-link in the IEEE 802.15.4 segment, the
6LP-GW must always clear this ‘I’ flag in the PIO option for every
packet originating in the IEEE 802.3 segment and directed to the IEEE
802.15.4 segment.

e Regarding the optional context management and dissemination, the
6LP-GW must perform the operations of a 6LBR: it must create,
maintain, and disseminate such contexts using 6CO options included
in RA messages. This section only describes the dissemination of such
contexts while, Section 3.2.4.4 details how such contexts are created
and maintained.

e Finally, as seen in previous sections, there are several situations where
the 6LP-GW needs to send messages on behalf of the RR. As RAs
originating in the IEEE 802.3 segment are necessarily sent by the RR,
the 6LP-GW needs to save both, the source MAC address and the source
IPv6 address of such RA messages for subsequent use. As specified in
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RFC 4861, RA messages are always sent from the link-local (FE80::)
address, which simplifies the task of managing the RR’s addresses.
However, there could be more than one RR present in the network.
This would require extra management of the RR’s address, but such
management is out of scope of this thesis project.

Having provided all the above considerations, the processing of RA
messages originating in the IEEE 802.3 occurs as follows:

Upon arrival of a RA message, the 6LP-GW will retrieve both the
RR’s IPv6 and MAC addresses from the RA’s IPv6 and Ethernet headers
respectively, then store then for further use. Next, it will check the ICMPv6
options or the RA as described here:

e If no SLLAO option is present in the RA, the 6LP-GW will append the
corresponding SLLAO according to the previously retrieved RR’s MAC
address.

 If a PIO option is included, the 6LP-GW will clear its ‘L’ (on-link) flag,
if it is set.

e For every context in use in the context table, the 6LP-GW shall append
a 6CO option.

Note that inclusion of a new SLLAO and/or 6CO option(s), as well as
the modification of the ‘I’ flag of the PIO option calls for recomputation of
ICMPv6 checksum, as described in section 2.3 of RFC 4443 [13].

Finally, in order to minimize the amount of unnecessary multicast traffic
in the IEEE 802.15.4 segment, the 6LP-GW will forward the RA as follows:

If the packet’s destination address is unicast, then the 6LP-GW will
examine its NC searching for this address. If a matching NCE having its
awaiting-RA flag set is found (regardless of its state), then the RA will be
forwarded to its destination and the 6LP-GW will clear the awaiting-RA flag
in the corresponding NCE. If no matching NCE is found, or if the matching
NCE has its awaiting-RA flag set to zero, the RA will be silently discarded.

In contrast, if the RA’s destination address is the all nodes multicast
address, then, for every NCE having its awaiting-RA flag set to 1, the
6LP-GW will replace the RA’s destination (multicast) IPv6 and MAC
addresses by these belonging to the NCE and send the packet out to through
the ITEEE 802.15.4 interface, clearing the awaiting-RA flag afterwards. If no
NCE having its awaiting-RA flag set is found, the packet shall be silently
discarded.

Additionally, the 6LP-GW uses a boolean variable indicating whether there
is any NCE with its awaiting-RA flag set or not throughout the whole NC,
which discharges the 6LP-GW from performing all the previous tasks (except
for the RR’s addresses retrieval) if the RA to be processed is meant to be
discarded.
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Context management and dissemination

As previously said, the 6LP-GW must take responsibility for all the
6LoWPAN-ND-related tasks assigned to a 6LBR. Despite context management
and dissemination being an optional feature, it falls among the 6LBR
tasks which the 6LP-GW implements. This section explains how context
management and dissemination is performed in this implementation.

Although the approach taken here may seem simplistic, it is sufficient
to demonstrate the ability of the 6LP-GW to successfully handle 6LoWPAN
contexts. Section 3.2.4.4 explains how contexts are disseminated all over the
6LoWPAN network using RA messages. Thus, the only remaining aspects
regarding this issue are context creation and management.

As for context creation, the current implementation of the 6LP-GW only
considers PIO-based context creation. This means that, when receiving a
RA containing a PIO option, the 6LP-GW will search its context table for a
context having the same prefix as contained in the PIO option. If no matching
context is found, that will result in a new context. Newly created contexts
must be assigned a numeric context identifier ranging from 0 to 15. Since use
of context identifier 0 saves 1 octet in the IPHC header (see Section 2.6.2), this
is the first context identifier that will be assigned to a context. Subsequent
contexts, if any, shall use subsequent context identifiers. The reason to create
a context from the network prefix is simple: it would be present in every packet
involved in the communication with nodes external to the local network.
This simple approach could be improved by utilizing more advanced context
creation techniques, but such techniques are outside the scope of this thesis
project. Section 6.2, however, provides some advice about this topic.

Regarding context maintenance, this implementation mainly follows the
proceedings described in I-D.ietf-6lowpan-nd, with some specific extensions,
but always compliant to the Internet Draft. New contexts are created in
uncompress-only state, so that new contexts can arrive to every node in the
network before anyone uses them for compression. After a certain (manually
configurable) time, the context moves to its normal state, in which it can
be used for compression and uncompression. In this state, every prefix/es
contained in PIO options of RAs arriving to the 6LP-GW, will refresh the
lifetime/s of the corresponding entry/entries in the context table.

Should a context lifetime expire, then this context will move to the expired
state. In the expired state, contexts are announced again as uncompress-only,
so that nodes receiving 6COs with these contexts update their context tables
and stop using them for compression. If a RA containing a prefix in its PIO
that corresponds to a expired context arrives at the 6LP-GW, the context’s
lifetime refreshes and its state reverts to mormal again. Otherwise, after a
period of twice Default Router Lifetime seconds (announced in RA messages)
the context is deleted. When a new context is created or when a context’s
state changes, then the next RA arriving to the 6LP-GW from the IEEE 802.3
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will be forwarded to the all-nodes multicast address [25] in the IEEE.802.15.4
segment, even if the original RA’s destination address was not the all-nodes
multicast address.

3.2.4.5 Processing a Redirect

Redirect messages are sent by routers to inform hosts of a better next-hop.
They can be sent when a router receives a packet destined to some host
which could be reached at less cost by choosing another router as next-hop,
or directly (if the destination host is known to be in same network (link-local)
as the sender.

Redirect originating in IEEE 802.15.4 segment

According to I-D.ietf-6lowpan-nd, redirects are not used by 6LoWPAN-ND in
route-over topologies, (although they may be used in mesh-under topologies).
As the topology under consideration in this thesis project is assumed to be a
route-over topology, these messages, if any, will be discarded as they are of no
use. We should note here that, since the use of Redirects is not mandatory
in other topologies either, the approach is still valid even if no assumptions
regarding topology were made.

Redirect originating in IEEE 802.3 segment

As noted earlier, Redirect messages can be sent by a router to inform a sending
node of a better next-hop to the destination. This better next-hop may be
another router on the path to the destination, or the destination itself, if it
happens to be a neighbor. However, the mechanisms to determine the “best”
next-hop differ in the two ND protocols under consideration. According to
RFC 4861, the originator of a unicast packet performs a longest prefix match
to determine whether the destination is on-link or not. I-D.ietf-6lowpan-nd
simplifies this process as follows: if the destination address is a link-local
address (FE80::), then the destination is on link. Otherwise, the destination
is off-link. In both cases, if the destination is determined to be off-link, the
packet is sent via a router (selected as specified in RFC 4861, section 6.3.6).

As a reader may infer, when a 6LN sends a packet to the global address
of a neighboring NCD on the IEEE 802.3 segment, the 6LN’s next-hop
determination algorithm will determine that the destination is off-link (even
if both, sender and destination share the same prefix). Thus, the packet
will be sent from the 6LN to the NCD via the RR. The RR, according to
RFC 4861, will determine that the source and destination of such a packet
are neighbors and hence, besides forwarding it to its destination, it might
well send a Redirect message to inform the originator (the 6LN) that the
destination could be reached directly in one single hop. Since that is not true
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in our particular case, and in addition, 6LNs are unable to process Redirects,
these messages shall also be discarded.

3.2.4.6 Non-proxy Features
ND Option Filtering

RFC 4861 states that any node that happens to receive an unrecognised
option in a ND message, should simply ignore such an option and continue
processing the next one. This fact allows the 6LP-GW to forward packets
from one segment to the other not caring about possible options that could
be misinterpreted or cause the whole packet to be discarded. However, in
terms of power consumption, every single byte transferred counts. This power
consumption affects every node involved in the communication (both senders
and recipients) being particularly critical in battery-powered nodes.

For this reason, this implementation will filter out some ND options,
contained mainly in RA messages, that could be considered irrelevant for
6LoWPAN networks. Examples of options that can be filtered out are the
Recursive Domain Name Server (DNS) Option (defined in RFC 6106 [28])
or the Flags Expansion Option (defined in RFC 5175 [23]). Note that
SLLAO, MTU, and PIO options should not be filtered out. The 6LP-GW
implementation described here will remove all the options in RA messages
originating in the IEEE 802.3 segment that are to be forwarded to the IEEE
802.15.4, except for SLLAO, MTU, and PIO options.

It is also possible to filter out irrelevant options of messages originating in
the IEEE 802.15.4 segment and directed to the IEEE 802.3 interface, such as
the ARO, 6CO, and ABRO. However, this filtering is of minor interest since
it would occur in an Ethernet link where the devices involved are likely to be
plugged into the power mains.






Chapter 4

Applying the Method

This chapter describes the implementation details of the application specified
in the previous chapter (Chapter 3). Since Contiki was utilized in the
implementation being described, Section 4.1 provides a comprehensive overview
about what was already done and what is ready to use out of the box, what
was already done but required certain modifications, and what was not done
at all. Moreover, this chapter provides an overview of the whole application,
followed by a thorough explanation of each of the different functional modules
that comprise it.

4.1 What Contiki’s provides and does not provide

This section describes the parts of the 6LP-GW application that are part
of the Contiki core and distinguishes these from those parts that have been
completely or partially developed as part of this thesis project.

4.1.1 What Contiki provides

As explained in Chapter 2, Section 2.10.2,

Contiki furnishes a richly-featured development toolbox. In addition to
the kernel and the protothreads implementation (described in Section 2.10.2),
Contiki provides full IPv4 and IPv6 stacks, a standard-compliant 6LoWPAN
implementation, and a large set of libraries. Of these elements, we make
use of the IPv4 and IPv6 stacks, the Transport Layer application interface,
6LoWPAN, and several other modules and libraries. How we have used this
existing code is described below.

IPv4 stack

The IPv4 stack runs as any other Contiki protothread and supports both
TCP and UDP protocols. It includes ICMP (part of which is used), ARP,
and DHCP implementations. While UDP, TCP, and ICMP are implemented
as part of the IPv4 module, DHCP and ARP are implemented as separate
modules. DHCP is implemented as a protothread and in order to use it
together with the rest of the Contiki code, it needs to be wrapped within a
Contiki process (see Section 2.10.2.2). In contrast, ARP is implemented as
a set of functions, which must be called manually when performing certain
Ethernet-related operations.

59
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IPv6 stack

The IPv6 stack also runs as a Contiki protothread and supports both TCP
and UDP. In addition, it includes complete ICMPv6 and Neighbor Discovery
for IPv6 (RFC 4861 [34]) implementations.

Transport Layer application interface

Contiki defines a lightweight socket-like application programming interface
(API) for application-level
communication. Like the Unix socket API, this API allows the creation of
TCP and UDP connections which maintain the association that usually defines
a socket, i.e., source address and local port and, in case of TCP, destination
address and remote port. This API also supports most common Unix socket
operations, such as creating/eliminating connections (socket () ), listening for
incoming connection requests (TCP listen()), sending connection requests
(TCP connect()), binding connections to ports (bind()), and sending and
receiving packets (send() and recv() in case of TCP, and sendto() and
recvirom() in case of UDP).

6LoWPAN

The 6LoWPAN implementation currently supports only 64-bit “long”
addresses. It supports fragmentation and different compression mechanisms.
The supported compression mechanisms are stateless HC1 compression (defined
in RFC 4944 [33]), and stateful IPHC compression (defined in RFC 6282 [27]),
which obsoletes the former. However, the IPHC compression implementation
has some limitations which will be described in Section 4.1.3. In addition,
Contiki also includes several IEEE 802.15.4 MAC layers, which provide
support for encapsulating 6LOWPAN packets into IEEE 802.15.4 frames
among other features.

Other modules and libraries

o Contiki provides several libraries for time measurement. The most basic
one is the Timer library, which provides simple and lightweight function
for timer management and provides the base on top of which other timer
libraries are built. This library implements the following functions:

timer_set Sets a timer to a time interval.

timer_reset Resets a timer. The former expiration time of the
timer becomes its new starting point, which allows
the timer to remain stable over time.
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timer_restart Restarts a timer. The new starting point of
the timer is the current time (in contrast to
timer_reset).

timer_expired Evaluates whether a timer has already expired or
not.

timer_remaining  Returns the time remaining until expiration of a
timer.

Together with the Timer library which measures the time in system
tics, Contiki provides the Seconds timer library, which in contrast to
the Timer library, implements timers having a second as their timing
unit. However, neither the Timer library nor the Seconds timer library
provide any mechanism to inform the process setting the timer about
any timers’ expiration. Therefore, any process using these timers has
to actively poll the timer by means of the timer_expired function or
its equivalent in the Seconds timer library, stimer_expired, in order to
determine whether a timer has expired or not.

For this reason, Contiki provides the FEvent timer library. This library,
as mentioned Section 2.10.2.2, implements an active process (the etimer
process) that periodically checks all the Event timers and posts an event
(PROCESS_EVENT_TIMER) to the process who set the timer when such
timer expires.

A similar utility is provided by the Callback timer library. This library
also runs an active process (the ctimer process) that periodically checks
the Callback timers. Similar to the Event timer library, the Callback
timer library allows setting timers that do not need to be actively polled,
but with the difference that the callback timer library is independent of
the process that specifies the callback timer. This means that instead
of posting an event to the process who set a timer, the Callback timer
library will call a callback function (provided when the timer was set)
when the timer expires. The Callback timer library is useful for certain
situations where utilizing a process to verify a timer would simply be
overkill.

Finally, the last timer library provided by Contiki is the Real-time task
scheduling library. Unlike the rest of the timers, this library does not
rely on the Timer library nor is it dependent upon any process to check
for timer expirations. Instead, it relies on the hardware-specific real time
module (if any) present in wide variety of micro-controllers. This library,
similar to the Callback timer library allows scheduling a task (function)
to be executed at a specified time in the future.
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We should note, however, that the implementation described in this
thesis does not make use of the Callback timer library nor the Real-time
task scheduling library; they are described here only for completeness.

4.1.2 What Contiki requires

This section explains the elements required by Contiki in general, while
Section 4.2.1 explains these elements in detail for the implementation described
in this thesis.

Since Contiki is platform-independent software, no platform-specific code
is provided. Instead, a number of platform-specific functions, constants, and
data-type definitions must be provided so that Contiki can make use of the
platform’s resources. This set of platform-specific code includes elements that
can be considered drivers for the hardware components needed by the run-
time system, which together constitute a“Contiki port” (as it is called by the
by the Contiki community).

On the other hand, no implementation would be complete without (at
least) one application. The Contiki’s protothreads library together with the
transport layer application interface provide a rich set of functions that allow
implementation of any kind of applications. However, since strictly speaking
this does not pose a Contiki requirement, we will leave the implementation of
applications for the moment.

Figure 4.1 illustrates a typical Contiki application highlighting its platform-
specific requirements.

Contiki Clock library

The key element of a Contiki port is the Clock library, which is used by the
timer libraries. This code must thus be initialized before any other Contiki
module that uses timers. This module is highly platform-specific and needs
to be implemented specifically for each Contiki port. Contiki provides a set
of function declarations whose definition needs to be implemented for this
module to work. In addition, the module requires the definition of the constant
CLOCK_CONF_SECOND, which specifies the duration of a second in terms of
system ticks, and the definition of the clock_time_t data type, which holds
values that are based upon the number of system ticks since system start up.
The Clock library elements that need to be provided are:

CLOCK_CONF_SECOND This constant represents one (1) second measured in
system ticks. The meaning of a system tick is explained
below.

clock_time_t This data type definition sets the type of the variable
that will hold the number of system ticks since system
start up. Note that in order to be able to compare two
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Figure 4.1: A typical Contiki-based application. Grey boxes represent
implementation-specific modules. The dashed box containing the text
“6LoWPAN” mean that the 6LoWPAN layer may be present or not. Arrows
show the dependency direction. As the figure illustrates, some timer
libraries and the ulP module makes use of the Contiki protothreads library;
applications on top of the stack make use of the Contiki protothreads
library along with the ulP transport layer application interface and
(optionally) timers; and both the Contiki timer library and the Contiki’s ulP
implementation rely on hardware-specific modules.

times when there has been a wrap around of this variable
in between the two samples, the maximum interval
within which two times can be compared is restricted to
MAX_VALUE_OF (clock_time_t) / 2. Thus, a too-short
data type would cause the maximum possible interval
between two times being compared to be too small.
In addition, a too-big data type (depending on the
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micro processor architecture) could cause an expensive
addition operation to be executed very frequently and
will also consume more RAM. Therefore, this data type
must be carefully selected between all the unsigned data
types provided by the C compiler.

clock_init() Initializes the clock module. This function consists in
most cases (when allowed by the micro-controller) on
setting a timer interrupt which will be executed every
certain number of micro-controller processor cycles. As
the micro-controller’s clock frequency is a well known
value, this number of cycles constitutes the basic time
unit of the Clock library, i.e., a system tick.

As for the interrupt routine it could just increment a
static variable (for convenience, we will call it system_ticks
in the rest of this section) every time it is invoked.
However, for certain implementations it might be convenient
to add (among others) the following elements to this
interrupt service routine:

e A seconds counter which would be incremented by
one every time system_ticks modulus
CLOCK_CONF_SECOND equals zero. The reason for
this is explained below.

o If the Event timer library is being used, the etimer
process needs to be polled repeatedly so it can
perform its periodic timer expiration check-and-
notification. It could be constantly polled in a
infinite loop in the main application body, but that
would cause many unnecessary invocations, some
of which would happen within the same system
tick, which is completely useless and wasteful of
resources. The FEwvent timer library provides two
functions that can be used to poll the etimer
process only when required. These functions are
etimer_pending(), which returns a value other
than zero when there is any Event timer pending
and etimer_request_poll() which request a poll
from the Contiki kernel on behalf of the etimer
process. Thus, if the Event timer library is being
used, it might be useful to perform a conditional
call to the etimer_request_poll() function if
etimer_pending() returns a value different than
zero within the timer interrupt service routine.
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clock_time()

clock_seconds()

Needless to say, this interrupt must be executed as
stably over time as possible to avoid clock jitter. Note
that the execution of the interrupt service routine
poses a delay in the execution. This delay does not
represent a problem as long as it is constant (i.e., the
execution of the interrupt service routine always takes
the same time). However, adding conditional elements
to this code can lead to jitter, which calls for some
other compensatory mechanisms to avoid potential clock
drifts.

Returns the number of system ticks since the system
started. Usually this count is held in the previously
mentioned variable system_tics which is incremented
in the timer interrupt routine set in clock_init().
Note that the variable holding the system ticks is
likely to wrap around (depending on the length of the
clock_time_t data type).

Returns the number of seconds elapsed since system
start up. Provided that the number of ticks per second
is well known (as noted earlier, this depends on the
CPU frequency and the timer interrupt setting), this
function can be easily implemented in two different
ways: returning system_ticks / CLOCK_CONF_SECOND,
or returning the value of a variable which is also
increased in the interrupt routine every time
system_ticks modulo CLOCK_CONF_SECOND equals zero
(as explained above). The former approach will save the
amount of RAM corresponding to the variable holding
the number of seconds, and avoid some of the CPU
time that would be used to calculate the modulus
operation every time the timer interrupt is executed,
at the expense of performing an extra division on
the clock_seconds () function (which will be executed
much less frequently than the timer interrupt).
Additionally, the latter method offers a longer interval
before the number of seconds wraps around.



66 CHAPTER 4. APPLYING THE METHOD

Communication drivers

The Contiki communication stack is built by piling its different components
one on top of each other. These components are independent from each other
except that each of them must implement a number of functions required by
the immediately upper component in the stack. Then, the functions each
component implements are grouped into a C struct called driver, forming an
object similar to that used in object-oriented programming. Finally, all these
drivers together are grouped by means of a set of C macros into the network
stack (“netstack”) module. Figure 4.2 illustrates how all these drivers fit into
the netstack module.

struct mac_driver {
char *name;

struct network_driver { void (% init)(void);
char *name; void (x send)(mac_callback_t sent_callback, void *ptr);
void (* init)(void); void (* input)(void);
void (x input)(void); int (% on)(void);
H int (% off)(int keep_radio_on);
unsigned short (% channel_check_interval) (void);
i
struct rdc_driver {
sicslowpan_driver char *name;
Network driver void (x init)(void);
nullmac_driver void [€3 §end)(mac__callback_t sent_callback, void xptr);
MAGC driver — void (* input)(void);
int (k on)(void);
sicslowmac_driver int (x off)(int keep_radio_on);
RDC driver unsigned short (* channel_check_interval) (void);
framer_802154 b
Framer " Tt 1
. struct framer
©02520_driver int (* create)(void);
Radio driver int (% parse)(void);
H

struct radio_driver {
int (% init)(void);
int (x prepare)(const void *payload, unsigned short payload_len);
int (% transmit) (unsigned short transmit_len);
int (% send)(const void *payload, unsigned short payload_len);
int (x read)(void *buf, unsigned short buf_len);
int (x channel_clear)(void);
int (% receiving_packet)(void);
int (* pending_packet) (void);
int (x on)(void);
int (x off)(void);

*

#define NETSTACK_CONF_NETWORK sicslowpan_driver
#define NETSTACK_CONF_MAC nullmac_driver
#define NETSTACK_CONF_RDC sicslowmac_driver
#define NETSTACK_CONF_FRAMER framer_802154
#define NETSTACK_CONF_RADIO cc2520_driver

Figure 4.2: The Contiki network stack. As the figure illustrates, different
components may fit in each slot as long as they implement the functions
defined by the corresponding driver “slot”.

In addition, these components are pluggable, thus any of them can be
replaced by another component as long as it implements the interface functions
of the driver. Contiki itself provides several alternatives for some of these
components so that different implementations can make use of the most
appropriate ones. Additionally, developers are free to replace any of them
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by their own components.

However, Contiki can not provide the lowest component in the stack, as
this is the platform-specific communication hardware driver. In addition
to the Clock library, this is another situation in which a Contiki module
requires hardware drivers. In our case, there are two different components
that must be plugged into the communication stack’s lower-layer slot in order
to transmit and receiver frames: the Ethernet controller for the device’s
Ethernet interface (Microchip’s ENC28J60) and the 2.4 GHz IEEE 802.15.4
radio frequency transceiver controller for its IEEE 802.15.4 radio interface
(Texas Instruments’ CC2520). As we will see in section 4.1.3, the fact that
two different components should be placed into the same stack’s slot poses
another challenge for our application.

Both drivers require functions to initialize the corresponding device, and
to send and receive a frame. Both drivers implement a Contiki process that
needs to be polled by the Contiki kernel to check whether there is an incoming
packet pending to be read and, if so, pass it to the stack for processing. The
sending of a frame, in contrast, is performed by the IPv4 or IPv6 process when
required via the driver communication interface, thus it is not necessary to
wake the driver process.

The specifics of the implementation of each of these drivers will be
explained in detail in Section 4.2.

Other hardware drivers

In addition to the previously mentioned hardware components, the board on
which the 6LP-GW is implemented has three LEDs and two buttons whose
drivers, despite not being used in the final version of the code, have been
implemented for debugging purposes as part of this thesis project. Since
the implementation of these drivers is not required for a basic Contiki port
and, in turn, it is tightly coupled to our specific implementation, a detailed
explanation of this implementation will be given in Section 4.2.1.

4.1.3 What Contiki does not provide

The previous sections have explained what Contiki provides and what Contiki
needs to work. This section focus on the features that comprise the 6LP-GW
requirements but that are not provided by Contiki. These are in addition
to the required hardware drivers, and the code that implements the proxy-
gateway itself.

As previously mentioned, Contiki includes communication utilities, such
as IPv4 and IPv6 stacks, both featuring related protocol implementations
(specifically 6LoOWPAN, ND, ARP, and DHCP), and provides the necessary
tools for application-layer communication. However, the constrained nature
of the target devices Contiki is intended for, and the recentness of the
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6LoWPAN-ND protocol lead to a number of gaps that we must fill in order
to achieve our goals:

e The IPv6 implementation provided by Contiki only supports the ND
protocol for IPv6, as specified in RFC 4861. However, it does not include
the ND optimizations for LLNs as defined in draft-ietf-6lowpan-nd. As
providing proxy operation between ND for IPv6 and the optimized
version of ND for LLNs is one of the two main purposes of the 6LP-GW
(the other main goal is the gateway operation), this imposes a major
challenge for this thesis project. In order to achieve our goals and test the
results, we required both implementing most of draft-ietf-6lowpan-nd’s
requirements for a router in the 6LP-GW and also implementing the host
behaviour defined in the Internet Draft for external 6LoWPAN Hosts
(6LHs).

o Contiki only allows the use of one (1) interface. However, due to
the gateway nature of the 6LP-GW this presents an obvious problem:
the 6LP-GW requires two interfaces: Ethernet and IEEE 802.15.4.
Therefore, this called for significant modifications in the Contiki IP
communication stack’s structure.

o Contiki provides implementations of both IPv4 and IPv6 stacks. However,
it does not allow their concurrent utilisation. Instead, implementations
need to choose between IPv4 or IPv6. Since one of our requirements is
to achieve a fully-featured internet device allowing further and effortless
incorporation of any IP-version application, the use of a dual stack
constitutes another challenge that must be dealt with.

e The 6LoOWPAN implementation included in Contiki supports the stateful
IPv6 header compression specified in RFC 6282. However, the current
implementation of such compression mechanism has certain limitations.
These limitations have their main root in the fact that no context
dissemination mechanism had been specified until the release of
draft-ietf-6lowpan-nd. As previously said, Contiki does not implement
the draft-ietf-6lowpan-nd specification and therefore it provides no
support for context management and dissemination. Instead, in the
current Contiki implementation, contexts must be manually, statically
included at compilation time in every node which is to share such
contexts. Another limitation is the fact that the supported contexts
are limited to a fixed length of 64 bits. Since we implement the context
management and dissemination mechanisms defined in
draft-ietf-6lowpan-nd in the 6LP-GW, our implementation chooses to
use such mechanisms to their best advantage, by enabling support for up
to 128-bit context lengths (which allows fully elision of any global IPv6
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address), that are dynamically added and removed from the 6LoWPAN
network as required.

e The fact that our application requires two interfaces, each of them
requiring its corresponding hardware driver, together with the added
dual stack and the 6LP-GW pseudo-layer laying in between them,
introduces several mismatches between our needs and the base Contiki’s
network stack (netstack) structure (remember Figure 4.2 in Section 4.1.2).
Thus, implementing our own netstack drivers and trying to fit them into
the current netstack structure may be inefficient or simply not work.
Hence, our application not only must implement the required network
stack modules which compose the network stack, but we also need to
extend Contiki’s netstack structure to meet our requirements.

4.2 Application Overview

The application implemented in this thesis is divided into several parts, each
of them performing a different task. The easiest way to understand the
application running on the 6LP-GW is, thus, to divide it into the functional
units it is comprised of. Figure 4.3 depicts a diagram of the application,
including the communication flows between the different functional units.

Each of these functional units usually corresponds to a separate layer in our
particular dual stack, which makes easy to understand the overall application.
Since the whole application runs on top of the Contiki kernel, some of these
functional units are implemented as Contiki processes, while others are simply
built as libraries providing useful resources to other parts of the application.

It is important to remark that the application is integrated by using two
well differentiated components:

1. The 6LP-GW, this is, the logic in charge of performing the proxy and
forwarding operations, as described in Chapter 3.

2. The internet host “residing” in the device along with the 6LP-GW
(which we will refer to as local-host for the remainder of this thesis),
enables integration of additional application components. Note that
this local-host is an “Ethernet host”, which means that it does not use
6LoWPAN nor 6LoWPAN-ND, but rather uses the standard IPv4 and
IPv6 stacks.

These two components are independent of each other. This means that the
6LP-GW treats the local-host as if it were an external component attached to
another (virtual) Ethernet interface. Thus the 6LP-GW performs the same
proxy and forwarding mechanisms for it as for any other node connected to
the Ethernet link. Similarly, the local-host operates oblivious to the presence
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of the 6LP-GW; thus the local-host will see any other 6LN or NCD in
the network as regular Ethernet hosts. Note however that this relationship
between the local-host and the 6LP-GW only applies to the local-host’s IPv6
communication; all incoming and outgoing local-host’s IPv4 traffic simply
bypasses the 6LP-GW logic (as shown with the rightmost arrow linking the
units labelled “IEEE 802.3 MAC” and “ARP”).

The following sections describe in detail each of the functional units in a
bottom-up fashion.

Application
layer

Transport

layer IPv6

host

Network
layer

6LP-GW
pseudo-layer

Adaptation 6LoWPAN I 6LP-GW
layer
IEEE 802.15.4 MAC IEEE 802.3 MAC
Link

layer
Radlo HAL Ethernet HAL
Physical ( PHY ] ( PHY J
layer

Figure 4.3: The 6LP-GW application diagram. The area surrounded by a
white border in the upper part constitutes the local-host logic; the oval area
in the center part of the diagram represents the 6LP-GW logic in; and the
lower part of the diagram illustrates the lower level layers through which
packets are delivered or sent to its corresponding destination. Note that the
Ethernet-related functional units are common to both the 6LP-GW and the
local-host.
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4.2.1 Hardware Abstraction Layer

The hardware abstraction layer (HAL) is the logic that “abstracts” the
hardware specific details, thus hiding these details from the rest of the
application. This implementation follows the commonly-used black box
approach, which consists of providing the necessary interface functions
required by the immediately upper-layer logic while keeping the latter unaware
of implementation details. The following sections describe the operation of
each of the drivers implemented as part of this hardware abstraction layer.
These descriptions provide a comprehensive explanation of the operation
performed by the specific module under discussion, rather than a detailed
and less instrumental explanation of the source code. A reader interested in
implementation-specific issues is referred to Appendix C for further details.

4.2.1.1 The Clock library implementation

As previously mentioned (see Section 4.1.2), any Contiki implementation must
provide a Clock library with the following elements:

CLOCK_CONF_SECOND
e clock_time_t
e clock_init()
e clock _time()

e clock_seconds()

In order to explain and justify the choices made regarding this driver, it is
important to know some details about the specific micro-controller being used
in our implementation. This micro-controller is a Texas Instruments family-5
ultra low-power MSP430 (MSP430F5435). This micro-controller is based on
a 16-bit RISC processor. The MSP430F5435 has three different clock signals:
MCLK, SMCLK, and ACLK. Each of this clock signals can be sourced from
different external crystals or from the micro-controller’s internal oscillator. In
our case, MCLK and SMCLK are sourced from an external high-frequency
crystal (32 MHz), while ACLK is sourced from an external 32,768 Hz crystal.
Each of the MSP430’s functional units requiring a clock signal can be sourced
from any of the above clock signals, which can be used directly or divided
(usually) by 2, 4, or 8. The divisors can vary however depending on the
specific functional unit.

In the clock library, we use the MSP430’s Timer A module in order to
configure the micro-controller’s timer interrupt. The Timer A module is
sourced by clock signal ACLK divided by 8. Since ACLK is sourced from
a 32,768 Hz crystal, this makes our particular configuration of timer A run at
32,768/8 = 4,096 Hz.
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The Timer A module is configured to execute the timer interrupt routine
every 256 ACLK/8 cycles. This value needs to be chosen carefully, considering
the trade-off between timer granularity and the frequency at which the timer
interrupt routine is executed. In other words, too high a value would cause
our minimum possible timer period to be too long, while too low a value
would cause the interrupt routine to be executed too frequently, stealing
processor cycles from the application or from other micro-controller modules.
The interval value of 256 allows for a minimum timer of (1/4,096)/256 =1/16
seconds, this is 62.5 milliseconds (which defines the duration of a system tick).
This value seems to be appropriate for our application as it provides a balance
between interrupt frequency and use of processor cycles. Note that, since the
CPU is driven by MCLK, which operates at 32/2 MHz, i.e., a CPU clock
frequency of 16 MHz, executing the interrupt routine once every 1/16 seconds
means that this interrupt routine is executed once every 1,000,000 CPU cycles.

Given this discussion an astute reader may have already guessed that our
CLOCK_CONF_SECOND is 16. Since this is the number of times the interrupt
routine has to be executed to measure one second.

Regarding the definition of the clock_time_t, the chosen data type is
unsigned long, which is a 32-bit long data type in our specific architecture.
The reason for this choice instead of a 16-bit data type (note that the MSP430
has a 16-bit CPU) is that, in order to compare two timestamps (which is what
timers need to do), the maximum distance between two timestamps that can
be compared is half the maximum value allowed by the data type. Thus, a 16-
bit data type would allow for a maximum timer of 65,535/2 = 32,767 system
ticks. This number of system ticks expressed in seconds is 32,767/16 = 2,047
seconds (or 34 minutes) which may be too small a range for certain timer
requirements. In addition, the MSP430 microprocessor is powerful enough
to perform a 32-bit addition without its overall performance being negatively
affected.

Given all of the above choices, defining the rest of the functions of the
Clock library is relatively straightforward: clock_init () initializes the Timer
A module selecting ACLK divided by 8 as its source and sets a timer interrupt
to be executed every 256 ACLK/8 cycles; the timer interrupt is implemented
as follows:
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interrupt void timer_interrupt(void) {
system_ticks++;

if (0 == (ticks % CLOCK_SECOND)) {
seconds++;

}

/* If there are Event timers pending,
notify the event timer module */

if (etimer_pending()) {
etimer_request_poll();

}

Where system_ticks and seconds are static variables of type clock_time_t.
Thus, clock_time() returns the value of variable system_ticks while
clock_seconds () returns the value of seconds. The final part of the function,
as explained in Section 4.1.2, provides support for the Event timer library,
requesting a poll on its behalf to the Contiki kernel every time a system tick
occurs if there is any pending Event timer.

4.2.1.2 Ethernet Controller Driver

The Ethernet controller driver is split into two layers: the lower one provides
the actual hardware abstraction layer while the upper layer implements a
Contiki process which requests polls from the Contiki kernel whenever the
Ethernet controller signals that there is an incoming packet.

As for the lower layer, the Ethernet micro-controller used is a Microchip’s
ENC28J60. This micro-controller implements a SPI interface and an instruction
set which allows the MSP430 to interact with it. Thus, all the communication
between the MSP430 and the ENC28J60 (including Ethernet packets being
received or sent out) occurs through this SPI interface and using the
ENC28J60’s instruction set.

The hardware abstraction layer needs to provide the upper layer with a
set of functions to initialize the ENC28J60, and to send and read Ethernet
packets. In addition it provides a function to check whether there is any packet
pending to be read and an interrupt routine that requests a poll on behalf of
its upper-layer’s process from the Contiki kernel when a packet arrives (Note
that only processes can be polled from the Contiki kernel).

As mentioned above, the upper-layer Ethernet driver implements a running
Contiki process that, when polled, checks whether there is an incoming
Ethernet packet pending to be read, and, if so, reads it and forwards it to the
upper layer (in this case the Ethernet MAC layer). In addition, this upper-
layer driver encapsulates lower-layer functions into slightly more complex
functions that can be invoked from upper layers. Among this additional
functions, this Ethernet driver supports turning on/off the whole Ethernet
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operation and subtracts the Ethernet’s CRC length from the packet’s payload
length.

4.2.1.3 Radio Transceiver Controller Driver

While the Ethernet and the radio drivers have many aspects in common, the
radio driver has some extra requirements. These requirements are due to the
use of a specific IEEE 802.15.4 MAC layer provided by Contiki (Contikimac)
which implements a radio duty cycling mechanism that allows for power saving
by periodically turning the radio receiver off at specific times [20]. Although
the radio driver implemented in the 6LP-GW as part of this thesis work
fulfils these requirements by providing all the required interface functions
(hence, it could be used in conjunction with the Contikimac MAC layer), the
IEEE 802.15.4 MAC implementation utilised in our application is an earlier
version (included in the Contiki 2.4 version) called Sicslowmac which does not
perform the radio duty cycling mechanism, but keeps the radio receiver on.
The reason for this is that the radio duty cycling mechanism saves power by
turning off the radio, thus increasing the probability of missing frames during
the time it is powered off. Since the 6LP-GW is assumed to be powered by the
power mains, we choose not to use this radio receiver duty cycle mechanism.

4.2.1.4 Other Drivers

As previously mentioned, the 6LP-GW implementation developed as part of
this thesis project includes several components that, although not required
for the purpose of our study, were useful for debugging purposes. Two such
components support the board’s two buttons and three LEDs. Details about
the implementation of these two components are detailed in this this section.

Buttons

The buttons driver can be seen as if it were divided into two different
abstraction layers: the lower layer simply checks whether a button is pressed
or not, the upper layer performs some operations at the Contiki operating
system level.

Regarding the lower layer, two functions, one for each button, return a
value other than zero if the corresponding button is pressed and zero otherwise.
This is performed simply by checking the value of the pin to which each button
is directly connected.

As for the upper layer, the implementation provides a function that permits
Contiki processes to register themselves to use the buttons. This way, when
a button is pressed, all the registered processes are notified about it. This
notification includes information regarding which of the two buttons has been
pressed. By this simple mechanism we enable Contiki processes to perform
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blocking waits that depend upon on the state of the buttons, without requiring
active waits that would block the entire system.

LEDs

The LEDs driver is even simpler than the buttons driver; it simply provides
three functions (in addition to the required initialisation function) that permit
setting a certain LED on, off, or perform a toggle operation on it depending
on a parameter that specifies its color (this identifies the specific LED since
the three different LEDs are red, green, and yellow).

4.2.2 MAC layer

The MAC layer of this implementation performs the operations required
for the encapsulation/decapsulation and transmission/reception of IP-layer
packets over the physical media. The 6LP-GW internetworks two different
media types, each of them having different MAC requirements. These two
different MAC layers are described in the following paragraphs.

4.2.2.1 IEEE 802.3 MAC layer

Before proceeding to describing the behaviour of this module, it is important
to clarify the different types of IP packets that may traverse it. Our
implementation has three different sources (and their three corresponding
destinations) of IP packets, which will require different treatment. The
6LP-GW will use the IEEE 802.3 MAC layer in order to receive or send
packets over the IEEE 802.3 media. Additionally, the local-host implemented
in the same device will also use this same functionality. Moreover, this host
has a dual stack, which means that either IPv4 and IPv6 packets will be sent
or received over through this MAC layer.

The IEEE 802.3 MAC layer implemented operates differently depending on
the IP version of the layer-3 packet. In the case of IPv4 packets, this module is
responsible for performing link-layer address resolution (which, unlike the case
of IPv6, is not performed at the IP layer). For this purpose, an implementation
of the ARP protocol provided by Contiki has been used. In particular, the
MAC layer will operate as follows regarding IPv4 traffic:

e For outgoing, non-multicast, IPv4 traffic, it will generate the entire link-
layer (Ethernet) header depending on the execution of the ARP protocol.
If ARP is able to determine the link-layer address of the destination
based on the destination IPv4 address, this address will be placed in the
destination address field of the Ethernet header. If not, the ARP code
will replace the outgoing packet by an ARP request for that address.
In either case, the rest of the Ethernet header fields (source link-layer
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address and the type/length field) will be filled with the local node’s link-
layer address and the corresponding ethertype, which may be either the
corresponding value for IPv4, or for ARP, depending on whether ARP
succeeded into resolving the destination link-layer address or not.

e For incoming, non-multicast IPv4 traffic, the ARP algorithm will update
its cache with the pair <IPv4 source address, source link-layer address>
if no entry with these values was already present.

¢ Periodically, the MAC layer will perform maintenance operations on the
ARP cache. In order to do so, the IEEE 802.3 MAC layer is implemented
as a Contiki process which utilizes a periodic event timer.

In contrast, IPv6 traffic does not require address resolution. Indeed, the
task of address resolution is performed by the ND protocol and therefore
it occurs at the IP layer. If a packet’s IPv6 source or destination address
corresponds to the local host, its ND Address Resolution algorithm will handle
the details regarding link-layer address resolution appropriately. If the IPv6
packet has been generated by or is destined to the 6LP-GW, then the 6LP-GW
module itself will take appropriate care of the link-layer addresses.

In all cases, the IEEE 802.3 MAC implementation will multiplex and
forward incoming traffic to the required upper-layer module, which may be
either the IPv4 or IPv6 stacks of the local node, or the 6LP-GW module.

4.2.2.2 IEEE 802.15.4 MAC layer

Regarding the TEEE 802.15.4 MAC layer, few changes have been made to
the code provided by Contiki. Contiki provides several MAC layers, each of
them implementing different features. The one utilised by this implementation
is called “sicslowmac” and it performs the basic operations regarding the
IEEE 802.15.4 MAC layer. For outgoing packets, it generates the contents
of the link-layer header; for incoming packets, it parses the contents of the
IEEE 802.15.4 header (discarding any malformed packets) and forwards the
packets to the appropriate upper layer, which in this case is always the
6LoWPAN Adaptation layer.

4.2.3 6LoWPAN Adaptation layer

The 6LoWPAN Adaptation layer is located between the IEEE 802.15.4 MAC
layer and the 6LP-GW module. As will be explained in Section 4.2.4, the IPv6
layer of the local-host stack does not have direct access to the 6LoWPAN layer.

As we already mentioned, Contiki includes an implementation of the
6LoWPAN adaptation layer. However this implementation lacks certain
features regarding the stateful IPv6 header compression feature specified in
RFC 6282 [27] that were of interest for this thesis project. In particular,
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what is missing in the original code is a dynamic mechanism to add/remove
contexts, and code to utilize such dynamically added contexts for stateful
compression/decompression. In addition, the 6LoWPAN implementation only
allows the use of 64-bit fixed-length contexts, whereas RFC 6282 does not
impose this limitation and I-D.ietf-6lowpan-nd [43] permits the dissemination
of variable-length contexts of up to 128 bits. Thus, some modifications
were made to the original Contiki’s 6LoOWPAN code in order to permit the
utilisation of arbitrarily long, dynamically acquired contexts.

Apart from the changes described above, the rest of the 6LoWPAN code
included in the implementation of the 6LP-GW is mostly the same as the
original code and performs the following tasks:

o For outgoing traffic, the 6LoWPAN layer compresses the IPv6 header
and forwards the packet to the IEEE 802.15.4 MAC layer.

o For incoming traffic, the IPv6 header is uncompressed and the packet is
forwarded to the 6LP-GW pseudo layer.

4.2.4 The 6LP-GW pseudo-layer

The 6LP-GW’s operation is described in detail in Chapter 3. Its implementation
comprises the functions that handle packet forwarding and ND-proxying. This
module is divided into three different sub-modules: the Forwarding module,
the ND module, and the Proxy module. Each of these performing their tasks
following as described below:

The Forwarding module

As its name suggests, the Forwarding module comprises the functions that
handle the tasks regarding packet forwarding. Basically, this module is in
charge of performing initial processing of incoming traffic, as well as sending
out outgoing packets.

Regarding the incoming traffic operations, it performs the basic bridging
operations described in Section 3.2.3. In addition it translates any link-
layer addresses that might be present in the payload (mainly in ND packets)
when necessary. Moreover, incoming packets are passed through a filter that
discards all IPv6 traffic which is not UDP or ICMPv6.

Processing of outgoing packets consists of multiplexing these packets to
the appropriate interface according to their origin and destination. This
process also involves translating link-layer addresses (as explained for incoming
packets) when necessary.

Note that the local-host is considered to be attached to a virtual Ethernet
interface of the 6LP-GW, and thus this host must also be taken into account
for this processing of incoming and outgoing packets. In fact, this is the
reason why the 6LoWPAN Adaptation layer does not have direct access to the
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IPv6 module: it is the 6LP-GW (in particular, the Forwarding sub-module)
who multiplexes all the incoming IPv6 traffic to its corresponding destination,
which may be the local-host, a remote host, or none of them (e.g. if the proxy
operations determine that such a packet needs to be replaced by another
packet).

It is important note also that the process of determining the source and
destination link-layer addresses is performed according to the information
gathered by the bridging function, which might be modified by the Proxy
operation.

The ND module

This ND module provides all the functions and data structures required to
perform the tasks regarding 6LoWPAN-ND that correspond to a 6LR, as
specified in I-D.ietf-6lowpan-nd. This means that this module provides the
facilities to handle and maintain the NC, and the contexts table. Although
not being strictly part of the 6LoWPAN-ND specification, this module also
performs the operations regarding the DAD mechanism when performed on
behalf of 6LHs. The reasons to include these functionality here is that, apart
from being related to the ND protocol, the results (either positive or negative)
of DAD imply generating 6LoWPAN-ND responses (see Section 3.2.4.1).

The Proxy module

The Proxy module is the main sub-module among the three comprising the
6LP-GW implementation. It implements a Contiki process that is in charge
of performing ND-proxying, which means that it carries out the operations
described in Section 3.2.4, besides controlling the other two sub-modules for
the required tasks. Figure 4.4 illustrates the relationship between these three
modules.

4.2.5 Network Layer

Regarding the network layer, few changes were made to the IPv4 and IPv6
implementations that come with Contiki. These few modifications are mainly
related to the way packets get into or out from the stacks rather than to
their actual implementation. The reason for this is that, as mentioned in
Section 4.1.3, Contiki does not support the use of the IPv4 and IPv6 stacks
simultaneously.

In addition, both the stacks reuse certain variables and functions (using
the same names) when used separately.When possible, these variables and
functions have been made available for both stacks simultaneously, allowing
their shared use. This is the case of the variables uip_buf and uip_len, which
hold the buffer for both incoming and outgoing traffic, and the length of the
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Figure 4.4: The 6LP-GW module architecture. The numbers in the arrows
indicate the order in which each module’s operations are invoked for the event
of an incoming ND packet. The forwarding module appears twice because it
is normally required to handle the reception and dispatch of packets.

data contained in it respectively. When this shared use has not been possible,
a duplication and renaming has been applied.

The data-flow between both IP stacks and the modules lying immediately
above or beneath them in the communications stack is illustrated in Figure 4.3
on page 70.

4.2.6 Application Layer

The only application implemented in the application layer as part of this thesis
project is a DHCP client. Contiki provides the core functions required for this
DHCP client. It was only necessary to implement a Contiki process to handle
specific events (arrival of packets or expiration of a timer) and two callback
functions. Of these functions, one will be called if the DHCP client succeeds
in acquiring an IPv4 address while the other will be invoked in the event of
failing to renew the lease of the assigned address with the DHCP server.






Chapter 5

Analysis

This chapter describes the different procedures that have been used to evaluate
the application’s compliance with its specified requirements in terms of both
correctness and efficiency.

5.1 Method for Evaluation

The evaluation carried out in this thesis is comprised of two different tests.
In order to verify that the application is correct (i.e., given a specific state
and a certain input, it generates the expected output), we define a set of use
cases (test cases) and then run a test to validate the application for each of
them. Note that these tests, however, are only useful to verify the functional
requirements, not providing information about non-functional requirements.
On the other hand, the main non-functional requirement of our application
is to have acceptable processing times, which should be short enough so
that the 6LP-GW does not pose any throughput-limiting factor in the network.

5.1.1 TUse cases test

This test will cover most possibilities regarding ND packets that may arrive at
the 6LP-GW. Additionally, these tests consider the different situations, i.e.,
the states in which the 6LP-GW may be, different options and option values in
these ND packets, and the interface on which these packets were received. In
those cases where a certain parameter would have no influence on the results,
the value of this parameter may be not taken into account for the specific use
case under consideration. For details about the use cases and the expected
results, refer to Chapter 3.

This test will not consider the case of erroneous or malformed packets. the
reasons for not considering these types of packets are the fact that the number
of different erroneous packets that could be generated is nearly countless, and
that the correctness of the behaviour of the 6LP-GW upon arrival or erroneous
packets can be easily inferred by studying the source code. Thus, the proper
behaviour of the 6LP-GW under these circumstances (i.e., silently discarding
malformed of erroneous packets) shall be assumed.

The use cases under which the 6LP-GW will be tested to operate correctly
are the following:

1. Receiving RS messages:

a) Test: Receiving RS messages on the Ethernet interface.
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Expected result: The RS message should be silently discarded and
no output should be generated in response.

Test: Receiving a RS on the IEEE 802.15.4 interface from the
unspecified address.

Expected result: Same as in previous test.

Test: Receiving a RS on the IEEE 802.15.4 interface without a
SLLAO option.

Expected result: Same as in previous test.

Test: Receiving a RS on the IEEE 802.15.4 interface from
an address different than the unspecified address which has no

matching entry in the NCE and with a valid SLLAO option, if
there is no space left in the NCE.

Expected result: Same as in previous test.
Test: Receiving a RS on the IEEE 802.15.4 interface from an

address different than the unspecified address and with a valid
SLLAO option.

Expected results: The RS message should be forwarded with the
appropriate link-layer address translation.

2. Receiving RA messages:

a)

Test: Receiving a RA on the IEEE 802.15.4 interface.

Expected result: The RA message should be silently discarded and
no output should be generated in response.

Test: Receiving a RA on the Ethernet interface under the following
conditions:

e No 6LH has previously sent a RS.
¢ No PIO option is present in the RA message.
Expected result: Same as in previous test.

Test: Receiving a RA on the Ethernet interface under the following
conditions:
e No 6LH has previously sent a RS.
e A valid PIO option which had already been received in previous
RA messages is present in the current RA message.
Expected result: Same as in previous test.

Test: Receiving a RA on the Ethernet interface under the following
conditions:
e At least one 6LH has previously sent a RS.

¢ A valid PIO option which had already been received in previous
RA messages is present in the current RA message.
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o The ‘L’ (on-link) flag of the PIO option is set to 1.

e There is no SLLAO option present in the RA message.
Expected result: The RA message should be unicasted to each
the of 6LH that are known to have solicited a RA. The ‘L’ (on-
link) flag of the PIO option should be set to 0 in the outgoing
RA messages. The RA message should contain 6CO options
corresponding to known (previously announced and whose lifetime
has not yet expired) prefixes. In addition the RA message should
contain a SLLAO option whose link-layer address matches the RR’s
link-layer address.

Test: Receiving a RA on the Ethernet interface under the following
conditions:
o At least one 6LH has previously sent a RS.

e A valid PIO option which had already been received in previous
RA messages is present in the current RA message.

o The ‘L’ (on-link) flag of the PIO option is set to 0.
e There is no SLLAO option present in the RA message.

Expected result: Same as in previous test.

Test: Receiving a RA on the Ethernet interface under the following
conditions:
e At least one 6LH has previously sent a RS.

o A valid PIO option which had already been received in previous
RA messages is present in the current RA message.

o The ‘L’ (on-link) flag of the PIO option is set to 1.
o There is a valid SLLAO option present in the RA message.

Expected result: Same as in previous test.

Test: Receiving a RA on the Ethernet interface under the following
conditions:
o At least one 6LLH has previously sent a RS.

o A valid PIO option which had already been received in previous
RA messages is present in the current RA message.

o The ‘L’ (on-link) flag of the PIO option is set to 0.
e There is a valid SLLAO option present in the RA message.

Expected result: Same as in previous test.

Test: Receiving a RA on the Ethernet interface under the following
conditions:

e A valid PIO option which had not been received before in
previous RA messages is present in the current RA message.
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o The ‘L’ (on-link) flag of the PIO option is set to 1.

e There is no SLLAO option present in the RA message.
Expected result: A RA message containing a 6CO option whose
context matches the prefix announced in the RA (along with other
6COs corresponding to other advertised prefixes, if any) should
be multicasted to every node in the IEEE 802.15.4 segment. The
‘L’ (on-link) flag of the PIO option should be set to 0 in the
outgoing RA message. In addition the RA message should contain
a SLLAO option whose link-layer address matches the RR’s link-
layer address.

i) Test: Receiving a RA on the Ethernet interface under the following
conditions:

e A wvalid PIO option which had not been received before in
previous RA messages is present in the current RA message.

o The ‘L’ (on-link) flag of the PIO option is set to 0.
e There is no SLLAO option present in the RA message.

Expected result: Same as in previous test.

j) Test: Receiving a RA on the Ethernet interface under the following
conditions:

e A wvalid PIO option which had not been received before in
previous RA messages is present in the current RA message.

o The ‘L’ (on-link) flag of the PIO option is set to 1.
e There is a valid SLLAO option present in the RA message.

Expected result: Same as in previous test.

k) Test: Receiving a RA on the Ethernet interface under the following
conditions:

e A wvalid PIO option which had not been received before in
previous RA messages is present in the current RA message.

o The ‘L’ (on-link) flag of the PIO option is set to 0.
e There is a valid SLLAO option present in the RA message.

Expected result: Same as in previous test.
3. Receiving NS messages:
a) Test: Receiving a NS on the Ethernet interface from the unspecified
address under the following conditions:

e There is no NCE corresponding to a 6LH whose IPv6 address
matches the target address contained in the NS message.

Expected result: The NS message should be silently discarded and
no output should be generated in response.
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b)

Test: Receiving a NS on the Ethernet interface from the unspecified
address under the following conditions:

e There is a NCE corresponding to a 6LH whose IPv6 address
matches the target address contained in the NS message and
whose state is REGISTERED.

Expected result: A NA message with the same target address as
the incoming NS should be generated and sent to the all-nodes
multicast address on the Ethernet segment.

Test: Receiving a NS on the Ethernet interface from the unspecified
address under the following conditions:

e There is a NCE corresponding to a 6LH whose IPv6 address
matches the target address contained in the NS message and
whose state is TENTATIVE.

Expected result: A NA message having the RR’s TPv6 address
as its target address should be generated and sent to the 6LH in
TENTATIVE whose IPv6 address matched the target address of
the received NS. Such NA should contain an ARO option with
status code 1.

Test: Receiving a NS on the Ethernet interface from the unspecified
address under the following conditions:

e There is a NCE corresponding to a 6LH whose IPv6 address
matches the target address contained in the NS message and
whose state is GARBAGE-COLLECTIBLE

Expected result: The NS message should be silently discarded and
no output should be generated in response.

Test: Receiving a NS on the Ethernet interface from an address
other than the unspecified address under the following conditions:

e There is no NCE corresponding to a 6LH whose IPv6 address
matches the target address contained in the NS message.

Expected result: The NS message should be silently discarded and
no output should be generated in response.

Test: Receiving a NS on the Ethernet interface from an address
other than the unspecified address under the following conditions:

e There is a NCE corresponding to a 6LH whose IPv6 address
matches the target address contained in the NS message and
whose state is REGISTERED.

Expected result: A NA message with the same target address as
the incoming NS should be generated and unicasted in response to
the originator of the solicitation.
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Test: Receiving a multicast NS on the IEEE 802.15.4 interface from
the unspecified address under the following conditions:

e The NS message does not include an ARO option.

e The NS message does not include an SLLAO option.
Expected result: The NS message should be forwarded unchanged

(except for the appropriate link-layer address translation) to the
Ethernet interface.

Test: Receiving a NS on the IEEE 802.15.4 interface from the
unspecified address under the following conditions:

e The NS message does not include an ARO option.

e The NS message does not include an SLLAO option.

Expected result: Same as in previous test.

Test: Receiving a NS on the TEEE 802.15.4 interface from the
unspecified address under the following conditions:

e The NS message does not include an ARO option.

e The NS message includes include an SLLLAO option.

Expected result: Same as in previous test.

Test: Receiving a NS on the IEEE 802.15.4 interface from the
unspecified address under the following conditions:

¢ The NS message includes a valid ARO option.

e The NS message does not include an SLLLAO option.
Expected result: The ARO option in the NS message is ignored and

removed prior to forwarding the NS message (with the appropriate
link-layer address translation) to the Ethernet interface.

Test: Receiving a NS on the IEEE 802.15.4 interface from the
unspecified address under the following conditions:

e The NS message includes a valid ARO option.

e The NS message includes a valid SLLAO option.

Expected result: Same as in previous test.

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

e The NS message does not include an ARO option.

e The NS message does not include an SLLAO option.
Expected result: The NS message should be forwarded unchanged

(except for the appropriate link-layer address translation) to the
Ethernet interface.
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m)

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

o The NS message includes a valid ARO option.
e The NS message does not include an SLLAO option.
Expected result: The ARO option in the NS message is ignored and

removed prior to forwarding the NS message (with the appropriate
link-layer address translation) to the Ethernet interface.

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

e The NS message does not include valid ARO option.

e The NS message includes a valid SLLAO option.

Expected result: The NS message should be forwarded unchanged
(except for the appropriate link-layer address translation) to the
Ethernet interface.

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

o The NS message includes a valid ARO option.
e The NS message includes a valid SLLAO option.

o Either the RR’s IPv6 address or the RR’s link-layer address
are not known by the 6LP-GW.

Expected result: The NS message should be silently discarded and
no output should be generated in response.

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:
o The NS message includes a valid ARO option.
e The NS message includes a valid SLLAO option.
e Both the RR’s IPv6 address and the RR’s link-layer address
are known by the 6LP-GW.

e The destination IPv6 address, target IPv6 address and the
destination link-layer address match the corresponding RR’s
addresses.

e The 6LP-GW does not contain NCE corresponding to the
originator of the solicitation.

e There is no space left in the NC
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Expected result: A NA whose target is copied from the solicitation
and its IPv6 address is the RR’s IPv6 address is generated and
sent to the originator of the NS. This NA contains an ARO option
copied from the solicitation but containing a status value of 2 (NC
full).

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

e The NS message includes a valid ARO option.

e The NS message includes a valid SLLAO option.

e Both the RR’s IPv6 address and the RR’s link-layer address
are known by the 6LP-GW.

e The destination IPv6 address, target IPv6 address and the
destination link-layer address match the corresponding RR’s
addresses.

e The 6LP-GW does not contain NCE corresponding to the
originator of the solicitation.

e There is space left in the NC.

Expected result: A NS having the unspecified address as its source
address and the RR’s IPv6 address as target is generated and
multicasted to the all-nodes multicast address on the Ethernet
interface. This NS contains no options.

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

e The NS message includes a valid ARO option.

e The NS message includes a valid SLLAO option.

o Both the RR’s IPv6 address and the RR’s link-layer address
are known by the 6LP-GW.

e The destination IPv6 address, target IPv6 address and the
destination link-layer address match the corresponding RR’s
addresses.

¢ The 6LP-GW contains NCE corresponding to a 6L.H with an
IPv6 address that matches the source of the solicitation but

with a different link-layer address than the one contained in
the EUI-64 field of the ARO option.

Expected result: A NA whose target is copied from the solicitation
and its IPv6 address is the RR’s IPv6 address is generated and
sent to the originator of the NS. This NA contains an ARO option
copied from the solicitation but containing a status value of 2 (NC
full).
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)

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

o The NS message includes a valid ARO option.
e The NS message includes a valid SLLAO option.

e Both the RR’s IPv6 address and the RR’s link-layer address
are known by the 6LP-GW.

e The destination IPv6 address, target IPv6 address and the
destination link-layer address match the corresponding RR’s
addresses.

e The 6LP-GW contains NCE corresponding to a 6LH with an
IPv6 address that matches the source of the solicitation but

with a different link-layer address than the one contained in
the EUI-64 field of the ARO option.

Expected result: A NA whose target is copied from the solicitation
and its IPv6 address is the RR’s IPv6 address is generated and sent
to the originator of the NS. This NA contains an ARO option copied
from the solicitation but containing a status value of 1 (duplicate).

Test: Receiving a NS on the IEEE 802.15.4 interface from an
address other than the unspecified address under the following
conditions:

e The NS message includes a valid ARO option.
o The NS message includes a valid SLLAO option.

e Both the RR’s IPv6 address and the RR’s link-layer address
are known by the 6LP-GW.

e The destination IPv6 address, target IPv6 address and the
destination link-layer address match the corresponding RR’s
addresses.

e The 6LP-GW contains NCE corresponding to a 6LH with an
IPv6 address that matches the source of the solicitation and a

the link-layer address matching the one contained in the EUI-
64 field of the ARO option.

Expected result: A NA whose target is copied from the solicitation
and its IPv6 address is the RR’s IPv6 address is generated and sent
to the originator of the NS. This NA contains an ARO option copied
from the solicitation but containing a status value of 0 (success).

4. Receiving NA messages:

2)

Test: Receiving a multicast NA message on the Ethernet interface
under the following conditions:
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e There is no NCE corresponding to a 6LH that has the
same IPv6 address as the one contained in the target of the
advertisement.

Expected result: The NA message should be silently discarded and
no output should be generated in response.

Test: Receiving a multicast NA message on the Ethernet interface
under the following conditions:

e There is a NCE corresponding to a 6LH that has the same IPv6
address as the one contained in the target and whose state is
GARBAGE-COLLECTIBLE.

Expected result: Same as in above test.

Test: Receiving a multicast NA message on the Ethernet interface
under the following conditions:

e There is a NCE corresponding to a 6LH that has the same IPv6
address as the one contained in the target and whose state is
REGISTERED.

Expected result: The NA is forwarded unchanged (except for the
appropriate link-layer address translation) on the IEEE 802.15.4
interface.

Test: Receiving a multicast NA message on the Ethernet interface
under the following conditions:

e There is a NCE corresponding to a 6LH that has the same IPv6
address as the one contained in the target and whose state is
TENTATIVE.

Expected result: A new NA is generated and sent to the link-
local address of the 6LH corresponding to the NCE whose address
matches the target. Such NA has its source address copied from
the RR’s address, an SLLAO option containing the RR’s link-layer
and an ARO option with status code 1 (duplicate).

Test: Receiving a unicast NA message on the Ethernet interface
under the following conditions:

¢ The destination of the NA has not a corresponding NCE in the
NC.

Expected result: The NA message should be silently discarded and
no output should be generated in response.

Test: Receiving a unicast NA message on the Ethernet interface
under the following conditions:

¢ The destination of the NA has a corresponding NCE in the NC
in TENTATIVE state.
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Expected result: Same as in previous test.

g) Test: Receiving a unicast NA message on the Ethernet interface
under the following conditions:

e The destination of the NA has a corresponding NCE in the NC
in GARBAGE-COLLECTIBLE state.

Expected result: Same as in previous test.

h) Test: Receiving a unicast NA message on the Ethernet interface
under the following conditions:

e The destination of the NA has a corresponding NCE in the NC
in REGISTERED state.

o The NCE corresponding to the destination of the NA has its
ARO-pending flag set to zero.

Expected result: The NA is forwarded unchanged (except for the
appropriate link-layer address translation) on the IEEE 802.15.4
interface.

i) Test: Receiving a unicast NA message on the Ethernet interface
under the following conditions:

e The destination of the NA has a corresponding NCE in the NC
in REGISTERED state.

e The NCE corresponding to the destination of the NA has its
ARO-pending flag set to one.

Expected result: The NA is forwarded on the TEEE 802.15.4
interface (applying the appropriate link-layer address translation).
Such NA is appended an ARO option whose EUI-64 field contains
the link-layer address stored in the NCE and its status code is 0
(success).

5.1.2 Processing time and throughput measurement

In order to measure the 6LP-GW’s processing time, we will utilize a common
technique that consists of sending two back-to-back packets (with a minimum
inter-packet gap) to the 6LP-GW and measuring the time between them being
output. The difference in time between these packet outputs represents the
processing time of the second packet.

In particular, the 6LP-GW will receive 93 pairs of back-to-back UDP
packets, each pair having an increasing payload size. This payload size
will range from 1 to 93 bytes, which is the maximum payload size we can
allocate on a IEEE 802.15.4 frame, given the overhead imposed by each of the
different protocols in our particular scenario. This scenario will consist of a
6LH, a NCD, and the 6LP-GW implemented on the Hogaza v1.2 prototype
board [50]. Although all the nodes are within the same subnet, the IPv6
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packets will be sent to the global address of these devices. The reasons
for using global addresses instead of link-local addresses (considering that
they all are within the same subnet) are two: testing the proper handling of
the devices’ autoconfiguration by the 6LP-GW, and testing and taking into
account the stateful compression/uncompression feature, which processing
times may affect the measurements taken during the evaluation process. The
UDP packets will be sent to/from port numbers within the 0xF0BO to 0xFOBF
range, which are the port numbers allowed to be compressed down from 16 to
4 bits by the RFC 6282 specification.

In addition, in order to alleviate possible measurement flaws, this test
will be repeated 100 times for each of the 93 payload lengths. Of these 100
measurements, the highest and the lowest values will be removed, while the
rest will be used to calculate the average processing time.

Since the 6LP-GW behaves differently depending on both the type of
packet being received and the direction in which packets are forwarded, the two
packets comprising the back-to-back pair must be equal and the measurements
will be computed for packets originating in a (wireless) 6LH and sent to a
neighbouring (wired) NCD through the 6LP-GW and vice-versa.

5.2 Analysis of metric results

5.2.1 Use cases

After testing with each of the use cases described in Section 5.1.1, the outcome
was that the result obtained matched the expected result in 100% of the cases.
Such results indicate the correctness of the implemented application.

Thus, we can conclude that the tests’ results show the proper behaviour
of the 6LP-GW for these use cases. However, it is important to note that
the set of use cases analysed, although complete enough for the purpose of
providing a general evaluation of the behaviour of the implementation, is far
from complete in comparison with the total number of actual possible cases
that may occur in practice. Naturally, exhaustive testing of the total number
of possible cases is, in practice, not feasible due to the extremely large amount
of them.

5.2.2 Processing time and throughput

The performance tests conducted of the 6LP-GW implementation with
payloads ranging from 1 to 93 octets showed that the processing times range
between 1.761 ms and 5.047 ms for the case of packets traversing the device
from the IEEE 802.15.4 port towards the Ethernet interface, and between
2.851 ms and 6.756 ms for the case of packets traversing the device in the
opposite direction. This leads to average processing time of 3.404 ms for the
former case and 4.804 ms for the latter. The average time considering both
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directions is 4.104 ms. These results, along with the average times can be
observed in Figures 5.1 and 5.2

Processing time vs. payload size

N e
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Payload length (bytes)

Figure 5.1: Radio to Ethernet performance test. The graph shows the
processing time of packets depending on their payload length.

As these results show, the processing times for the case of packets being
forwarded from the Ethernet interface to the IEEE 802.15.4 interface are
slightly longer (roughly about 1.4 ms) than the times of packets being
forwarded in the opposite direction. Figure 5.3 illustrates these differences
in the measured times.

A reason for this is the fact that the radio transceiver is always in reception
mode, and only switches to transmission mode when there is packet is to
be transmitted. The time to switch between reception and transmission is
specified in the IEEE 802.15.4 standard [4] (and thus in CC2520 datasheet)
as the transmission (TX) turnaround time, which is 192 ps. The time it takes
to ramp down the signals to switch back from TX to reception (RX) is only
2 ps, which we can consider irrelevant to our measurements. Thus, in order
to transmit two back to back packets, the 6LP-GW behaves as follows:

1. The 6LP-GW switches from RX to TX mode in order to transmit the
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Processing time vs. payload size
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Figure 5.2: Ethernet to radio performance test. The graph shows the
processing time of packets depending on their payload length.

first packet — 192 us
2. After transmitting, the 6LP-GW switches back from TX to RX — 2 us

3. The 6LP-GW switches again from RX to TX to transmit the second
packet — 192 us

Although this explains only a constant shift in the measured time of 386 pus,
there are other factors that affect our transmission timings. For instance, prior
to begin a transmission, the transmitting code waits until the received signal
strength indication (RSSI) becomes valid, and then, it sends the command to
transmit the packet to the transceiver and, more importantly it waits until
the transmission has completed prior to continue executing further tasks. This
active wait contrasts with the way that reception is performed, as in reception
the complete packet is received without interrupting the microprocessor until
the whole packet has actually been received.

Given that all the packets are identical (except for the FCS in the
IEEE 802.15.4 header, the UDP checksum in the UDP header, and the
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7 Processing time vs. payload size
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Figure 5.3: Comparison of measured times depending on the forwarding
direction

payload, which only varies in its length), we can easily calculate the marginal
cost in time of processing an additional byte. Considering that the processing
time is not exactly a linear function of the payload length, we calculate the
time it takes to process 1 byte as the average of the differences between the
processing times of packets having consecutive lengths:

93
5 (x — T
timepyte = 21—2(913 i-1)

This processing time per additional payload byte is 0.035 ms in the case of
the Ethernet-to-radio traffic and 0.042 in the opposite direction. The average
processing time per additional byte is hence 0.039 ms.

Given these measurements, we can calculate our processing bit rate as the
inverse of the time it takes to process an additional byte divided by 8 bits per
byte:

1
bitrate = ——— = 204.603 kb/s

timepyte
8

The theoretical highest data rate achievable in ideal conditions by
IEEE 802.15.4 transceivers in the 2.4 GHz band is 250 kb/s. Considering
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that the conditions under which the performance tests were conducted are far
from ideal, we conclude that the results achieved are quite satisfactory.



Chapter 6

Conclusions

This chapter explains the conclusions obtained throughout the design,
development, and evaluation described in this thesis and proposes a number
of improvements, extensions, or complements that may be of interest in order
to continue this work.

6.1 Conclusions

In this section we will state the conclusions and insights gained as result of
this thesis project.

6.1.1 Goals

In the beginning of this report, we enumerated the different goals of this thesis
project (Chapter 1, Section 1.3). In this section, we will analyse the results
obtained regarding each of these goals.

The first and foremost goal of this thesis was to investigate if integrating
6LoWPAN devices into existing IPv6 networks without requiring a single
modification in the existing network infrastructure was a feasible task. As the
results show, this task is not only feasible, but also efficient and cost-effective
(given the hardware costs described in [50]).

Use case testing of the 6LLP-GW has demonstrated that it behaves properly
and efficiently in its two main tasks: internetworking the two different
link-layers present in each of the network segments under consideration
(IEEE 802.15.4 and IEEE 802.3), and operating as a proxy between the
two versions of the ND protocol (IPv6-ND and 6LoWPAN-ND). Both the
efficiency in terms of throughput and effective bit rate as well as the proper
behaviour of the proxy operations have been tested as described in Chapter 5.

Additionally, the inexpensive hardware components comprising the
embedded platform (Hogaza v1.2) together with the software implementation
of the 6LP-GW have proven to allow the integration of 6LoWPAN devices in
standard networks in a cost-effective and simple manner, requiring no changes
in the existing infrastructure nor further intervention beyond plugging in the
device implementing the 6LP-GW into a (home) router’s Ethernet jack.

A secondary goal was to provide the required resources in the 6LP-GW so
that further integration of new features is possible. This task has been carried
out by the implementation of a dual-stack-enabled host that resides within
the same device, sharing resources with the 6LP-GW and virtually connected
to its Ethernet interface. This host utilizes IPv6-ND as its ND protocol,
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and behaves as any other NCD in the network except for its constrained
capabilities. In order to test the proper behaviour of this host, two different
applications have been loaded and run concurrently on it: a DHCP client
(using IPv4) and a CoAP [44] server (using IPv6). Although no formal tests
have been conducted regarding the operation of these two applications (this
testing is outside the scope of this thesis), they have behaved in practice
according to their respective expected behaviours. While the incorporation of
this virtual local-host in the same constrained device in which the 6LP-GW
runs may cause decreased performance of the latter, all the tests carried out
and described in Chapter 5 have been performed while this host (with the
two applications previously mentioned) was also enabled and running. Given
the results obtained in these tests, we can state that the performance of the
6LP-GW is satisfactory enough even if the presence of the local-host decreases
the performance of the 6LP-GW.

Finally, a side goal of this thesis was the implementation and integration
into the Contiki operating system of the 6LoWPAN-ND protocol for a host,
as described in I-D.ietf-6lowpan-nd [43]. As explained in Chapter 1, this was
a requirement in order to test the proxy operation of the 6LP-GW, since
no implementation of this protocol was available when this thesis was first
proposed. The resulting implementation has been shown to work well and has
been tested in several platforms such as the MSP430-based Hogaza v1.2 [50],
Damper v1.0 [50], and Torrija v1.1 [41], TT’s CC2531-based evaluation board
CC2531EMK v2.0, and a Cortex-M3-based board. The implementation has
been shown to behave properly in all these devices, allowing interoperation
between them and the 6LP-GW. However, interoperability between this
implementation and another implementation is still untested due the limited
number of implementations of the 6LoWPAN-ND protocol currently available.

6.1.2 Insights and suggestions for further work

Throughout this thesis project, comprising initial research, specification,
implementation, and analysis, there have been several situations requiring
reflection or involving decisions. A retrospective observation of the overall
process from its very beginning leads to a number of insights which are worth
mentioning as they may be useful advice for future work that might build
upon the results of this project.

It is probably needless to mention how important the study of the
previous literature is for any task involving a certain level of complexity.
The importance of the literature study lays not only in the need for specific
knowledge in order to start the implementation; research is likely to reveal that
certain tasks have already been completed, hence exploiting this knowledge
may enable us to save a deal of time, or make it possible to reject a certain
method in favour of another in advance, instead of having to implement all
the alternatives. Even if the study of previous work reveals that the whole
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project has already been done by someone else, or that it is simply pointless
for some reason, this knowledge is valuable.

Far from being an exception, this thesis has required studying,
understanding, and nearly memorizing certain documents (mainly RFCs and
Internet Drafts). Moreover, the literature study is likely to continue beyond
the initial stage of any project, occurring all through the project. It is widely
known how fast the field of computer science develops as new methods or
technologies are introduced. In the particular case of this thesis, this fact
is especially important due to the role that certain Internet Drafts (i.e.,
specifications that are still under development) have played.

Other examples of the spread of the research throughout the whole project
are the importance that a proper understanding of third-party software
documentation or specific hardware datasheets has played in this project.
In the development of embedded software, efficiency is not only a desirable
feature, but in fact the constrained nature of the platform and the scarceness
of resources makes efficiency a mandatory requirement. Failing to meet this
requirement may cause the exhaustion of a certain resource, leading to the
impossibility to complete the project and forcing a huge step back in the
development process. Producing efficient and optimal code in an embedded
platform requires deep knowledge and understanding of any involved third-
party software and/or hardware, which can only be acquired by means of
studying the available documentation for each of the components involved.

As for the development process, it is essential to remark on the importance
of a careful and thorough plan for the software architecture prior to the actual
coding in order to generate a high quality application. As before, this planning
acquires even more importance when, as in our case, third-party software
is involved in the implementation. As previously mentioned, this requires
studying and understanding in detail the third-party software’s documentation
(which sometimes may not be available or sufficiently complete), for its
integration in the software under development. A poorly planned
implementation will certainly cause software flaws regarding modularity,
scalability, maintainability, and readability in a best-case scenario. This
normally leads to a longer development process as a change in a certain
software module forces changes in many other places and leads to so-called
spaghetti code, which is likely to contain dead code, be inefficient, and a
potential source of bugs. In addition, it is important to remark that developing
embedded code poses a major challenge regarding the usual processing time
versus RAM consumption trade-off which developers are usually forced to face.
In this case, the constrained nature of the platform in which the software is
to be run tips the balance in favour of RAM in most cases, but still this is
something that has to be analysed for each particular case.

Regarding the analysis task, careful planning is also very important. It is
fundamental to clearly state what features are to be analysed and what tests
should be performed in order to test these features. In addition, as a suggestion
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for future work, it is worth mentioning that the analysis is not something that
should be left for the final phase of a project: for instance, performing periodic
analysis at different stages of a given project may be useful to discard a certain
approach in favour of another method of performing a certain task.

6.2 Future work

Due to the breadth of the field of our study, there have been several aspects
that have been left out of scope of this thesis. Although sufficiently complete
for the purpose of our study, the implemented device has certain deficiencies
that may limit its usability in a real environment. In addition, there are
several improvements that could be made to the current implementation in
order to broaden its functionality or applicability. This section enumerates
some of these features that have been left out or work that has been left
undone, together with some related work that may be of interest for future
thesis projects.

6.2.1 What has been left undone?

Below we describe a number of improvements that might be made to the
current implementation of the 6LP-GW.

6.2.1.1 Loop Avoidance

One of the main features that has not been implemented and could cause
malfunction of the device in certain environments is a loop-avoidance mechanism.
The 6LP-GW performs packet forwarding at layer two (although with some
support for upper layers). Thus, the 6LP-GW is subject to the same loop
problems that bridges had initially (prior to the invention of the spanning-
tree protocol (STP) [1]) if more than one 6LP-GWs are present and in range
with each other in the same network segment. The obvious solutions to this
issue are either the implementation of the STP protocol (or its optimized
version, the rapid spanning-tree protocol (RSTP) [2]), or the implementation
of a layer-3 routing protocol such as the Routing Protocol for LLNs (RPL)
[49]. However, whatever the choice be, special considerations have to be taken.
In the case of the implementation of a layer-2 loop-avoiding algorithm such
as the STP or RTSP, it is fundamental to do it in such a way that no extra
multicast traffic is produced in the IEEE 802.15.4 segment. We have already
stated the disadvantages of excessive multicast traffic in IEEE 802.15.4 nodes
(see Chapter 1, Section 1.1). Indeed, as we have also mentioned, one of the
main goals of 6LOWPAN-ND is to reduce multicast traffic. Thus, due to the
extensive use of multicast the STP protocol makes, its implementation in the
6LP-GW may seem unsuitable at a first glance. However, all the 6LP-GWs
that may suffer from the risk of producing loops in the network will necessarily
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be attached to the same network segment (otherwise there would not exist any
risk of loops). Therefore, apart from their IEEE 802.15.4 segment, they can
also communicate through their Ethernet interface, where they can generate
multicast traffic without involving any power consumption in any other 6L Ns.

If a layer-3 routing algorithm is to be implemented in order to solve the
loop problem there is also an issue to keep in mind: as already mentioned, one
of the main advantages of the 6LP-GW approach to internetwork 6LoWPAN
and IPv6 networks over other layer-3 methods (mainly routing) is that the
6LP-GW requires no change in the existing network infrastructure. The most
general case, at least in home environments, is that the router is unable to
perform intra-LAN routing. This means that making the 6LP-GW behave as a
router would simply not work: the IPv6 home router will not route any packet
directed to a third node through this 6LP-GW. This means that the 6LP-GW
needs to keep fooling the home router into “believing” that it is sending the
packets directly to their destination. Then, the 6LP-GW would perform any
routing algorithm (preferably RPL) on its IEEE 802.15.4 interface. Note that
in order to do so, the 6LP-GW would also need to collaborate in the creation
of the common path tree or any other task which may be responsibility of the
routing nodes involved, depending on the specific routing algorithm.

6.2.1.2 6LoWPAN Fragmentation

The 6LoWPAN fragmentation feature defined in RFC 4944 [33] is actually
implemented and available (although not exhaustively tested) in the Contiki
sources. Thus, enabling this feature would require little modification to
the current implementation and might be of interest for certain applications
expecting large amounts of data or simply unwilling to limit themselves to a
highly constrained maximum payload size.

6.2.1.3 Advanced Context Creation and Management

A proper mechanism for automatic creation of 6LoWPAN contexts is a feature
that will definitely be of interest for most applications, as it may allow every
6LN in the network to save up to 16 bytes per packet sent (thus, allowing these
bytes to be used for application data or saving a substantial amount of power
over time due to needing to transmit fewer bits). Currently, the only contexts
that the 6LP-GW will create are those derived directly from the prefix(es)
announced in router advertisement messages. This means that it will not be
possible to apply context-based compression to global destination addresses
(unless they happen to be in the local network). Thus, what we propose
here is the implementation of an intelligent algorithm capable of creating,
maintaining, and deleting contexts depending, for instance, on the frequency
with which certain global addresses (or prefixes) are used in either outgoing
or incoming packets.
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6.2.1.4 Radio Duty Cycling Mechanisms

Lower down to the link layer, there is another feature that has also been
left out of the scope of this thesis project and might be of interest for future
implementations. This is the use of a radio duty cycling mechanism such as the
one described in [20] and included in the Contiki sources as the“contikimac”
MAC layer implementation. While a radio duty cycling mechanism may not
seem of much interest from the 6LP-GW’s point of view due to the fact that
is is powered by the power mains, its implementation would still be useful
for the rest of the 6LNs in the network. The reason for this is that when a
radio duty cycling mechanism is to be used, all the parties involved in the
communication need to implement this radio duty cycling mechanism in order
to communicate. For instance, the radio duty cycling mechanism implemented
in contikimac relies on performing retransmissions of outgoing packets during a
certain time slot until an IEEE 802.15.4 acknowledgement (ACK) is received or
the time slot ends. This way, if the receiver wakes up at any point during this
time slot and remains awake during a period of time long enough to find out
that there is a packet for it, it will successfully receive every packet destined
to it, even though it is sleeping most of the time. Thus, both transmitter
and receiver must behave in the appropriate way at the time of transmitting,
and both must at least implement the automatic sending of ACKs following
the successful reception of a IEEE 80.15.4 frame. This means that even if
we choose not to make the 6LP-GW enter sleep mode (thus allowing a fast
transmission of ACKs as soon as it receives any packet, hence freeing the
sender node from the need of retransmitting the packet), we need to make the
6LP-GW send packets such that they are retransmitted during a certain time
slot until an ACK is received or the slot time elapses, as well as implementing
the automatic sending of ACKs. Note that in this case the 6LP-GW would
have to send ACKs upon successful reception of packets which are addressed
to other nodes.

6.2.1.5 Power over Ethernet

As for the physical layer, a possible improvement may consist of changing the
way in which the 6LP-GW is powered. The current implementation requires
the use of a 230 V (AC) to 5 V (DC) adapter. Considering the cost of the
hardware components required for our purpose, this adapter constitutes the
most expensive element of the design (for details, see Appendix D). Thus, a
solution allowing the elimination of this component from the hardware design
would drastically reduce the cost of the device.

The use of Power over Ethernet [3] might well avoid the need for this
adapter and hence the need of a plug for it, thus reducing the total space
and installation requirements. Such a feature would enable the installation
of several 6LP-GWs in environments in which multiport Ethernet switches
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where present, as is the case of many office buildings, or government facilities
such as hospitals, universities, or police stations among others. An important
advantage of this would be the elimination of the need for intermediate
nodes required for multi-hop, with the consequent savings in terms of power
(due to the elimination of multi-hop), and money (due to the elimination
of intermediate nodes, and for the power savings previously mentioned).
However, the requirements for this are two: the implementation of a loop-
avoidance mechanism such as those described in Section 6.2.1.1 and the
availability of Power over Ethernet in the installation.

6.2.1.6 Security

The last unfulfilled feature, spanning across almost all layers is the issue of
security. The current implementation includes no security mechanisms. Since
6LoWPAN devices may control different home appliances or even be in charge
of surveillance applications, the incorporation of appropriate security is a
sensitive and important issue. There are several options regarding security
mechanisms that might be applied to different layers.

At the MAC sublayer, the IEEE 802.15.4 standard provides a set of
security suites that comprise a set of symmetric cryptography algorithms
(using the Advanced Encryption Standard — AES), and parameters for the
application of this algorithm.

As for the IP layer, IPsec [29] is the most common security mechanism
for protecting all traffic at the IP layer. It provides integrity, data origin
authentication, anti-replay features, and confidentiality by means of
cryptographic key exchanges using IKE [24]. In addition to IPsec and also
at the IP layer, secure ND (SEND) [7] defines mechanisms to secure the ND
protocol against a set of threats defined in [36] by means of defining some new
options to carry public key-based signatures (RSA).

Regarding security at the transport layer, Datagram Transport Layer
Security (DTLS) [40] is the preferred choice by the IETF community. It
consists of an adaptation of the Transport Layer Security (TLS) [16] for
datagram-oriented communication. The main purpose of DTLS is to prevent
eavesdropping, tampering, or message forgery. To realize these functions
DTLS relies on different cryptographic operations for encryption and signing.

Needless to say, whatever the choice of the security mechanism(s) might
be, implementations need to bear in mind the constrained nature of the devices
involved, which may determine the feasibility of a certain mechanism.

6.2.2 Next obvious things to be done

Apart from the unfulfilled features enumerated in Section 6.2.1, it seems
reasonable to analyse the results and conclusions of this thesis now that it
has been completed in order to define new projects.
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In particular, the author of this thesis wishes to point out to the feasibility
of implementing new access points to internetwork different media types with
IEEE 802.15.4. For instance, an 802.11 to 802.15.4 access point would serve
the same purpose as the 6LP-GW, but without the need to be physically
attached to any router. This could certainly lead to ease of use in the presence
of Wi-Fi networks (note that many home routers are also 802.11 access points).
In addition, such an access point would make it possible to benefit from all
the advantages derived from the installation of several 6LP-GWs in certain
buildings as mentioned in Section 6.2.1.5, but with different requirements.
In this case, these requirements would be that the 6LP-GWs are within the
range of a Wi-Fi network and a power mains plug, in contrast to the need
for a Power-over-Ethernet-enabled multiport Ethernet switch. Note that the
implementation of a loop avoidance mechanism as described in Section 6.2.1.1
remains as a requirement in this case.
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Appendix A: 6LOWPAN-ND
Host implementation

Since the 6LP-GW described in this master thesis acts as an intermediary
between the ND and 6LoWPAN-ND protocols and between the Ethernet
and IEEE 802.15.4 link layers, the availability of a host implementing the
6LoWPAN-ND in the IEEE 802.15.4 segment was necessary in order to verify
the correct behaviour of our application.

It has already been mentioned that Contiki does not implement the
6LoWPAN-ND protocol. This, together with the lack of available open source
implementations of such protocol made practically imperative to develop our
own implementation the “host behaviour” of the 6LoWPAN-ND protocol, as
defined in draft-ietf-6lowpan-nd [43].

In order to implement the 6LoWPAN-ND protocol, we took the ND
implementation present in Contiki as the starting point, applying the
necessary modifications as required. As a reminder of the differences between
6LoWPAN-ND and IPv6-ND, we should recall Table 2.4 in Section 2.9.3.1

(page 24).

1. Host initiated interactions to allow for sleeping hosts. As opposed
to IPv6-ND that simply removes routers, prefixes, or neighbors when
their corresponding lifetimes expire, we need to trigger sending RSs
(either multicast or unicast, as required) as specified in section 5.3 of
draft-ietf-6lowpan-nd. In order to do so, the code performs periodic
checks of prefixes and router lifetimes and triggers sending RSs when
necessary. When the code determines that it is necessary to start
sending RSs, we first check whether it is possible to unicast them.
After the process of sending unicast RSs to a specific router has
been initiated, we need to keep a counter with the number of RSs
that have been sent to that specific router. This counter is placed
in the data structure that holds the default router information
(uip_ds6_defrt_list) within the default routers list. When this count
reaches MAX_ RTR_ SOLICITATIONS (which defaults to 3), the code
switches to sending multicast RSs.

The interval between sending RSs is calculated by means of a binary
exponential back-off, with the maximum interval determined by the
constant MAX_RTR__SOLICITATION_INTERVAL (which defaults to
60 seconds).

2. Elimination of multicast-based address resolution for hosts. In order to
implement this feature, the function tcpip_ipv6_output() has been
modified so that all prefixes but the link-local are considered to be
off-link. Hence, packets directed to link-local addresses are sent directly

111



112

APPENDIX A: 6LOWPAN-ND HOST IMPLEMENTATION

to their destination without performing address resolution. All packets
addressed to non link-local destinations are sent via an IPv6 router.
Consequently, no NCEs are created nor maintained for nodes that are
not routers. This way, we eliminate the need for multicasting NSs for
AR as specified in draft-ietf-6lowpan-nd.

A host address registration feature using a new option in unicast
Neighbor Solicitation and Neighbor Advertisement messages. This
feature requires mayor modifications to the code.  According to
draft-ietf-6lowpan-nd hosts must register addresses with routers. While
these registrations can be easily handled by routers (each registered
address corresponds to a NCE in the router), this is not the case for
hosts. The way Contiki handles addresses, NCEs, and default routers,
is by maintaining a table for each (i.e., a list of addresses, a list of default
routers and the NC). However, an address can be registered with several
routers, and this registration process could be in a different state for each
of these routers. This absence of a 1-to-1 mapping between addresses
and routers motivated the addition of a new list of registrations that has
to be maintained in order to implement this address registration feature.
Each registration in this list is held in the C struct uip_ds6_reg_t which
is defined as follows:

/* Structure to handle 6lowpan-nd registrations */
typedef struct uip_ds6_reg {

u8_t isused;

u8_t state;

uip_ds6_addr_t* addr;

uip_ds6_defrt_t* defrt;

struct stimer reg_lifetime;

struct timer registration_timer;

u8_t reg_count;
} uip_ds6_reg_t;

This structure basically links an address to a router, along with some
control information such as the registration state and lifetime. The fields
registration_timer and reg_count are used during the registration
process in order to measure the interval (in time) between sending NSs
for registration and the number of NSs sent to a router during this
process. Note that according to draft-ietf-6lowpan-nd, a NS should be
retransmitted up to MAX_UNICAST SOLICIT (i.e., 3) times using a
minimum interval of RETRANS TIMER (1000) milliseconds.

In addition to creating and maintaining registration entries for each
address and router, this feature requires also the proper handling
of the new ARO option. This option needs to be appended in
outgoing NS messages sent for registration and this option must be
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processed according to draft-ietf-6lowpan-nd for incoming NAs. To do
so, modifications in the Contiki functions uip_nd6_ns_output() and
uip_nd6_na_input() (that handle the sending of NSs and receiving
of NAs respectively) were required. In addition, the logic in charge of
maintaining the registrations table and determining whether sending NS
is needed, or to which router a certain NS has to be sent, is placed mainly
in the function uip_ds6_periodic() (although some other functions
such as uip_nd6_ra_input () also contribute to this process).

. A new Neighbor Discovery option to distribute 6LoWPAN header
compression context to hosts. Despite being optional, this feature has
been also included in the 6LoWPAN-ND implementation developed as
part of this master thesis. This feature requires proper handling of
6CO options present in RAs, creation and maintenance of compression
contexts, and, of course, its utilization for compression.

The C data structure used by Contiki to store compression contexts
was insufficient for our requirements. Thus, it was necessary to redefine
the C structure that holds the 6LoOWPAN contexts in order to fulfil our
requirements. This data structure is defined as as follows:

/* Structure to store 6lowpan compression contexts */
typedef struct uip_ds6_addr_context {
uip_ds6_context_state_t state;
u8_t length;
u8_t context_id;
uip_ipaddr_t prefix;
struct stimer vlifetime;
/* The router that announced this context */
uip_ds6_defrt_t* defrt;
ul6_t defrt_lifetime;
} uip_ds6_addr_context_t;

The pointer to the default router (uip_ds6_defrt_t* defrt) is used
enables us to unicast a RS to the specific router that announced the
context if we need to update the context, rather than multicasting such
RS to the all-routers multicast address. The field storing the default
router lifetime (u16_t defrt_lifetime) is required because, according
to draft-ietf-6lowpan-nd, if a context valid lifetime expires the context’s
state must be set to an uncompression-only state for a period of “twice
the Default Router Lifetime”. After that period, if no 6CO has been
received to update that context, then this context should be deleted.
Therefore, we need to remember the default router lifetime. Moreover,
we can not use the corresponding value in “defrt” because that router
may have been deleted by the time we need the default router’s lifetime.

The creation of compression contexts and their addition to the context
table is perform by the Contiki function uip_nd6_ra_input(). In
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this function, incoming RAs are parsed in order to retrieve the ND
options present in their payload. If a 6CO option is found, a new
compression context is created and added to the context table (unless
its lifetime is zero). The maintenance of contexts in the context
table is performed in the function uip_ds6_periodic(). Finally, the
utilisation of compression context for the purpose of compression and
uncompression required modifications in the functions
compress_hdr_hc06() and uncompress_hdr_hc06() respectively. In
order to make the most of the implementation, we decided to support
up to 128 bits long contexts (the maximum context length according
to RFC 6282), instead of the 64-bit, fixed-length prefixes that were
supported by Contiki. This decision forced significant changes in the
way compression and decompression takes place. Moreover, in order to
handle the context table for different purposes, proper
functions had to be implemented for context addition,
lookup (by prefix or context identifier), and  deletion
(i.e., uip_ds6_context_add(), uip_ds6_context_lookup_by_id(),
uip_ds6_context_lookup_by_prefix(), and uip_ds6_context_rm()
respectively).

The last two different features that are defined as optional are not included
in this implementation. These optional (and unimplemented) functions are:

(a) Optional multihop distribution of prefix and 6LoWPAN header compression
context.

(b) Optional multihop duplicate address detection using two new ICMPv6
message types.



Appendix B: Traffic captures

The following figures correspond to fragments of traffic captures which
illustrate some of the most representative interactions of the 6LP-GW with
other internet hosts. In fact, these interactions are between 6LHs and NCDs
(hosts and/or routers), with the 6LP-GW acting as an intermediary between
them.

These traffic captures were obtained by means of a HP switch having one
of its ports configured as monitor, a 6LoOWPAN traffic sniffer (built using a
spare Hogaza board v1.2 [50]), and Wireshark (http://www.wireshark.org/) as
the network protocol analyser. Packets with green foreground are 6LoWPAN
packets captured though the 6LoWPAN sniffer whereas packets displayed with
light blue foreground are IPv6 packets coming from the Ethernet wire.

6LH Bootstrapping

The following figure illustrates a complete 6LH bootstrapping sequence.

Source Cestination Protocol| Length | Info

60 Router Solicitation
70 Router Selicitatien
118 Router Advertisement
121 Router Advertis

ICMPVE
ICMPvE

7.487105
7.488201

7.494510
7.552037 :6h0: 1:2000: 207 3 35 fegn z :Teas: 0800 112 Neighbor Sol.
7.552632 ICMPVE 78 Neighbor Sol
8.565903 fes80:: f1:feag:9800 2 >ff:fegl:513  ICMPV6 112 Neighbor Advertisement

Figure B.1: 6LH bootstrapping capture

1. The 6LH multicasts a RS to the all-routers multicast address.

2. The 6LP-GW forwards the packet unchanged (except for the appropriate
link-layer address translation). Note that the difference between the the
RSs’ lengths is due to the different link-layers and the presence of the
6LoWPAN headers in the first case.

3. The IPv6 router sends a RA to the all-nodes multicast address in
response to the RS. Note that such an RA includes a PIO option with
its “L” (on-link) flag set (apart from a SLLAO option). See Figure B.2.

4. The 6LP-GW forwards the packet to the 6LH’s unicast address from
which the solicitation was sent. In addition the “L” (on-link) flag of the
PIO option in the RA is cleared (see figure B.3) and a 6CO option is
appended (figure B.4).

5. The 6LH sends a NS including an ARO option for registration to the
router originating the previous RA.

115


http://www.wireshark.org/

116 APPENDIX B: TRAFFIC CAPTURES

6. The 6LP-GW performs DAD on the Ethernet segment on behalf of the
6LH rather than forwarding the solicitation.

7. Once DAD completes successfully, the 6LP-GW sends a NA including
an ARO option to the 6L.H that originated the solicitation. The status
field in the ARO informs the 6LH about the state of the registration
(which in this case was successful).

~ ICMPvE Option (Prefix information : 2001:6b0:1:2000::/64)
Type: Prefix information (3)
Length: 4 (32 bytes)
Prefix Length: &4
+ Flag: OxcO

1... = on-link flag(L): set
.1.. .... = Autonomous address-configuration flag(a): Set
..00 0000 = Reserved: O

Valid Lifetime: 2592000
Preferred Lifetime: 524800
Reserved

Prefix: 2001:8b0:1:2000:: (2001:8b0:1:2000::)

Figure B.2: PIO option in IPv6-ND RA

¥ ICMPvE Option (Prefix information : 2001:8b0:1:2000::/64)]
Type: Prefix information (3)
Length: 4 (32 bytes)
Prefix Length: &4
= Flag: 0x40

B... = On-link flag(L}: Not set
.1.. .... = Autonomous address-configuration flag(A): Set
..00 0000 = Reserved: ©

Valid Lifetime: 2592000
Preferred Lifetime: S04800
Reserved

Prefix: 2001:6b0:1:2000:: (2001:6b0:1:2000::)

Figure B.3: PIO option in 6LoWPAN-ND RA
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= ICMPvE Option (BLoWPAN Context Optilon 2001:6b0:1:2000::/64)
Type: BLoWPAN Context Option (32)
Length: 2 (16 bytes)
Context Length: &4
I Flag: Ox00
Reserved
Lifetime: 10
Context Prefix: 2001:6b0:1:2000:: (2001:6b0:1:2000::)

Figure B.4: 6CO option in 6LoWPAN-ND RA

6LH Registration renewal

Figure B.5 illustrates a registration renewal sequence. The text following the
figure describes the steps in this sequence.

Protocol| Length | Info

112 Nelghbor Solicitation

Source

20.157740 B 2ff:feBl:513 ICMPvE 102 Neighbor Solicitation
20.159507 fe80::20c:cfff:feas:9800 2001:6b0: 1:2000; 207: 521 f: fe8l:513  ICMPvE 78 Neighbor Advertisement
20.164519  fe80::20c:cfff:fead: 9800 07: 97 Neighbor Advertisement

Figure B.5: 6LH Registration renewal

1. The 6LH sends a NS including an ARO option to the IPv6 router’s
address.

2. The 6LP-GW forwards the NS to the IPv6 router unchanged (other than
the link-layer address translation). Note that the ARO option does not
need to be filtered out; it will simply be ignored by the IPv6 router.

3. The IPv6 router responds with a NA to the solicitation

4. The 6LP-GW appends an appropriate ARO option to the NA and
forwards the packet to the 6LH that originated the solicitation. Figure B.6
shows this NA including an ARO option (note that this is erroneously
tagged as “Address Resolution Option” by Wireshark’s dissector).
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Type: MNeighbor Advertisement (136)
Code: 0
Checksum: 0x5043 [correct]

< Flags: 0OxcOO00Q00

L. it it sies i e ewes ... = FRouter: Set
Ll e i iiee e e aeee ou.. = Solicited: Set
.0 = Override: Mot set

...0 0OOED CERO OOOO OO0 0DENE EOED EEEO = Reserved: O
Target Address: feB0::20c:cfff:fea8:9800 (fe80::20c:cfff:fead:9800)

= ICMPvE Option (Address Resolution Option : Register 00:07:82:ff:fe:81:05:13 Success)
Type: Address Resolution Option (131)
Length: 2 (16 bytes)
Status: Success (0)
Reserved
Registration Lifetime: 1
EUL-64: 0007621 ffe8l0513

Figure B.6: NA including ARO option

NCD performing NUD on a 6LH

The following capture shows the process of a NCD performing NUD on a 6LH.

Time |Source ‘Desﬁnanon ‘ProtocoI|Length|\nfo
25.163571 fe80::20c:cfff:feaB:9800 2001:6b0:1:2000:207:62ff:fe81:513 ICMPv6 86 Neighbor Solicitation
25.163693 2001:6b0:1:2000:207:62ff:feBl:512 feB0::20c:cfff:fead:9800 ICMPVE 86 Neighbor Advertisement

Figure B.7: NCD performing NUD on a 6LH

1. A NCD (in this particular case, the RR) sends a NS to the 6LH for
NUD.

2. The 6LP-GW responds on behalf of the 6LH by sending a NA to the
originator of the registration. This is possible due to the Address
Registration feature of 6LoWPAN-ND. Note that no IEEE 802.15.4
traffic is generated in this operation.

Pinging a 6LH

The capture shown in Figure B.8 shows an external internet host sending two
ICMPv6 Ping packets to a 6LH.

‘Time ‘Source |Destinaﬂon |Protoco\‘Length|\nf0
520.853796 2 Ex 2001:6b0:1:2000: 207:62ff: fe81:513  ICMPvE request
f E ig 8 2ff:fe8l: ICMPvE c (ping) reguest
g ICMPvE 9 (ping) reply
520. 865867 2001:6b0: 1:2000: 207: 62f f: feBl:513 2002:82e5:87fe::82e5:87fe ICMPVE 94 Echo (ping) reply

521.854957 2002:82e5:87fe: : 82e5:87fe 2001:6b0:1:2000:207:62ff:fe81:513 ICMPvE 94 Echo (ping) request
7 f ICMPVG (ping) request

7fe::82e5: 87 ICMPVG g reply
513 2002:82e5:87fe::82e5:87fe ICMPVE 94 Echo (ping) reply

521.867047 2001:6b0: 1: 2000: 207: 62f f : fe8l:

Figure B.8: NCD performing a Ping of a 6LH
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. The router unwittingly forwards an echo request packet directed to a
6LH to the 6LP-GW.

. The 6LP-GW forwards the request to the 6LH. No transformations are
applied to the packet except for the link-layer address translation.

. The 6LH receives the echo request and generates an echo reply that is
sent to the destination.

. The 6LP-GW forwards the packet to the router that should subsequently
forward it towards its destination.

. This process is repeated.






Appendix C: Source code

The source code of the application developed as part of this master thesis is
publicly available in the following repository:
https://6lp-gw.googlecode.com/svn/6LP-GW__Hogaza_v2.1
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Appendix D: Hardware Specification

The hardware implementation of the 6LP-GW utilized in this thesis project
has been designed and developed as part of Joaquin Juan Toledo’s master’s
thesis project [50]. It comprises three different boards: the TI’s evaluation
board CC2591EM 3.0, the Olimex’s ENC28J60-H development board, and
the Hogaza v1.2.
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Figure D.3: ENC28J60-H Schematics.
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