

Router Placement i n
W i reles s S ens or N etw ork s

M I C H A E L A H L B E R G

M a s t e r o f S c i e n c e T h e s i s
S t o c k h o l m , S w e d e n 2 0 0 5

I M I T / L E C S -2 0 0 5 -9 4

Router Placement in Wireless Sensor Networks

Michael Ahlberg

Master of Science Thesis

Performed at
Advanced Technology R&D Center

Mitsubishi Electric Corporation
Amagasaki, Japan
Hï�SÏ��v@
	ñû�*��>

<��u«�

13th December 2005

Examiner:
Associate Professor Vladimir Vlassov
Laboratory for Electronic and Computer Systems
Department of Microelectronics and Information Technology
Royal Institute of Technology
Stockholm, Sweden

Industry supervisor:

Terumasa Yasui
Asset Management Systems Group
Advanced Technology R&D Center
Mitsubishi Electric Corporation
Amagasaki, Japan

Abstract

Wireless sensor networks (sensor networks for short) has recently gained
large popularity in both academy and industry. These networks of small,
often battery powered, sensors can be placed where wired infrastructure is
too expensive or impossible to deploy. A sensor network typically consists
of a lot of nodes, some nodes might be more advanced than others.

This thesis investigates algorithms for optimizing redundant placement of
router nodes in a sensor network in an efficient and reasonable fast way.

There are a couple of requirements on the algorithms for placement of router
nodes. Every sensor node in the network must be able to communicate
with a predefined computer connected (gateway) node. The communication
channel must be redundant, that is if one router in the network breaks or
runs out of power, all sensor nodes must still be able to communicate with
the gateway node. These requirements should be realized with as few routers
as possible.

Sammanfattning

Nätverk av tr̊adlösa sensorer har p̊a senare tid vunnit stort intresse b̊ade i
industrin och i den akademiska världen. Dessa nätverk av små, ofta batte-
ridrivna, sensorer kan placers p̊a platser där det är för dyrt eller omöjligt
att placera kabelanslutna sensorer. Ett nätverk best̊ar vanligtvis av m̊anga
noder, vissa noder kan vara mer avancerade än andra.

Denna rapport undersöker algoritmer för optimering av placering av router-
noder i ett tr̊adlöst senor nätverk med redundans p̊a ett effektivt och snabbt
sätt.

Det finns ett antal krav p̊a placeringsalgoritmerna. Alla sensornoder i nätverket
m̊aste kunna kommunicera med en förutbestämd nod ansluten till en dator
(gateway). Kommunikationskanalen måste vara redundant, dvs om en rou-
ter i nätverket g̊ar sönder eller f̊ar slut p̊a batterier, m̊aste alla sensornoder
fortfarande kunna kommunicera med gateway-noden. Detta ska uppn̊as med
s̊a f̊a routrar som möjligt.

i

Acknowledgments

This report is a result of my work at Mitsubishi Electric Corporation in
Amagasaki, Japan.

I want to express my sincere gratitude to the following people:

Professor Funakubo for helping me find this project.

Atsushi Morita for accepting me to Mitshubishi Electric.

Keiichi Shiotani and Tadashi Ohi for accepting me to the Asset Man-
agement Project.

Terumasa Yasui for supervising me at Mitsubishi Electric and for helping
me during the project.

Takaya Yamamoto for helping me during the project.

The Nogami Family for allowing me into their home on several occasions
and letting me live with them after finishing my work at Mitsubishi Electric.

Vladimir Vlassov for supervising me at KTH and helping me make this
thesis meet academic standards.

Many thanks goes to all colleagues in the Asset Management Project, my
friends at the company dormitory and my friends at Nihongo Salon for
making my stay very fun.

I would also like to thank my family and my friends in Sweden for encour-
aging me before and during this project.

ii

Contents

1 Introduction 1

1.1 Goals and Expected Results 1

1.2 Problem Solving Approach 2

1.3 Structure of the Thesis . 2

2 Background 3

2.1 Business Background . 3

2.2 Wireless Sensor Networks . 3

2.2.1 IEEE 802.15.1 (Bluetooth) 4

2.2.2 IEEE 802.15.3 (UWB) 5

2.2.3 IEEE 802.15.4 (ZigBee) 6

2.3 Routing in Wireless Mesh Networks 8

2.4 Properties of Wireless Sensor Networks 9

2.4.1 Coverage . 10

2.4.2 Connectivity . 12

2.4.3 Lifetime . 13

2.4.4 Reliability . 13

2.4.5 Application Specific Issues 13

2.5 Related Work . 14

3 Algorithm Design 15

3.1 Placement of Routers . 15

3.1.1 Placement Algorithms 15

3.1.2 Verification . 16

3.2 Algorithm Overview . 16

3.2.1 Non-redundant solution 16

3.2.2 Redundant solution 17

3.3 Non-redundant Router Placement Strategies 17

iii

3.3.1 Trivial Router Placement 17

3.3.2 Trivial Placement Reusing Already Deployed Routes . 19

3.3.3 Cluster Router Placement 20

3.4 Redundant Routes . 23

3.4.1 Background . 23

3.4.2 Trivial Redundancy 24

3.5 Non-trivial Redundancy . 25

3.5.1 Counting Number of Mutually Exclusive Routes . . . 26

3.5.2 Transformation of the Connection Graph 26

3.5.3 Computing Maximum Flow in the Connection Graph 28

3.5.4 Placing Routers in the Redundant Solution 30

3.5.5 Algorithm Analysis . 31

3.6 Optimization . 33

3.6.1 Intermediate Optimization 33

3.6.2 Final Optimization . 33

3.7 Verification . 35

3.7.1 Coverage Verification 35

3.7.2 Connectivity Verification 35

3.7.3 Redundancy Verification 35

4 Implementation 37

4.1 View . 38

4.2 Model . 38

4.2.1 The World Class . 38

4.2.2 The Node Classes . 41

4.2.3 The RouteModifier Class 41

4.2.4 Algorithms Extending the RouteModifier Class 41

4.3 Control . 42

5 Evaluation 43

5.1 Non-redundant Solutions . 43

5.1.1 Trivial Algorithm . 43

iv

5.1.2 Trivial Algorithm with Reuse 44

5.1.3 Cluster Algorithm . 45

5.1.4 Summary . 46

5.2 Non-redundant Optimized Solutions 48

5.2.1 Trivial Algorithm . 48

5.2.2 Trivial Algorithm with Reuse 48

5.2.3 Cluster Algorithm . 49

5.2.4 Summary . 49

5.3 Redundant Solutions . 51

5.4 Redundant Optimized Solutions 54

6 Conclusions 59

6.1 Conclusions . 59

6.1.1 Design . 59

6.1.2 Implementation . 59

6.1.3 Evaluation . 60

6.2 Future Work . 61

References 63

Appendix A Table of Acronyms and Abbreviations 65

v

List of Algorithms

3.1 Trivial Router Placement . 19

3.2 Router Placement Using Deployed Routers 21

3.3 Find Clusters of Nodes . 22

3.4 Save Tree of Neighbors. 22

3.5 Algorithm for finding augmenting paths 29

3.6 Simplified Ford-Fulkerson Algorithm 30

3.7 Create Redundant Route . 31

3.8 Optimize Connection Graph 34

vi

List of Figures

2.1 Comparison between Star and Mesh Topology 7

2.2 Sending Messages . 8

2.3 Simple Coverage . 10

2.4 Simple Coverage with Uncovered Part 11

2.5 k-coverage . 11

2.6 Covered and Connected Network 12

2.7 Covered but not Connected Network 12

3.1 Example Setup . 18

3.2 Trivial Router Placement . 18

3.3 Unneeded Routers . 18

3.4 Trivial Router Placement Using Other Routes 20

3.5 Finding Clusters of Nodes . 21

3.6 Router Failure . 23

3.7 Non-optimal Redundant Solution 24

3.8 Better Redundant Solution 25

3.9 Redundant Router Placement 26

3.10 Counting Routes 1 . 26

3.11 Counting Routes 2 . 27

3.12 Router Substitution . 27

3.13 Graph Transformation . 27

3.14 Finding Augmenting Paths in a Graph 29

3.15 Branches in a Connection Graph 32

3.16 Solution that Needs Optimization 34

4.1 Class Diagram . 37

4.2 Main Window with Problem to Solve 39

4.3 Main Window with Solution 40

4.4 Route Finder Settings . 40

vii

5.1 Trivial Algorithm . 44

5.2 Trivial Reuse Algorithm . 45

5.3 Cluster Algorithm . 45

5.4 Router Nodes Placed . 46

5.5 Computation Time Needed 47

5.6 Routers per Sensor, Non-redundant, Non-optimized 47

5.7 Trivial Algorithm with Optimization 48

5.8 Trivial Reuse Algorithm with Optimization 48

5.9 Cluster Algorithm with Optimization 49

5.10 Router Nodes Placed, Optimized 50

5.11 Computation Time Needed, Optimized 50

5.12 Routers per Sensor, Non-redundant, Optimized 51

5.13 Cluster Algorithm with 2-Redundancy 51

5.14 Cluster Algorithm with 3-Redundancy 52

5.15 Cluster Algorithm with 4-Redundancy 52

5.16 Router Nodes Placed . 53

5.17 Computation Time Needed 53

5.18 Routers per Sensor, Redundant, Non-optimized 54

5.19 Cluster Algorithm with 2-Redundancy, Optimized 55

5.20 Cluster Algorithm with 3-Redundancy, Optimized 55

5.21 Cluster Algorithm with 4-Redundancy, Optimized 55

5.22 Router Nodes Placed, Optimized 56

5.23 Computation Time Needed, Optimized 56

5.24 Routers per Sensor, Redundant, Optimized 57

viii

List of Tables

2.1 WPAN Standards . 4

2.2 Characteristics of Bluetooth 5

2.3 Characteristics of UWB . 5

2.4 Characteristics of a ZigBee Network 6

6.1 Comparison of Non-redundant Non-optimized Algorithms . . 60

6.2 Comparison of Non-redundant Optimized Algorithms 60

6.3 Comparison of Redundant Non-optimized Solutions 61

6.4 Comparison of Redundant Optimized Solutions 61

ix

x

1. Introduction

Wireless sensor networks (often called sensor networks for short) has recently
gained large popularity in both academy and industry. These networks of
small, often battery powered, sensors can be placed where wired sensor
infrastructure is too expensive or impossible to deploy. A network typically
consists of a lot of cheap nodes, some nodes might be more advanced than
others.

1.1 Goals and Expected Results

The network considered in this thesis has two types of nodes: RFD (Reduced
Function Device) and FFD (Full-Function Device). FFDs can communicate
with all nodes and route messages through the network, the RFDs can only
communicate with FFDs.

A FFD need more memory and more computing performance than a RFD
in order to implement the network protocol. Therefore a FFD will consume
more energy than a RFD but it acts as a router node. FFDs can form two
kinds of network topologies, star and mesh.

The main objective of this work is to find a way of finding good enough
placements of as few FFDs (router nodes) as possible, while still fulfilling
these requirements:

• All nodes in the network must be able to access a certain (predefined)
FFD connected to a computer, a gateway node.

• There must be a configurable least number of possible routes from
every sensor node to the gateway.

• Routers cannot be placed anywhere, some placements are impossible.

The expected results of this project is to find a good enough and fast al-
gorithm for placement of routers. And to implement this algorithm in a
preferably platform independent and easy to use application.

The algorithms presented are to be evaluated and compared to other existing
algorithms for placement of routers.

1

1.2 Problem Solving Approach

First of all, do a thorough literature study to find out what has already been
done in this field of study. This involves reading relevant papers, articles
and other documentation.

To make the problem more easy to solve, the problem is considered and
solved first in two dimensions. After the two dimensional solution has been
evaluated, the three dimensional problem is considered using experience
from the two dimensional solution. Yet another way of making the issue
easier to handle is to initially consider a non redundant solution.

When writing the applications, the algorithmic part should be easy to ex-
change for another. That is, the application should be designed with fixed
interfaces between the different parts in order to be reusable for evaluating
and possibly using several different algorithms.

When the implementation stage is finished, the implementations should be
evaluated and tested so that they fulfill the requirements set in Section
1.1. Testing the implementations will most likely require the writing of a
application specific simulator application.

1.3 Structure of the Thesis

This thesis is structured as follows:

In Chapter 2 the following is presented: an introduction to wireless sensor
networks, previous findings on the subject, more detailed information on the
specific issue and why it is important to solve.

Chapter 3 discusses different methods to solve the problem and the design
and analysis of the algorithms is done here.

The implementation of the algorithms in an application is described in Chap-
ter 4.

Chapter 5 describes how the evaluation is done and contains the results
from the evaluation of the implementations of algorithms. This chapter also
analyses the evaluation results.

Chapter 6 summarizes the results of the work, what was done, what more
can be done and what could have been done better.

2

2. Background

2.1 Business Background

It is important for asset management to know the condition of its facilities.
With good knowledge of the condition of ones facilities it is easier to plan
maintenance, repairs, and replacements.

To find out the condition of a specific facility we need a way to monitor it.
Monitoring can for example be done by installing sensor nodes in the target
devices, buildings, and other assets. These sensor nodes can continuously
collect in depth status all the time in an automatic fashion.

To collect the data from the sensor nodes, we need some kind of network.
In a legacy monitoring system, each sensor is connected via cables to a
controlling system one by one. As a result, there are at least as many cables
as sensor nodes and the cost of installation and fault-finding becomes high.

When trying to find new means of data collection, the cost of deployment
must not exceed the cost of deploying a legacy data collection system, it
should also have an advantage over other data collection systems available
on the market, such as lower price or better ease of deployment. Therefore
we need to find means of data collection that are both inexpensive and easy
to deploy.

Today there are a couple of ways of reducing the amount of cabling. Most
notable are field bus systems, like lonworks, and profi-bus. These two sys-
tems use a common bus for communication, which eliminates the need for
cables to every sensor from the control system. This reduces the cost, but
it still needs cabling for communication and power supply.

I order to further reduce the cost of deployment, a different approach is
needed.

2.2 Wireless Sensor Networks

Wireless sensor networks is a relatively new class of networks. Recent ad-
vances in techniques for wireless networking and electronics has made it
possible to build cheap and power efficient wireless sensor nodes. These
nodes can be deployed in large numbers or can be used where traditional

3

wired sensors are too expensive, difficult or impossible to deploy.

Currently, the main purposes for these kinds of networks is expected to be
monitoring and control of for example a home or a building.

One key feature in most sensor networks is a self organizing ad-hoc network
architecture. This means that the network automatically adds new units
as they appear and likewise remove non operational units. This makes the
network robust and fault tolerant, providing that there are redundant nodes
available.

The network topology in sensor networks currently being developed is based
on either WPAN (Wireless Personal Area Networks) or on WLAN (Wire-
less Local Area Network) technology, although WLAN is mostly considered
being too complex and power hungry for these applications.

In [17], Porcino and Wirt discuss the characteristics several standards for the
physical and MAC layer in a WPAN. Table 2.1 summarizes and compares
the different characteristics of the popular standards for WPANs.

Name Max. Max. Max. data Typical use
nodes distance rate

802.15.1 8 30 m 1 Mb/s Mobile phones
(Bluetooth) and peripherals
802.15.3 N/Aa 10 m 200 Mb/s USB, wireless
(UWB) video
802.15.4 216 b 30 m 250 kb/s Industry automation,
(ZigBee) security systems

Table 2.1: Standards used for the physical layer and the MAC layer in
WPANs

aNo figures available at the moment
b216 per network, 264 in total

2.2.1 IEEE 802.15.1 (Bluetooth)

The currently most common standard for WPANs is IEEE 802.15.1, com-
monly called Bluetooth. It is widely used in mobile phones and devices
communicating with mobile phones, such as wireless headsets. It is a ma-
ture and well tested technology.

Bluetooth uses the same free frequency band as WLAN (802.11b and 802.11g),
2.4 GHz.

Some Characteristics of Bluetooth are Shown in Table 2.2.

4

Property Range
Raw Data Rate 1 Mb/s
Range Up to 30 meters
Nodes per Network 8
Topology Peer-to-Peer
Frequency Band 2.4 GHz

Table 2.2: Characteristics of Bluetooth

According to the Bluetooth Special Interest Group [1] Bluetooth is promoted
and used by several large corporations, such as Ericsson, Intel, Nokia, Mi-
crosoft, and Toshiba, to name a few.

Drawbacks with Bluetooth when considering sensor networks is its com-
plex protocol, relatively high energy consumption, and the fact that it only
supports 7 nodes per master. The data transfer speed is around 1 Mb/s. [7]

2.2.2 IEEE 802.15.3 (UWB)

IEEE 802.15.3, which often go under the name Ultra Wideband (abbreviated
as UWB), is a emerging standard with high data transfer speed (about 200
Mb/s). UWB is intended to be used where high bandwidth is needed, such
as wireless USB and Firewire. Some characteristics are shown in Table 2.3.

Property Range
Raw Data Rate 110 Mb/s (10m), 200Mb/s (4m)
Range Up to 10 meters
Location Awareness Optional
Topology Peer-to-Peer
Frequency Band 3.1–10.6 GHz

Table 2.3: Characteristics of UWB

One usage scenario is for example connecting a digital video camera to a
computer or a DVD-recorder.

UWB uses a currently uncommon way of RF transmission with very high RF
bandwidth and short pulses, typically a few picoseconds, when transmitting
data. [17]

Since the standard is still very much in it’s development, there does not exist
any commercially available devices nor any evaluation kits. Specifications
on this kind of networks are at the time of writing very brief.

5

2.2.3 IEEE 802.15.4 (ZigBee)

IEEE 802.15.4, which is used in systems developed by the ZigBee Alliance
[19], is a low transfer rate type of network. The transfer rate is 20-250
kb/s depending on the choice of frequency band. This type of networks are
sometimes called Low Rate WPAN (LR-WPAN).

This type of network is constructed to work with small resources, slow CPU,
small memory, and small amount of battery power.

For the physical layer, there are three possible frequency bands, 2.4 GHz,
868 MHz (For use in Europe), and 915 MHz (for use in the United States).
The 2.4 GHz band allows a bit rate of 250 kb/s and has 16 channels. In
the 915 MHz band there is 10 channels each allowing 40 kb/s. And the 868
MHz band allows 20 kb/s in one channel. The characteristics of the ZigBee
network are summarized in Table 2.4. [10] [2] [6]

Property Range
Raw Data Rate 2–250 kb/s
Range Up to 10 meters or up to 100 meters with speed

trade-offs
Battery Life Application dependent. Typically optimized for

low power consumption. Asymmetrical power
consumption. Battery life might be as long as
the battery’s shelf life.

Latency 10–50 ms or larger than 1 s
Location Awareness Optional
Nodes Per Network 216

Topology Star or Mesh
Complexity Lower than Bluetooth and WLAN
Types of Traffic Asynchronous data-centric, optionally syn-

chronous
Frequency Band 2.4 GHz, 868 MHz (Europe) and 915 MHz (US)

Table 2.4: Characteristics of a ZigBee Network

The MAC layer (medium access control layer) and protocol layer of this
network standard is constructed to be as power efficient as possible, using
low packet header overhead, and variable size packages. This allows a seldom
used unit to operate for up to one year on common batteries, maybe even
more. These networks are mainly intended to be used in building monitoring
and control or in so called intelligent homes.

Theoretically the network protocol supports up to 264 nodes with 216 nodes
per network, this is achieved using two different types of devices: FFD

6

(Full-Function Device) and RFD (Reduced Function Device). The FFDs
can communicate with any node within reach and route messages through
the network, while the RFDs can only communicate with a FFD.

A RFD is typically a battery powered sensor, a wireless light switch or a
similar device. A RFD is typically a device serving data at certain intervals
or doing things on demand.

A FFD, a router node, can also have sensor devices connected, but the
difference is that it must be able to route network traffic. A number of
FFDs make up the backbone of the network, they can form either a star
network or a so called Mesh network (or Peer-to-Peer network). The RFDs
connect to the network via a FFD. A FFD needs more power than a sensor
and might therefore be connected to mains.

In the case of a mesh network several FFDs within communication range
from each other communicate, forming a mesh of communication channels.
See Figure 2.1 for examples showing the communication differences of net-
works with star and mesh topology.

Reduced function device

Full−function device

Star topology Peer−to−Peer topology

Figure 2.1: Comparison of communication channels in networks with Star
and Mesh topology.

For more information on the physical and MAC layer of these networks see
the IEEE standard [10] and for the upper layers the ZigBee Alliance’s web
page [19].

ZigBee is promoted by Mitsubishi Electric, Motorola, Philips, Samsung
among others. ZigBee-compliant platforms (the IEEE 802.15.4 radio and

7

the ZigBee stack up to the application layer) are available as either chips
or complete modules for use in end products. No end-user products are
available at the time of writing.

This thesis will mainly focus on this kind of network, although the results
will be applicable on other networks with similar topologies.

2.3 Routing in Wireless Mesh Networks

In the above mentioned (in Section 2.2.3) Mesh topology networks, traffic is
routed from the source to the destination via a series of router nodes within
radio communication range of each other. These router nodes or other FFDs
can form either a mesh or a star topology.

A node wanting to send a message contacts the FFD it is associated with
and sends the message. The FFD, unless it is the destination node, forwards
the message closer towards the destination. In Figure 2.2 an example of a
node sending a message to the gateway with two possible routes is shown.

��
Gateway

���
�

Node sending a messageReduced function device

Full−function device

��

���
�

Figure 2.2: A node sending a message to the gateway, with two possible
routes.

The biggest difference between wireless sensor networks and most other wire-
less technologies, is that in common wireless networks, base stations are

8

connected to a network backbone (wired or wireless). This designated net-
work transports data with high bandwidth between base stations and/or to
gateways connected to other networks.

In wireless sensor networks, base stations are not linked together with such
a designated network, but instead all messages, both those originating at
a node and those forwarded, must be forwarded through the network in a
peer-to-peer manner. This makes the network more sensitive to congestion
and packet loss due to congestion.

Two commonly considered network routing protocols are Ad Hoc On-Demand
Distance Vector Routing (AODV) and Dynamic Source Routing (DSR) these
protocols are common in mobile ad-hoc networks (MANETs). More details
on these routing protocols is available in for example [11] and [16].

More exact details on how the routes are found, issues concerning connecting
to the network, recovering from router breakdowns and other data transport
issues are beyond the scope of this thesis, that rather focuses on finding
optimal placement for the network router nodes.

2.4 Properties of Wireless Sensor Networks

Four very important properties in wireless sensor networks are coverage,
connectivity, node lifetime, and reliability.

Coverage is of big interest in other wireless applications than sensor networks
as well. Examples are cellular networks for telephones and so called wireless
hotspots, where coverage is of great interest.

Connectivity on the other hand, is specific to these kind of ad-hoc networks.

Lifetime is how long time a node can run on its batteries before needing
replacement, either by changing batteries or deploying a new node or router.

When combining these properties, we get another important property, relia-
bility. This property is a measurement of how long the network can perform
as intended despite node failures, communication interruptions, and other
disturbances.

Other quality of service properties worth considering are data throughput
and data propagation delay (latency). While still being of big importance
to the performance network, these properties are not in the scope of this
thesis.

9

2.4.1 Coverage

Meguerdichian et al. in [15], Huang and Tseng in [9] and Wang et al. in [18]
define coverage in homogene networks1 in similar ways. Their definitions
can be summarized as follows:

A network is fully covered if every location within the area of
interest is within sensing range of at least one sensor.

In Figure 2.3 a network consisting of 7 router nodes are covering an area,
the covered are is shaded. And In Figure 2.4 one router node is removed
leaving a patch in the middle uncovered. Provided that we know that we
do not need coverage in the middle, we can conclude that the network still
is covered even though we have an uncovered patch.

Figure 2.3: Simple Coverage, the shaded area is covered by the network.

If a location is covered by more than one sensor, one can use the notation
k − covered, where k is the number of sensor nodes monitoring this specific
position. In Figure 2.5 three router nodes cover an area and the level of
coverage is shown in every subregion.

If we know the area of deployment Ad and the sensing area As, we can get
an approximate number or a lower bound for the number of nodes needed
n = Ad

As
. This lower bound is only valid if the all of the area of deployment

needs to be covered.

Coverage is a necessary, but not sufficient property for a working ad-hoc
sensor network.

1In a homogene network all nodes have the same capabilities.

10

Figure 2.4: The shaded area is covered by the network, leaving a patch in
the middle uncovered.

2

32

1

1

1

2

Figure 2.5: k-coverage, the level of coverage is noted in every subregion.

11

2.4.2 Connectivity

Since wireless sensor networks rely on Peer-to-Peer communication between
nodes, the definition of a covered network does not necessarily mean that the
network is working and that messages can pass through the network. The
network might for example be partitioned but still cover the entire area.

One simple proof of this is if the nodes have the same sensing range as
communication range. In this case one can easily construct a network where
the entire area is covered without any nodes being able to communicate.

An example of such a network is illustrated in Figure 2.6 where the network
is both covered and connected and Figure 2.7 where the network is covered
but not connected.

x

x
x x

x

x

xx

x

x
x

x

x

x

x

x

x

Figure 2.6: Covered and connected network. x represent position where we
need network access, the shaded area is covered by the network

x

x
x x

x

x

xx

x

x
x

x

x

x

x

x

x

Figure 2.7: Covered but not connected network. x represent position where
we need network access, the shaded area is covered by the network

The property whether messages can be transported between nodes is called
connectivity. Connectivity is also a necessary, but not sufficient property
for a working sensor network.

Providing one know the communication range Rc and the the sensing range
Rs of the nodes, it is possible, according to [18], to draw the following
conclusion:

12

A fully covered convex region is connected if Rc ≥ 2Rs

For proofs and further analysis on this see [18].

2.4.3 Lifetime

The sensor nodes in these networks are usually battery powered. Because
of that, they have a limited time of operation. To make the lifetime as long
as possible, it is necessary to use low power components when building the
sensors and to use a network architecture that allows the sensor to enter
some kind of sleep mode for long intervals to save power.

An other way of increasing the lifetime is to deploy more nodes and let them
share the workload, two sensor nodes can for example alternately process
and send every second sensor reading.

2.4.4 Reliability

The reliability of the network depends on many factors, for example node
failure and communication problems.

There is a very simple way of increasing the reliability, deploying redundant
nodes. The backside of this is that the cost of deployment increases. But
on the other side, the cost of maintenance decreases.

If one has to low redundancy, the network might fail if only one node fails
and therefore batteries and failed nodes must be replaced immediately.

By using a higher level of redundancy, we can allow a couple of failed nodes
and still know that the network will work as intended. Therefore replace-
ments can be done more seldom.

2.4.5 Application Specific Issues

Because the network considered in this thesis is not populated by homo-
geneous nodes, certain modifications needs to be made to the definitions
of connected and covered networks to make use of results from previous
research findings.

Fully covered all sensor nodes in the network has a connection to at least
one router node.

13

Fully connected any randomly selected node in the network must be able
to communicate with the gateway node.

What this means is that what others consider as a sensor is a router in this
network. Coverage is whether or not the sensor nodes are within communi-
cation range of a router. In other words the sensor nodes are monitored by
the network of router nodes.

2.5 Related Work

The issue of coverage is not an issue that has arisen with wireless sensor
networks, it is of big importance in several other areas.

One example of such an area is cellular networks, an operator wishes to
cover as much as possible in order for its customers to be able to make calls.
In these kind of network we want as few gaps as possible, so that calls do
not get cut off when a caller moves around.

In wireless sensor networks we need to fulfill one more requirement, the
network needs to be connected. This makes the problem a bit different from
that of cellular networks.

Another more closely related type of networks where coverage and connectiv-
ity are considered is ad-hoc networks, often called Mobile Ad Hoc Networks
(MANETs). The difference in these technologies is that they usually depend
on a “over deployment” of network nodes, that is there are more nodes than
necessary in order to achieve coverage and connectivity.

An example of such an ad-hoc network is “The Grid Roofnet” which is
described by Chambers in [3]. For redundant mesh networks Hsiao and
Kung have some analysis of network designs in [8].

When it comes to optimizing connectivity and coverage in an area where only
some parts need coverage there is no previous work done to my knowledge.

As for the routing protocols, a comparison and analysis of AODV and DSR,
the two most common network routing protocols for ad-hoc networks, is
done by Das et al. in [4].

14

3. Algorithm Design

This chapter describes the different algorithm approaches used in this project.

To make sensor nodes outside communication range of the gateway node
able to send messages, router nodes (FFD nodes) are required. The number
of router nodes should be as few as possible, while still letting all sensor
nodes communicate with the gateway. It might also be required to have a
certain amount of redundancy to allow router failures.

3.1 Placement of Routers

To be able to fulfill the project requirements set in Section 1.1, finding good
placements for the network routers is of crucial importance.

First we must see to that all sensors can communicate with the gateway
node. When that part is done, we need to add some more routers to get
redundancy in case of router failures.

We want to find an optimal solution, giving enough redundancy using as
few routers as possible. If too many router nodes are used the redundancy
requirement can be fulfilled. But it will be done at a higher cost than
necessary because many router nodes are deployed that are not really needed
for the required level of redundancy.

3.1.1 Placement Algorithms

According to Huang and Tseng in [9], optimal placement of routers to cover
all sensor nodes is a problem similar to the so called Art Gallery Problem1.
This problem has a linear time optimal solution in the two dimensional
case, but is NP-hard to solve optimally in three dimensions, according to
Marengoni et al. in [13].

Due to the fact that the problem is NP-hard in three dimensions, simplifi-
cations has to be made. One can for example try taking advantage of nodes
forming clusters, and in other ways preprocess the data to reduce the prob-

1The Art Gallery Problem deals with placing as few guards as possible in a polygonal
Art Gallery room, while still keeping every point of the gallery under observation by at
least one guard.

15

lem size and thus make it easier to solve. Note that the problem still is
NP-hard, but thanks to the smaller problem size it might be solvable.

When the problem is simplified one can try using trivial approaches or de-
velop some heuristics either new or, if applicable, based on the findings in
[13] on placement of observers in a three dimensional terrain.

Another possibility is to construct a iterative algorithm that improves the
placements of routers in a trivial and unoptimized solution, if such an algo-
rithm is realizable it would enable removal of unnecessary routers.

According to Médard et al. in [14] optimal 2-way redundant routes in con-
nection graphs tend to form rings.

3.1.2 Verification

Verifying that a solution fulfills the coverage requirement can be trivially
calculated in O(nsnr), where ns is the number of sensor nodes and nr is the
number of routers. If one uses the findings in [9] the computation can be
done in O(nd log(d)), where n is the number of routers and d is the maximum
number of routers which intersect any other router’s coverage area.

The connectivity and amount of redundancy can be verified and calculated
in O(nsnrn

2
e) using the algorithm described in Section 3.7.3, where ns, nr

and ne are the number of sensors, the number of routers, and the number
of interconnections (edges in the connectivity graph) respectively.

3.2 Algorithm Overview

3.2.1 Non-redundant solution

Construction of a non-redundant solution can be done in a couple of ways.

The simplest way is to add routers within communication range on a straight
line from every sensor to the gateway, excluding sensors within the gateways
communication range. This is further discussed in Section 3.3.1.

Another possibly better solution using fewer routers, is to add routers within
communication range on a straight line from a sensor to the nearest router
or gateway, excluding sensors already within communication range from a
router or the gateway as shown in Section 3.3.2.

In order to reduce the problem size, one can try to find optimizations such

16

as sensors forming clusters. This is analyzed in Section 3.3.3.

3.2.2 Redundant solution

When creating a redundant solution, we must first decide what level of
redundancy is needed. In some cases it is sufficient with a non-redundant
solution, in other cases we might need for example three mutually exclusive
routes from every sensor to the gateway. The level of redundancy required
is a issue in the specific implementation and is not further discussed in this
thesis.

When the required level of redundancy is known, the actual placement is
done by first creating a non-redundant solution and then for every level of
redundancy running basically the same algorithm as used for non-redundant
solutions. This is shown in Section 3.5.

3.3 Non-redundant Router Placement Strategies

Below follows a list of strategies that can be used when constructing non-
redundant solutions.

Trivial Router Placement Places router nodes on straight lines from ev-
ery sensor to the gateway.

Trivial Placement Reusing Already Deployed Router Nodes Places
router nodes on straight lines to the closest already deployed router.

Cluster Router Placement In this case the original problem is analyzed
and sensor nodes forming clusters are found and are connected as if
they where only one sensor.

In the following sections an example setup shown in Figure 3.1 with one
gateway and four sensor nodes is used.

3.3.1 Trivial Router Placement

The simplest way of ensuring a connected network is to place router nodes
within communication range from each other on straight lines from the gate-
way to within communication range of each and every sensor node as shown
in Figure 3.2.

17

���
���
���
���

��
GatewaySensorRouter

Figure 3.1: Example setup using
four sensor nodes and one gateway
node.

���
���
���
���

��
Router Sensor Gateway

Figure 3.2: Placing router nodes in
a trivial way using a exclusive route
from every sensor node to the gate-
way.

This approach results in very many routers, many of them not necessary to
obtain a solution where all sensor nodes can communicate with the gateway.
In Figure 3.3 where the router-to-router communication range is shown,
we can see that either the router marked 2 or the one marked 4 can be
removed and the solutions will still satisfy the connectivity and coverage
requirements.

��
Router Sensor Gateway

���
���
���
���

3

1 2

4

Figure 3.3: In this solution, where the router-to-router communication range
is shown with dotted lines, the number of routers is greater than needed and
either the router marked 2 or the one marked 4 can be removed.

The algorithm for doing this is fairly straightforward. Unless the sensor
node is already within reach of the gateway, place routers along a straight
line from the sensor to the gateway. It is given in pseudo code in Algorithm
3.1.

18

Algorithm ”Trivial Place Routers”
Input: List of Sensor Nodes S, Gateway g
Output: List of Router Nodes R

for each sensor s in S
if distance(s, g) > s.range

deploy router r at distance s.range from s towards g
add r to R
if distance(r, g) < r.range

continue
while distance(r, g) > r.range

deploy router r at distance r.range from r towards g
add r to R

return R
Algorithm 3.1: Pseudo code for placement of routers in a trivial way using
a exclusive route from every sensor node to the gateway node.

The complexity of this algorithm is O(nsdm), where ns is the number of
sensor nodes and dm is the maximum distance from any sensor node to the
gateway.

This expression is obtained by analyzing the algorithm and seeing that for
every sensor node, O(ns), the two coordinates for the placement of a router
are calculated and the router is deployed, until the router is within com-
munication range of the gateway, which means O(dm). Putting the terms
together gives the following result O(nsdm).

The number of routers placed will also be O(nsdm), this is easily verified in
the same way as the complexity is calculated.

3.3.2 Trivial Placement Reusing Already Deployed Routes

To reduce the number of unnecessary routers such as those shown in Figure
3.3, one can instead of connecting to the gateway, add routers to connect
to the nearest already deployed and connected router. This is illustrated in
Figure 3.4.

By deploying routes to every unconnected sensor node using this algorithm,
the number of needed routers will be radically reduced in networks with
many sensor nodes.

The number of routers needed will asymptotically become O(d 2
m), as shown

below, instead of O(nsdm) for the trivial algorithm in Algorithm 3.1. This

19

���
���
���
���

��
Router Sensor Gateway

Figure 3.4: Placing routers to connect sensor nodes to the closest already
connected router node.

means that if the number of sensor nodes increase in a network but the size
is the same, this algorithm will gradually perform better.

When running the algorithm, it first sorts the sensor nodes according to their
distance from the gateway. Next step is to connect the sensor node closest
to the gateway node with a straight line of as few routers as possible. Then
the second closest sensor node is connected to the closest already connected
router node or to the gateway node if it is closer. Pseudo code for this
algorithm is shown in Algorithm 3.2.

This algorithm is slower than the trivial algorithm in Algorithm 3.1. It
requires searching through all already placed routers for every sensor to
connect.

The number of routers placed is O(nsd
2

m) when the sensor nodes are few
and O(d 2

m) as the area of deployment becomes saturated, where dm is the
maximum distance from the gateway to any sensor node and ns is the num-
ber of sensors.

The complexity in this case is O(nsnr), where ns is the number of sensor
nodes and nr is the number of router nodes. Using that nr is O(nsd

2
m)

and O(d 2
m) for the saturated case from above results in O(n 2

s d 2
m) and

O(nsd
2

m) when the area of deployment is saturated with router nodes.

3.3.3 Cluster Router Placement

This method is a way to achieve a linear increase of the performance of the
above algorithm in Algorithm 3.2.

20

Algorithm ”Place Routers Using Deployed Routers”
Input: List of Sensor Nodes S, Gateway g
Output: List of Router Nodes R

for each sensor s in S
if distance(s, g) > s.range

for each router rdeployed in R
if distance(rdeployed, s) < distance(rselected, s)

rselected ← rdeployed

if distance(s, rselected) > s.range
deploy router r at distance s.range from s towards rselected

add r to R
if distance(r, rselected) < r.range

continue
while distance(r, rselected) > r.range

deploy router rtmp at distance r.range from r towards rselected

r ← rtmp

add r to R
return R
Algorithm 3.2: Pseudo code for placement of routers reusing already de-
ployed routers.

The basic idea is to find groups of sensor nodes and connect a whole group
of them at one time, reducing the need to search for the closest router node
and therefore the computation time needed.

The desired result from this computation is shown in Figure 3.5. Nodes
close to each other are groped and all connected using the same route.

(a) (b)

Figure 3.5: (a) shows the sensor placements, in (b) the clusters are marked
by the dotted lines

This is done by, for every sensor node s, search for the three closest neighbors
and add them to the same cluster as sensor node s if they are within a
predefined distance from the node. If a sensor node is part of more than one
cluster, the clusters are merged into one.

21

This algorithm is a modification of the algorithm described by Karypis et
al. in [12]. Pseudo code for the algorithm is shown in Algorithm 3.3.

Algorithm ”Find Clusters of Nodes”
Input: List of Sensor Nodes S
Output: List of Clusters C

for each sensor s in S
for each sensor n in S

if distance(s, n) < s.range
add n to s.neighbors if closer than any other neighbor

(replace the furthest neighbor if more than 3 neighbors)
for each neighbor n in s.neighbors

add s to n.otherneighbors

clusteridid← 0 for each sensor s in S
if s.clusterid = 0

clusterid← clusterid + 1
c← savetree(s, clusterid) (see Algorithm 3.4)
add c to C

return C
Algorithm 3.3: Pseudo code for finding clusters of sensor nodes.

Algorithm ”Save Tree”
Input: Node n
Output: List of Nodes Belonging to the Same Tree l

if not n.marked
set n.marked
add n to l
for each neighbor s in n.neighbors

add savetree(s) to l
for each neighbor s in n.otherneighbors

add savetree(s) to l
return l

Algorithm 3.4: Pseudo code for saving of neighbor trees.

When the sensor nodes are grouped together the clusters are covered by
adding router nodes so that all sensor nodes are within communication range
of a router.

The next step is to connect all routers to the gateway. This can be done by
using the algorithm shown in Algorithm 3.2 in the previous section substi-
tuting the sensor nodes in the placement algorithm for the routers placed
by the clustering algorithm.

22

The complexity for this algorithm is O(n 2
s), where ns is the number of

sensor nodes. This is easily proved by seeing that there is a nested loop
where all sensor nodes are inspected for every sensor node.

If we then use the algorithm from Section 3.3.2 for router placement, we get
a complexity of O(ncd

2
m), where nc is the number of clusters found. From

this we can see that the actual complexity will depend on how densely the
sensor nodes are deployed.

The number of routers deployed will also highly depend on how densely the
sensor nodes are placed. Therefore it is very difficult to give an assessment
of the number of routers needed in this solution. Both the time complexity
and the number of routers placed will be further analyzed when evaluating
the algorithms in Chapter 5.

3.4 Redundant Routes

3.4.1 Background

The solutions that we get using the algorithm presented in Section 3.3.3 and
Section 3.3.2 will work fine as long as all router nodes are functional. But
if one or more routers fail, large portions of the network might fail.

An example of such a situation is shown in Figure 3.6. Here only one failed
router results in the entire network breaking down.

���
���
���
���

X

��
Router Sensor Gateway

Figure 3.6: One failed router node (marked with an “X”) results in all sensor
nodes being unable to communicate with the gateway.

Because of this we need to add redundancy to the network. This means that
all sensor nodes need two or more routes to communicate with the gateway

23

in order to ensure a reliable network.

Any two routes or paths through the connection graph that do not share any
router nodes are mutually exclusive. The level of redundancy for a sensor
node is the number of mutually exclusive routes.

The level of redundancy for the entire solution is the minimum level of
redundancy from any sensor node to the gateway.

3.4.2 Trivial Redundancy

The simplest way to achieve a k-redundant solution is to simply deploy k
router nodes at every position designated by a non-redundant algorithm.

This solution is simple, fast and straightforward. But in most cases it is
possible to solve the problem with fewer routers.

A simple example of such a situation is shown in Figure 3.7. Here 5 router
nodes are used for the non-redundant solution, which means 10 router nodes
for the 2-redundant solution.

��
Router Sensor Gateway

������

Figure 3.7: Non-optimal redundant solution, all router nodes are simply
multiplied.

A slightly better solution of this problem is shown in 3.8. Here 9 routers are
used to solve the same problem.

In this example the number of router nodes saved is only one, but in a bigger
network more router nodes can be saved.

This result also complies well with what Médard et al. writes in [14], optimal
2-way redundant routes in connection graphs tend to form rings.

24

��
Router Sensor Gateway

������

Figure 3.8: Better Redundant Solution

3.5 Non-trivial Redundancy

This algorithm is split into two parts. The main part is the algorithm
used for counting the number of mutually exclusive routes in the connection
graph. The second part places the router nodes needed.

Another important detail before actually starting creating the redundant
routes is to check the connection graph so that all nodes are connected to all
router nodes within communication range and any connections missing are
added. This is needed because of the design of the non-redundant algorithms
presented earlier.

Furthermore, the algorithm for computing mutually exclusive routes is di-
vided into two steps, the first step is a transformation of the bidirectional
connection graph into a unidirectional connection graph. The second step
computes the maximum flow from a sensor node to the gateway node.

By defining a certain maximum flow on certain connections in the graph,
the maximum flow from the sensor to the gateway will be the same as the
number of mutually exclusive routes. This is further explained below.

If we use this algorithm to check every sensor’s number of mutually exclusive
connection to the gateway before making a new connection, we can avoid
constructing unnecessary routes.

The result after using the following algorithm with a desired level of redun-
dancy of 2 is as shown in Figure 3.9.

25

���
���
���
���

��
Router Sensor Gateway

Figure 3.9: Every sensor has two mutually exclusive routes to the gateway.

3.5.1 Counting Number of Mutually Exclusive Routes

This is a computationally difficult problem. When counting number of
routes in a graph with few connections, as in Figure 3.10, it is simple to
count the number of mutually exclusive routes.

���
���
���
���

��
Router Sensor Gateway

Figure 3.10: In a simple graph with few connections, counting number of
routes is simple.

When the graph becomes more complex with many connections, as in Figure
3.11, counting the number of mutually exclusive routes becomes hard.

3.5.2 Transformation of the Connection Graph

The transformation from a graph with bidirectional edges to a graph with
unidirectional edges is done by substituting every router in the graph for
two routers connected together with a one way connection.

The idea is to let all incoming edges go to one side of the router compound
and to let all outgoing edges start from the other side, and thus get a single

26

���
���
���
���

��
Router Sensor Gateway

Figure 3.11: In a more complex graph with many connections, counting
number of routes is quite difficult.

edge where all communication through the original router has to go. Figure
3.12 shows an example of how a router is substituted.

Before substitution After substitution

Figure 3.12: Substitution of a single router in a connection graph.

In Figure 3.13 a small graph with bidirectional edges is transformed to a
graph with only unidirectional edges.

Full−function device Reduced function device
��

Gateway

�� ��

Transformed connection graphReal connection graph

Figure 3.13: Transformation of a graph with bidirectional edges to an uni-
directional graph.

Every connection graph has one and only one transformation, that is the
transformation is unique and it does not depend on the order of traversal.

27

3.5.3 Computing Maximum Flow in the Connection Graph

After the graph transformation, the graph has only unidirectional connec-
tions. In such a graph it is possible to calculate maximum flow between any
two nodes.

To compute the number of mutually exclusive routes from a sensor node
to the gateway node through the graph, the maximum flow through every
connection is set to 1. This means that every connection can accommodate
one and only one route.

In this weighted directed graph it is possible to compute the maximum flow
from a source to a sink using The Ford-Fulkerson Algorithm. In our problem,
the weights are the same as the maximum flow through the respective edges,
the source is a sensor node and the sink is the gateway.

The Ford-Fulkerson Algorithm ([5], Section 8.2.2) depends on finding paths
where more flow can be pushed through, so called augmenting paths. For-
ward edges using less than full capacity and backward edges with flow more
than 0 can be used as a path. The graph is traversed in a breadth first
manner, searching for unused paths in the graph.

Since the maximum flow through any edge in our problem is 1 and it is
either used or not, the algorithm can be simplified. The flow is computed
as follows.

1 Find usable path through the graph. Either by using a unused path
or by using a used edge in the reverse direction.

2 Mark path as used, edges used in the reverse direction are “unused”.

3 Restart from 1 until there are no more paths available.

4 Sum the flows in the edges that start at the source to get the total
flow through the graph.

In Figure 3.14 an example of finding and using paths is shown. In this
example a path using flow 1 is found and marked as used. Then a second
path is found by using one of the edges backwards. When the second path
is marked as used, the edge used backwards its flow is reduced to 0.

Algorithm 3.5 shows the algorithm for finding augmenting paths. ([5], Sec-
tion 8.2.1)

An outline of the remaining part of the algorithm, the part used when mark-
ing paths as used and summing up the total flow, is shown in Algorithm 3.6.

28

0
0

0

00

0

d

s
0

10
d

s
1

1 1

(a) (b)

0

1

10
d

s
1

1

1

1

01

1

d

s
1

(c) (d)

Figure 3.14: Finding augmenting paths in a graph: In (a) the graph has no
flow, (b) shows the result when one route is used, in (c) a new possible route
using a backward edge is indicated with dashed lines, (d) is the final result
with a total flow of 2.

Algorithm Find Augmenting Path
Input: weighted directed graph G, source s, destination d
Output: path π

for each node n in G
n.visited← false

create FIFO-queue Q
put s into Q
while Q is not empty

get node n from Q
if n = d

build path π recursively starting at n.route
return path π

n.visited← true
for each edge e to and from n

if not e.destination.visited and e is forward edge and e.flow = 0
e.destination.route← e
put e.destination into Q

if not e.source.visited and e is backward edge and e.flow = 1
e.source.route← e
put e.source into Q

Algorithm 3.5: Pseudo Code for the Algorithm used to find augmenting
paths

29

In [5], Section 8.2, Goodrich and Tamassia provide a more detailed descrip-
tion and an analysis of the Ford-Fulkerson Algorithm.

Algorithm Maximum Flow
Input: weighted directed graph G, source s, destination d
Output: maximum flow maxFlow from s to d

for each edge e in G
e.flow ← 0

maxFlow ← 0
repeat

traverse G starting at s to find a augmenting path π to d, see Algorithm
3.5

if a path π exists then
maxFlow ← maxFlow + 1
for each edge e in π do

if e is forward edge then
e.flow ← 1

else
e.flow ← 0

else
stop

Algorithm 3.6: Pseudo Code for the Simplified Ford-Fulkerson Algorithm

3.5.4 Placing Routers in the Redundant Solution

Before creating any redundant routes from a sensor node, the number of
routes in the graph from the sensor to the gateway is computed using the
above discussed algorithm. If the number of connections already is sufficient,
no action is taken. In the case that more connections are needed, new
independent routes are created with the algorithm in Algorithm 3.7.

The basic ideas behind this algorithm is to first check whether the sensor
nodes already have enough connections to satisfy the redundancy required.
This computation is done by using the “Maximum Flow” algorithm shown
in Algorithm 3.6.

Secondly the connections needed are added. The sensor nodes are examined
starting with the node furthest away from the gateway and if a node does
not have enough connections, a new connection is made.

This new connection is made by searching for the closest router node that
is on another branch in the connection graph than the sensor node itself.

30

Algorithm Create Redundant Route from s to d
Input: connection graph G, source s, destination d, gateway g
Output: connection graph G

R← router nodes in G
S ← sensor nodes in G
sort S by decreasing distance to g
for (i = 0; i < desired level of redundancy; i + +)

for each sensor s in S
compute number of routes n from s to g in G using the “Maximum

Flow” algorithm in Algorithm 3.6
if n ≤ desired redundancy

for each router r in R
if r is not on same branch in the graph as s

build route from s to r, this can be done in the same way as in
any of the non-redundant algorithms

continue
Algorithm 3.7: Pseudo Code for Creating of Redundant Routes

Branches in the graph is illustrated in Figure 3.15. In this figure the node
marked with X belongs to one branch and the node marked with Y belongs
to another branch, while Y and Z belongs to the same branch. One can see
that the only node X and node Y share is the gateway node.

The actual placement is then done in the same way as in the non-redundant
algorithms. This is repeated for every sensor node and every level of redun-
dancy needed.

3.5.5 Algorithm Analysis

When inspecting Algorithm 3.7 we see that the complexity depends on sev-
eral factors. At first we have a loop counting the redundancy, then we iterate
through the sensor nodes and finally we compute the maximum flow. After
the flow has been computed, the already placed routers are iterated and
searched for one on a different branch.

The complexity for the flow computation also depends on several factors
making it difficult to state. If we first analyze the algorithm for finding
augmenting paths, Algorithm 3.5, we find that it depends on the number
of edges or connections in the graph ne. Making up a complexity of O(ne).
This is more rigorously analyzed by Goodrich and Tamassia in [5], Section
8.3.

31

��
Router Sensor Gateway

���
���
���
���Y

X

Z

Figure 3.15: Branches in a Connection Graph. The node marked with X
and the node marked with Y belong to different branches, while Y and Z
belong to the same branch.

When analyzing Algorithm 3.6 we find that the loop runs until all paths are
found, that is the algorithm complexity depends on the total flow f . It also
marks nodes, this can in the worst case include all router nodes, nr.

Summarizing these two parts we get a complexity of O(fnenr) for computing
the maximum flow.

The branch computation has complexity O(n 2
h), with nh the maximum

number of hops in the graph. Since the number of edges ne and number of
routers nr always is greater or equal to the maximum hop count nh the flow
computation is the dominant part.

The placement of routers, using a similar algorithm as the trivial one in
Section 3.3.1 will need O(d), where d is the maximum distance between any
two nodes in the graph. Since O(fnenr) is a larger factor than O(d), this
factor can be ignored.

Combining the results above yields a total complexity for making redundant
routes of O(rns(fnenr)r), with r being the level of redundancy requested.
This means that the time needed by this algorithm will increase steeply as
the level of redundancy increase.

Due to the many factors involved in this algorithm, it is not practical to
give an assessment of the number of routers placed. Instead this is left to
Chapter 5, where experimental results are presented.

32

3.6 Optimization

When routers are placed using the algorithms above, some router nodes not
needed to achieve a connected and covered solution with the redundancy
required might be deployed. This is unwanted and because of this problem,
some kind of optimization is needed.

3.6.1 Intermediate Optimization

After deploying routers for non-redundant connectivity, some routes might
be longer than necessary and some routers nodes might not be needed to
have a connected and covered network.

To solve this problem, all sensor nodes are reconnected to a reachable router
node with as short route to the gateway as possible. The same is done with
every router node. Router nodes with only connection to another router
node are removed. This is repeated until no more routers can be removed.

3.6.2 Final Optimization

When the routes are created using the redundant algorithm in Section 3.5,
more nodes than necessary might be deployed. An example of how such a
situation can occur is shown in Figure 3.16.

To find the router nodes that are removable, all routers are iterated and one
by one temporarily removed from the solution. For every removed router,
the number of routes is computed by using the algorithm discussed in Sec-
tion 3.5. If all sensor nodes still have enough redundancy, the router node
is permanently removed. The pseudocode for the algorithm is shown in
Algorithm 3.8.

33

(a) (b)

(c) (d)

Figure 3.16: Example of how a solution that needs optimization can occur:
(a) shows the problem to solve, three sensor nodes an one gateway node.
The required redundancy in is 2 in this example. In (b) all sensor nodes are
connected to the gateway node without redundancy. (c) shows the solution
after the redundant routes are created, the problem now is that the sensor
node in the middle has more redundancy than required. In (d) the desired
result is shown.

Algorithm Optimize Connection Graph
Input: connection graph G, source s, destination d, gateway g
Output: connection graph G

R← router nodes in G
S ← sensor nodes in G
sort S by decreasing distance to g
for each sensor s in S

for each router r in R
mark r as failed
compute number of routes n from s to g in G using the “Maximum

Flow” algorithm from Algorithm 3.6.
if n ≤ desired redundancy

mark r as non failed
else

permanently remove r

Algorithm 3.8: Pseudo Code for Optimization of the Connection Graph

34

3.7 Verification

Verifying that the algorithm’s chosen router placements fulfill the require-
ments set in Section 1.1 is very important. Therefore we need a way of
verifying the coverage, Connectivity and Redundancy of the solutions.

3.7.1 Coverage Verification

Verification of coverage can be done in a fast enough way using a trivial
approach where one simply tests if there are any routers within communica-
tion range from the sensor. The complexity for this computation is O(nsnr),
where ns is the number of sensor nodes and nr is the number of router nodes.

3.7.2 Connectivity Verification

Using a trivial breadth first graph search when computing the connectivity
is reasonably fast and will require O(nsnrne), where ns is the number of
sensor nodes, nr is the number of router nodes and ne is the number of
edges (connections) in the graph.

The graph search should start at the gateway and traverse as much of the
graph as possible. If the search reaches all sensor nodes, the connectivity
requirement is fulfilled.

3.7.3 Redundancy Verification

To verify the level of redundancy, the “Maximum Flow” algorithm described
in Section 3.5 can be used. For every sensor node, the number of routes
are computed and if all sensor nodes has enough routes the requirement is
fulfilled.

Since redundancy requires both coverage and connectivity, we can verify
our solution by only computing the level of redundancy in the solution. If
the level of redundancy is 0 for any sensor node, the graph is either not
connected or not covered.

35

36

4. Implementation

The algorithms presented in Chapter 3 are implemented in an application in
order to be able to evaluate the actual time needed to compute a solution.

The application is written in Java, because it allows us to run the application
on many different platforms and environments.

In order to keep the application simple and easy to debug, it is split into
different parts with fixed interfaces in a Model-View-Control fashion.

The model-part, which is the main part of the application, consists of several
Java-classes. It takes care of the actual computation and it is here the
algorithms from Chapter 3 are implemented and it is here the problem and
solution is stored.

The Java-classes for the user interface, the view, does not know anything
about the actual computation done. It simply enables the user to commu-
nicate with the model-part and the control-part. It shows the solution and
lets the user change the different problem parameters.

When a user wants to solve a problem, the user invokes the control-part via
for example a button in the user interface. The Java-classes in the control-
part invokes methods in the model that actually do the computation.

A diagram showing the more important classes of the application and how
they are related is shown in Figure 4.1

JFrame

GUI

RouteFinder RouteModifier

Algorithm 1 Algorithm 2 Algorithm 3

Main

BuildSettings

JFrame

World

RouterEndpoint

Node

Gateway

JPanel

Space

*

* *

1

Figure 4.1: Class diagram showing the most important classes in this ap-
plication. An asterisk means that there are several instances of the class or
interface.

37

Below follows a more detailed description of the classes and interfaces in-
volved.

4.1 View

The view-part of the application consists of a Graphical User Interface, the
GUI, Space and BuildSettings classes.

Here the problem and, when computed, the solution is shown. The user
interface also has means to adjust problem parameters and a way to select
algorithms to run and to start the computation.

Another feature worth noting is the possibility to run several computations
on randomly created problem setups.

An example of how such a setup can look like is shown in Figure 4.2, in this
example the number of sensor nodes is 100 and the gateway is placed in the
middle. In Figure 4.3 the solution for a redundancy of 2 is shown, in this
case we needed 163 router nodes to achieve a solution.

To be able to set the desired level of redundancy and to select which algo-
rithms that are to be used to solve the problem, there is a settings dialog.
This dialog window is shown in Figure 4.4 and here we can see that the exam-
ple above was solved by first using the cluster algorithm from Section 3.3.3
named “Clusters” and then using the redundant algorithm from Section 3.5
named “RedundancyMaker”. The modifier classes used are explained more
in Section 4.2.4.

4.2 Model

This part consist of the World, Endpoint, Gateway, Router, Node and the
RouteModifier class. The classes extending the RouteModifier class are also
a part of the model.

4.2.1 The World Class

The World class stores the nodes and provides methods used by other classes
to get the lists of sensor nodes (endpoints), the list of router nodes and the
gateway.

It also provides methods for saving, loading and randomizing setups.

38

Figure 4.2: Main Window with Problem to Solve. The blue square represents
the gateway node and the ones in magenta are the sensor nodes.

39

Figure 4.3: Main Window with Solution The blue square represents the
gateway node, the ones in magenta are the sensor nodes and the green ones
are the router nodes. The connections are marked with lines.

Figure 4.4: Route Finder Settings

40

4.2.2 The Node Classes

The Node Class This class keeps track of all the node properties such
as communication ranges. It also stores the connections to other nodes and
the number of hops to the gateway.

It provides methods for setting and getting parameters and methods to add
connections and to get the list of connections.

The Endpoint Class This class extends the Node class. It sets the de-
fault communication range for a sensor node and the node as a sensor

The Router Class This class also extends the Node class. It sets the
default communication range for a router node and marks the node as a
router.

The Gateway Class This class extends the Router class. It marks the
node as a gateway.

4.2.3 The RouteModifier Class

This class exists as a interface between the control part and the model part.
It is used by the implementations of the algorithms presented in Chapter 3
and by the RouteFinder class.

4.2.4 Algorithms Extending the RouteModifier Class

All of the algorithms presented in Chapter 3 are implemented using the
RouteModifier interface. Below follows a list of the classes and what algo-
rithms they implement.

The Trivial Class Here the trivial algorithm from Section 3.3.1 is imple-
mented.

The TrivialReuse Class In this class the trivial algorithm with reuse,
from Section 3.3.2, is implemented.

41

The Clusters Class This class implements the cluster algorithm from
Section 3.3.3.

The RedundancyMaker Class The algorithm from Section 3.5 is im-
plemented here.

The SimpleOptimizer Class Here the optimizer from Section 3.6.1 is
implemented.

The RouteOptimizer Class The optimizer from Section 3.6.2 is imple-
mented in this class.

4.3 Control

The control consist of the RouteFinder class. It is invoked from the Build-
Settings class and it invokes the RouteModifier classes chosen in the Build-
Settings dialog window.

42

5. Evaluation

Evaluation of the algorithms presented in Section 3 has been done by im-
plementing each one in a computer application as described in Section 4
and performing evaluation experiments using the application. This chapter
presents the evaluation experiments and results of the evaluation.

The performance of the algorithms has been evaluated by running the appli-
cation with random setups with one parameter varied and the other fixed.
The number of sensor nodes, router nodes used and the time elapsed is
measured for different algorithm combinations.

The parameters varied are the number of sensor nodes and the level of
redundancy.

For all of these tests, the router-to-router communication range is set to 30
meters and the sensor-to-router communication range is set to 15 meters.
The area of deployment is a square of 400 meters.

This means that we have an area of deployment of Ad = 160000 m2 and a
router to sensor communication area of Ac = 152π m2 for every router node.

Seeing that we fulfill the requirement 2.4.2 stating that the router to router
communication range is twice the router to sensor communication range and
using the formula from 2.4.1 means that the minimum of router nodes placed
in a non-redundant solution filled with sensor nodes is Ad

Ac
≈ 226.

It should be noted that it is impossible to create a solution with this number
of routers. This is because we need some overlap of the communication areas
due to the circular shape of the coverage areas.

5.1 Non-redundant Solutions

In this section the algorithms presented in Section 3.3 are evaluated.

5.1.1 Trivial Algorithm

As stated in Section 3.3.1, the Trivial Algorithm has complexity O(nsdm)
and the number of router nodes placed is also O(nsdm), where ns is the
number of sensors and dm is the maximum distance from the gateway to the

43

sensor nodes.

Figure 5.1 shows the number of router nodes plotted against the number of
sensor nodes and the computing time measured, when keeping the area of
deployment fixed.

In this figure we can clearly see that the number of routers placed is pro-
portional to the number of sensor nodes. Due to the short computing time
for this algorithm it is difficult to draw any conclusions from the computing
times measured.

We can also see that this algorithm places very many routers, many more
than the theoretical minimum of 226 router nodes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Number of router nodes placed Time used for computation

Figure 5.1: Trivial Algorithm

5.1.2 Trivial Algorithm with Reuse

By looking at Figure 5.2, we can see that the number of routers placed
by the trivial algorithm with reuse from Section 3.3.2 is less than with the
trivial algorithm above. But the time needed for computation is increased.

In the figure we can see that the number of router nodes placed still seems
to be linearly related to the number of sensor nodes but that it is so with
a lower coefficient. The number of router nodes placed is quite a bit higher
than the theoretical lower bound of 226 router nodes.

The time needed is clearly related to the square of the number of sensor
nodes.

44

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Number of router nodes placed Time used for computation

Figure 5.2: Trivial Reuse Algorithm

5.1.3 Cluster Algorithm

Figure 5.3 shows the number of router nodes placed and the time needed by
the cluster algorithm from Section 3.3.3.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Number of router nodes placed Time used for computation

Figure 5.3: Cluster Algorithm

By studying this figure, we can see that this algorithm has a asymptotic
behavior as the number of sensor nodes increase. It can be shown that the
maximum depends on the size of the area of deployment.

This result complies well with the theoretical result of approximately 226
router nodes obtained in the beginning of this chapter.

The time needed seems to be linearly related to the number of sensor nodes.

45

5.1.4 Summary

Figure 5.4 shows a comparison of number of routers between the algorithms.
Here we can clearly see that the trivial algorithm has the highest number of
router nodes placed.

We can see that the trivial algorithm with reuse solves the problem with
less than one fifth of the router nodes needed by the trivial algorithm.

It also shows that the cluster algorithm needs even fewer nodes making it
the best choice.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Trivial
Trivial Reuse

Cluster

Figure 5.4: Number of router nodes placed by the different algorithms.

In Figure 5.5 a comparison of the time needed by the algorithms is shown.
Here we can see that the trivial algorithm with reuse needs the most time
and that the trivial algorithm is the fastest one, placing the cluster algorithm
in second place for most problem sizes.

Figure 5.6 illustrates how the number of router nodes per sensor node
changes as the number of sensor nodes increase.

We can see that the “Trivial” algorithm has a fixed number of router nodes
per sensor node, not depending on the number of sensor nodes. Both the
“Trivial Reuse” and the “Cluster” algorithms need fewer router nodes per
sensor node as the number of sensor nodes increase.

46

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Trivial
Trivial Reuse

Cluster

Figure 5.5: Computation time needed by the different algorithms.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500

R
ou

te
r N

od
es

 p
er

 S
en

so
r N

od
e

Sensor Nodes

Algorithm
Trivial

Trivial Reuse
Cluster

Figure 5.6: Number of Router Nodes per Sensor Node. Non-redundant and
Non-optimized solution.

47

5.2 Non-redundant Optimized Solutions

In this section the algorithms presented in Section 3.3 optimized by the
optimization discussed in Section 3.6.1 are evaluated.

5.2.1 Trivial Algorithm

In Figure 5.7 we can see that the number of router nodes can be radically
reduced in the trivial solution, but on the other hand it takes quite a lot
more time to reach a solution.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-optimized
Optimized

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-optimized
Optimized

Number of router nodes placed Time used for computation

Figure 5.7: Trivial Algorithm with Optimization

5.2.2 Trivial Algorithm with Reuse

With the trivial algorithm with reuse, Figure 5.8, the reduction is still quite
big with the cost being that the time needed is increased a bit.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-optimized
Optimized

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-optimized
Optimized

Number of router nodes placed Time used for computation

Figure 5.8: Trivial Reuse Algorithm with Optimization

48

5.2.3 Cluster Algorithm

The cluster algorithm, with test results in Figure 5.9, has the smallest num-
ber of routers removed by the optimization. The time needed for optimiza-
tion is smaller than for the other algorithms.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-optimized
Optimized

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 100 200 300 400 500
Ti

m
e/

s
Sensor Nodes

Non-optimized
Optimized

Number of router nodes placed Time used for computation

Figure 5.9: Cluster Algorithm with Optimization

5.2.4 Summary

By looking at a comparison of the number of router nodes placed, Figure
5.10, we can see that the “Cluster Algorithm” performs the best when con-
sidering the number of router nodes deployed. By looking at this figure
we can also see that the number of router nodes seems to asymptotically
converge to some value as the number of sensor nodes increase.

Since the number of router nodes in the solutions from the cluster algo-
rithm is lower than the theoretical value obtained earlier, we can draw the
conclusion that 500 sensor nodes is not enough to fill the area of deployment.

When considering the time needed to reach a solution we can see that the
“Cluster Algorithm” once again is the best choice. A comparison between
the different algorithms is shown in Figure 5.11.

In Figure 5.12 the number of router nodes per sensor node is illustrated. We
can see that the optimization makes all three algorithms behave similarly
with fewer router nodes per sensor node as the number of sensor nodes
increase.

49

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Trivial
Trivial Reuse

Cluster

Figure 5.10: Number of router nodes placed by the different algorithms when
using optimization.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Trivial
Trivial Reuse

Cluster

Figure 5.11: Computation time needed by the different algorithms when
using optimization.

50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500

R
ou

te
r N

od
es

 p
er

 S
en

so
r N

od
e

Sensor Nodes

Algorithm
Trivial

Trivial Reuse
Cluster

Figure 5.12: Computation time needed by the algorithm with different levels
of redundancy and different number of sensor nodes with optimization.

5.3 Redundant Solutions

In this section the redundant algorithm presented in Section 3.5 is evaluated.

Figure 5.13 shows the number of routers placed in a 2-redundant solution
with the non-trivial algorithm compared to the trivial algorithm. It also
show the time needed by the non-trivial algorithm and the trivial algorithm.
Here we can see that the non-trivial algorithm performs a little bit better
than the trivial algorithm but at the cost of longer computation time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-trivial
Trivial

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-trivial
Trivial

Number of router nodes placed Time used for computation

Figure 5.13: Cluster Algorithm with 2-Redundancy

In Figure 5.14 the results from 3-redundant solutions is shown. The figure
shows that the number of router nodes placed is slightly lower in the non-
trivial solution than the trivial one and that the time needed for computation

51

is much longer in the non-trivial case than in the trivial case.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-trivial
Trivial

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-trivial
Trivial

Number of router nodes placed Time used for computation

Figure 5.14: Cluster Algorithm with 3-Redundancy

Finally 4-redundant solutions are considered, the number of router nodes
and computation time needed is shown in Figure 5.15. The 4-redundant
solutions follow the same pattern as the 2- and 3-redundant solutions, with
the number of router nodes placed being only slightly lower in the non-trivial
case but at the cost of longer computation time.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-trivial
Trivial

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-trivial
Trivial

Number of router nodes placed Time used for computation

Figure 5.15: Cluster Algorithm with 4-Redundancy

In Figure 5.16 the number of router nodes placed is plotted against the
level of redundancy. In this figure the relationship between redundancy and
router nodes placed is visible. We can see that the number of router nodes
placed seems to be slightly less than linearly proportional to the level of
redundancy in the solution.

Figure 5.17 shows how the time needed for computation increases as the level
of redundancy increase. It is clearly visible that the time needed increase
steeply as the level of redundancy increase. This is what was predicted in
the algorithm analysis in Section 3.5.5.

The number of router nodes per sensor node for different levels of redun-

52

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4

R
ou

te
r N

od
es

Redundancy

Sensor Nodes
100
200
300
400
500

Figure 5.16: Number of router nodes placed by the algorithm with different
levels of redundancy and different number of sensor nodes.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4

Ti
m

e/
s

Redundancy

Sensor Nodes
100
200
300
400
500

Figure 5.17: Computation time needed by the algorithm with different levels
of redundancy and different number of sensor nodes.

53

dancy is shown in Figure 5.18. It is clearly visible that as the number of
sensor nodes increase the number of router nodes per sensor node decrease,
the area of deployment becomes saturated with router nodes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500

R
ou

te
r N

od
es

 p
er

 S
en

so
r N

od
e

Sensor Nodes

Redundacy
1
2
3
4

Figure 5.18: Computation time needed by the algorithm with different levels
of redundancy and different number of sensor nodes with optimization.

5.4 Redundant Optimized Solutions

In this section the redundant algorithm presented in Section 3.5 optimized
by the algorithm discussed in Section 3.6.2 is evaluated.

Figure 5.19, 5.20 and 5.21 show the number of router nodes placed and the
computation time needed for 2, 3, and 4-redundant solutions respectively.

The figures show that the optimization is able to remove some router nodes
but at the cost of much longer computation time.

Figure 5.22 shows the number of router nodes plotted against the level of
redundancy. We can see that the number of router nodes is close to linearly
proportional to the level of redundancy.

The time needed is shown in Figure 5.23. The figure shows that the time
needed increase steeply as the level of redundancy increase.

In Figure 5.24 the number of router nodes per sensor node is plotted. The
plots are very similar to the non-optimized case with only slightly lower
values.

54

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-optimized
Optimized

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-optimized
Optimized

Number of router nodes placed Time used for computation

Figure 5.19: Cluster Algorithm with 2-Redundancy, Optimized

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-optimized
Optimized

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-optimized
Optimized

Number of router nodes placed Time used for computation

Figure 5.20: Cluster Algorithm with 3-Redundancy, Optimized

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500

R
ou

te
r N

od
es

Sensor Nodes

Non-optimized
Optimized

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 100 200 300 400 500

Ti
m

e/
s

Sensor Nodes

Non-optimized
Optimized

Number of router nodes placed Time used for computation

Figure 5.21: Cluster Algorithm with 4-Redundancy, Optimized

55

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4

R
ou

te
r N

od
es

Redundancy

Sensor Nodes
100
200
300
400
500

Figure 5.22: Number of router nodes placed by the algorithm with different
levels of redundancy and different number of sensor nodes with optimization.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4

Ti
m

e/
s

Redundancy

Sensor Nodes
100
200
300
400
500

Figure 5.23: Computation time needed by the algorithm with different levels
of redundancy and different number of sensor nodes with optimization.

56

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500

R
ou

te
r N

od
es

 p
er

 S
en

so
r N

od
e

Sensor Nodes

Redundacy
1
2
3
4

Figure 5.24: Computation time needed by the algorithm with different levels
of redundancy and different number of sensor nodes with optimization.

57

58

6. Conclusions

6.1 Conclusions

In this thesis different approaches for placement of router nodes in wireless
sensor networks have been designed, analyzed, implemented and evaluated.

6.1.1 Design

Three non-redundant algorithms has been designed for this project:

Trivial Places router nodes on straight lines from every sensor node to the
gateway.

Trivial Reuse Places router nodes on straight lines from every sensor node
to the closest router node.

Cluster Finds clusters of sensor nodes and connects the cluster to the clos-
est router node.

The redundant solutions start with a non-redundant solution and uses an
approach similar to the “Trivial Reuse” algorithm in order to create new
routes.

To improve the solutions two optimizers have been designed, one that op-
timizes non-redundant solutions and one that can optimize redundant solu-
tions.

6.1.2 Implementation

The algorithms designed for this project has been implemented in a Java
application. Here the algorithms have been tested and the results logged for
evaluation purposes.

59

6.1.3 Evaluation

Non-Redundant Solutions

In the evaluation we could see that we can create non-redundant solutions
with a number of router nodes close to the theoretical lower bound of about
226 router nodes by using the algorithm that searches for clusters of sensor
nodes and then connects the clusters.

A comparison of the evaluation results (measured time and placed router
nodes) for the different non-redundant non-optimized algorithms is shown
in Table 6.1.

We can see that the “Cluster” algorithm places the least number of router
nodes and that it is quite fast. We can also see that the number of router
nodes per sensor node is constant as the number of sensor nodes increase
for the “Trivial” algorithm and that it decreases when using the other algo-
rithms.

200 Sensor Nodes 500 Sensor Nodes
Algorithm Router Nodes Time/s Router Nodes Time/s
Trivial 1091 0.069 2713 0.12
Trivial Reuse 248 4.3 458 73
Cluster 199 0.30 237 0.61

Table 6.1: Comparison of non-redundant non-optimized algorithms

In Table 6.2 the non-redundant optimized case is shown. We can see that
it is possible to remove quite a few router nodes and that the number of
router nodes needed vary less between the different algorithms. In this case
the “Cluster” algorithm is faster than all others. In the optimized case all
algorithms result in lower number of router nodes per sensor node as the
number of sensors increase.

200 Sensor Nodes 500 Sensor Nodes
Algorithm Router Nodes Time/s Router Nodes Time/s
Trivial 215 1.8 275 11
Trivial Reuse 145 4.7 223 79
Cluster 140 0.69 187 1.9

Table 6.2: Comparison of non-redundant optimized algorithms

60

Redundant Solutions

For the redundant case router nodes can be saved by letting routes go in
circles instead of simply placing two or more router nodes at the same po-
sition.

Table 6.3 shows how the number of router nodes increase as the level of re-
dundancy increase when using the redundancy algorithm presented in this
thesis. In the non-optimized case the number of router nodes saved com-
pared to simply multiply router nodes is quite low.

200 Sensor Nodes 500 Sensor Nodes
Redundancy Router Nodes Time/s Router Nodes Time/s

1 140 0.69 187 1.9
2 279 2.1 387 6.9
3 405 6.3 562 24
4 529 14 742 53

Table 6.3: Comparison of redundant non-optimized solutions

The optimized redundant case is shown in Table 6.4. After optimization the
number of router nodes is quite lower than in the trivial case, but at the
cost of increased computation time.

200 Sensor Nodes 500 Sensor Nodes
Redundancy Router Nodes Time/s Router Nodes Time/s

1 140 0.69 187 1.9
2 217 14.9 323 59
3 330 69 484 170
4 436 160 665 410

Table 6.4: Comparison of redundant optimized solutions

6.2 Future Work

In this thesis the 2-dimensional solutions have been considered and the 3-
dimensional case have been left out for simplicity. The algorithms are ex-
tendable into 3-dimensions but with slightly different characteristics. There-
fore the 3-dimensional case needs to be analyzed and evaluated.

Power limitations, an important aspect in wireless sensor networks, has not
at all been analyzed in this project. In order to know our network we need
an assessment of the lifetime or the network and how it behaves as router
nodes fail due to power shortage.

61

Another property not analyzed in this project is the latency, or network
propagation delay. This should be analyzed and possibly used to restrict
some parameters such as number of hops in the algorithms.

For the placement of router nodes, we need to add a way to restrict place-
ments. In a real world problem we can not place router nodes anywhere,
but we are limited to certain positions.

Another issue is the radio propagation which is not uniform in the real world
case. The placement algorithms should take this into consideration when
placing router nodes.

One possible way to further reduce the number router nodes in a solution
is to move router nodes in a completed solution. This should be analyzed
further and possibly implemented and evaluated.

62

References

[1] Bluetooth Special Interest Group. http://www.bluetooth.com/.

[2] Ed Callaway, Paul Gorday, Lance Hester, Jose A. Gutierrez, and
Marco Naeve. Home networking with ieee 802.15.4: A developing
standard for low-rate wireless personal area networks. IEEE Com-
munications Magazine, pages 70–77, August 2002.

[3] Benjamin A. Chambers. The grid roofnet: a rooftop ad hoc wireless
network. Master’s thesis, MIT, 2002.

[4] Samir R. Das, Charles E. Perkins, and Elizabeth M. Royer. Perfor-
mance comparision of two on-demand routing protocols for mobile
ad hoc networks. IEEE Personal Communications, February 2001.

[5] Michael T. Goodrich and Roberto Tamassia. Algorithm Design:
Foundations, Analysis, and Internet Examples. John Wiley & Sons,
Inc, 2002.

[6] José A. Gutierrez, Marco Naeve, Ed Callaway, Monique Bourgeois,
Vinay Milter, and Bob Heile. Ieee 802.15.4: A developing standard
for low-power low-cost wireless personal area networks. IEEE Net-
work, pages 12–19, September/October 2001.

[7] Jaap C. Haartsen and Sven Mattisson. Bluetooth—a new low-power
radio interface providing short-range connectivity. In Proceedings of
the IEEE, IEEE Special Issue on Low-Power RF Systems, volume 88,
pages 1651–1661, October 2000.

[8] Pai-Hsiang Hsiao and H. T. Kung. Layout design for multiple collo-
cated wireless mesh networks. In Proceedings of IEEE VTC, Septem-
ber 2004.

[9] Chi-Fu Huang and Yu-Chee Tseng. The coverage problem in a wire-
less sensor network. In Proceedings of the 2nd ACM international
conference on Wireless sensor networks and applications, pages 115–
121, 2003.

[10] IEEE Computer Society. IEEE Standards 802.15.4 Part 15.4: Wire-
less Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-
WPANs). IEEE, October 2003. ISBN 0-7381-3686-7.

[11] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source
Routing Protocol for Multihop Wireless Ad Hoc Networks, chapter 5,
pages 139–172. Addison-Wesley, 2001.

63

[12] George Karypis, Euil-Hong Han, and Vipin Kumar. Chameleon:
Hierarchical clustering using dynamic modeling. IEEE Computer,
pages 68–75, August 1999.

[13] Mauricio Marengoni, Bruce Draper, Allen Hanson, and Ramesh
Sitaraman. A system to place observers to cover a polyhedral terrain
in polybominal time, 1999.

[14] Muriel Médard, Steven G. Finn, Richard A. Barry, and Robert G.
Gallager. Redundant trees for preplanned recovery in arbitary vertex-
redundant or edge-redundant graphs. IEE/ACM Transactions on
Networking, 7(5):641–652, October 1999.

[15] Seapahn Meguerdichian, Farinaz Koushanfar, Miodrag Potkonjak,
and Mani B. Srivastava. Coverage problems in wireless ad-hoc sensor
networks. In INFOCOM, pages 1380–1387, 2001.

[16] C. Perkins. Ad hoc on demand distance vector (aodv) routing, 1997.

[17] Domenico Porcino and Walter Hirt. Ultra-wideband radio technol-
ogy: potential and challenges ahead. IEEE Communications Maga-
zine, pages 66–74, July 2003.

[18] Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu,
Robert Pless, and Christopher Gill. Integrated coverage and con-
nectivity configuration in wireless sensor networks. In Proceedings
of the first international conference on Embedded networked sensor
systems, pages 28–39. ACM Press, 2003.

[19] ZigBeeTMAlliance. http://www.zigbee.org/.

64

Appendix A

Table of Acronyms and
Abbreviations

AODR Ad Hoc On-Demand Distance Vector Routing
DSR Dynamic Source Routing
FFD Full-Function Device
IEEE Institute of Electrical and Electronics Engineers
MAC Medium Access Control
MANET Mobile Ad Hoc Networks
RFD Reduced Function Device
UWB Ultra Wide Band
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network

65

	Introduction
	Goals and Expected Results
	Problem Solving Approach
	Structure of the Thesis

	Background
	Business Background
	Wireless Sensor Networks
	IEEE 802.15.1 (Bluetooth)
	IEEE 802.15.3 (UWB)
	IEEE 802.15.4 (ZigBee)

	Routing in Wireless Mesh Networks
	Properties of Wireless Sensor Networks
	Coverage
	Connectivity
	Lifetime
	Reliability
	Application Specific Issues

	Related Work

	Algorithm Design
	Placement of Routers
	Placement Algorithms
	Verification

	Algorithm Overview
	Non-redundant solution
	Redundant solution

	Non-redundant Router Placement Strategies
	Trivial Router Placement
	Trivial Placement Reusing Already Deployed Routes
	Cluster Router Placement

	Redundant Routes
	Background
	Trivial Redundancy

	Non-trivial Redundancy
	Counting Number of Mutually Exclusive Routes
	Transformation of the Connection Graph
	Computing Maximum Flow in the Connection Graph
	Placing Routers in the Redundant Solution
	Algorithm Analysis

	Optimization
	Intermediate Optimization
	Final Optimization

	Verification
	Coverage Verification
	Connectivity Verification
	Redundancy Verification

	Implementation
	View
	Model
	The World Class
	The Node Classes
	The RouteModifier Class
	Algorithms Extending the RouteModifier Class

	Control

	Evaluation
	Non-redundant Solutions
	Trivial Algorithm
	Trivial Algorithm with Reuse
	Cluster Algorithm
	Summary

	Non-redundant Optimized Solutions
	Trivial Algorithm
	Trivial Algorithm with Reuse
	Cluster Algorithm
	Summary

	Redundant Solutions
	Redundant Optimized Solutions

	Conclusions
	Conclusions
	Design
	Implementation
	Evaluation

	Future Work

	References
	Appendix Table of Acronyms and Abbreviations

