o

B,
EKTHY

VETENSKAP
39 OCH KONST 9%

B’

KTH Microelectronics
and Information Technology

Alternatives to MIKEY/SRTP to secure VolP

Master of Science Thesis

JOACHIM ORRBLAD

Stockholm/Kista March 2005

Telecommunication System Laboratory
KTH Microelectronics and Information Technology

Preface

This work was conducted as a master thesis project at the Telecommunication Systems
Laboratory (TSLab) of the department of Microelectronics and Information Technology
(IMIT), Royal Institute of Technology (KTH), Stockholm/Kista between September 2004
and March 2005.

Examiner: Professor Bjorn Pehrson <bjorn @imit.kth.se>

Supervisors: Jon-Olov Vatn <vatn@imit.kth.se>
Erik Eliasson <eliasson @imit.kth.se>
Johan Bilien <bilien @imit.kth.se>

I would like to express my sincere gratitude to these wonderful people who have guided
me through this thesis project with their expertise, feedback and most of all there patience
with me and my ideas.

Abstract

Security for Voice over IP (VoIP) can be achieved in different ways and can be divided
into two main aspects. Securing the call signaling i.e. the IP traffic used for establishing
the call and securing the call itself, here referred to as the media session. This thesis focus
on the security for the media session although the two aspects are strongly related.

KTH has released an open source Session Initiation Protocol (SIP) user agent to
demonstrate VoIP functionality. This agent currently uses Secure Real-Time Protocol
(SRTP) to secure the media session and Multimedia Internet KEYing (MIKEY) for
exchanging keying materials for SRTP. This thesis will examine IP security (IPSEC) as
an alternative to MIKEY/SRTP and ways to integrate the key exchange for IPSEC in the
SIP call signaling.

My conclusion in this thesis is that SRTP should be used to secure VolP, but SIP initiated
IPSEC makes it possible to establish IPSEC tunnels between persons who do not know
each others IP addresses before the call. General IPSEC tunnels can be used to protect all
traffic between these two persons, not only the VoIP call.

The chosen and implemented solution, for the key exchange, is based on SIP, MIME and
MIKEY. Linux native IPSEC support is used for encryption and authentication.

Table of Contents

L 10 ¢4 0T 5 (o) s U PPPPRN 1
2 Technologies INVOIVEA.........eiiiiiiiiiieiie ettt e e eaae e 2
2.1 SIP (Session Initiation ProtoCol)cccovvveeiieiiiiiiiirieeeee e 2

2,11 GENETAL..eiiiiiiiiee et 2
2.1.2 SIP QrChItECTUIEeeuiiiiiiiieeiieeiieee ettt ettt s e e b e s e 3
2. 1.3 MaKing @ Call ..evvieeiiiieiieeeiie et e s e e e 4
2.2 SDP (Session Description Protocol)cceeeiiiiiiiiiiniiiiei i 6
2.2.1 GENETAL ..ttt ettt sttt e 6
2.2.2 SDP USEA DY SIP....ooiiiiiiieieee e 6
2.3 IPSEC (Internet ProtoCol SECUTILY)......cccviieriieeriieeiiieeiieeeiree e e eireeeesveeeeeeanaee s 8
2.3.1 GENETAL ..ttt ettt e e 8
2.3.2 SA (Security ASSOCIALIONS)....ccuveeerureeerieeerrreererreeireessreessseeessseeessseeesssesessseeennes 9
2.3.3 IPSEC POLICY ..ttt ettt ettt et es 10
2.3.4 IKE (Internet Key EXChange)........cccceeeiiiiiiiiiiniiiiiiieccecceeeeee e 10
2.3.5 TPSEC MOME......ciiiiiiiiiiieiteiteete ettt ettt st e et e s s 12
2.3.6 ESP (Encapsulated Security Payload)...........cccoouiiiniiinniiiniiiiiecieee 12
2.3.7 AH (Authentication Header)...........ccoovvvueviiiiiiiiiiiii 13
2.4 MIKEY (Multimedia Internet KEYINg)........coocveiniiiiiniiiiniiiiiieiieeeee e 14
2.5 SRTP (Secure Real-Time Transport Protocol)............cooieiriiiiniiiiniiiiniieiecee, 15
2.6 MIME (Multipurpose Internet Mail EXtensions).........ccoceeevveenieeenieeinieennnee e 15
2.7 S/IMIME (Secure MIME)...........oviiiiiiiiieee et 16

3 EXIStING SOIULIONS. ..ccutiieiiiiieeiieeeite ettt ettt ettt e st e st e e sabe e e st e s et e eabeesenenees 18
3.1 Secure VOIP mMedia SESSION........cceeiiiieieiiiieeeeiiieeeeeiiteeeesireeeeeeeeeseeeerneeeeeeeessnnnnnnns 18
3.2 SeCUTe SIZNAIINE. ...ccoutiiiiiieiiiieeiie ettt et e e et e e e ettt e e e eibaeeeeeaaneas 18

4 Possible approaches to @ SOIULION.couieiuiiriiiiierieeeeeee e 20
A1 SIP —TKE ..ottt ettt et 22

4.1.1 Running IKE after SIP call establishment.............ccccooiiininiiininiiiiieee 22
4.1.2 Carrying IKE messages i SIP.........ccoooiiiiiiiiiiiiiieeeeeeeeee e 23
4.1.3 IKE independent from STP...........ccccooiiiiiiiiiiiiiiniiii e 23
4.1.4 Running IKE as a call establishment pre-condition.............ccceeeeeeniecnnieennnne. 24
4.2 Key exchange in SDP attribute of SIP signaling...........cccccceeviiiiniiiiiniiieiniiieenieeene 24
A.2.1 SDP Kt 24
4.2.2 SDP A=CTYPLO cvviieeiiieeeiteeeite ettt ettt ettt ate e et e e sata e e sibeeenaseeensneesnnneens 25
4.2.3 SDP a=K@Y-MEIML.....ccccuiiiiiiiiiiiieiiie et eree ettt e e et ee e e e e e eeaaeeeeasseaeeas 25
4.2.4 SDP Q="IEW” ...ttt 26
4.3 SIP-MIME-MIKEY ...ttt et 27

5 Implemented solution SIP-MIME-MIKEYc.ccooiiiiiiiiiieeieeieee e 28

5.1 IPSEC profile for MIKEYcccccoiiiiiiiiiniiiiieieeecseceeeeeeeeese e 29

S.TT CS ID MAP. ittt ettt 30

5.1.2 Security policy payload for IPSEC4.........ccoiiiiiiiiiieieeeeeeeeeeeen 30

5.2 Content-Type application/MIKEY........cccveeriieeriieeiiieeiieeieeeieeeieeeeieeesiee e e 32
5.3 STP LOZIC. c ittt ettt et st e 33
SATPSEC ...ttt ettt ettt et et e n 33
(Y (ST T U1 (<) 10 <) 11 USSR 34
7 CONCIUSIONS. ...eeeeuiiiiieeeiiiteeeeitee e eeitteeeeseteeeeesaaaeeeesstaeeeeasssaeeeaasssaeesennssaeseanssaeesennnsssseeeens 37
T ESP VS SRTP...ii ettt et sttt et e s 37
T2 MIKEY ...ttt ettt et e b et e et e sat e e bt e e sbe e st e e ennees 39
7.3 Implementation Of MINISIP....ccovteiriieiiiieeiie ettt e et e e e bree e e e aeeees 39
T4 STPc ettt h ettt et h e et e bt e et e e e ehbeeenbeeenees 39
S FULUIE WOTK. .. ettt ettt st e e e s anee s 41
B NS () (<) 1oL SRR 44
Appendix 1: Acronyms and abbreVviations............eeecueeeruieeriiieiniieenieeeieeeiieeesieeeesieeeeens 47
Appendix 2: Implementation deSCIIPION.eiruiiiriieiiiie et eeee ettt 48
A2.1: MIKeyPayloadSP..........cooviiiiiiiiiiiee ettt e 48
A2.2: SIPMIMECONEENL......cooiiiiiiiieiiieeiee ettt ettt e st e e eabaaeesenaeeees 48
A2.3: MSIPIPSECAPL.....eeiie et et e e 49
Appendix 3: Class dIaZIaM........eeiriieiiiieeiieeeitee et ee et et e st e e sieeesbeeesbeessatbeeesenbaeeesans 50
Appendix 4: SEqUENCE AIAZIAMI........cc.eeevuiieiiieeeiieeeieeeitee et e et eeeeearaeeeesaaaeeeesasbeeeeennns 51
Appendix 5: Measurement raw data...........oocveereuieeriiieeniieenieee e e eeiiieeeesieeeeessvreeeesnens 54
AS. T2 NO SECUITLY ..eieeuiiieeiiieeitiee ettt e eiteeetee et ee ettt eestteestaeestaeeessnsaeeeesssseeesennssneesenssnees 54
AS5.2: SRTP MIKEY with pre-shared SECIet.........ceevuieeriierriieeiieeniieeeieeeeeiree e 55
AS5.3: ESP MIKEY with pre-shared SECTet.........ccuveeeveeeeiieeriiieeeiieeriie e 56

Appendix 6: Original thesis deSCIIPION.ccouiiiiiiriiiiiiniee ettt 57

1 Introduction

The goal of this thesis is to find an alternative to MIKEY/SRTP for a Secure VoIP media
session. There are basically three parts of this goal, where part one concerns the
alternatives for MIKEY/SRTP, and the second part is to implement the chosen solution
into minisip. Part three is to evaluate that implementation and compare it with alternate
ways of securing the media session, e.g MIKEY/SRTP.

The focus of this thesis is on key exchange for IPSEC in the context of VolIP, i.e.
alternatives to manual keying and Internet Key Exchange (IKE) [RFC 2401] being able to
be integrated with SIP. IKE is used to negotiate IPSEC security parameters between two
hosts. 1P telephony is usually established between two persons, thus IKE cannot be used
right away, since the caller does not generally know the IP address of the callee's host.
For encryption and authentication of the media stream, existing IPSEC solutions will be
used.

The goal of the thesis can be explained in more detail as follows:

® Establish an IPSEC connection to secure the audio streams between two hosts running

minisip.

The IPSEC connection should be initiated by the minisip user agent (UA).

Keep the number of round trips needed for the keying mechanism as low as possible.

® The keying mechanism should, if possible, use SIP signaling as transport to reduce
round trips.

® Find a keying mechanism that fits the requirements mentioned above.

® The IPSEC connection should be able to protect general traffic, not only the traffic
generated by the media.

The choice of IPSEC as the alternative to evaluate was not primarily done by evaluating
different alternatives, instead it was chosen mainly on its qualification of being a well
known concept amongst many and the fact that it applies security on the network layer in
contrast to SRTP that applies the security on the application layer. IPSEC can also be
used to protect general IP traffic not only the VolIP call. This makes SIP initiated IPSEC a
way of establishing general VPN tunnels between endpoints defined by their users.

The outline of this thesis report is as follows. In section 2 the involved technologies are
described. In section 3 existing solutions relating to this thesis are presented. Section 4
and 5 contain possible solutions and the chosen solution. Section 6 contains the
measurements done in this thesis and section 7 the thesis conclusions. Future work and
references in section 8 and 9.

2 Technologies involved

Minisip uses open protocol standards to set up and maintain VoIP sessions. The most
important protocols and technologies are in this chapter given a short presentation.

2.1 SIP (Session Initiation Protocol)

To establish a VoIP session between two persons/hosts signaling is needed to find each
party of the call. SIP [RFC 3261] is such a signaling protocol.

2.1.1 General

When trying to make a VolIP call the caller needs to find the callee. In the world of the
circuit switched telephony each subscriber has an unique telephone number identifying
the telephone of the subscriber. The relationship between the subscriber e.g. John Doe
and his telephone number is more or less static, and usually found in the phone book.
When a call is made a connection is established between the well known locations of the
caller and the callee.

IP telephony uses IP addresses to find the way from the caller to the callee. The
connection between John Doe and his IP address is loose and may change over time. For
instance the IP telephony client might have got its IP address dynamically from DHCP
server and may differ each time the client connects. If the caller do not know the 1P
address of the callee, SIP is a way to find out and establish the connection. If the caller
already knows the IP address of the callee the session parameters could be negotiated
directly by other means than SIP, but SIP can of course still be used as a convenient and
consistent way of establishing the connection.

The identity of a caller and a callee is a kind of URI (Universal Resource Identifier) [RFC
3986] and have a syntax similar to the one of an e-mail address e.g.
SIP:john@doedomain.org, except for the prefix SIP:, and is called the SIP identity or SIP
URI [RFC 3261].

The SIP URI is used by the caller to find the callee. The IP address corresponding to the
SIP URI is found in the proxy server that the URI is associated with. That proxy is found
in a way similar to the finding of an e-mail server corresponding to an e-mail address
through use of the DNS SRV records [RFC 3263] instead of MX records. SIP is not only
used for locating the IP address of a SIP URI but also for negotiating session parameters
of the media streams e.g. codecs so that the session can be established.

One of the great benefits of SIP is that both finding the callee and negotiating of session
parameters can be done within the same protocol. VoIP supports a number of media types
and SIP uses SDP (Session Description Protocol) [RFC 2327] to communicate supported
ones.

2.1.2 SIP architecture

There and five entities in SIP, registrar, location, proxy, UA (User Agent) and redirect
server. The UA (User Agent) is the phone and the registrar receives registrations and
requests updates of the location server, which keep track of the UA's. The UAC (User
Agent Client) and the UAS (User Agent Server) are the UA that makes the call (caller)
and the UA that receives the call (callee). Each registrar belongs to a domain in a similar
way as a mail server can belong to a domain. The proxy routes SIP messages on behalf of
the UA. Redirect servers directs UA's to alternate URI. Usually the registrar, location and
the proxy runs on the same server.

The UA registers with its registrar when it goes on line to tell the registrar that it is
available. This is done with the SIP message REGISTER, see figure below.

Proxyl Proxy?2

Register 200 OK Register 200 OK

UAIL UA2

fig.1

The REGISTER message contains information on how the UA can be reached, thus when
the UA is registered in the registrar the UA can be reach by other UA's.

An example of a REGISTER message is shown below.

REGISTER sip:registrar.doedomain.org SIP/2.0
To: <sip:john@doedomain.org>
From: <sip:john@doedomain.org>; tag=randomunique#

Call-ID: random#@doedomain.org
Cseq: 4711 REGISTER
Contact: <sip:john@johnspc.doedomain.org:5060>;expires=1000

Max-Forwards: 70
Via: SIP/2.0/UDP johnspc.doedomain.org:5060;branch=z29hG4bKrandomunique#

expires: 7200
Content-Length: 0

2.1.3 Making a call

A standard call can be described with the SIP trapezoid when UA1 wants to establish a
call to UA2, where the following SIP messages are involved:

® INVITE: used by the caller to initiate a call to the callee

® Trying: a response from the next-hop server that the INVITE message is received and
processed. Used by many UA but not mandatory.

Ringing: alerting the caller that the callee has received the INVITE
200 OK: the request has succeeded e.g. call answered or hang up
ACK: establish the media session

BYE: hang up call, This signal may be sent via the proxies.

UA1@domainl proxyl.domainl proxy2.domain2 UA2@domain2
INVITE
e INVITE
Trying > INVITE
« Trying g
- -
¢ Ringing
< Ringing
Ringing 200 OK
< D BE—
200 OK
200 OK
ACK
-
Media Session
- -
BYE
Hangup -
200 OK
-«

fig.2

Preferred and supported session parameters from the caller are encapsulated in the
INVITE message in a SDP body, and the parameters chosen by the callee are
encapsulated in the 200 OK message. The message 12 ACK, 13 BYE, 14 200 OK, may
go via the proxy. The DNS lookups that are needed in figure 2 are not shown.

Example of an INVITE message from caller John to callee Alice below

INVITE sip: alice@callee.org SIP/2.0

To: <sip:alice@callee.org>

From: <sip:john @doedomain.org>; tag=randomunique#

Call-ID: unique#@doedomain.org

Cseq: 4711 INVITE

Contact: <sip:john@johnspc.doedomain.org:5060;user=phone;transport=UDP>
Max-Forwards: 70

Via: SIP/2.0/UDP johnspc.doedomain.org:5060;branch=z9hG4bKrandomunique#
Content-Type: application/sdp

Content-Length: 176

(sdp body not shown)

The fields in the SIP body are as follows:

To: logical recipient of a request.
From: logical identity of the initiator of the request.

Call-ID: an unique identifier to group a series of messages. It must be the same for all

requests and responses sent by either UA in a dialog.
Cseq: identification and order of transactions.

Contact: contains the the URI at which the UA would like to receive requests.

Max-Forwards: limits the number of hops a request can transit.

Via: indicates the transport used for the transaction and identifies the location where the

response is to be sent.

Content-Type: indicates the media type of the message-body sent to the recipient.

Content-Length: size of message body.

2.2 SDP (Session Description Protocol)

2.2.1 General

SDP is defined in RFC 2327 [RFC 2327]

To establish multimedia sessions over the Internet one needs to have a way of describing
the attributes of the session. SDP is such a protocol. If you want to establish a multimedia
session you can announce the description of the session, through SDP, which may
include:

® Session name and purpose

® Time the session is active

® The type of media (video, audio, etc)

® The transport protocol (RTP/UDP/IP, H.320, etc)

® The format of the media (H.261 video, MPEG video, etc)
°

Information about where to receive those media (addresses, ports, etc.)

2.2.2 SDP used by SIP

How SDP is used by SIP is defined in RFC3264 [RFC3264]

To establish a VoIP call the caller need to negotiate session parameters with the callee. A
call can consist of several multimedia channels e.g. voice and video etc., where each
channel needs a unique set of parameters that describes the session. This negotiation can
be done with SIP. The caller sends a SDP body that is encapsulated in the SIP INVITE
message, with proposed parameters. The callee responds with a SDP body in the OK
message with the the chosen parameters, so in just one round trip a common pair is
negotiated.

Example of an INVITE with SDP body below

INVITE sip: alice@callee.org SIP/2.0

To: <sip:alice@callee.org>

From: <sip:john @doedomain.org>; tag=randomunique#

Call-ID: unique#@doedomain.org

Cseq: 4711 INVITE

Contact: <sip:john@johnspc.doedomain.org:5060;user=phone;transport=UDP>
Max-Forwards: 70

Via: SIP/2.0/UDP johnspc.doedomain.org:5060;branch=z9hG4bKrandomunique#
Content-Type: application/sdp

Content-Length: 139

v=0

o= 123 123 IN IP4 johnspc.doedomain.org
s=Minisip session

c=IN IP4 johnspc.doedomain.org

t=00

m=audio 32869 RTP/AVP 0

a=rtpmap:0 PCMU/8000/1

The fields in the SDP body are as follows:

v =(protocol version) but also marks the beginning of the session description

o= (owner/creator and session identifier)

s= (session name)

c= (connection information - not required if included in all media)

t= (time the session is active)

m= (media name and transport address) but also marks the beginning of the media
description

a= (media attribute lines)

2.3 IPSEC (Internet Protocol Security)

2.3.1 General

IPSEC [RFC 2401] [netsec] was designed to add security at the network layer i.e. adding
security to all protocols above the network layer. IPSEC may make use of three protocols
where the first two are for data protection:

® ESP [RFC2406], Encapsulating Security Payload - Encrypts and/or authenticates data.
® AH [RFC2402], Authentication Header - Provides a packet authentication service.

® IKE [RFC2409], Internet Key Exchange - Negotiates connection parameters, including keys, for the
other two.

IPSEC as a term can be a bit indistinct since sometimes it includes all three protocols
band sometimes only a subset. E.g., if there is a manual key exchange there is no need for
IKE, and if the authentication that ESP provides is sufficient there is no need for AH.

IPSEC is intended to protect traffic between hosts and is applied at the network layer and
can as such not supply the same kind of end to end security as protocols working at
higher levels. Higher level security protocols can provide application to application
security but IPSEC provides host to host security. It might have some implications on
multiuser systems but in most cases it would not. Application to application is when a
application, in this case minisip, does all encryption and decryption and do not rely on
any other application for that service. In the case of IPSEC the kernel handle all security.
Which traffic to protect with IPSEC is decided with the IPSEC policy. see section 2.3.3.

2.3.2 SA (Security Associations)

Each IPSEC secured connection is defined by a Security Associations (SA) [netsec]
which contain secret keys, algorithms and IP addresses involved in the communication.
The SA is considered unidirectional, so two SA are needed for bidirectional traffic. A SA
contain the following information:

® Source and destination IP address of the resulting IPSEC header. These are the IP
addresses of the IPSEC peers protecting the packets.

® [PSEC protocol (AH or ESP)
® The algorithm and secret key used by the IPSEC protocol.

® Security Parameter Index (SPI). This is a 32 bit number which identifies the security
association.

and may contain:

® [PSEC mode (tunnel or transport, see section 2.3.5)

® Size of the sliding window to protect against replay attacks.
® Lifetime of the security association.

The different SA's are kept in a Security Association Database and is used when sending
and receiving packets to retrieve adequate information to process the packets.

Example of SA

10.10.10.10 192.168.1.1
esp mode=transport spi=11084(0x00002b4c) reqid=0(0x00000000)
E: 3des-cbc e¢a662e¢99 d71£3800 20e33276 €943a763 911dd75e bdf54974
A: hmac-shal 1c48be69 bd92c3a9 d1422c6a 4208b2d9
seq=0x00000000 replay=64 flags=0x00000000 state=mature
created: Feb 25 17:13:51 2005 current: Feb 25 17:14:22 2005
diff: 31(s) hard: 1073741824(s) soft: O(s)
last: Feb 25 17:13:51 2005 hard: 1073741824(s) soft: O(s)
current: 353576(bytes) hard: 1073741824 (bytes) soft: O(bytes)
allocated: 1525 hard: 200000000 soft: 31150981
sadb_seq=1 pid=30397 refcnt=0

The above SA states that traffic from host 10.10.10.10 should be encrypted with 3des-cbc
using the encryption key: ea662¢99 d71f3... and authenticated with hmac-shal using the
authentication key: c48be69 bd92c...

2.3.3 IPSEC policy

IPSEC requires a Security Policy Database containing the IPSEC policies [netsec]
specifying which type of action to take for a specific packet. E.g. drop, protect or send in
clear text. Decisions can be made on different fields in the packet e.g. source address,
destination address, UDP or TCP. The IPSEC Security Policy is actually a filter that
decides which traffic to protect.

Example of policy

10.10.10.10[any] 192.168.1.1[80] tcp
out ipsec
esp/transport//require
created: Feb 25 17:13:51 2005 lastused: Feb 25 17:14:27 2005
lifetime: O(s) validtime: O(s)
spid=1905 seq=0 pid=30398
refcnt=4

The above policy states that traffic from host 10.10.10.10 with any source port to host
192.168.1.1 and destination port 80 and transport protocol tcp must be protected with
IPSEC.

2.3.4 IKE (Internet Key Exchange)

Internet Key Exchange (IKE) [RFC2409] [netsec]

The IKE protocol is used for setting up IPSEC (ESP/AH) connections between two
hosts/gateways. IKE negotiation has two phases. Phase one is used for proving each
other's identity and set up a secure connection (ISAKMP SA or IKE SA) for phase 2.
Phase 2 is used for negotiating IPSEC SA (ESP/AH) so that the secure data connection
can be established. Since a SA is unidirectional they are negotiated in pairs to handle two
way traffic. The IKE SA can be used to negotiate more than one IPSEC SA. If there exist
a IPSEC security policy that states that the traffic should be protected but there is no
matching SA, IKE will try to negotiate a SA according to IKE configuration. If the
negotiation fails and no new SA is created the traffic will be dropt. If the negotiation
succeeds a new SA will be created.

10

Phase 1 can be either of two modes:
1. Main mode

Parameter negotiation
message 1: Alice >-- crypto suites supported --> Bob
message 2: Alice <-- chosen crypto suites --< Bob

Diffie-Hellman exchange
message 3: Alice >-- g’a mod p --> Bob
message 4: Alice <-- g"b mod p --< Bob

Send IDs and authenticate, encrypted
message 5: Alice >-- g™ab mod p {"Alice", proof I'm Alice} --> Bob
message 6: Alice <-- g ab mod p {"Bob", proof I'm Bob} --< Bob

2. Aggressive mode

message 1: Alice >-- g”a mod p, "Alice", crypto proposal --> Bob
message 2: Alice <-- g"b mod p, "crypto choice, proof I'm Bob --< Bob
message 3: Alice >-- proof I'm Alice --> Bob

The main differences between mode 1 and 2 are, except for the number of packets, that
mode 1 can negotiate the Diffie-Hellman (DH) number since the DH exchange is done in
message 3&4 and that in aggressive mode sends Alice and Bob's identities unprotected.

Phase 2 (also known as "Quick mode")

Phase 2 IKE is a 3 message protocol that negotiates parameters for the phase 2 SA
(ESP/AH SA), including cryptographic parameters and the SPI to identify the SA.

message 1: Alice >-- X, Y, K {CP, traffic, SPI A> honee [¢”a mod p]} --> Bob

message 2: Alice <-- X, Y, K {CPA, traffic, SPI,, nonce,, [g"b mod p]} <-- Bob
message 3: Alice >-- X, Y, ack --> Bob

where:
® X, is the cookie pair generated in phase 1

® Y, 23-bit number chosen by the phase 2 initiator to distinguish this phase 2 session
from others within the same phase 1 session.

CP, Crypto Proposal for SA
CPA, Crypto Proposal Accepted

traffic, optional description of the traffic to be sent.

[g"x mod p] optional DH values.

11

The IKE protocol is currently being revised and IKEv2 is being developed and is defined
in the INTERNET-DRAFT [ikev2] which expires, in its current version, in March 2005
and will obsolete RFC 2409 if adopted. The main objective with IKEv2 and the main
difference from IKEv1 is simplification. [PKO1]

2.3.5 IPSEC mode

IPSEC can be used in either of two modes, tunnel mode or transport mode. [netsec] In
transport mode the IPSEC information (AH and/or ESP) is inserted between the IP header
and the rest of the packet while in tunnel mode the original packet is intact and a new 1P
header and IPSEC information is added outside. Why two modes? Transport mode is
used directly between two hosts and tunnel mode when establishing IPSEC tunnels
between e.g. two firewalls when creating a VPN.

Original packet ‘ IP header H rest of packet ‘

Transport mode ‘ IP header H IPSEC H rest of packet (encrypted) ‘

Tunnel mode ‘ new IP header H IPSEC H IP header (encrypted) ‘ rest of packet (encrypted)
fig.3

2.3.6 ESP (Encapsulated Security Payload)

ESP can be used for encryption and integrity protection, ESP always uses encryption but
integrity is optional. [RFC2406] [netsec] ESP is a rather odd header since it really
encapsulates the encrypted data i.e. adding information both in front of the encrypted data
and after. ESP can be used as integrity protection only if the special "null encryption”
algorithm is used. The ESP header looks as follows:

SPI

Sequence number

data

padding padding length next header

authentication data

fig.4

12

® SPI (Security parameter index, identifies SA) [4 octets]

® sequence number (used for protection against replay attacks, this has nothing to do
with TCP sequence number) [4 octets]

® [V (initialization vector is used by some cryptographic algorithms. The length of the
field depends on the algorithm and once the SA is established the field length is fixed)
[variable]

® data (This is the protected data) [variable] This is an encrypted field.

® padding (to make sure that the data is the correct size for the cryptographic algorithm
and ensure that the combination of the fields data, padding, padding length and next
header are a multiple of four octets.) [variable] This is an encrypted field.

® padding length (Number of octets of padding) [1 octet] This is an encrypted field.

® next header/protocol type (same as protocol field in IPv4 or Next header in IPv6) [1
octet] This is an encrypted field.

® authentication data (Cryptographic integrity check. The length is determined by the
authentication function selected for the SA, if zero length ESP is providing encryption
only) [variable]

2.3.7 AH (Authentication Header)

AH [RFC2402] [netsec] provides authentication only, if one wants encryption one must
use ESP. Another difference between the ESP authentication and AH authentication is
that AH also provides some protection of the IP header except for IP header field that can
be modified by routers. For IPv4 AH the mutable fields are: Type of service, flags,
fragment offset, TTL and header checksum.

The AH header looks as follows:
® next header (as ESP) [1 octet]

® payload length (The size of the AH header in 32-bit chunks, not counting the first 8
octets) [1octet]

unused [2 octets]
SPI (as ESP) [4 octets]

sequence number (as ESP) [4 octets]

authentication data (The cryptographic integrity check on the data) [variable]

13

2.4 MIKEY (Multimedia Internet KEYing)

Multimedia Internet KEYing MIKEY [RFC 3830] was designed to meet the requirements
of initiation of secure multimedia sessions. That is:

the parameters for the security protocol should be exchanged in one round trip.
the protocol should be simple and straight forward.

the protocol should be possible to transport in session establishment protocols e.g.
SDP.

the protocol should supply end-to-end security for the keying material.
independence from any specific security functionality of the underlying transport.

low bandwidth consumption and low computational workload.

MIKEY supports three types of key agreements

1. Pre-shared key (PSK) - In this method the pre-shared secret is used to derive
keys both for encryption and integrity of the MIKEY message. In the MIKEY
message the random generated TGK (Traffic-encrypting key Generation Key)
is securely transported. This is the most cost effective key agreement but the
problem of distributing the shared secrets makes this solution hard to scale.

2. Public-key encryption (PKE) - Similar to PSK but the initiator makes a random
key used for encryption and integrity. This key is then encrypted with the
responders public key and sent to the responder. This approach is more
resource consuming but has the ability to scale if a Public Key Infrastructure
(PKI) is available.

3. Diffie-Hellman (DH) - The only method that supplies perfect forward secrecy.
This approach is resource consuming and can only be used to establish single
peer-to-peer keys. It also requires the existence of a PKI for message signing.

14

2.5 SRTP (Secure Real-Time Transport Protocol)

Real-Time Transport Protocol (RTP) [RFC 3550] is designed to carry data over an IP
network, primarily over the UDP transport layer. RTP has a secure profile called Secure
RTP [RFC 3711]. RTP is used for transport of real time data such as e.g. audio and video.
SRTP can provide confidentiality, message authentication, and replay protection to that
traffic. SRTP defines a format, specifies encryption algorithms to use and supplies a key
derivation mechanism. The key derivation mechanism requires a master key eg. from
MIKEY.

SRTP packet; ‘ RTP header H RTP encrypted payload H MKI H MAC ‘

where (optional):
® MAC (Message Authentication Code) applies to RTP header and payload

o MKI (Master Key Identifier) tells the receiver which key to use. Compare with SPI in
IPSEC SA.

SRTP protects the traffic on the application layer, and should as such be independent of
the transport and network layer. These layers are not encrypted. All the protection
mechanisms are implemented in the application which gives independence from the
operating system.

2.6 MIME (Multipurpose Internet Mail Extensions)

Multipurpose Internet Mail Extensions (MIME) defined in [RFC2045] and [RFC2046]
was originally designed to extend the capabilities of mail bodies by introducing a body
structure. This enabled the transfer of other content than plain US-ASCII. MIME is now
not only used to extend mail functionality but more as a general way of describing
message bodies e.g. SIP. MIME defines a number of new headers among others:

Mime-Version: Content-Type: Content-Encoding: Content-ID: Content-Description:

In minisip the most used SIP/MIME headers are Content-Lengh: describing the length of
the message body in bytes and Content-Type: describing how the message body should
be interpreted. e.g:

Content-Type:application/sdp

In the above row the content type is application and the applications subtype is sdp, and
the message body contains the Session Description Protocol. This is how SIP transports
the SDP.

Content-Type: multipart/mixed; boundary=boun=_dry

15

The message body contains different body parts separated with the boundary boun=_dry.
See example in section 5.2

2.7 SIMIME (Secure MIME)

S/MIME, as described in [RFC 3261], can be used to secure the content of the SDP inside
the SIP message. Note that use of S/MIME requires the existence of some PKI solution or
pre-shared secrets. Example of two types of secure MIME bodies for SIP:

® multipart/signed [RFC 2633] [netsec], is used for signing messages. The signature is
held separately from the SDP message so even a recipient that do not support S/MIME
can read the message.

® application/pkes7-mime [RFC 2633] [netsec], is used both for encrypted messages and
signed messages. The message is first signed then encrypted. This way the identity of
the signer is kept a secret. The message is encrypted as an enveloped message i.e.
encrypted with a random session key that is protected by the public key of the
recipient.

The following is an example of an encrypted S/MIME SDP body within a SIP message
from [RFC 3261]:

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bKnashds8

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710

CSeq: 314159 INVITE

Max-Forwards: 70

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/pkcs7-mime; smime-type=enveloped-data;
name=smime.p7m

Content-Disposition: attachment; filename=smime.p7m
handling=required

s she e sk st sk st sfe sfe she sk sk ste st sfe sfe sfe sk sk sk ke sk sfe sfe she sk ske st ste sfe sfe sfe sfeoske skt sk sfe sfe s sk sk siesteosteoteoskoskoskok

* Content-Type: application/sdp

kS

*v=0

* o=alice 53655765 2353687637 IN IP4 pc33.atlanta.com

*S=-

*t=00

* c=IN IP4 pc33.atlanta.com

* m=audio 3456 RTP/AVP 0 1 3 99

* a=rtpmap:0 PCMU/8000

s sk sk st sk sk sfe she sk she sk ste st sfe sfe sk sie sk sk sk sk sfe s she sk sk ste ste sfe st sk sfeske stk sfe sk s sk skoteosteostokeokokokok

*OXK K K K X X X ¥

16

Where the SIP header fields:

® Content-Type: -indicates the media type of the message body sent to the recipient.

® Content-Disposition: -describes how the message body is to be interpreted by the recipient

17

3 Existing solutions

Most of the work that has been done regarding SIP initiated secure media sessions is in
conjunction with IP telephony (VoIP). Solutions where SIP initiates IPSEC for the media
session have not been found. There are two main issues regarding SIP security.

3.1 Secure VolP media session

There are some existing solutions regarding secure VolP sessions but none of them uses
IPSEC(ESP) as the security protocol.

Examples are:

® Cisco (www.cisco.com) has a solution for secure VoIP based on SRTP in
CallManager 4.1.

® Skype (www.skype.com) has some proprietary solution for media security based on
AES.

® Minisip (www.minisip.org) uses SRTP with MIKEY for key agreement.

® [sdescriptions] describes a way of establish security parameters for SRTP with a SDP
attribute a=crypto. This attribute is not a key management protocol, a=crypto just
conveys a set of parameters for SRTP. To my knowledge it do not exist any
implementation of [sdescriptions].

3.2 Secure signaling

Securing the SIP signaling has nothing to do with the media session protection, but there
is an interesting solution regarding the use of IPSEC described in [RFC 3329] and
adopted by 3GPP [TS 33.203]. The main part of this is the definition of three new SIP
header fields:

® security-client
® security-server
® security-verify

These fields are used to negotiate security between the user agent and the first hop proxy.
The client tells the proxy its capabilities with security-client and the proxy tells its
capabilities with security-server. The offers are confirmed with SIP:security-verify.

18

The security mechanisms that can be used are, as defined in RFC 3329,
("digest"/"tls"/"ipsec-ike"/"ipsec-man"/"token") to this 3GPP [TS 33.203] has made an
extension for manually keyed IPSEC (ipsec-3gpp) that make it possible to exchange more
IPSEC specific parameters e.g. SPI and a limited policy.

[RFC 3329] do not define how keying materials are exchanged for manually keyed
IPSEC, it just assumes it is present at both peers.

This solution is of interest since it is a method of establish IPSEC connections as a part of
a SIP setup, but is only used to secure SIP signaling.

19

4 Possible approaches to a solution

Encryption and authentication (ESP/AH) in the IPSEC connection will, in this thesis, use
the existing Linux native IPSEC support as is, which is a port from KAME [KAME]. The
solutions discussed below examine ways of exchanging IPSEC parameters to set up the
connection. There are two scenarios:

1) Make it possible to protect only the traffic described in the SDP.

2) Make it possible to protect general traffic. This is the preferred scenario since it
includes the first and does not limit the possibilities with IPSEC.

To this issue there is a number of restrictions that need to be regarded in this discussion.
First there are some abstraction barriers that should not be crossed and some interesting
characteristics of the involved technologies. Some of these restrictions are:

1. Where to transport the security parameters for IPSEC? (SIP vs. SDP)

SIP is used for signaling and as SDP transporter of media session parameters.
Information regarding SIP signaling and signaling related information should
be carried in the SIP headers. Information that is related to the session that the
user wants to establish between the involved user agents should be transported
in SDP or some other description protocol transported by SIP.

Since IPSEC is used by the media session and not the SIP signaling, the
conclusion of this is that the IPSEC security parameters should be transported
as a SIP payload and not as a SIP header.

2. Can the establishment of IPSEC SA at both user agents be regarded as the
establishment of a multimedia session?

Yes: The establishment of mutual SA is a preparation so that traffic can be
exchanged even though no traffic might be exchanged, so an IPSEC session
can be said to exist when there exist valid SA at both peers.

No: Quote from the SDP specification [RFC 2327]: "A multimedia session is a
set of multimedia senders and receivers and the data streams flowing from
senders to receivers. A multimedia conference is an example of a multimedia
session."

The conclusion of this is that the IPSEC parameters should not be transported
in the same session description as the description of the media, since IPSEC
may protect more traffic than the set of multimedia senders and receivers
defines. However, if IPSEC is supposed to protect the exact traffic described in
the SDP, the IPSEC parameters may be transported in the SDP.

20

3. Only one session description is permitted in the SDP used by SIP.

The SDP specification [RFC 2327] allows several session descriptions to be
concatenated into a single SDP but the "offer/answer model" [RFC 3264] used
by SIP only allows one session description per SDP. If more than one session
description was allowed in the SDP one could have had the IPSEC parameters
in a separate session description in the same SDP as the media description.

The conclusion of this in combination with point 2 above is that the IPSEC
parameters can not be transported in the same SDP as the media description, if
we want to establish general IPSEC connections.

4. Do we need to have a media line (m=) in the SDP?

If the SDP can be used without a media line the SDP can be used to transport
IPSEC parameters independent from any media. E.g. if we want to establish a
IPSEC connection but not a media session.

No: The absence of the media line implies that the offerer wishes to
communicate, but the streams for the session will be added at a later time.
[RFC 3264]

This might make it possible to use SDP for transport of IPSEC parameters but
without any media description.

5. Although the number of session descriptions in a SDP used by SIP is limited to
one, the number of payloads transported by a single SIP message is not limited
to one [RFC 3261]. By the use of MIME multipart messages [RFC 2046],
multiple payloads can be sent in one SIP message.

This makes it possible to send the IPSEC parameters in a separate payload in
SIP.

6. The possible use of a new secure audio/video profile to indicate that IPSEC
should be used to secure a media stream (e.g., IPSEC-AVP, compare with
Secure profile for RTP [RTP Profile]) is not possible since IPSEC as a protocol
is independent from the media stream, and will generate a layer violation. See
4.2.2.

7. Assuming that SDP can not be used to exchange IPSEC parameters than
another existing protocol must be used or new description protocol must be
defined with the sole purpose of conveying security parameters.

21

4.1 SIP — IKE

IKE is maybe the most straight forward way of establishing IPSEC security parameters
between the calling parties, since IKE [RFC 2409] is an existing protocol deployed and

proven.

4.1.1 Running IKE after SIP call establishment

Caller Proxy Callee

SIP INVITE

SIP INVITE
TRYING
Ringing
Ringing
200 OK
200 OK

ACK

y

IKE negotiation

Y

Secure session

Y

BYE

A A

200 OK

fig.5

For this scenario to work (at least) the following needs to be fulfilled:

1. Before the IKE session starts the IKE session initiator must know both parties

IP addresses. Both addresses are known after the normal SIP setup signaling
INVITE and 200 OK, or one could use SIP OPTIONS in a similar way as in
[RFC 3329] to get hold of the IP addresses. See Appendix 6.

. The caller needs a way to tell the callee that he wants to establish an IPSEC

connection and the callee must tell the caller if he is able and willing, one could
use a SDP attribute for this purpose. This could be done within the normal
setup signaling SIP:INVITE and SIP:200 OK messages. This signaling must be
protected from downgrade attacks, perhaps by the use of S/MIME.

. The SIP UA needs a way to communicate with IKE daemon and IPSEC

enabled OS kernel to initiate key exchange and manipulate IPSEC security
policy, if the IPSEC security policy is not set manually by the user.

A Public Key Infrastructure (PKI) must exist or the caller and callee must have
a pre shared secret or at least a secure way of exchanging a shared secret.

22

5. There must be a way for the caller and callee to make sure that the IPSEC
connection is in place before the media session begins and a way to abort the
call if the IPSEC connection is not present or faulty.

Advantage of using IKE for key exchange

1. Use of already existing and proven mechanism (IKE) with all its functionality
for the key exchange.

2. Low impact on SIP UA implementation since the key exchange protocol does
not need to be implemented by the user agent.

Disadvantage

1. Increased number of round trips since it does not use any of the SIP signaling
packets for the key exchange. IKE adds 6 or 9 packets depending on IKE
mode, see section 2.3.4.

2. The use of SIP:OPTIONS would add even more round trips since the
SIP:INVITE, SIP:200 OK cycle or some other negotiation method are needed
for the media stream.

3. Increased delay in the setup of a call, since IKE does not start the negotiation
until one sends a packet that matches the security policy.

To ensure that the IPSEC connection is established before the media session starts one
can use provisional responses(SIP:1xx) before the 200 OK message. This can also be
used for telling the caller that the callee do not support IPSEC or for exchanging any
other relevant information. Provisional responses have not been further evaluated in this
thesis.

4.1.2 Carrying IKE messages in SIP

SIP signaling uses three packets to establish a session INVITE, 200 OK and ACK. IKE
aggressive mode also uses three packets and one could think of piggybacking IKE on
SIP. This is however not possible since IKE requires the knowledge of the callee's IP
address before the signaling begins, an information that we can not assume that the caller
has before the SIP signaling is complete, unless i.e. SIP OPTIONS has been used to
exchange IP-addresses.

4.1.3 IKE independent from SIP

23

IKE can of course be used independent from SIP, as it is used in most cases today. But
this requires the knowledge of the IP addresses of the calling parties before the call is
made. This case has been studied in [ImpactofKey].

4.1.4 Running IKE as a call establishment pre-condition.

IKE could be a call establishment pre-condition in line with RFC 3312 [RFC 3312]. It is
an interesting idea, however this came up late and has not been studied further.

4.2 Key exchange in SDP attribute of SIP signaling

Another solution would be to use a SDP attribute to distribute necessary IPSEC
parameters. It may be described as follows:

Caller Proxy Callee
INVITE
(IPSEC params) INVITE
- (IPSEC params)l
Trying
Ringing
Ringing
B S
200 OK
200 OK (IPSEC params)
(IPSEC params) B —
<«

ACK

Secure session

-
- -
fig.6

There are currently three SDP attributes used for distributing keying materials: The SDP
"k", SDP "a=crypto" and SDP "a=key-mgmt" attributes. The main benefit of using SIP
signaling to exchange IPSEC parameters is that no extra round trips are needed for the
key exchange.

4.2.1 SDP k

SDP k=<method>:<encryption key>

24

The k attribute is described in [RFC 2327].

This attribute is very limited in its scope since it is only used to convey an encryption key
for RTP, and has no means to convey other cryptographic parameters. This characteristic
makes this attribute not suitable to convey IPSEC parameters since they consists of more
than just a key and the k attribute is only defined as a general means for securing RTP.
The "k" attribute is in clear text and relies on other means for protection, e.g., SMIME.

4.2.2 SDP a=crypto
SDP a=crypto:<tag> <crypto-suite> <key-params> [<session-params>]

The a=crypto attribute is described in [sdescriptions].

This attribute is more general than the k attribute described above. It specifies a way to
signal and negotiate cryptographic parameters for media streams in general. It is possible
to define crypto-attribute parameters to convey IPSEC parameters but this is not a very
good idea because:

1. a=crypto only has a meaning when a secure transport protocol is indicated
(e.g., "RTP/SAVP" or "RTP/SAVPF" as described in [RTP Profile]) in the
SDP media (m=) line. That is if there is a media line indicating a secure profile
for RTP than the a=crypto attribute is used. If there is a media line that
indicates a non secure profile for RTP the a=crypto is not needed and not used
even if present. See also the general requirements in the beginning of this
chapter.

2. If there is no media line (m=) at all this attribute has no meaning. Since there
has to be at media line that indicates a secure profile for RTP if the a=crypto
should have a meaning. If the attribute had a meaning without the media line, it
could have been used to convey IPSEC parameters for general IPSEC
connections.

To make a=crypto work for IPSEC there has to be a change in the scope of the a=crypto
attribute. The attribute has to independent of the media line and always be used, if

present, regardless if the media line indicates a secure profile or not. This because IPSEC
can be used even if the media line indicates a non secure profile for RTP.

4.2.3 SDP a=key-mgmt
SDP a=key-mgmt:<prtcl-id> <keymgmt-data>

The a=key-mgmt attribute is described in [kmgmt]

25

This attribute specifies a way of exchanging messages generated by a key management
protocol. Since it is up to the key management protocol to transport the cryptographic
parameters this attribute can be used to exchange parameters for IPSEC. But as with
a=crypto, described above, the a=key-mgmt is very related to the media transport because
of the same reasons as in 4.2.2.

The attribute key-mgmt combined with the key management protocol MIKEY is used in
the current version of minisip to secure the media session with SRTP.

4.2.4 SDP a="new”

The attribute a=key-mgmt is a good approach to exchange parameters for IPSEC since it
allows the use of a key exchange protocol e.g. MIKEY, which can be adopted to
exchange parameters for IPSEC, but the problem is the connection between the a=key-
mgmt attribute and the media transport. To solve this issue a new attribute could be
introduced, here called "new".

Reasons to the introduction of a new attribute for cryptographic parameter exchange:

1. The reason for introducing a new attribute is independence from the media
transport since IPSEC is not a transport protocol. The existing solutions focus
on securing media streams, to use IPSEC one must "forget" about the
application generating the traffic and only think of traffic as source address,
destination address, UDP/TCP and ports.

2. This new attribute should be able to work independently or in conjunction with
the media and their transport mechanisms.

3. The basic functionality would be like a=key-mgmt with the exception of the
relationship to the media.

4. If just a particular type of traffic (UDP/TCP, ports) and/or specific source and
destination addresses should be protected this is handled by the IPSEC policy.
Specifying proposed policy can for instance be done by placing the attribute on
media or session level in the SDP.

This is the best of the "SDP" alternatives since it would be able to negotiate all
parameters in one round trip and still be independent of the possible media.

The SDP attribute can be described as follows:

SDP a="new” <prtcl-id> <keymgmt-data>

26

In consideration of the constraints in the beginning of section 4 my suggestion is that the
following functionality apply:

1.
2.

a="new" is a session level parameter indicating that IPSEC should be used

if IPSEC should be used to secure more traffic than described in the media
session description a="new" must not be in the same SDP as the media
description. If IPSEC should be used to secure traffic in general the a="new"
must be in a SDP that has no media line (m=).

if the a="new" attribute is in the same SDP as the media session description the
IPSEC policy must be defined to match the traffic described in that media
session description exactly.

a="new" parameters is extended compared to a=key-mgmt so that the syntax
will be a="new" <prtcl-id> [<keymgmt-data>], making the <keymgmt-data>
optional for some <prtcl-id>, so that it can used for protocols that do not
convey <keymgmt-data> in the attribute e.g IKE.

. if no IPSEC SA is to be created a="new" must not be present.

However the SDP is so closely related to transport of media specific information so
introducing a new attribute that do not have any relation to the media is in my current
opinion to put things in the SDP that do not belong there. Unless one want to have a close
relation to the specific media i.e. specifying a policy that matches the media description,
the attribute should be should be put elsewhere than in the SDP.

4.3 SIP-MIME-MIKEY

In this solution all IPSEC parameters are transported in a MIKEY message. The MIKEY
message 1s carried as a MIME payload in SIP. This solution is described in detail in
section 5. This is also the solution that has been implemented into minisip.

27

5 Implemented solution SIP-MIME-MIKEY

In this chapter the chosen solution is described. The implementation description of this
solution is in Appendix 2.

This solution and the implementation is a proof of concept and is as such not to be
regarded as anything else than just a proof of concept.

The chosen solution can be described as follows:

® With the use of a MIKEY message that is transported in a MIME multipart
body part, two IPSEC SA and two IPSEC policy entries are set in each client
host. One SA and policy for the outgoing traffic and one for the incoming in
each end . This enables IPSEC transport mode for all traffic between these two
hosts. All this is done by the initiator with no more interaction than the setting
of "use_ipsec" in the configure file of minisip. It should however be possible to
select the protected traffic based on the information in the SDP, see Future
work chapter 8.

The decision why to go for the chosen solution is summarized in the following
statements:

® Usage of MIKEY

IPSEC parameters should be exchanged in one round trip in a similar way as in
the case of SRTP/MIKEY. The choice of one round trip makes MIKEY a good
solution since this was one of the design goals of MIKEY, and has proven a
good solution for SRTP in minisip. Hence MIKEY will be used and adopted to
carry IPSEC parameters in a similar way as it can carry SRTP parameters. The
IPSEC profile for MIKEY is described in section 5.1.

® Carry MIKEY outside of the SDP

In the SRTP case the MIKEY message is carried within the SDP. This is
however not a good option in the IPSEC case because IPSEC protects the
traffic on the network layer, and what traffic to protect is based on IP, transport
protocol and ports, and has nothing to do with the media session. IPSEC is
independent from the media stream and one should be able to use both IPSEC
protection as well as SRTP since they are independent and add protection to
the traffic at different layers. The SDP is used to describe media sessions. If
one wants to protect just the traffic described in the SDP, that information can
be extracted from the SDP when IPSEC policies are generated. If the the
MIKEY message is placed in the SDP it will be bound to that specific media
session and the traffic it generate, and the flexibility of IPSEC will be lost.

28

® Carry MIKEY in MIME

The SIP RFC [RFC3261] gives an opening to the problem that the IPSEC
MIKEY can not be carried in the SDP by allowing multipart MIME [RFC
2045] [RFC 2046] as SIP payload. The SDP is carried in SIP as a MIME
message with content type application/sdp. This scenario will carry the SDP,
with the media description, as a multipart MIME body part with content-type
application/sdp in a MIME multipart message with content-type
multipart/mixed. Within the multipart message another body part will contain a
content-type application/mikey containing the MIKEY message with necessary
parameters for the IPSEC setup. This way the two body parts application/sdp
and application/mikey will meet the requirement of being independent. This is
described in section 5.2.

For this to work there has to be an addition to current standards. First MIKEY must be
adopted to carry IPSEC parameters (see section 5.1) and the MIME content-type
application/mikey defined (see section 5.2). The used IPSEC implementation is
commented in section 5.4. There should also be some additions to the SIP logic of the
user agent. The SIP logic is the "rule base" SIP uses to know the reactions to specific
events. E.g, how should the SIP UA react when receiving a SIP INVITE with a payload
of Content-type: application/mikey, or if the UA do not understand the request. See
section 5.3.

5.1 IPSEC profile for MIKEY

MIKEY is described in [RFC 3830] for use with SRTP and a Crypto Session(CS) ID map
type, SRTP-ID and Security policy with parameters is defined for SRTP. To use MIKEY
with IPSEC (ESP/AH) a new CS ID map type must be defined, with the corresponding
CS ID map info and a security policy with parameters and security policy protocol type,
as stated in RFC 3830 section 4.2.9 [RFC 3830]

IPSEC is dependent on the IP version. For this implementation I have suggested values
for IP version 4 (IPSEC4). All values and formats for IPSEC4 is to be defined. All values
and formats defined here are for testing purposes in this implementation and proper
standardization and assignment from IANA is required for future use. The format of the
MIKEY CS ID attributes and MIKEY security policy for IPSEC below is written here in
the same way as they are described for SRTP in [RFC3830].

29

The CS ID map contain Crypto Sessions (CS), where each CS describes a SA. SPI,
source address, destination address of the SA are transported here. The rest of the
parameters for the SA are transported in the MIKEY security policy payload. Each CS
requires one MIKEY security policy payload, but it can be the same for all CS.

5.1.1 CS ID map

The CS ID contains information on how to protect IP traffic with a specific source
address and destination address. These CS ID's are kept in the CS ID map (see fig.8) and
the field "CS ID map type"(see fig.7) defines how the "CS ID map info" should be
interpreted.

CS ID map type | Value
SRTP-ID | 0
IPSEC4-ID | 7

fig.7 CS ID map type (SRTP-ID is standardized in [RFC 3830])

CS ID map info IPSEC4-ID

! Policy_no_1 (8bits) ! SPI_1 (32 bits) ! spiSrcaddr_1 (32 bits) ! spiDstaddr_1 (32 bits) !
! Policy_no_2 (8bits) ! SPI_2 (32 bits) ! spiSrcaddr_2 (32 bits) ! spiDstaddr_2 (32 bits) !
|
! Policy_no_#CS (8bits) ! SPI_#CS (32 bits)! spiSrcaddr_#CS (32 bits) ! spiDstaddr_#CS (32 bits) !

fig.8 CS ID map info IPSEC4-ID

5.1.2 Security policy payload for IPSEC4

The MIKEY security policy payload contains security parameters for the security
protocol. Values of the different policy types(see fig.10) are values defined in [RFC
2367]. Parameters defined here is not the complete set available for IPSEC. These are the
parameters that are essential for the implementation in this thesis. The Protocol type field
(see fig.9) value defines how the policy types should be interpreted.

Protocol

type | Value
SRTP | 0
IPSEC4 | 7

fig.9 Protocol type values (SRTP is standardized in [RFC 3830])

30

Policy

SATYPE_ESP =3
TRANSPORT = 1
sequential padding for ESP =0

depends on cipher used
MDSHMAC = 2; SHAITHMAC =3

Type | Meaning I Possible values
0 I SATYPE I
1 I MODE I
2 | FLAGS I
3 I EALG I 3DESCBC =3
4 | EKEYL I
5 I AALG I
6 | AKEYL |

fig.10 Policy type

depends on MAC used

31

5.2 Content-Type application/mikey

Multipurpose Internet Mail Extensions (MIME) is defined in [RFC 2045] [RFC 2046]
and SIP messages carry MIME payloads. As discussed in section 2.6 the SDP with the
media description is carried in a MIME message with Content-Type application/sdp and
the MIKEY message for IPSEC is carried in a Content-Type application/mikey. The
information in the body part application/mikey is a base64 encoded MIKEY message as
described in [RFC 3830].

Example of INVITE message dump generated by minisip with multipart payload.

INVITE sip:orrblad @ssvl.kth.se;user=phone SIP/2.0

From: <sip:joachim@ssvl.kth.se;user=phone>;tag=952824928

To: <sip:orrblad @ssvl .kth.se;user=phone>

Call-ID: 196120334@192.16.125.178

CSeq: 401 INVITE

Contact: <sip:joachim@192.16.125.178:5050;user=phone;transport=UDP>;expires=1000
User-Agent: Minisip

Content-Type: multipart/mixed; boundary=boun=_dry

Via: SIP/2.0/UDP 192.16.125.178:5050;branch=29hG4bK 697135402

Content-Length: 675

--boun=_dry
Content-type: application/mikey

AQAFgD+LoOoCBwAhX1qzAAAAALJ9EMAAAAAAALI9EMAAAAAACEDFxW0OT9+PRwsABWAVAAEDAQEBAgEAAwW
EDBAEYBQEDBgEQARDy6e7T10Z+aPjSNTNIOhFzAAAAxHbDvNnT 1S9tBbcF4e9kx 8lexfuOlCU7Zgf8t4wmQq+1rDq8cYcAz
02YMdmBINSfUIXTyOUxMPEudWwLBT22WW6rBNfmWnOil0OKGEO6pbDEKme84jgSHwV8AjonKUJ+3ZW9b4Mx 1+qZgErl
vUICdF60VelwbziQszV3QfvzqDs3160CmTZtirRuJfY+m8vobF38q4XWaDINnJhEBZi0O0hVMvpVL35aR7YZMRvzanuvrW 1 gxB
oVVglCoS50tKgrdqLG3FwpsA+OGp7kgm2tWQnL3WALOSH8PsNz8=

--boun=_dry
Content-type: application/sdp

v=0

0=- 3344 3344 IN IP4 192.16.125.178
s=Minisip Session

c=IN1P4 192.16.125.178

t=0 0

m=audio 33730 RTP/AVP 0
a=rtpmap:0 PCMU/8000/1

--boun=_dry--

32

5.3 SIP Logic

How to handle a MIME multipart as payload in SIP is not well defined in [RFC3261].
The way to treat a multipart message depends on the subtype (mixed, digest, parallel,
alternative). In this implementation the multipart/mixed is used meaning that the different
body parts should be handled independent. But if one of the body parts is not accepted or
contains errors the call will be rejected. The SIP logic will be discussed more under
section 7 Future work.

5.4 IPSEC

The implementation in this thesis make use of the native Linux IPSEC support available
in kernel versions >2.5.47 and and 2.6.* and has been tested in this thesis on Linux kernel
2.6.7,2.6.8 and 2.6.10. An implementation of PF_KEY [RFC 2367] called libipsec is
used to manage the IPSEC kernel. Libipsec is part of the ipsec-tools [tools] released for
Linux. Ipsec-tools is a port from KAME's [KAME] IPSEC utilities.

33

6 Measurements

This measurement is a follow up on a previously done measurement at KTH, "Call
establishment delay for secure VoIP". The study was done by Johan Bilien, Erik Eliasson
and Jon-Olov Vatn at IMIT/TSLab KTH [callest]. The goal is to measure the
establishment delays of a VoIP call in three cases. The first two (no security and
MIKEY/SRTP) were done in the previously measurement and are redone here as
reference. The third is related to the outcome of my master thesis, the combination of
MIKEY and ESP.

The previous measurement came to the conclusion that the establishment delay for a
secure VoIP call is insignificant for a human user. One could expect that the result would
be similar with MIKEY/ESP, and in most aspects they are, but as shown below the
system calls to set the IPSEC SA in the native Linux IPSEC implementation is very time
consuming. All SIP signaling in this test is using UDP as transport protocol and pre-
shared secret as MIKEY authentication.

The testbed(fig.11) was setup to resemble the testbed used in the previous case. All hosts
were installed with Debian distribution of Linux 2.6.10. Debian GNU/Linux 3.1.

Celeron gw/dns
1,1GHz| | minisip.

Client1.100.minisip Client2.200.minisip
PIIL ser100. [] Celeron Celeron [] ser200. PIII
500MHz 100.minisip 1LIGHz 1,1GHz 200.minisip 500MHz
~990 bogom‘ips ~990 bogomips

Celeron PII

1,1GHz 500MHz
Dns10 Dns20
100.minisip 200.minisip

fig.11 The testbed

The calling delay is the time from when the caller has dialed the callee until the caller
receives SIP Ringing message, below referred to as d2. The answering delay is the time
from when the callee picks up the phone until the callee receives the SIP ACK message,
below referred to as d7.

34

nisse@100.minisip. ser100.100.minisip. ser200.200.minisip. klara@200.minisip.

Call(klara@200.minisip) X1
Init Call
delay 91
x2 INVITE
7 INVITE
L 4’ INVITE
Ringing 4’ Y1
delay 92
Response
answer
Ringing delay 93
Ringing Y2
Ringing
v X3
Calling phase
Answering phase Y3 A klara accepts the call
Init Answer
delay 04
200 OK
200 OK < Y4
X4 ' 200 OK <
Wait for
Set session | Response ACK 97
parameters | caller
26 delay 95 ACK
X5 4’ ACK
' ACK . v
Y5
X6+

fig.12 SIP trapezoid with timestamps and calculated intervals.

To do the measurement eleven timestamps were added in source code of minisip. X1-X6
and Y1-Y5, see fig.12 above. d1-9d7 are then calculated as the time difference between the
corresponding timestamps. Since the d-values are relative values between two timestamps
on the same host the accuracy should be sufficient, and the values of No security and
MIKEY/SRTP in this measurement conforms to [callest]. The raw data for the
measurement is presented in Appendix 5.

In the figure above X1-X6, Y1-Y5 and d1-07 are described, but are also further explained
below:

® 01 - The time from the point when the caller makes the call to the point where the
INVITE message leaves the user agent.

® 02 - The time from the point when the caller makes the call to the point where his/her
phone rings. This is the calling delay.

35

® 03 - The time it takes for the callee's user agent to process the INVITE and produce
Ringing.

® 04 - The time from the point when the callee accepts the call to the point where the
200 OK message leaves the user agent.

® 05 - The time it takes for the caller's user agent to produce ACK after receiving the
200 OK.

® 06 - The time it takes for the caller's user agent to process the 200 OK and set the
session parameters.

® 07 - The time the callee's user agent waits until receiving the ACK. This is the
answering delay.

Calling phase Answering phase

d1[mS] 92[mS] 93[mS] 04[mS] 05[mS] 06[mS] d7[mS]
No security 4.6 23.2 8.0 24 3.0 4.1 12.4
MIKEY/SRTP 7.5 29.0 9.9 3.1 3.1 4.8 13.5
MIKEY/ESP 7.8 323 9.8 691.3 32 704.0 704.4

fig.13 Result of the measurement. Average delays. (8 samples)

Note that 04 and 96 (d7) in MIKEY/ESP includes the setting of SA to the kernel, 2 calls
to the function pfkey_send_add from libipsec in both 04 and d6. Each function call takes
about 330mS. This value will decrease on a faster computer but is still measured in tenth
of milliseconds.

In the current implementation of Minisip d7-d4 needs to be greater than 06 otherwise the
ACK reaches the callee before the caller has set the session parameters. This will result in
the loss packets in the beginning of the call, as with the case with ESP in the figure
below. The values below is however dependent on the IPSEC implementation, and since I
only used Linux native I can not say that this is the case for all IPSEC implementations.

07-04[mS] 06[mS]

No security 10.0 4.1
MIKEY/SRTP 10.4 4.8
MIKEY/ESP 13.1 704.0

fig.14 Time to set parameters

This also implies that the actual answering delay is not d7 for MIKEY/ESP but 04 + 96 +
the time for the 200 OK message to traverse the network, which is > 04 + 96.

36

"7 Conclusions

SIP initiated IPSEC works, but there are some reservations. My addition to the Minisip
user agent implementation makes it possible to establish IPSEC connection between two
hosts under the condition that the two hosts have a shared secret or are able to verify each
others certificates. This is the same as with SRTP and MIKEY.

Section 7.1 compares ESP with SRTP regarding the protection of VolP. MIKEY and
Minisip are covered in section 7.2 and 7.3 and section 7.4 is about the implications on
SIP.

7.1 ESP vs SRTP

Although my recommendation is that SRTP is used to protect VoIP calls, the SIP
initiated IPSEC can of course be used to protect traffic in general. The reason I prefer
SRTP for VoIP is based on the following:

® To use IPSEC one has to communicate with some IPSEC software that usually
is located in the kernel. This arises a number of issues. First of all you normally
has to be superuser to communicate with the kernel, and the communication
takes place between the user space and the kernel space. This issue should be
possible to solve since this is the case for almost anything an application does
(I/0, system calls) however it is more complex than for SRTP. The user agent
also becomes totally dependent on which IPSEC implementation and/or
operating system it is running on. The current implementation has been made
for the native Linux IPSEC support and has only been tested with Linux kernel
versions 2.6.7, 2.6.8 and 2.6.10. SRTP does not have these dependencies.

® As the observant may have noticed already that another problem became
obvious in section 6 Measurements. In the current implementation of Minisip
d7-04 needs to be greater than d6 otherwise the ACK reaches the callee before
the caller has set the session parameters. This will result in the loss of packets
in the beginning of the call, as with the case with ESP in the figure 14. When
the callee answers the call there will be no one in the other end for the first 0.7
seconds. The values in figure 14 is however dependent on the IPSEC
implementation, and since I only used Linux native I can not say that this is the
case for all IPSEC implementations.

I do not know the reason why this function call takes this long. I asked the
IPSec tool development team and got the answer that it is "because of some
system call", but I believe it does not need to be this long. One way of reducing
the impact of this delay would be to put the MIKEY response in a provisional

37

response(PRACK) as mentioned in [callest]. This would increase the ringing
delay, but decrease the more time critical "answering delay".

® In order to make Minisip or any other user agent usable in a wider perspective
the user agent must have the ability to traverse NAT (Network Address
Translation) and firewalls (FW). Adding ESP complicates these two issues
because NATs and firewalls usually make decisions on IP-addresses, transport
protocols and ports and with ESP we hide the transport protocol. To simplify
this issue Linux native IPSEC provides FW/NAT traversal support by the use
of an extra UDP headers between the IP header and the ESP header. This will
however add extra overhead and makes ESP look much like SRTP but with
larger overhead.

RTP: IP | UDP | RTP header | RTP payload |
SRTP: IP | UDP | RTP header | RTP encrypted payload | MKI | MAC |
Lo encrypted ------- >
ESP: IP | UDP | ESP | UDP | RTP header | RTP payload | ESP tail |
S encrypted ------------ >

The RTP header + RTP payload is the same size as RTP header + RTP encrypted payload

This is however only a problem if there exists NAT/FW. The introduction of
IPv6 may remove the NATSs but the FW will probably still be there. The
decreased payload, because of the added UDP header, is probably not an issue
since VoIP packets are relatively small and normally do not use the available
payload space.

® [PSEC protects the traffic host to host i.e. IP-address to IP-address and do not
give application to application security. See section 2.3.1.

IPSEC may still by valuable since it is well recognized and has the ability to protect
general traffic, not just the media streams. This feature makes it possible to establish
VPN connections between two minisip UA so that all traffic exchanged between these
UA's are protected.

38

7.2 MIKEY

MIKEY is designed in a very flexible way making it possible to convey security
parameters for almost any security protocol. The adoption of MIKEY for IPSEC was
rather straight forward. All changes done to MIKEY are described in section 5.1.

7.3 Implementation of minisip

The measurements in section 6 shows that setting session parameters can be time
consuming. Possible timing problems can arise if the user agents are running on slow
computers and the network delay is low, even with SRTP and no security. This can be
avoided if the caller's user agent sends the ACK after setting the session parameters in the
same manner as the callee's user agent sending 200 OK after setting the session
parameters. The cost of doing this is the time that the ACK needs to traverse the network
from the caller to the callee and the benefit is that when the ACK reaches the callee both
parties are ready for the conversation. Another problem also arises, in the current
implementation of minisip. If the ACK is sent directly and not via the proxy's it will be
discarded by the callee since the callee expects IPSEC traffic and the caller has not
established his parameters when he sends the ACK. This will result in a new 200 OK
from the callee since no ACK got through, and the caller will send a new ACK. This
cycle will continue until the ACK reaches the callee.

7.4 SIP

In this thesis I show that it is possible to establish IPSEC with the help of SIP and
MIKEY. To this there are some interesting questions about what happens next in the SIP
call.

® When the call is terminated the IPSEC policy and SA should be removed. The
party that sends the BYE can remove the items when he receives the final 200
OK but the other party can not remove them until after the timeout after the
final 200 OK has been sent, because he does not know if the other party has
received the 200 OK. If the signaling is relayed over the SIP proxy's this is not
an issue, then the policy and SA can be removed without and concern of
timeouts. But of this we can not be sure since the final BYE and 200 OK can
go directly between the caller and the callee and in that case IPSEC must be
configured at both ends until all signaling is done and all timeouts are finished.
Today they are removed after the final timeout (see fig.15 below) both at the
caller and the callee, which mean that the current implementation do not have
this problem.

39

® My current implementation of the MSipIpsecAPI in minisip uses one
MSiplpsecAPI object for each call which can be somewhat of a problem in
some cases. There is no coordination between different calls regarding IPSEC
requests to the kernel which will create unwanted effects when:

® Two calls want to set identical policies to the kernel.

® Two calls to the same destination will result in two different SA and if
they are the same (with the exception of SPI and keys) there will be a
conflict since the kernel will not know which SA to choose for the
outgoing traffic.

It would be better to have one MSiplpsecAPI object for all calls from the same
client, but the problem will arise again when two clients are running on the
same host. This because there is only one kernel.

BYE

>

200 OK

timeout: timeout:
termination wait termination wait

Y

— IPSEC removal _

fig.15

40

8 Future work

® SIP Logic

If this study will have a life after this report there should be more definitions and
adaption of the SIP logic to handle IPSEC/MIKEY messages in a more general way.
This implementation takes a limited number of scenarios into account. Some
additional scenarios might be:

- If the responder does not support multipart MIME.
- The responder supports IPSEC but does not want to use it.

- How should the UA respond to different subtypes of MIME content-type
multipart/*?

- Where and when and which error messages should be sent in case of errors,
maybe just rejecting the call is not good enough.

® Multiple calls using IPSEC

Multiple calls should work as long as they are not to the same destination(same policy
and SA), but if they are how should one proceed to reuse already established SA
and/or policy, and make sure that they are not removed when one of the calls is
terminated.

When one call is terminated and a new call is made to the same destination before the
IPSEC policy and SA are removed, during the termination timeout, we get a scenario
similar to that above. One possible solution would be to move the MSipIpsecAPI from
the session level of SIP to a more global level in minisip so that the one MSipIpsecAPI
object can keep track of all IPSEC parameters for all calls.

What if there are multiple minisip clients on the same host? How should all of them be
able to use IPSEC and avoid conflicts? There is only one SA-database and one IPSEC
security policy database per kernel which should contain unique entries only.

® [PSEC security policy

IPSEC security policy in the current implementation can not be changed, it will always
be: -Protect all traffic between the two IP-addresses mentioned in the SA. How should
the policy be handled? In IKE the IPSEC security is set manually, this can not be done
in this case since no [P-addresses are known before the call setup. It should be possible
to decide the IPSEC security policy based on information from the SDP. For this to
work the information from the SDP must be given to the MSipIpsecAPI object that

41

will construct the policies. Entries in the MIKEY Security Payload could be used as a
way of exchange IPSEC security policies, another is the use of MIKEY General
Extension Payload.

NAT/FW support

Minisip should be able to use the IPSEC NAT support. All functions needed to apply
this functionality exists in the libipsec library and should be called from the
MSiplpsecAPI. An addition to the MIKEY policy types (see section 5.1.2) must be
defined stating that IPSEC NAT support should be used.

Mobility support has not been addressed in this thesis. Since users may like
to roam in the middle of a conversation, addressing support to handle change
of IP address during a call is an interesting topic left as future work.
Handling mobility when security is accomplished via IPSEC as compared to
SRTP may be a bit more difficult since the IP address is used to identify

the IPSEC SA and security policy. Ideas to build future work upon may
involve using Mobile IP (MIPv4[RFC3344], MIPv6[RFC3775]), or SIP application
layer mobility[sipmob] in the following ways'. With Mobile IP, no
additional mobility support would be required in minisip, but this would

lead to some additional overhead for the data packets. The data packets
would either need to be tunneled via the home agent, or in the case of MIPv6
with route optimization, the home address(es) of the mobile node(s) needs to
be carried in header extensions. In contrast, if SIP mobility is used there

will be no packet expansion, but the mobile user agent (minisip) needs to
send a SIP re-INVITE[sipmob], and containing a new MIKEY INIT message
with the updated IPSec parameters.

MIKEY

More IPSEC specific parameters should be conveyed by MIKEY. There are more
functionality to IPSEC than is used in this thesis. To be able to use these
functionalities there must be a way to exchange their parameters. To do this an
addition to the MIKEY policy types (see section 5.1.2) must be defined.

There is no re keying done in the current implementation of minisip. Rekeying with
MIKEY must exist if longer sessions are to be maintained. The implementation of this
is left for future work.

To make MIKEY work for IPv6 IPSEC at least MIKEY CS ID map info and CS ID

1

Private discussion with Jon-Olov Vatn, March 2005

42

map type for IPv6 IPSEC has to be defined.

Miscellaneous

Solve the issue regarding the fact that you have to be superuser to set IPSEC
parameters. Normally you do not want to run applications as root. This should not be
to hard to solve as previously mentioned in 7.1.

How does the use of different encryption algorithms influence the ability to recover
packet loss.

User preferences. In this implementation the caller sets a number of default values, but
this should be something that the user should be able to choose. The user needs to edit
the minisip configuration file (.minisip.conf) to enable IPSEC for an outgoing call.
This should of course be possible to do from the GUI.

It should be possible to use other IPSEC implementations than Linux native, e.g.,
Freeswan. A port to Ms Windows would also be desirable.

43

9 References

[callest]

[ImpactofKey]

[ikev2]

[KAME]

[kink]

[kmgmt]

[netsec]

[PKO1]

[RTP Profile]

[RFC 2045]

[RFC 2046]

[REC 2327]

[RFC 2367]

Johan Bilien, Erik Eliasson and Jon-Olov Vatn. Call establishment delay for
secure VoIP. WiOpt'04, Cambridge UK, March 2004

Mohan Krishna Ranganathan and Liam Kilmartin. Investigations into the Impact
of Key Exchange Mechanisms for Security Protocols in VoIP Networks.

In Proceedings of the 1st IEI/IEE Telecommunication Systems Postgraduate
Research Symposium, Dublin, Ireland, 2001

Charlie Kaufman. Internet Key Exchange (IKEv2) Protocol. Internet
Engineering Task Force, http://www.ietf.org/internet-drafts/draft-ietf-ipsec-
ikev2-17.txt. Work in progress. September 2004.

http://www.kame.net "KAME Project is a joint effort of six companies in Japan
to provide a free IPv6 and IPsec (for both IPv4 and IPv6) stack for BSD variants
to the world."

M. Thomas, J. Vilhuber. Kerberized Internet Negotiation of Keys (KINK).
Internet Engineering Task Force, http://www.ietf.org/internet-drafts/draft-ietf-
kink-kink-06.txt. Work in progress. December 2003.

J. Arkko, E. Carrara, F. Lindholm, M. Naslund, K. Norrman, Ericsson. Key
Management Extensions for Session Description Protocol (SDP) and Real Time
Streaming Protocol (RTSP). Internet Engineering Task

Force,http://www ietf.org/internet-drafts/draft-ietf-mmusic-kmgmt-ext-11.txt.
Work in progress. April 2004.

Charlie Kaufman, Radia Perlman, Mike Speciner. Network Security PRIVATE
Communication in a PUBLIC World second edition. ISBN 0-13-046019-2. 2002

Perlman, R., and Kaufman, C., "Analysis of the IPsec key exchange Standard",
WET-ICE Security Conference, MIT,2001, http://sec.femto.org/wetice-
2001/papers/radia-paper.pdf.

Joerg Ott, Elisabetta Carrara. Extended Secure RTP Profile for RTCP-based
Feedback (RTP/SAVPF). Internet Engineering Task Force,
http://www.ietf.org/internet-drafts/draft-ietf-avt-profile-savpf-01.txt. Work in
progress. July 2004.

N. Freed, N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, RFC 2045. Internet Engineering Task
Force, http://www ietf.org/rfc/rfc2045.txt. Nov 1996

N. Freed, N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types, RFC 2046. Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc2046.txt. Nov 1996

M. Handley, V. Jacobson. SDP: Session Description Protocol, RFC 2327.
Internet Engineering Task Force, http://www.ietf.org/rfc/rfc2327 .txt. April 1998

D. McDonald, C. Metz, B. Phan. PE_KEY Key Management API, Version 2,
RFC 2367. Internet Engineering Task Force, http://www.ietf.org/rfc/rfc2367 .txt.
July 1998.

44

[RFC 2401]

[REC 2402]

[REC 2406]

[REC 2409]

[RFC 2633]

[RFC 3261]

[RFC 3263]

[RFC 3264]

[RFC 3312]

[RFC 3329]

[RFC 3344]

[RFC 3550]

[RFC 3711]

[RFC 3775]

[RFC 3830]

[RFC 3986]

[sdescriptions]

S. Kent, R. Atkinson. Security Architecture for the Internet Protocol, RFC 2401.
Internet Engineering Task Force, http://www.ietf.org/rfc/rfc2401.txt. Nov 1998.

S. Kent, R. Atkinson. IP Authentication Header, RFC 2402. Internet
Engineering Task Force, http://www.ietf.org/rfc/rfc2402.txt. Nov 1998.

S. Kent, R. Atkinson. IP Encapsulating Security Payload (ESP), RFC 2406.
Internet Engineering Task Force, http://www.ietf.org/rfc/rfc2406.txt. Nov 1998.

D. Harkins, D. Carrel. The Internet Key Exchange (IKE), RFC 2409.
Internet Engineering Task Force, http://www.ietf.org/rfc/rfc2409.txt. Nov 1998.

B. Ramsdell. S/MIME Version 3 Message Specification, RFC 2633. Internet
Engineering Task Force, http://www.ietf.org/rfc/rfc2633.txt. June 1999.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, E. Schooler. SIP: Session Initiation Protocol, RFC 3261.
Internet Engineering Task Force, http://www.ietf.org/rfc/rfc3261.txt. June 2002.

J. Rosenberg, H. Schulzrinne. Session Initiation Protocol (SIP): Locating STP
Servers. Internet Engineering Task Force, http://www.ietf.org/rfc/rfc3263.txt.
June 2002

J. Rosenberg, H. Schulzrinne. An Offer/Answer Model with the Session
Description Protocol (SDP), RFC 3264. Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc3264.txt. June 2002

G. Camarillo, W. Marshall, J. Rosenberg. Integration of Resource Management
and Session Initiation Protocol (SIP), RFC 3312. Internet Engineering Task
Force, http://www.ietf.org/rfc/rfc3312.txt.October 2002

J. Arkko, V. Torvinen, G. Camarillo, A. Niemi, T. Haukka. Security Mechanism
Agreement for the Session Initiation Protocol (SIP), RFC 3329. Internet
Engineering Task Force, http://www.ietf.org/rfc/rfc3329.txt. January 2003

C. Perkins, Ed. IP Mobility Support for IPv4, RFC 3344. Internet
Engineering Task Force, ftp://ftp.rfc-editor.org/in-notes/rfc3344.txt. August
2002

H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications, RFC 3550. Internet Engineering Task
Force, http://www.ietf.org/rfc/rfc3550.txt. July 2003.

M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman. The Secure
Real-time Transport Protocol (SRTP), RFC 3711. Internet Engineering Task
Force, http://www.ietf.org/rfc/rfc3711.txt. March 2004.

D. Johnson, C. Perkins, J. Arkko. Mobility Support in IPv6, RFC 3775. Internet
Engineering Task Force, ftp://ftp.rfc-editor.org/in-notes/rfc3775.txt. June 2004.

J. Arkko, E. Carrara, F. Lindholm, M. Naslund, K. Norrman. MIKEY:
Multimedia Internet KEYing, RFC 3830. Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc2830.txt. Aug 2004

T. Berners-Lee, R. Fielding, Day Software, L. Masinter. Uniform Resource
Identifier (URI): Generic Syntax, RFC 3986. Internet Engineering Task Force,
ftp://ftp.rfc-editor.org/in-notes/rfc3986.txt. January 2005

Flemming Andreasen, Mark Baugher, Dan Wing, Cisco Systems. Session

45

[sipmob]

[tools]

[TS 33.203]

Description Protocol Security Descriptions for Media Streams. Internet
Engineering Task Force, http://www.ietf.org/internet-drafts/draft-ietf-mmusic-
sdescriptions-07.txt. Work in progress. July, 2004

Henning Schulzrinne and Elin Wedlund. Application Layer Mobility Using SIP.
ACM SIGMOBILE Mobile Computing and Communications Review, number 3
2000.

http://ipsec-tools.sourceforge.net "IPsec-Tools is a port of KAME's IPsec
utilities to the Linux-2.6 IPsec implementation."

3rd Generation Partnership Project. Technical Specification Group Services and
System Aspects 3G security. Access security for IP-based services (Release 6).
http://www.3gpp.org/ftp/Specs/html-info/33203.htm. March 2004

46

Appendix 1: Acronyms and abbreviations

AH
API
AVP
DES
DH
DHCP
DNS
DNS MX
DNS SRV
CS
ESP
FW
GUI
HMAC
IKE

IP
IPSEC
KINK
MAC
MIKEY
MIME
MKI
NAT
PKI
RFC
RTP
S/MIME
SA
SADB
SAVP
SDP
SHA
SIP
SPD
SPI
SRTP
TCP
UA
UAC
UAS
UDP
Ul
URI
VoIP

Authentication Header

Application Program Interface

Audio Video Profile

Data Encryption Standard
Diffie-Hellman

Dynamic Host Configuration Protocol
Domain Name System

DNS Mail eXchange record

DNS resource record for specifying the location of services
Crypto Session

Encapsulated Security Payload

Fire Wall

Graphical User Interface
Keyed-Hashing for Message Authentication
Internet Key Exchange

Internet Protocol

IP Security Protocol

Kerberized Internet Negotiation of Keys
Message Authentication Code
Multimedia Internet KEYing
Multipurpose Internet Mail Extension
Master Key Identifier

Network Address Translation

Public Key Infrastructure

Request For Comment

Real-Time Transport Protocol

Secure Multipurpose Internet Mail Extensions
Security Association

Security Association Database

Secure Audio Video Profile

Session Description Protocol

Secure Hashing Algorithm

Session Initiation Protocol

Security Policy Database

Security Parameter Index

Secure RTP

Transmission Control Protocol

User Agent

User Agent Client

User Agent Server

User Datagram Protocol

User Interface

Universal Resource Identifier

Voice over IP

47

Appendix 2: Implementation description

The goal of this implementation was to enable the minisip user agent to use ESP as
security protocol to protect the media stream instead or in combination with SRTP. The
IPSEC implementation used is native Linux available in Linux kernel =2.5.54 and an
API for the kernel is available in ipsec-tools with the libipsec library and libpfkey.h.
Libipsec 1s an implementation of PF_KEY [RFC 2367].

A2.1: MikeyPayloadSP

Minisip needs a way to exchange I[PSEC parameters and this is done with the help of
MIKEY. To be able to use MIKEY to transport IPSEC parameters the class
MikeyPayloadSP was implemented. SP stands for Security Policy and should not be
confused with the IPSEC security policy. MIKEY Security Policy transports parameters
for the encryption and authentication algorithms. IPSEC security policy is a traffic filter.
The MikeyPayloadSP is defined in [RFC 3830]

The CS-ID information for IPSEC was added in the existing class of MikeyCsIdMap.
Some larger additions were also made in the classes keyagreement.cxx,
keyagreement_dh.cxx and keyagreement_psk.cxx so that the negotiated key agreements
could handle IPSEC.

A2.2: SipMIMEContent

To be able to transport more than a single SDP in the SIP message I needed support for
multipart MIME. The minisip implementation transports the SDP as a
SipMessageContent and my solution was to let the class SipMIMEContent be of type
SipMessageContent. The SipMIMEContent class can be of any Content-Type as long as
the content type can be of string type. This class is used both as Content-Type
multipart/mixed and application/mikey. The multipart/mixed message is created in
SipDialogVoip and the application/mikey is created in MsipIpsecAPI.

48

A2.3: MsiplpsecAPI

The MsiplpsecAPI is the tool for minisip to manipulate the IPSEC kernel. In this class the
dependencies to the operative system dependent ipsec implementation exists. It is this
class that is enabled with the configure flag --enable-ipsec-enable.

There are four major functions to this API:

getMikeylpsecOffer - that is used when creating the first INVITE, it is called from
SipDialogVoip and returns a SipMIMEContent containing a base64 encoded MIKEY
message.

setMikeylpsecOffer - that is used when receiving the first INVITE, it is called from
SipDialogVoip with a SipMIMEContent as argument and returns a bool.

getMikeylpsecAnswer - that is used when creating the 200 OK, it is called from
SipDialogVoip and returns a SipMIMEContent. This function also sets the IPSEC
parameters to the kernel.

setMikeylIpsecAnswer - that is used when receiving 200 OK, it is called from
SipDialogVoip with a SipMIMEContent as argument and returns a bool. This function
also sets the IPSEC parameters to the kernel.

This API also keeps track of all requests that has been made to the kernel by a call and
whether they are active or not.

Class diagram for the major parts in this implementation is in appendix 2.

Sequence diagram for major function calls in the MsipIpsecAPI is in appendix 3.

49

Appendix 3: Class

MObject

diagram

Msipl prec AFI

ol affered

u_int32_treqid

int =0

u_inti2_t=eq

SipDialog SecurityConfig secunityConlig
MRef<KeyA greement “> ka

list =N =ipl psecRequest™s mode REQ

| 1 -
—== SipDialogSecurtyConlfig

Msipl pree Request

boal exist
ool valid
i, intso

MRef<SipMimeContent > gethlikeyIpsecOfTer)

ool setMikeyl pecOffen MRef<SipMimeContent™ =)
MRefzSipMimeContent > getMikeyIpsecinswer()
boal setMikeyl psecAnswen MRet<SipMimeContent =)

int stopr)

int starti)

boal requiredi)
uint32_t s fferSPLo

vonid add S AToKainint&_ty

bool inithMSipIpsec()

int setM Sipl pseci)

uint32_t findSeqSAuin3 2_t)
Msipl precSA © (ind ReqSPLuintd 2_t1)
bool res ponderAuthenticale! string
besol initisorAuthenticate(string)

| MikeyPaylcad | | MikeyC=ldMap |

A

MikeyPayloadSP |

uint®_1 policy_no

wnts b prot_ type

uintl6_t policy_pamim_length
list<M ikey PolicyParam > pamm

vovidl ackdMikeyPolicy Parami wints _t, uints_t, byte 1=)
MikeyPolicyParmm * get ParimeterType(uints_t)
virtual void writeDataiby te_t*, int)

virtual int lengthi)

int neOPolicyPammi)

void deleteM ikeyPolicyPamminint_ty

MikeyPolicyPamam

uint®_t type
uints_1 length
byte_t ¥ value

| |
4

u_ini32_tseg
strie b =ockaddr “sre
stroet =ockaddr “dst
intotype

virtul inl=eti)
virtml intupdater)
virtual intremoveiboal)

int policylen

virtiml intset)
virtual int update()
virtwl intremoyeibooly

SipMessugeContent

==

SipMIMEContent

MsiplpsecPalicy MaiplpszcSA
u_int prefs, prefd, pota “_?“L satype
int spid u_int modke
char ® palicy u_int3 2t regic
u_int32_tspi

u_inte_type. a_type
winte_keylen, a_keylen
clar“e_key
char“a_key

u_int wsize

u_int flags

u int32 1] alloc
u_intéd_t|_byies
u_inttd 11 _addtime
w_inttd | usetime

wirtiel intset()
virtual int update()
virtial int removeboal)

string Message

siring Conteni Ty pe
string boundry

string unicueboundry

list <M RefeSipMessageContent™> > pris

virtwil string getStringi)

virtwl string getContentType()

virtual string getMemObjectTypel)

void add Part MRef<SipMesageCo ment™ »)
MRef=SipMessanaContent™s= popFirstPart()
woid se(Boundryisting)

50

Appendix 4:

Send INVITE

Sequence diagram

Major function calls in MsiplpsecAPI

SipDialogVoip

MsiplpsecAPI

getMikeyIpsecOffer():

MRef<SipMimeContent*>

—— KeyAgreement(*):

Receive INVITE

#
MRef<KeyAgreemepgs> KeyAgreement *

setdefaultPolicy():
void

-

MikeyMessage(MRef<KeyAgreemém #>):
MikeyMessage * ‘

L

MikeyMessage

b64Message():
string

SipMimeContent("application/mikey", string, ""):
MRef<SipMimeContent*>

gl

Major function calls in MsipIpsecAPI

SipDialogVoip

MsiplpsecAPI SipMimeContent

setMikeyIpsecOffer

bool

(MRef<SipMimeContent*>): ! |

>+ getString():string :

>

MikeyMessage(string): D
MikeyMessage * | P MikeyMessage

MRef<KeyAgreement *>

KeyAgreement(*): i

setInitiatorData(MikeyMes:Sage *):
void

> KeyAgreement *

aulhenlicale(MRef<KeyAg‘reemenl *>):
bool :

setOffer(MRef<KeyAgreerhem *>):
void :

SipMimeContent

51

Send 200 OK

Major function calls in MsiplpsecAPI

SipDialogVoip

MsiplpsecAPI

getMikeyIpsecAnswer(): m
MRef<SipMimeContent*> m

csIdMap():

[for each CS ID]

[for each Msiplpsec *]

MikeyIPSEC4Cs

KeyAgreement *

MikeyCsIdMapIPSEC4

P MikeyCsIdMapIPSEC4 *

\v

getCsIldnumber(int):

sk

>

MsipIpsecSA(*):
MsiplpsecSA*

getPolicyParamTypeValue
(policyNo, MIKEY_PROTO_IPSEC4,*):

u_int ' '

[for each parameter type]

|

>

MsiplpsecPolicy(¥):
MsiplpsecPolicy*

MsiplpsecSA

MikeyMessage *

buildResponse(MRef<KeyAgreement *>):

MsiplpsecPolicy

MikeyMessage

' set():int

set():int

b64Message():
string

>

SipMimeContent("application/mikey", string, "
MRef<SipMimeContent*> |

SipMimeContent

52

SipMimeContent

MikeyCsIdMapIPSEC4

KeyAgreement *

.

|

|
MsiplpsecSA

MsiplpsecAPI

.\.,
*v
= <
% Q
5 s @up
2 .. * &
2 & | |
““““““““““““ e e e
Q
5 £ g 29 T
. 2 5
gls | & < 3 A=
g = &h > = 2. o =
= = < o) 4 g * S B * oy
Ed 2 x| g > M = =3 =N R =
g T o) =2 =) = O = g% k)
g & 5o > o)] Qo < = S ==
z b5} Z 2 20 s g <<| ©°
2 22 8 T S & = 5= g
% £3 7% £ g 2 == | Eg| £% 2199 55
Ed L& 5 51 23 B = =¥ =S o1 © 0| © O
2 2 =3 & z = 22 22
£ 2 = 2 = SO 25 2% g AAl B2 = 2
2 55 38 5 53 =3 g8 £&z 18 25 &= =2 =
] 22| “8| £8| g2 S2| 82| £%E sizz Zz = =
=1 £ < = 5 =
@ == 8%| E=2| &= 62| &= &&d| 213 == 3 2
[dr1 $D yoes 105] [0osd[dISl yoea 105]

SipDialogVoip

Major function calls in MsiplpsecAPI

Receive 200 OK

(MRef<SipMimeContent*>):

setMikeyIpsecAnswer
bool

53

Appendix 5: Measurement raw data

X1-X7 and Y1-Y5 are measured in seconds.

d1-d7 are measured in milliseconds.

AS.1: No security

CLEAR
X1 "call"
X2 "SINV"
X3 "Rring"
X4 "R200"
X5 "SACK"
X6 "setAns"
Y1 "RINV"
Y2 "Sring"
Y3 "Ans"
Y4 "S200"
Y5 "RACK"
dl

d2

d3

d4

ds

d6

d7

dl
d2
d3
d4
ds
dé
d7

1
67.174072
67.179150
67.197477
77.053891
77.056877
77.058028
68.783010
68.791015
78.646481
78.648670
78.658767

5.1
23.4
8.0
2.2
3.0
4.1
12.3

Average
4.6
232
8.0
2.4
3.0
4.1
124

2
45.671575
45.675966
45.693996
53.186949
53.189922
53.191017
47.302987
47.310925
54.802786
54.805154
54.815095

44
22.4
7.9
24
3.0
4.1
12.3

Stddev
0.3
1.9
0.1
0.4
0.0
0.0
0.4

3
59.198332
59.202673
59.220818
68.430198
68.433172
68.434272
60.852805
60.860970
70.069523
70.071719
70.081793

43
22.5
8.2
22
3.0
4.1
12.3

Median
4.4
22.5
8.0
22
3.0
4.1
12.3

4
48448784
48.453124
48.470835
56.092216
56.095199
56.096297
50.127904
50.135884
57.756156
57.758356
57.768355
43

22.1

8.0

2.2

3.0

4.1

12.2

5
90.715679
90.720671
90.743390
99.887471
99.890445
99.891592
92.419027
92.426878

1.568838
1.572212
1.582258
5.0

27.7

7.9

3.4

3.0

4.1

13.4

6
12.054068
12.059087
12.076584
27.136220
27.139200
27.140295
14.059343
14.067291
29.126453
29.128650
29.138710

5.0
225
7.9
22
3.0
4.1
12.3

7
14.502591
14.507031
14.525736
23.107176
23.110154
23.111252
16.542330
16.550282
25.130789
25.132984
25.143041

44
23.1
8.0
2.2
3.0
4.1
123

8
55.408725
55.413123
55.430214
61.817929
61.820907
61.822013
57.469966
57.477949
63.864775
63.866974
63.876959

4.4
21.5
8.0
22
3.0
4.1
12.2

54

AS5.2: SRTP MIKEY with pre-shared secret

SRTP (psk)
X1 "call"
X2 "SINV"
X3 "Rring"
X4 "R200"
X5 "SACK"
X6 "setAns"
Y1 "RINV"
Y2 "Sring"
Y3 "Ans"
Y4 "S200"
Y5 "RACK"
dl

d2

d3

d4

ds

d6

d7

dl
d2
d3
d4
ds
d6
d7

1
56.620254
56.627909
56.649865
63.380726
63.383906
63.385485
59.187578
59.197539
65.925413
65.929215
65.939729

7.7
29.6
10.0

3.8

32

4.8
14.3

Average
7.5
29.0
9.9
3.1
3.1
4.8
13.5

2
89.213770
89.220756
89.242573
97.016946
97.020083
97.021673
91.459618
91.469598
99.241095
99.244888
99.255419

7.0
28.8
10.0

3.8

3.1

4.7
143

Stddev
0.3
1.6
0.1
0.6
0.0
0.0
0.7

3
88.134688
88.142306
88.162485
92.825405
92.828557
92.830158
90.399536
90.409609
95.071107
95.073702
95.083754

7.6
27.8
10.1

2.6

32

4.8
12.6

Median
7.6
28.8
9.9
2.8
3.1
4.8
13.1

4
60.639421
60.647037
60.668269
67.993864
67.996998
67.998642
62.937455
62.947470
70.271750
70.274340
70.284483
7.6

28.8

10.0

2.6

3.1

4.8

12.7

5
77.547368
77.555237
77.580023
82.020169
82.023316
82.024910
80.021103
80.030890
84.469086
84.471689
84.482127

7.9
327
9.8
2.6
3.1
4.7
13.0

6
33.035480
33.043157
33.063467
39.103901
39.107039
39.108658
35.520774
35.530660
41.568010
41.571880
41.582337

7.7
28.0
9.9
39
3.1
4.8
14.3

7
60.632251
60.639230
60.661275
66.186058
66.189211
66.190853
63.165365
63.175285
68.698242
68.701297
68.711403

7.0
29.0
9.9
3.1
32
4.8
13.2

8
84.090223
84.097769
84.117734
90.889502
90.892660
90.894304
86.637174
86.647085
93.417080
93.419675
93.430183

7.5
275
9.9
2.6
3.2
4.8
13.1

55

AS5.3: ESP MIKEY with pre-shared secret

IPSEC (psk)
X1 "call"
X2 "SINV"
X3 "Rring"
X4 "R200"
X5 "SACK"
X6 "setAns"
Y1 "RINV"
Y2 "Sring"
Y3 "Ans"
Y4 "S200"
Y5 "RACK"
dl

d2

d3

d4

ds

d6

d7

dl
d2
d3
d4
ds
d6
d7

1
78.225137
78.232538
78.256693
87.203544
87.206749
87.870939
75.450065
75.459730
83.735223
84.407087
84.418106

7.4
31.6
9.7
671.9
32
667.4
682.9

Average
7.8
323
9.8
691.3
3.2
704.0
702.4

2
82.179065
82.186992
82.208278
89.190675
89.193874
89.860223
79.433697
79.443561
85.754838
86.426483
86.437542

7.9
29.2
9.9
671.6
32
669.5
682.7

Stddev
0.3
7.5
0.1

58.0
0.0

84.1

58.1

3
53.273646
53.281625
53.303399
62.984959
62.988181
63.652139
50.553949
50.563696
59.573207
60.245893
60.256895

8.0
29.8
9.7
672.7
32
667.2
683.7

Median
8.0
29.7
9.8
671.9
32
669.6
682.9

4
10.963880
10.971926
10.994076
18.464370
18.467545
19.147735
12.447998
12.457922
19.260335
19.928618
19.939669
8.0

30.2

9.9

668.3

32

683.4
679.3

5
48.159130
48.16705
48.209736
67.135215
67.138405
68.045808
49.216863
49.226495
67.318246
68.153087
68.164179
7.9
50.6
9.6
834.8
3.2
910.6
845.9

6
59.626558
59.63461
59.655841
69.326041
69.329223
69.995785
61.162934
61.172790
70.172652
70.844625
70.855658
8.0
29.3
9.9
672.0
32
669.7
683.0

7
70.462927
70.47095
70.492614
77.154430
77.157667
77.850713
71.954436
71.964248
77.959551
78.625988
78.636959
8.0
29.7
9.8
666.4
32
696.3
677.4

8
57.375338
57.382728
57.403310
63.990625
63.993787
64.658153
58.437458
58.447219
64.361929
65.034795
65.045848

7.4
28.0
9.8
672.9
3.2
667.5
683.9

d4 and d6 includes the setting of SA to the kernel, 2 calls to the function pfkey_send_add
from libipsec in both d4 and d6. Each function call takes about 330mS.

56

Appendix 6: Original thesis description

This is the original thesis description from IMIT/TsLab KTH

Alternatives to MIKEY/SRTP to secure VoIP (IKE/IPSEC and others)

Goal:
1. Investigate what alternative keying and secure transport protocols that exist to MIKEY/SRTP
for secure VoIP and how those can be integrated into a SIP call setup (e.g., IKE/IPSec)
2. Implement/demonstrate a suitable alternative into minisip
Background:

In order to demonstrate secure VoIP services we have release an open source SIP user agent
(minisip) supporting end-to-end authentication and media protection. To protect the media streams
minisip currently uses Secure RTP (SRTP) and as authenticated keying protocol minisip uses
Multimedia Internet Keying (MIKEY), however, this master thesis would concern alternatives to
MIKEY/SRTP. See www.minisip.org for more information on minisip. As keying mechanism one
could consider e.g. IKE, TLS or KINK. One problem that arises would be how to exchange, e.g.,
IKE messages, between the two end-nodes. MIKEY messages are carried inside SIP messages (as
SDP attributes in e.g. the SIP INVITE message). For IKE and TLS an interesting alternative
would be to use SIP only for exchanging basic connectivity information (IP address, port numbers
etc.), possibly via a SIP OPTIONS message, and then run IKE/TLS as usual. To secure the media
stream one could still use SRTP (possibly using SDP attributes as in an expired suggestion by
Baugher (draft-baugher-mmusic-sdpmediasec-00.txt)), but IPSec is an interesting alternative, in
particular if IKE is used as keying protocol. Another approach would be to look at security work
for IKE/IPSec and SIP that has been done within 3GPP.

57

