
Master’s Thesis
on

MIB design of AXE Regional Processors

by
Per Holmgren
2001-03-15

at the
Department of Microelectronics and Information Technology

for
Ericsson Utvecklings AB (UAB)

Examiner Ericsson advisors
 Rassul Ayani Richard Tham and Lennart Malmberg

Faculty advisor
Vladimir Vlassov

MIB design of AXE regional processors

s and

 not
ions
entral

., that
 nec-
simple
ese
o
a Sim-
ent,
Abstract

The motivation for this thesis is that Ericsson wants to start using open standard
platforms for controlling their AXE telephony exchanges out on the field. Up until
now Ericsson has based their AXE communication on what they call signals, and
any standard protocol. The idea for this thesis is first to investigate what informat
regarding operations and maintenance are transferred back and forth between a c
processor (CP) and the exchanges, which are made out by a controlling type of
regional processors (RPs) and other interfaces, other types of RPs, I/O boards etc
are controlled by these RPs. From the CP-RP signalling informations most of the
essary data for operations and maintenance can be extracted and put into quite
but numerous objects to model the data variables and tables in an exchange. Th
objects will then be put in a Management Information Base (MIB). This thesis als
covers case studies and general SNMP simulations which is done by the use of
ple Network Management Protocol (SNMP) manager and a simulated SNMP ag
which can be remotely managed by talking SNMP.
2

MIB design of AXE regional processors

1

7

9
0
4

5
7
8

9
0
1

7

5

Table of Contents

1. Introduction.. 4
2. Background .. 6
3. An introduction to network management.. 7
4. Abstract Syntax Notation One, the formal language................................ 9
4.1 ASN.1 structure.. 9
4.2 Supported data types.. 9
4.3 ASN.1 macro definitions.. 10
5. The Structure of Management Information.. 11
5.1 The standard MIB .. 1
5.2 What the MIB-II is ... 12
5.3 Making extensions to an existing MIB ... 13
5.4 Versions of the Structure of Management Information 13
5.4.1 The MIB objects ... 14
5.4.2 The OBJECT-TYPE macro... 15
5.5 Overview of the Simple Network Management Protocol version 2.............. 17
5.5.1 An SNMP retrospect ... 1
5.5.2 SNMP protocol functionality.. 18
5.6 Packet Structure ... 1
5.6.1 Message descriptions .. 2
5.7 Weaknesses of SNMP.. 2
6. The project objectives.. 25
6.1 An outline of the target system... 2
6.2 Signal descriptions... 2
6.3 The considered RP-blocks.. 2
6.3.1 The RPMBH block ... 28
6.3.2 The RPMM block ... 29
6.3.3 The RPFD block ... 2
6.3.4 The OS block .. 3
6.4 RP-MIB specifics.. 3
6.5 Case studies for project verification .. 34
6.6 Tools used... 3
6.6.1 General MIB development and compilation... 38
7. Summary and conclusions... 39
8. Problems during the project ... 41
9. Further work .. 42
10. Own comments... 43
11. Abbreviations ... 44
12. References... 4
13. Acknowledgments .. 46
14. Appendices.. 47
3

MIB design of AXE regional processors

s and
ity
n not
s in
es it

 CP
Ps and
l
tele-

f CPs,
nals
e sig-

ele-
nge).
cks,

d as a
tem

w-
rent
h
es be
P

which
k.

agents
ol
ough
er
tual,
 in the
1. Introduction

The motivation for this thesis is that Ericsson wants to start using open standard
platforms, in which the IP-family is a part and also widely spread. With the complex
that the future holds for the telecommunication business Ericsson believes they ca
hold on to their own standards for all eternity. A big reason for Ericsson’s succes
the exchange area is that the AXE exchanges are built on modularity, which mak
relatively easy to add or remove functionality in them. In the development of new
hardware and software Ericsson also ensures that it is back compatible.

An Ericsson AXE exchange system is simplifiedly divided into two major parts: a
(Central Processor) and RPs (Regional Processors). There are many types of R
fewer types of CPs. An exchange out on the field is built with a subset of the tota
number of RPs that are available, depending on what type of exchange it is (wired
phone, gsm, umts etc.), and the exchange is managed by a parallel running pair o
which logically can be considered as one single CP, through signaling. Those sig
(thousands in total) have been developed by Ericsson over the years and now th
nals are collected in a database where they each are described byte for byte.

Each RP has software which is also divided into two major parts: the APT part (t
phony applications) and the APZ part (maintenance and operations of the excha
For this thesis the APZ is the part of interest. The APZ part is divided into 16 blo
i.e. programs, that can deal with things such as file management, communication
supervision, error handling etc. The operating system of an RP is also considere
part of the APZ, i.e. the operating system is a block in the APZ. The operating sys
supervises all other blocks in the RP, both APZ and APT blocks.

This thesis will mainly be focused on the signalling between the CP and RPs. Ho
ever, sometimes sidesteps are made to look at the communication between diffe
RP blocks and also sometimes then look at raw program code to determine whic
block is and should be responsible for the data representation. This can sometim
hard to determine from the outside just by looking at the signalling between the C
and RPs, because there can sometimes be interactions between different blocks
are not visible only by looking on the direct signalling between a CP and RP bloc

Since the AXE system is based on CPs and RPs which interact as managers and
it is natural to look at the SNMP protocol, which is the most widely spread protoc
for network management and also a part of the open TCP/IP suite standard, alth
SNMP usually uses UDP as the underlying transport protocol. An SNMP manag
uses a model of the agents it is controlling by using a predefined conceptual, or vir
database from which the SNMP manager can fetch and set necessary variables
controlled agents. The virtual database is called a MIB (Management Information
4

MIB design of AXE regional processors

he

ple
there

ion of
 con-
P
ises
nter-

oto-
and
into a
n 6.5

n-
has

e is a

hey
MP
 is

ection
Base), which is known to the manager and the agent whom the MIB concerns. T
MIB models the data and variables that are available in the agent(s).

A MIB module is built like a hierarchical tree which eventually branches out into
leaves. Each leaf make out one object where each object can consist of one sim
variable or reference sequences of other objects to make out tables. In the objects
are usually definitions of access rights, current status and also a textual descript
what the variable in the object is supposed to represent. A MIB at normally least
sists of the standard MIB [1] which is necessary for the underlying layers of the I
stack for communication, statistics etc. It is then possible for for example enterpr
or organizations to extend the MIB tree and add their own objects in a dedicated e
prise branch to model their own vendor specific devices.

This thesis work includes a study of the ASN.1, MIB and SNMP languages and pr
cols. The real work is to investigate what type of data in an AXE exchange should
could be managed and supervised by using SNMP, and then implement the data
MIB structure (see appendix A). There are also some small case studies in sectio
to verify and show how the MIB data could be managed and supervised.

The report is divided into sections where sections 2-5 is an introduction to the co
cepts of networking and sections 6-7 describes target system and the work that
been done to adapt SNMP to AXE.

Section 2 describes the background and reasons of this project. In section 3 ther
short introduction to network management. A description of the formal language
ASN.1 is given in section 4. Section 5 describes the concepts of MIBs and how t
are designed by using ASN.1 notation. In section 5 is also a description of the SN
protocol and how it can benefit from MIBs. The thesis work and the target system
described in section 6, and then the results and conclusions are to be found in s
7.
5

MIB design of AXE regional processors

n in
ent
e
nto

RP
ing
ts

perat-
was

. The
to-
erlay-
g
rlying

k by
ple-

gath-
ng

,

2. Background

There was an investigation team at Ericsson UAB in Älvsjö in 1998 that looked o
what direction to aim for in the future when it comes to dealing with the managem
of stand alone platforms[4]. That report suggested that the TCP/IP suite should b
looked at, such as SNMP, Telnet, TFTP etc. for managing and loading software i
the exchanges. This thesis was initiated as an extension of that report.

At Ericsson Utvecklings AB, Ericsson UAB, no work has been done before on the
blocks which this report will focus on. Some work on modeling other RP blocks us
MIBs has been done before though [2]. That work implemented a few MIB objec
into a regional processor with a Group switch interface (RPG), mainly to see how
hardware and software would respond, such as if there was good support in the o
ing system for this and trying out connectors etc. No SNMP testing on a real target
made.

The reader of this report should have a general understanding of the TCP/IP suite
report will introduce networking and explain the ASN.1/MIB/SNMP structures, pro
cols and languages, but the reader should have some prior knowledge of the und
ing TCP/IP suite to be able to assimilate from this thesis. Also some programmin
skills and computer hardware knowledge can be useful to understand some unde
structures and algorithms.

As the main source of theory for the first big part of this thesis (sections 4-6) a boo
William Stallings [1] has been used and some RFCs [7][8][9] have worked as com
ments to the book. For the second big part of this thesis the information has been
ered from several people at UAB, whom have been invaluable in regards of getti
information about the current system.

Since this area is covered with abbreviations, in both the AXE and SNMP worlds
there is a list of abbreviations in section 11.
6

MIB design of AXE regional processors

ere
r or
s on
ore
eater
 man-

a net-
ct sta-
affic
 num-

. The
ning

inter-

tively
The

levant
3. An introduction to network management

A network consists of hosts (workstations) connected to the physical network wh
each host is connected through a network card and then out onto the twisted pai
coaxial cables that make out the network. The choice of wiring standard depend
the required throughput and cost. With the increasing number of networks and m
hosts connected to them the importance of network management is becoming gr
and greater. In this context there are two types of hosts: managers and agents. A
ager keeps track of its agents, i.e SNMP agents, via the SNMP protocol.

Network management is needed for keeping statistics and states about hosts in
work. An agent is a process running on a host that among other things can colle
tistics about the data traffic to and from it. The statistics regard things such data tr
to and from the hosts all the way down to separate protocol specifics such as the
ber of good and bad packets using the IP, UDP and SNMP protocols respectively
states of a host could be things such as if a specific application on the host is run
or not, or any type of other data regarding a specific application that could be of
est to know or possible to set remotely.

The agent and manager know how they should store and access the data respec
through their MIB structure, which is implemented in both the agent and manager.
manager should have a MIB structure that covers all the MIBs of all its managed
agents, while the agents themselves only need to keep a MIB structure of the re
data for that particular host.

Networks can
often be divided
(see Fig. 3.1) into
Local Area Net-
works (LANs)
and Wide Area
Networks
(WANs). LANs
are often net-
works managed
by an organiza-
tion or a company
and the network
is often located in
a building or a
group of build-
ings. A WAN is usually built from of a number of LANs that are interconnected

LAN

LAN LAN

WAN

Figure 3.1 The relations between a LAN and a WAN
7

MIB design of AXE regional processors

gest

nd set
tions
s, sup-
t.
ad
.

h
rmal
pen-
pos-
n in
t is
ith
y.

l,
ted
through bridges and routers, today usually routers. Of course the Internet is the big
WAN in the world today.

A LAN must always be managed in some way. Typically a host on the network is
appointed or dedicated to become the manager. The manager gets rights to get a
data on other hosts, e.g. agents, regarding networking statistics and communica
etc. The standard today is that all hosts on a network, both managers and agent
port the Simple Network Management Protocol (SNMP) for network managemen
SNMP [1] is the protocol which for network management is the most widely spre
and to which the tools of how to add manageable information are easily available

A MIB [1][8] is a structure, i.e a tree, in which each leaf represent an object. Eac
MIB object represents a variable or a scalar. The MIB objects are defined in a fo
language called ASN.1, which stands for Abstract Syntax Notation One ([1], in ap
dix). A MIB structure can be written from a subset of the whole ASN.1 language
sibilities and it is those relevant parts of ASN.1 that are described in section 4. The
section 5 there are rules of how a MIB should look like when using ASN.1, and tha
called SMI, the Structure of Management Information [7]. This report only deals w
the second version of the SMI, the SMIv2, which is the way of defining MIBs toda
The second part of section 5 describes the second version of the SNMP protoco
SNMPv2 [1], which defines in which way the MIB data is transferred, e.g. reques
and set, between managers and agents.
8

MIB design of AXE regional processors

ible
set

ne

dule
ce in
rd

from
ely
TS
rt.

n
to the

h is

uc-
4. Abstract Syntax Notation One, the formal language

4.1 ASN.1 structure

ASN.1, Abstract Syntax Notation One [1], is a formal language that makes it poss
to formally and uniformly define manageable application data. In a MIB only a sub
of the ASN.1 language is allowed. An ASN.1 skeleton, which always has to be
defined, is called a module. One module normally consists of information about o
type of system and is collected in one file.

A MIB module [1][8] (see Fig. 4.1) always starts with the DEFINITIONS clause in
which to name the module. For this project the modules’s name is the RP-MIB mo
(see section 6.4 and appendix A). It is also optional to here give the module its pla
a predefined structure, for instance in the enterprises branch of the MIB-II standa
(see section 5.3).

Inside the module there are the IMPORTS and EXPORTS statements to specify
which previously defined modules specific types are allowed for import respectiv
which types in the module are allowed for export to other modules. If no EXPOR
statement is defined it is assumed that the whole MIB module is allowed for expo
The RP-MIB module in this thesis imports a few types from previously well know
MIB structures (See appendix A). Finally the necessary objects that correspond
application variables you want to model are defined in anAssignmentList .

For this project the module is the defined RP-MIB structure (see appendix A) whic
added to the standard MIB-tree (see section 5.1).

4.2 Supported data types

The ASN.1 language supports data types of four different categories: simple, str
tured, tagged and other [1].

<modulereference> DEFINITIONS ::=
BEGIN
 EXPORTS
 IMPORTS
 AssignmentList
END

Figure 4.1 The general definition of how an ASN.1
 module is defined.
9

MIB design of AXE regional processors

ate-
 the

sed

ive
ce.

ite
on’t

able
for

ful
ible

 dif-

o
ild.

ni-

value
Simple: The most commonly used definition. The most common types under this c
gory are the Integer, OctetString, BitString types. All other types are derived from
types of this simple type category.

Structured: ASN.1 totally contains four different structured types, SEQUENCE,
SEQUENCE OF, SET and SET OF, but only the two first types are allowed to be u
in a MIB structure, where they provide a possibility to build tables.

Tagged: Types derived from other defined types. Is useful when a user wants to g
types associated names relevant for a specific device type or a project for instan

Other: Two types are defined here, the ANY and CHOICE type. The any type is qu
easy. Just define your variable as an ANY-type and go. This is useful when you d
know in advance the type of your variable. Of course you should re-define the vari
as you go along and you find out what type of variable(s) it is. The CHOICE type is
the possibility to assign several possible types to one variable name. This is use
when the circumstances decide what type is assigned to a variable and the poss
types are known in advance.

4.3 ASN.1 macro definitions

ASN.1 provides for macro notation where the macro notation is split up into three
ferent levels [1]:

Macro notation: Used for defining macros. A macro notation is like a super macr
which defines how macro definitions, the level two definitions, are possible to bu

Macro definition: The way in which related kinds of objects are defined. The defi
tion specifies what types are mandatory and optional to an object type.

Macro instance: A manageable object derived from a macro definition.

There is also a sub level to the third level called themacro instance value. It can be
considered as an extension of the macro instance. It is reached when the specific
is set to a macro instance.
A few macros will be described in more detail in section 5.4.
10

MIB design of AXE regional processors

an
as an
Each
 the
ided
 by

rts of
the
stan-
ee
I.
ard

e
 by a

n

I,
the

h
nch

ith
5. The Structure of Management Information

A Management Information Base (MIB) is a collection of objects. A single object c
represent a scalar in an agent’s instrumentation, e.g. an application variable such
integer or a string, which is to be managed and supervised by a managing entity.
MIB object also has its own position in the so-called MIB-tree, where each leaf in
tree represents one single scalar. The position of an object in the MIB-tree is dec
by the object’s OBJECT-IDENTIFIER, which is a sequence of integers separated
dots and can be considered as the object’s MIB-tree address.

To be able to use SNMP on a host that participates in a TCP/IP network some pa
the MIB-tree should always be implemented on it. This implementation is called
standard MIB (see section 5.1). There are a couple of versions of additions to the
dard MIB which are common. The most common addition now is called MIB-II (s
section 5.2), which is really just an extension of the first version of the MIB, MIB-
MIB-II just provides some more informations about statistics when using the stand
internet protocols.

5.1 The standard MIB

The standard MIB is the skeleton of the ASN.1 tree [1]. The root of the tree is the
object referring to the ASN.1 standard. The root has three sub-branches:iso(1) ,
ccitt(2) andjoint-iso-ccitt(3) . The number inside the parenthesis is th
actual branch number, but for readability each branch is usually also represented
textual string. One of the sub-branches under theiso branch is the organizations
(org(3)) branch, where the US Department of Defence (dod(6)) is one. Under the
dod branch the IAB has allocated theinternet(1) branch, which then has the
address:1.3.6.1 or in textual notationiso.org.dod.internet . Under the
internet branch are four more sub-branches:

directory(1) : Reserved for future use with the OSI X.500, which is a collectio
of ways to gather information about individuals that participate in a system.

mgmt(2) : Objects approved by IAB. Those are the objects in the first MIB, MIB-
and the second MIB, called MIB-II, which practically just added some objects to
MIB-I.

experimental(3) : Objects used during Internet experiments. This is the branc
that has been used during this project. MIBs under development can use this bra
and knowing that the OBJECT-IDENTIFIERS under this branch will not collide w
11

MIB design of AXE regional processors

 e.g.

um-

ct

 is
 table.

d

n-
ed

fic
as
ent
mon.

the
other objects. When the MIB is made public it is moved under a different branch,
theenterprises branch.

private(4) : Objects defined unilaterally. The only public sub-branch is the
enterprises branch.

Ericsson has the officialenterprises sub-branch number193 (see Fig 5.3) which
can be looked up at IANA (ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-n
bers). This project has applied for, and got, anEricsson sub-branch of number 85.

Each MIB object has its own OBJECT-IDENTIFIER, but the value to a single obje
which has that OBJECT-IDENTIFIER has the addition.0 . For example, the sysUp-
Time object in MIB-II has the OBJECT-IDENTIFIER1.3.6.1.2.1.1.2 , but the
value which it represents has the OBJECT-IDENTIFIER1.3.6.1.2.1.1.2.0 .

Tables defined in MIBs are a bit special. In a MIB definition only the table header
defined. The table header contains the objects that represent each column of the
When compiling the MIB to an agent you specify how many rows the table shoul
contain.

5.2 What the MIB-II is

The MIB-II [9] is an extension of a MIB called MIB-I, which is an addition to the sta
dard MIB (see fig 5.1). MIB-II is practically the same as MIB-I but with some add
objects. MIB-II has sub-branches for monitoring asystem(1) , interfaces(2)
and things such as theip(4) , icmp(5) , tcp(6) , udp(7) andsnmp(11) proto-
col traffic on a host (see Fig. 5.2). Typical MIB objects are for monitoring of the traf
for each of the different protocols. These are informations regarding things such
counters for the number of incoming, outgoing and bad packets. States for differ
kinds of entities on a host, such as if they are up and running or not are also com
The SNMP branch of MIB-II for instance contains objects for the total number of
incoming and outgoing SNMP packets, the number of incoming packets with the
wrong SNMP version, the number of packets with the wrong community name and
number of incoming and outgoing GetRequests and SetRequests etc.

iso

org

dod

internet

directory

mgmt

experimental

private

system

interfaces

ip

icmp

tcp

udp

snmp

mibII

enterprises

Figure 5.1Part of the standard MIB extended with the MIB-II.
12

MIB design of AXE regional processors

ge-
 or
mper-

e stan-

en

with
NMP
IB-

stric-
ions

Iv1
th
d

, the
s
oth-

n
N.1.
at
5.3 Making extensions to an existing MIB

A MIB-tree isn’t just useful for network layered control but can also provide mana
ment and maintenance of vendor specific applications by adding new application
device specific objects to the tree, e.g. states of hardware and software such as te
atures or power supervision and test states or program versions respectively. Th
dard MIB has a branch that is called theenterprises branch. To this branch
anyone can apply for a sub branch from IANA (see section 11). Each applicant th
receives a sub address in theenterprises branch to which they can add their own
developed MIB module with their application representation. Each SNMP agent
access to an application which is supposed to be monitored and supervised via S
should have the MIB that represents the application implemented/added in its M
tree.

Today there are about 8000 extensions to the
enterprises branch and the official Ericsson
branch has theenterprises sub-number
193 (see Fig 5.3). Then underenter-
prises.193 there are about 85 sub
addresses, where each address represents either
an Ericsson project or a subsidiary to Ericsson.

The MIB-tree was developed to support sim-
plicity and the possibility of extending the tree
in an easy to do fashion. To reach these goals emphasis has been put on tight re
tions on implementation or else interoperability between vendor specific applicat
would eventually suffer. These rules are defined in the SMI [7].

5.4 Versions of the Structure of Management Information

There are two versions of the SMI [7] (Structure of Management information), SM
and SMIv2 [1]. An entity using The SNMPv2 can often compile MIBs defined in bo
SMI versions, but the entities using SNMPv1 can normally only use SMIv1 define
types.

SMI and SNMP should not be mixed up. The SMI defines the rules in which MIB
objects are defined, while the SNMP version decides how the actual information
objects, should be requested, updated and collected between hosts. The version
described for SMI and SNMP in this report are both for version two, if not stated
erwise.

The SMI contains all the different types of objects,i.e. object macros, which are
allowed to use in a MIB. The macros, see section 5.4.2 for an example, specify i
detail what a type of object must and can contain and the macros are written in AS
An SNMP entity to which a MIB is compiled must be aware of the SMI version th

iso

org

dod

internet

Ericsson

enterprises

Figure 5.3The Ericsson extension to the
standard MIB.
13

MIB design of AXE regional processors

and

s this
n
there

 a
al for
N-

ppli-

.6)
up-

i.e.
the MIB is defined. There should not be mixes between objects written in SMIv1
SMIv2 in the same MIB module.

5.4.1 The MIB objects

A ‘normal’ MIB object, i.e. defined as an OBJECT-TYPE (see section 5.4.2), is
referred to a scalar or variable that can be monitored in an agent by a manager. It i
type of object that represent the leaf of a MIB structure. An ‘unnormal’ object is a
object that is not by any means accessible from a manager. Such objects are only
to administrate a MIB module. A MIB module is normally the collection of objects
that represent a hardware or maybe several related functions of a hardware.

Each MIB object is defined from the rules of the SMI (see section 5.4). A typical
object consists of mandatory and optional clauses. Each object is initialized with
macro definition, where the macro defines what is mandatory and what is option
that type of object. Examples of the most common macros are the MODULE-IDE
TITY, OBJECT-TYPE, NOTIFICATION-TYPE, OBJECT-GROUP and NOTIFICA-
TION-GROUP macros, where the OBJECT-TYPE macro is the most commonly
implemented since this macro is the only one which describes a ‘real’ object, an a
cation variable. The NOTIFICATION-TYPE macro is for defining which objects
should be included in a SMIv2 notification, which is a kind of trap (see section 5.6.1
in SNMPv2. The other macros are inventions for administration of internal, e.g. gro
ing of objects that are related within a MIB module, and external MIB structures,
the relations of the current MIB module to other MIB modules or structures.

OBJECT-TYPE MACRO ::=
BEGIN

TYPE NOTATION ::= “SYNTAX” Syntax
 UnitsPart
 “MAX-ACCESS” Access
 “STATUS” Status
 “DESCRIPTION” Text
 ReferPart
 IndexPart
 DefValPArt
VALUE NOTATION ::= value (VALUE ObjectName)
Syntax ::= type(ObjectSyntax) | “BITS” “(“Kibbles”)”
Kibbles ::= Kibble | Kibbles | “,” Kibble
Kibble ::= identifier “(“ NonNegativeNumber “)”
UnitsPart ::= “UNITS” Text | empty
Access ::= “not-accesible”|“accesible-for-notify”|“read-only”|“read-write”|“read-create”
Status ::= “current” | “deprecated” | “obsolete”
ReferPart ::= “REFERENCE” Text | empty
IndexPart ::= “INDEX” “{“ Indextypes ”}” | AUGMENTS “{“ entry “}” | empty
IndexTypes ::= IndexType | IndexTypes “,” IndexType
IndexType ::= “IMPLIED” Index | Index
Index ::= value (indexobject ObjectName)
Entry ::= value (entryname Objectname)
DefValPart ::= “DEFVAL” “{“ value (Defval ObjctName) “}” | empty
Text ::= ““““ Text ““““

END

Figure 5.4 The OBJECT-TYPE macro that defines what is possible to include in an OBJECT-TYPE
 object. It also specifies what is mandatory and optional to include.
14

MIB design of AXE regional processors

EN-
acro.
e
s.
.4.

JECT-

red.
e
nti-

me-
e of

range.

he
 the
 table

 that

t is
5.4.2 The OBJECT-TYPE macro

The OBJECT-TYPE macro [1] at least consists of a SYNTAX clause, a MAX-
ACCESS clause, a STATUS clause, a DESCRIPTION clause and an OBJECT ID
TIFIER. These are referred to as the mandatory clauses of the OBJECT-TYPE m
There are also some optional OBJECT-TYPE macro clauses allowed, such as th
INDEX, the AUGMENTS, the DEFVAL, the UNITS and the REFERENCE clause
The formal ASN.1 definition of the OBJECT-TYPE macro can be found in Figure 5

5.4.2.1 Mandatory clauses

These are clauses that always must be present in an object defined with the OB
TYPE macro (see Fig. 5.4).

SYNTAX : The way and sometimes the size or range in which the data is to be sto
The allowed data types are all derived from the types of the ASN.1 language. Th
ASN.1 types allowed to be used in MIBs are Integer, OctetString, null, object ide
fier and sequence (or sequence-of). The types in a MIB that are derived from the
allowed ASN.1 types are INTEGER, Integer32, Unsigned32, OCTET STRING,
OBJECT IDENTIFIER, BITS, IpAddress. Counter32, Counter64, Gauge32 and Ti
Ticks. For some of the types there is a an optional possibility to set the size or rang
the data. Some of the types are only altered by name and others also by size or

MAX-ACCESS: The maximum allowed access rights which a manager has to an
object located in an agent. The available rights are:read-only, read-write, read-create,
not-accessible andaccessible-for-notify.

read-only: A manager can only read the data in the managed object.

read-write: A manager can both read and set the data in the managed object.

read-create: A manager has read-write access to the managed object data plus t
right to create new objects of that instance, if the object is part of a table in which
rows are creatable and deletable. Tables can also be static, i.e. the objects of the
are always there but not necessarily set.

not-accessible: A manager cannot access this object at all. Is used for the objects
make out the skeleton or description of a table.

accessible-for-notify: A manager has no rights to access the object itself. The objec
only readable when it is spontaneously sent as a trap.
15

MIB design of AXE regional processors

: cur-

.

ems

EN-
he

ow

ct
-

s,

use
such

 a
to

he
he

s. The

e
eady
e
bject
STATUS: The status in which the object is. There are three possible status states
rent, deprecated and obsolete.

current : The object is in use and is supposed to be used for applications of today

deprecated: The object is about to become obsolete but can still be used on syst
supporting this object.

obsolete: The object is old and not in use any more. Such an object should not be
removed and certainly not replaced with another object with the same OBJECT-ID
TIFIER since that would become a problem when dealing with past releases of t
MIB.

DESCRIPTION : A textual description of what the object is supposed to do and h
the data is represented and supposed to be read and understood.

OBJECT IDENTIFIER : The number that describes where in the MIB-tree the obje
is located. Either the whole identifier from the root all the way down or from a pre
defined place in the existing tree that is already implemented. As an example the
enterprises branch is located at the OBJECT IDENTIFIER address
1.3.6.1.4.1 . The textual description of the same branch is
iso.org.dod.internet.private.enterprises .

5.4.2.2 Optional clauses

The optional clauses makes it for example possible for developers to make table
extend existing tables or give objects default values when the agent starts up.

INDEX : For making tables this clause is mandatory. An object containing this cla
is the conceptual (or abstract) object which describes a row in a table. In SMIv2
an object should also have its MAX-ACCESS clause set to not-accessible. The
INDEX clause contains the name(s) of the object(s) which distinguish one row in
table from another row. Often one object is enough for distinction, but it is possible
point out as many as needed.
Example: A table where vehicles should be able to be pointed out (not by using t
number plates). The first distinction could be cars, buses and trucks, which are t
types of vehicles. This isn’t enough for pointing out one specific vehicle. The cars
could then be separately indexed and also the buses and trucks, by using number
vehicle type and the index is then enough for pointing out one specific vehicle.

AUGMENTS : An object containing this clause is used as an object containing th
INDEX clause, to describe a row in a table. This clause is rather used to extend alr
existing tables, where extending means adding columns. The AUGMENTS claus
contains the object which described the row in the already defined table, i.e. the o
16

MIB design of AXE regional processors

 not

 on

ec-

er

rd
s all

UDP

new
e

ws
that contains the INDEX clause in the table that is to be extended. An object can
contain both the INDEX and AUGMENTS clause at the same time.

DEFVAL : The default value that an object should have when the agent it resides
starts up.

UNITS: A textual description of which unit applies to the data, for example bytes, s
onds etc.

REFERENCE: A textual description of a reference to another MIB object in anoth
module.

5.5 Overview of the Simple Network Management Protocol version 2

5.5.1 An SNMP retrospect

The SNMP protocol was specified in the late 1980s. It has now become a standa
TCP/IP-suite protocol for network management since it is vendor independent, a

IP-protocols should be, and easy to use. SNMP doesn’t necessarily need IP nor
as the underlying layers to function, but this is usually the case (see Fig. 5.5).

The first SNMP protocol is now referred to as SNMPv1 since there in 1993 was a
version called SNMPv2 issued. In 1998 SNMPv3 was issued but it has not becom
very widely spread, yet. A small comparison between SNMPv1 and SNMPv2 sho

 SNMP

UDP

IP

Network-dependent prot.(Ethernet etc.)

SNMP

UDP

IP

Network-dependent prot.(Ethernet etc.)

Network

SNMP-messages

 Application that
manages objects

G
e

tR
e

q
u

e
st

S
e

tR
e

q
u

e
st

G
e

tB
u

lk
R

e
q

u
e

st

R
e

sp
o

n
se

T
ra

p

G
e

tN
e
xt

R
e

q
u

e
st

SNMP manager SNMP client
G

e
tR

e
q

u
e

st

S
e

tR
e

q
u

e
st

G
e

tB
u

lk
R

e
q

u
e

st

R
e

sp
o

n
se

T
ra

p

G
e

tN
e
xt

R
e

q
u

e
st

Managing application
SNMP agent

and resources

Figure 5.5 The layering and structure of normal SNMP exchanging between an SNMP
 agent and manager.
17

MIB design of AXE regional processors

gest

urity,
2

devel-

get
t
 pos-

alar
 is

 hubs,
 run-

y a
alter-
ior is

ager
s

ager’s
 any-
that the second version is more efficient and that it has more functionality. The big
reason for this is the introduction of theGetBulkRequest (see section 5.6.1.3).
SNMPv3 was issued mostly because the other versions don’t support any real sec
although version 3 has the same functionality that version 2 provides [1]. SNMPv
was supposed to have encryption built in, but agreement problems between the
opers made them skip that part.

For this project SNMPv2 is the considered protocol. It has the functionality this tar
system could benefit from and also the step from SNMPv2 to SNMPv3 is not tha
great as from SNMPv1. SNMPv3 should be possible to use in the future with the
sibilities that SNMPv2 provides today.

5.5.2 SNMP protocol functionality

The operations that are supported in SNMP [1] are inspection and changes of sc
variables, where the scalar variables are represented as objects in a MIB. SNMP
used to manage and monitor all kinds of equipment such as computers, routers,
printers and toasters. For the equipment to be managed in such a way it needs a
ning SNMP agent on it together with an implemented and compiled MIB which
describes what data in the applications that is available for reading and setting b
managing entity. Some data can also be considered of such importance that an
ation of it triggers the agent to transfer it spontaneously to a manager. This behav
called that the agent sends a trap to the manager.

SNMP works with a limited set of messages that are transferred between a man
and the agent(s) which the manager has access to over a network. In some case
SNMP messages can also be transferred between managers.

When sending SNMP messages
over UDP the manager uses any
available port [10] above 1023
(see Fig 5.6). An agent listens on
port 161 for incoming UDP mes-
sages. Eventual replies from agent
are sent to the same port as the
incoming message came from.
The agent does the same thing as
the manager when initializing a
spontaneous message, a trap, but instead sends that message towards the man
port 162, which is also dedicated for UDP traffic. A trap is never responded to by
body.

The messages within SNMPv2 are theGetRequest, GetNextRequest, GetBulkRequest,
SetRequest, InformRequest, Response andTrap messages (see Fig 5.7 and section
5.6.1). All messages exceptResponsesandTrapsare issued by a managing entity. The

Manager Agent
Port Port

PortPort

161

1024-65535

1024-65535

162
Traps

Gets and sets

Responses

Figure 5.6 The relations of ports and SNMP messaging using UDP.
18

MIB design of AXE regional processors

n

om-
yp-

 inter-
mmu-
ust
Response message is also issued by managing entity as an acknowledgment to a
InformRequest, which is a message type passed between managers.

5.6 Packet Structure

The version field of a SNMP packet tells which version of SNMP is used and the c
munity field works as an insecure password of authentication. If no external encr
tion is used then SNMPv2 messages are sent as readable text (see Fig. 5.8).

The community field works as an authentication, where a manager and an agent
acting must support the same community string. Often readable data has one co
nity and writable data another community, and both the manager and the agent m
each set their community strings for reading and writing. In SNMP textbooks and
other documents those communities are usually referred to aspublic andprivate, thus

SNMP messageversion community data

SNMPv2 PDUPDU type request-id
error status
 or
nonrepeaters

error index
or

max-reps
variable-bindings

variable-bindingsname 1 value 1 name 2 value 2

Figure 5.8 The general SNMP packet structure

Manager Agent

Manager Agent Manager Agent

Manager Agent

Manager Agent

Manager Agent

GetRequest

Response

Response
Response

Response

Response

GetNextRequest

GetBulkRequest

SetRequest

InformRequest

Trap

Figure 5.7The different message relations in SNMP
19

MIB design of AXE regional processors

frame-

detail

ral
 can
h as
sage

gs
 is a
r that

why

 of
ENTI-
ble

e

in the
system administrators often use those, and therefore their network management
work can not be considered as having very much security at all.
The data field of a packet is then the actual message, such as aGetRequest or aSetRe-
quest.

5.6.1 Message descriptions

SNMP consists of a handful of messages or PDUs which are described in more
below. All messages are practically constructed in the same way (see Fig. 5.8).

PDU-type: Indicates what type of message it is, for example if it is aGetRequest, Set-
Request or aGetNextRequest etc.

Request-id: A unique identifier for each request, thus the manager can have seve
outgoing requests at the same time, also towards the same agent. The identifier
also be considered helpful when dealing with an unreliable transport service suc
UDP. The issue that first comes to mind is duplication avoidance, but the real mes
check must be performed at the application layer.

Variable-bindings: The object instances that were requested. The variable-bindin
list is divided into fields. Each field consists of a pair where the first part of a pair
reference to an object name, and the second part of the pair contains the value fo
object.

The PDU types that vary some from the majority are theGetBulkRequest and the
Responsemessages. The majority of the messages have theerror status or non-repeat-
ers and error index or max-reps fields set to zero, 0, whereas theGetBulkRequest and
theResponsemight have other values. For a description what those fields are and
see each of the message descriptions below.

5.6.1.1 GetRequest

A GetRequest is issued by a manager that wants to retrieve one or several values
objects from one of its managed agents. The manager specifies the OBJECT-ID
FIER of the object value he wants to retrieve as the first part of a pair in the varia
bindings list. The second part of a pair in the variable-bindings list in any kind of
request is always UnSpecified (NULL), since the manager doesn’t know any of th
requested values yet.

If the requested object is missing or the corresponding value has not been set yet
agent, then theResponse will indicate that by a NoSuchObject or NoSuchInstance
value instead. Other objects that may have been properly addressed in the sameGetRe-
sponse will be correctly responded, though.
20

MIB design of AXE regional processors

ext
e

cts

EN-
p-

ager

r-

e
time

 the
values

rs
5.6.1.2 GetNextRequest

A GetNextRequest is issued by a manager who wants to retrieve the value of the n
object in lexicographic order than the actual OBJECT-IDENTIFIER supplied in th
GetNextRequest. The format is otherwise identical as for aGetRequest. The pair(s) in
the response then contains the OBJECT-IDENTIFIER and the values of the obje
that were in fact obtained.

If there is no lexicographic successor the identifier field has the same OBJECT-ID
TIFIER as in the request and the value field is set to endOfMibView. This only ha
pens when theGetNextRequest is made on the very last object in the MIB module.

The reason for havingGetNextRequests at all is for the manager to be able to use
objects already known to him to find out if there are any more objects that the man
is not aware of yet, for instance to check if a table contains any more rows.

5.6.1.3 GetBulkRequest

A GetBulkRequest is issued by a manager wanting to obtain a large amount of info
mation. The maximal number of variables to retrieve is syntactically defined to
2147483647, which is not realistic because the real limit to a packet is the limited
packet size on the network, since aResponseis never divided into several packets. Th
MTU is usually around 1500 bytes. A realistic amount of retrievable objects at a
is less than 100, of course depending on how big the individual objects are.

TheGetBulkRequest makes use of the non-repeaters and max-repetitions fields of
message structure. The values in the fields can be set to zero or more and both

SNMPv2 PDUPDU type request-id
error status
 or
nonrepeaters

error index
or

max-reps
variable-bindings

(GetBulkRequest)

name1 value1 nameX valueX name(x+1)value(x+1) name(X+Y) value(X+Y)

X number of pairs treated
 as GetNextRequests

Y number of pairs passes through cyclically

Figure 5.9 The GetBulkRequest packet structure. The lengths of X and Y are decided by the non-repeate

Variable-
 bindings field

 and the number of times that Y is cyclical run is max-reps number of times.
21

MIB design of AXE regional processors

ited

 of
ould
 cov-

t
et-
gent.
the
air
ent

aders
ber

ject

ot pro-
x
urned

ject
e

set

ECT-
hat

ot
can be set at the same time. EachGetBulkRequest is responded by oneResponse mes-
sage only. It is up to the manager to act if the responded information has been lim
by the MTU.

The non-repeaters (X) field works as follows (see Fig 5.9): X indicates how many
the first of the pairs in the variable-bindings list the agent receiving the request sh
consider just as normal GetNextRequests. For each name of the requested pairs
ered by X a GetNext action is taken by the agent.

The max-repetitions (Y) field works as follows (see Fig. 5.9): For the eventual las
pair(s) (Z), that were not considered when using the non-repeaters field of the G
BulkRequest, each value for each pair one after another will be collected by the a
When the last pair in the variable-bindings list of the request has been collected
agent will start with the pairs from the beginning (X+1) again, except that the first p
this time will be the lexicographic successor of the first pair of the past turn. The ag
will do this for Y times and collect the pairs, names and values, in the normal
Responsemessage. This means that if the pairs in the request are the objects of he
in tables the response will consist of sequential rows of the table. Y will be the num
of received rows, if theResponse message doesn’t become too big.
The number of pairs in a response to a GetBulkRequest will be Y + (Z*Y). The reason
for the GetBulkRequest algorithm is that it should be possible to retrieve single ob
data and also table data in the sameResponse.
For any reason, except that the end of the MIB has been reached, the agent can n
cess a GetBulkRequest theResponse will consist of an error status and an error inde
to indicate which object failed. In these cases either all requested objects are ret
or none.

5.6.1.4 SetRequest

A SetRequest is issued by a managing entity that wants to set a new value to an ob
in a manageable agent. It is possible to set several objects of an agent in the samSet-
Request, but if the agent fails to set any of the values then none of the values will be
at all. This behavior is referred to as an atomic operation, i.e. all or nothing. A
response will then contain an error indication.

5.6.1.5 Response

A Response packet is sent to all the above messages. If an object name, i.e. OBJ
IDENTIFIER, can not be found or there is something faulty with the object value, t
is reported in the response. Example of fault types arenoError, tooBig, noAccess,
wrongType, wrongLength etc.
A Response message is only as big as the MTU of the network it is sent on, and n
split up in pieces.
22

MIB design of AXE regional processors

 of
d as
s
 if

lling
an-

the

nt
is
 of
sent it

ich
ssible
ni-

t
and

luded
5.6.1.6 Traps

A Trap is issued spontaneously by an agent wanting to inform a managing entity
changes to data considered of such importance that a manger should be update
soon as possible. In SNMP aTrap is never acknowledged, and since UDP is used a
the underlying transportation protocol there is no way of knowing in higher layers
the message was received or not, even less if the message was OK or not.

In SNMPv2 traps can be used, and should be used, in symbiosis with continues po
from the managing entity. If a change occurs the change is directly trapped to a m
ager for him to deal with it, and if the trap for some reason isn’t received correctly
manager will be informed of the change eventually by polling anyway.

SNMPv2 in conjunction with SMIv2 makes it possible to define traps in two differe
ways. Either a defined MIB object is dedicated for being sent only as a trap, in th
case the MAX-ACCESS clause is set to accessible-for-notify in SMIv2. This type
object is not accessible by a managing entity, only readable when an agent has
spontaneously. This is the way in which traps are issued in SNMPv1.

The other way of trapping, and only possible in SNMPv2, is by sending objects, wh
have their MAX-ACCESS clauses set to at least read-only. These objects are po
to send within a NOTIFICATION-TYPE object, which is another object macro defi
tion. A notification trap is received by a manager with the following pairs of objec
names and values in the trap variable-bindings list: sysUpTime.0, snmpTrapOID.0
the pairs of the objects’ names and their values of the objects supposed to be inc
in the specified notification. When the manager receives a NOTIFICATION-TYPE

Appli-
cation

SNMP
agent

SNMP
 manager

Va
ria

bl
es

T
ra

p
or

 N
ot

ifi
ca

tio
n

 TCP/IP
interface

Internal
process
interface

Figure 5.10 Trap scenario. The dotted vertical lines are abstractions of
the interfaces between the different kinds of entities.
23

MIB design of AXE regional processors

, the
were
also
rap

is

ble.

ose,

or

histi-
dability
message he knows for how long the agent that trapped has been up and running
OBJECT-IDENTIFIER of the trap sent and the object name and value pairs that
relevant for this trap. The benefits of this type of trap is that it makes it possible to
send other relevant information, stored in other objects, along with the intended t
data.

5.7 Weaknesses of SNMP

• SNMP was not developed for retrieving large volumes of data. In SNMPv2 th
problem has been addressed by the introduction of theGetBulkRequestmessage. If
the network is big the polling can result in a large volume of requests and
responses. This could result in response times that are eventually unaccepta

• The traps are not acknowledged. It is up to the application to keep track of th
and make continuous pollings of data.

• There is not very much security. SNMPv2 provides for no encryption and a po
way of authentication, only by the use of the community strings.

• There are limitations to how complex an object can be. They are not very sop
cated. This can of course also be seen as an advantage since the understan
doesn’t become too difficult.
24

MIB design of AXE regional processors

ft-
sec-
P-
ss
, that
gent

ls
re of
o
gent

 of
6. The project objectives

The goal of this project was to define a MIB structure (see appendix A) for the so
ware modules (blocks) on a Regional Processor (RP) that handle the O&M (see
tions 6.1 and 6.3). After the scope of this project this new MIB structure, called R
MIB, will be implemented in an SNMP agent software module which will be a proce
running on an RP accessing data of the other software modules, mentioned above
are already running on the RP (see Fig. 9.1). The type of RP on which the SNMP a
will run is the SCB (Support and Connection Board).

To achieve the scope of the project the writer of this report has studied the signa
transferred between RPs and the managing entity of today, the CP, to get a pictu
the interface structure and what data is worth keeping in a MIB. Software has als
been obtained to compile and run an SNMP manager and an SNMP simulation a
to verify that the RP-MIB is correct from an SMI (see section 5) and SNMP point
view (see sections 5.4 and 5.5).

6.1 An outline of the target system

The target system is an RP in an Ericsson exchange.
An RP is a board contained in an exchange cabinet.
The RP is a logical device that can monitor its sur-
roundings and/or divide work, transfer calls etc.,
among other RPs or I/O boards.

An exchange is typically made up of several cabinets,
which are divided into magazines. Each magazine
can logically contain up to 32 slots. In each slot one
board can be placed. A board can be an RP, such as
an SCB board, an I/O board etc. An SCB is a control-
ling type of RP that supervises the other boards in the
magazine. The magazines will then be intercon-
nected via the SCBs through an RP bus, which is
placed in the front of the cabinet (see Fig. 6.1).

The slots of a magazine are interconnected through
the back plane. The APZ (see Abbreviations) part of
the back plane is the so called I2C- bus or M-bus (see
Fig.6.2).

S
C

B

S
C

B
S

C
B

S
C

B

Figure 6.1An AXE cabinet. Each
SCB of an SCB pair is respon-
sible for about half of the boards
between them.

S
C

B

S
C

B

25

MIB design of AXE regional processors

ur-
RPs

ant to
s and
a CP.

aling
s,

s,
r and
to
s of

s in a
will
RPs.
what

eci-
 are
l and
f the

roxi-
ely a

tan-
ec in
f the
The RP that this thesis mainly is intended for is the so called SCB board, which c
rently is being designed. The RP-MIB module is also adaptable for use on other
that use any of the blocks (see section 6.3) studied in this thesis too.

An SCB is an RP type that supervises other RPs in a magazine. The SCBs are me
be placed on both ends of a magazine to monitor and supervise other types of RP
I/O boards in a magazine. The SCB can then report to a managing device, today
The programs that will run on a SCB will be written in C.

An SCB is an RP type that has control of a magazine, at least when it comes to de
with the O&M part of it. As said earlier one magazine typically contains two SCB
where each SCB controls and collects data for one half of the magazine.

The tendency is to move more and more complex tasks from the CP onto the RP
since their hardware is continuously updated in new versions and becoming faste
can have more funtionality. The main O&M task of a controlling RP today is mainly
divide work on behalf of the CP and collect and store data about other RPs and I/O
a magazine.

The future perspective is to stop using a CP solution and instead run the exchange
stand alone kind of fashion. The logic will be kept in the RPs, and external devices
work as servers instead, such as storing the programs that will be loaded onto the
However, a stand alone product also needs monitoring and supervision and that is
this project is a part of.

In traditional AXE the CP and the RPs which it controls are normally physically
located within 10 meters of each other. The task of a CP is to handle important d
sion making and more complex problems. A CP also contains the programs that
loaded into the RPs when they start up. Normally two CPs are running in paralle
are doing exactly the same job, which is a result of keeping redundancy. If one o
CPs fails the other CP can take over exactly where the first one left off.

The CP and the RPs are connected to each other via a HDLC link which has app
mately a <100 Mbit/sec capability. The back plane of a magazine has approximat
10 Mbit/sec capability.

The aim for the future is to use some type of switched gigabit Ethernet protocol s
dard between the managing entity and the RP magazines and around 100 Mbit/s
the back plane equivalence. The idea is then to interconnect the different parts o
exchange, both the APT and APZ parts.
26

MIB design of AXE regional processors

RP-
CP

ion
n the
e CP

 are
nd
al pri-
he
s a
ceiv-
ed

 sig-
. For
rough
uld
the
6.2 Signal descriptions

Signals in AXE are divided into four categories: CP->RP, CP->CP, RP->CP and
>RP (see Fig 6.2). The definition for CP->CP signalling is transfer of data between
blocks on the same physical CP unit. The RP->RP signalling is mainly for distribut
of data between or through different RP-blocks, where these blocks can reside o
same fiscal RP or another RP. The focus of this report is the signalling between th
and RPs, the CP-RP and RP-CP signalling.

Each AXE signal description can be found in a database at Ericsson, where they
stored according to a template. Each description tells who the possible sender a
receiver is, what function the signal has, the possible return signals and the sign
ority. A signal has a priority level between A and D where D is the lowest priority. T
signals in APZ are normally at priority level C. Typically a CP->RP signal contain
reply signal pointer so that an eventual reply signal can be distinguished by the re
ing CP. This scheme can from an O&M point of view be considered as a distribut
client-server model, where the CP acts as client and the RP (SCB) as server.

Each data byte or word, a word is two bytes, of a signal is normally named in the
nal description and then there is often a more detailed description of each name
this project most of the CP-RP signals of the concerned blocks have been gone th
to find out if the data is worth and possible to store in the RP-MIB and what data co
be useful in an SNMP application. The criterias for finding data relevant to save in
RP-MIB have been a bit unclear but can be categorized in:

Figure 6.2 Hardware and software overview of how blocks interact in AXE.

CP Magazine

SCB

RP-BUS

I2C-BUS

RP RP RPBLOCK AU

BLOCK BU

BLOCK CU

BLOCK AR

BLOCK BR

BLOCK CR

CP-CP

CP-CP

CP-RP
RP-CP RP-RP

RP-RP

RP-RP

Up to 32 slots
27

MIB design of AXE regional processors

WI
his

is nor-

Ds.

c.

P.
ave
ainte-
, the
they

rre-
 to the
es are

 nor-

M
h

uld
all,
3).
 the
• Real stored data in the RPs, which is different kinds of PROM data such as H
(HardWare Inventory see 6.3.1), processor serial numbers and clock rates. T
type of data is normally read-only.

• Physical states of boards such as temperatures, power states etc. This data
mally read-only.

• Hardware devices that can be monitored and set such as different kinds of LE

• States of different programs such as different test states, polling principles et
This type of data can be both readable and writable from the managing side.

6.3 The considered RP-blocks

An RP-block is a software module that has defined funtionality and is run on an R
There is also a corresponding CP-block running on the CP. The RP-blocks that h
been of interest for this thesis are the blocks that handle APZ, Operations and M
nance, of an exchange. The blocks in question will all be run on a new RP board
SCB, for which the software currently is being designed. Other RPs, even though
might not utilize all blocks, can also benefit from this thesis.

In reality a block is divided into two parts, one part that runs on a CP and one co
sponding part that runs on the RPs. The part running on a CP has a U extended
block name and the part run on an RP has an R extended respectively. The nam
then for exampleRPMBHU versusRPMBHR. The part of interest that this thesis
regards are the R parts, if nothing else is stated.

The considered RP-blocks are namedRPMBH, RPMM, RPFD and theOS (OS is not
really an accepted name, but for general understanding OS will do).

A CP block part is normally programmed in the PLEX language and the RPs are
mally programmed in C, which is the case for the SCB board.

The tasks of each of the considered RP-blocks are described below.

6.3.1 The RPMBH block

The main task of this block is to monitor the other boards in regards of HWI PRO
and to set the states of the MIA (Manual Intervention Allowed) LED lights on eac
board.

The block is told by the CP how often the RP on which this block resides on sho
poll the slots for other RPs and boards for HWI data, how they are polled (not at
only once or continuously), and what state the MIA-LED lights are in (see Fig. 6.
The MIA-LED light states and HWI data of all boards in a magazine are stored in
28

MIB design of AXE regional processors

an
a

e
.

f

d to
p the

er
is

ED
n is
d by

h is
n

EM-
test is
nly
e type
od-

,

RAM memory of the SCB that the RPMBH block resides on. Logically the SCB c
handle up to 32 boards (see Fig. 6.2), although
magazine normally holds around 20 boards.

MIA is a LED on each board that when lit indi-
cates that it is OK to manually remove the board
from its slot position. The HWI PROM contains
information about the particular board, such as th
board’s serial number and date of manufacturing
One HWI PROM can contain of up to 255 bytes o
data, but normally contains less than 100 bytes.
The HWI data and MIA-LED states are collected
and set by a controlling RP and then possible to
distribute to the manager for reading and for the
MIA case also setting.

6.3.2 The RPMM block

The block’s task is mainly to monitor the power and fan status of the fans connecte
the RP that this block resides on. One or several fans can be put in a cabinet to kee
temperature at an acceptable level.

The block keeps track of the power status. Normally the RPs are fed by two pow
branches (A and B). If one fails, permanently or temporarily, it is detected buy th
block.

The supervised fan status concerns things such air temperature, motor current, L
states (on, off or blinking) and the status in which the SCB-Fan data communicatio
in, such as if there are framing or internal protocol errors. The fans are supervise
an SCB and the protocol used in that communication is the Denib protocol, whic
an internal Ericsson protocol. An SCB has the possibility to monitor up to eight fa
units at a time, but it is usually only one fan per controlling RP, though.

6.3.3 The RPFD block

This block deals mostly with testing of the RPs, not only SCBs, and the so-called
buses (Extension Modules buses). The block keeps track of things such as which
running on the RP and if the test is in active or passive mode. This block is not o
intended for use on the SCB type, but can be used on any RP type that needs th
of testing this block provides. The block is also responsible for testing Extension M
ules bus (EM-bus). An EM is a board to which there is a logical bus, the EM-bus

MIA

HWI

Figure 6.3 A general board architecture
29

MIB design of AXE regional processors

a on

he
wn
halted.

e if
r

s

s
CB

ee

ck

btain
lso
al
dress
ype of
which an RP can have control over. Testing of the EM-bus is done by echoing dat
it and looking if the returned data has been corrupted.

The possible RP-tests are:

• PS-test, Program Store test. This is a checksum test where bytes are read from t
PS area and computed into a checksum and compared with a previously kno
checksum. If the checksums are equal nothing happens otherwise the RP is

• DS-test, Data Store test: Data is written to the DS area and then read back to se
it matches the previously written data. This is done cautiously not to write ove
currently used and valid variables.

• CPU-test: Testing of instructions, registers, the ALU, logical operations such a
shifting etc., addressing and data memory bank testing.

• EM-test: Extension Module test. The RPs that have EMs send echoing signal
towards the EMs and make sure that the returned answer is the same. The S
board does not have any EMs to control.

6.3.4 The OS block

From a maintenance point of view the OS takes care of two things.

• Specific board informations such as processor serial number, memory size, fr
memory size, processor clock rate, permanent and cached software etc.

• This block is in charge of maintaining the addressing of the board that this blo
resides on. A board in a cabinet is pointed out by two variables, the magazine
address (subrack address) together with its slot number, which a board can o
from reading its slot position from the magazine back plane. The boards are a
appointed logical addresses which are stored by the RP together with their re
addresses in an internal table. There is also a possibility to appoint a group ad
to an RP. This means that one address can be valid for several boards. This t
addressing is normally not used but the possibility exists.
30

MIB design of AXE regional processors

e
n
ula-
o

nt of

ine,
the

this
cts.
6.4 RP-MIB specifics

In the RP-MIB module (See Appendix A) the data
has been collected block wise, four blocks in
total, where each block also can have sub func-
tions (see Fig. 6.4). The reason to divide it this
way is that some RPs use all blocks and some
only a few. This way makes the RP-MIB rela-
tively easy to adapt for the intended RP type, even
though it is mainly intended for a controlling type
of RP, such as the SCB.

Related data or data which is of the same type
from several boards is normally collected in
tables. The tables are normally indexed by an
index number, such as an RP number or a fan unit
number. Global data, data relevant for all boards,
or single data, only relevant for the RP on which
the SNMP-agent resides, is normally stored as
single objects in the RP-MIB.

The memory usage that the actual data of this RP-
MIB representation will use if fully implemented
is in worst case about 5 KB. This estimation was reached by maximizing the tabl
lengths and multiplying them with the maximum data lengths of each row and the
also add all the single objects of the RP-MIB. The MIB compiled in the agent sim
tor was about 50KB with all tables lengths set to 32 rows, but this compilation als
then contains the whole MIB tree structure.

The RP-MIB consists of a total of four tables and about 60-70 single MIB objects
which from examining other MIB modules for other devices, for instance at Cisco
Systems who have made their MIB modules public, seems like a reasonable amou
data.

6.4.1 RPMBH in the RP-MIB

The MIB objects of this block are single objects, relevant for all boards in a magaz
and board specific informations which are for this particular block stored in a table,
RPBoardTable.

The type of polling and the polling interval in number of 10 second intervals that
block does towards the HWI data is also saved in the agent as two separate obje

Figure 6.4The RP-MIB module with

RP-MIB

RPMBH

RPMM

RPFD

OS

Start function

Test init. func.

EM test func.

RP test func.

EM error func.

RP error req. func.

RP sup. circ. test func.

Physical states

 Addressing

the sub-blocks and their eventual
sub functions.
31

MIB design of AXE regional processors

vant

 rel-
of
 is a
 HWI

IB
 bit
 been
 that

f fan

n
m-
m

e
s air
ll or
ical
This makes it easy to know for the agent and managing entity how often it is rele
to check the HWI data from this block, if so desired.

RPBoardTable (see Table 6.1): Consists of data for boards in all physical slot posi-
tions. The index of the table indicates which slot number it is (up to 32 slots). The
evant slot data to put in the MIB is the MIA LED state, HWI PROM data and details
possible changes in a slot. The changes can be that there is no board, that there
new board a fault such as a missing EndOfText, an invalid checksum to the read
data or some other type of fault.

To prevent extensive SNMP polling of all slots in the table there is also a single M
object linked to this information. This data is four bytes long (32 bits) where each
represents one slot and tells if there has been any changes to a slot. If there has
any changes an SNMP manager then can read the more detailed information for
particular slot from the table and take appropriate actions.

6.4.2 RPMM in the RP-MIB

This block consists of power status information of the RPs in the magazine and o
unit information.

A fan is not an RP, but is instead controlled by an SCB that exchanges informatio
with the fan using an internal Ericsson protocol called Denib. The fan protocol co
munication is supervised from the RP side by looking for framing errors, checksu
errors and other protocol errors.

FanDataTable in RPMM (see Table 6.2): Fan units are monitored an SCB. This tabl
is indexed by the fan unit number, up to eight of them. The relevant data for a fan i
temperature, MIA LED state, HWI PROM data, whether the fan is accessible at a
not, if the HWI PROM data is accessible or not, and information about other phys
things such as if the power feed, fan motor, communication etc. are OK.

For more detailed information see appendix A.

Slot number MIA-LED state HWI-data Slot change

0

Table 6.1

Fan unit Read result
 Comm

Alarm info. Air temp. DataStatus HWIstatus HWIReadRes HWI dataErrorDet MIA-LED

1

Table 6.2
32

MIB design of AXE regional processors

f any.

 if the
l fail.

r
RPs
n be
s is
sts
 are

cks

s for
iden-
ype
ock

 on.

in.
6.4.3 RPFD in the RP-MIB

RPFD handles tests of both the RP as well as the EM (Extension Module)-bus, i
The RP-MIB contains two tables for this block, theRPTestTable andRPEMTestTable.

RPTestTable (see Table 6.3): There are four different tests that are cyclically run on
each RP (see 6.3.3). For each possible test there is a corresponding bit that tells
test is set active or passive. Trying to start a test with the test flag set passive wil

RPEMTestTable (see Table 6.4): The table is indexed by the EM numbers, up to 16 o
64 of them, depending on which type of RP it is. This table is represented in the
that have EMs to control. The SCBs do not normally have any EMs, although it ca
in control of the RPs that have. The relevant test information for each EM addres
which test state the EM is in, which CM controls the EM and in which order the te
are done. A CM is a software slot in the RP in which a block can reside in. There
32 CM numbers (0-31). The OS always has CM number 16 and APZ related blo
have numbers 17-31. The remaining CMs, 0-15, are used by APT blocks.

6.4.4 OS in the RP-MIB

The objects in this block are stable physical information about the RP and object
addressing the RP. The physical information regards things such as the product
tity of the bootprogram, the size of the memory the bootprogram resides in, RP t
number, board number, production name, processor serial number, processor cl
rate etc.

There are also seven single objects for addressing the RP that this block resides

• Subrack address: An address read from the magazine that this board is located

• Board address: A slot address read from the back plane.

EM address EM test state CM number Em test order

0

Table 6.4

Test state (act../pass..)Type of test

PS-test
DS-test
CPU-test
EM-test

Table 6.3
33

MIB design of AXE regional processors

s.

e
rface.

d

k

’s

s is for
is not
 be

ording
ave
t the

e and
ns
looks
ase

the RP.

 are
raps
ts to
ously

ram
ation
ram

and
• Stable physical address: The conjugated magazine address and board addres

• Logical individual address hardware: The logic address that other interfaces us
to address this board, this address lies in the back plane communication inte

• Logical individual address memory: Same as above but this address is instea
saved in the RP’s memory.

• Logical group address hardware: The logic group address which lies in the bac
plane communication interface.

• Logical group address memory: Same as above but is instead saved in the RP
memory.

The reason for keeping two address pairs where each pair show the same addres
the RP to find out that an internal address fault has occurred. If the address pair
the same then there is a fault somewhere, and logical conclusions can hopefully
made to find out where the real problem is.

6.5 Case studies for project verification

Some case studies have been made to verify that the project has been done acc
to the thesis specification and that the job has been correctly done. The cases h
been prepared by the writer of this report together with the people who know wha
cases should result in. The cases have then been implemented by the writer and
approved by the people that outlined them. The cases are illustrated by sequenc
flow diagrams. Three cases have been looked at. The first deals with what happe
when a board is removed or replaced, i.e the HWI data changes. The second case
at what happens when a LED is switched on by a managing entity and the third c
shows what should happen when an unexpected address update is detected by

In the cases that include a trap being sent by the agent to the manager the traps
thought as being lost, i.e not received by a manager. The reason for this is that t
sent by UDP not can be relied on. In the RP-MIB there are always backup objec
the traps objects. The backup objects are normally quite small and can be continu
polled by a manager to find out if anything has happened.

Seesection 9 for explanation of the OMF, which is referred to in the cases.

6.5.1 Case 1, HWI update

The first case studied uses information in the RPMBH block. The sequence diag
(see Fig. 6.5) shows how HWI data is transferred through an RP, from the applic
block out to the SNMP agent and eventually to an SNMP manager. The flow diag
(see appendix B) gives an explanation on how the RPMBH block works internally
uses the information that can be found in the RPMBH part of the RP-MIB.
34

MIB design of AXE regional processors

bal-

 any-
rPGlo-
ts

nd the

hen
it
hange.

P
e
 take
To prevent extensive polling of whole tables there is a ‘master’ MIB object, rPGlo
Change, containing a four byte string that is updated by the agent that this block
resides on. rPGlobalChange is supposed to be polled continuously. It indicates if
thing has happened in a slot. If something has happened that is indicated in the
balChange object, by a bit being set to 1, then polling has to be made of all objec
linked to it (See appendix A which objects rPGlobalChange represents).

Figure 6.5 shows what happens when a new board has been put in a magazine a
RPMBH block on the SCB is made aware of it.

An SCB continuously polls for slot changes in the magazine (see appendix B). W
the SCB finds a new board the SCB polls it for the HWI data. When this is done
reports towards a managing entity, e.g. an SNMP agent, that there has been a c
The SNMP agent then polls the RBMBH for, in this case, the HWI data. The SNM
manager then has to collect all objects that are relevant for rPGlobalChange to b
updated, and one of those things is the HWI data. It is then up to the manager to
appropriate actions.

Back plane
 I2C-bus RPMBH-block OMF SNMP-agent SNMP-manager

 Scan slot (<32 times)

Slot is filled or empty

Get HWI data

HWI data until EOT

Change in slot

Change in slot
Poll for rPGlobalChange

No changes

Poll for rPGlobalchange

No changes

Get HWI data
Get HWI data

HWI data
HWI data

Poll for rPGlbalchange

Something has changed!

Get HWI data

HWI data

Figure 6.5Sequence diagram of RP HWIs data forwarding
towards SNMP entities. The SNMP agent does not update the rPGlobalChange

 Scan slot (first time)

Slot is filled or empty

until the valid data which was the reason for the update also has been recovered.
35

MIB design of AXE regional processors

e MIA
by
a fan
r is

e
 the

d the

ddress
 subrack
anager.
 and
e Fig.
6.5.2 Case 2, Setting of fan MIALED

The second case studied is what happens when wanting to change the state of th
LED of a fan unit, which is handled by the RPMM block. This process is illustrated
a sequence diagram (see Fig. 6.6). An SNMP manager wants to set the LED of
unit. He then set the object, fanMIALEDState, for that particular fan unit. The orde
transferred towards the SCB board, which responds by setting another objects,
fanMIALEDSetRes. This does not guarantee that the LED will be set, just that th
SCB will make its best effort to change it, since there is no acknowledgment from
fan unit back to the SCB. Since there is no guarantee that the LED will be change
final trap can only inform the manager of the attempt.

6.5.3 Case 3, Address update

A third case is what happens when a running RP makes an address update. An a
update means that the RP sends all its address data spontaneously such as the
address, board address, stable physical address and all logical addresses to a m
This spontaneous transmission is normally an indication that something is wrong
it is up to the manager to take appropriate action. See the sequence diagram (se
6.7).

Fan unit RPMM OMF SNMP-agent SNMP-manager

Figure 6.6Sequence diagram for changing the MIA LED on a fan unit.1) The trap is

Set(Change LED)

Change LED

Change LED

Change LED

LED change attempted

LED changed attempted

Get(Led change)

Resp.(No LED change)

Response(Change LED)

Trap(LED change)

Get(Led change)

Resp.(LED change!)

1

 considered as being lost.
36

MIB design of AXE regional processors

ions
 not
se

. The

d an
eves

e

om-

pport-
were
 in

aps
6.6 Tools used

Since the time has been limited only small simulations have been made. Simulat
for making verifications of the actual job and implementations on a real RP have
been made though. The software tools have been used to compile MIBs and to u
SNMP on the compiled data, and to see and present how SNMP works in practice
specification of this master thesis did not include a real implementation either.

The applications necessary for any kind of simulation are an SNMP manager an
SNMP agent. The manager can be any kind of SNMP manager since it only retri
and sets SNMP data of an agent. A MIB is loaded to a manager and when the
OBJECT-IDENTIFIERS are known the SNMP data can be correctly collected, se
section 6.6.1 for more information about MIB compilation.

The requirements on the agent was that it should provide the ability to load and c
pile a privately defined MIB and make a database from it and also be able to use
SNMPv2 and behave accordingly. There doesn’t seem to be very many agents su
ing those requirement that can be run on a UNIX station. Therefore the programs
obtained for a PC running Windows NT 4.0. The manager came from a company
Slovenia called MG-SOFT and the agent simulator,SimpleAgent, from a company in
USA called SimpleSoft Inc.

The manger has the capability of sending and retrieving SNMP packets using
SNMPv1, v2 or v3. There is also the possibility to receive both types of SNMPv2 tr

OS OMF SNMP-agent SNMP-manager

Figure 6.7Sequence diagram of an RP address update. The manager is

Address update

Address update

Get(RP addresses info)

Response(RP addresses info)
no update

Get(RP address info)

Response(RP address info)
update!

constantly polling the RP for changes.1) The trap generated by the

Trap (RP address info update)

agent is considered to be lost.

GetBulk(All RP adresses)

Response(All RP addresses)

1

37

MIB design of AXE regional processors

 to
d

o dif-

, i.e.
the

-

ck-
ack-

MIB
on.

dy to
from an agent. In the package software for compilation of a MIB is also included,
see that it is syntactically correctly implemented. A MIB data structure is compile
into a readable file which the agent uses to build its data base when it is started.

The manager and agent have then been running on the same machine, but in tw
ferent windows, talking SNMPv2 with each other.

6.6.1 General MIB development and compilation

There are a number of programs to check and compile a MIB into an SNMP entity
manager or agent. See section above for the program chosen for this project. In
development of a real SNMP agent there are a number of steps to take:

• Find out what you want to manage.

• Select predefined MIBs, e.g. MIB-II, or define your own MIB module to be sup
ported by the agent.

• Check (a first step of compilation) the MIB module by running it through a che
ing program, which usually comes as a part of a MIB development software p
age. This is just to see that the rules of the SMI are being followed.

• Obtain an SNMP agent that allows to be extended with the MIB of choice.

• Compile the agent and it creates function headers related to the implemented
structure for accessing the application data to be managed, the instrumentati

• Extend the header functions with body code to access the instrumentation.

• Compile the code once again to the system of choice and the agent will be rea
run.
38

MIB design of AXE regional processors

ation

ls and

, and
ta

sys-
if an
ould

uch
g I
lling
d in
r they

. I
ule,

ted

actice.

epts
are
 the

k han-
en pro-
7. Summary and conclusions

In this report, I have presented design and specification of a Management Inform
Base (MIB), called RP-MIB, for Regional Processors that are used in an AXE
exchange. The RP-MIB represents objects that reflect data (variables, tables and
states) necessary for operations and maintenance of RPs via the standard protoco
platforms used for network management.

In order to design the RP-MIB, I have investigated what O&M informations trans-
ferred between a central processor (CP), which is used as managing entity today
the RPs. This analysis allowed definition of numerous MIB objects that model da
related to O&M in an exchange.

To eventually get a real SNMP agent running in an exchange, which is a real-time
tem, preliminary steps first had to be taken. These steps included an investigation
SNMP agent at all could be implemented, and also what information the agent w
monitor and manage.

When I started this work I didn’t know anything about the target system nor very m
about SNMP and nothing about all the concepts related with SNMP. The first thin
had to learn was how the AXE system works today with RPs, CPs, blocks, signa
etc. In parallel with this work I studied the concepts of SNMP, such as how it is use
systems today, what messages it contains, what data is sent in them and whethe
are acknowledged or not.

I then studied the concepts of ASN.1, MIBs and the different versions of the SMI
then transferred the relevant data of the AXE signals in question into a MIB mod
the RP-MIB, which can be extended further in the future.

I then got some software to be able to compile the RP-MIB and then run a simula
SNMP agent and manager against each other. This because I wanted to try out
response times and how much data that can be fetched in one datagram etc. in pr

One conclusion to draw is that the concepts of SNMP works almost like the conc
of the AXE system, when it comes to the message distribution. The signals that
sent in AXE are de facto messages sent between processes which can reside on

same hardware or on separated hardware1.

1 To be able to send AXE messages between different hardwares a link handler must be used. Lin
dlers are included in the RPs’ operating system, OSE Delta. This makes message passing betwe
cesses transparent whether the processes are running on the same hardware, i.e. RP, or not.
39

MIB design of AXE regional processors

int of
 man-
el,
at it
han-

 of

ave
use

pted
orm.

ck
red

and
e if it

me of
The AXE messages contain data for getting and setting data from a managing po
view. There are also signals that are spontaneously sent by RP blocks towards a
aging entity, today the CP. SNMP works in a similar way although on a higher lev
and normally also over greater distances. But the main advantage with SNMP is th
is a widely spread protocol which makes the systems that use SNMP quite easy to
dle.

This thesis has resulted in a MIB implementation, the RP-MIB (see appendix A),
the considered RP-blocks,RPMBH, RPMM, RPFD andOS.

This project combined with other aspects have resulted in that Ericsson UAB will h
a continuation of this project. First by purchasing SNMP development software, or
older software already available.

We have started development of a real SNMP agent, by using SNMP software ada
for the real-time operating system, OSE Delta, which is used on the SCB-RP platf

SNMP as a protocol is quite simple to understand and will rely on the TCP/IP sta
(called the INET stack by ENEA) that is already a part of OSE Delta in the conside
RP types.

I have compiled a real SNMP agent, which does not contain any RP-MIB data yet,
loaded it onto an SCB. The next step is to connect an SNMP manager to it and s
responds to anything that is already supposed to be supported by it, which are so
the objects that are included in MIB-II. After this is done I will start the real imple-
mentation to be able to use the data in the RP-MIB.

Things seem quite promising as they look right now.
40

MIB design of AXE regional processors

ble

s
his

sup-
t
, i.e.
ot
e.
8. Problems during the project

• A couple of weeks went by while waiting for the software and hardware to be a
to run any kind of simulation.

• Starting up the SNMP agent simulator was at first impossible to do. There wa
another SNMP entity, a network monitoring agent, using the UDP port, 161. T
problem took some time to find and sort out.

• It turned out that the agent simulator was not very sophisticated. 1) It did not
port default values. 2) There was no possibility to set any object values by no
using SNMP, to simulate instrumentation updates. 3) Table lengths were static
only one table length per MIB compilation was allowed. These problems did n
have a serious impact on the project but were never the less of some nuisanc
41

MIB design of AXE regional processors

 has
me-

terna-
ols.
se
te

s,
 will
e is

akes
r-
n

l
uous
ent?
9. Further work

The RPs which this thesis consid-
ers mainly run under an OS called
OSE Delta developed by ENEA.
OSE Delta has been the most com-
monly used OS on Ericsson’s RPs
for some years now.

According to ENEA they can pro-
vide an SNMP agent that supports
the MIB-II, which means it sup-
ports their built in TCP/IP stack
(INET) including SNMP. The
agent can then be ‘glued’ on an
existing RP and be run as an inde-
pendent application. The writer of this report has been in contact with ENEA and
come to the conclusion that adding a MIB-module to the glued SNMP agent is so
thing that can be done and is also supported in the software.

There seem to be two alternative software choices that can be made. The first al
tive originates from SNMP research which is big player on SNMP development to
ENEA is also working together with them now. The second alternative will be to u
SNMP tools from WindRiver, formerly known as Epilogue, which used to coopera
with ENEA.

The next step will then be to connect the MIB data objects to the blocks’ variable
which are sometimes referred to as ‘the instrumentation’, that run on an RP. This
probably be one of the most tricky parts of a whole implementation. However, ther
a parallel project at UAB in which development of a translation software module,
called the OMF, is in progress and almost finished.

An external application can send signals to the OMF (see Fig. 9.1) and the OMF t
care of the ‘unwrapping’ of the raw response data from the RP-block and then fo
wards the requested response to the application that requested it, for example a
SNMP agent.

Another problem that might arise is the well known problem of inconsistency. Wil
several applications have access to the same instrumentation? If there are contin
updates of the instrumentation data, will every change then be forwarded to the ag
These are probable problems that will need to be discussed in the future.

SNMP-agent

RP-blocks

OMF
RPMBH
RPMM

...........

signals SNMP
Manager

Figure 9.1 The future way in which message handling is to be done
 between the RP-applications and external entities.

OMF-
signals

RP (SCB)
42

MIB design of AXE regional processors

as
IB

and
 agent
 I
.

 to
MP.

 pos-
10. Own comments

When I started this work I basically only knew the theory behind SNMP, what it w
used for and loosely about the messages within the protocol. I didn’t know what a M
was and even less about ASN.1. Now I think that I have a good knowledge about it
steps that are necessary to take, and avoid, to eventually get a functional SNMP
on a system. I didn’t really know very much about the SNMP surroundings when
started and even less about the AXE exchange system that Ericsson uses today
This thesis hasn’t really been focused on the SNMP protocol itself, but rather how
extract data from an existing system and then port it into a MIB for later use by SN
I think that the specified goals for this thesis have been reached and that it is now
sible to proceed further.
43

MIB design of AXE regional processors

its.
11. Abbreviations

ALU Arithmetic and Logic Unit
APT The application part of an AXE system
APZ The controlling part of an AXE system
ASN.1 Abstract Syntax Notation One
CCITT Commité Consultatif International de Telegraphique et Telephonique
CM Control Module
CP Central Processor
EM Extension Module
FTP File Transfer Protocol
HDLC High-level Data Link Control
IAB Internet Architecture Board
IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
ISO International Organization for Standardization
LAN Local Area Network
LED Light-Emitting Diode
MIA Manual Intervention Allowed
MIB Management Information Base
MTU Maximum Transmission Unit
OMF Operation and Maintenance Framework
OS Operating System
OSI Open Systems Interconnection
O&M Operations and Maintenance
PDU Protocol Data Unit
RFC Request For Comment
RP Regional Processor
RPC Remote Procedure Call
SCB Support and Connection Board. Can maintain other boards and fan un
SNMP Simple Network Management Protocol
SMI Structure of Management Information
TFTP Trivial File Transfer Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
WAN Wide Area Network
44

MIB design of AXE regional processors
12. References

[1] SNMP, SNMPv2, SNMPv3 and RMON 1 and 2, the third edition by William
Stallings. 1999. ISBN: 0-201-48534-6.

[2] MIB for an SNMP based maintenance of an RPG in an AXE10, by Pernilla
Jansson and Chaowana Kusonkhum (bachelor’s thesis). Haninge College of
Engineering, Royal Institute of Technology. June 1998.

[3] Getting to know AXE. An Ericsson training document. EN/LZT 101 548 R2A.
1987.

[4] Operation and maintenance of stand alone platforms. An Ericsson internal
report. UAB/B/R-97:399 Uen. February 1998.

[5] Network Management by Ponthus Nyrelli. First part of a diploma thesis.
October 1997.

[6] Slides from the Network Management Course 2g5552 at KTH by Volker
Lausch. http://www.it.kth.se/edu/Ph.D/NM99/

[7] RFC 1155, Structure and Identification of Management Information for TCP/
IP based Internets, by M.Rose and K.McCloghrie. http://www.ietf.org/
rfc.html. May 1990.

[8] RFC 1212, Concise MIB Definitions, by M. Rose and K. McCloghrie. http://
www.ietf.org/rfc.html. April 1991.

[9] RFC 1213, Structure and Identification of Management Information for TCP/
IP-based Internets MIB-II, by M.Rose and K.McCloghrie. http://
www.ietf.org/rfc.html. March 1991.

[10] FOLDOC, Free- On Line Dictionary Of Computing. http://ftp.sunet.se/
foldoc/index.html
45

MIB design of AXE regional processors

t.

l-
13. Acknowledgments

I would like to thank the following people for their contributions to this thesis.

Lennart Malmberg, for explaining the AXE system both in general and especially
when it comes to RPMBH and RPMM, and also for being a good mentor.

Richard Tham, for initiating the project and for getting tools needed for the projec

Håkan Magnusson, for explaining the features of the RPFD block.

Kjell Persson and Lars Jönsson for contributing input about the OS.

Stefan Wallin at DataDuctus AB, for suggesting SNMP testing tools.

Håkan Trygg at ENEA, for explaining some of the OMF and OSE features.

I would also like to thank the people at UAB/Y/I in general for making me feel we
come.
46

MIB design of AXE regional processors
14. Appendices

APPENDIX A

RP-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
 experimental FROM SNMPv2-SMI
-- RowStatus is used for monitoring what access level a row in a table
-- with createble rows has from the manager's point of view. (The agent
-- always has full access to own data). Here only fixed tables are used.
-- RowStatus FROM SNMPv2-TC
 OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF;

rPMIB MODULE-IDENTITY
 LAST-UPDATED "200102090000Z"
 ORGANIZATION "Ericsson UAB"
 CONTACT-INFO
 "Per Holmgren
 Ericsson Utvecklings AB.

 Götalandsvägen 230
 12525 Älvsjö
 Sweden
 Phone: +46 (0)8 727 1469

 E-Mail: per.holmgren@uab.ericsson.se"
 DESCRIPTION
 "The RP-MIB module for implementation in an RP supporting the RP
 blocks RPMBH, RPMM, RPFD and RP-OS. This module is intended for
 the SCB-board mainly, but can be extended/reduced to fit other
 RPs too. The SCB-board can be in charge for the O&M part of up to
 32 slots and up to 8 fan units.
 NOTE: Only informations known through the CP-RP
 'interface' are included"
 ::={experimental 1} --Will probably use {enterprises 193 ~80}

-- The data groups of RP-MIB

 rPMBH OBJECT IDENTIFIER ::={rPMIB 3}

 rPMM OBJECT IDENTIFIER ::={rPMIB 4}

 rPFD OBJECT IDENTIFIER ::={rPMIB 5}

 rPOS OBJECT IDENTIFIER ::={rPMIB 6}

rPGlobalChange OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(4))
47

MIB design of AXE regional processors
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "rpGlobalChange is a global object for finding any type of unusual
 events (changes/alarms etc) that has happened in the RP. The
manager
 should poll this object continously. Each bit of the string
 (4 bytes = 32 bits) represents one RP. When manager has seen this
 event he is responible for setting the value to normal (Bit#=0)
 again.
 This object (rPGlobalChange)represents the following objects of
 this MIB module:
 rPSlotDataChange
 rPPowerStatus
 rPTemporaryPowFaultsNum
 rPPowerPathChange
 fanMIALEDSetRes
 fanDataorHWIStatus
 rPEMErrorType
 rPEMAlarmWord
 rPErrorCase
 rPErrorCode
 rPErrorData
 rPAddrInfo
 Most of the above objects also have trap equivalences (except
 rPSlotDataChange). Neither of the above objects represent a state
 which is very common to changes.
 Bit#:
 0 = No change (normal)
 1 = Unusual event"
 ::={rPMIB 1}

rPGlobalChangeTrap NOTIFICATION-TYPE
 OBJECTS {rPGlobalChange}
 STATUS current
 DESCRIPTION
 "rPSlotDataOneTrap is sent to the manager informing about that a
 sudden change/update has happened in up to 32 slots. The included
 data is a 4 byte string.
 See rPGlobalChange (which is the poll equivalent) for mor info."
 ::={rPMIB 2}

rPBoardTable OBJECT-TYPE
 SYNTAX SEQUENCE OF RPBoardEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The conceptual (not real) table listing the LED-state and PROM-
 data of a board in the RP, by using the slot number as the index"
 ::={rPMBH 1}
48

MIB design of AXE regional processors
rPBoardEntry OBJECT-TYPE
 SYNTAX RPBoardEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual (not real row) entry in the RPBoardTable. The
 table is indexed by the slot number"
 INDEX { rPSlotNumber }
 ::={rPBoardTable 1}

RPBoardEntry ::= SEQUENCE{
 rPSlotNumber INTEGER(1..32),--INTEGER(0..31),
but does not like index 0
 rPBoardLEDState INTEGER(0..1),
 rPHWIPromData OCTET STRING(SIZE(1..255)),
 rPSlotDataChange OCTET STRING(SIZE(1))}

rPSlotNumber OBJECT-TYPE
 SYNTAX INTEGER(1..32) --Does not like an index 0 in compilation
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Slot number is valid for numbers
 0-31"
 ::={rPBoardEntry 1}

rPBoardLEDState OBJECT-TYPE
 SYNTAX INTEGER(0..1)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "MIA LED-state on a board
 0 = off
 1 = on"
 ::={rPBoardEntry 2}

rPHWIPromData OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1..255))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Up to 255 bytes HWI PROM data for a hardware board. Usually
 less than 100 bytes(100 octets). The maximum number of bytes
 possible to retreive is rPPromMaxLen number of bytes"
 ::={rPBoardEntry 3}

rPSlotDataChange OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
49

MIB design of AXE regional processors
 STATUS current
 DESCRIPTION
 "rPSlotDataChange is a 1 byte string informing the manager about
 the details of the changes in the slot.
 B0-B1: Board code
 0 = Not used --Could be OK instead
 1 = No board
 2 = New board
 3 = Fault
 B2-B3: Not used
 B4-B7: Fault code, valid if board code is 3
 0 = Missing EOT
 1 = Invalid checksum
 2 = Other fault
 3-15 = Not used"
 ::={rPBoardEntry 4}

rPPollPrinciple OBJECT-TYPE
 SYNTAX INTEGER(0..2)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Polling principle of an RP is an integer. Is useful
 for a manager to keep track of if polling is at
 all necessary for this RP.
 0 = Polling off
 1 = Polling performed once
 2 = Polling autonomous (normal)"
 ::={rPMBH 2}

rPPollInterval OBJECT-TYPE
 SYNTAX INTEGER(0..31)
 UNITS "Every 10 seconds"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Polling interval is a 1 byte integer. Interval in units of 10
 seconds. This can be usful information for the manager to know
 how often polling for RP update is useful.
 0-31 units"
 ::={rPMBH 3}

rPOpsHWICHANGE OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "OPS-pointer for sponataneous signal HWICHANGE"
 ::={rPMBH 4}
50

MIB design of AXE regional processors
rPPromMaxLen OBJECT-TYPE
 SYNTAX INTEGER(0..255)
 UNITS "Bytes"
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "PROM data maximum length is the maximum allowed length in bytes
 before a boards PROM is considered faulty
 0-255"
 ::={rPMBH 5}

rPOpsRPMMFANSTAT OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "OPS-pointer for spontaneous signal RPMMFANSTAT"
 ::={rPMM 1}

rPOpsRPMMPOWSTAT OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "OPS-pointer for spontaneous signal RPMMPOWSTAT"
 ::={rPMM 2}

rPPowerStateA OBJECT-TYPE
 SYNTAX INTEGER(1..2)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "State of power A
 1 = No fault
 2 = Permanent fault"
 ::= {rPMM 3}

rPTemporaryPowFaultsNumA OBJECT-TYPE
 SYNTAX INTEGER(0..255)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

"Total number of temporary faults on power A since last restart of
 RPMMR"
 ::={rPMM 4}

rPPowerStateB OBJECT-TYPE
 SYNTAX INTEGER(1..2)
 MAX-ACCESS read-only
51

MIB design of AXE regional processors
 STATUS current
 DESCRIPTION
 "State of power B
 1 = No fault
 2 = Permanent fault"
 ::={rPMM 5}

rPTemporaryPowFaultsNumB OBJECT-TYPE
 SYNTAX INTEGER(0..255)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

"Total number of temporary faults on power B since last restart of
 RPMMR"
 ::={rPMM 6}

rPPowerStatusTrap NOTIFICATION-TYPE
 OBJECTS {rPPowerStatus,
 rPTemporaryPowFaultsNum,
 rPPowPathChange}
 STATUS current
 DESCRIPTION
 "Is sent to inform manager about sudden changes of the
 power status. This information could be polled
 continously for too."
 ::={rPMM 7}

rPPowerStatus OBJECT-TYPE
 SYNTAX INTEGER(1..3)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "rPPowerStatus is to be changed when a change in power
 status is detected
 1 = No fault
 2 = Permanent fault
 3 = Temporary fault"
 ::={rPMM 8}

rPTemporaryPowFaultsNum OBJECT-TYPE
 SYNTAX INTEGER(0..255)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

"Number of temporary power faults since last trap sent i s a 1 byte
 integer. This value SHOULD be zeroed after trap has been sent.

(If counter32: However, a Counter32 is not read for its value but
 rather the difference between two readings.)
 Is only valid when rPPowerStatus is set permanent (2) or
 temporary (3)"
52

MIB design of AXE regional processors
 ::= {rPMM 9}

rPPowPathChange OBJECT-TYPE
 SYNTAX INTEGER(1..2)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Power path change is an integer which informs the manager
 which path that had a power change
 1 = A
 2 = B"
 ::={rPMM 10}

fanDataTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FanDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Table (conceptual) containing up to 8 fanDataEntries"
 ::={rPMM 11}

fanDataEntry OBJECT-TYPE
 SYNTAX FanDataEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual row containing the fan unit number as index and air
 temp, LED state, read result, communication error details and
 alarm information as relevant data for each fan. The table also
 includes status information about HWI data and data status
 for the fan"
 INDEX {fanUnitNumberInd}
 ::={fanDataTable 1}

FanDataEntry ::= SEQUENCE {
 fanUnitNumberInd INTEGER(1..8),
 fanReadResult INTEGER(0..4),
 fanCommErrorDet INTEGER(0..3),
 fanAlarmInfo OCTET STRING(SIZE(2)),
 fanAirTemp OCTET STRING(SIZE(2)),
 fanMIALEDState INTEGER (0..3),
 fanDataStatus INTEGER(0..3),
 fanHWIStatus INTEGER(0..3),
 fanHWIReadRes INTEGER(0..5),
 fanHWIPromData OCTET STRING(SIZE(1..255))}

fanUnitNumberInd OBJECT-TYPE
 SYNTAX INTEGER(1..8)
 MAX-ACCESS read-only
53

MIB design of AXE regional processors
 STATUS current
 DESCRIPTION
 "fanUnitNumber is a number representing fan 1-8. This object
 represents the indexing of the fanDataTable"
 ::={fanDataEntry 1}

fanReadResult OBJECT-TYPE
 SYNTAX INTEGER(0..4)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Read result is an integer informing how well data collection has
 been made from a fan
 0 = Successfully read fan data (Fan alarm information, fan
air
 temperature and fan MIA LED state)
 1 = Not used
 2 = Fan fault, no fan connected
 3 = Fan fault, communication error
 4 = Requested fan unit is out of range
 5-255 = Not used"
 ::={fanDataEntry 2}

fanCommErrorDet OBJECT-TYPE
 SYNTAX INTEGER(0..3)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Communication error details. An addition to the previously read
 result if there was a communications error (fanReadResult == 3).
 0 = Framing error
 1 = Checksum error
 2 = Protocol error
 3 = Addressing mode error
 4-255 = Not used"
 ::={fanDataEntry 3}

fanAlarmInfo OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(2))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

"Two bytes: The first byte mirrors fanReadResult (integer 0-4) and
 the second byte represents the fan alarm information (0*00 -
0*ff).

Fan alarm information i s a 1 byte string about the physical state
 of a fan, where each bit out of the one byte describes a state.
 Is only valid if fanReadResult is 0.
 BYTE no. 2:
 B0: 0 = Temperature < 65*C
 1 = Temperature > 65*C
54

MIB design of AXE regional processors
 B1: 0 = Temperature < 55*C
 1 = Temperature > 55*C
 B2: 0 = Temperature sensor working
 1 = Temperature sensor out of range
 B3: 0 = Motor current OK
 1 = Motor current out of range
 B4: 0 = Fan internal communication OK
 1 = Fan internal communication error
 B5: 0 = Fan motor regulation OK
 1 = Fan motor regulation error
 B6: 0 = Power branch A (-48) OK
 1 = Power branch A (-48) error
 B7: 0 = Power branch B (-48) OK
 1 = Power branch B (-48) error"
 ::={fanDataEntry 4}

fanAirTemp OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(2))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Two bytes: First byte mirrors fanReadResult (integer 0-4)
 and the second byte represents fan air temperature (integer
 0-138). This states the temperature in the fan air.
 Is only valid if fanReadResult is 0.
 BYTE no. 2:
 0-104 = Plus (0*C to 104*C)
 128-138 = Minus (-1*C to -10*C)"
 ::={fanDataEntry 5}

fanMIALEDState OBJECT-TYPE
 SYNTAX INTEGER(0..3)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Fan MIA LED state. Is only usable if fanReadResult is 0.
 When fanMIALEDstate is changed by the manager the agent will
 transmit the order to RPMM. RPMM will send back
 an attempt to change the LED. The attempt is
 stored in fanMIALEDSetRes.
 0 = LED off
 1 = Slow flash
 2 = Fast flash
 3 = LED on
 4-255 = Not used"
 ::={fanDataEntry 6}

fanDataStatus OBJECT-TYPE
 SYNTAX INTEGER(0..3)
 MAX-ACCESS read-only
 STATUS current
55

MIB design of AXE regional processors
 DESCRIPTION
 "Fan Data status is an integer. It represents the fan status
 in regards of data availability.
 0 = Fan connected, fan data available
 1 = Not used
 2 = Fan fault, no fan connected
 3 = Fan fault, communication error
 4-255 = Not used"
 ::={fanDataEntry 7}

fanHWIStatus OBJECT-TYPE
 SYNTAX INTEGER(0..3)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Fan HWI status is a 1 byte integer. It represents the fan status
 in regards of HWI data availability.
 0 = Fan connected, HWI data available
 1 = Not used
 2 = HWI fault, no fan connected
 3 = HWI fault, communication error
 4-255 = Not used"
 ::={fanDataEntry 8}

fanHWIReadRes OBJECT-TYPE
 SYNTAX INTEGER(0..5)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Fan and HWI read result is a 1 byte integer
 0 = Successful read, all data read
 1 = Successful read, more data to read
 SHOULDNT BE NECESSARY, can read all at once
 2 = HWI fault, no fan connected
 3 = HWI fault, communication error
 4 = The requested fan unit is out of range
 5 = The requested data is out of range
 6-255 = Not used"
 ::={fanDataEntry 9}

fanHWIPromData OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1..255))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The sequential HWI PROM data"
 ::={fanDataEntry 10}

fanUnitNumber OBJECT-TYPE
 SYNTAX INTEGER(1..8)
56

MIB design of AXE regional processors
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "fanUnitNumber is a number representing fan 1-8. This
 object is not supposed to be read, is instead supposed
 to be contained in a notification-type (which does not
 support not-accessible objects)"
 ::={rPMM 12}

fanMIALEDSetResTrap NOTIFICATION-TYPE
 OBJECTS {fanMIALEDSetRes}
 STATUS current
 DESCRIPTION
 "Is sent to manager when receiving an order from manager to change
 the LED-state of appointed fan unit. Does not promise anything
 but indicates that the RP will do make a best effort"
 ::={rPMM 13}

fanMIALEDSetRes OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(8))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "This object does not guarantee that the LED is really set for the
 intended fan unit. It only indicates that the regional program
will
 make a best effort (Regional program programmed that way!).
 However this object indicates that there might
 be a fan problem. Each byte represents one fan unit. Each byte can
 have values 0-5.
 NOTE: This is a single object that is used for all fan units.
 Byte#:
 0 = Setting of LED will be executed
 1 = Not used
 2 = Fan fault, no fan connected
 3 = Fan fault, communication error
 4 = Requested fan unit is out of range
 5 = Invalid MIA LED state requested"
 ::={rPMM 14}

fanDataorHWIStatusTrap NOTIFICATION-TYPE
 OBJECTS {fanDataorHWIStatus}
 STATUS current
 DESCRIPTION
 "Is sent to manager when change in fan status or in HWI status"
 ::={rPMM 15}

fanDataorHWIStatus OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-write
57

MIB design of AXE regional processors
 STATUS current
 DESCRIPTION
 "An eight bit string. Each bit represents one fan unit. This
 object can be polled by the manager to find out that some
 kind of fan unit problem has occurred (data communication
 or HWI status). When fault the agent sets the bit in question
 and is then seen by the manager by polling. The manager
 is then responsible for resetting the bit for that fan unit.
 0*00 = normal
 0*01 = fault in fan unit one
 .
 .
 0*80 = fault in fan unit eight
 Example: 0*0C (00001010) means fault in both fan unit 2 and 4."
 ::={rPMM 16}

--RPFD MIB group

--Different functions for the rpfd group

rPFDStartFunc OBJECT IDENTIFIER ::={rPFD 1}

rPFDRPTestInitFunc OBJECT IDENTIFIER ::={rPFD 2}

rPFDEMTestFunc OBJECT IDENTIFIER ::={rPFD 3}

rPFDRPTestFunc OBJECT IDENTIFIER ::={rPFD 4}

rPFDEMErrorFunc OBJECT IDENTIFIER ::={rPFD 5}

rPFDRPErrorDataReqFunc OBJECT IDENTIFIER ::={rPFD 6}

rPFDRPSupCircTestFunc OBJECT IDENTIFIER ::={rPFD 7}

rPOpsRPEMERROR OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "rPOpspointer for signal RPEMERROR "
 ::={rPFDStartFunc 1}

rPMaxEMNum OBJECT-TYPE
 SYNTAX INTEGER{sixteen(16),
 sixtyfour(64)}
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Maximum number of EM
 16 or 64"
 ::={rPFDStartFunc 2}
58

MIB design of AXE regional processors
rPTestTable OBJECT-TYPE
 SYNTAX SEQUENCE OF RPTestEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The conceptual (not real) table listing the test state of
 the RP"
 ::={rPFDRPTestInitFunc 1}

rPTestEntry OBJECT-TYPE
 SYNTAX RPTestEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

"A conceptual (not real row) entry in the rPTestTable. The table
 is indexed by the rPTestType"
 INDEX { rPTestType }
 ::={rPTestTable 1}

RPTestEntry ::= SEQUENCE{
 rPTestType INTEGER(1..4),
 rPTestState INTEGER(0..1)}

rPTestType OBJECT-TYPE
 SYNTAX INTEGER(1..4)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Type of RP test to be done. The tests can be done in parallel,
 which means that the table is four rows long.
 1 = PS-test
 2 = DS-test
 3 = CPU-test
 4 = EM-test"
 ::={rPTestEntry 1}

rPTestState OBJECT-TYPE
 SYNTAX INTEGER(0..1)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Sets appointed test passive or active
 0 = Passive
 1 = Active"
 ::={rPTestEntry 2}

rPEMTestTable OBJECT-TYPE
59

MIB design of AXE regional processors
 SYNTAX SEQUENCE OF RPEMTestEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The conceptual (not real) table listing the state in which the
 test of an EM is in"
 ::={rPFDEMTestFunc 1}

rPEMTestEntry OBJECT-TYPE
 SYNTAX RPEMTestEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual (not real row) entry in the rPTestStateTable. Each
 row consists of EMTestState and the corresponding CM-number"
 INDEX {rPEMAddress}
 ::={rPEMTestTable 1}

RPEMTestEntry ::= SEQUENCE{
 rPEMAddress INTEGER(1..64), --INTEGER(0..64),
 rPEMTestState INTEGER(0..1),
 rPCMNumber INTEGER(0..15),
 rPEMTestOrder INTEGER(0..3)}

rPEMAddress OBJECT-TYPE
 SYNTAX INTEGER(1..64) --Does not like an index 0 in compilation
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The EM-address
 0-64"
 ::={rPEMTestEntry 1}

rPEMTestState OBJECT-TYPE
 SYNTAX INTEGER(0..1)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "EM-address test mode
 0 = Passive
 1 = Active"
 ::={rPEMTestEntry 2}

rPCMNumber OBJECT-TYPE
 SYNTAX INTEGER(0..15)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The CM-number which is in control of the EM tested
 0-15"
 ::={rPEMTestEntry 3}
60

MIB design of AXE regional processors
rPEMTestOrder OBJECT-TYPE
 SYNTAX INTEGER(0..3)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Test order of EM is an integer.
 0 = Start EM routine test, no acknowledge is wanted by CP
 1 = Test specified EM and send test result
 2 = Test all EM and send test result
 3 = Start EM routine test, acknowledge wanted before test"
 ::={rPEMTestEntry 4}

rPFirstTest OBJECT-TYPE
 SYNTAX INTEGER(0..3)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "First test is a 1 byte integer
 1 = PS-test
 2 = DS-test
 3 = CPU-test"
 ::={rPFDRPTestFunc 1}

rPAckOrder OBJECT-TYPE
 SYNTAX INTEGER(0..4)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "If, how and when to acknowledge a test order
 0 = No acknowledge
 1 = Acknowledge after PS-test
 2 = Acknowledge after DS-test
 3 = Acknowledge after CPU-test
 4 = Acknowledge before test start"
 ::={rPFDRPTestFunc 2}

rPTestTime OBJECT-TYPE
 SYNTAX INTEGER(0..40)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "How long an RP-test should run
 0 = Normal test time (0.1MS/P.I.)
 40 = Long test time (4MS/P.I.)"
 ::={rPFDRPTestFunc 3}

rPEMErrorTrap NOTIFICATION-TYPE
 OBJECTS {rPEMAddress2, rPEMErrorType, rPEMAlarmWord}
61

MIB design of AXE regional processors
 STATUS current
 DESCRIPTION
 "RPEMError is sent to the manager when an EM error has occured
 NOTE: SCB-boards does not have any EM:s to control"
 ::={rPFDEMErrorFunc 1}

rPEMAddress2 OBJECT-TYPE
 SYNTAX INTEGER(0..64)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The EM-address
 0-15 or 0-63
 NOTE: SCB-boards does not have any EM:s to control"
 ::={rPFDEMErrorFunc 2}

rPEMErrorType OBJECT-TYPE
 SYNTAX INTEGER(0..2)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Type of EM error is a 1 byte integer. This object
 can be polled by a managing entity to find out that
 a problem has occurred.
 0 = No error
 1 = Signalling error
 2 = EM alarm
 NOTE: SCB-boards does not have any EM:s to control"
 ::={rPFDEMErrorFunc 3}

rPEMAlarmWord OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Alarm word is a 1 byte string
 NOTE: SCB-boards does not have any EM:s to control"
 ::={rPFDEMErrorFunc 4}

rPTestOrderSupCirc OBJECT-TYPE
 SYNTAX INTEGER(0..3)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Test order of supervision circuit in RP.
 0 = Testing program and memory parity circuit
 1 = Testing microprogram parity circuit
 2 = Testing PHC
 3 = Testing address limit circuit"
 ::={rPFDRPSupCircTestFunc 1}
62

MIB design of AXE regional processors
rPErrorCase OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Error case 1 byte
 B0: Parity error in program or data memory
 B1: Parity error in microprogram memory
 B2: PHC alarm
 B3: Program execution fault or fault detected during routine
 test
 The manager has to reset this object when change has been read"
 ::={rPFDRPSupCircTestFunc 2}

rPErrorCaseTrap NOTIFICATION-TYPE
 OBJECTS {rPErrorCase}
 STATUS current
 DESCRIPTION
 "Is sent to manager when rPErrorCase is changed/set"
 ::={rPFDRPSupCircTestFunc 3}

rPErrorCode OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "Error code is a 1 byte hex string informing about the RP error
 code type
 The manager has to reset this when change has been read"
 ::={rPFDRPErrorDataReqFunc 1}

rPErrorData OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(4))
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "RP error data is a four byte hex string that specifies the error
 code in more detail
 The manager has to reset this when change has been read"
 ::={rPFDRPErrorDataReqFunc 2}

rPErrorCodeandDataTrap NOTIFICATION-TYPE
 OBJECTS {rPErrorCode, rPErrorData}
 STATUS current
 DESCRIPTION
 "Is sent to manager when rPErrorCode and rPErrorData is changed/
set"
 ::={rPFDRPErrorDataReqFunc 3}
63

MIB design of AXE regional processors
rPOSPhysState OBJECT IDENTIFIER ::= {rPOS 1}

rPOSMagAddr OBJECT IDENTIFIER ::= {rPOS 2}

rPBootProgId OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(32))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Product identity of boot program in non-volatile memory is a 32
 byte string"
 ::={rPOSPhysState 1}

rPDramSize OBJECT-TYPE
 SYNTAX INTEGER(0..2147483647)
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "DRAM memory size is a 4 byte integer"
 ::={rPOSPhysState 2}

rPOsProp OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(46))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "OS properties is a 3-46 byte string
 1: Number of valid bytes that follow (2-45)
 2: Properties vector (Bit# = 1 when true)
 B0: Support for compressed code
 More info in byte 4 when set
 B1: Support for no rotation of load data
 B2: Is able to receive RPADDRTORP
 B3: Support for advanced start of program execution and
 individual load of RSU
 B4: Support for TEST SYSTEM debugging of RP
 B5: Support for Extended Error Information

B6: Support for individual load of RSU, but NOT support for
 advanced start
 B3 and B6 can not both be true

 3: Properties vector reserved (always 0)
 4: The highest number of the compression algorithm supported
 (0, No support for compression algorithm)
 5: DRAM parity
 B1-B0: 00 - Available (Enabled)
 01 - Not available (Disabled)
64

MIB design of AXE regional processors
 11 - Not defined

 6-46: Reserved (always 0)"
 ::={rPOSPhysState 3}

rPPhysTypeNum OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(3))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

"Physical RP type number and OS software compatibility number is a
 2 or 3 byte ASCII string
 1: Number of valid bytes to follow (1 or 2)
 2: Physical RP number
 3: OS software compatibility number"
 ::={rPOSPhysState 4}

rPProcBoardId OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(31))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Processor board identity is a 31 byte ASCII string
 (Obsolete RP:s have 32 byte strings, but is not considered here)
 1-24: Processor board ID
 25-31: Processor board revision"
 ::={rPOSPhysState 5}

rPStatCount OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(21))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Statistic counters for RP connected to RPB-S is a 21 byte string
 in total.
 1: 0 (dummy)
 2-5: Number of received signals
 6-7: Number of overruns
 8-9: Number of received bad frames
 10-11: Number of received frames shorter than min.length
 12-15: Number of transmitted signals
 16-17: Number of overruns
 18-19: Number of transmitted FRMF frames
 20-21: Number of transmitted REJ frames"
 ::={rPOSPhysState 6}

rPFreeMemFFC OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(6))
 MAX-ACCESS read-only
 STATUS current
65

MIB design of AXE regional processors
 DESCRIPTION
 "Free memory size for FFC is a 6 byte string
 1: 0 = FFC can not be performed by this RP
 1 = FFC can be performed by this RP
 2-5: Number of free bytes for FFC
 6: 0 = The program is stored as it is in CP
 1 = The program is always stored uncompressed"
 ::={rPOSPhysState 7}

rPNVRamMemSize OBJECT-TYPE
 SYNTAX INTEGER(0..2147483647)
 UNITS "Bytes"
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "NVRAM memory size is a four byte integer returning the complete
 size of the NVRAM"
 ::={rPOSPhysState 8}

rPFirstPermSoft OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(41))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "First permanent software unit in NVRAM is a 41 byte ASCII string
 1-8: Unit name
 9-40: SUID string
 41: Property information
 B0-6: Reserved (always 0)
 B7: 0 = More units to retrieve
 1 = No more information"
 ::={rPOSPhysState 9}

rPNextPermSoft OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(41))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Next permanent software unit in NVRAM is a 41 byte ASCII string
 1-8: Unit name
 9-40: SUID string
 41: Property information
 B0-6: Reserved (always 0)
 B7: 0 = More units to retrieve
 1 = No more information"
 ::={rPOSPhysState 10}

rPFirstCacheSoft OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(42))
 MAX-ACCESS read-only
66

MIB design of AXE regional processors
 STATUS current
 DESCRIPTION
 "First cached software unit in filesystem is a 42 byte ASCII
 string
 1-8: Unit name
 9-40: SUID string
 41: Property information
 42: Reserved for property information (always 0)"
 ::={rPOSPhysState 11}

rPNextCacheSoft OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(42))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Next cached software unit in filesystem is a 42 byte ASCII string
 1-8: Unit name
 9-40: SUID string
 41: Property information
 42: Reserved for property information (always 0)"
 ::={rPOSPhysState 12}

rPFirstMacAddr OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(14))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "First MAC-address in NVRAM is a 14 byte ASCII string
 1: Interface number
 2-13: MAC-address ASCII string. Each 2 bytes represent hex 00-FF
 14: Property information.
 B0-6: = 0.
 B7: 0 = More units to retrieve
 1 = No more information"
 ::={rPOSPhysState 13}

rPNextMacAddr OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(14))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Next MAC-address in NVRAM is a 14 byte ASCII string
 1: Interface number
 2-13: MAC-address ASCII string. Each 2 bytes represent hex 00-FF
 14: Property information.
 B0-6: = 0.
 B7: 0 = More units to retrieve
 1 = No more information"
 ::={rPOSPhysState 14}
67

MIB design of AXE regional processors
rPProdName OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(17))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Production name and production date is a 17 byte ASCII string"
 ::={rPOSPhysState 15}

rPSerialNum OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(13))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Serial number is a 13 byte ASCII string"
 ::={rPOSPhysState 16}

rPProcClockRate OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(4))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Processor clock rate is described as a four byte string and
 expressed in ASCII notation.
 1: 100kHz figure
 2: 1MHz figure
 3: 10MHz figure
 4: 100MHz figure"
 ::={rPOSPhysState 17}

rPAddrInfoTrap NOTIFICATION-TYPE
 OBJECTS {rPSubAddr,
 rPBoardAddr,
 rPStabPhysAddr,
 rPLogicIndAddrHW,
 rPLogicIndAddrMem,
 rPLogicGroupAddrHW,
 rPLogicGroupAddrMem}
 STATUS current
 DESCRIPTION
 "The informations required when informing about address change"
 ::={rPOSMagAddr 1}

rPAddrInfo OBJECT-TYPE
 SYNTAX INTEGER(0..1)
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "This object is changed by the agent when the RP makes an
 address update.This object is polled by the manager. When
 the manager reads an update (==1) he must reset it to normal
 (=0) again. The manager can then get all address objects from
68

MIB design of AXE regional processors
 the RP to find out what is wrong. This object is meant to
 prevent extensive polling from the managing side. The idea
 is to find out that some type of address change has occurred.
 no_change = 0 (normal)
 change = 1 (unusual RP address event)"
 ::={rPOSMagAddr 2}

rPSubAddr OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Subrack address from backplane (plug) is a 1 byte string.
 This is a magazine address.
 B4: SP
 B3-B0: SA3-SA0"
 ::={rPOSMagAddr 3}

rPBoardAddr OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Board address from backplane
 B6: BP
 B5-B0: BA5-BA0"
 ::={rPOSMagAddr 4}

rPStabPhysAddr OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(2))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Stabphysaddr from memory is a 2 byte string
 B3-B0: Not used
 B9-B4: BA5-BA0
 B10: BP
 B14-B11: SA3-SA0
 B15: SP"
 ::={rPOSMagAddr 5}

rPLogicIndAddrHW OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Logical individual address from HW register is a 1 byte string
 B4-B0: Individual address
 B5: Enable/disable bit"
69

MIB design of AXE regional processors
 ::={rPOSMagAddr 6}

rPLogicIndAddrMem OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Logical individual address from memory is a 1 byte string
 "
 ::={rPOSMagAddr 7}

rPLogicGroupAddrHW OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Logical group address from HW register. Is not used.
 B4-B0: Group address
 B5: Enable/disable bit"
 ::={rPOSMagAddr 8}

rPLogicGroupAddrMem OBJECT-TYPE
 SYNTAX OCTET STRING(SIZE(1))
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Logical group address from memory is a 1 byte string.
 Is not used either"
 ::={rPOSMagAddr 9}

rPMIBGroups OBJECT IDENTIFIER ::={rPMIB 7}

rPGlobalGroup OBJECT-GROUP
 OBJECTS {rPGlobalChange}
 STATUS current
 DESCRIPTION
 "This group contains RP global objects"
 ::={rPMIBGroups 1}

rPGlobalTrapGroup NOTIFICATION-GROUP
 NOTIFICATIONS {rPGlobalChangeTrap}
 STATUS current
 DESCRIPTION
 "This group contains all global traps for the RP"
 ::={rPMIBGroups 2}
70

MIB design of AXE regional processors
rPMBHGroup OBJECT-GROUP
 OBJECTS {rPSlotNumber, rPBoardLEDState, rPHWIPromData,
 rPSlotDataChange,rPPollPrinciple, rPPollInterval,
 rPOpsHWICHANGE, rPPromMaxLen}
 STATUS current
 DESCRIPTION
 "This group contains all objects, that cover the data exchanges
 between CP and RP for the rpmbh-block, in the RP "
 ::={rPMIBGroups 3}

rPMMGroup OBJECT-GROUP
 OBJECTS {rPOpsRPMMFANSTAT, rPOpsRPMMPOWSTAT, rPPowerStateA,
 rPTemporaryPowFaultsNumA, rPPowerStateB,
 rPTemporaryPowFaultsNumB, rPPowerStatus,
 rPTemporaryPowFaultsNum, rPPowPathChange,
 fanUnitNumberInd, fanMIALEDState, fanAirTemp,
 fanReadResult, fanCommErrorDet, fanAlarmInfo,
 fanMIALEDSetRes, fanUnitNumber,
 fanDataStatus, fanHWIStatus, fanHWIReadRes,
 fanHWIPromData, fanDataorHWIStatus}
 STATUS current
 DESCRIPTION
 "This group contains all objects that cover the data exchanges
 between CP and RP for the rpmm-block in the RP"
 ::={rPMIBGroups 5}

rPMMTrapGroup NOTIFICATION-GROUP
 NOTIFICATIONS {fanMIALEDSetResTrap, rPPowerStatusTrap,
 fanDataorHWIStatusTrap}
 STATUS current
 DESCRIPTION
 "This group contains all traps for the rpmm-block in the RP"
 ::={rPMIBGroups 6}

rPFDGroup OBJECT-GROUP
 OBJECTS {rPOpsRPEMERROR, rPMaxEMNum, rPTestType, rPTestState,
 rPEMAddress, rPEMTestState, rPCMNumber, rPEMTestOrder,
 rPFirstTest, rPAckOrder, rPTestTime, rPEMAddress2,
 rPEMErrorType, rPEMAlarmWord, rPErrorCode, rPErrorData,
 rPTestOrderSupCirc, rPErrorCase}
 STATUS current
 DESCRIPTION
 "This group contains all objects that cover the data exchanges
 between CP and RP for the rpfd-block in the RP"
 ::={rPMIBGroups 7}

rPFDTrapGroup NOTIFICATION-GROUP
 NOTIFICATIONS {rPErrorCaseTrap, rPEMErrorTrap, rPErrorCodeandDataTrap
 }
 STATUS current
71

MIB design of AXE regional processors
 DESCRIPTION
 "This group contains all traps for the rpfd-block in the RP"
 ::={rPMIBGroups 8}

rPOSGroup OBJECT-GROUP
 OBJECTS {rPBootProgId, rPDramSize, rPOsProp,
 rPPhysTypeNum, rPProcBoardId, rPStatCount,
 rPFreeMemFFC, rPNVRamMemSize, rPFirstPermSoft,
 rPNextPermSoft, rPFirstCacheSoft, rPNextCacheSoft,
 rPFirstMacAddr, rPNextMacAddr, rPProdName,rPSerialNum,
 rPProcClockRate, rPSubAddr, rPBoardAddr, rPStabPhysAddr,
 rPLogicIndAddrHW, rPLogicIndAddrMem, rPLogicGroupAddrHW,
 rPLogicGroupAddrMem, rPAddrInfo}
 STATUS current
 DESCRIPTION
 "This group contains all objects that cover the data exchanges
 between CP and RP for the rp-os block in the RP"
 ::={rPMIBGroups 9}

rPOSTrapGroup NOTIFICATION-GROUP
 NOTIFICATIONS {rPAddrInfoTrap}
 STATUS current
 DESCRIPTION
 "This group contains all traps for the rp-os block in the RP"
 ::={rPMIBGroups 10}

END

Startup

 Poll all slots

once for boards

 GetHWI data

for all occupied slots

Send: All changes

of HWIs to manager

Receive: Polling principle,

polling interval , max-length
of HWI from manager

Polling principle

Checkpoll principle

once OR off autonomous

 Check first slot
with a board present

GetHWI data
 for that slot

Delay =polling interval * 10 sec

yesno

Send: Change

 to agent

Check next slot
with board present

Was HWI changed?

 Once OR
autonomous

off

For all 32 slots

For all 32 slots

Loop

Loop

Figure X Flow diagram of an SCB’s HWI polling.
The bold text represent data that is
present in the RP-MIB
72

MIB design of AXE regional processors
APPENDIX B
73

	MIB design of AXE Regional Processors
	1. Introduction
	2. Background
	3. An introduction to network management
	4. Abstract Syntax Notation One, the formal language
	4.1 ASN.1 structure
	4.2 Supported data types
	4.3 ASN.1 macro definitions

	5. The Structure of Management Information
	5.1 The standard MIB
	5.2 What the MIB-II is
	5.3 Making extensions to an existing MIB
	5.4 Versions of the Structure of Management Information
	5.4.1 The MIB objects
	5.4.2 The OBJECT-TYPE macro

	5.5 Overview of the Simple Network Management Protocol version 2
	5.5.1 An SNMP retrospect
	5.5.2 SNMP protocol functionality

	5.6 Packet Structure
	5.6.1 Message descriptions

	5.7 Weaknesses of SNMP

	6. The project objectives
	6.1 An outline of the target system
	6.2 Signal descriptions
	6.3 The considered RP-blocks
	6.3.1 The RPMBH block
	6.3.2 The RPMM block
	6.3.3 The RPFD block
	6.3.4 The OS block

	6.4 RP-MIB specifics
	6.4.1 RPMBH in the RP-MIB
	6.4.2 RPMM in the RP-MIB
	6.4.3 RPFD in the RP-MIB
	6.4.4 OS in the RP-MIB

	6.5 Case studies for project verification
	6.5.1 Case 1, HWI update
	6.5.2 Case 2, Setting of fan MIALED
	6.5.3 Case 3, Address update

	6.6 Tools used
	6.6.1 General MIB development and compilation

	7. Summary and conclusions
	8. Problems during the project
	9. Further work
	10. Own comments
	11. Abbreviations
	12. References
	13. Acknowledgments
	14. Appendices

