
JAVA IN AN EMBEDDED ENVIRONMENT

 POULES WARDA RAIHANA

MSc Thesis in

 Electrical Engineering
 DEC 2000

Ericsson AXE Research & Development.
Department of Teleinformatics, Royal Institute of Technology, Sweden.

Supervisors:
David Kassuja, Ericsson AXE Research & Development
Vladimir Vlassov, Department of Teleinformatics, Royal Institute of Technology
Examiner.
Björn Pehrson
Royal Institute of Technology

Java In An Embedded Environment Poules W Raihana

01-01-02 1

Table of Contents
Glossary 2
CHAPTER 1 3
Introduction 3
1.1 Problem definition 3
1.2 Outline 3
CHAPTER 2 4
2.1 Introduction 4
2.2 Background 4
2.2.1 Access Unit (AU) 5
2.2.2 IP Distribution Network 6
2.2.3Voice Gateway 6
2.2.4 H.323 Gate Keeper 6
2.2.5 IP Gateway 6
2.3 Java 6
2.3.1 Java Virtual Machine and Java Applications Programming Interface 7
2.3.2 Java Compile and Runtime Environments 7
2.3.3 Java Current State 8
2.3.3.1 Connection limited Configuration (CLDC) 9
2.3.3.1.1 CLCD libraries 10
2.4 Java Operating system 10
2.4.1 JavaOS Performance 11
2.4.2 The target systems 12
2.5 Java processors 12
CHAPTER 3 14
3.1 Introduction 14
3.2 The specification of the practical part of the thesis 14
3.3 Experiment illustration and network configuration 14
3.4 The method used 15
3.5 Motivation 16
3.6 Test program 16
3.7 The registration and call control scenario 17
3.8 IPTP Messages 19
3.9 The implementation of the registration 20
3.10 The Setup Message 21
3.11 Measuring of the call setup time 24
CHAPTER 4 26
Discussion 26
4.1 Embedded Applications Concerns 26
4.2 The advantage of using Java in the network terminal. 26
4.3 The disadvantage of using Java in the network terminal 27
Summary 28
References 29
Appendix A: The measuring Data 30
Appendix B: The file result.txt 31

Java In An Embedded Environment Poules W Raihana

01-01-02 2

Glossary

API Applications Programming Interface

AU Access Unit

DECT Digital Enhanced Cordless Telecommunication

DHCP Dynamic Host Control Protocol

DNS Domain Name Server

IP Internet Protocol

IPONAX IP only access

IPTP Internet Protocol Telephony Protocol

ISDN Integrated Services Digital network

ISP Internet Service Provider

JVM Java Virtual Machine

LI Line Interface

NFS Network File System

POTS Plain old telephone service

PSTN Public switched Telephony Network

SS7 Signalling System 7

UG User Gateway

Java In An Embedded Environment Poules W Raihana

01-01-02 3

CHAPTER 1

INTRODUCTION
The portability is an issue that is strongly recommended by the international community for

standardization in order to move towards a globalise Data/Tele communication solutions.

 Most leading companies are taking these issues in their consideration in the early stage of their new

designed systems.

Today users are sitting in different platforms sending and receiving information to each other’s without

bothering about the type of the platform that the host computers are running on. The new challenge is

application programs that are written to a certain platform cant be moved to a different platform without

costing time and money. Java technology came in picture when the developers were thinking about a

programming language that could solve this problem; the concept was to use a Java Virtual Machine.

This machine isolates the operating system from the application program. That means that the

developer will not think about on which platform his/her program is going to run on.

Problem definition
This thesis was performed at Ericsson AXE Research & Development. This thesis was started as

Ericsson was considering using Java in a Network Terminal that will enable normal telephones

(POTS) to access to a VOIP (Voice over IP) network. The purpose of the theoretical part of the thesis

is to find out how far this can be possible using toady’s Java technology e.g. Embedded Java, Java

RTOS, Java telephony API’s. The purpose of the practical part is to write a test program that can

handle call control signalling in Java. The time differences between a request and response shall be

measured.

1.2 Outline
The remainder of the thesis includes the following

Chapter 2 gives the background of this thesis. It starts with a description of the components of the

IPONAX system and explanation to the IPTP protocol. Moreover, this chapter includes an introduction

to the Java technology

Chapter 3 covers motivation, and implementation of the experiment. The achieved results will be

presented analysed and discussed.

Chapter 4 contains references and bibliography

Java In An Embedded Environment Poules W Raihana

01-01-02 4

CHAPTER 2

2.1 Introduction
This chapter provides an overview of the material that I have studied in order to make

a conclusion about whether the Java technology is capable of providing the network

terminal functionality. In this chapter, the background of the thesis is introduced in the

next section. The IPONAX system will be described. The construction and the main

components of the IPONAX system will be described as well. The network terminal

(AU) is briefly described. In section three, Java as programming language is

introduced. The last two sections in this chapter are about the Java operating system

and Java processors.

2.2 Background

Ericsson AXE Research & Development develops a system called IPONAX (IP only

access). The concept behind IPONAX is using the Internet Protocol as a transparent

bearer to all services that a distribution network can provide to the access networks.

By having the AU (Access Unit) the user can access a variety of services for example

making a telephone call using voice over IP, accessing the Internet. In this section,

the components of the IPONAX will be described. More attention will be given to the

AU, which represent the part of the system at which this thesis will deal with.

The IPONAX system [1] is divided into three main domains. In Figure 2.1, we can see

the User Domain, the Access Network Domain and the Service Provider Domain.

The User Domain represents users house or office .The Access Network Domain

represent the access network that is owned by the access network provider. Service

Provider Domain represents the different service providers for example the Internet

Service provider and telephony service provider such as PSTN and ISDN.

SERVICE
PROVIDE
R

ACCESS
NETWOR
K

 USER
 DOMAIN

 Figure 2.1. The IPONAX System Domains

Java In An Embedded Environment Poules W Raihana

01-01-02 5

In Figure 2.2, we can see more detailed information about the IPONAX. We can see

the three domains that were described above and we can see the components that

the IPONAX system is consists of.

2.2.1 Access Unit (AU)
Figure 2.2, depicts the Access Unit, which includes two important parts. The first part

is the User Gateway that performs all necessary protocol conversion between the

devices that are connected to the AU and the IP based access network. This

conversion is including the analogue POTS and digital DECT voice services to voice

over IP. The second part is the line Interface (LI) that connects the AU to IP

distribution network.

As mentioned above AU is the network terminal to which the user devices are

connected. The AU contains a number of physical interfaces that are used to

connect these devices. There are four telephones and one Ethernet connected to the

AU.

User
Domain

Access Network
Domain

 Service Provider
Domain

IP

Gateway

Gate

Keeper

 Voice

Gateway

IP Distribution Network

Access

Router

DHCP

DNS

ISP-x

ISP-y

ISDN/PST

N

ISDN/PST

N

Access Unit

UG LI

Access Unit

UG LI

Figure 2.2. The IPONAX system

Java In An Embedded Environment Poules W Raihana

01-01-02 6

2.2.2 IP Distribution Network

This component is used to transparently transport information between Access Units,

Gateways and other components of the IP based access system. The functionality of

this component is routing IP packets within the Access Network IP Domain,

authenticate and allocate IP addresses to Access Units as well as binding them to

service profile e.g. using DHCP.

2.2.3 Voice Gateway
This component converts the IP-based voice services between the Access Units and

the voice networks. It connects to one or several service provider’s PSTN/ISDN via

standard protocols such as PRI or based on SS7.

2.2.4 H.323 Gate Keeper
This components translates between external addresses, such as telephone

numbers, and IP-addresses within the access network IP domain used to locate the

appropriate AU for incoming call or Voice Gateway for an outgoing call

2.2.5 IP Gateway
This component enables access from AU to other IP networks such as the Internet

via a selected ISP or an Enterprise network.

2.3 Java
Java [2] is an object-oriented programming language with syntax derived from C and

C++. Applets and application written in the Java language compile to a form that runs

on the Java platform. The Java platform has two basic parts:

• Java Virtual Machine.

• Java Applications Programming Interface (API)

There is no full compatibility between Java and C/C++ because Java designers

preferred to eliminate from these languages certain troublesome features. In

particular, Java does not support enumerated constants, pointer arithmetic, traditional

functions, structures and unions, multiple inheritance, go to statement, operator

overloading. In their place, Java requires all the constant identifier and functions

(methods) to be encapsulated within class declarations. Java provides standardized

Java In An Embedded Environment Poules W Raihana

01-01-02 7

support for multithreading and automatic garbage collection dynamically allocated

memory.

There are many computer platforms today; there is for example Microsoft Windows,

Macintosh, OS/2, UNIX platform; software must be compiled separately to run on

each of these Platform. The Java platform is a new software platform but what sets

the Java platform apart is that it sits on top of these other platforms, and compiles to

bytecodes, which are not specific to any physical machine. Writing Java programs

means writing to the Java platform and not to the underlying system.

2.3.1 Java Virtual Machine and Java Applications Programming Interface

The JVM is an abstract computing machine. Just like a real computing machines the

Java Virtual Machine has an instruction set and uses various memory areas. The

Java Virtual Machine is the key for the portability of the Java language as it

represents the execution environment for Java code. The source code is compiled to

bytecode and the Java virtual machine interprets and executes these bytecodes at

run time. The JVM is implemented almost entirely in standard C code (a small part of

JVM is written in assembly code) and all platform dependent code in the JVM is

cleanly isolated in separate modules to make porting very simple.

Java API (Applications Programming Interface) is a standard set of libraries for

writing Java programs. In 1995, these libraries were recognized to support Internet

programming, and thus the Java API was created. The API contains a number of

Packages and each Package includes a number of classes.

2.3.2 Java Compile and Runtime Environments
The Java language development environment is divided into two parts:

• Java compile-time environment.

• Java run-time environment.

Developers first write Java program source code and save it with (. java) extension

file then compiles it to bytecodes. These bytecodes are instructions to the Java

Virtual Machine.

Bytecodes are moved to the run-time environment. There the bytecodes will be first

loaded to the memory by a class loader, and then the verifier will verify them, in order

to insure that they are valid and they will not violate Java’s security restrictions.

Java In An Embedded Environment Poules W Raihana

01-01-02 8

Afterwards they are interpreted by the interpreter one byte at a time. By

interpretation, here means the translation of the bytecodes to a language that the

host computers can understand.

2.3.3 Java Current State

One of Java2 platform group is called Micro Edition (J2ME) [4], this edition are

targeted at the consumer electronics and embedded devices.

This J2ME architecture is designed to be modular and scalable. This modularity and

scalability are defined by J2ME technology in a model with three layers of software

(see Fig 2.3) built on a host operating system of the device:

Java virtual machine layer. This is an implementation of Java virtual machine that is

customized for a special operating system and supports a particular J2ME

configuration.

The configuration layer is invisible to the users but it is important to profile

implementation. It is the minimum Java technology libraries and java virtual machine

capabilities that an application developer can expect on implementing devices

Profile layer. It is the most visible layer to users and application providers. It

represents a collection of APIs.

 Profiles

 Configuration

 JVM

 Host OS

Figure 2.3 J2ME software layer stack

Java In An Embedded Environment Poules W Raihana

01-01-02 9

There are two configuration that are defined by the Java Community Process (JCP)

for the J2ME architecture:

The Connected Device Configuration (CDC), which uses the classic Java virtual

machine, a full feature VM that includes the all the functionality of a virtual machine

residing on a desktop system. This configuration is intended for devices with at least

a few megabytes of available memory. Example for devices of this configuration TV

set top Boxes, Internet TV, Internet-enabled screen phones. A large range of user

interface capabilities, memory size in the range of 2 to 16 megabytes, high-bandwidth

network connections, most often using TCP/IP.

The Connected limited Device Configuration (CLDC) technology. This

configuration is intended for devices with severely constrained memory environments

such as wireless systems. Example for this category is cell phones, pagers and

personal organizers. These devices have a very simple user interface, minimum

memory size starting at 128 kilobyte, low bandwidth.

2.3.3.1 Connection limited Configuration (CLDC)

The CLDC configuration addresses the following areas:

Java language and Java Virtual Machine features, Core Java libraries (java.lang.*,

java.util.*) , Input/output, Networking, Security and Internationalisation.

One goal for Java VM supporting CLDC is to be as compliant with Java language

specification [5] as possible within the strict memory limits of the target. Accept that

java will not support for floating point data types (float and double). Moreover Java

will not support for finalization of class instances.

The Other goal for Java VM supporting CLDC is to be compliant to the JVM

specification [6] as possible within memory constraints. Except the following

No support for floating point data types (float and double).

No support for JNI and thread groups or daemon threads.

No support for finalization of class instances.

The KVM is implemented in the C programming language, so it can be ported on

various platforms for which C compiler (that is capable of compiling ANSI-compliant

C files) is available.

Java In An Embedded Environment Poules W Raihana

01-01-02 10

The only non-ANSI feature in the source code is its use of 64-bit integer arithmetic.

2.3.3.1.1 CLCD libraries

The majority of the class libraries are a subset of the corresponding class in J2SE.

The reason for that is to ensure upward compatibility and portability of application.

Only classes specified for wireless devices are specified by CDLC.

System Classes, Data type classes, Collection Classes, I/O classes and others are

such example for subclasses see [7] for details.

2.4 Java Operating system
JavaOS implements the Java Platform for running Java applets and applications. As

such, it implements the Java Virtual Machine and underlying functionality for

windowing, networking and file system, without requiring the support of host

operating system.

JavaOS is built from a combination of native code (instruction set and hardware

platform specific) and Java code, which is platform independent.

JavaOS defines a platform as a CPU, physical memory, and any attached devices,

buses, and slots. The platform independent component of the operating system is

called runtime. The platform dependent portion of the OS as pictured in Fig2.4 is

referred to as the JavaOS kernel for Java. It supports AWT and the networking and

file-related I/O classes.

In order to support the Java Platform, JavaOS Supports the Java Virtual Machine

using drivers for controlling a display, network interface, mouse and keyboard.

JavaOS also supports the full API.

Java In An Embedded Environment Poules W Raihana

01-01-02 11

All device drivers in JavaOS are written in the Java programming language. This is

important for portability. There is two support classes written in C: The Memory class

enables drivers to access and modify specific bytes and words of storage. The

interrupt class handles interrupt dispatching. The methods of these classes are not

made available to any Java application. JavaOS includes a suite of network protocols

all written in Java programming language. These protocols include the basic

transport and routing mechanism specified by TCP, UDP, IP, and ICMP standards.

JavaOS uses both DNS and NIS for looking up host-names and supplying user

names and passwords used during login. JavaOS supports both Reverse ARP and

DHCP for discovering the network address of a device.

2.4.1 JavaOS Performance

JavaOS has not used Just -In-Time compiler to translate bytecodes into machine

code, and makes minimal use of native methods. Therefore one might expect

JavaOS to perform poorly, but this is not case.

Memory needed to support JavaOS is about 4MB of ROM and 4MB of RAM. In the

ROM would be all code for JavaOS itself, including the kernel code, drivers, and Java

 Figure 2.4 Java Platform running on JavaOS

Graphics IP

 Java runtime (platform independent)

JavaOS kernel
 Hardware

 Java API

Windows TCP
NFS(Network File
System)

UDP

AWT Foundation Network and I/O
Classes Classes Classes

 Java Application

Ethernet Keyboard Mouse

J
A
V
A

O
S

Java In An Embedded Environment Poules W Raihana

01-01-02 12

virtual Machine, standard classes, plus the JavaOS windows, graphics, and

networking components plus the code for HotJava. Systems built using JavaOS that

do not require windowing and HotJava code could run less than 2MB.

2.4.2 The target systems

Embedded devices are a target system for JavaOS. Some devices have only 1MB or

2MB of ROM, and possibly no graphical display. In such case, it is possible to

remove the window and graphic codes from the JavaOS. Similarly if a device does

not need certain network protocols, they could be eliminated. In order to meet some

embedded devices it still needs to tune the Java Virtual Machine and garbage

collection to support some real-time capabilities.

Sun is working with software tool vendors to build a rich software development

environment for JavaOS .The memory footprints for JavaOS in its smallest possible

configuration will be about 128K of RAM and 512 of ROM. Note that this memory is

needed for JavaOS only, and more memory will be needed for the applications.

2.5 Java processors

The Java processor family consists of three production lines of microprocessors –

PicoJava, microJava and UltraJava. These chips can execute Java bytecodes as

their native machine language, as a result of that it will be not necessary to interpret

or compile the bytecodes into some other CPU’s machine language.

There are nine companies that are working on Java chips- SUN, NEC, IBM, Fujitsu,

LG semicon, Rockwell, Siemens, Patriot Scientific and International Meta Systems.

Sun says that, PicoJava microprocessor cores are designed to natively execute

bytecodes as defined by Java Virtual Machine, while they can also execute C/C++

codes as efficiently as comparable RISC CPU. The target markets are:

• Digital set-top boxes

• Internet TVs

• Screen phones

Java In An Embedded Environment Poules W Raihana

01-01-02 13

• PDA

• Automotive

MicroJava is another type of Java processor that Sun has and it is based on

picoJava. It is a

General-purpose microprocessor that can be used in the following typical

applications:

Embedded thin clients Automation

Network Computing

Terminal replacement

Consumer NCSA

Industrial control

Telecommunications

Office Automation

UltraJava processors will target advanced 3D graphics and other multimedia-

intensive applications, which will be enabled through the Java Media API’s. Potential

devices that might take advantage of UltraJava processors would include media-

oriented personal computers, high-end network computers, and intelligent televisions,

advanced function set-top boxes.

Sun is designing UltraJava for 1999 or later.

So far, nobody has shipped actual products with Java chips (Byte May 1998). Marc

Tremblay, a chip architect at Sun predicts that low-end Java chips based on

PicoJava core will run Java about 20 times faster than interpreters running on

Pentium at the same clock frequency and the chip will deliver about five times as

much as Just-In-Time compiler running on Pentium.

Java In An Embedded Environment Poules W Raihana

01-01-02 14

CHAPTER 3

The Implementation and Experimentation

3.1 Introduction
 This chapter includes the practical part of the thesis. The next section is about the

specification of the practical part. The method applied in solving the problem is

described in section three.

Ericssons aim was to implement this experiment in an embedded environment. It

was planned that the Java Virtual Machine would be ported on OSE delta (a real time

operating system, which used in embedded devices). This plan was not succeeded

because of the delay in the delivery time for embedded Java. For this reason

experiment was running on Windows NT platform.

3.2 The specification of the practical part of the thesis
The aim of this thesis is to write a test program in Java that implements the call

control part of a telephony application. The application will be used to measure the

time elapsed to sending a request and receiving a response. In response to that,

this experiment was made.

The expectation from this experiment is to give a picture about Java performance.

3.3 Experiment illustration and network configuration
The experiment configuration is shown in Figure 3.1. As we can see, there are three

computers, which are involved in implementing the experiment. The site keeper (will

be discussed later in this section), a voice gateway to which the network terminal

(Known as AU (Access Unit) in Ericsson) is connected, and finally a computer that

hosts the test program.

From figure 3.1, we can distinguish the following:

• Voice gateway1 represents the machine that the test program is running on. This

site will function as a call originator endpoint (caller side).

• The site keeper.

• Voice gateway2 represents the machine at which a real AU was connected. This

site will function as a call terminator endpoint (called side).

Java In An Embedded Environment Poules W Raihana

01-01-02 15

The three machines were connected together by a hub. The physical layer used is an

Ethernet cable. Each machine was configured to have an IP address. The site keeper

must be configured to be aware of the existence of the two other machines. This

configuration is a part of the IPTP (Internet Protocol Telephony Protocol) and without

it, no registration request from the voice gateways will be confirmed.

3.4 The method used
There are many approaches to measure Java performance. There are for example

JDK profiling approach and installing own instrumentation approach. The first

approach keeps track of the time spent at each routine and writes the information to

a file. The flag used is -prof . This option is invoked with the commando java_g –

prof myclass. The JDK profiles have uneven performance and some JDK versions

have various instability [3]. The second approach is the one that is used in time

measurement is achieved by inserting explicit timing as the following example.

Long start = System.currentTimeMillis ();

// operation to be timed goes here

long stop = System.currentTimeMillis();

Hub

 Voice gateway1 Site keeper Voice gateway2
10.20.0.22 10.20.0.3 10.20.0.23

 Figure 3.1. The configuration of the network

Java In An Embedded Environment Poules W Raihana

01-01-02 16

 The elapsed time is then measured easy by

Long ElapsedTime = stop-start;

It is important to mention in this stage that the method System.currentTimeMillis()

returns time in 1/1000ths of a second. Since that some systems (Windows for

example) has time resolution less than 1millisecond this operation should be

repeated n time and take the mean of results. This will give a more accurate

measurement.

3.5 Motivation
The called voice gateway and the site keeper are the same for both parts A and B,

see Figure 3.2. This means that the time elapsed in the shadowed area are constant.

In other words, it is independent for our calculations. What are actually matters are

the time points (T1, T2), which are pointed out in figure 3.4. The difference between

T1 and T2 will give us the elapsed time for the application written in Java. This can

be comparable to the time elapsed when application written in C++ is used.

3.6 Test program
The test program includes implementation for some parts of the IPTP (Internet

telephony Protocol) that are used in the current telephony application, which is

written in C++. The test program consists of two components the registration program

component and the set up component.

 Java
Application

 C++
Application

Site-
keeper

Site-
keeper

The
called
side

The called
side

 A

 B

Figure 3.2. The layout of the Experiment

Java In An Embedded Environment Poules W Raihana

01-01-02 17

 Start

 Create a
datagram packet

 Create a
datagram Socket

Send
registration

Received
Message

Registration rejected

Registration Confirmed
Timer
60
seconds

Figure 3.3 the flowchart of the registration

Java In An Embedded Environment Poules W Raihana

01-01-02 18

3.7 The registration and call control scenario

Fig 3.3 is a flowchart that will help to describe the Registration process. Both sides

(the caller and the called) must be registered at the site keeper.

The registration process starts by creating a datagram packet then it creates a

datagram socket. This socket is used to send/receive the datagram packets to/from

the site keeper. A registration request will be packets into a datagrampacket and then

sends to the site keeper. The registration will go into a loop waiting for datagrams

that the site keeper will send. If the message received from the site keeper

Registration rejected (for some reasons that are not in the scope of the test program)

then the request will be send again. If the message received from the site keeper is

registration confirmed then the registration process will wait one minute and send the

registration request again.

Figure 3.4 shows the sequence diagram for the call control process. When the caller

side receives registration confirmed message from the site keeper then a new

process called call control process will start. In this process the caller and the site

keeper will communicate through a communication channel called Socket.

 This process starts by sending a setup messages from the caller side to the site

keeper. The site keeper in his turn response to this message by sending back a call

proceeding message and forward the setup message to the called side. At the same

time the site keeper sends open logical channel. Then the caller side sends Open

logical channel ACK. T1 and T2 will be registered and then the elapsed time will be

calculated. The interval (T2-T1) we call it a Setup time .see in section 3.11 for the

result of measurement.

Setup

Call proceeding

Open logical Channel

Open logical channel ACK

T1

T2

The Caller side The Site Keeper

 Figure 3.4 Call Control procedures

Java In An Embedded Environment Poules W Raihana

01-01-02 19

3.8 IPTP Messages

All the messages that are used to transfer data between the voice gateways and the

site keeper have the format shown in table 1. From table1, we can see that the first

two parameters, the Tag and the version parameter are common for all messages.

Each message that has not these headers will be ignored by endpoints. Although the

number of parameters in the parameter list varies of from message to message each

parameter should follow the format that is shown in table 2.

4BYTES TAGCOMMON
PARAMETERS 4bytes Version

4bytes Length
4bytes Request ID
4bytes Error Code
4bytes Message type

Message
Headers

4bytes Message ID
Parameter
……………..

Parameter
List

Message

Dependent Parameter
Table1 The overall format of a message I PTP

4 BYTES LENGTH

4 bytes Parameter ID
Variable Data

Table 2 the parameter format in IPTP

PARAMET
ER
NAME

VAL
UE

NOTES

Tag Iptp Protocol name

Version 1 The version of the protocol

Length 104 Length =(total length-(Tag +version))

Request ID 0 You can decide the request ID.

Error code 0 0Åno error
1Å erroried

Message
type

1 0Å indication
1Å request
2Å response

Message ID 200 200ÅRegistration request.
201ÅRegistration confirmed
202ÅRegistration rejected

Length 24 The parameter length

Java In An Embedded Environment Poules W Raihana

01-01-02 20

Parameter
ID

102

Data
Data
Data
Data

10.20.0.232

The IP address of the
Endpoint

Length 12
Parameter
ID

406 Endpoint type

Data 1 1Å Gateway

Length 12
Parameter
ID

417 Registration Type

Data 0 If 0Åregistration
If 1Åreregistration

Length 36
Parameter
ID

433 Endpoint State

Data 1 Version

Data IP Address

Data 0 Alarms
0ÅNo Alarms
1ÅAlarms

Data Nominal Capacity

Data Used capacity

Data Degraded Capacity

Data Registration state
0Åunknown
1ÅRegistered

Table 3 the Registration Message implementation in IPTP

Once the registration is confirmed the endpoint should sent a re-registration message

each 60 second. This is implemented by sending the registration request again after

changing the registration type to be re_ registration instead of registration. Once the

endpoint is registered a TCP connection could be opened for call control messaging.

This will take us to the next section.

3.9 The implementation of the registration

Writing the registration part of the test program is an implementation for a

server/client interaction. In order to be able to communicate with the site keeper we

should know the port on which it is listening.

From the documentation of the IPTP system I found out that the site keeper was

listening on port 12080.

Java In An Embedded Environment Poules W Raihana

01-01-02 21

This means that clients (in this case the caller side) who want to communicate with

the site keeper have to establish a UDP connection. First the application creates a

DatagramPacket by using the constructor used in the DatagramPacket class. The

constructor used takes the following arguments.

SendPacket=new

DatagramPacket(m1,m2.length,InetAddress.getByName("10.20.0.3"),12080);

 “10.20.0.3” is the Internet address of the site keeper and 12080 is the port number

on which the site keeper is listening.

The next step is to create a DatagramSocket by using a DatagramSocket

constructor. The constructor takes the host's port number as an argument.

SendreceiveSocket = new DatagramSocket(12090);

Where 12090 represents the port number on which the application will send/receive

its DatagramPackets. What is remarkable here that the application puts the address

of the destination machine and the port number in the datagram packet and send it

through the network. The next step is to send the registration request to the site

keeper. This is implemented by using the class method send.

 SendreceiveSocket.send (SendPacket);

This method takes the created DatagramPacket as an argument. Once the

registration request is sent the application enters in a loop waiting for a response

from the site keeper.

The response will be either a registration confirmed or registration rejected.

In case of registration confirmed the program inters in a loop and sends registration

message once a minute. In case of registration rejected the program will send the

registration request again.

3.10 The call Setup Message
The implementation of the call control part starts by creating a TCP connection. As

mentioned in section 3.7 once the endpoint is registered a TCP connection will be

opened to take care of call control part of the telephony application. In this part we

are going to measure the time elapsed from sending a request and receiving a

response.

Java In An Embedded Environment Poules W Raihana

01-01-02 22

 When an end point wants to set a telephone call it will send a set up message to the

site keeper. The site keeper will forward this message to the called party. The

implementation starts by creating a Socket of type client.

Socket client=null;

client =new Socket(InetAddress.getByName("10.20.0.3"),12081);

 The Socket constructer takes two arguments. The first argument is server’s IP

address and the second argument is server’s port number. In this case “10.20.0.3” is

the site keeper IP address and 12081 is site keepers port number.

Once the client socket is created we need two data streams for communication the

Input Data Stream and the Output Data Stream.

DataInputStream in=new DataInputStream (client.getInputStream ());

DataInputStream takes BufferedInputStream as argument. This is obtained by calling

socket’s class method getInputStream ().

DataOutputStream out=new DataOutputStream (client.getOutputStream ());

DataOutputStream takes BufferedOutputStream as argument. This is obtained by

calling socket’s class method getOutputStream ().

The following are used to create a setup message m1.

Message message= new Message ();

byte[] m1 = new byte[Message.setupMessage.length];

 m1=Message.setupMessage;

To send the setup message we gust use the DataOutputStream method write().which

takes message as an argument.

out. write(m1);

To register the time T1 a system call function called currentTimeMillis() .This function

takes no arguments and return the time in Millisecond.

T1=(long)System.currentTimeMillis();

Then the call control goes into a loop reading from the DataInputStream and

while (true)

{

.

.

Java In An Embedded Environment Poules W Raihana

01-01-02 23

.

in.read(inbuf,0,500);

}

To read from the input stream a DataInputStream method called read() is used this

method takes three argument.

 The first argument is an array of type Byte in which the inputstream will be stored

.The second argument is the place in the array where the data starts and the third

argument is the length of the of the bytes that it is read from the DataInputStream. In

order to specify the Message Type to know if it is call proceeding we check the byte

number 27 in the inbuf array.

switch (0xff&inbuf[27])

{

case 0x65: //******************Receiving callproceding message*****//

{

T2=System.currentTimeMillis();

System.out.println("a Call proceding signal is received at");

System.out.println("T2= "+T2);

System.out.println("T = "+(T2-T1));

}

……

……

……

default:

System.out.println("Strange Signal check if you are expecting something

else");

…

…

…

}

Java In An Embedded Environment Poules W Raihana

01-01-02 24

3.11 Measuring of the call setup time
As we mentioned in section 3.7 this section presents the result of measuring the call

setup time. See fig 3.4 in which T1 and T2 are depicted.

The results of the ras.java program is written to results.txt file during the execution

time by giving the following command:

Java ras>result.txt (See Appendix B for details)

The measure points T1 and T2 (see Appendix A) are measured by using two

methods of System Class called println() and currentTimeMillis().

Consider the time T is elapsed time from sending call request and receiving call

proceeding

Then T = T2-T1.

To measure T1 , the following lines are added to the code of the client program:

T1=System.currentTimeMillis();

System.out.println(“T1=”+T1);

The system time accuracy in Windows NT where our experiment was running on is ±

10 milliseconds. All measurements below 1 millisecond are rounded to zero.

In the same way the measure point T2 is measured:

T2=System.currentTimeMillis();

System.out.println(“T2=”+T2);

Java In An Embedded Environment Poules W Raihana

01-01-02 25

Statistical calculation

As shown in the table the results are between 0 and 10 milliseconds. This is du to the

accuracy in Windows NT Operative System. The average value for the above results

is:

 i=n

T ‘ =Σ Ti / n

 i=1

Where i = index, n= number of readings, T = measured value and T’ is the average
value.

T’= 180/60 = 3 milliseconds

Fig 3.5 shows the time elapsed from sending a call setup message and receiving a call
proceeding message.

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Java In An Embedded Environment Poules W Raihana

01-01-02 26

CHAPTER 4

Discussion

The aim of this thesis as mentioned before is to investigate what can Java contribute

to the network terminal.

4.1 Embedded Applications Concerns
There are three aspects that embedded devices are concerned with; speed, size and

response times. These three aspects must be taken in consideration when we

implement a Java solution that can offers program efficiency, which is equivalent to

that offered by C/C++.

4.2 The advantage of using Java in the network terminal.
Maybe one of the most advantages of Java is its portability. This as we mentioned

before means, that Java application can run on any platform that supports Java.

Portability
As mentioned in section 2.3 when Java Virtual Machine was introduced that the JVM

is the key to the portability that Java Platform has. Java provides a standard set of

class libraries to make the nature of the underlying platform invisible.

Because the Java platform is good at isolating the program from underlying platform

dependencies, the platform used to prototype a new application is unimportant.

This means AU application can prototyped and developed on a workstation running

Unix or Windows 95.There may be changes required to account for different resource

availability such as less memory or non existence display. However, it is likely that a

large amount of the application code will run unchanged.

Reliable and secure
Embedded applications typically need to be reliable to avoid failure at runtime. When

an application uses entrusted code like third party extensions, they need to be secure

against hostile attack or unintentional harmful consequences from executing that

code.

The Java designer where aware of this problem and provided the language with

features to increase the reliability as much as possible, for example elimination of

pointers and all forms of direct memory access from the language. Primitive data is

Java In An Embedded Environment Poules W Raihana

01-01-02 27

always accessed and passed by value and classes are always accessed and passed

by reference.

Dynamic Scalability
The Java language includes a dynamic loader that can load new Java code at run

time. An application written in Java can load Java classes as and when they are

needed. More Java classes may be loaded from remote storage devices like a

remote computer via network connection.

The dynamic nature of Java also means upgrading software. For example if the

embedded application is already loading classes remotely at start up then all installed

instances of application can be upgraded simply by changing the remote class files.

Upgrading is also one of the troubles that we have today in the AU.

4.3 The disadvantage of using Java in the network terminal
Java performance
When it comes to the telephony application that are used in network terminal, these

application has a real-time requirements from the underlying operating system

The Java Virtual machine relies on the interpretation of bytecodes at runtime. The

JVM is simply simulating a virtual Java CPU at run time. Clearly, this will not result in

Java programs with execution speeds comparable to those using C and C++ code.

The interpretation solution is simply slow and there are no ways around it.

If a sacrifice in performance is not acceptable for our applications, The alternative is

to use dynamic or Just-In-Time compiler. This will improve the performance of the

Java code running on that client, but this will expands the size of the binary to three

or four times and more memory will be needed for the compiler it self. Moreover, it

will need an extra RAM for working space.

For embedded devices, this will be a problem as this costs money and increases

complexity.

The Garbage Collection
The problem with garbage collection algorithm used by JVM is that the garbage

collector must run uninterrupted until they are completed. This means that there can

be no determinacy about scheduling of other Java threads once garbage collector

daemon thread has been scheduled. A solution to go around this problem is to run

JVM without the garbage collection daemon-thread.

Java In An Embedded Environment Poules W Raihana

01-01-02 28

Doing this the developer can guarantee that garbage collection will occur in only two

situations namely, when the system class method gc is requested, or when it is

unavoidable to avoid doing so i.e. du to the failure of a memory allocation.

The application can even include it own garbage collection daemon thread that

invokes the garbage collection. This way it will make it possible to disable the thread

while time critical section code is running.

The object-oriented paradigm is widely supported by analysis and design methods,

which can help to speed up the development of the application.

The JavaOS

There are advantages of using JavaOS, including:

The JavaOS may be stored on ROM, enabling simple, low-cost systems that boot

quickly.

JavaOS achieves the goal of eliminating the overhead of host operating system.

Because JavaOS contains no extraneous features found in other operating systems,

it allows smaller and simpler devices to build and that execute Java programs more

efficiently than other systems. Yet we have not seen it in the market. Using it in the

AU will dramatically decrease the price of the product and make the AU more price-

concurrent.

Summary
With the Java technology that is available today, it is avoidable to use Java when

performance is an important issue for the application. The Java platform for the

current time is not ideally suited for hard real-time application. There are some

factors that affects the language namely the speed and garbage collection As the

performance constitute an important issue in some parts of the telephony application

it is not recommended to use Java in those parts On the other hand it is quite

comfortable to use Java on other parts of the telephony application that performance

is not an important. The graphical user interface is such an example.

Java In An Embedded Environment Poules W Raihana

01-01-02 29

References
[1] System Design Specification IPONAX by Jan Ulander and Bengt Werdin ; EUS/SL-98:XXX

[2] Java virtual machine http://java.sun.com/docs/books/vmspec/html/Introduction.doc.html

[3] Thinking in Java by Bruce Eckel.

[4] Java 2 Micro Edition http://java.sun.com/j2me.

[5] The Java Language specification by James Goslin, Bill Joy and Guy L.Steele.

 Addison Wesley, 1996, ISBN 0-201-63451-1.

[6] Java Virtual Machine by Tim Lindholm and Frank Yellin.

 Addison-Wesley, 1996, ISBN 0-201-63452-x.

[7] Java 2 platform Edition (J2ME) technology for creating Mobile Devices May 19,2000 ;white paper

.by Sun Micro Electronics, Inc.

Java In An Embedded Environment Poules W Raihana

01-01-02 30

APPENDIX A: THE MEASURING DATA

1 921238982078 921238982088 10 31 921240842654 921240842654 0
2 921239042165 921239042165 0 32 921240902670 921240902670 0
3 921239102181 921239102181 0 33 921240962686 921240962686 0
4 921239162197 921239162197 0 34 921241022703 921241022703 0
5 921239222214 921239222214 0 35 921241103659 921241103669 10
6 921239282230 921239282230 0 36 921241163746 921241163756 10
7 921239342246 921239342246 0 37 921241223842 921241223852 10
8 921239402263 921239402263 0 38 921241283928 921241283938 10
9 921239462279 921239462289 10 39 921241344015 921241344025 10
10 921239522295 921239522295 0 40 921241404101 921241404111 10
11 921239582312 921239582312 0 41 921241464188 921241464198 10
12 921239642328 921239642328 0 42 921241524274 921241524284 10
13 921239702344 921239702344 0 43 921241584360 921241584370 10
14 921239762360 921239762360 0 43 921241644447 921241644457 10
15 921239822377 921239822377 0 45 921241704543 921241704553 10
16 921239882393 921239882393 0 46 921241764630 921241764640 10
17 921239942409 921239942409 0 47 921241824716 921241824726 10
18 921240002426 921240002426 0 48 921241884802 921241884812 10
19 921240062442 921240062442 0 49 921241944889 921241944899 10
20 921240122458 921240122458 0 50 921242004975 921242004985 10
21 921240242491 921240242491 0 51 921242065052 921242065052 0
22 921240302507 921240302507 0 52 921242125068 921242125068 0
23 921240362523 921240362523 0 53 921242185084 921242185084 0
24 921240422540 921240422540 0 54 921242245100 921242245100 0
25 921240482556 921240482556 0 55 921242305117 921242305117 0
26 921240542572 921240542572 0 56 921242365133 921242365133 0
27 921240602589 921240602589 0 57 921242425149 921242425149 0
28 921240662605 921240662605 0 58 921242485166 921242485166 0
29 921240722621 921240722621 0 59 921242545182 921242545182 0
30 921240782638 921240782638 0 60 921242605198 921242605198 0

 Table 1 the measuring of the setup time

index T1 T2
T2-
T1

inde
x

T1 T2 T2-
T1

Java In An Embedded Environment Poules W Raihana

01-01-02 31

APPENDIX B: THE FILE RESULT.TXT

The results founded on running the test program at the WindowsNT machine
which has the following specifications:

C:\java\bin>java ras

Waiting Response from the SiteKeeper
201
Registration Confirmed
A setup message is sent at:
T1= 921238982078
a Call proceding signal is received at
T2= 921238982088
T = 10
The OLCA was sent at
T3= 921238982109
a relese complete is received
T4= 921238982129msec
T3-T2= 21msec
T4-T3= 20msec
This is Reregistration number: 1 The System time is: 921239042165
A setup message is sent at:
T1= 921239042165
a Call proceding signal is received at
T2= 921239042165
T = 0
The OLCA was sent at
T3= 921239042175
a relese complete is received
T4= 921239042175msec
T3-T2= 10msec
T4-T3= 0msec
This is Reregistration number: 2 The System time is: 921239102181
A setup message is sent at:
T1= 921239102181
a Call proceding signal is received at
T2= 921239102181
T = 0
The OLCA was sent at
T3= 921239102181
a relese complete is received
T4= 921239102191msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 3 The System time is: 921239162197
A setup message is sent at:
T1= 921239162197
a Call proceding signal is received at
T2= 921239162197
T = 0
The OLCA was sent at
T3= 921239162197
a relese complete is received
T4= 921239162207msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 4 The System time is: 921239222214
A setup message is sent at:
T1= 921239222214
a Call proceding signal is received at
T2= 921239222214
T = 0
The OLCA was sent at
T3= 921239222214
a relese complete is received
T4= 921239222224msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 5 The System time is: 921239282230
A setup message is sent at:

Java In An Embedded Environment Poules W Raihana

01-01-02 32

T1= 921239282230
a Call proceding signal is received at
T2= 921239282230
T = 0
The OLCA was sent at
T3= 921239282230
a relese complete is received
T4= 921239282240msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 6 The System time is: 921239342246
A setup message is sent at:
T1= 921239342246
a Call proceding signal is received at
T2= 921239342246
T = 0
The OLCA was sent at
T3= 921239342246
a relese complete is received
T4= 921239342256msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 7 The System time is: 921239402263
A setup message is sent at:
T1= 921239402263
a Call proceding signal is received at
T2= 921239402263
T = 0
The OLCA was sent at
T3= 921239402273
a relese complete is received
T4= 921239402273msec
T3-T2= 10msec
T4-T3= 0msec
This is Reregistration number: 8 The System time is: 921239462279
A setup message is sent at:
T1= 921239462279
a Call proceding signal is received at
T2= 921239462289
T = 10
The OLCA was sent at
T3= 921239462289
a relese complete is received
T4= 921239462289msec
T3-T2= 0msec
T4-T3= 0msec
This is Reregistration number: 9 The System time is: 921239522295
A setup message is sent at:
T1= 921239522295
a Call proceding signal is received at
T2= 921239522295
T = 0
The OLCA was sent at
T3= 921239522295
a relese complete is received
T4= 921239522305msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 10 The System time is: 921239582312
A setup message is sent at:
T1= 921239582312
a Call proceding signal is received at
T2= 921239582312
T = 0
The OLCA was sent at
T3= 921239582312
a relese complete is received
T4= 921239582322msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 11 The System time is: 921239642328
A setup message is sent at:
T1= 921239642328

Java In An Embedded Environment Poules W Raihana

01-01-02 33

a Call proceding signal is received at
T2= 921239642328
T = 0
The OLCA was sent at
T3= 921239642328
a relese complete is received
T4= 921239642338msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 12 The System time is: 921239702344
A setup message is sent at:
T1= 921239702344
a Call proceding signal is received at
T2= 921239702344
T = 0
The OLCA was sent at
T3= 921239702344
a relese complete is received
T4= 921239702354msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 13 The System time is: 921239762360
A setup message is sent at:
T1= 921239762360
a Call proceding signal is received at
T2= 921239762360
T = 0
The OLCA was sent at
T3= 921239762360
a relese complete is received
T4= 921239762370msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 14 The System time is: 921239822377
A setup message is sent at:
T1= 921239822377
a Call proceding signal is received at
T2= 921239822377
T = 0
The OLCA was sent at
T3= 921239822387
a relese complete is received
T4= 921239822387msec
T3-T2= 10msec
T4-T3= 0msec
This is Reregistration number: 15 The System time is: 921239882393
A setup message is sent at:
T1= 921239882393
a Call proceding signal is received at
T2= 921239882393
T = 0
The OLCA was sent at
T3= 921239882393
a relese complete is received
T4= 921239882403msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 16 The System time is: 921239942409
A setup message is sent at:
T1= 921239942409
a Call proceding signal is received at
T2= 921239942409
T = 0
The OLCA was sent at
T3= 921239942409
a relese complete is received
T4= 921239942419msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 17 The System time is: 921240002426
A setup message is sent at:
T1= 921240002426
a Call proceding signal is received at

Java In An Embedded Environment Poules W Raihana

01-01-02 34

T2= 921240002426
T = 0
The OLCA was sent at
T3= 921240002426
a relese complete is received
T4= 921240002436msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 18 The System time is: 921240062442
A setup message is sent at:
T1= 921240062442
a Call proceding signal is received at
T2= 921240062442
T = 0
The OLCA was sent at
T3= 921240062442
a relese complete is received
T4= 921240062452msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 19 The System time is: 921240122458
A setup message is sent at:
T1= 921240122458
a Call proceding signal is received at
T2= 921240122458
T = 0
The OLCA was sent at
T3= 921240122458
a relese complete is received
T4= 921240122468msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 20 The System time is: 921240182475
A setup message is sent at:
T1= 921240182475
a Call proceding signal is received at
T2= 921240182475
T = 0
The OLCA was sent at
T3= 921240182475
a relese complete is received
T4= 921240182485msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 21 The System time is: 921240242491
A setup message is sent at:
T1= 921240242491
a Call proceding signal is received at
T2= 921240242491
T = 0
The OLCA was sent at
T3= 921240242491
a relese complete is received
T4= 921240242501msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 22 The System time is: 921240302507
A setup message is sent at:
T1= 921240302507
a Call proceding signal is received at
T2= 921240302507
T = 0
The OLCA was sent at
T3= 921240302507
a relese complete is received
T4= 921240302517msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 23 The System time is: 921240362523
A setup message is sent at:
T1= 921240362523
a Call proceding signal is received at
T2= 921240362523

Java In An Embedded Environment Poules W Raihana

01-01-02 35

T = 0
The OLCA was sent at
T3= 921240362523
a relese complete is received
T4= 921240362533msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 24 The System time is: 921240422540
A setup message is sent at:
T1= 921240422540
a Call proceding signal is received at
T2= 921240422540
T = 0
The OLCA was sent at
T3= 921240422540
a relese complete is received
T4= 921240422550msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 25 The System time is: 921240482556
A setup message is sent at:
T1= 921240482556
a Call proceding signal is received at
T2= 921240482556
T = 0
The OLCA was sent at
T3= 921240482556
a relese complete is received
T4= 921240482566msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 26 The System time is: 921240542572
A setup message is sent at:
T1= 921240542572
a Call proceding signal is received at
T2= 921240542572
T = 0
The OLCA was sent at
T3= 921240542572
a relese complete is received
T4= 921240542582msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 27 The System time is: 921240602589
A setup message is sent at:
T1= 921240602589
a Call proceding signal is received at
T2= 921240602589
T = 0
The OLCA was sent at
T3= 921240602599
a relese complete is received
T4= 921240602599msec
T3-T2= 10msec
T4-T3= 0msec
This is Reregistration number: 28 The System time is: 921240662605
A setup message is sent at:
T1= 921240662605
a Call proceding signal is received at
T2= 921240662605
T = 0
The OLCA was sent at
T3= 921240662605
a relese complete is received
T4= 921240662615msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 29 The System time is: 921240722621
A setup message is sent at:
T1= 921240722621
a Call proceding signal is received at
T2= 921240722621
T = 0

Java In An Embedded Environment Poules W Raihana

01-01-02 36

The OLCA was sent at
T3= 921240722631
a relese complete is received
T4= 921240722631msec
T3-T2= 10msec
T4-T3= 0msec
This is Reregistration number: 30 The System time is: 921240782638
A setup message is sent at:
T1= 921240782638
a Call proceding signal is received at
T2= 921240782638
T = 0
The OLCA was sent at
T3= 921240782638
a relese complete is received
T4= 921240782648msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 31 The System time is: 921240842654
A setup message is sent at:
T1= 921240842654
a Call proceding signal is received at
T2= 921240842654
T = 0
The OLCA was sent at
T3= 921240842654
a relese complete is received
T4= 921240842664msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 32 The System time is: 921240902670
A setup message is sent at:
T1= 921240902670
a Call proceding signal is received at
T2= 921240902670
T = 0
The OLCA was sent at
T3= 921240902670
a relese complete is received
T4= 921240902680msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 33 The System time is: 921240962686
A setup message is sent at:
T1= 921240962686
a Call proceding signal is received at
T2= 921240962686
T = 0
The OLCA was sent at
T3= 921240962686
a relese complete is received
T4= 921240962696msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 34 The System time is: 921241022703
A setup message is sent at:
T1= 921241022703
a Call proceding signal is received at
T2= 921241022703
T = 0
The OLCA was sent at
T3= 921241022703
a relese complete is received
T4= 921241022713msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 35 The System time is: 921241082719
A setup message is sent at:
T1= 921241103659
a Call proceding signal is received at
T2= 921241103669
T = 10
The OLCA was sent at

Java In An Embedded Environment Poules W Raihana

01-01-02 37

T3= 921241103689
a relese complete is received
T4= 921241103709msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 36 The System time is: 921241163746
A setup message is sent at:
T1= 921241163746
a Call proceding signal is received at
T2= 921241163756
T = 10
The OLCA was sent at
T3= 921241163786
a relese complete is received
T4= 921241163806msec
T3-T2= 30msec
T4-T3= 20msec
This is Reregistration number: 37 The System time is: 921241223832
A setup message is sent at:
T1= 921241223842
a Call proceding signal is received at
T2= 921241223852
T = 10
The OLCA was sent at
T3= 921241223872
a relese complete is received
T4= 921241223892msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 38 The System time is: 921241283918
A setup message is sent at:
T1= 921241283928
a Call proceding signal is received at
T2= 921241283938
T = 10
The OLCA was sent at
T3= 921241283958
a relese complete is received
T4= 921241283978msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 39 The System time is: 921241344005
A setup message is sent at:
T1= 921241344015
a Call proceding signal is received at
T2= 921241344025
T = 10
The OLCA was sent at
T3= 921241344045
a relese complete is received
T4= 921241344065msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 40 The System time is: 921241404091
A setup message is sent at:
T1= 921241404101
a Call proceding signal is received at
T2= 921241404111
T = 10
The OLCA was sent at
T3= 921241404131
a relese complete is received
T4= 921241404161msec
T3-T2= 20msec
T4-T3= 30msec
This is Reregistration number: 41 The System time is: 921241464178
A setup message is sent at:
T1= 921241464188
a Call proceding signal is received at
T2= 921241464198
T = 10
The OLCA was sent at
T3= 921241464218

Java In An Embedded Environment Poules W Raihana

01-01-02 38

a relese complete is received
T4= 921241464238msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 42 The System time is: 921241524264
A setup message is sent at:
T1= 921241524274
a Call proceding signal is received at
T2= 921241524284
T = 10
The OLCA was sent at
T3= 921241524304
a relese complete is received
T4= 921241524324msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 43 The System time is: 921241584350
A setup message is sent at:
T1= 921241584360
a Call proceding signal is received at
T2= 921241584370
T = 10
The OLCA was sent at
T3= 921241584390
a relese complete is received
T4= 921241584410msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 44 The System time is: 921241644437
A setup message is sent at:
T1= 921241644447
a Call proceding signal is received at
T2= 921241644457
T = 10
The OLCA was sent at
T3= 921241644487
a relese complete is received
T4= 921241644497msec
T3-T2= 30msec
T4-T3= 10msec
This is Reregistration number: 45 The System time is: 921241704533
A setup message is sent at:
T1= 921241704543
a Call proceding signal is received at
T2= 921241704553
T = 10
The OLCA was sent at
T3= 921241704573
a relese complete is received
T4= 921241704593msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 46 The System time is: 921241764620
A setup message is sent at:
T1= 921241764630
a Call proceding signal is received at
T2= 921241764640
T = 10
The OLCA was sent at
T3= 921241764660
a relese complete is received
T4= 921241764680msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 47 The System time is: 921241824706
A setup message is sent at:
T1= 921241824716
a Call proceding signal is received at
T2= 921241824726
T = 10
The OLCA was sent at
T3= 921241824746
a relese complete is received

Java In An Embedded Environment Poules W Raihana

01-01-02 39

T4= 921241824766msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 48 The System time is: 921241884792
A setup message is sent at:
T1= 921241884802
a Call proceding signal is received at
T2= 921241884812
T = 10
The OLCA was sent at
T3= 921241884832
a relese complete is received
T4= 921241884852msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 49 The System time is: 921241944879
A setup message is sent at:
T1= 921241944889
a Call proceding signal is received at
T2= 921241944899
T = 10
The OLCA was sent at
T3= 921241944929
a relese complete is received
T4= 921241944939msec
T3-T2= 30msec
T4-T3= 10msec
This is Reregistration number: 50 The System time is: 921242004965
A setup message is sent at:
T1= 921242004975
a Call proceding signal is received at
T2= 921242004985
T = 10
The OLCA was sent at
T3= 921242005005
a relese complete is received
T4= 921242005025msec
T3-T2= 20msec
T4-T3= 20msec
This is Reregistration number: 51 The System time is: 921242065052
A setup message is sent at:
T1= 921242065052
a Call proceding signal is received at
T2= 921242065052
T = 0
The OLCA was sent at
T3= 921242065052
a relese complete is received
T4= 921242065062msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 52 The System time is: 921242125068
A setup message is sent at:
T1= 921242125068
a Call proceding signal is received at
T2= 921242125068
T = 0
The OLCA was sent at
T3= 921242125068
a relese complete is received
T4= 921242125078msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 53 The System time is: 921242185084
A setup message is sent at:
T1= 921242185084
a Call proceding signal is received at
T2= 921242185084
T = 0
The OLCA was sent at
T3= 921242185084
a relese complete is received
T4= 921242185094msec

Java In An Embedded Environment Poules W Raihana

01-01-02 40

T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 54 The System time is: 921242245100
A setup message is sent at:
T1= 921242245100
a Call proceding signal is received at
T2= 921242245100
T = 0
The OLCA was sent at
T3= 921242245100
a relese complete is received
T4= 921242245110msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 55 The System time is: 921242305117
A setup message is sent at:
T1= 921242305117
a Call proceding signal is received at
T2= 921242305117
T = 0
The OLCA was sent at
T3= 921242305117
a relese complete is received
T4= 921242305127msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 56 The System time is: 921242365133
A setup message is sent at:
T1= 921242365133
a Call proceding signal is received at
T2= 921242365133
T = 0
The OLCA was sent at
T3= 921242365133
a relese complete is received
T4= 921242365143msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 57 The System time is: 921242425149
A setup message is sent at:
T1= 921242425149
a Call proceding signal is received at
T2= 921242425149
T = 0
The OLCA was sent at
T3= 921242425149
a relese complete is received
T4= 921242425159msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 58 The System time is: 921242485166
A setup message is sent at:
T1= 921242485166
a Call proceding signal is received at
T2= 921242485166
T = 0
The OLCA was sent at
T3= 921242485166
a relese complete is received
T4= 921242485176msec
T3-T2= 0msec
T4-T3= 10msec
This is Reregistration number: 59 The System time is: 921242545182
A setup message is sent at:
T1= 921242545182
a Call proceding signal is received at
T2= 921242545182
T = 0
The OLCA was sent at
T3= 921242545182
a relese complete is received
T4= 921242545192msec
T3-T2= 0msec

Java In An Embedded Environment Poules W Raihana

01-01-02 41

T4-T3= 10msec
This is Reregistration number: 60 The System time is: 921242605198
A setup message is sent at:
T1= 921242605198
a Call proceding signal is received at
T2= 921242605198
T = 0
The OLCA was sent at
T3= 921242605198
a relese complete is received
T4= 921242605208msec
T3-T2= 0msec
T4-T3= 10msec

