
Want to play a game?

Johan Montelius

HT2018

Introduction

This is a simple exercise to compile and insert a small program into the kernel
i.e. a kernel module. The program that you will write doesn't do anything
useful but you will learn the basics steps of writing a kernel module.

You will need root privileges on the machine that you are working on.
The safest way is of course if you run everything using a virtual machine but
you could of course use your regular machine (at your own risk). You will
not be able to use the KTH computers since you don't have root access to
those and will (at least as it is now) not be able to start up a virtual machine
on those.

The kernel is of course the heart of the operating system and has com-
plete access to the hardware that it is running on. User space processes are
protected from each other but the kernel has complete access to everything.
If we do a mistake in our user space, a process will crash but the kernel
survives - a mistake in the kernel will most often result in that the machine
crashes (but you will most often be able to restart it).

There are basically two ways of extending the kernel, either we compile
our own modi�ed kernel or we insert a module into a running kernel. The
latter approach is of course much more convenient but it requires that we
know what we're doing (or at least have an idea of what we're doing).

1 A �rst try

The program that we will write is a regular C program but with some special
properties. It does not contain a main procedure, instead it will have several
procedures that will be used by the kernel, and could be made available to
user level programs.

The two most important procedures are the ones used when the module
is loaded and removed from the kernel. Save the following in a �le called
hal.c.

#include <l inux /module . h>
#include <l inux / ke rne l . h>
#include <l inux / i n i t . h>

MODULE_LICENSE("GPL") ;
MODULE_AUTHOR("Dr Chandra") ;

1

MODULE_DESCRIPTION(" H eu r i s t i c a l l y programmed ALgorithmic computer") ;

stat ic int __init ha l_ in i t (void)
{

pr in tk (KERN_INFO " I hones t ly th ink you ought to calm down ; \ n") ;
return 0 ;

}

stat ic void __exit hal_cleanup (void)
{

pr in tk (KERN_INFO "What are you doing , Dave?\n") ;
}

module_init (ha l_ in i t) ;
module_exit (hal_cleanup) ;

In this program we �rst include some header �les that we need. We
then describe our kernel module and it is important that we set thelicense to
�GPL� i.e. that this is free software and not some proprietary code. We also
provide two straneg looking functions that we use in the two last macros:
module_init() and module_exit(). Our kernel module will do nothing but
write out a message when it is inserted into the kernel and when it is removed
from the kernel.

We should now compile this but we need to compile it using some special
libraries that are used when the kernel is built. If you look in the directory
/lib/modules, you will �nd a directory for each linux kernel that you have
installed on your computer (or virtual machine). In these directories you
will �nd a link called build that is referring to the source directory of the
kernel.

1.1 a Make�le

The source directory has a Makefile that will do the compilation for us. To
make things easy, we create our own make�le in our source directory that
will do the making for us. Create a �le called Makefile in the directory that
holds the �le hal.c. The trick with the uname -r will get us the number of
the running kernel and thus direct us to the right directory.

obj−m += hal . o

a l l :
make −C / l i b /modules/$ (s h e l l uname −r)/ bu i ld M=$ (s h e l l pwd) modules

c l ean :
make −C / l i b /modules/$ (s h e l l uname −r)/ bu i ld M=$ (s h e l l pwd) c l ean

2

Now if everything works you should be able to make the module from
the directory of the make�le.

$ make

:

:

make[1]: Leaving directory '/usr/src/linux-headers-4.4.0-34-generic'

Now take a look in the directory and you will �nd tons of new �les. If
you use the command ls -a you will see even more. The one that we are
interested in is the �le hal.ko, this is the kernel module object �le.

1.2 loading the module

So we have an object �le and the only thing now is to load it into the kernel.
You can take a look at all the modules that are already loaded into the kernel
by using the lsmod command.

$ lsmod

:

:

Now if you have the right privilege you should be able to insert also our
module. Try this:

$ sudo insmod hal.ko

If nothing happens you have probably succeeded. Now issue the com-
mand dmesg that will print a �le containing all messages from the kernel
since you booted your machine. Pipe the output to tail to see the last
rows. The last entry is hopefully a message from our HAL module - it's now
in control of your machine.

$ dmesg | tail

:

:

You can also verify, using lsmod, that the module is in fact among the
loaded modules. To remove it from the kernel we use the command rmmod

giving the name of the module as an argument.

$ sudo rmmod hal

To show you that the module is actually loaded in to kernel space we can
check the address it is loaded to. Change the print-out when the module is
loaded to the following, make, load the module and check the message from
dmesg. Is it an address in kernel space?

here :
p r in tk (KERN_INFO " I 'm here %p) ; \ n" , &&here) ;

3

2 Now what

This assignment is only scratching on the surface of kernel space program-
ming. Moving forward from here things require a lot more coding; it's not
complicated but it's more code. One would like to simply add a procedure
in the loaded kernel module and then make this procedure accessible as a
system call. This would make things easy for the programmer but probably
result in a bowl of spaghetti once everyone added their own system calls.
The number of true system calls should be kept small to make the operating
system easier to manage and control.

The alternative way of communicating with our kernel module is to let
it show up with a regular �le interface. To the user level programs it looks
like a �le but under the hood the module is doing the work.

2.1 Dr Dyson to your help

Create a new directory called skynet and copy the make�le we used to the
new directory. Edit the Make�le so that it now used an object �le called
�skynet.o�. Create a �le called skynet.c with the following code; we will go
through the code so that you know why it is there.

The header �les are as before but we are now going to add a �le system
interface to the module. We therefore include two more �les proc_fs.h and
seq_file.h. The macros that describe the module are required so we write
some fun things.

#include <l inux /module . h> // inc luded f o r a l l k e rne l modules
#include <l inux / ke rne l . h> // inc luded f o r KERN_INFO
#include <l inux / i n i t . h> // inc luded f o r __init and __exit macros

#include <l inux /proc_fs . h> // f i l e ope ra t i ons
#include <l inux / s e q_ f i l e . h> // seq_read , . . .

MODULE_LICENSE("GPL") ;
MODULE_AUTHOR("Dr . Dyson") ;
MODULE_DESCRIPTION("Global In format ion Grid") ;

Next, we are de�ning a proc_ops data structure. This structure is popu-
lated with call-back functions that the kernel will use when the �le interface
of the module is used. The kernel needs to know how the �le should be
opened, closed, read from etc. The only function that we will provide is the
function used to open the �le skynet_open().

stat ic int skynet_show (struct s e q_ f i l e *m, void *v) ;

stat ic int skynet_open (struct inode * inode , struct f i l e * f i l e) ;

4

stat ic const struct proc_ops skynet_fops = {
. proc_open = skynet_open ,
. proc_read = seq_read ,
. proc_lseek = seq_lseek ,
. p roc_re l ease = s i ng l e_r e l e a s e ,

} ;

stat ic int skynet_show (struct s e q_ f i l e *m, void *v) {
here :
s eq_pr int f (m, "Skynet l o c a t i o n : 0x%lx \n" ,

(unsigned long)&&here) ;
return 0 ;

}

stat ic int skynet_open (struct inode * inode , struct f i l e * f i l e) {
return s ingle_open (f i l e , skynet_show , NULL) ;

}

We then provide the functions that will be used when the module is
loaded and unloaded. This time we will actually do some work here. We
will register the module as a proc module and provide a name �skynet�

that will show up the the /proc directory. Wen the module is unloaded we
remove the proc-entry.

stat ic int __init skynet_in i t (void) {
proc_create (" skynet " , 0 , NULL, &skynet_fops) ;
p r in tk (KERN_INFO "Skynet in c on t r o l \n") ;

return 0 ;
}

stat ic void __exit skynet_cleanup (void) {
remove_proc_entry (" skynet " , NULL) ;
p r in tk (KERN_INFO " I ' l l be back ! \ n") ;

}

module_init (skynet_in i t) ;
module_exit (skynet_cleanup) ;

2.2 in control

Make the module and load it into the kernel, check the output from dmesg

to make sure that it was loaded ok. Then take a look in the /proc directory,
do we have a skynet �le? Take a closer look at the �le using ls -l, what
does it look like, how big is it?

5

$ ls -l /proc/skynet

:

Now try to read the �le using the cat command.

$ cat /proc/skynet

:

This is how all the �les you see in the /proc directory work, they are
simply interfaces to di�erent kernel services.

3 Device drivers

Take a look in the directory /dev, all of the �les that you �nd there are also
interfaces to kernel services. If you use the command ls -l you will see that
the �rst letter of each description is either d, l or something that you might
not have seen before: b or c. The latter �les are block and character devices.
We will now try to add a kernel module that shows up as a character device.

3.1 Joshua

There will be some code but you will manage. Create a new directory
called joshua, and in there a new source code �le joshua.c and a header
�le joshua.h. Also make a copy of the Make�le and place it in the direc-
tory. Edit the Make�le so that it will use the object �le joshua.o. Now for
the code, we will start with the header �le.

#ifndef JOSHUA
#define JOSHUA
#include <l inux / i o c t l . h>

// This i s the r e qu i r ed s i z e o f the b u f f e r .

#define JOSHUA_MAX 40

// This macro w i l l g i v e us the r i g h t i o c t l code .

#define JOSHUA_GET_QUOTE _IOR(0 x f f , 1 , char *)

#endif

We will create a kernel module that will return quotes by Joshua. We
have a header �le that de�nes two macros JOSHUA_MAX and JOSHUA_GET_QUOTE.

The �rst is the longest string that a quota can be (including trailing
zero). The user level program should allocate a bu�er with a least this size

6

and pass a pointer to the bu�er to the joshua module. The joshua module
will then copy a new quote from Joshua into the bu�er.

The second macro is a bit cryptic but it uses a macro from the ioctl.h
header �le that helps us create a hopefully unique ioctl number. The number
is created from one magic number (0xff), a number that is unique for the
joshua module and the data type that we will pass from the user to the
kernel module. We have here chosen 0xff as our magic number but some
more care should go in to this if we actually did something serious.

3.2 the user program

The user program that should request quotes from joshua could look like
follows. Create a source �le called quote.c in the same directory as joshua
(not required but we need to �nd the joshua header �le so we might as well
place it there).

#include <s t d l i b . h>
#include <s td i o . h>
#include <f c n t l . h>
#include <unis td . h>
#include <s t r i n g . h>
#include <sys / i o c t l . h>
#include <sys / types . h>

#include " joshua . h"

int main () {
char * f i le_name = "/dev/ joshua " ;
int fd ;

fd = open (file_name , O_RDONLY) ;

i f (fd == −1) {
pe r ro r ("Joshua i s not a v a i l a b l e ") ;
return 2 ;

}

char bu f f e r [JOSHUA_MAX] ;

i f (i o c t l (fd , JOSHUA_GET_QUOTE, &bu f f e r) == −1) {
pe r ro r ("Hmm, not so good") ;

} else {
p r i n t f ("Quote − %s\n" , bu f f e r) ;

}

7

c l o s e (fd) ;
return 0 ;

}

The user program opens a �le, /dev/joshua, in read mode and then
makes a system call ioctl() that will make the magical request to the
joshua module. Note that nothing is working so far, we have not created our
module nor made it accessible from the device �le. This is just to get an
idea of how things will work in the end.

As you see the program creates a bu�er on the stack and passes the
address of this bu�er to the system call. This is why we said that the data
type was char* when we de�ned the ioctl number.

3.3 the module

So now we are ready to de�ne our kernel module joshua.c. This will have
the same components as the hal module that we created before but will also
register itself using the ioctl functionality. We will go through the code part
by part and explain why it is there.

The �rst part is a sequence of included header �les. Some you have seen
from hal.c and skynet.c but many are new. It's not important to keep
track of which �les are needed since this is quite easily determined. We also
include our own joshua.h so we use the same size of the bu�er and the same
ioctl number as the user space program.

#include <l inux /module . h> // a l l k e rne l modules
#include <l inux / ke rne l . h> // KERN_INFO

#include <l inux / f s . h> // f i l e_op e r a t i on s . .

#include <l inux /cdev . h> // cdev_ini t , cdev_a l l . . .
#include <l inux / dev i c e . h> // c l a s s_crea t e . . .
#include <l inux / uacce s s . h> // copy_to_user

#include " joshua . h" // to agree on the i n t e r f a c e

As before we need to describe the module.

MODULE_LICENSE("GPL") ;
MODULE_AUTHOR("Prof Franken") ;
MODULE_DESCRIPTION("Joshua") ;

We then de�ne some macros and data structures that are needed when
we de�ne our device driver. The important thing here is the �le operations
data structure joshua_fops. As before we populate it with the functions

8

that the kernel needs but now we include a function called joshua_ioctl

that will be the interface to the device driver.

#define FIRST_MINOR 0
#define MINOR_CNT 1

stat ic int joshua_open (struct inode * i , struct f i l e * f) ;
stat ic int joshua_close (struct inode * i , struct f i l e * f) ;
stat ic long j o shua_ioc t l (struct f i l e * f ,

unsigned int cmd , unsigned long arg) ;

stat ic dev_t dev ;
stat ic struct cdev c_dev ;
stat ic struct c l a s s * c l ;

stat ic struct f i l e_op e r a t i o n s joshua_fops = {
. owner = THIS_MODULE,
. open = joshua_open ,
. r e l e a s e = joshua_close ,
. un locked_ioct l = jo shua_ioc t l

} ;

Next follows declarations of our own data structures. We de�ne an array
of three quotes and an integer that we will increment to keep track of the
next quote to deliver.

#define QUOTES 3

stat ic const char * quotes [QUOTES] = {
"Why play a game that cannot be won?" ,
"Mutual d e s t ru c t i on i s not a v i c t o r y . " ,
" S imulat ion i s the mother o f knowledge . "

} ;

stat ic int next = 0 ;

Now for the basic de�nitions of the kernel module i.e. what should be
done when the module is loaded and unloaded. This is of course where we
want to register the module under a device name i.e. /dev/joshua. The �rst
one is the procedure when the module is loaded. It looks quite scary but
most of it is code to handle things that could go wrong. If you go through
the code you will see that it basically, does �ve things:

� alloc_chrdev_region(): allocates a device number dev

� cdev_init(): initializes the character device structure c_dev

9

� cdev_add(): adds the character device given the device number

� class_create(): creation of a device class called char

� device_create(): creating the device given the class, device number
an name �joshua�

Don't ask me how things work, the important thing is that it is doable.
We can worry about what actually is happening later. Notice that most of
the code is checking if the operations were successful and if not undoing the
previous operations before returning an error message.

stat ic int __init jo shua_in i t (void) {
int r e t ;
struct dev i c e *dev_ret ;

p r in tk (KERN_INFO "Want to play a game?\n") ;

i f ((r e t = al loc_chrdev_region(&dev , FIRST_MINOR, MINOR_CNT, " joshua ")) < 0) {
return r e t ;

}

cdev_init (&c_dev , &joshua_fops) ;

i f ((r e t = cdev_add(&c_dev , dev , MINOR_CNT)) < 0) {
return r e t ;

}

i f (IS_ERR(c l = c l a s s_c r ea t e (THIS_MODULE, " char "))) {
cdev_del(&c_dev) ;
unreg i s ter_chrdev_reg ion (dev , MINOR_CNT) ;
return PTR_ERR(c l) ;

}
i f (IS_ERR(dev_ret = dev ice_create (c l , NULL, dev , NULL, " joshua "))) {

c la s s_des t roy (c l) ;
cdev_del(&c_dev) ;
unreg i s ter_chrdev_reg ion (dev , MINOR_CNT) ;
return PTR_ERR(dev_ret) ;

}

return 0 ;
}

When the module is unloaded we must remove everything that we have
created. We destroy the device, the class and the cdev structure - basically,

10

undoing everything we did when the module is loaded. We also add a print
statement so we know that the module was successfully unloaded.

stat ic void __exit joshua_exit (void) {
device_destroy (c l , dev) ;
c l a s s_des t roy (c l) ;
cdev_del(&c_dev) ;
unreg i s ter_chrdev_reg ion (dev , MINOR_CNT) ;

pr in tk (KERN_INFO "How about a n i c e game o f ches s ?\n") ;
}

We will now de�ne what should be done when someone opens or closes
the ��le�. For the user level program the device looks like a �le and the
obvious operations are thus open, close etc. As you see below, we don't
do anything special when someone tries to open or close the �le but here
is where we could initialize or deleted data structures that pertains to the
session.

stat ic int joshua_open (struct inode * i , struct f i l e * f) {
return 0 ;

}

stat ic int joshua_close (struct inode * i , struct f i l e * f) {
return 0 ;

}

Now for the heart of our module, the things we will do when someone
issues a ioctl() command. This is where we will return a quote from Joshua.
Remember that the client allocated a bu�er and sent us a address to this
bu�er. It's our job to copy one of the quotes that we have into this bu�er.

As you see below the ioctl procedure takes three arguments: a �le de-
scriptor, a command and the argument that was passed from the user. The
command is a number that has been generated by the _IOR macro. The
user program implicitly used this when using the JOSHUA_GET_QUOTE macro
in the joshua.h header �le. We can now use the same macro and have a
switch statement that looks at cmd and hopefully jumps to the right case.
You now see how we very easily can add new commands to our module.

stat ic long j o shua_ioc t l (struct f i l e * f , unsigned int cmd , unsigned long arg)
{

switch (cmd) {

case JOSHUA_GET_QUOTE:

next = (next+1) % QUOTES;

11

pr in tk (KERN_INFO "Joshua : copy to bu f f e r at 0x%lx \n" , arg) ;

i f (copy_to_user ((char *) arg , quotes [next] , JOSHUA_MAX))
{
return −EACCES;

}
break ;

default :
return −EINVAL;

}
return 0 ;

}

To handle a JOSHUA_GET_QUOTE request, we increment the next variable,
print a message and copy the next quote into the bu�er provided to us in
arg. Note that this is a very scary procedure in that we don't really know
what the user sent us. In the best case it is actually a memory reference
to a bu�er that is at least JOSHUA_MAX large. If the user made mistake,
the bu�er is too small or the address is pointing randomly somewhere else.
In the worst case the user is luring us into writing something to a memory
segment that belongs to the kernel. The user has of course no possibility
to write to these segments but the joshua module belongs to the kernel and
has complete access to the kernel space. This is why we use the procedure
copy_to_user() that will check that the address actually belongs to the user
address space and only then copy the string.

The last thing we do is use the macros module_init() and module_exit()
to register our procedures that should be used when the module is loaded
and unloaded.

module_init (jo shua_in i t) ;
module_exit (joshua_exit) ;

This is it, you should be set to go.

4 Want to play a game

Compile the joshua module using the make �le in the joshua directory. Then
load the module using insmod.

$ make

:

:

$ sudo insmod joshua.ko

12

Now take a look in the /dev and you should see a joshua device. Do ls

-l and you will have more information.

$ ls -l /dev/joshua

crw------- 1 root root 244, 0 aug 19 10:16 /dev/joshua

Hmm, a character device (the 'c' in the beginning) with read and write
privileges for root, who is also the owner of this �le. To be able to open it
from a regular user we need to change the privilege level.

$ sudo chmod o+r /dev/joshua

Do ls -l again and see that the mode of the device now allows "other"
users to read the device. Also take a look in /sys/devices/virtual/char

and you will see a directory containing information about our device. We
don't really need to know what is going on here but I'm quite sure there
is some magic involved. The important thing is that we have our device
available for the users.

Now switch attention to the program quote.c, compile it and run a test,
does it work?

5 Summary

This assignment is of course only scratching the surface of kernel modules or
device driver implementation. The important lesson is that it is fairly easy
to add things to the kernel and that user level programs can interact with
kernel module using the device interface.

You're encouraged to play around some more, add more commands or
ponder what would happen if two processes call the module at the same
time. When you experiment, keep in mind that you're playing with the
kernel; hopefully on a virtual machine but if you're like me you of course
run it on your own laptop where you also have all you non-backed photos.
Another thing you must know is that most of the libraries that you are used
to use are not available to the kernel. The libraries are written to be called
from user space and maybe trap to the kernel for a system call - but we
are already in the kernel. This is why the code above have used printk for
output.

Appendix

Hear are some comments on things that could go wrong and how to �x them:

13

things do not work

Do you have �make� installed? If not install it using �sudo apt install make�.
You will use make in more assignments so it's a good thing to have anyway.

You need to have the library development �les i.e. the header �les that
we refer to. If things go wrong when you make the modules this could be
the problem. Install them using �sudo apt install libelf-dev�

Make sure that the make �le is actually called �Make�le�. When you run
make it will look for this �le in the current directory. You could change this
using the �-f� �ag but we will only use one Make�le for each experiment and
each experiment has its own directory.

The Make�le must of course be adapted for the di�erent experiments. If
the �rst Make�le is used for �hal.o� then you will have to change this to for
example �skynet.o�.

what is going on

The Make�le de�nes a variable �obj-m += hal.o� (or rather adds �hal.o� to
the �obj-m� variable. This variable is used by the Make�le in the �
lib
modules
..� directory. It will be the object �le that is turned in to a kernel object
�le. When we run make, it will read our Make�le and then, if no arguments
are given, perform what is listed under �all:�. What we say there is that it
should run make but now with some arguments.

The �rst argument to make is the �-C� �ag together with a mysteriously
looking directory. The �ag will tell make to go to this directory and then do
what ever needs to be done there. On my current machine the directory is:

/lib/modules/4.15.0-36-generic/build

but this will of course change when ever I upgrade my system. To avoid
having to change the Make�le every time I use the trick of calling the com-
mand �uname�. Try the command �uname -a� in a shell and you will see a
lot of information about your system. The thing that we are looking for is
the kernel revision that we get from �uname -r�.

In the same way we de�ne the variable �M� to be equal to the directory
where we are currently standing. This is where the source �les are found
and this is were the results should be written. We also give the argument
�modules� since we want make to generate the kernel modules for us.

14

