
Green, green threads of home

Johan Montelius

HT2019

1 Introduction

This is an assignment where you will implement your own thread library.
Instead of using the operating systems threads you will create your own
scheduler and context handler. Before even starting to read this you should
be up and running using regular threads, spin locks, conditional variables,
monitors etc. You should also preferably have done a smaller exercise that
shows you how we can work with contexts.

Note - the things you will do in this assignment are nothing that you
would do in real life. Whenever you want to implement a multi-threaded
program you would use the pthread library. We will however manage con-
texts explicitly to implement something that behaves similar to the pthread
library. Why? - To better understand how threads work on the inside.

We will call our implementation green since they will be implemented in
user space i.e. the operating system will not be involved in the scheduling
of threads (it does perform the context switching for us so the threads are
not all green).

2 Managing contexts

The library functions that we will use are: getcontext(), makecontext(), set-
context() and swapcontext(). Look up the man pages for these functions so
that you get a basic understanding of what they do.

The functions that we want to implement are the following (arguments
will be described later):

� green_create() : initializes a green thread

� green_yield() : suspends the current thread and selects a new thread
for execution

� green_join() : the current thread is suspended waiting for a thread to
terminate

Our handler needs to keep track of the currently running thread and a
set of suspended threads ready for execution. It must of also keep track of
threads that have terminated since the creator of the thread might want to
call green_join() and should then be able to pick up the result.

1

We will try to mimic the pthread library so look up the de�nition of the
equivalent functions: pthread_create(), pthread_yield() and pthread_join()
(note - green_join() will take a pointer to a struct where pthread_join()
takes a struct).

representing a thread

To follow the structure of the pthread library we will represent threads by
a structure. This structure will hold all information that is needed for us
to manage the threads; the threads manager will keep a very small state
internally.

The structure should of course hold a pointer to the context of the thread.
The context is used when we call swapcontext() or setcontext(). When we
call the thread for the �rst time, we will call a function given an argument.
When a thread is suspended we will add it to a linked list so we include a
next pointer in the structure itself.

We also need to keep track of a thread that is waiting to join the thread
to terminate so we also keep a pointer for this and a ponter to the �nal
result- The zombie status �eld will indicate if the thread has terminated or
not.

In a �le green.h include the following:

#include <ucontext . h>

typedef struct green_t {
ucontext_t * context ;
void *(* fun) (void *) ;
void * arg ;
struct green_t *next ;
struct green_t * j o i n ;
void * r e t v a l ;
int zombie ;

} green_t ;

int green_create (green_t * thread , void *(* fun) (void *) , void * arg) ;
int green_yie ld () ;
int green_join (green_t * thread , void** va l) ;

internal state

The internal state of the scheduler is very small. We will only keep track of
two things: the running thread and the ready queue. We will also need one
global context that will be used to store the main context i.e. the context of
the initial running process.

In a �le green.c include the following:

2

#include <s t d l i b . h>
#include <ucontext . h>
#include <as s e r t . h>
#include " green . h"

#define FALSE 0
#define TRUE 1

#define STACK_SIZE 4096

stat ic ucontext_t main_cntx = {0} ;
stat ic green_t main_green = {&main_cntx , NULL, . . . FALSE} ;

stat ic green_t * running = &main_green ;

We allocate a global green thread main_green that holds a pointer to the
main context and otherwise initialized with null pointers and a false zombie
�ag.

If you read the man pages for makecontext() and swapcontex() you realize
that we will have to initiate a contexts before we can use it and this can not
be done at compile time. We could provide a function that the user needs to
call to initialize the manager, or a in the �rst call to green_create() detect
that the main context needs to be initialized; we will however use another
trick - provide a function that is called when the program is loaded.

In the �le green.c add the following de�nition.

stat ic void i n i t () __attribute__ ((con s t ruc to r)) ;

void i n i t () {
ge tcontext (&main_cntx) ;

}

The init() function will initialize the main_cntx so when we call the
scheduling function for the �rst time the running thread will be properly
initialized.

2.1 create a green thread

A new green thread is created in a two stage process. First the user will call
green_create() and provide: an uninitialized green_t structure, the function
the thread should execute and pointer to its arguments. We will create new
context, attach it to the thread structure and add this thread to the ready
queue.

When this thread is scheduled it should call the function but in order
to do this we set it to call the function green_thread(). This function is
responsible for calling the function provided by the user.

3

int green_create (green_t *new , void *(* fun) (void *) , void * arg) {

ucontext_t * cntx = (ucontext_t *) mal loc (s izeof (ucontext_t)) ;
ge t context (cntx) ;

void * s tack = mal loc (STACK_SIZE) ;

cntx−>uc_stack . ss_sp = stack ;
cntx−>uc_stack . s s_s i z e = STACK_SIZE;
makecontext (cntx , green_thread , 0) ;

new−>context = cntx ;
new−>fun = fun ;
new−>arg = arg ;
new−>next = NULL;
new−>jo i n = NULL;
new−>re t v a l = NULL;
new−>zombie = FALSE;

// add new to the ready queue
:

return 0 ;
}

It is up to you to implement how the ready queue is managed.
Now let's take a look at the green_thread() function. This function will

do two things: start the execution of the real function and, when after re-
turning from the call, terminate the thread.

void green_thread () {
green_t * t h i s = running ;

void * r e s u l t = (* th i s−>fun) (th i s−>arg) ;

// p l ace wa i t ing (j o i n i n g) thread in ready queue
:

// save r e s u l t o f e xecu t i on
:

// we ' re a zombie
:

// f i nd the next thread to run
:

running = next ;
s e t con t ex t (next−>context) ;

4

}

The tricky part is what to do when the called function returns. We (that
is you) should check if there is a thread waiting for its termination, and if so
place it in the ready queue; the thread is now a zombie process. The result
of the execution should be saved to allow the waiting thread to collect the
result.

There should be a thread in the ready queue so we select the �rst and
schedule it for execution.

2.2 yield the execution

In the initial implementation, scheduling is only done when a thread vol-
untarily call the green_yield() function. This function will simply put the
running thread last in the ready queue and then select the �rst thread from
the queue as the next thread to run.

int green_yie ld () {
green_t * susp = running ;
// add susp to ready queue
:

// s e l e c t the next thread f o r execu t i on
:

running = next ;
swapcontext (susp−>context , next−>context) ;
return 0 ;

}

The call to swapcontext() will do the context switch for us. It will save the
current state in susp->context and continue execution from next->context.
Note that when the suspended thread is scheduled, it will continue the execu-
tion from exactly this point (read that sentence again, it will be important).

2.3 the join operation

The join operation will wait for a thread to terminate. We therefore add the
thread to the join �eld and select another thread for execution. If the thread
has already terminated we can of course continue as if nothing happened. In
either case we will of course pick up the returned value from the terminating
thread. We will also free the memory allocated by the zombie thread, it is
now dead.

int green_join (green_t * thread , void ** r e s) {

i f (! thread−>zombie) {
green_t * susp = running ;
// add as j o i n i n g thread

5

:
// s e l e c t the next thread f o r execu t i on
:

running = next ;
swapcontext (susp−>context , next−>context) ;

}
// c o l l e c t r e s u l t
:

// f r e e con t e x t
:

return 0 ;
}

What wil happen if several threads wait for the same thread? If you
read the man pages for pthread_join() you will see that they say that the
behavior is unde�ned. This is a resonable decession and makes life easier for
us. Let's adopt the strategy and only alow one waiting thread.

2.4 a small test

If you have completed the code above and implemented a ready queue, you
should be able to run a small test. Separatet the test program from your
implementation and include the header �le green.h.

#include <s td i o . h>
#include " green . h"

void * t e s t (void * arg) {
int i = *(int *) arg ;
int loop = 4 ;
while (loop > 0) {

p r i n t f (" thread %d : %d\n" , i , loop) ;
loop−−;
green_yie ld () ;

}
}

int main () {
green_t g0 , g1 ;
int a0 = 0 ;
int a1 = 1 ;
green_create (&g0 , t e s t , &a0) ;
green_create (&g1 , t e s t , &a1) ;

green_join(&g0 , NULL) ;

6

green_join(&g1 , NULL) ;
p r i n t f ("done\n") ;
return 0 ;

}

3 Suspending on a condition

Now for the next task: the implementation of conditional variables. These
should work as the conditional variables in the pthread library. However, we
do not have any mutex structures that can be locked so our implementation
is simpler.

You should stop and wonder why we have not implemented any lock-
ing functionality. Is it not very dangerous to run multi-threaded programs
without locks?

You should implement the following functionality:

� void green_cond_init(green_cond_t*): initialize a green condition vari-
able

� void green_cond_wait(green_cond_t*): suspend the current thread
on the condition

� void green_cond_signal(green_cond_t*): move the �rst suspended
thread to the ready queue

You need to de�ne a data structure green_cond_t that can hold a number
of suspended threads. The implementation of the functions should then be
quite simple. Draw some pictures that describes what the operations should
do before you start implementing.

When you think you have it you could try something like this (don't
forget to initialize the conditional variable):

int f l a g = 0 ;
green_cond_t cond ;

void * t e s t (void * arg) {
int id = *(int *) arg ;
int loop = 4 ;
while (loop > 0) {

i f (f l a g == id) {
p r i n t f (" thread %d : %d\n" , id , loop) ;
loop−−;
f l a g = (id + 1) % 2 ;
green_cond_signal(&cond) ;

} else {

7

green_cond_wait(&cond) ;
}

}
}

4 Adding a timer interrupt

So far we have relied on the threads themselves to either yield the execution
or suspend on a conditional variable, before we schedule a new thread for
execution. This is �ne, and for sure makes things easier, but we might want
to allow several threads to execute concurrently. We therefore introduce a
timer driven scheduling event.

Note - printf() is not asynch_signal_safe which means that havock
will follow if we have a timer interupt while printing. You need to use the
system call write() if you want to log what is happening.

A timer will be set to send the process a signal with regular intervals.
When we receive a signal we will suspend the currently running thread
and schedule the next one in the run queue. This is exactly what the
green_yield() function does.

In the beginning of green.c:

#include <s i g n a l . h>
#include <sys / time . h>

#define PERIOD 100

stat ic s i g s e t_t block ;

void t imer_handler (int) ;

Now in the init() function we initialize the timer. We initialize the block
to hold the mask of the SIGVTALRM, set the handler to our timer_handler()
function and associate the signal to the action handler. We then set the timer
interval and delay (value) to our PERIOD and start the timer.

s igemptyset (&block) ;
s i g add s e t (&block , SIGVTALRM) ;

struct s i g a c t i o n act = {0} ;
struct t imeva l i n t e r v a l ;
struct i t ime r va l per iod ;

act . sa_handler = timer_handler ;
a s s e r t (s i g a c t i o n (SIGVTALRM, &act , NULL) == 0) ;

8

i n t e r v a l . tv_sec = 0 ;
i n t e r v a l . tv_usec = PERIOD;
per iod . i t_ i n t e r v a l = i n t e r v a l ;
per iod . i t_value = i n t e r v a l ;
s e t i t im e r (ITIMER_VIRTUAL, &period , NULL) ;

When the timer expires the handler will be called and its time to schedule
the next thread.

void t imer_handler (int s i g) {
green_t * susp = running ;

// add the running to the ready queue

// f i nd the next thread f o r execu t i on
running = next ;
swapcontext (susp−>context , next−>context) ;

}

If you complete the code above it will actually work ... almost. You
could test it for a while before you run into a strange segmentation fault and
when you do, you will have a very hard time �nding the bug.

The thing that will eventually happen is that we will have a timer in-
terrupt when we're in one of the functions that manipulate the state of the
green threads. Imaging what could happen if we are in the middle of a yield
operation and change the run queue. We need to prevent these interrupts
when we change the state.

Fortunately for us, we are not the only ones with this problem so we have
a simple way to block and unblock these interrupts:

s igprocmask (SIG_BLOCK, &block , NULL) ;
:
:
:

s igprocmask (SIG_UNBLOCK, &block , NULL) ;

5 A mutex lock

When you have your timer interrupts working, write a small test program
that shows that it works. Also write a program that shows a situation where
our threads library falls short.

Since a thread now can be interrupted at any point in the execution
we will have a problem when we update shared data structures. A simple
example where two threads read and increment a shared counter will lead
to very unpredictable behavior. We need a way to synchronize our threads
and a mutex construct would do the trick.

9

We will need a structure to represent a mutex and since we will have
threads suspended on the lock we let it hold a list of suspended threads. In
the green.h �le we add the following:

typedef struct green_mutex_t {
volat i le int taken ;
// handle the l i s t

} green_mutex_t ;

int green_mutex_init (green_mutex_t *mutex) ;
int green_mutex_lock (green_mutex_t *mutex) ;
int green_mutex_unlock (green_mutex_t *mutex) ;

The function green_mutex_init() is trivial since all we have to do is
initialize the �elds:

int green_mutex_init (green_mutex_t *mutex) {
mutex−>taken = FALSE;
// i n i t i a l i z e f i e l d s

}

The function that tries to take the lock will, if the lock is taken, look
very similar to the yield procedure. We will use a method called �pass the
baton� - a thread that holds the lock will give the lock to the next thread in
line. If we wake up after having suspended on the mutex we know that the
lock is ours.

int green_mutex_lock (green_mutex_t *mutex) {
// b l o c k t imer i n t e r r u p t

green_t * susp = running ;
i f (mutex−>taken) {

// suspend the running thread
:
// f i nd the next thread
running = next ;
swapcontext (susp−>context , next−>context) ;

} else {
// take the l o c k
:

}
// unb lock
return 0 ;

}

The unlock function is very similar to the signal operation. If there is a
thread waiting on the lock we do not release the lock but pass it over to the
suspended thread.

10

int green_mutex_unlock (green_mutex_t *mutex) {
// b l o c k t imer i n t e r r u p t
:
i f (mutex−>susp != NULL) {

// move suspended thread to ready queue
} else {

// r e l e a s e l o c k
}
// unb lock
return 0 ;

}

Complete the code and write a small program that shows that it works.

6 The �nal touch

Take a look the procedure below, where two threads take turn changing a
�ag. The �ag is protected by a mutex but we use a conditional variable to
signal that the �ag has changed. Will this work? What will happen if we
release the lock and have a timer interupt before calling green_cond_wait()?

while (loop > 0) {
green_mutex_lock(&mutex) ;
while (f l a g != id) {

green_mutex_unlock(&mutex) ;
green_cond_wait(&cond) ;
green_mutex_lock(&mutex) ;

}
f l a g = (id + 1) % 2 ;
green_cond_signal(&cond) ;
green_mutex_unlock(&mutex) ;
loop−−;

}

We need, as in the pthread library, a function that suspends on a con-
ditional variable and releases a lock in one atomic operation. When the
function returns, the lock should be held. We therefore change the function
green_cond_wait() to also take a mutex as an argument.

int green_cond_wait (green_cond_t *cond , green_mutex_t *mutex) {
// b l o c k t imer i n t e r r u p t
:
// suspend the running thread on cond i t i on
:
:

11

i f (mutex != NULL) {
// r e l e a s e the l o c k i f we have a mutex
:

// move suspended thread to ready queue
:

}
// schedu l e the next thread
:
running = next ;
swapcontext (susp−>context , next−>context) ;

i f (mutex != NULL) {
// t r y to take the l o c k
i f (mutex−>taken) {

// bad luck , suspend
:

} else {
// take the l o c k
mutex−>taken = TRUE;

}
}
// unb lock
:
return 0 ;

}

Rewrite your test program and use the atomic conditional wait function.
You should now be able to have a producer and consumer synchronize their
actions using conditional variables and mutex locks.

7 Summary

A threads library is not rocket science but it takes some time before you get
it right. The problem is that when it fails it is very hard to �gure out what
went wrong. Does your implementation work correctly? A single threaded
program is easier to debug since it follows the same execution path every
time you run it. In our implementation things were predictable up until we
introduced the timer interrupts. How do we know that we have covered all
corner situations? Is extensive testing the only tool we have? If your threads
library was controlling the threads of a web browser it might not matter very
much, what if it was used in an airplane control system - would you sleep
well tonight?

12

