
Threads - roll your own

Johan Montelius

VT2016

1 Introduction

This is an experiment where we will explore the concept of an execution con-
text and implement concurrency to better understand how multi-threading
works. You will basically do the �rst steps of what is needed to create your
own thread library.

The program that you will write does probably not look like anything
that you will ever do again but it's fun to see that it works. After this
assignment you will have a far better understanding of what an execution
context is and how multi-threading works.

2 An execution context

You know that an execution context consists of a heap, a stack, code, an
instruction pointer, registers etc When you're programming in C you only
use the heap explicitly, the stack etc are implicitly used when doing procedure
calls and declaring local variables. The context of the process also includes
open �le descriptors, signal handlers and a myriad things that the operating
system keeps track of. In this assignment we will only deal with the things
that are speci�c for an execution i.e. the stack and instruction pointer.

We will explore what an execution context means by the support found
in the library ucontext. Here we �nd a set of procedures that allows us to
capture the current execution context, change it and even start using another
context. As you will see we will be able to switch from one execution to
another by switching context.

2.1 get the context

The magic in this assignment is the data structure ucontext_t that among
other things holds a pointer to an execution stack, copy of the registers and
instructions pointer. We will only touch the execution stack explicitly and
let the procedures of the ucontext library do the rest.

The header �les might not be installed on your system from start so
�rst make sure that we have all the header �les needed. Run the following
command in the shell:

>sudo apt-get install linux-headers-$(uname -r)

1

x
We then turn to our program. The �rst ting we will try, is to get hold

of the current execution context and swap one context for another. Try the
following in a �le called switch.c.

#include <s t d l i b . h>
#include <s td i o . h>
#include <ucontext . h>

int main () {

int done = 0 ;
ucontext_t one ;
ucontext_t two ;

ge tcontext (&one) ;

p r i n t f (" h e l l o \n") ;

i f (! done) {
done = 1 ;
swapcontext(&two , &one) ;

}
return 0 ;

}

We allocate two contexts, one and two, and then use the procedure
getcontext() to populate the �rst context with the state of the running
context. This will store among other things the program counter in the con-
text data structure. We then print hello to the standard output and move
to the strange looking section where we call swapcontext().

The �rst time we enter this section done will be zero so the test will
succeed and we will select the alternative. We set the variable done to one
since we only want to do this once and then call swapcontext(). This call
will save the current execution context in structure two and copy the context
of one into the proper registers of the CPU. When we continue we will of
course continue from the position where one was saved. Compile the program
and explain what you see.

2.2 registers and optimizations

To see that it is more than just the instruction pointer that is stored in the
context we can try the following small change to our program.

register int done = 0 ;

2

The register modi�er will ask the compiler to store this variable in a
register (if possible). If we now compile and run our program something else
will happen (be quick on the Ctrl-C).

To complicate things even further we can try to compile the original
program using some compile optimizations. Try the following and see how
things change, what is going on?

$ gcc -O2 switch.c

$./a.out

:

:

So we learn that the compiler can do strange things. Most of the time
it does things that works, and works better, but sometime things does not
really work as we think it works. Let's not use compiler optimizations for
the rest of this assignment.

3 allocating a stack

We will now make the situation a bit more complicated, we will allocate a
new stack. We will have three contexts all in all. One is the main context,
that will have the regular C stack. The other two contexts will have their
own stacks that we have allocated on the heap. We will also explicitly set
the program pointers of the other two contexts to make them start their
execution on some more interesting place.

Create a new �le called yield.c and try the following. We will go through
it step by step. The �rst section includes directives and the declarations of
our contexts. We will now keep these as global data structures since we want
to make the code simpler.

#include <s t d l i b . h>
#include <s td i o . h>
#include <ucontext . h>

#define MAX 10

stat ic int running ;

stat ic ucontext_t cntx_one ;
stat ic ucontext_t cntx_two ;
stat ic ucontext_t cntx_main ;

We then de�ne a procedure yield() that will allow us to switch between
the two contexts. We assume that the variable running is either 1 or 2

depending on which context that is executing, switching between them is
then a simple task.

3

void y i e l d () {
p r i n t f (` ` − y i e l d −\n ' ') ;
i f (running==1) {

running = 2 ;
swapcontext(&cntx_one , &cntx_two) ;

} else {
running = 1 ;
swapcontext(&cntx_two , &cntx_one) ;

}
}

Next we de�ne a procedure push() that only serves the purpose of making
the stack grow. We do a print out when we push a call on the stack and then
another on the way down. The format string will print a number followed by
an indent �push� or �pop� where the indentations is given by the recursion
depth.

void push (int p , int i) {
i f (i<MAX) {

p r i n t f ("%d%*s push\n" , p , i , " ") ;
push (p , i +1);
p r i n t f ("%d%*s pop\n" , p , i , " ") ;

} else {
p r i n t f ("%d%*s top\n" , p , i , " ") ;

}
}

Now for the thing that will tie the room together, setting up the two
contexts and take it for a spin. We allocate two stacks, 8 Kbyte each, called
stack1 and stack2 (are they allocated on the stack or on the heap?). Next
we initialize each context using the procedure getcontext(), this will pop-
ulate the contexts with all the information that the operating system needs.
Then we explicitly change the uc_stack elements of the contexts. This is
a structure holding pointers and size of the stack. We are thus giving each
context a stack of their own.

We then call makecontext() providing a reference to each context and
the procedure that they should call when starting the execution. We provide
the name of the procedure, the number of arguments and the two arguments
as parameters. The two contexts will both use the push procedure, one using
the arguments 1 and 1 and the other 2 and 1.

int main () {

char s tack1 [8 * 1 0 2 4] ;
char s tack2 [8 * 1 0 2 4] ;

4

/* The f i r s t con t e x t . */

getcontext (&cntx_one) ;
cntx_one . uc_stack . ss_sp = stack1 ;
cntx_one . uc_stack . s s_s i z e = s izeof s tack1 ;
makecontext(&cntx_one , (void (*) (void)) push , 2 , 1 , 1) ;

ge t context (&cntx_two) ;
cntx_two . uc_stack . ss_sp = stack2 ;
cntx_two . uc_stack . s s_s i z e = s izeof s tack2 ;
makecontext(&cntx_two , (void (*) (void)) push , 2 , 2 , 1) ;

running = 1 ;

swapcontext(&cntx_main , &cntx_one) ;

return 0 ;
}

When you compile and run the program you might not be super exited
since nothing much happens. We start the program and then pass control
over to context one. This context will of course call push() and push and pop
the stack before terminating but the second context is never given time to
execute. However, everything is prepared to swap between the contexts. The
only thing we need to do is add a call to yield() in the push() procedure.
Let's call yield when were at the top of the stack.

:
} else {

p r i n t f ("%d%*s top\n" , p , i , " ") ;
y i e l d () ;

}
}

Now things are starting to look more interesting; the two contexts take
turn executing. You can do a yield in every recursion if you like and see how
the execution jumps from one context to the other. Before we're done we
shall �x one more thing.

4 termination

The switching between contexts works �ne but there is one problem with
our example that might not be obvious. When one context terminates the
whole execution terminates. If we yield the execution when at the top of the
stack we will see that only the �rst context will �nish the execution. The

5

�rst context will push all entries on its stack, then the second context will
do the same but then when the �rst context resumes execution it will pop
all entries and terminate the whole program. We need a way to capture the
termination and schedule the second context again.

The solution that we will implement is not the most general solution. It
is, as the yield() procedure, hardwired into only handle our two contexts.
We will later discuss a more general solution but this will do for now.

We begin by adding yet another context, cntx_done, this will be the
context that we switch to when a context terminates. We also add two �ags
that will keep track of which contexts that have terminated their execution.

stat ic int done1 ;
stat ic int done2 ;

stat ic ucontext_t cntx_done ;

Next we de�ne a procedure done() that will be the procedure of cntx_done.
This procedure will be scheduled when one of the contexts terminate and we
should then switch to the remaining but we need to keep track of which
context is still alive so we do some bookkeeping using the �ags done1, done2
and done. When both contexts have terminated we're done.

void done () {

int done = 0 ;

while (! done) {
i f (running == 1) {

p r i n t f (" − proce s s one terminat ing −\n") ;
done1 = 1 ;
i f (! done2) {

running = 2 ;
swapcontext(&cntx_done , &cntx_two) ;

} else {
done = 1 ;

}
} else {

p r i n t f (" − proce s s two terminat ing −\n") ;
done2 = 1 ;
i f (! done1) {

running = 1 ;
swapcontext(&cntx_done , &cntx_one) ;

} else {
done = 1 ;

}
}

6

}
p r i n t f (" − done terminat ing −\n") ;

}

Now for the part where we set this up. We need another stack for
cntx_done so we allocate it as the other stacks. Next we do the trick
that will make things work, we set a element called uc_link in each of
the contexts cntx_one and cntx_two. This should be done before the call
to makecontext(). This will set u the context in such way that when the
context terminates we will automatically switch to the contextcntx_done.

:
char stack_done [8 * 1 0 2 4] ;

:

cntx_one . uc_link = &cntx_done ;
:

cntx_two . uc_link = &cntx_done ;
:

The last thing we need to do is initialize the new context. We here also
give it the context cntx_main to be the context that it should switch to when
terminating.

ge tcontext (&cntx_done) ;
cntx_done . uc_link = &cntx_main ;
cntx_done . uc_stack . ss_sp = stack_done ;
cntx_done . uc_stack . s s_s i z e = s izeof stack_done ;
makecontext(&cntx_done , (void (*) (void)) done , 0) ;

:

We still start the execution by switching to the �rst context but we add
some printout to follow the execution. Note that when we switch to the
�rst context we store the current execution environment in cntx_main. This
is the context that we switch to once the cntx_done is terminating. We
will if everything works out see the last printout before the whole execution
terminates.

running = 1 ;

p r i n t f (" − l e t ' s go ! \n") ;
swapcontext(&cntx_main , &cntx_one) ;
p r i n t f (" − that ' s a l l f o l k s −\n") ;

If everything works you should now see how the two contexts both execute
to termination. Add a call to yield() at several places in the procedure
push() to switch several times, it works right?

7

5 a library

Before you started this assignment you probably had no idea of how to
implement your own threads library. Now it should be, at least partly, clear
on how to start. The experiment that we have done has actually done the
hard part, switching between di�erent context. That has of course been
hardwired into only work for the two contexts that we have used but we
could generalize it to work for several contexts, how hard could it be?

We would need to keep track of several contexts so why not keep a list of
contexts that should be scheduled. When a context calls yield() we would
simply place the context last and schedule the next context in the list.

If a context terminated, the done context would be scheduled and it would
deallocate the context and schedule the next context in the list. If the list
is empty the execution terminates. We would of course have to provide a
procedure spawn() that would allocate a new context on the heap (with it's
own stack) and insert it in the list of contexts to schedule.

We could continue to rely on explicit yielding of execution but we could
also add a timer interrupt that would make a call to yield() every 100 ms.
Adding support to wait for a context to terminate could be one feature but
would require some bookkeeping; we need to attach the context to a list of
suspended threads attached to the thread that we are waiting for. There are
probably more features that we would like to have but nothing that is too
hard to solve.

You might wonder why one would like to implement threads library but
it could have its advantages. The switching between contexts could be more
e�cient since the kernel is not involved. There are however many things
that could go wrong so one should have very good reasons for not using the
standard pthreads library. The idea with this assignment is not to make
you implement a new threads library but to get some insight into threads
scheduling and that it's not all magic.

8

