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1 Introduction

In this tutorial you're going to explore di�erent ways for two processes to
communicate with each other. We will �rst look at pipes, something that you
have probably used when working in the shell but now we will implement
our own pipes. We will then look at sockets, an abstraction that can be used
for process communication even if the processes reside on di�erent machines
in a network.

2 Pipes

To understand pipes you only have to understand how to read and write to
streams such as standard input or standard output. A stream is of course
nothing else but a sequence of bytes and we have already seen how read()

and write() can be used to operate on a �le descriptor.
When we create a pipe we will be given two �le descriptors, one that

will be used by the producer and one that can be used by a consumer. If
we want to create two processes that can communicate of a pipe, we �rst
create the pipe and then fork() two processes. Since any forked process will
share the same �le descriptor table, we can set up one process to use the
write descriptor to produce data and the other to use the read descriptor
to consume data.

2.1 �ow control

The nice thing with the pipe is that it will take care of flow control i.e. the
producer will be suspended if the consumer can not process the information
quick enough. Let's run an experiment to see this in action, open a �le called
flow.c and add the following code.

We will let a producer send ten bytes in a burst and do this ten times.
We will later change these numbers so let's de�ne them as macros.

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <a s s e r t . h>
#inc lude <sys /wait . h>
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#de f i n e ITERATIONS 10
#de f i n e BURST 10

In the main procedure we �rst create a pipe providing an array where
the procedure will store the two �le descriptors. We then fork a new process
determine if we're the mother or child process.

int main ( ) {
int desc r [ 2 ] ;

a s s e r t (0 == pipe ( desc r ) ) ;

i f ( f o rk ( ) == 0 ) {
/* consumer */
:

}

/* producer */
:
wait (NULL) ;
p r i n t f ( " a l l done\n" ) ;

}

The consumer will read the burst of ten bytes each but will sleep for a
second in between bursts. This is to simulate a process that is receiving
some data and then spend some time processing this data.

for ( int i = 0 ; i < ITERATIONS; i++) {
for ( int j = 0 ; j < BURST; j++) {
int bu f f e r [ 1 0 ] ;
read ( desc r [ 0 ] , &bu f f e r , 1 0 ) ;

}
s l e e p ( 1 ) ;

}
p r i n t f ( "consumer done\n" ) ;
return 0 ;

The procedure will be more eager and will produce data as quickly as
possible. To keep track of the pace we let it print a message by the end of
each burst.

for ( int i = 0 ; i < ITERATIONS; i++) {
for ( int j = 0 ; j < BURST; j++) {

wr i t e ( de sc r [ 1 ] , " 0123456789" , 1 0 ) ;
}
p r i n t f ( " producer burst %d done\n" , i ) ;

}
p r i n t f ( " producer done\n" ) ;
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That is it, compile and run the benchmark - explain what is happening.
Now increase the size of the burst to a hundred, to a thousand - what is hap-
pening? What you see is an e�ect of �ow control, something very important
when it comes to any type of communication.

2.2 named pipes

Pipes are very easy to use since the only thing we need to understand is how
to read a sequence of bytes from a �le descriptor. They are also very easy
to set up ... if you're forking a new process. The question is how to do it if
you're not the one creating the new process.

It turns out that we can use the same naming scheme as for �les to
register and �nd pipes. We can thus create a pipe and register it under a �le
name. To do this we use the library call mkfifo() - check the man pages,
note that it exists both as a command and as a library call (use >man 3

mkfifo).
We need half a dozen of include statements so create two �les, cave.c

and baba.c. They will look very much like the flow.c but now we split
the producer (the cave) from the consumer (Ali Baba), and connect them
through a pipe called sesame.

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <a s s e r t . h>
#inc lude <sys /wait . h>
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <f c n t l . h>

#de f i n e ITERATIONS 10
#de f i n e BURST 1000

In cave.c we have the producer and also the process that will create the
pipe. This is were we call mkfifo() providing the name sesame and the
mode of the pipe. Once the pipe is created we will open the pipe using a
call open(). This is done in the same way as we would have opened any �le.
In this example we open it in write mode only since the producer will only
write to the pipe. The rest of the �le uses the producer part of flow.c i.e.
looping over the ITERATIONS and BURST, the only di�erence is that we now
write to pipe.

int main ( ) {
/* c r ea t e the named pipe */
int mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
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mkf i fo ( " sesame" , mode ) ;

int f l a g = O_WRONLY;
int pipe = open ( " sesame" , f l a g ) ;
:
:
p r i n t f ( ` ` producer done\n ' ' ) ;
return 0 ;

}

The consumer assumes that there is a pipe called sesame and will open
this for reading. Complete the code by using the consumer part from flow.c.

int main ( ) {
/* open p ipe f o r read ing */
int f l a g = O_RDONLY;
int pipe = open ( " sesame" , f l a g ) ;
:
:
p r i n t f ( "consumer done\n" ) ;
return 0 ;

}

Compile and run the producer and consumer in the same shell, use the
& notation to set a program to run in the background.

./cave&

[cave] 15321

> ./baba

producer burst 0 done

producer burst 1 done

:

:

Look at the man pages for open() (use >man 3 open). implicitly say that
the �le should not be created if it does not exist i.e. the call will suspend until
we create the pipe. We also implicitly say that the reader should suspend
waiting for the writer and also that the writer should wait for a reader (check
O_NONBLOCK). This means that we equally well can start the producer before
the consumer.

./baba&

[baba] 15351

> ./cave

producer burst 0 done

producer burst 1 done
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:

:

2.3 marshaling

The easy way in which we can use pipes to communicate has a down-side.
How do you send such a simple thing as a �oating-point from one process to
the other? The problem is of course that we're not sending data structures
but bytes in the pipe. This means that we have to send the bytes across and
then interpret them as a �oating-point on the other side.

Let's try to send some �oating-points from one process to the other. Make
a copy of flow.c and call it marshal.c. Then do the following changes, the
consumer part will look like this:

for ( int i = 0 ; i < ITERATIONS; i++) {
double bu f f e r ;
read ( desc r [ 0 ] , &bu f f e r , s izeof (double ) ) ;
p r i n t f ( " r e c e i v ed %f \n" , bu f f e r ) ;
s l e e p ( 1 ) ;

}

and the producer part will look like this:

for ( int i = 0 ; i < ITERATIONS; i++) {
double pi = 3.14* i ;
wr i t e ( de sc r [ 1 ] , &pi , s izeof (double ) ) ;

}

Try this out and see that it works.
The reason why it works is of course because the producers and consumer

represents �oating-point data structures in the same way. Note that we have
no clue of what this representation looks like but we know that if we send
some bytes across a pipe and interpret them as the data structure that we
know they represent then obviously it will work.

The above is not necessarily true if the processes were running on di�erent
machines, were written in di�erent languages or even compiled with di�erent
versions of a compiler. We can use this simple way of marshaling data
structures since we know that both the producer and the consumer agree on
how things are represented.

Things do however become very complicated if we for example want to
send a linked list across the pipe. Obviously you can not send a memory
reference across a pipe so you would have to come up with your own repre-
sentation of linked data structures.

The problem of turning data structures into sequences of bytes is called
marshaling. We will not explore this further but you should realize that it
is a problem.
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3 Sockets

Pipes are a very e�cient way of communicating between processes but it has
one draw back - it is only one-way communication. In order for two processes
to have a two-way communication you would have to use two pipes, one in
each direction. This is of course easily done but it would be nice to have
an abstraction that provided two-way communication directly - introducing
sockets.

A socket is the abstraction of pipe communication were we do not assume
a shared �le system. We should be able to open up a communication channel
with any process even if it is not running on the same machine. If the
processes are actually running on the same machine, things will be as e�cient
as using pipes but the user level application do not need to be aware of how
things are implemented.

You should already be familiar with network communication so we will
not go through TCP and UDP but rather take a look at sockets from an
applications point of view.

3.1 ping-pong

When we create a socket we choose the domain for the socket. Look up
the di�erent domains using man socket, as you can see the domains specify
the networking protocol that the socket should use. There is however one
domain that is a bit di�erent, the AF_UNIX domain. This domain is used if
we know that the processes are running on the same machine.

Let's implement a ping-pong experiment where two processes are sending
ping messages to and from. Create two �les ping.c and pong.c. The two
processes will look very similar but ping will serve as the server and pong

will act as a client i.e. it will �nd and connect to ping.
We need some header �les and among the usual suspects we �nd socket.h

that will provide the support for sockets and un.h that is the special AF_UNIX
domain.

#include <s td i o . h>
#include <s t d l i b . h>
#include <unis td . h>
#include <sys / socke t . h>
#include <sys /un . h>
#include <as s e r t . h>

#define NAME "pingpong"
#define TURNS 10

The name pingpong is the address that we will use to register the socket.
As with pipes we will use the regular �le system to provide name resolution.
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In both �les we create a socket and a socket address {AF_UNIX, NAME}.

int main (void ) {
int sock ;

a s s e r t ( ( sock = socket (AF_UNIX, SOCK_STREAM, 0) ) != −1);

struct sockaddr_un name = {AF_UNIX, NAME} ;

In ping.c we then bind the socket to the address i.e. we create the
pingpong name in the �le system in order for the pong process to �nd it.
We also start to listen to the socket and thereby tell the operating system
that we are prepared to accept connecting clients. The call to assert() will
suspend until a client connects and then return a new socket descriptor cfd.
This is our two-way connection that we can use for communication.

a s s e r t ( bind ( sock , ( struct sockaddr *)&name , s izeof (name ) ) != −1);

a s s e r t ( l i s t e n ( sock , 5) != −1);

int c fd ;

a s s e r t ( ( c fd = accept ( sock , NULL, NULL) ) != −1);

The �le pong.c looks very similar but now we do not have to bind the
socket nor wait for incoming connection. We simply us the socket and the
socket address to connect to the server.

a s s e r t ( connect ( sock , ( struct sockaddr *)&name , s izeof (name ) ) != −1);

The call to connect() will only return a error if something goes wrong
but it will also connect the socket so we can use it to communicate with the
ping process.

Both the ping.c and pong.c �les then contain a section were we use
send() and recv() to pass messages to a fro. Below is the code for ping.c
and you will have to adapt it for pong.c.

for ( int i = 0 ; i < TURNS; i++) {
char bu f f e r [ 5 ] ;
a s s e r t ( send ( cfd , " ping " , 4 , 0) != −1);
a s s e r t ( recv ( cfd , bu f f e r , 4 , 0) != −1);
bu f f e r [ 4 ] = 0 ;
p r i n t f ( " ping r e c e i v ed %s\n" , bu f f e r ) ;

}

The �le ping.c will of course look very similar, only di�erence is that we
will use sock when we communicate and that we will �rst receive a message
before sending a message.
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If everything compiles you should be able to run the experiment as fol-
lows:

> ./ping &

[ping] 4427

> ./pong

ping received ping

pong received ping

ping received ping

:

If you run it a second time you will receive the strange message:

ping: ping.c:21: main: Assertion `bind(sock, .....

aborted (core dumped)

If you look in your directory using ls -l you will see the �le name
pingpong with the strange description srwxrwxr-x. The s means that this
is not a regular �le but rather a name of a socket. When we try to bind the
socket to a name we get an error since the name is already take. To prevent
this we should unlink() the name when we're done. Remove the �le and
add unlink(NAME) to the end of ping.c.

You also see that people add a call to unlink() before doing a call to
bind() but then one should of course be sure, that no one is actually using
the name.

3.2 datagrams

One problem with the solution that we have so far is that we want to send
messages at the application layer but the communication layer only provides
an abstraction of a stream of bytes. In our program we have solved this
problem by knowing that a message is four bytes. It's a bit more complicated
if messages can be of arbitrary size.

We could, and many communication protocols work this way (http for
example), encode the length of a message in the �rst byte (or two) and then
read as many bytes as required. However, since the problem is so often
encountered there is an abstraction that provides what we're looking for -
datagrams.

Assume that we want to send text strings to a server and we want the
server to convert the string to lower case and then send it back. We can
implement this quite easily using the datagram socket type. Create two �les
tolower.c and conv.c. They will look very similar so we will go through
them and point out the di�erences.

We will of course use some header �les but by now you should be able to
�gure out which ones to use using the man command. We start by showing
the main procedure.
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#define SERVER " lower "
#define MAX 512

int main (void ) {
int sock ;
char bu f f e r [MAX] ;

/* A socke t i s c rea t ed */
a s s e r t ( ( sock = socket (AF_UNIX, SOCK_DGRAM, 0) ) != −1);

struct sockaddr_un name = {AF_UNIX, SERVER} ;

a s s e r t ( bind ( sock , ( struct sockaddr *) &name , s izeof ( struct sockaddr_un ) ) != −1);
:

The server, tolower.c, will as before create a socket but now we state
that it is of SOCK_DGRAM type. As before we register it under a name in order
for the client to �nd us.

The client, conv.c, will look the same but we register the socket under
a name of its own. Note that we will later use the SERVER name so keep this
in the �le. We also provide a text to test the service.

#define TEST "This i s a TeSt to SEE i f iT wORks"
#define CLIENT "help "

int main (void ) {
:

struct sockaddr_un name = {AF_UNIX, CLIENT} ;
:

It is now time for the server to wait for incoming messages and we do
this using the socket directly i.e. there is no call to listen(). We create a
data structure to hold the address of the client that connects and then call
recvfrom(). When this call returns we will have a message in the bu�er that
we provided - since it is a datagram service we will have the whole message.

struct sockaddr_un c l i e n t ;
int s i z e = s izeof ( struct sockaddr_un ) ;

while (1 ) {
int n ;
n = recvfrom ( sock , bu f f e r , MAX−1, 0 , ( struct sockaddr *) &c l i e n t , &s i z e ) ;
i f (n == −1)

pe r ro r ( " s e r v e r " ) ;

bu f f e r [ n ] = 0 ;
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p r i n t f ( " Server r e c e i v ed : %s \n" , bu f f e r ) ;

for ( int i= 0 ; i < n ; i++)
bu f f e r [ i ] = to lower ( (unsigned char ) bu f f e r [ i ] ) ;

a s s e r t ( sendto ( sock , bu f f e r , n , 0 , ( struct sockaddr *) &c l i e n t , s i z e ) == n ) ;
}

The server will convert the message to lower case letters and then send
it back to the client. Notice that we know who we should send it to since
we received the address of the client in the call to recvfrom(). There is
no established connection between the two processes, the two messages are
independent from each other.

On the client side we have a similar scenario but here we know who we
want to send the message to. This is where we need the name SERVER, in
our call to sendto() we must provide the address of the server.

struct sockaddr_un s e r v e r = {AF_UNIX, SERVER} ;
int s i z e = s izeof ( struct sockaddr_un ) ;

int n = s izeof (TEST) ;

a s s e r t ( sendto ( sock , TEST, n , 0 , ( struct sockaddr *) &server , s i z e ) != −1);
n = recvfrom ( sock , bu f f e r , MAX−1, 0 , ( struct sockaddr *) &server , &s i z e ) ;
i f (n == −1)

pe r ro r ( " s e r v e r " ) ;

bu f f e r [ n ] = 0 ;
p r i n t f ( " C l i en t r e c e i v ed : %s \n" , bu f f e r ) ;
un l ink (CLIENT) ;
e x i t ( 0 ) ;

}

Hard coding the address of the client might not be a very good idea if we
want to run multiple instances of the client. The names must of course not
collide and we would be better of with selecting the addresses dynamically.

3.3 sequence of datagrams

The beauty of datagrams is that they are independent from each other and
this is also the problem. We are not guaranteed that messages are delivered
in order nor will we be informed if a datagram is lost.

This will of course not happen if we have the two processes running in
the same operating system but it is a scenario if we run across the Internet.
If this is the case we might want to use the SOCK_SEQPACKET that will give
us a reliable ordered delivery of messages.
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3.4 address families

We have seen how sockets can use the �le system as the address but there
are many di�erent address families that we can use. The most used is the
internet protocol that will allow us to communicate between two processes on
di�erent machines in a network. The socket abstraction allows us to change
the underlying communication protocol and allows the application level to
remain the same.

To demonstrate how easy it is to set up two processes that communicate
over the network we will implement an echo server, a process that simply
accepts incoming messages and then return them to their destination. The
implementation will look very much like the tolower.c and conv.c so you
can use these �les as templates for two �les called echo.c and hello.c.

Both �les need the same set of header �les, notice the netinet/ip.h and
arpa/inet.h that will give us support for the IP sockets and some address
translations that will come in handy.

#include <s t d l i b . h>
#include <s td i o . h>
#include <sys / socke t . h>
#include <ne t i n e t / ip . h>
#include <arpa/ i n e t . h>
#include <as s e r t . h>

The echo process will create a socket and bind it to the port 8080. The
procedure htons() and htonl() will convert short (16-bit) and long (32-bit)
integers to network byte order i.e. the order the two or four bytes should
appear when we send them to be interpreted correctly by the network in-
frastructure.

We (I assume that you only have one network connection) do not specify
the ip-address but allow the operating system (INADDR_ANY) to choose this
for us.

#define PORT 8080
#define MAX 512

int main (void ) {
int sock ;
char bu f f e r [MAX] ;

/* A socke t i s c rea t ed */
a s s e r t ( ( sock = socket (AF_INET, SOCK_DGRAM, 0) ) != −1);

struct sockaddr_in name ;
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name . s in_fami ly = AF_INET;
name . s in_port = htons (PORT) ;
name . sin_addr . s_addr = hton l (INADDR_ANY) ;

a s s e r t ( bind ( sock , ( struct sockaddr *) &name , s izeof (name ) ) != −1);
:

We then do exactly as what we did in tolower.c but we do not convert
the string to lower-case before sending it back. We can add another print out
statement to see who we got the message from. The procedure inet_ntoa()
will take a network address and turn it into a string and ntohs() will take
a short network address and turn it into an integer.

p r i n t f ( " Server : r e c e i v ed : %s \n" , bu f f e r ) ;
p r i n t f ( " Server : from de s t i n a t i on %s %d\n" , inet_ntoa ( c l i e n t . sin_addr ) , ntohs ( c l i e n t . s in_port ) ) ;

That's it for the echo server, the client hello.c will be almost as simple.
We include the same header �les but now of course need the address of the
server in order to know how to connect. You can specify the server ip-address
as a string as shown in the example below but there are other possibilities.
In this example we use the loop-back address 127.0.0.1 i.e. the machine it
self.

#define MAX 512
#define TEST "Hel lo , h e l l o "

#define SERVER_IP " 1 2 7 . 0 . 0 . 1 "
#define SERVER_PORT 8080

The hello process of course needs a socket by its own and bind this socket
to an address in order for the server to send back a reply. In this case we
allow that operating system to select a port number for us since we will only
use this for reply messages, we do not need to use a known port number.

struct sockaddr_in name ;

name . s in_fami ly = AF_INET;
name . s in_port = 0 ;
name . sin_addr . s_addr = hton l (INADDR_ANY) ;

a s s e r t ( bind ( sock , ( struct sockaddr *) &name , s izeof (name ) ) != −1);

We can now create the address of the server, this is were we need the
server port number and server ip-address.

struct sockaddr_in s e r v e r ;

s e r v e r . s in_fami ly = AF_INET;
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s e r v e r . s in_port = htons (SERVER_PORT) ;
s e r v e r . sin_addr . s_addr = inet_addr (SERVER_IP) ;

This is it, we now do exactly what we did in the �le conv.c i.e. send a
message and wait for the reply. If everything works you should be able to
start the echo server and then run hello from your own machine. If you
check you ip-address and change the hello.c you should be able to do the
same thing across the network.

3.5 Alternatives

One alternative mechanism for process communication is the concept of sig-
nals. Signals are however not intended as a tool for process communication,
rather a way for the operating system to alert the process of events and pos-
sibly for a process to control the faith of another process i.e. kill it or suspend
its execution. Using signals for communication is not advisable since it is
likely to introduce more problems that it will actually solve.

Another concept is the use of shared memory. We have already seen how
two threads in a process can collaborate when they share the same memory
and it is possible for two processes to do almost the same. One process can
map a �le into memory to provide direct access to its content and if two
processes map the same �le they will share this content. It is however very
di�erent from the memory shared by two threads since the �le is mapped
into di�erent virtual memory regions. To choose this approach you really
have to know what you're doing.

The socket abstraction layer is what everything on the Internet is built on
top of. It might however not be the best things to use when you're building
an application that will run on a single operating system. You would like
to have more support from a communication layer to handle for example
authentication, multicasting and publish subscribe functionality. There
are many messaging abstraction layers that provide this but to explore these
require another tutorial. If you want to explore something by yourself that
is highly related to operating systems, take a look at D-Bus.

4 Summary

Pipes, a simple way to use communication abstraction that used the notion
of reading and writing to �le descriptors in the same way as you would access
a �le.

Sockets provide an abstraction on a higher level that provides two-way
communication using either byte streams, messages, sequences of messages
etc. We have several networking protocols to choose from and we can change
the choice of address family without changing the main part of our applica-
tion.
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