
Indirect communication

Johan Montelius

KTH

HT15

1 / 30

Time and Space

In direct communication sender and receivers exist in the same time and know of
each other.

In indirect communication we relax these requirements.

2 / 30

Time and space uncoupling

Time uncoupling: a sender can send a message even if the receiver is still not
available. The message is stored and picked up at a later moment.

Space uncoupling: a sender can send a message but does not know to whom it is
sending nor if more than one, if anyone, will receive the message.

time coupled time uncoupled
space coupled direct communication message storing systems
space uncoupled broadcast group communication

3 / 30

indirect communication

group communication
publish-subscribe
message queues
shared memory

4 / 30



Group communication

More than simple multicast:
the group is well defined and managed
ordered delivery of messages
fault tolerant, delivery guarantees
handles multiple senders

5 / 30

Broadcast vs Multicast

In a broadcast service, no one keeps track of who is listening, cf. radio broadcast,
IP broadcast 192.168.1.255 etc.

In a multicast service, the sender is sending a message to a specific group, the
system keeps track of who should receive the message cf. IP-multicast 239.1.1.1

IP-multicast is unreliable, does not keep track of members nor order of messages
when we have several senders.

6 / 30

ordering of messages

FIFO order: All messages are received in the order sent.
Causal order: If a message m2 is sent as a consequence of a message m1
(i.e. a process has seen m1 and then sends m2), then all members should
see m1 before m2.
Total order: All members will see messages in exactly the same order.

Causal ordering does not strictly imply FIFO, a process can send m1 and then m2
but has not yet seen its own message m1.

We can observe events, what do we know about causality?

7 / 30

Implementations

A number of middleware systems provide support for group communication.

JGroup: Java based
Akka: Scala based
Spread: C++ based
pg : a not so advanced library in Erlang

8 / 30



indirect communication

group communication
publish-subscribe
message queues
shared memory

9 / 30

Publish-subscribe

Processes publish events, not knowing if anyone is interested.

A process can subscribe on events of a given class.

Limited guarantees on ordering or reliability - scales well. Used when the flow of
events is very high: trading platforms, news feeds etc.

10 / 30

Subscriptions

Channel: events are published to channel that processes can subscribe to.
Topic (Subject): a event is published given one or more topics (#foo), if
topics are structured in a hierarchy processes can be choose to subscribe on
a topic or a sub-topic.
Content: subscribers specify properties of the content, more general - harder
to implement
Type: used by object oriented languages, subscribe on event of a particular
class

11 / 30

Implementation

How do implement a pub/sub system?

It’s simple - one central server that keeps track of all subscribers.

Availability? use two servers

Scalability? use a distributed network of event brokers

12 / 30



Broker networks

A network of brokers that distribute events; clients connect to the brokers.

The network of brokers form an overlay network that can route events.

Given a broker network, how do we distribute events from publishers to
subscribers?

13 / 30

Event routing

The event routing depends on which subscription model we have and
requirements on performance, fault tolerance, availability and consistency.

flooding
filtering
advertisement
rendezvous

The more advanced subscription mechanism, the more complex routing
mechanism.

14 / 30

flooding

send all published event to all nodes in the network
matching is done by each node
can be implemented using underlying network multicast

Simple but inefficient - events are distributed even if no one is subscribing.

Alternative - let the subscriptions flood the network and publishers keep track of
subscribers.

15 / 30

filtering

Let the brokers take a more active part in the publishing of events.

a subscription is sent to the closest broker
brokers share information about subscriptions
a broker knows which neighboring brokers that should have published events

requires a more stable broker network

how do we implement content based subscriptions

16 / 30



advertisement

Let the publishers advertise that they will publish events of a particular class.

publishers advertise event classes
advertisements are propagated in the network
subscribers contact publishers if they are interested

can be combined with filtering

17 / 30

rendezvous

An advertisement approach can overload a frequent publisher, all subscribers
needs to talk to the publisher.

Distribute the load by delegating the subscription handling to another node.

How do we select the node that should be responsible for a particular class?

18 / 30

Pub/Sub Systems
Often part of a messaging platform:

Java Messaging Service
ZeroMQ
Redis

or a separate service:

Google Cloud Pub/Sub

several standards:

OMG Data Distribution Service (DDS)
Atom - web feeds (RSS), clients poll for updates

19 / 30

indirect communication

group communication
publish-subscribe
message queues
shared memory

20 / 30



message queues

A queue (normally FIFO) is an object that is independent of processes.

Processes can:
send messages to a queue
receive messages from a queue
poll a queue
be notified by a queue

More structured and reliable, compared to pub/sub systems.

21 / 30

implementations
Queues could be running on either node in the system but we need a mechanism
to find the queue when sending or receiving.

A central server is a simple solution but does not scale.

A binder, similar to in RPC can be the responsible for keeping track of queues.

WebSphereMQ by IBM
Java Messaging Service
RabbitMQ
ZeroMQ
Apache Qpid

Standard: AMQP - Advanced Message Queing Protocol, supported by several
messaging platforms.

22 / 30

Erlang message queues

In Erlang, message queues are similar but different:

a queue is attached to a process: one queue - one receiver
the queue is not persistent: if the process dies the queue dies
there is only a blocking receive (but you can use a timeout)
only intended for Erlang process communication

23 / 30

indirect communication

group communication
publish-subscribe
message queues
shared memory

24 / 30



shared memory

Why not make it simple - if concurrent threads in a program can communicate
using a shared memory why would it not be possible for distributed process to do
the same?

A distributed shared memory - DSM.

25 / 30

parallel computing

Shared memory is mostly used in computing clusters where all nodes are equal
and run the same operating system.

UMA: uniform memory architecture
NUMA: non-uniform memory access
COMA: cache-only memory access

High-performance computing systems also to use message passing rather than
shared memory to scale better.

26 / 30

tuple spaces

A shared memory on a higher level - a shared tuple space.

write: add a tuple to the store
read: find a matching tuple in the store
take: remove a matching tuple from the store

Made popular by the Linda coordination language from 1986.

27 / 30

implementing tuple spaces

A centralized solution is simple ... and does not scale.

Distributed implementation is much harder:

write: replicate the tuple, make sure that all replicas see the tuple
read: read from any replica
take: more problematic, how does it conflict with a concurrent write
operation

Distributed implementation uses several spaces to reduce conflicts.

28 / 30



object spaces

A more general form replaces tuples with objects - JavaSpaces included in Jini.

29 / 30

summary

Communication, uncoupled in space and time.

group communication
publish-subscribe
message queues
shared memory

30 / 30


