
1
Distributed Systems ID2201

Distributed Systems
ID2201

coordination and agreement I
Johan Montelius

2
Distributed Systems ID2201

Coordination

• Coordination in a distributed system:
– no fixed coordinator
– no shared memory
– failure of nodes and networks

• Coordination is often the problem of:
– deciding who is to decide
– knowing who is alive.

3
Distributed Systems ID2201

Fundamental models

• Interaction model:
– asynchronous or synchronous
– Can we assume a node has crashed if it

does not reply?
• Failure model:

– Will nodes crash?
– Will crash nodes return to life?
– Is crashing the only failure?

4
Distributed Systems ID2201

Distributed algorithms

• We will look at some distributed
algorithms and assume:
– that nodes are correct
– that messages are delivered

5
Distributed Systems ID2201

Three sides of the same coin

• Mutual exclusion
– who is to enter a critical section

• Leader election
– who is to be the new leader

• Atomic multicast
– which messages
– which order

6
Distributed Systems ID2201

Distributed mutual exclusion

• Safety:
– at most one process may be in critical

section at a time
• Liveness:

– starvation free
– deadlock free

• Ordering:
– enter in request happened-before order

7
Distributed Systems ID2201

Evaluation

• Number of messages needed.
• Client delay:

– time to enter critical section
• Synchronization delay:

– time between exit and enter

8
Distributed Systems ID2201

Central service algorithm

• Requirements?
– safety
– liveness
– ordering

req

release

grant

queue

9
Distributed Systems ID2201

Ordering - what is a request

A

B

Server

10
Distributed Systems ID2201

Performance

• messages
– enter: request, grant
– exit: release

• client delay
– enter: message round trip plus waiting

in queue
– exit: constant (asynchronous message)

• synchronization delay
– round trip: release - grant

11
Distributed Systems ID2201

Ring-based algorithm

• Requirements
– safety
– liveness
– ordering

12
Distributed Systems ID2201

Ring-based algorithm

• Performance
– messages
– client delay
– synchronization delay

13
Distributed Systems ID2201

Distributed algorithm

• Send request to all
peers.

• When all peers have
acknowledged the
request, enter the critical
section.

• What could go wrong?

14
Distributed Systems ID2201

Distributed algorithm

• Break deadlock
– introduce priority

• Fairness
– Ricart and Agrawala

15
Distributed Systems ID2201

Ricart and Agrawala
• Enter:

– enter state waiting and broadcast a request {T,i}
containing a Lamport time stamp T and process id
I to all peers

– wait for replies from all peers
– enter state held

• Receiving a request {R,j}:
– if held or (waiting and {T,i} < {R,j}) then queue

request, else reply ok

• Exit:
– reply to all queued requests

16
Distributed Systems ID2201

Ricart and Agrawala
• Requirements

– safety, liveness, ordering
• Efficiency

– messages
– client delay
– synchronization delay

17
Distributed Systems ID2201

Maekawa's voting

• Why have permission from all peers?
– it's sufficient to have votes from a

subset S,
– if no one can enter with the votes from

the complement of S.
• The subset S is called a quorum.

18
Distributed Systems ID2201

Maekawa's voting

• Requirements
– safety
– liveness
– ordering

19
Distributed Systems ID2201

Maekawa's voting

• Efficiency
– messages
– client delay
– synchronization delay

20
Distributed Systems ID2201

Election

• Many algorithms require a leader but if no
node is assigned to be the leader one has
to be elected.

• Assumptions:
– any node can call an election, but it can

only call one at a time
– a node is either participant or non-

participant
– nodes have identifiers that are ordered

21
Distributed Systems ID2201

Election

• Requirements
– safety: a participant is either non-decided or

decided with P, a unique non crashed node

– liveness: all nodes eventually participate and
decide on a elected node

• Efficiency
– number of messages
– turnaround time: delay from call to close

22
Distributed Systems ID2201

Ring-based election
12

3

18

9

11

23

14

v-18

12

3

18

9

11

23

14
e-23

12

3

18

9

11

23

14

23
Distributed Systems ID2201

Ring-based election
12

3

18

9

11

23

14

v-18

v-23

12

3

18

9

11

23

14

v-18

v-23

12

3

18

9

11

23

14

v-18

v-23
12

3

18

9

11

23

14

v-23

24
Distributed Systems ID2201

Ring-based election

• Requirements
– safety
– liveness

• Efficiency
– messages: best case, worst case?
– turnaround:

25
Distributed Systems ID2201

Multicast communication

• Multicast:
– Sending a message to a specified

group of n nodes.
• Atomic multicast:

– All nodes see the same messages in
the same order.

26
Distributed Systems ID2201

Model

send

deliver

receive

deliver

receive

group

m-cast

27
Distributed Systems ID2201

Requirements

• Integrity
– a process delivers a message at most

once and only deliver messages that have
been sent

• Validity
– if a process multicast m then it will also

eventually deliver m
• Agreement

– if a process delivers m then all processes
in the group eventually delivers m

28
Distributed Systems ID2201

Basic multicast

• To b-multicast a message m:
– send m to each process p

• If m is received:
– b-deliver m

• What was the problem?

29
Distributed Systems ID2201

Ordered multicast

• The problem with the basic multicast is
that multicast messages might arrive in
different order at different nodes.

• Requirements:
– FIFO order: delivered in order as sent by the

sender
– Causal order: delivered in happened before

order
– Total order: delivered in same order by all

processes

30
Distributed Systems ID2201

Sequencer

m-cast m

 m

message
queue

31
Distributed Systems ID2201

Distributed - ISIS

• Multicast a message and request a sequence
number.

• When receiving a message, propose a sequence
number (including process id) and place in an
ordered hold-back queue.

• After collecting all proposals, select the highest
and multicast agreement.

• When receiving agreement tag message as
agreed and reorder hold-back queue.

• If first message in queue is decided then deliver.

32
Distributed Systems ID2201

Distributed - ISIS

{request, m1,}

33
Distributed Systems ID2201

Distributed - ISIS

{proposal, m1, 3}

{proposal, m1, 2}

{proposal, m1, 1}

34
Distributed Systems ID2201

Distributed - ISIS

{assign, m1, 3}

35
Distributed Systems ID2201

the hold-back queue

{m1, proposed <2,i>}

{m2, agreed <3,e>}

{m3, agreed <3,k>}

{m4, proposed <4,i>}

{m5, proposed <5,i>}

deliver

What happened here?

What will the agreed
sequence number be?

36
Distributed Systems ID2201

Causal ordering

• How can we implement casual ordering?
– multicast vector clock holds number of

multicast operations
– tag each multicast message with multicast

clock
– hold b-delivered messages until clock of

message is less (modulo sender) than own
current message clock

– update own message clock

• Only multicasted messages are counted.

37
Distributed Systems ID2201

Summary

• Coordination in distributed systems is
problematic.

• Three sides of the same coin:
– mutual exclusion
– leader election
– atomic multicast

• If nodes fail
– next lecture

