
Elixir: getting started
Programming II - Elixir Version

Johan Montelius

Spring Term 2019

Getting started

We assume that you have Elixir up and running and an editor to write your
first Elixir programs. You don’t need a full IDE, rather the less you have to
think about the better.

In this tutorial we will write input to the Elixir shell as follow:

> x + 2

You will actually see a number iex(1)>, but we will simply show a single
">".

1 Simple arithmetic

Open up a Elixir shell and try some simple arithmetic. Try these examples:

> 6 + 2

> 6 / 2

> div(7,2)

> rem(7,2)

> rem(-1,5)

Some simple comparisons:

> 3 == 3

> 3 != 4

> 4 < 7

ID1019 KTH 1 / 11

Try this:

> h()

2 A first program

Open up a file test.ex and create a module called Test. In this module we
define a function called double/1 that takes one argument and returns the
double of that argument.

defmodule Test do

Compute the double of a number.

def double(n) do

...

end

end

In a regular shell you can now compile this program using the stand
alone compiler:

$ elixirc test.ex

You can also compile and run the program from within the Elixir shell:

> c("test.ex")

> Test.double(4)

Now in the same module define the following functions:

� a function that converts from Fahrenheit to Celsius (the function is as
follows: C = (F − 32)/1.8)

� a function that calculates the area of a rectangle give the length of the
two sides

� a function that calculates the area of a square, using the previous
function

� a function that calculates the area of a circle given the radius

Sooner or later you will have to think about which programming envi-
ronment that you are going to use. We will not write very large programs in
the course, but you will need to be able to quickly re-compile programs and
shift between the editor and the Elixir shell. There are many environments
to choose from and you are of course free to use whichever you find best.

ID1019 KTH 2 / 11

3 Recursive definitions

Assume that all we have is addition and subtraction but need to define
multiplications. How would you do? You will have to use recursion and you
solve it by first describing the multiplication functions by words.

The product of m and n is: 0 if m is equal to 0, otherwise the product is
n plus the product of m− 1 and n.

Once you have written down the definition, the coding is simple.

def product(m, n) do

if m == 0 do

...

else

...

end

end

There are alternative ways of writing this, we could use a case expression
or the cond-do expression. These techniques are often preferred over if-else
in Elixir.

def product_case(m, n) do

case m do

0 ->

...

_ ->

...

end

end

def product_cond(m, n) do

cond do

m == 0 ->

...

true ->

...

end

end

We could also have used the a style that sometimes is very handy. Here
we break the definition up into two clauses that are tried one after the other.

def product_clauses(0, _) do 0 end

def product_clauses(m, n) do

product_clauses(..., ...) + ...

end

ID1019 KTH 3 / 11

This should be read: if we call product, and the first argument matches
0, then the result is 0. If we can not use the first clause then we try the
second.

Sometimes the code becomes easier to understand, especially if we have
many conditions that should be tested. Remember though that the clauses
of a function need to be after each other. You can not spread the clauses
around in a program.

Define a function, exp/2, that computes the exponentiation, xn. Use
only the addition and subtraction and the function product/2, that you
defined.

def exp(x, n) do

case ... do

...

end

end

Use the built-in arithmetic functions rem, div and multiplication ∗ to
implement a much faster exponentiation using the following definition:

� x raised to 1 is x

� x raised to n, if n is even, is x raised to n/2 multiplied by itself

� x raised to n, if n is odd, is x raised to (n− 1) multiplied by x

4 List operations

You will do more operations on list than you have ever done before so you
might as well get used to them. These are operations that you should know
by heart.

> [1 | []]

> [1 | [2 | []]]

> [1, 2]

> [1, 2] = [1 | [2 | []]]

> [x, y, z] = [1, 2, 3]

> [head | tail] = [1, 2, 3]

> [_, {x, y} | _] = [{:a, 1}, {:b, 2}, {:c, 3}, {:d, 4}]

ID1019 KTH 4 / 11

> [z] = [1, 2, 3]

In the above examples, what is the value of the variables after the pattern
matching expressions?

4.1 Simple functions on list

These are some simple functions that you should implement. They will all
use recursion so first try to formulate in words what the definition should
look like, then implement it.

� nth(n, l): return the n’th element of the list l

� len(l): return the number of elements in the list l

� sum(l): return the sum of all elements in the list l, assume that all
elements are integers

These functions take some more thinking. You should return a list as a
result of evaluating the function.

� duplicate(l): return a list where all elements are duplicated

� add(x, l): add the element x to the list l if it is not in the list

� remove(x, l): remove all occurrences of x in l

� unique(l): return a list of unique elements in the list l, that is [:a,
:b, :d] are the unique elements in the list [:a, :b, :a, :d, :a,

:b, :b, :a]

� pack(l): return a list containing lists of equal elements, [:a, :a,

:b, :c, :b, :a, :c] should return [[:a, :a, :a], [:b, :b], [:c,

:c]]

� reverse(l): return a list where the order of elements is reversed

Things to ponder: what are the runtime complexity of these operations.

4.2 Sorting

There are several ways to sort a list and you should know them all. We will
start with the most basic algorithm and then try some other (more or less
good).

ID1019 KTH 5 / 11

4.3 Insertion sort

In insertion sort, you sort a list of elements by taking them one at a time
and insert them into an already sorted list. The already sorted list will of
course be empty when we start but will when we are done contain all the
elements.

Start by defining a function insert(element, list), that inserts the
element at the right place in the list. Think of the two mayor cases, what
to do if the list is empty and what to do if the list contains at least one
element. Assume that the elements are integers and can be compared using
the regular < operator.

Once you have insert/2 working, implement the sorting function isort(list,
sorted); again what should you do if the list is empty, what should you do
if it contains at least one element?

Now all you have to do is provide a function isort(list), that calls the
function insert/2 using the right arguments.

def isort(l) do

isort(l, ...)

end

def isort(l, sorted) do

case ... do

[] ->

...

[h | t] ->

...

end

end

Try also to rewrite the isort function using the clause syntax; same-
same but different.

4.4 Merge sort

In merge sort, you divide the list into two (as equal as possible) list. Then
you merge sort each of these lists to obtain two sorted sub-lists. These sorted
sub-lists are then merged into one final sorted list.

The two lists are merged by picking the smallest of the elements from
each of the lists. Since each list is sorted, one need only to look at the first
element of each list to determine which element is the smallest.

The skeleton code below will give you an idea of what the solution will
look like. Here we do use the clause syntax when defining merge, you can
try to define it using case expressions but it becomes a bit messy.

ID1019 KTH 6 / 11

def msort(l) do

case ... do

... ->

...

... ->

{.., ...} = msplit(l, [], [])

merge(msort(...), msort(...))

end

end

def merge(..., ...) do ... end

def merge(..., ...) do ... end

def merge(..., ...) do

if ...

merge(.., ...)

else

merge(.., ...)

end

end

def msplit(..., ..., ...) do

case ... do

... ->

{..., ...}

... ->

msplit(..., ..., ...)

end

end

4.5 Quicksort

The quicksort algorithm sounds even quicker than merge sort but this is not
true. The idea is similar but now we “do our sorting on the way down”. First
split the list into two parts, one containing low elements and one containing
high elements. Then sort the two lists and when you’re done append the
results.

Splitting the lists is done using the first element in the list as a pivot
element, all smaller or equal than this is added in one list and all larger in
one list. When you’re appending the final result, remember to put the pivot
element in the middle.

def qsort(...) do ... end

def qsort([p | l]) do

{..., ...} = qsplit(p, l, [], [])

ID1019 KTH 7 / 11

small = ...

large = ...

append(small, [p | large])

end

def qsplit(_, [], small, large) do ... end

def qsplit(p, [h | t], small, large) do

if ... do

...

else

...

end

end

def append(..., ...) do

case ... do

[] -> ...

[h | t] -> ...

end

end

5 Reverse

One interesting problem to look at is how to reverse a list. The naive way
to do it is quite straight forward. We do it recursively by removing the first
element of the list, reversing the rest and then appending the reversed list
to a list containing only the first element.

def nreverse([]) do [] end

def nreverse([h | t]) do

r = nreverse(t)

append(r, [h])

end

A smarter way to do it, is to use an accumulator and add the first
element to this accumulator. When we have added all elements in the lists
the accumulated list is the reversed list.

def reverse(l) do

reverse(l, [])

end

ID1019 KTH 8 / 11

def reverse([], r) do r end

def reverse([h | t], r) do

reverse(t, [h | r])

end

Ok, so what is so smart by doing this? This is your assignment, you
should do some performance analysis of these two functions and describe
what is happening. To have some data lead you in the right direction and
to back up your findings you should start by doing some performance mea-
surements.

We have here used some library functions and higher order programming
that you might not have seen so far but don’t worry, you will get use to it.

def bench() do

ls = [16, 32, 64, 128, 256, 512]

n = 100

bench is a closure: a function with an environment.

bench = fn(l) ->

seq = Enum.to_list(1..l)

tn = time(n, fn -> nreverse(seq) end)

tr = time(n, fn -> reverse(seq) end)

:io.format("length: ~10w nrev: ~8w us rev: ~8w us~n", [l, tn, tr])

end

We use the library function Enum.each that will call

bench(l) for each element l in ls

Enum.each(ls, bench)

end

Time the execution time of the a function.

def time(n, fun) do

start = System.monotonic_time(:millisecond)

loop(n, fun)

stop = System.monotonic_time(:millisecond)

stop - start

end

Apply the function n times.

def loop(n, fun) do

if n == 0 do

:ok

else

fun.()

loop(n - 1, fun)

ID1019 KTH 9 / 11

end

end

6 More challenges

You should now be up and running to take on some new challenges. When
you try these challenges, first try to express your algorithm using recursion.
Think about the simplest case and have this as your base case. Then for-
mulate a rule that will take you from a more complex form one step closer
to the base case.

6.1 Integer to binary

Implement a function that takes an integer and return its binary representa-
tion coded as a list of ones and zeroes. The binary form of 13 is for example
[1, 1, 0, 1]. Converting 0 should be trivial so the base case should be
simple. In the recursive case we can calculate the binary representation of
div(n,2) and the append it to either a 0 or 1 depending on if the number
is even or odd.

def to_binary(0) do ... end

def to_binary(n) do

append(..., ...)

end

This could be written in a better way by using an accumulator. The
accumulator will hold the binary sequence that we have determined so far.
We start with a empty list, [] and add binary digits as we go.

def to_better(n) do to_better(n, []) end

def to_better(0, b) do b end

def to_better(n, b) do

to_better(div(n, 2), [rem(n, 2) | b])

end

Why is this better than the previous one? Can you notice the difference?
Try the following:

> Test.time(1000, fn -> Test.to_binary(123489879809809809887) end)

Now try the better version - any difference? Why?

ID1019 KTH 10 / 11

6.2 Binary to integer

Now try the revers and implement a function that takes a binary represen-
tation of a number and returns an integer. To solve this it is a lot easier to
use an accumulator that holds the number of what we have seen so far.

def to_integer(x) do to_integer(x, ...) end

def to_integer([], n) do ... end

def to_integer([x | r], n) do

to_integer(..., ...)

end

7 Fibonacci

The Fibonacci sequence is the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, The two
first numbers are 0 and 1 and the following numbers are calculated by adding
the two previous number. To calculate the Fibonacci value for 42, all you
have to do is find the Fibonacci number for 40 and 41 and then add them
together.

Write simple Fibonacci function fib/1 and do some performance mea-
surements. Adapt the benchmark program above and run some tests.

def bench_fib() do

ls = [8,10,12,14,16,18,20,22,24,26,28,30,32]

n = 10

bench = fn(l) ->

t = time(n, fn() -> fib(l) end)

:io.format("n: ~4w fib(n) calculated in: ~8w us~n", [l, t])

end

Enum.each(ls, bench)

end

Find an arithmetic expression that almost describes the computation
time for fib(n). Can you justify this arithmetic expression by looking at the
definition of the function? How large Fibonacci number do you think you
can compute if you start now and let your machine run until the seminar?
First make a guess, don’t try to do the calculation in your head just make a
wild guess, then try to estimate how long time that would take using your
arithmetic function, would you be able to make it? Calculate a Fibonacci
number as high as you possibly can.

ID1019 KTH 11 / 11

