GSM Network and Services

GPRS and EDGE - RLC/MAC and physical layer

GSM Network and Services 2G1723 Johan Montelius

GPRS protocol stack

Who does what

- SNDCP
- KTH VETENSKAP OCH KONST

- segmentation / reassembly
- multiplexing of several PDP over one LLC
- compression of data and/or IP/TCP header
- LLC
 - connection oriented/less MS to SGSN
 - encryption
- RLC/MAC
 - connection oriented/less MS to BSS (PCU in BSC)
 - segmentation / reassembly
 - access control of shared resource

Addresses

- IP: point of presence
- SNDCP
 - NSAPI: which PDP context
- LLC
 - SAPI : SNDCP, GMM, SMS ...
- RLC/MAC
 - TLLI: a mobile, P-TMSI
 - TFI: a RLC connection

RLC/MAC

- KTH VETENSKAP OCH KONST
- The LLC connection is, over Um, realized as a RLC connection identified by a Temporary Logic Link Identifier (TLLI) derived from P-TMSI.
- A RLC connection is realized as a set of Temporary Block Flows (TBF).
- A set of TBF are multiplexed over a shared Packet Data Traffic Channel (PDTCH) and each TBF is identified using a Temporary Flow Identifier (TFI)
- The MAC layer is used control uplink usage of the PDTCH.

52 frames

12 Blocks consisting of four consecutive frames

Why 52 frames, why two idle, why PTCCH?

Allocation of resources

- Uplink and downlink PDTCH are independent, a PDTCH is unidirectional.
- A PDTCH is divided into 11 blocks, each block holds one RLC data frame. Each block is allocated to a TBF – owned by a mobile.
- Allocation and sharing of downlink PDTCH is controlled by the network; the network will only have to address the right mobile using TFI.
- Sharing of uplink resources is more problematic since several mobile can compete for the resource.

RLC/MAC data frames

- Total size is: 23, 33, 39 or 53 bytes
- Size depends on the chosen coding scheme.
- Uplink
 - MAC: countdown value, ...
 - RLC: TFI, block #, (TLLI)
- Downlink
 - MAC: USF, ...
 - RLC: TFI, block #, FBI

GSM Network and Services 2G1723 Jol	han Montelius
-------------------------------------	---------------

MAC
RLC
Data (LLC frame or part of frame)
Fill bits

Allocation of downlink PDTCH

- The BSS can allocate a downlink TBF using one or more downlink PDTCH.
- The mobile needs to listen and decode all frames on each downlink PDTCH.
- If the TFI (5 bits in the RLC header) is recognized the block (for consecutive frames) belong to the mobile.
- Uplink and downlink TBFs are independent.

Allocation of uplink PDTCH

Fixed allocation

- A mobile is allocate specified blocks to be used in a sequence of multiframes.
- Dynamic allocation
 - A mobile is allocated a PDTCH but blocks are specified dynamically.
- Extended Dynamic allocation
 - Same, same but better.

Fixed allocation

- One or more PDTCH e.g. timeslots since each PDTCH is using one physical channel.
- In the PDTCH, one or more blocks defined by a bit map.
- Example: TS-2 block B2, B3 / TS-3 block B2

Dynamic allocation

- One or more PDTCH channels are allocated but blocks are not fixed.
- Information in the blocks in the downlink PDTCH using timeslot T decide the usage of the next block (or four next blocks) on the uplink PDTCH using timeslot T.
- A mobile needs to listen to the downlik PDTCH in order to know when to use the uplink PDTCH.

Dynamic allocation

Extended Dynamic Allocation

- A mobile is allocated an ordered set of uplink PDTCH. Allocation of blocks is similar to dynamic allocation but the mobile may also use blocks in all higher PDTCH.
- Extended dynamic allocation will make it easier for a mobile to quickly determine if it can use several uplink resources.

Extended Dynamic allocation

Downlink RLC/MAC

- The downlink MAC header contains a Uplink State Flag (USF, three bits).
- Each mobile is allocated a USF and the USF indicates if the uplink PDTCH can be used.
- USF = 7 indicates that the uplink can be used for PRACH (if no separate PCCCH)

MAC
RLC
Data (LLC frame or part of frame)
Fill bits

USF Granularity

- The USF granularity decides if one or four blocks can be used in the uplink direction.
- Granularity is given in the packet uplink assignment message.

RLC/MAC – countdown/final block

- The network needs to be informed in advance when the mobile is done.
- A countdown value (CV, 4 bits) in the uplink MAC header will reach zero in the last RLC frame.
- A Final Block Indicator (FBI, 1 bit) is set in the downlink RLC header when the network is done.

MAC
RLC
Data (LLC frame or part of frame)
Fill bits

Channel Coding

RLC/MAC frames : 23, 33, 39 or 53 bytes

block coder

convolutional coder

interleaving coder

radio burst

four normal radio bursts 4x114 = 456 bits = 57 bytes

Channel coding

- Four different channel coding schemes that differ in the parameters for block and convolutional coding.
- CS1: 9.05 Kb/s
- CS2: 13.4 Kb/s
- CS3: 15.6 Kb/s
- CS4: 21.4 Kb/s
- When comparing capacity of radio network the figure 8x21.4 = 171.2 Kb/s is often given for GPRS (how likely is this and what's in a RLC frame)

Block coder

- detection USF usin bits (if pa
- The block encoder adds a fire code (error detection) of 40 or 16 bits, encodes the USF using 3, 6 or 12 bits and adds four tail bits (if passed to the convolutional coder).
 - CS1: fire code 40, USF 3
 - CS2: fire code 16, USF 6
 - CS3: fire code 16, USF 6
 - CS1: fire code 16, USF 12, no tail bits!

Convolution's coder

- KTH VETENSKAP OCH KONST
- Convolutional coder of rate ½ is used for CS1-CS3. The difference is that in CS2 and CS3 some bits are removed (punctured) before sent. Puncturing results in a total rate of 2/3 or 3/4.
- CS1: ½
- CS2: 2/3
- CS3: ³⁄₄
- CS4: ----

Interleaving

- All coding schemes use the same interleave as the SDCCH in GSM e.g. four blocks are interleaved into four radio bursts.
- One PDTCH block of four frames will thus hold one RLC frame.

GPRS interleaving

One RLC frame requires four bursts.

Question

- How does the receiver know which coding scheme that has been used?
- In GSM it could tell since each logical channel used only one coding scheme and it knew which logical channels it received
- The stealing flags are not needed for FACCH since we don't do any handover!
- Stealing flags (two bits) will tell the receiver which coding scheme to use.

GPRS where is encryption

Encryption

 Ciphering in GPRS is done on the LLC layer since the headers information of the RLC layer needs to be readable to all mobile that share the same PDTCH.

EDGE

- A family name for upgrades of GSM and TDMA IS-136 supporting higher data rates (Enhanced data rate for Global Evolution).
 - Classic EDGE
 - Upgrade of GSM supporting EGPRS and ECSD (upgrade of HSCSD).
 - Compact EDGE
 - The upgrade of TDMA IS-136
 - More aggressive frequency reuse.

EGPRS

- A new radio modulation technique, 8-PSK, that increases the bit rate with a factor 3.
- More aggressive and adaptive coding schemes that provide RLC data rates of up to 59.2 kb/s per timeslot.
- Hmm, 8x59.2 = 473.2 kb/s call the marketing department!
- EGPRS is more flexible and more reliable than GPRS. It's not only higher maximum bit rates

8-PSK

8-PSK

- Uses the same signaling rate as GMSK.
- Each symbol is three bits (instead of one as in GMSK).
- Can not be transmitted with as high power, using the same hardware, as GMSK.
- Less reliable detection of phase.
- Range is limited!

Coding Schemes

- MCS-1 MCS-4:
 - uses GMSK
 - coding rate: 1/2, 2/3, 4/5, 1
 - bit rate: 8.8, 11.2, 14.8, 17.6 kb/s (RLC)
- MCS-5 MCS-9
 - Uses 8-PSK
 - coding rate: 1/3, 1/2, 3/4, 4/5, 1
 - bit rate: 22.4, 29.6, 44.8, 54.4. 59.2 kb/s(RLC)

Coding families

- A RLC frame that is resent can be resent using a more reliable coding scheme in the same family.
 - Family A MCS-3/6/8/9 (1/2/4 x 37 byte)
 - Family B MCS-2/5/7 (1/4 x 28 byte)
 - Family C MCS-1/4 (1-2 x 22 byte)
- This is an improvement compared to GPRS where retransmissions are done using the same coding scheme.

EDGE

- Expect GSM operators to gradually deploy EDGE. However, most operators in Europe are busy deploying 3G networks and might wait with their EDGE upgrade.
- EDGE will increase data rates but it will not change the number of voice connection that can be handled by a cell. 3G networks are necessary for dense voice usage.