
Inferring Energy and Performance Cost of RTOS in
Priority-Driven Scheduling

Sandro Penolazzi, Ingo Sander and Ahmed Hemani
Dept. of Electronic Systems, School of ICT, KTH, Stockholm, Sweden

{sandrop, ingo, hemani}@kth.se

Abstract—We present a high-level method for rapidly and
accurately estimating energy and performance cost of Real-Time
Operating Systems. We investigate priority-driven scheduling and
assume inter-dependent tasks competing for shared resources.

Unlike most other approaches, which rely on Transaction-
Level Modeling (TLM), we infer the information we need directly
from executing the algorithmic specification, without needing to
build any high-level architectural model. We distinguish two main
components in our approach: first, an accurate one-time pre-
characterization of the main RTOS functionalities in terms of
energy and cycles; second, the development of an algorithm to
rapidly predict the occurrences of such RTOS functionalities.

Finally, we validate our approach by comparing it against
gate level for accuracy and against TLM for speed. We obtain a
worst-case error of 12% against a mean speedup of ∼30X.

I. INTRODUCTION

Real-Time Operating Systems (RTOS) are critical infra-
structural components of embedded SoCs. They enable and
manage sharing of hardware resources: computational, stor-
age, interconnect and I/O. However, such services have an
overhead, both in latency and energy. This overhead needs
to be accounted for when doing design-space exploration and
energy/performance estimation at system level, early in the
design cycle. Without factoring in this overhead, the accuracy
of the estimates would be severely compromised.

Raising abstraction is fundamental to get improvement in
design productivity and this pattern has been consistent for
the last three decades [1]. Transaction Level Modeling is part
of this trend and raises the abstraction above the RTL. TLM
models an architecture by abstracting away the implementation
details, especially the cycle-accurate-level details, of the archi-
tectural resources; the modeling is done in terms of abstract
transactions between architectural resources. This allows to
cut down the modeling time and to increase the simulation
capacity, thus being a good candidate to perform early design-
space exploration.

While TLM is a progress, it still implies a substantial
additional engineering effort, because TLM is not the starting
point of automatic synthesis or system build and, as such, the
TLM step is not an essential step in implementing the system.
In addition, when TLM is used as the basis for estimating the
impact of RTOS, the actual RTOS and application software are
often run in an instruction-set simulator, which is connected
to the rest of the SoC TLM model. This makes even a TLM-
based model slow.

Funtime is an early estimation methodology framework that
aims at overcoming these problems. It fundamentally differs
from TLM in that it does not simulate the architecture, but
it infers the architectural implications while executing only
the algorithmic model of the application on a common PC.
The abstraction level of the Funtime methodology is higher
than TLM. We have previously shown Funtime to be 30X
faster than TLM and within 15% accuracy of post-layout gate-
level simulation [2]. Unlike TLM, the Funtime methodology
relies on an engineering step that has always been part of the
SoC engineering cycle, i.e. the algorithmic level models of the
application.

In our recent work [3] we have also shown how Funtime
can factor in the impact of RTOS, with respect to both latency
and energy. The approach is two-fold: first, we characterize the
main components of a generic RTOS (context switches, clock
tick interrupts, idle task, etc.) in terms of typical number of ex-
ecution cycles and power consumption. This characterization
is a one-time activity that we propose to be done by the RTOS
provider. In section IV we briefly summarize for clarity’s
sake how this is made possible. Second, we propose a static
analysis strategy to predict how many occurrences of such OS
components we would count if we were actually executing
the OS in a real use-case scenario. This prediction method
is invoked by the Funtime user for each use-case scenario.
However, our previous case study was limited to independent
tasks not competing for shared resources and scheduled using
a Round Robin algorithm.

The contribution of the present paper consists in extending
Funtime’s RTOS estimation capabilities. In particular, we
focus on the following aspects:

• Target trace generation based on host profiling: we
enable the inference of the target execution trace by only
properly profiling the application running on the host
(PC). This is detailed in section V. In general, this step
is necessary in order to correctly predict whether a task
would get blocked due to inter-task dependency or re-
source contention. Detecting these conditions is critical as
they strongly impact the variation in the overall execution
time and, consequently, in the energy consumption as
well.

• Priority-driven scheduling prediction: we extend the
static analysis strategy that we proposed in [3] to predict
the number of occurrences of the main OS components
also in the case of priority-driven scheduling, and not

only Round Robin.
• Resource contention: we also account for the case of

inter-dependent tasks competing for shared resources.
These last two steps implicitly allow to estimate also the
OS energy and timing impact. A detailed description is
presented in section VI.

II. RELATED WORK

Yi et al. [4][5] present an approach to RTOS modeling that
has some similarity to our work in that they also include a pre-
characterization phase of some key RTOS components like the
tick interrupt (triggered by the system timer) and the context
switch. However, this characterization is done only to factor
in the extra latency induced by the RTOS and ignores the
impact on energy. Besides, the authors rely on a trace-driven
cosimulation in SystemC to run their applications and thus
measure the task duration, in order to derive the actual number
of clock ticks. Our approach predicts instead the RTOS activity
by means of a static analysis, resulting in faster estimates.

In [6], Brandolese et al. also propose a method to pre-
characterize system calls of an OS for embedded applications.
To do that, they rely on measurements “based on executing
stubs”. This is also the approach that we use, as detailed
in section IV. However, unlike us, they only characterize
the impact on latency and neglect the impact on energy. In
contrast to [5], [6] and the method proposed by us, Hessel
et al. [7] do not pre-characterize the RTOS, but propose an
RTOS model in SystemC, by extending the built-in scheduler
that also does the power estimation. In [8], an extension of
the SystemC simulation engine is proposed to build an RTOS
model, where a new simulation library is added to implement
the so called T-THREADs. In a similar fashion, in [9] the
SystemC SC THREAD processes are also exploited to create
an OS model.

The key difference between the Funtime methodology for
estimating the impact of RTOS and the related research that
we have reviewed here is that in Funtime we do not simulate
the RTOS using an ISS or a SystemC transaction-level model
of a SoC architecture: we infer the impact of the RTOS by
running the application code at functional untimed level. This
difference gives the Funtime methodology three advantages:

1) we avoid the time-consuming process of building the
TLM of the architecture.

2) being more abstract, the functional untimed level has a
significant speed advantage over TLM.

3) we do not have to deal with synchronization issues
among multiple simulation models [5].

III. THE FUNTIME METHODOLOGY

Funtime operates at 3 different levels of abstraction, as sum-
marized in the present section and shown in Figure 1. We have
highlighted in red color the components of the Funtime flow
that concern accounting for the Operating System overhead,
which is also the focus of this paper.

IP Energy & Performance
Models

Instrument
the application

Run the instrumented
application on a PC

A - IP Level

B - Algorithmic Level

C - Refinement Level
Refinements
- ALTs interdependency
- Hw/sw optimizations (caches, etc.)
- Operating System
- Bus arbitration

Primary ALTs (P-ALTs)

Secondary ALTs (S-ALTs)

x
Energy

Out

Exec. time

x

Refined
exec. time

Refined energy

Fig. 1. The Funtime methodology flow (A-IP Level, B-Algorithmic Level,
C-Refinement Level)

A. IP Level

At this level, we consider the availability of IP energy
and performance models. Such models, which are the result
of a one-time effort made by the IP provider, characterize
each IP Architectural-Level Transaction (ALT) in terms of
energy and number of cycles, where an architectural-level
transaction directly expresses one of the IP functionalities. For
instance, for a processor IP, each instruction represents one
such transaction. Energy and performance characterization is
done by the IP provider only once on a back-annotated gate-
level netlist, thus conferring high accuracy to the model. In
essence, for each IP in the library, the IP model expresses
energy and cycles properties for all the transactions of that IP.

In our approach, an OS is also considered an IP, whose
transactions correspond to very high-level functionalities such
as executing a context switch, serving a clock tick interrupt,
etc. The OS characterization process is part of previous work
and summarized for clarity’s sake in section IV.

B. Algorithmic Level

Once each IP transaction has been characterized for energy
and number of cycles, energy and execution time e (see the red
box in Figure 1) for a full application can be calculated pro-
vided that the total number and type of transactions triggered
by such an application are known.

Traditionally, this information can be collected from Instruc-
tion Set Simulation (ISS), transaction-level simulation or any
other architecture-based simulation. In our approach instead,
since the idea is to avoid architectural simulation, the inference
of architectural transactions is achieved by instrumenting the
application (algorithmic specification), itself devoid of any
architectural detail, to be architecture aware. The instrumented
application is then executed natively on a common PC. Trans-
actions inferred at this level are defined Primary transactions
(P-ALTs). The process flow is illustrated in Figure 1B. For
a thorough description of how instrumentation and inference
of P-ALTs are done in practice, the reader is referred to our
previous work [2].

Until now, Funtime was only able to infer the total number
of times each target instruction was executed, but not their
execution order. Enabling the inference of the actual execution
order is however important to correctly determine the impact
of inter-task dependence and resource contention on the RTOS

energy and timing overhead. In section V we detail how this
has been done.

C. Refinement Level

From subsections III-A and III-B, once each IP transaction
has been characterized for energy and number of cycles, and
the total occurrence of such transactions for the execution of
an application has been determined, energy and execution time
e (see the red box in Figure 1) for that application can finally
be estimated.

This estimate, while it accurately reflects the contribution
of all the Primary transactions, it ignores the impact of other
transactions – which we call Secondary transactions (S-ALTs)
– induced by the following three main reasons:

1) The interdependency of Primary ALTs, especially pro-
cessor instructions.

2) Architectural optimization measures like caches, power
management, etc.

3) Sharing of resources due to Operating System (OS) and
bus arbitration.

Refining the estimate from Level B is done at Level C,
which is naturally called Refinement Level. This is symboli-
cally shown in Figure 1 and elaborated in the next sections.
In essence the Level C refines the trace of Primary ALTs
from Level B by adding the induced Secondary ALTs. Of
the three reasons listed above, we have previously addressed
the first and in part the second one in [2]; we have also
partially factored in the OS-related overhead in [3] for the case
of independent tasks not sharing any resource and scheduled
using Round Robin. In the present paper, we further extend
the OS refinement by accounting for inter-dependent tasks
contending for shared resources and scheduled in a priority-
driven fashion.

IV. RTOS CHARACTERIZATION: SUMMARY

In this section, we summarize our previous work about
how to characterize the S-ALTs due to the RTOS overhead in
terms of latency and energy [3]. RTOS overheads are implied
by its components that are called to implement the RTOS
functionality. Characterization is a one-time activity done by
the RTOS provider. The process consists in simulating the
RTOS in a post-layout, back-annotated gate-level netlist of
the representative SoC architecture. Although time consuming,
this characterization process is justified because it is done only
once and the precision gained is important for the accuracy
of estimates at high-level. When Funtime does the estimation
instead, all the transactions are inferred, including the RTOS
calls. The characterization process not only considers atomic
RTOS calls, as it is done in [6], but also considers coarse-
grained RTOS calls like clock tick interrupts, scheduler invoca-
tion, message queue broadcasting, sending and receiving. The
number and type of atomic RTOS calls involved in these cases
are OS-dependent. However, thanks to the general approach
that we have adopted, it is easy to specify the sequence of
atomic OS routines that have to be included in the performance
and energy characterization.

Although Table I shows a summary of characterized coarse-
grained RTOS calls for the RTEMS RTOS [10] on a Leon-
based SoC [11], the methods themselves are generic and do not
depend on a specific RTOS implementation or SoC architec-
ture. For each such RTOS call, we show the corresponding
number of CPU instructions (S-ALTs), cycles and energy
with the associated standard deviation σ. Note that the small
value of σ is an index of the characterization reliability. The
energy values in the table only refer to the Leon3, configured
without cache. Only a subset of all the possible coarse-grained
functionalities associated to an RTOS is listed here. This subset
is sufficient to represent the case studies described in the next
sections.

TABLE I
ENERGY AND PERFORMANCE CHARACTERIZATION FOR RTEMS ON

LEON3 (NO CACHE)

RTOS calls # Leon3 # Cycles σ Energy σ
S-ALTs Cycles [nJ] Energy

clock tick interrupt 272 2241 24.00 80.14 0.96
scheduler + 880 8434 30.01 263.58 0.96context switch
scheduler without 327 2545 3.53 89.94 0.20context switch
idle task 3 22 0.04 0.76 0.00
msg q. broadcast to 1510 12 263 6.94 434.21 7.773 + context switch
msg q. send + 834 6992 11.01 247.45 5.08context switch
msg q. receive + 830 6912 5.31 243.76 1.81context switch

V. TARGET TRACE GENERATION BASED ON HOST
PROFILING

This is the first contribution of the present paper. This step
is critical for a correct implementation of our priority-driven
scheduling prediction, which is detailed in section VI and is
the second contribution of the paper.

All the steps reported in this section take place at the
Algorithmic Level (Level B) of the Funtime methodology, as
shown in Figure 1. We describe how a generic application can
be profiled while executing on a common PC, i.e. the host,
so to enable the inference of the actual instructions execution
order for the target. Since at the IP Level (Level A) each target
instruction has been previously characterized for energy and
number of cycles, it becomes therefore possible to infer the
actual advance in time after each instruction execution.

We redefine the previously-defined quantity e (see Figure 1)
by splitting it in the following 2 sub-components:

1) etot: the total overall execution time of an application.
This is the original value that Funtime was able to
produce.

2) einc(line): the incremental advance in time as a function
of the source-code line number. This is the new quan-
tity that Funtime can infer thanks to the enhancement
proposed in this section and, in general, in this paper.
The availability of einc(line) is a key element of the
RTOS refinement step in section VI, since it allows to

predict whether one or more RTOS tasks will be blocked
because of inter-task dependency or resource contention.

The overall profiling process relies on the following 3 steps:
1) A generic application is compiled, profiled and executed

on a common PC. Profiling of the executing application
emits a string containing the file name, source code
number and basic block number for each source line
being executed. This allows to rebuild the exact source
code execution trace. We recall that a basic block is a
sequence of code with only one entry and one exit point.

2) Target mixed source/assembly files are generated for
each source file of the same application. A mixed
source/assembly file specifies the source line number
corresponding to each basic block reported in the file.
Or, the other way round, each basic block target instruc-
tion can be related to the proper source code line.

3) From 1 and 2, and given that within each basic block all
the instructions are executed sequentially, the complete
execution order for the target instructions can thus be
inferred.

The application profiling described in step 1 can be en-
abled directly by the compiler at compilation time. Although
in this section we detail how we have done this for the
GNU GCC1[12] compiler, the overall principle is general and
compiler-independent.

A. Enabling compiler-based profiling

In a generic compiler, it is normally possible to identify
at least 3 main components: a front-end, a middle-end and a
back-end. The front-end is responsible for parsing the high-
level language (HLL) source code files and generating a
language-independent intermediate representation (IR) in form
of control-flow graph. The output of the front-end is the input
for the middle-end, which lowers the abstraction level down
by applying a set of transformations and optimizations. The
number of steps performed at this stage is highly dependent
on the level of optimization requested and, in general, on
the parameters passed at the compiler command line. Finally,
the back-end has to translate the intermediate representation
received from the middle-end into a machine-description (MD)
file.

GNU GCC can also be described according to the above
execution flow, as shown in Figure 2. The middle-end is
itself composed of 3 different intermediate representations:
GENERIC, which is a language-independent tree represen-
tation; GIMPLE, which is a reduced GENERIC subset used
during optimization; RTL (Register Transfer Language), where
the instructions to be output are defined in an algebraic form
describing what the instruction does [13][14][15].

GNU GCC comes already by default with some pro-
filing capabilities. In particular, the command-line switch
--coverage adds a counter at the end of each basic block,
so to enable a final total execution count of each source code
line. Although this information provides a good code-coverage

1Version 4.4.1

C
C++

Fortran
Java

HLL GENERIC

GIMPLE

RTL

front-end back-end

middle-end

IR

Assembly
MD

Enabling profiling
for execution order tracing

Fig. 2. The GNU GCC execution flow

overview, it only allows to infer the total number each target
instruction is executed, but not the exact execution order. To
overcome this limitation, we have extended the GCC profiling
capabilities. In detail, at the GENERIC intermediate level,
at the end of each basic block belonging to the application
control-flow graph, we insert a call to a function that records
the current file name, source line number and basic block
number. This is symbolically shown in red in Figure 2. This
allows to trace the exact source code execution order when
the application is run on the host. In Figure 3 we show an
example of the execution trace inferred.

file_2.c --> 13 --> 3
file_3.c --> 5 --> 2
file_3.c --> 7 --> 2
file_2.c --> 13 --> 4

File
name Line

Basic
block

Fig. 3. Example of source execution trace

VI. PRIORITY-DRIVEN SCHEDULING PREDICTION

In this section, which deals with the Refinement Level
(Level C) of the Funtime methodology, we elaborate on how
it is possible to build an algorithm to statically predict the
occurrences of the RTOS functionalities in the case of priority-
driven scheduling. To this purpose, a few new quantities are
introduced here and categorized according to the Funtime
abstraction level where their value is assigned.

User-defined parameters: we define the clock tick period as
ttick. We further define with trel,i a task release time, i.e. the
time when a task becomes available for execution. We then
define with Π(Ti) the priority level assigned to a generic task
Ti. Finally we specify the source line numbers lsync, within
each task source code, where the task is supposed to have
a synchronization point tsync, such as accessing a message
queue, a mutex and so on.

From Level A: we define a set of quantities corresponding
to the execution time of some of the coarse-grain RTOS
routines listed in Table I. For example, esc and ect are the
execution time of a scheduler call and of a clock tick interrupt
respectively. The quantity edel is instead the execution time
required to delete an ended task. An example is shown in
Figure 4 – described in detail in Case Study 1 – where the
red bars correspond to esc, the blue bars to ect and the yellow
bars to edel. All these quantities, together with many more,
are determined during the OS characterization phase, together

with their respective energy consumption, as summarized in
section IV.

From Level A and B: the quantity e first introduced in
section III-B and then redefined in section V-A will from
now on be referred to as ei, and its sub-components etot,i
and einc,i(line), being Ti a generic task. The actual number
of tasks Ti is also provided here.

From Level C: we define a set of counters to count the
occurrence of the RTOS routines involved in the analysis. For
instance, SC, CT and DEL refer to the total number of calls
to the scheduler, to clock tick interrupts and to the RTOS
routines for tasks deletion when running an arbitrary number
N of concurrent tasks.

Implementing an algorithm to predict SC, CT , DEL and,
in general, the overall RTOS routines overhead, is the focus of
this section and the main contribution of this work. Using the
quantities introduced above, we detail how this can be done.
To ease the explanation, we use 2 successively more realistic
case studies. First, we assume the case of all independent tasks
not competing for shared resources, but we allow different
release times for the tasks, as well as the possibility that RTOS
overheads may be a function of the number of ready tasks.
Second, we keep the same assumptions as for the first example,
except that we also allow inter-dependent tasks which can
compete for shared resources. For a successful OS prediction
in this second case study, we demonstrate the importance
of the Funtime extension for host-profiling-based target trace
generation described in section V. Note that, although in this
paper we take RTEMS as the reference OS, the methodology
is general and can be adapted to any OS.

A. Case study 1

In this case study, we consider the case where N inde-
pendent tasks with priority Π(T1) > Π(Ti) > Π(TN) have
arbitrary release times trel,i and where the execution time
of some OS functionalities is dependent on the number of
ready tasks rdy(t) at the time t when such functionalities
get triggered. For this reason, esc, ect and edel are not
constant figures, but depend on rdy(t) and can be denoted
as esc(rdy(t)), ect(rdy(t)) and edel(rdy(t)) respectively. The
availability of the rdy(t) value also allows to infer the possible
occurrence of the OS idle task, a condition that is true for
rdy(t) = 0. For this case study, only the component etot,i of
the quantity ei is needed.

Figure 4 is used as a reference during the algorithm de-
scription. We are here showing 3 independent tasks, being
T1 and T3 the highest and lowest priority task respectively.
At the figure bottom, we indicate the trel,i and tend,i value
associated to each task. Note that, while the value of trel,i is
user-assigned, the value of tend,i is calculated at run-time by
the prediction algorithm. In addition, although trel,i could in
principle be assigned any time value, this value is seen and
evaluated only at the occurrence of the next closest clock tick,
when the scheduler is invoked. For this reason, we assume that
either the Funtime user or a Funtime routine can take care of
always setting a task trel,i at a time which is a multiple of

ttick. The value of tend,i can instead occur at any time, since
the scheduler is called by the OS routine that deletes the ended
task. This is represented by the yellow bars in Figure 4.

0 30 60 90 120 150
t

9

9 9

99 9

7 9

7

7

9 9 9

180

1

3
2 2

Fig. 4. 3 independent tasks T1, T2 and T3. trel,i 6= trel,j

The value of trel,i and tend,i is of great importance for the
whole prediction algorithm, since evaluation is restricted to
only these specific times. The reason is that there is no other
time when we can encounter a variation in the tasks state or
in the tasks ready queue. The result is a static decomposition
of the whole scheduling into multiple time windows wi. This
is shown in Figure 4, where 5 time windows [w1, w5] are
identified for 3 tasks and highlighted by different-color areas.

In detail, whenever a new time window starts, the following
operations are performed.

1) the number of ready tasks rdy(t) is calculated. If
rdy(t) = 0, the OS Idle task is expected to run for the
next time window wi. This case is shown in Figure 4 at
time t = 42.

2) the ready tasks are sorted according to their priority. The
highest-priority task TH is expected to run for the next
time window wi. For instance note that, as shown in
Figure 4 at time t = 100, task T3 is preempted by task
T1 that has higher priority.

3) the ending time of a time window is identified as the
minimum time between the tend,i of the task running in
that window and the next closest release time trel,i.

4) the values of SC, CT and DEL are updated with the
related contributions given in the present window. We
define such contributions as SCw, CTw and DELw.

5) This process is iterated until all tasks are completed.
The value of tend,i, within each time window, is determined

through the following considerations. First, the initial OS
overhead for the window being estimated is taken into account
and the current time tcurrent is updated. For instance, when a
new window starts after another task has ended, the OS routine
for task deletion is always executed (yellow bar), followed by
a call to the scheduler (red bar). Thus, if we take the beginning
of window w5 in Figure 4 as an example, we have that
edel + esc = 2 + 2 = 4⇒ tcurrent = 133 + 4 = 137. Second,
we calculate the time difference between the next closest clock
tick and the current time, we increment the current time of
a quantity equal to the calculated time difference and we
subtract that difference from the total task execution time
etot,i. This is done to end up exactly at the time when a
clock tick occurs and thus ease the calculation of the number

9397

2

993

2
7 9 9

2

0 30 60 90 120 150 t

7 9

180

3

9

7

7

210 240 270 300 330

9

9 9

7

R R

R
9 9

9 9

91 7

7

3

2

2 9

9 9 9

4 3
22

Fig. 5. 3 inter-dependent tasks T1, T2, T3 and T4. trel,i 6= trel,j

of total clock ticks happening until the end of the task. If
we refer again to Figure 4, this step takes us from an initial
tcurrent = 137 to a final tcurrent = 140. Third, the number
of clock tick interrupts for the present window is calculated.
We have previously defined this quantity as CTw. It is true
that CTw = d ei,tot

ttick−ect e. Finally, tend,i can be calculated
as tend,i = tcurrent + etot,i + ect · CTw. For our example
considering w5, we have that CTw = d 38

10−1e = 5, and
tend,3 = 140 + 38 + 1 · 5 = 183, which is correct.

Note that, although our OS behavior prediction algorithm
exhibits an iterative behavior, it still has an execution time
proportional to the number of windows defined by the algo-
rithm, and not to the tasks execution time etot,ii. Thus, it is
still fast and clearly faster than running the actual OS.

B. Case study 2

In this realistic case study, we keep valid all the con-
siderations made in Case study 1, but we also allow inter-
dependent tasks that can compete for shared resources. Unlike
the previous case study, here we also need the einc,i(line)
component of the quantity ei.

For inter-dependent task, we mean a task that, at some point
of its execution, reaches a synchronization point tsync where
it needs to wait for data from another task before being able to
continue. As an example, consider Figure 5: at time t = 33,
the highest priority task T1 attempts to receive data from a
message queue, but fails and gets blocked, since the queue is
empty. At time t = 83, T2 successfully sends some data into
the same message queue and then gets preempted by T1, that
has now been unblocked and can thus resume its execution.

A shared resource could be a memory, a mutex or, in
general, a serially-accessible resource. A conflict occurs when
multiple tasks try to access the same resource at the same
time. In general, the part of code dealing with accessing a
resource is defined as critical section and normally it cannot
be preempted, not even by a higher-priority task. This case is
visible in Figure 5: at time t = 132, the lowest-priority task
T4 successfully locks a mutex and enters its critical section.
The access to a shared resource R is shown as a white-filled
rectangle. At time t = 150, T4 is preempted by T3 and, in
turn, at time t = 180, T3 is preempted by T2. Then at time
t = 213, T2 also tries to access resource R by locking the
same mutex previously locked by T4. However, the locking

attempt fails and T2 is blocked until T4 releases the mutex at
time t = 265.

This scenario is known as priority inversion and generally
refers to the case of a high-priority task being blocked by
a lower-priority task. Some techniques have been developed
to avoid this problem. Two of them are known as priority
inheritance and priority ceiling. We remind that the goal of
this paper is not finding the best scheduling policy for a given
scenario, but rather showing how, provided a priority-driven
scheduling for a given scenario, Funtime can predict the OS
components overhead. Nevertheless, compliance to the priority
inheritance and priority ceiling techniques can be enabled in
Funtime too, as part of the priority prediction algorithm. The
user of Funtime will choose which policy to use.

In this Case study 2 we account for the implications of
having inter-dependent tasks that can compete for shared
resources, since these factors can heavily affect the amount
of OS overhead, i.e. number of context switches, occurrence
and duration of the OS Idle task, etc. For example, it is only
by knowing at which point in time T1 tries to read from its
message queue that we can estimate the duration of the OS
Idle task. As another example, by knowing when T4 tries to
lock its mutex, we can predict whether T4 will be able to get
the lock before T3 is released or not. If it does, we have the
scenario shown in Figure 5 and described above. If not, T4 will
be able to lock its mutex only after T2 and T3 have finished.
In this latter case, T2 would not be blocked and therefore we
would count 2 context switches less.

However, to be able to predict the time point tsync when
a task tries to access an OS resource, like a message queue
or a mutex (see the top of Figure 5), the only knowledge of
the total task execution time etot,i is not enough any more.
Instead, the following 2 conditions must also be satisfied.
Note that enabling these satisfiability conditions is one of the
contributions of this paper:

1) it must be possible to evaluate the advance of time with
the granularity of a single source-code line. This quantity
has been defined as einc,i(line) and can be retrieved by
instrumenting the compiler as described in section V.

2) the Funtime user must specify at what source-code
line lsync the synchronization point occurs and what
dependency relation exists.

From the 2 points above, it results that tsync = einc(lsync).

As in Case study 1, the proposed OS prediction algorithm
relies on taking decisions at specific time points, which
correspond to the end of temporal windows wi. The only
difference is that not only trel,i and tend,i are used to identify
a window edges, but also the time points where a task reaches
a synchronization point. This is shown in Figure 5, where we
identify 13 windows.

In case of inter-dependent tasks, in order to run an ap-
plication natively at Level B (Algorithmic Level), it is nec-
essary that the Funtime user manually provides a value to
the variables that, at Level C (Refinement Level), would be
assigned at a synchronization point. We recall that Level B
is the only level where an application is run in Funtime (see
Figure 1). In case that an application takes different branches
depending on the value received, the Funtime user chooses the
values according to the specific needs, so to have a trace of
Primary ALTs available for the different possibilities. Later
on, he/she can also specify a percentage value corresponding
to the frequency each branch is taken. Note instead that, at
Level C, no application is run at all, as well as no Operating
System.

Algorithm 1 reports the pseudo-code for the main steps
described in Case study 1 above. The text in red color
distinguishes instead the extra component needed to account
for Case study 2.

Algorithm 1
/* Initialize all the OS quantities to zero */
SC(rdy(t)) = CT (rdy(t)) = · · · = DEL(rdy(t))← 0;
total execution time left e tot left←

∑N
i=1 ei;

current time tcurrent ← 0;
while e tot left > 0 do

for i = 1 to N do
rdy(t)← number of ready tasks at time t;
TH(t)← highest priority task ready at time t;

end for
calculate TH ending time tend,TH ;
tnext ← min(tend,TH , closest trel, closest tsync);
/* Update all the OS quantities */
update SC(tnext − tcurrent, rdy(t));
update CT (tnext − tcurrent, rdy(t));
...
update DEL(tnext − tcurrent, rdy(t));
update e tot left;
tcurrent ← tnext

end while

VII. OS REFINEMENT VALIDATION

A. Accuracy: Funtime vs. gate level

Accuracy validation is performed by comparing energy and
timing results inferred by Funtime to those extracted from
back-annotated gate-level simulation, which is taken as a
reference. The reason is that gate level is very accurate.

The SoC platform used for validation is the same used for
characterization and is shown in Figure 6. Communication is
implemented by the AMBA AHB/APB bus, while computa-
tion relies on the SPARC-based Leon3 processor, configured

without cache. The entire system runs at the frequency of 40
MHz.

Leon3

AHB Ctrl

Timer Irq Ctrl

AHB/APB
Bridge

APB Ctrl

SRAM
(no cache)

Fig. 6. Leon3-based platform

The goal is to verify the Funtime prediction accuracy for
an RTEMS-based signal-processing software composed of 5
inter-dependent tasks, as shown in Figure 7. Task T1 provides
a data stream of 100 elements. Such a stream is broadcast to
T2, T3 and T4 through the message queue Q1. Always, only
one of the 3 tasks T2, T3 and T4 performs some processing
on the received data, depending on the actual data value. The
processed data is then sent into the message queue Q2 and
reaches the output process T5. This modeling flow could be
for instance representative of an equalizer.

Fig. 7. RTEMS-based signal-processing software

The RTEMS clock tick period ttick has been set to 200µs.
The task priority has been assigned as follows: Π(T5) >
Π(T2) > Π(T3) > Π(T4) > Π(T1). This means that T5 and
T1 have the highest and lowest priority respectively. This is
done since we expect that the system is immediately ready to
operate whenever the input data stream arrives. In this case,
the stream arrives when T1 is released, i.e. at trel,1 = 40ms,
which is an integer multiple of ttick. The release time for the
remaining tasks is instead trel,2...5 = 0ms.

We have collected the results in Table II, which is itself
split into 3 horizontal subtables considering successively more
sources of inaccuracies as we move down. Subtable 1 only
considers the error deriving from the OS characterization
summarized in section IV, while [e1, ..., e5], as well as the OS
activities are measured from gate level. Subtable 2 has two
sources of inaccuracies: the OS characterization and the OS
activity prediction, described in section IV and VI respectively,
while [e1, ..., e5] are measured; finally, Subtable 3 considers
three sources of inaccuracy: the first two are the same as for
Subtable 2, while the third comes from using Funtime (Level
A and B) to derive also [e1, ..., e5]. Table II is further split
vertically into a left and a right side: the left side reports figures
related to the five tasks [T1, ..., T5], independently of the OS;
the right side is instead meant to show the OS overhead. The
energy values shown refer to the Leon3 processor. Both real
and estimated values are shown along with the percentage
error.

TABLE II
VALIDATING FUNTIME VS. GATE LEVEL FOR ENERGY ESTIMATION: PRIORITY-DRIVEN SCHEDULING

Applications RTEMS OS
T1 T2 T3 T4 T5 clock ticks msg q. broadcast(3) msg q. send msg q. receive

+ c.s. + c.s. + c.s.
Subtable 1 (1 source of inaccuracy: OS characterization)

Real ei [ms] 0.3 11.3 5.1 14.0 9.8 Real #OS macro-func. 1174 100 100 400
Real en. [µJ] 0.5 15.8 7.1 19.5 13.7 Real en. [µJ], time [ms] 89.0 61.6 44.1 31.4 25.8 18.3 99.0 71.5

Inferred en. [µJ], time [ms] 94.1 65.7 43.4 30.7 24.7 17.5 97.5 69.1
Error [%] +5.7 +6.6 -1.5 -2.4 -4.0 -4.6 -1.5 -3.4

Subtable 2 (2 sources of inaccuracy: OS characterization + OS activity prediction)
Real ei [ms] 0.3 11.3 5.1 14.0 9.8 Real #OS macro-func. 1174 100 100 400

Inferred #OS macro-func. 1263 100 100 400
Error [#] +89 0 0 0

Real en. [µJ] 0.5 15.8 7.1 19.5 13.7 Real en. [µJ], time [ms] 89.0 61.6 44.1 31.4 25.8 18.3 99.0 71.5
Inferred en. [µJ], time [ms] 101.2 70.7 43.4 30.7 24.7 17.5 97.5 69.1
Error [%] +13.7 +14.8 -1.5 -2.4 -4.0 -4.6 -1.5 -3.4

Subtable 3 (3 sources of inaccuracy: OS characterization + OS activity prediction + ei value)
Real ei [ms] 0.3 11.3 5.1 14.0 9.8 Real #OS macro-func. 1174 100 100 400
Inferred ei [ms] 0.3 9.8 5.0 12.8 8.1 Inferred #OS macro-func. 1234 100 100 400
Error [%] -5.4 -13.0 -1.2 -8.5 -16.3 Error [#] +60 0 0 0
Real en. [µJ] 0.5 15.8 7.1 19.5 13.7 Real en. [µJ], time [ms] 89.0 61.7 44.1 31.4 25.8 18.3 99.0 71.5
Inferred en. [µJ] 0.5 14.8 7.6 19.3 12.2 Inferred en. [µJ], time [ms] 98.9 69.1 43.4 30.7 24.7 17.5 97.5 69.1
Error [%] -6.3 -5.9 +6.2 -1.4 -10.5 Error [%] +11.1 +12.0 -1.5 -2.4 -4.0 -4.6 -1.5 -3.4

The RTEMS functionalities that we account for in Table II
are, from left to right, the clock tick interrupt, the message
queue broadcast (to 3 queues), the message queue send and
the message queue receive. The inferred number of clock ticks
is higher than the real one. The reason is that the real value
of ttick was measured to be in average ∼218µs instead of
the ideal 200µs. The inferred number of the remaining RTOS
routines is instead equal to the real one. The reason is that their
occurrence is directly visible from the inferred execution trace,
and is independent of the real or inferred task execution time
ei. In general we get good accuracy figures both for energy
and timing estimation, within the 12% of the real value.

B. Speedup: Funtime vs. TLM-PV

For speed comparison, TLM-PV has been chosen as a
reference. The reason is that this is the fastest high-level
methodology for system-level estimation commonly used at
present. For this purpose, we built our own TLM-PV in Sys-
temC for the reference SoC architecture. The implementation
has been as abstract as possible, since it exclusively represents
the transactions occurring across the platform among the
different IPs. A set of applications has been chosen with a
very high number of executed instructions, ranging between
80M - 1.6B. The applications chosen are the image com-
pression codec JPEG2000 and the video compression codec
H264. Applications and data have been combined in different
ways to show some possible use-case scenarios, where two
applications always run concurrently on top of the RTEMS OS.
The speedup achieved by Funtime over TLM-PV simulation
is ∼30X. This confirms the capacity of Funtime to be used
for complex and real use-case scenarios.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a high-level method for rapidly and
accurately estimating energy and performance overhead of
Real-Time OS. While in our previous work we only addressed
Round Robin scheduling and assumed independent tasks, in

this work we have enhanced our investigation by considering
priority-driven scheduling and assuming inter-dependent tasks
competing for shared resources. We have distinguished two
main components in our approach: first, a one-time pre-
characterization of the main RTOS functionalities in terms of
energy and cycles; second, the development of an algorithm
to predict the occurrences of such RTOS functionalities. As
a result, we are able to achieve a significant mean speedup
(∼30X) compared to TLM-PV, while only losing 12% of
the gate-level accuracy when doing energy and performance
estimation.

As part of the future work, we intend to extend the OS
prediction algorithm to the case of multi-processing systems.

REFERENCES

[1] F. Ghenassia, Transaction-Level Modeling with SystemC, 2005.
[2] S. Penolazzi, A. Hemani, and L. Bolognino, “A General Approach to

High-Level Energy and Performance Estimation in SoCs,” in VLSI, 2009.
[3] S. Penolazzi, I. Sander, and A. Hemani, “Predicting Energy and Perfor-

mance Overhead of Real-Time Operating Systems,” in DATE, Dresden,
Germany, 2010.

[4] Y. Yi, D. Kim, and S. Ha, “Virtual Synchronization Techniques with
OS Modeling for Fast and Time-accurate Cosimulation,” 2003.

[5] ——, “Fast and accurate cosimulation of mpsoc using trace-driven
virtual synchronization,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 2007.

[6] C. Brandolese and W. Fornaciari, “Measurement, Analysis and Modeling
of RTOS System Calls Timing,” in Euromicro, 2008.

[7] F. Hessel, V. M. da Rosa, I. M. Reis, C. A. M. Marcon, and A. A. Susin,
“Abstract RTOS Modeling for Embedded Systems,” in RSP, 2004.

[8] M. A. Hassan, K. Sakanushi, Y. Takeuchi, and M. Imai, “Enabling RTOS
Simulation Modeling in A System Level Design Language,” in ASP-
DAC, 2005.

[9] Z. He, A. Mok, and C. Peng, “Timed RTOS Modeling for Embedded
System Design,” in RTAS, 2005.

[10] “RTEMS Homepage. http://www.rtems.com.”
[11] “AEROFLEX GAISLER. http://www.gaisler.com.”
[12] “GNU Compiler Collection. http://gcc.gnu.org.”
[13] J. Merrill, “Generic and gimple: A new tree representation for entire

functions,” in Proceedings of the GCC Developers Summit, 2003.
[14] GNU Compiler Collection Internals.
[15] A. Vichare, The Conceptual Structure of GCC, Indian Institute of

Technology, Bombay, 2008.

