
System Modeling and
Design Refinement in ForSyDe

Ingo Sander

Stockholm 2003

Thesis submitted to the Royal Institute of Technology in partial fulfillment
of the requirements for the degree of Doctor of Technology

Sander, Ingo
System Modeling and Design Refinement in ForSyDe

ISBN 91-7283-501-X
TRITA-IMIT-LECS AVH 03:03
ISSN 1651-4076
ISRN KTH/IMIT/LECS/AVH-03/03--SE

Copyright © Ingo Sander, April 2003

Royal Institute of Technology
Department of Microelectronics and Information Technology
Laboratory of Electronics and Computer Systems
Electrum 229
S-164 40 Kista, Sweden

Abstract

Advances in microelectronics allow the integration of more and more function-
ality on a single chip. Emerging system-on-a-chip architectures include a large
amount of heterogeneous components and are of increasing complexity. Applica-
tions using these architectures require many low-level details in order to yield an
efficient implementation. On the other hand constant time-to-market pressure on
electronic systems demands a short design process that allows to model a system at
a high abstraction level, not taking low-level implementation details into account.
Clearly there is a significant abstraction gap between an ideal model for specifica-
tion and another one for implementation. This abstraction gap has to be addressed
by methodologies for electronic system design.

This thesis presents the ForSyDe (Formal System Design) methodology, which
has been developed with the objective to move system design to a higher level of
abstraction and to bridge the abstraction gap by transformational design refine-
ment. ForSyDe is based on carefully selected formal foundations. The initial
specification modeluses asynchronous model of computation, which separates
communication from computation and has an abstract notion of time. ForSyDe
uses the concept ofprocess constructorsto implement the synchronous model,
to allow for design transformation and the mapping of a refined model onto the
target architecture. The specification model is refined into a detailedimplementa-
tion modelby the stepwise application of well-defineddesign transformation rules.
These rules are either semantic preserving or they inflict a design decision mod-
ifying the semantics. These design decisions are used to introduce the low-level
implementation details that are needed for an efficient implementation. The im-
plementation model is mapped onto the components of the target architecture. At
present ForSyDe models can be mapped onto VHDL or C/C++ in order to allow
commercial tools to generate custom hardware or sequential software. The thesis
uses a digital equalizer to illustrate the concepts and potential of ForSyDe.

iii

iv

Acknowledgements

The research was funded by the Royal Institute of Technology, Vinnova and the
Swedish Foundation for Strategic Research.

There are many people who in one form or another contributed to the work
described in this thesis. I want to take the opportunity to say a big ”Thank you” to
all of you.

In particular I would like to thank my formal and informal supervisors over
the years. The biggest thank goes to my supervisor, Professor Axel Jantsch, who
not only contributed to my work in various ways, but also always encouraged me
and took his time for discussions on my research. Thanks a lot for a fantastic
supervision! I also want to thank Professor Hannu Tenhunen, who in all years has
put an enormous effort on the development of research and education in electronic
system design at our department. I also want to thank Professor Ahmed Hemani,
who a long time ago accepted me as PhD student and introduced me into research.

I also want to thank all past and current PhD students from ESD/LECS that I
have been working together with. It is not possible to mention all of you by name.
But I want in particular thank Andreas Jonasson who convinced me that functional
languages are fantastic; Wenbiao, Zhonghai, Tarvo and Ashish for their work on
ForSyDe; Per, for many discussions, which strangely have never resulted in a joint
paper; Abhijit from whom I have learned that subways are dangerous; Johnny, from
whom I have learned that almost everything in Sweden is fantastic; Patrik and all
others who organized and participated in the soccer and innebandy matches at ESD
Lab; Dilian and Dinesh for our chess games and discussions.

A special thanks goes to Hans and all other people from the system group of
our department who work day and night to give us a great working environment.
And also thanks a lot to Lena for all administrative help.

Also I want to send many thanks to my old department at Campus Haninge.
First of all I want to thank Lars K̈allander and Inge Jovik who gave me the oppor-
tunity to combine my teaching with PhD studies. And a special to Eva-Lotta for all
discussions about research in general. And also big thanks to all others, who have

v

vi Acknowledgements

not directly contributed to the thesis, but made working more fun.
Thanks to my mother and father who put me on the right track from the be-

ginning. And the biggest thanks of all goes to my wife, Sofi, and to my children,
Maria, Ulrika and Tobias. I am such a lucky person to have you!

Stockholm, April 2003
Ingo Sander

Contents

1 Introduction 1
1.1 Motivation. 1

1.1.1 Embedded Systems. 1
1.1.2 Embedded System Design. 2
1.1.3 The ForSyDe Approach to Embedded System Design . . . 5

1.2 Thesis Objectives. 7
1.3 Author’s Contribution . .. 8

1.3.1 Publications included in this Thesis 8
1.3.2 Publications not included in this Thesis 10

1.4 Thesis Layout. 11

2 Background 13
2.1 Models of Computation .. 13
2.2 Synchronous Languages. 21
2.3 Design Methodologies .. 27

2.3.1 Hardware/Software Co-Design. 27
2.3.2 Declarative Approaches to System Design. 31

2.4 Design Transformation .. 33
2.5 Introduction to Haskell .. 35

3 System Models of ForSyDe 41
3.1 Formal Models in ForSyDe. 41
3.2 Definition of the Computational Models of ForSyDe. 42

3.2.1 Signals . 43
3.2.2 Processes. 45

3.3 The Specification Model. 52
3.4 The Implementation Model. 61
3.5 The ForSyDe Modeling Language. 66

vii

viii Contents

3.6 Summary . 71

4 Development of the Specification Model 73
4.1 Modeling in ForSyDe . .. 73
4.2 The Equalizer Specification Model. 74

4.2.1 The SubsystemButtonControl 78
4.2.2 The SubsystemDistortionControl 82
4.2.3 The SubsystemAudioFilter 83
4.2.4 The SubsystemAudioAnalyzer 86

4.3 Discussion. 88

5 Design Refinement 89
5.1 Transformational Design Refinement. 89
5.2 Characteristic Functions for Processes and Process Networks . . . 94

5.2.1 Processes based on Synchronous Process Constructors . . 94
5.2.2 Processes based on Domain Interface Constructors. . . . 97
5.2.3 Combinator Processes. 98
5.2.4 Network of Processes. 99

5.3 Design Transformations .. 101
5.4 Refinement of the Equalizer. 115

5.4.1 Refinement of the Clock Domain. 116
5.4.2 Communication Refinement. 123
5.4.3 Resource Sharing. 126

5.5 Summary and Discussion. 127

6 Implementation Mapping 129
6.1 Introduction. 129
6.2 Mapping of the implementation model to VHDL. 130

6.2.1 Generation of a VHDL-description for a process that is de-
fined by a process constructor. 131

6.2.2 Generation of a VHDL-description for a process network . 137
6.2.3 The Importance of an optimized Implementation Model . 144

6.3 Discussion. 145

7 Conclusion 147
7.1 Summary of the Thesis .. 147
7.2 Future Work. 148

References 151

Contents ix

A The ForSyDe Standard Library 161
A.1 Introduction . 161

A.1.1 The ModuleForSyDeStdLib 162
A.2 ForSyDe Core Language. 163

A.2.1 The ModuleSignal 163
A.2.2 The ModuleVector 167
A.2.3 The ModuleAbsentExt 175
A.2.4 The ModuleCombinators 177

A.3 Libraries of System Functions and Data Types 177
A.3.1 The ModuleMemory 177
A.3.2 The ModuleQueue . 179
A.3.3 The ModuleDFT . 180

A.4 Computational Model Libraries. 183
A.4.1 The ModuleSynchronousLib 183
A.4.2 The ModuleDomainInterfaces 190

A.5 Application Libraries . .. 193
A.5.1 The ModuleSynchronousProcessLib 193
A.5.2 The ModuleFIR . 195

B The Equalizer Specification Model 199
B.1 The ModuleEqualizer . 199

B.1.1 Overview . 199
B.2 The ModuleButtonControl 201

B.2.1 Overview . 201
B.2.2 The ProcessButtonInterface 202
B.2.3 The ProcessLevelControl 202

B.3 The ModuleDistortionControl 204
B.4 The ModuleAudioFilter . 207

B.4.1 Overview . 207
B.5 The ModuleAudioAnalyzer 208

B.5.1 Overview . 208
B.6 The ModuleEqualizerTypes 209

B.6.1 Overview . 209

C VHDL-Templates for ForSyDe Processes 211
C.1 VHDL-Templates for combinational Process Constructors. . . . 211

C.1.1 VHDL-Template for Processes constructed bymapSY . . 211
C.1.2 VHDL-Template for Processes constructed byzipWithSY 212

C.2 VHDL-Templates for sequential Process Constructors. 213

x Contents

C.2.1 VHDL-Template for Processes constructed bydelaySY . 213
C.2.2 VHDL-Template for Processes constructed byscanlSY . 214
C.2.3 VHDL-Template for Processes constructed byscanldSY . 216
C.2.4 VHDL-Template for Processes constructed bymooreSY . 218
C.2.5 VHDL-Template for Processes constructed bymealySY . 220

C.3 VHDL-Templates for Domain Interfaces. 222
C.3.1 VHDL-Template for Processes constructed bydownDI . 222
C.3.2 VHDL-Template for Processes constructed byupDI . . . 223
C.3.3 VHDL-Template for Processes constructed byp2sDI . . . 225
C.3.4 VHDL-Template for Processes constructed bys2pDI . . . 226

List of Figures

1.1 A possible system-on-a-chip architecture. 2
1.2 A high abstraction level leaves a wider design space. 3
1.3 The synthesis process is a stepwise refinement from a high-level

specification model into a final implementation 5
1.4 The ForSyDe design flow. 6

2.1 A data flow process network. 15
2.2 A synchronous data flow process network. 16
2.3 A feedback loop in a synchronous system. System a) has no solu-

tions, b) has multiple solutions and c) has a single solution.. . . . 22
2.4 A counter in Lustre 25

3.1 Systems are modeled as communicating concurrent processes . . . 42
3.2 A signal is a sequence of events. 43
3.3 Process . 45
3.4 A basic process has only one output signal. 45
3.5 Composition of processes can lead to compositions with no input

(a), no output (b) or neither input nor output (c) 46
3.6 Two equivalent process networks. 47
3.7 Function composition . .. 48
3.8 Sequential process composition. 48
3.9 Parallel process composition. 49
3.10 Relation of tags in periodic signals. 50
3.11 Synchronous process constructors separate timing from communi-

cation . 54
3.12 The process constructormapSY 55
3.13 The process constructorzipWithSY 56
3.14 The process constructordelaySY 56
3.15 The process constructorsourceSY 57

xi

xii List of Figures

3.16 The tags in an output signal of a source process are implicitly de-
fined by other signals and processes in the system model. 57

3.17 The process constructorscanlSY 58
3.18 The process constructorscanldSY 58
3.19 The process constructormooreSY 59
3.20 The process constructormealySY 59
3.21 The combinator processzipSY 60
3.22 The combinator processunzipSY 60
3.23 The specification model can be viewed as a layered model. . . . 60
3.24 Synchronous sub-domains are introduced by domain interfaces . . 62
3.25 A process network with several input and output signal rates . . . 62
3.26 The domain interface constructordownDI 64
3.27 The domain interface constructorupDI 65
3.28 Example for down- and up-sampling. 65
3.29 Usage ofholdSY . 65
3.30 The domain interface constructorp2sDI 66
3.31 The domain interface constructors2pDI 66
3.32 The composition ofp2sDI (k) ands2pDI (k) introduces an extra

delay. 67
3.33 The ForSyDe Standard Library. 68

4.1 The equalizer and its environment. 75
4.2 Subsystems of the equalizer. 75
4.3 The subsystemButtonControl 78
4.4 The State diagram of the processLevelControl 80
4.5 SDL-description of theDistortionControl 82
4.6 Subsystems of theAudioFilter 84
4.7 FIR-filter . 84
4.8 TheAudioAnalyzer Subsystem 86
4.9 The processgroupSY . 87

5.1 Transformational design refinement. 90
5.2 Design transformation .. 90
5.3 A process is completely defined by its characteristic function . . . 91
5.4 Process network. 99
5.5 Equivalent process network. 100
5.6 Illustration of the transformation ruleMapMerge 102
5.7 The transformation ruleMapMerge 103
5.8 The transformation ruleMapSplit. 105

List of Figures xiii

5.9 Application of a semantic preserving transformation. 105
5.10 Illustration of the transformation ruleBalancedTree 106
5.11 The transformation ruleBalancedTree. 107
5.12 The transformation ruleAddDelay 108
5.13 Illustration of the transformation ruleAddDelay 108
5.14 The transformation ruleMoveDelayToInput 109
5.15 Illustration of the transformation ruleMoveDelayToInput. 109
5.16 The transformation rulePipelinedTree 110
5.17 Illustration of the transformation rulePipelinedTree. 110
5.18 CombiningBalancedTreeandPipelinedTree. 111
5.19 Illustration of the transformation ruleSerialClockDomain. 111
5.20 Transformation ruleSerialClockDomain. 112
5.21 A four-input adder process. 114
5.22 Refinement of the equalizer (simplified figure) 115
5.23 TheAudioAnalyzer . 116
5.24 Direct implementation of theAudioAnalyzer 116
5.25 Mathematical abstraction of the specification model. 118
5.26 Transformation ruleGroupToMultiRate 121
5.27 TheAudioAnalyzer after Refinement. 121
5.28 Refinement into a handshake protocol. 124
5.29 The transformationChannelToHandshake. 125
5.30 Refinement of a FIFO buffer. 125
5.31 Transformation of a FIR-filter. 126

6.1 Hardware implementation of a process based onmealySY 1 132
6.2 The synthesized implementation of the processDistortionControl 138
6.3 Mapping of the handshake protocol to hardware 139
6.4 The synthesized implementation of the handshake protocol (top

module) . 143
6.5 The critical path in the implementation model 144
6.6 Design transformation and implementation mapping for concurrent

software running on a single processor with a scheduling processS 145

A.1 The ForSyDe Standard Library. 161
A.2 Basic butterfly computation in the decimiation-in-time algorithm . 181
A.3 Eight-point decimation-in-time FFT algorithm 182
A.4 FIR-filter . 195
A.5 FIR-filter model . 196

xiv List of Figures

B.1 Subsystems of theEqualizer . 200
B.2 The SubsystemButtonControl 201
B.3 The State Diagram of the ProcessLevelControl 203
B.4 SDL-description ofDistortion Control 205
B.5 Subsystems of theAudio Filter 207
B.6 TheAudio Analyzersubsystem. 208

C.1 Hardware implementation ofmapSY 211
C.2 Hardware implementation ofzipWithSY m 212
C.3 Hardware implementation ofdelaySY k 213
C.4 Hardware implementation ofscanlSY m 214
C.5 Hardware implementation ofscanldSY m 216
C.6 Hardware implementation ofmooreSY m 218
C.7 Hardware implementation ofmealySY m 220
C.8 Hardware implementation ofdownDI (k) 222
C.9 Hardware implementation ofupDI (k) 223
C.10 Hardware implementation ofp2sDI (m) 225
C.11 Hardware implementation ofs2pDI (n) 226

List of Abbreviations

A/D Analog-to-Digital Converter
ATM Asynchronous Transfer Mode
CCS Calculus of Communicating Systems
CFSM Co-Design Finite State Machine
CIP Computer-Aided, Intuition-Guided Programming
CSP Communicating Sequential Processes
D/A Digital-to-Analog Converter
DFT Discrete Fourier Transform
DSP Digital Signal Processor
FFT Fast Fourier Transform
FIFO First-In-First-Out (Buffer)
FIR Finite Impulse Response
ForSyDe Formal System Design
FPGA Field Programmable Gate Array
FRP Functional Reactive Programming
FSM Finite State Machine
GALS Globally Asynchronous - Locally Synchronous
HML Hardware ML (Meta Language)
HW Hardware
ITRS International Technology Roadmap for Semiconductors
MASCOT Matlab and SDL Codesign Techniques
Matlab Matrix Laboratory
MESCAL Modern Embedded Systems, Compilers Architectures and

Languages
MIMD Multiple Instruction, Multiple Data
ML Meta Language
MoC Model of Computation

xv

xvi List of Abbreviations

OSI Open Systems Interconnect
RTL Register Transfer Level
SAFL Statically Allocated Functional Language
SDF Synchronous Data Flow
SDL Specification and Description Language
SIMD Single Instruction, Single Data
SoC System on a Chip
SPI System Property Intervals
SW Software
VCC Virtual Component Co-Design
VHDL Very High Speed Integrated Circuit Hardware Description

Language

Chapter 1

Introduction

This chapter presents the motivation for the research on ForSyDe and defines the
objectives of this thesis. It states the author’s contributions to the ForSyDe method-
ology and gives an overview of the structure of the thesis.

1.1 Motivation

1.1.1 Embedded Systems

Embedded systems play an increasingly important role in daily life. An embedded
system can be defined as a system that uses a computer to perform a specific func-
tion, which is neither used nor perceived as a computer [27]. Embedded systems
can be found in different application areas, such as train, car and aircraft con-
trollers, consumer electronics, communication systems or medical devices. These
embedded systems can include more and more functionality on a single chip due
to Moore’s law, which predicts that the number of transistors on a given chip can
be doubled every 18 months. So far Moore’s law, which is based on an observation
that was formulated in 1965 [85], has been proven correct for almost 40 years1.
It works now almost as a requirement specification for the semiconductor indus-
try, which use the International Technology Roadmap for Semiconductors (ITRS)
to formulate the challenges implicitly given by Moore’s law [4]. It seems that
Moore’s law will hold at least through the end of this decade, which means that in

1Moore had observed that the number of transistors per square inch has been doubled every year
since the invention of the integrated circuit. This trend had been slowed down to 18 months for the
doubling of transistors, but has since then been stable for many years.

1

2 Chapter 1. Introduction

future even more complex functionality can be implemented on a single chip and
that new applications using these technology advances will appear.

FPGA Memory DSP

Memory

D/AA/D Communication Structure

controller
Micro- Custom

Hardware

Figure 1.1. A possible system-on-a-chip architecture

Already today it is possible to implement a system on a single chip. As illus-
trated in Figure 1.1 such a system on a chip (SoC) integrates micro-controllers,
digital signal processors (DSPs), memories, custom hardware, and reconfigurable
hardware in the form of field programmable gate arrays (FPGAs) together with a
communication structure and analog-to-digital (A/D) and digital-to-analog (D/A)
converters on a single chip. These architectures offer an enormous potential. How-
ever, on the other hand, they are extremely complex and heterogeneous. This does
not only apply for the hardware, but also for the software. The communications
between all the entities is extremely complex, since these entities are distributed
and often share communication channels and memory resources.

Most embedded systems arereactive systems[12]. Reactive systems, e.g. a
cruise control in a car, react continuously to their environment at the speed of the
environment. In contrastinteractive systems, e.g. an Internet application, interact
with the environment at their own speed, whiletransformational systems, e.g. a
compiler, transform input data into output data. Very often reactive systems are
safety critical. In case of a train control system the train must stop immediately
if an emergency condition occurs. The design process must be able to give these
guarantees, since there is a risk for human life.

1.1.2 Embedded System Design

The design process of future embedded systems must be able to implement an
application with guaranteed properties, as needed by for instance safety critical
systems, but has also to cope with the complexity and heterogeneity of the un-
derlying architecture. The present trend in industrial design is that the part of the

1.1. Motivation 3

verification costs related to the total design costs is continuously increasing. Cur-
rent industrial designs rely heavily on simulation techniques, which of course will
still be important in future, but there is a need for a complement in form of formal
verification methods.

Since it in practice is very difficult to capture the functionality of the system and
to verify system level properties on the level of architectural components, system
design must start on a much higher abstraction level. Unfortunately, the higher
the level of abstraction the more implementation details are missing, which are
needed to obtain an efficient implementation. The design process must add these
implementation details.

System design starts with the development of aspecification model. In this
phase the designer formulates a model according to the requirements given in a
requirement specification, which usually is written in a natural language, e.g. in
English. It is important that the specification model is expressed in a formal lan-
guage. A formal language has a formal syntax2 and a formal semantics3 that allows
for formal manipulation and tool support, which can for instance be used to detect
inconsistencies, ambiguities or incompleteness in a specification model.

The higher the abstraction level of the specification model, the fewer imple-
mentation details are inherent in the model and the larger is thedesign space. The
design space is defined as the amount of possible implementations that fulfill a
given specification model and is illustrated in Figure 1.2.

Abstraction Level

High-Level Specification Model

A
bs

tr
ac

tio
n

G
ap

Number of possible refined Models

Lower-Level Specification Model

Implementation

Figure 1.2. A high abstraction level leaves a wider design space

2A syntax of a language defines how language symbols are put together to form valid language
expressions.

3A semantics of a language gives a meaning to language expressions.

4 Chapter 1. Introduction

Also a high abstraction level usually means that the system can be described
in a cleaner and simpler way, since implementation details do not have to be taken
into account. Simple models help the designer to understand and formulate the
functionality of the system, since there is less distraction from unwanted details.
In addition a simpler model also allows for more efficient system modelverifica-
tion4, where it is confirmed that the specification model fulfills all the functional
requirements that have been imposed on the system.

On the other hand a high abstraction level of the system model aggravates the
synthesis process5, since a model with very few implementation details has to be
translated into an implementation on a complex and heterogeneous architecture
where a large amount of implementation details are needed. This leads to a large
abstraction gap(Figure 1.2), which has to be bridged during synthesis.

Thus a system design methodology has to offer the following:

• the possibility to model the system at a high level of abstraction;

• a synthesis process that allows the bridging of the abstraction gap in order to
yield an efficient implementation.

These objectives can be summarized as the challenge for a successful system de-
sign methodology.

In order to manage the complexity and heterogeneity of SoC applications Ed-
wards et al. [27] believe that the design approach should be based on the use of
one or more formal methods to describe the behavior of the system at a high level
of abstraction, before a decision on its decomposition into hardware and software
is taken. The final implementation of the system should be made by using auto-
matic synthesis from this high level of abstraction to ensure implementations that
are ”correct by construction”. Validation through simulation or verification should
be done at the higher levels of abstraction.

They advocate a design process that is based on representations with precise
mathematical meaning, so that both the verification and the mapping from the ini-
tial description to the various intermediate steps can be carried out with tools of
guaranteed performance. A formal model of a design should consist of the follow-
ing components:

1. afunctional specificationgiven as a set of explicit or implicit relations, which
involve inputs, outputs, and possibly internal (state) information;

4The term verification is used in this thesis for both system simulation and formal verification.
5The termsynthesisis often used for theautomaticrefinement of a model into a less abstract

model due to the addition of details. Here the term is even used for themanualrefinement of a
specification model into an implementation on a given system architecture.

1.1. Motivation 5

2. aset of propertiesthat the design has to satisfy;

3. a set of performance indexesthat evaluate the design in different aspects
(speed, size, reliability, etc.);

4. aset of constraintson performance indexes.

Specification Model

Refinement Steps

Implementation

Design Space

A
bs

tr
ac

tio
n

G
ap

Abstraction Level

Figure 1.3. The synthesis process is a stepwise refinement from a high-level specifi-
cation model into a final implementation

The design process takes a model of the design at one level of abstraction and
refines it to a lower one. The refinement process involves also the mapping of
constraints, performance indexes, and properties to the lower level. Such a design
process is illustrated in Figure 1.3.

The view of Edwards et al. should be understood as a goal for system design. In
particular a ”correct-by-construction” design process is difficult to achieve. How-
ever, a similar view on system design has been formulated by Keutzer et al. [65],
who also point out that the orthogonalization of concerns, in particular the sepa-
ration between (1) computation and communication and (2) function and architec-
ture, is of crucial importance.

1.1.3 The ForSyDe Approach to Embedded System Design

This thesis presents the ForSyDe approach to embedded system design. ForSyDe
(Formal System Design) is a design methodology for embedded systems and based

6 Chapter 1. Introduction

on a similar view on system design as formulated in [27] and [65]. In particular, the
starting point for the development of the ForSyDe methodology was the conviction
that future system design methodologies have to

• start from a high-level of abstraction in order to be able to cope with the
extreme complexity of future applications and architectures;

• give a solid base for the future incorporation of formal methods, since sim-
ulation alone is not sufficient to verify future systems at different levels of
abstraction.

Specification
Model

Transformational
Design

Refinement

Implementation
Model

Communication
Implementation

Hardware
Implementation

Software
Implementation

Verification Transformation
Library

Mapping
Implementation Architecture

Model

Functional
Domain

Implementation
Domain

Figure 1.4. The ForSyDe design flow

Thus the ForSyDe design process, which is illustrated in Figure 1.4, starts with
the development of a formal and functionalspecification modelat a high abstrac-
tion level. The model is formal since it has a formal syntax and semantics. It is
abstract and functional since a system is modeled as a mathematical function of the
input signals. The specification model uses a synchronous model of computation6,
which is based on a clean and simple mathematical formalism and on an abstract
communication model. This formal base of ForSyDe gives a good foundation for
the integration of formal methods.

The synthesis process is divided into two phases. First the specification model
is refined into a more detailed implementation model by the stepwiseapplication

6Models of computations are discussed in Section 2.1.

1.2. Thesis Objectives 7

of design transformations. Since the semantics of the specification model is a sub-
set of the semantics of the implementation model the same verification techniques7

can be applied to both models. Design transformation is conducted in thefunc-
tional domain. Inside the functional domain a system model is expressed as a
function using the semantics of ForSyDe. The second step in the synthesis phase
is the mapping of the implementation model onto a given architecture. This phase
comprises activities like partitioning, allocation of resources and code generation.
In the implementation mapping phase, the design process leaves the functional do-
main and enters theimplementation domain, where the design is described with
”implementation-level languages”, i.e. languages that efficiently express the de-
tails of the target architecture, such as synthesizable VHDL for hardware or C for
software running on a micro-controller.

The task of the refinement process is to optimize the specification model and to
add the necessary implementation details in order to allow for an efficient mapping
of the implementation model onto the chosen architecture.

So far ForSyDe is restricted to a small number of transformations (Chapter 5)
and mapping rules for hardware and software processes (Chapter 6), which are far
from sufficient to target industrial designs, but allow to indicate the potential of
ForSyDe.

1.2 Thesis Objectives

The main objective of this thesis is to show the perspectives ForSyDe offers for em-
bedded system design. ForSyDe’s objective is to move system design to a higher
level of abstraction and to bridge the abstraction gap by transformational design
refinement. The thesis gives a motivation for the basic concepts of ForSyDe, in
particular the choice of the synchronous computational model for the specifica-
tion model, the concept of process constructors, and the transformational design
refinement in ForSyDe. The concepts are illustrated by the example of a digital
equalizer, which has been modeled, refined and mapped onto an implementation in
hardware. The thesis also discusses the potential, limitations and future directions
of ForSyDe.

A second objective is to make the thesis a comprehensive documentation of
ForSyDe, since so far all information exists distributed in several conference pa-
pers.

7To date simulation is used for the verification of ForSyDe models, but due to the formal character
of ForSyDe there is a good base to incorporate formal methods.

8 Chapter 1. Introduction

1.3 Author’s Contribution

Although the first work on ForSyDe was published not earlier than in 1999, pre-
liminary work on ForSyDe has started about three years earlier, initiated by dis-
cussions with another PhD student, Andreas Jonasson. He was inspired by the
work of Reekie [92], who used the concept of higher-order functions inside the
functional language Haskell to model digital signal processing networks. Unfortu-
nately, Andreas Jonasson left our university shortly after these discussions to start
an industrial career. About the same time, in 1997, Axel Jantsch joined our uni-
versity and has since then participated as informal and formal supervisor in the
development of ForSyDe.

The ForSyDe methodology has mainly been developed by the author of the
thesis. Initially Andreas Jonasson contributed with many ideas before he joined
industry. Wu Wenbiao worked together with the author of the thesis on design
transformation [115] for about one and a half years. Recently Zhonghai Lu, Tarvo
Raudvere and Ashish Kumar Singh joined the ForSyDe group. Zhonghai Lu’s main
contribution is a mapping technique for sequential software [73]. Axel Jantsch’s
main contribution is the work on stochastic processes in ForSyDe [59] and ex-
tremely useful feedback on all ForSyDe concepts.

Though the thesis shall be regarded as a comprehensive document on ForSyDe,
it does only cover the parts of ForSyDe where the author had an essential contri-
bution. Thus the work on stochastic processes, where the main contributor is Axel
Jantsch, and the work on a mapping procedure to sequential software, where the
main contributor is Zhonghai Lu, is only mentioned and not given in detail in this
thesis. Also each part of the appendix is original work from the author. A large part
of the work on this thesis was to integrate the work in earlier papers into a single
consistent document with one consistent notation.

The following sub-sections give the contribution of the author to the papers
included in this thesis and other papers. All papers given here are peer-reviewed.

1.3.1 Publications included in this Thesis

Modeling Themodeling conceptsof ForSyDe8 have been introduced in [94]. The
paper presents the use of asynchronous computational modeland the con-
cept ofprocess constructors9. It exemplifies the modeling technique by a

8The name of the methodology, ForSyDe, was introduced in a later paper [115].
9Process constructors have been denoted skeletons in earlier papers inspired by the work of Skil-

licorn [104].

1.3. Author’s Contribution 9

case study of an ATM10 switch with operation and maintenance (OAM)
functionality. The work in this paper was conducted by the author of the
thesis and supported by feedback from Axel Jantsch.

Implementation Mapping The papers [95] [96] focus onhardware synthesis.
They illustrate how a ForSyDe model can be mapped into a hardware de-
scription in VHDL. Finally a FIFO-buffer in the ATM switch was manually
synthesized into a netlist of standard cell gates. The work in these papers
was done by the author of the thesis and supported by feedback from Axel
Jantsch.

A case study of hardware and software synthesis using the equalizer model
was presented in [73]. The paper suggests a synthesis technique for hardware
and software. The basic concepts of this technique are based on earlier work
on hardware synthesis [95] [96]. Zhonghai Lu has developed a synthesis
technique for sequential software and manually synthesized the equalizer
model into behavioral VHDL and sequential C. He was assisted by feedback
from the author of the thesis and Axel Jantsch.

Design RefinementTransformational design refinementwas introduced into For-
SyDe in [115]. The paper gave examples for simplesemantic preserving
anddesign decision transformationsusing the ATM switch model, but did
not fully illustrate the potential of transformational refinement. The paper
was a joint work of Wu Wenbiao and the author of the thesis, with important
feedback from Axel Jantsch.

The paper [97] illustrated the potential of transformational design refinement
by clock domain refinementandcommunication refinement. The paper intro-
duces the concept ofdomain interfacesandsynchronous sub-domains, which
allows it to establish multiple clock domains by design transformations. The
transformations were exemplified by a digital equalizer. The work in this
paper was conducted by the author of the thesis and supported by feedback
of Axel Jantsch.

The formal format of a transformation rule together with the concept of
the characteristic function, which allows it to describe the implications of
a transformation rule, was presented in [99]. The work in this paper was
mainly conducted by the author of the thesis, supported by feedback from
Axel Jantsch, and the synthesis of the FIR-filter example by Zhonghai Lu.

10Asynchronous Transfer Mode

10 Chapter 1. Introduction

ForSyDe Methodology The article [98] has been submitted to the journalIEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
and is under review at the time of writing this thesis. It describes the For-
SyDe methodology in a more concise way than this thesis. The work in the
article was conducted by the author of the thesis and supported by feedback
from Axel Jantsch.

1.3.2 Publications not included in this Thesis

• The paper [57] compares the languages Erlang [5], C++ [107], Haskell [62],
VHDL [54], SDL [29] and ProGram [11] with respect to their capabilities as
a system level description for telecommunication systems. The comparison
is based on an evaluation method with a large number of criteria. In order
to give specific emphasis on particular aspects of the application area, the
criteria can be weighted. The evaluation was conducted for pure software,
pure hardware and mixed hardware/software systems. The main work of the
paper was conducted by Axel Jantsch and Shashi Kumar. The other authors
contributed mainly with opinions on the weighting criteria and the evaluation
of ”their” languages, in the case of the author of the thesis SDL, Erlang, C++,
VHDL and Haskell.

• The paper [58] discusses the role of functions and objects in a system spec-
ification. The authors argue that functional models should be used for func-
tional design space exploration and as functional reference model through-
out all design and validation activities. In contrast, object oriented models
should be used for architectural design space exploration and as a design
specification for the following design and implementation phases. The main
work of the paper has been done by Axel Jantsch; the contribution of the
author of the thesis lies in the example used in the paper and feedback.

• The paper [59] reviews the use of non-determinism and identifies two differ-
ent purposes. Thedescriptive purposehandles uncertainties in the behavior
of existing entities, while theconstraining purposeis used in specifications
to constrain implementations. The authors suggest astochastic processin-
stead of non-determinism, which is used mainly for the descriptive purpose,
but can also be used to constrain the system. The paper illustrates the us-
age of stochastic processes by means of ForSyDe for which a stochastic li-
brary has been defined. The main work in this paper has been done by Axel
Jantsch; the author of this thesis supported the work with the integration of
stochastic processes into ForSyDe and feedback.

1.4. Thesis Layout 11

1.4 Thesis Layout

The thesis consists of four main parts. The first part contains related work and other
background information, which is needed to position ForSyDe and to understand
the work described in this thesis (Chapter 2).

The second part presents the modeling concepts of ForSyDe. It is divided
into two chapters. Chapter 3 defines the specification and implementation model
and introduces the ForSyDe standard library. Chapter 4 illustrates the modeling
technique by the example of a digital equalizer.

The third part describes transformational design refinement in ForSyDe (Chap-
ter 5). It gives a format for semantic preserving and design decision transformation
rules and shows how the implication of a transformation can be given by means
of the characteristic function. It also shows the potential of the transformational
approach by the digital equalizer example.

The fourth part of the thesis discusses the mapping to an implementation (Chap-
ter 6). The chapter focuses on hardware synthesis, but also discusses what has to
be done in order to target other implementations.

Chapter 7 summarizes the thesis and gives an overview about possible direc-
tions for future work on ForSyDe.

In addition the thesis contains several appendix chapters, since the thesis shall
serve as a reference document on ForSyDe. Thus the appendix includes the ForSy-
De standard library, the full equalizer model expressed in Haskell and mapping
templates to VHDL.

12

Chapter 2

Background

This chapter provides background material in form of an overview of the related
work and an introduction into the functional language Haskell. The first section
discusses different models of computation. Since ForSyDe uses a synchronous
model of computation, a more detailed overview of the family of synchronous lan-
guages is given in the second section. The third section gives an overview of other
design methodologies. The section covers both ”traditional” hardware/software
co-design methodologies and other approaches that like ForSyDe use a declarative
environment. The fourth section discusses work on design transformation. Finally,
the last section gives an introduction into the functional language Haskell, since it
is used for the simulation of ForSyDe models.

2.1 Models of Computation

System models are usually defined by a number of concurrent processes. Amodel
of computation(MoC) defines how computation takes place in a structure of con-
current processes, thus giving a semantics to such a structure [28]. This semantics
can be used to formulate an abstract machine that is able to execute a model.Lan-
guagesare not computational models, but have underlying computational models.
For instance the sequential imperative languages C, Pascal or Fortran share all the
same imperative sequential computational model. On the other hand languages
can be used to support more than one computational model. In this thesis the
functional language Haskell [62] is used to express a synchronous and a multi-rate
computational model as discussed in Chapter 3, but preliminary libraries have al-

13

14 Chapter 2. Background

ready been created for data flow and discrete event models and can be retrieved
from the ForSyDe web page [1].

To choose the right model of computation for the modeling of systems is of
utmost importance, since each MoC has certain properties. As a trivial case the
sequential imperative model is not able to model concurrency and thus not suitable
to describe a parallel structure.

The following part presents a number of important models of computations and
gives their key properties. The discussion is based on the tagged-signal model in-
troduced by Lee and Sangiovanni-Vincentelli, which is used as a framework to
compare models of computation [70]. In the tagged-signal model systems are
viewed as concurrent process networks where processes communicate with each
other by means of signals. A signal is defined as a set of events where each event
has a tag and a value. The tag is used to express an order relation between the
events. Based on the tagged-signal model properties of different models of compu-
tation are discussed in [70]. This survey has been the major source for the following
presentation of some important computational models.

Discrete Event Model A discrete event model is atimed model, which means that
the events in all signals can be totally ordered by their tags. In contrast to
continuous time models, there must be a finite number of tags between any
two tags. Discrete event models are often used for the simulation of hard-
ware. Both VHDL [54] and Verilog [53] use a discrete event model for their
simulation semantics1. A discrete event simulator is usually implemented
with a global event queue that automatically sorts the events. Discrete event
models may have causality problems due to zero-delay in feedback loops,
which are discussed in Section 2.2. A good overview on discrete-event sys-
tem is given in [23].

Synchronous Model A synchronous model is a special case of a discrete-event
system. In a synchronous model all signals have the same set of tags. Tags
do not include explicit time information, but are only used to give an order
of the events. The synchronous assumption can be formulated according to
[9]. The synchronous approach considers ”ideal reactive systems that pro-
duce their outputssynchronouslywith their inputs, their reaction taking no
observable time”. This implies that the computation of an output event is

1Both languages have a different model of computation for synthesis, which is similar to a perfect
synchronous model due to the use of synchronous registers with the difference that computation does
not have a zero delay.

2.1. Models of Computation 15

instantaneous and thus the output event has the same tag as the correspond-
ing input event. The synchronous assumption leads to a clean separation
between computation and communication. A global clock triggers computa-
tions that are conceptually simultaneous and instantaneous. This assumption
frees the designer from the modeling of complex communication mecha-
nisms and provides a solid base for formal methods.

A synchronous design technique has been used in hardware design for clocked
synchronous circuits. A circuit behavior can be described determinately in-
dependent of the detailed timing of gates by separating combinational blocks
from each other with clocked registers. An implementation will have the
same behavior as the abstract circuit under the assumption that the combina-
tional blocks are ”fast enough” and that the abstract circuit does not include
zero-delay feedback loops.

Feedback loops with zero-delay may cause causality problems in a syn-
chronous model and are discussed together with the family of synchronous
languages in Section 2.2.

A B

C

D

Figure 2.1. A data flow process network

Data Flow Process NetworksData flow process networks [69] are a special vari-
ant of Kahn process networks [63] [64]. In a Kahn process network pro-
cesses communicate with each other via unbounded FIFO channels. Writing
to these channels isnon-blocking, i.e. they always succeed and do not stall
the process, while reading from these channels isblocking, i.e. a process
that reads from an empty channel will stall and can only continue when the
channel contains sufficient data items (tokens). Processes in a Kahn process
network aremonotonic, which means that they only need partial informa-
tion of the input stream in order to produce partial information of the output
stream. Monotonicity allows parallelism, since a process does not need the
whole input signal to start the computation of output events. Processes are
not allowed to test an input channel for existence of tokens without consum-
ing them. In a Kahn process network there is a total order of events inside

16 Chapter 2. Background

a signal. However, there is no order relation between events in different sig-
nals. Thus Kahn process networks are only partially ordered which classifies
them asuntimed model.

A data flow program is a directed graph consisting of nodes (actors) that rep-
resent communication and arcs that represent ordered sequences (streams) of
events (tokens) as illustrated in Figure 2.1. Empty circles represent nodes,
arrows represent streams and the filled circle represents a token. Data flow
networks can be hierarchical since a node can represent a data flow graph.

The behavior of a data flow process is a sequence offirings. For each fir-
ing tokens are consumed and tokens are produced. The number of tokens
consumed and produced may vary for each firing and is defined in thefiring
rulesof a data flow actor. Data flow process networks have been shown very
valuable in digital signal processing applications. A main goal in the design
process is then to find a static firing schedule in order to implement the data
flow process network efficiently on shared resources. For general data flow
models it is undecidable whether such a schedule exists.

A B

C

D
1 2

1

1

1 1

2

1

Figure 2.2. A synchronous data flow process network

Synchronous data flow (SDF) [67] [68] puts further restrictions on the data
flow model, since it requires that a process consumes and produces a fixed
number of tokens for each firing. With this restriction it is guaranteed that a
finite static schedule can always be found. Figure 2.2 shows an SDF process
network. The numbers on the arcs show how many tokens are produced and
consumed during each firing. A possible schedule for the given SDF network
is {A,A,C,C,B,D}.

There exists a variety of different data flow models, for an excellent overview
see [69].

Rendezvous-based ModelsA rendezvous-based model consists of concurrent se-
quential processes. Processes communicate with each other only at syn-
chronization points. In order to exchange information processes must have

2.1. Models of Computation 17

reached this synchronization point, otherwise they have to wait for each
other. In the tagged signal model each sequential process has its own set
of tags. Only at synchronization points processes share the same tag. Thus
there is a partial order of events in this model. The process algebra commu-
nity uses rendezvous-based models. The CSP2 model of Hoare [47] and the
CCS3 model of Milner [82] [83] are prominent examples.

From the discussion it is evident that different models fundamentally have dif-
ferent strength and weaknesses, and that attempts to combine their common fea-
tures result in models that are very low level and difficult to use.

ForSyDe has adopted a synchronous computational model for specification due
to its simple and clean mathematical formalism and the possibility to model time
on an abstract level. This property is the reason why for instance data flow models
have been neglected as ForSyDe specification model. Though they are supported
by a mathematical framework and are excellently suited for their application areas,
e.g. digital signal processing applications, they do not have an abstract notion of
time and thus cannot be used to express timing properties and constraints on a level
that abstracts from physical time.

Balarin et al. [7] argue, that the synchronous assumption, though very conve-
nient from the analyzing point of view, imposes a too strong restriction on the im-
plementation, as it has to be ”fast enough”. They advocate a GALS (globally asyn-
chronous locally synchronous) approach and implement it in the POLIS methodol-
ogy [6] as a network of Co-Design FSMs communicating via events. Each CFSM
is a synchronous FSM, but the communication is done by the emission of events by
the CFSMs, which can happen at any time and independently. The CFSM network
is inherently non-deterministic. Balarin et al. argue, that this enables them to easily
model the unpredictability of the reaction delay of a CFSM both at the specification
and at the implementation level, while they admit, that non-determinism makes the
design and verification process more complex.

ForSyDe has avoided a non-deterministic approach, since the advantages of
a deterministic synchronous system model may well outweigh the disadvantages.
Non-determinism in the system model implies that all possible solutions have to
be considered, which makes both the design and the verification process more
complex. The task to develop and to verify a system model for a SoC applica-
tion is already extremely complex and it will be even more complex with a non-
deterministic system model. The fact that SoC applications will be implemented
on at least partly asynchronous architectures does not justify a non-deterministic

2Communicating Sequential Processes
3Calculus of Communicating Systems

18 Chapter 2. Background

approach. Instead the ForSyDe methodology is based on the idea that the synthesis
of the system model into a partly asynchronous implementation should be part of
the synthesis process and not already be decided at the system level.

Hsieh et al. define in [48] anothersynchronous assumption. A cycle consists
of an interaction phase (where the environment interacts with the design) followed
by a computation phase (where the components in the design perform computation
and communicate internally). They do not assume azero delayfor the computa-
tion phase as in the case of the perfect synchrony hypothesis. Using their definition
they definesynchronous equivalenceas: “Two implementations are synchronously
equivalent if and only if any two synchronous assumption conforming runs of the
two implementations that have the same input traces also have the same output
traces”. As long as the primary outputs are the same at the end of every cycle, the
internal details of the execution do not matter. Thus the concept of synchronous
equivalence can be used for design refinement. In ForSyDesynchronous equiva-
lencecan be shown with the characteristic function as discussed in Chapter 5. The
use of the characteristic function is not restricted to synchronous models, but can
also be implied on models with synchronous sub-domains.

Skillicorn and Talia discuss models of computation for parallel architectures
in [105]. Their community faces similar or even identical problems as are typical
for SoC design since a SoC architecture often includes a number of parallel micro-
processors or other parallel hardware blocks. In fact all typical parallel computer
structures (SIMD, MIMD4) can be implemented on a SoC architecture. Recog-
nizing, that programming of a large number of communicating processors is an
extremely complex task, they try to define properties for a suitable model of par-
allel computation. They emphasize that a model should hide most of the details
(decomposition, mapping, communication, synchronization) from programmers,
if they shall be able to manage intellectually the creation of software. The exact
structure of the program should be inserted by the translation process rather than by
the programmer. Thus models should be as abstract as possible, which means that
the parallelism has not even to be made explicit in the program text. They point
out that ad hoc compilation techniques cannot be expected to work on problems
of this complexity, but advocate building software, that is correct by construction
rather then verifying program properties after construction. Programs should be
architecture independent to allow reuse. The model should support cost measures
to guide the design process and should have guaranteed performance over a useful
variety of architectures.

4Flynn has classified typical parallel data structures in [32], where SIMD is an abbreviation for
Single Instruction, Multiple Data and MIMD for Multiple Instruction, Multiple Data.

2.1. Models of Computation 19

Depending on what information is explicit in a model they distinguish six lev-
els, i.e.

1. nothing explicit

2. parallelism explicit

3. parallelism and decomposition explicit

4. parallelism, decomposition and mapping explicit

5. parallelism, decomposition, mapping and communication explicit

6. parallelism, decomposition, mapping, communication and synchronization
explicit

According to this scheme, the ForSyDe modeling approach can both be clas-
sified (a) with focus on modeling as ’nothing explicit’, and (b) with focus on im-
plementation as ’parallelism’ and ’communication explicit’. The motivation for
’nothing explicit’ is the use of the functional language Haskell [62] as ForSyDe
modeling language, which has no explicit notion of parallelism. The motivation
for (b) is that the specification model can be interpreted as a concurrent process
model with a synchronous communication. However, neither the process nor the
communication structure is fixed, since during the refinement phase processes can
be merged and split and synchronous communication channels can be refined into
asynchronous channels as elaborated in Chapter 5.

While ForSyDe uses a single unified system model, a lot of work has been
done using mixed models of computation. This approach has the advantage, that
a suitable model of computation can be used for each part of the system. On the
other hand as the system model is based on several computational models, the
semantics of the interaction of fundamentally different models has to be defined,
which is not a simple task. This even amplifies the verification problem, because
the system model is not based on a single semantics. There is little hope that formal
verification techniques can help and thus simulation remains the only means of
validation. In addition, once a heterogeneous system model is specified, it is very
difficult to optimize systems across different models of computation. In summary,
cross-domain verification and optimization will remain elusive for many years for
any heterogeneous modeling approach. In the following an overview of related
work on mixed models of computation is given.

In *charts [36] hierarchical finite state machines are embedded within a variety
of concurrent models of computations. The idea is to decouple the concurrency

20 Chapter 2. Background

model from the hierarchical FSM semantics. An advantage is that modular com-
ponents, e.g. basic FSMs, can be designed separately and composed into a system
with the model of computation that best fits to the application domain. It is also
possible to express a state in an FSM by a process network of a specific model of
computation. *charts has been used to describe hierarchical FSMs that are com-
posed using data flow, discrete event and synchronous models of computations.

The Ptolemy project [28] ”studies heterogeneous modeling, simulation, and
design of concurrent systems”. It is implemented in the Ptolemy II software envi-
ronment [55] that provides support for ”hierarchically combining a large variety of
models of computation and allows hierarchical nesting of the models”.

The basic block of a Ptolemy model is theactor. Actors are concurrent com-
ponents and communicate with each other through interfaces (ports). Actors can
be composed of other actors and are executable. An implementation of a model of
computation in Ptolemy associated with a composite actor is called adomain. The
domain defines the communication semantics and execution order among actors.
An actor can be used in different domains. This concept decouples transmission of
data, transfer of control and computation (performed by the actor) from each other.
To date several domains have been implemented in Ptolemy II, such as communi-
cating sequential processes, continuous time, discrete event, process network and
synchronous dataflow.

The MASCOT methodology [20] integrates data and control flow at the sys-
tem specification level, using the two languages Matlab and SDL. The data flow
parts are described in Matlab and the control flow parts in SDL, the system is then
co-simulated using a library of wrappers and communication functions. The com-
putational model is elaborated in [56].

Internal representations like the system property intervals (SPI) model [116]
and FunState [106] have been developed to integrate a heterogeneous system model
into one abstract internal representation. The idea of the SPI model is to allow for
”global system analysis and system optimization across language boundaries, in
order to allow reliable and optimized implementations of heterogeneously spec-
ified embedded real-time systems”. All synthesis relevant information, such as
resource utilization, communication and timing behavior, is extracted from the in-
put languages and transformed into the semantics of the SPI model. An SPI model
is a set of parameterized communicating processes, where the parameters are used
for the adaptation of different models of computation. SPI allows to model non-
determinism through the use of behavioral intervals. There exists a software envi-
ronment for SPI that is called the SPI workbench and is developed for the analysis
and synthesis of heterogeneous systems.

2.2. Synchronous Languages 21

The FunState representation refines the SPI model by adding the capability of
explicitly modeling state information and thus allows the separation of data flow
from control flow. The goal of FunState is not to provide a unifying specifica-
tion, but it focuses only on specific design methods, in particular scheduling and
verification. The internal FunState model shall reduce design complexity by repre-
senting only the properties of the system model relevant to these design methods.

2.2 Synchronous Languages

The synchronous languages [9] [42] [10] have been successfully used in the area of
reactive and safety-critical embedded control systems. These languages are based
on the synchronous computational model, which was discussed in Section 2.1. This
model gives a solid mathematical foundation for formal reasoning and the applica-
tion of formal program manipulation techniques. The synchronous languages have
the following key properties.

• They supportconcurrency.

• They have a simple and elegantformal semanticsthat allows it to express
parallel composition in a clean way.

• They support the concept ofsynchrony, which divides time into discrete in-
stants.

The synchronous assumption implies a simple and formal communication mo-
del. Concurrent processes can easily be composed together. However, since the
synchronous assumption implies a zero-delay between the output event and the
corresponding input event, a feedback loop as illustrated in Figure 2.3 may imply
no solution, one solution or many solutions. This problem is also valid in discrete
event systems, since they also may have feedback loops with zero-delay.

Figure 2.3a shows a system with zero-delay feedback loop that does not have a
stable solution. If the output of the Boolean AND function isTrue then the output of
the NAND function isFalse. But this means that the output of the AND function has
to beFalse, which is in contradiction to the starting point of the analysis. Starting
with the valueFalse on the output of AND does not lead to a stable solution either,
since this implies that the output of the NAND function isTrue and thus the output
of the AND function must beTrue. Clearly there is no solution to this problem.

Figure 2.3b shows a system with feedback loop with multiple solutions. Here
the system is stable, if both AND functions haveFalse or if both AND functions
haveTrue as their output value. Thus the system has two possible solutions.

22 Chapter 2. Background

AND

NAND

AND

AND

AND

OR

(a) (b) (c)

True

True

True

True True

True

Figure 2.3.A feedback loop in a synchronous system. System a) has no solutions, b)
has multiple solutions and c) has a single solution.

Figure 2.3c shows a system with feedback loop with only one solution. Here
the only solution is that both outputs areTrue.

It is crucial for the design of safety-critical systems that feedback loops with
no solution as in Figure 2.3a are detected and eliminated, since they result in an
oscillator. Also feedback loops with multiple solutions imply a risk for safety-
critical systems, since they as in 2.3b lead to non-determinism. Non-determinism
may be acceptable, if it is detected and the designer is aware of its implications,
but may have serious consequences, if it stays undetected.

Since feedback loops in synchronous models are of such importance there are
several approaches which address this problem [28].

Microstep In order to introduce an order between events that are produced and
consumed in an event cycle, the concept of microsteps has been introduced
into languages like VHDL. VHDL does not belong to the synchronous lan-
guages, but has a similar model of time. In order to solve the zero-delay
feedback problem, VHDL distinguishes between two dimensions of time.
The first one is given by a time unit, e.g. a picosecond, while the second is
given by a number of delta-delays. A delta-delay is an infinitesimal small
amount of time. Each operation takes zero time units, but one delta-delay.
Delta-delays are used to order operations within the same time unit. While
this approach partly solves the zero-delay feedback problem, it introduces
another problem, since delta delays will never cause the advance of time
measured in time units. Thus during an event cycle there may be an infinite
amount of delta-delays. This would be the result, if Figure 2.3a would be im-
plemented in VHDL, since each operation causes time to advance with one
delta-delay. An advantage of the delta-delay is that simulation will reveal
that the composite function oscillates. However, a VHDL simulation would
not detect that Figure 2.3b has two solutions, since the simulation seman-

2.2. Synchronous Languages 23

tics of VHDL would assign an initial value for the output of the AND gates
(False5) and thus would only give one stable solution, concealing the non-
determinism from the designer. Another serious drawback of the microstep
concept is that it leads to a more complicated semantics, which aggravates
the task of formal reasoning.

Forbid zero-delays The easiest way to cope with the zero-delay feedback prob-
lem is to forbid them. In case of Figure 2.3a and 2.3b this would mean the
insertion of an extra delay function, e.g. after the upper AND function. Since
a delay function has an initial value the systems will stabilize. Assuming an
initial value ofTrue, Figure 2.3a will stabilize in the current event cycle with
the valuesFalse for the output of the NAND function andFalse for the value
of the AND function. Figure 2.3b would stabilize with the output valueTrue

for both AND functions. A problem with this approach is that a stable sys-
tem such as 2.3c is rejected, since it contains a zero delay feedback loop.
This approach is adopted in the synchronous language Lustre [43].

Unique fixed-point The idea of this approach is that a system is seen as a set of
equations for which one solution in form of a fixed-point exists. There is a
special value⊥ (”bottom”) that allows it to give systems with no solution or
many solutions a fixed-point solution. The advantage of this method is that
the system can be regarded as a functional program, where formal analysis
will show, if the system has a unique solution. Also systems that have a
stable feedback loop as in Figure 2.3c are accepted, while the systems of
Figure 2.3a and b are rejected (the result will be the value⊥ as solution for
the feedback loops). Naturally, the fixed-point approach demands a more
sophisticated semantics, but the theory is well understood [113]. Esterel has
adopted this approach and the constructive semantics of Esterel is described
in [15].

Relation based This approach allows the specification of systems as relations.
Thus a system specification may have zero solutions, one solution or mul-
tiple solutions. Though an implementation of a system usually demands a
unique solution, other solutions may be interesting for high-level specifica-
tions. The relation-based approach has been employed in the synchronous
language Signal [39].

5VHDL defines the data typeboolean by means oftype boolean is (false, true) . At
program start variables and signals take the leftmost value of their data type definitions, in case of
the boolean data type the valuefalse .

24 Chapter 2. Background

ForSyDe defines process networks as a set of equations. To date ForSyDe for-
bids zero-delays, since this approach leads to mathematically clean designs and
does not require a sophisticated semantics. ForSyDe models are expressed and
simulated in Haskell, where a zero-delay feedback loop as shown in Figure 2.3a or
2.3b results in a ”control stack overflow”6, while Haskell’s lazy evaluation seman-
tics, which is discussed in Section 2.5, in special cases may solve networks of the
form of Figure 2.3c.

However, as shown by the case of Esterel [15] it is possible to develop a least
fixed-point semantics for ForSyDe. This would also be an option, if in future other
languages are incorporated to express ForSyDe models, but most likely zero-delays
will be forbidden.

If other modeling languages are incorporated in future versions of ForSyDe,
either a fixed-point semantics has to be developed for this new language, or another
approach, most likely to forbid zero-delays has to be adopted.

The following part focuses largely on the presentation of the declarative data
flow language Lustre since its concepts are closest to ForSyDe. After this presen-
tation follows a short discussion about other synchronous languages. Lustre [43] is
a declarative data flow language where systems are composed as sets of equations.
Each variable is a function of time and denotes aflow. Operators operate not on
single values, but on whole flows, i.e. the expression

y = a + b;

generates a flowy where each valueyk at instancek is the addition of the values
ak andbk. In order to formulate sequential networks, Lustre defines two temporal
operators. The operatorpre(x) returns the flow where the first value is undefined
(expressed bynil) and each other value is the previous value ofx . The operator
”− >” (followed-by) defines the initial value of a flow. Ifx andy are of the same
type, ”x− > y” is the flow that is equal tox in the first instance and equal toy
thereafter. Using these operators a simple counter can be defined as

n = 0 -> pre(n) + 1;

Here 0 is the constant flow of zeros and 1 the constant flow of ones. The
”followed-by” operator generates a flow where 0 is the first value followed by the
flow pre(n) + 1. This flow is graphically shown in Figure 2.4.

Lustre programs can be recursive. However a variable may only depend on
past values of itself in order to ensure that there are no zero delay feedback loops
in the model.

6The error occurred during simulation with the Haskell interpreter Hugs98.

2.2. Synchronous Languages 25

+ − >

0

1

pre

n

Figure 2.4. A counter in Lustre

Lustre provides the concept ofnodesin order to structure programs. A node is
in itself a flow operator and thus a Lustre program can be hierarchically composed.

A Lustre program has abasic clock, which defines the finest notion of time.
Each flow is associated with a clock, but flows may have slower clocks than the
basic clock. Most operators require that all input flows share the same clock. How-
ever, there is the operatorwhen that ”samples” a flow to a slower clock and the
operatorcurrent that interpolates a flow on a clock that is faster than the own
clock. Table 2.1 illustrates the use of these operators.

B False True False True False False True True

X x1 x2 x3 x4 x5 x6 x7 x8

Y = X when B x2 x4 x7 x8

Z = current Y nil x2 x2 x4 x4 x4 x7 x8

Table 2.1.Sample and interpolation operators in Lustre

B expresses a Boolean flow that is associated with the basic clock. Also the
flow X is associated with the basic clock. The clock of the flow Y is only de-
fined at the instances where the Boolean flow B has the valueTrue. As shown by
the example of Z a flow with a slower clock can be up-sampled by the operator
current .

Esterel [22] [14] [16] is an imperative language that is very suitable for the
description of control. A program consists of a collection of nested, concurrently
running threads that are described in an imperative syntax. Threads communicate
with each other by means of signals. In addition to usual control signals such as
if-then-else , Esterel has a large number of preemption statements that allow
the termination of statements. There is a formal framework developed for Esterel,
which includescausality analysisensuring that causality constraints are never con-
tradictory in any reachable state.

26 Chapter 2. Background

A Signal [39] program is a specification ofconstraintsor relationson the in-
volved signals. The Signal compiler performs formal calculations on synchro-
nization, logic, and data dependencies to check program correctness and produce
executable code. Signal is a declarative data flow language and supports multiple
clocks in a similar way as Lustre.

Statecharts [46] and Argos [75] are graphical automata-based languages.
The synchronous languages have been successfully used in industry and there

exist industrial tools for Esterel (from Esterel Technology), Lustre (Scade) and
Signal (Sildex). Recently Esterel Technology has acquired the Scade environment
in order to be able to combine a control-oriented (Esterel) with a data flow oriented
(Lustre) synchronous approach.

Synchronous language programs are usually translated to finite state automata
in order to implement them as a sequential reactive program on a single proces-
sor. However, Esterel [13] and Lustre [93] have been also translated into hardware
implementations.

The clean mathematical formalism has led to the development of several verifi-
cation tools for the synchronous languages. The paper [44] gives an overview over
the techniques and tools developed for the validation of reactive systems described
in Lustre. However, the authors point out that these techniques can be adapted to
any synchronous language.

Since ForSyDe is functional, it has similar characteristics as Lustre. In both
environments processes (nodes) communicate with each other by means of syn-
chronous signals (flows). As further discussed in Section 3.3 the ForSyDe spec-
ification model uses one basic clock and slower clocks can be defined by absent
values. However, ForSyDe operators do not operate on signals, but on values.
Thus the basic processes in ForSyDe may be of much higher complexity than the
basic operators (which are processes in the ForSyDe sense) of Lustre. Also, all
complex operators such aspre, ”− > ”, when andcurrent exist in similar forms
in ForSyDe. ForSyDe uses a fully equipped modeling language with powerful con-
trol constructs and data type facilities and thus gives better possibilities to model
control or complex data structures than Lustre.

In contrast to Lustre, ForSyDe offers the concept of synchronous sub-domains
inside the implementation model. This allows it to define clocks that are faster or
slower than the clock of the specification model by the use of domain interfaces
(Section 3.4). In Lustre only slower clocks than the basic clock can be defined,
since the basic clock has to be the fastest clock.

ForSyDe is based on the same foundation as the synchronous languages, the
synchronous assumption, but aims to cover both, control and data flow appli-

2.3. Design Methodologies 27

cations. In order to achieve this goal it uses a formal system modeling tech-
nique where models can be expressed with the purely functional programming lan-
guage Haskell. While functional languages fit naturally for data flow applications,
Haskell provides a rich variety of control constructs, making it more suitable for
control-dominated applications. Haskell is purely functional, i.e. a function has no
side effects, resulting in a system model, that in itself is a function with no side
effects and thus deterministic.

While these properties of Haskell mainly support formal verification methods,
other properties support design correctness. According to Lee [66], type systems
do more than any other formal method to ensure software correctness. Haskell is
not only a strongly typed language, but its type system [37] has also the ability
to infer the correct type of a function, which offers another dimension of poly-
morphism compared to some popular object oriented languages, such as C++ or
Java.

2.3 Design Methodologies

This section gives an overview of other design methodologies. The first part of
this section discusses design methodologies that have emerged from the research
of the hardware/software co-design community. This community has close links
to the electronic design automation industry. The second part gives an overview of
declarative approaches to system design, which is research from another commu-
nity. Unfortunately there is not too much interaction between these communities,
but ForSyDe uses results of both areas.

2.3.1 Hardware/Software Co-Design

Hardware/software co-design is defined in [78] as the study of the design of embed-
ded computing systems. To date the termsystem designis often used as a synonym
for hardware/software co-design. According to [78] hardware/software co-design
covers the following problems:

Co-specification The creation of specifications that describe both the hardware
and software of a system and their interaction;

Co-synthesisThe automatic or semi-automatic design of hardware and software
to meet a specification;

Co-simulation The simultaneous simulation of hardware and software elements,
often at different levels of abstractions.

28 Chapter 2. Background

The ForSyDe methodology targets system design and can according to the def-
inition above be classified as a hardware/software co-design methodology. How-
ever, since ForSyDe is a research project, it does not cover all parts of a hard-
ware/software co-design flow to the same extent. In fact, some parts are so far not
covered at all.

ForSyDe addresses the co-specification problem, since it proposes a modeling
methodology that describes the functionality of the whole system, at that state not
distinguishing between hardware and software, in a single and executable specifi-
cation (Chapter 3 and 4).

The transformational design refinement approach described in chapter 5 where
the specification model is refined into a more detailed implementation model, should
belong to the domain of co-synthesis, but is not covered by the definition of Wolf
[114] where co-synthesis includes four different tasks:

Partitioning The functionality of the system is divided into smaller, interacting
computation units.

Allocation The decision, which computational resources are used to implement
the functionality of the system.

Scheduling If several system functions have to share the same resource, the usage
of the resource must be scheduled in time.

Mapping The selection of a particular allocated computational resource for each
computation unit.

Clearly these tasks are depending on each other. To date ForSyDe does not pro-
pose methods for partitioning, allocation, scheduling or mapping. These activities
have to be performed manually. However, ForSyDe addresses the mapping from a
partitioned model to hardware (Chapter 6) and sequential software [73].

ForSyDe allows the simulation of both the specification model and the more
detailed and possibly partitioned implementation model, which may be viewed as
co-simulation at a high abstraction level. In the following some hardware/software
co-design methodologies are discussed in more detail.

For a more elaborate overview on the hardware/software co-design process see
[30] or [79].

Vulcan

Vulcan [41] [40] has mainly been developed for co-synthesis. The functionality is
formulated in HardwareC, which is based on C and models a system as concur-
rent processes communicating with each other. The target architecture consists of

2.3. Design Methodologies 29

a processor, a memory and a set of ASICs7. Co-synthesis starts with a configura-
tion where all functions that can be implemented in hardware are implemented as
hardware modules. All other modules are implemented in software. Then Vulcan
tries to reduce hardware costs by moving functions from hardware to software as
long as the performance constraints can be satisfied. Finally the resulting partition
serves as input to high-level synthesis and software compilation tools.

COSYMA

COSYMA (CO-SYnthesis for eMbedded Architectures) [31] was developed about
the same time as Vulcan. In contrast to Vulcan, co-synthesis starts from a config-
uration, where all functions are implemented in software. The advantage with this
approach is that the system may include functions that cannot be implemented in
hardware, such as dynamic data structures. COSYMA usesCx as input language,
which extends C with the concept of tasks. The target architecture consists of a
processor, a memory and custom hardware.

POLIS

The POLIS [6] system is designed for control-dominated systems, where the tar-
get architecture consists of a micro-controller and ASICs. POLIS uses a globally
asynchronous and locally synchronous internal format that is based on Co-design
Finite State Machines (CFSMs). A CFSM is a finite state machine that is extended
in order to be able to communicate with other CFSMs asynchronously. The exe-
cution delay of each CFSM is unknown, but assumed to be non-zero in order to
avoid zero-delay feedback loops. The input specification consists of parallel FSMs
expressed in Esterel, which are connected by communication links. This specifi-
cation can be directly translated to CFSMs. POLIS does not offer any hardware/-
software partitioning algorithm and leaves the choice to the designer, but allows
to synthesize the CFSM model to hardware and software. POLIS uses Ptolemy as
simulation environment. The commercial tool VCC8 from Cadence is based on the
POLIS approach.

SpecC

The SpecC system-level design methodology [35] [26] follows a top-down ap-
proach and starts with the development of aspecification modelexpressed in the

7Application Specific Integrated Circuits
8Virtual Component Co-Design

30 Chapter 2. Background

language SpecC. SpecC is an extension of C and provides special language con-
structs for modeling concurrency, state transitions, structural and behavioral hier-
archy, exception handling, timing, communication and synchronization. The spec-
ification model defines the granularity of the following exploration phase by the
size of the leaf behaviors and the available parallelism. Otherwise it is free from
implementation details and a notion of time. The specification model includes also
non-functional constraints that are imposed on the design.

During architecture explorationthe system architecture is derived from the
specification model. This phase includes allocation, partitioning and scheduling.
The output of this phase is thearchitecture modelthat reflects the component struc-
ture of the system architecture and is annotated with estimated execution delays.

In the communication synthesisphase the abstract communications in the ar-
chitectural model are refined into communication protocols. The refined model,
thecommunication modelis then translated into animplementation modelby the
usage of compilers and high-level synthesis tools.

The strength of the SpecC methodology is that all models are described in the
same language with different amount of details. Thus the same tools can be used
for different models of a design.

MESCAL

The MESCAL9 project [80] was recently formulated in order to ”develop the
methodologies, tools, and appropriate algorithms to support the efficient devel-
opment of fully programmable, platform-based designs for specific application do-
mains” [65]. A goal is to develop a platform that can be used efficiently for various
applications inside the same application domain. These domain specific platforms
should be highly programmable in order to provide the needed flexibility. Another
goal is to develop the MESCAL compiler, which allows to map source applica-
tions on a family of programmable platforms and microarchitectures. In order to
map the application onto a complex communication structure MESCAL advocates
to use the OSI10 stack model with a set of formal semantics in order to perform
a correct-by-construction synthesis from the high-level description to an imple-
mentation [101]. The MESCAL methodology reflects the trend in today’s system
design. Due to an increasing integration of functionality on a single-chip, the focus
is moved to platform-based design, where formal design refinement as required by

9Modern Embedded Systems, Compilers, Architectures, and Languages
10The OSI (Open Systems Interconnect) reference model defines a protocol stack of seven protocol

layers and has been mainly used for the specification of telecommunication systems.

2.3. Design Methodologies 31

a correct-by-construction approach plays an important role. The concept of net-
works on a chip [60] is an example for an emerging platform for system design.

2.3.2 Declarative Approaches to System Design

Declarative languages have been used in other research projects in electronic de-
sign.

Reekie [92] has used Haskell to model digital signal processing applications.
Similar to ForSyDe he modeled streams as infinite lists and used higher-order func-
tions to operate on them. Finally, correctness-preserving methods were applied to
transform a model into a more efficient representation. This representation was not
synthesized to hardware or software.

Hydra [87] has been developed for educational purpose and is a hardware de-
scription language embedded in Haskell. Circuits are modeled as functions and
Hydra provides powerful structured composition operators in the form of higher-
order functions that allow it to express regular circuit patterns in elegant style.

Ruby [61] is a relational language that has mainly been used for hardware de-
sign. In the same way as Hydra, Ruby focuses on the structural composition of
the design by providing a variety of efficient composition functions. In [74] a
declarative framework for hardware/software co-design based on Ruby has been
proposed. Ruby also supports transformations based on equational reasoning and
supports data type refinement. There exists a path to an implementation in hard-
ware or software.

Lava [19] [24] is a hardware description language based on Haskell. Similar to
Ruby it focuses on the structural representation of hardware and offers a variety of
powerful connection patterns. Lava descriptions can be translated into VHDL or
mapped to Xilinx FPGAs. There exist interfaces to formal method tools. Recently
Singh [103] proposed to formulate system level specifications in Lava and to use
Haskell’s type classes to describe communication links at different levels of ab-
straction. However, since Lava focuses on a structural representation of a system,
it is less suited to express behavioral specifications.

Mycroft and Sharp have used the languages SAFL (statically allocated func-
tional language) and SAFL+ [102] mainly for hardware design but extended their
approach in [86] to hardware/software co-design. They transform SAFL programs
by means of meaning preserving transformations and compile the resulting pro-
gram in a resource-aware manner, i.e. a function that is called more than once will
be a shared resource.

The Hawk language [76], which is embedded in Haskell, is used for building
executable specifications of microprocessors. The Hawk project addresses the need

32 Chapter 2. Background

for verification of complex modern microprocessors, which is supported by the
formal nature of a Hawk specification. Hawk has been used to specify and simulate
the integer part of a pipelined DLX processor.

Hardware ML (HML) [71] is a hardware description language that is based on
the functional programming language Standard ML [84]. Though HML uses some
features of Standard ML, such as polymorphic functions and its type system, it is
mainly an improvement of VHDL - there is a direct mapping from HML constructs
into corresponding VHDL constructs.

ForSyDe is most similar to Reekie’s approach and can be viewed as an exten-
sion and further development of Reekie’s work. Mycroft and Sharp follow with
their SAFL language a similar intention as ForSyDe as they also intend to move
refinement to a higher level. However, they restrict themselves to semantic preserv-
ing transformations in contrast to ForSyDe, which also allows for design decision
transformations as discussed in Chapter 5. Lava, Ruby and HML are different in
that they perform hardware modeling and design at a lower level than ForSyDe.
While their modeling concepts can be seen as competitors to VHDL and Verilog,
in ForSyDe these languages are target languages and hardware synthesis tools are
back-end tools. Hawk is different in that it addresses modeling and verification
of instruction sets and processor architectures. ForSyDe targets are more general
hardware architectures and embedded software running on processors, but not the
processor design itself.

Functional reactive programming (FRP) [110] has been used in many reac-
tive programming domains, such as animation, robotics, and graphical user inter-
faces. The central semantic notions arebehavior, a function of continuous time,
andevent, a time-ordered sequence of event occurrences. FRP has initially been
implemented as an embedded language in Haskell. Since FRP does not guarantee
any bounds on execution time or speed it is unsuitable for real-time applications.
To address this problem, Real-Time FRP (RT-FRP) [111] has been developed with
an operational semantics that gives these guarantees. In contrast to FRP, the oper-
ational semantics define a discrete model of time that is used for both events and
behaviors. Recently Event-Driven FRP (E-FRP) [112] has been presented which
is a variant of RT-FRP. In E-FRP the clock is generalized to a set of events and
has no explicit notion of time. Thus behaviors and events in E-FRP correspond to
ForSyDe signals, where an E-FRP event can be viewed as a ForSyDe signal with
values of an extended data type, i.e. the data type includes the absent value, and
E-FRP behaviors correspond to ForSyDe signals with values of non-extended data
types. So far E-FRP has only been used to target embedded software for a micro-
controller, but no work with a hardware platform as target architecture has been

2.4. Design Transformation 33

reported.

2.4 Design Transformation

While the high level of abstraction fits well for system level specification, there
is a gap between the system model and a possible implementation on a SoC ar-
chitecture. ForSyDe tries to bridge this gap by the concept of process construc-
tors. Though the system model is formulated as a function, the use of process
constructors implies, that the functional model can be interpreted as a network of
synchronously communicating concurrent processes. Such a process structure is
almost fixed in other design languages (VHDL, SDL), but in ForSyDe processes
can be merged and split during the application of transformation rules during the
design transformation phase (Chapter 5). As each process constructor has a hard-
ware and software interpretation, the refined implementation model can be inter-
preted as a structure with hardware and software components (Chapter 6).

The ForSyDe concept of process constructors is heavily influenced by the work
of Skillicorn onhomomorphic skeletons[104]. The term skeleton, coined by Cole
[25], has been used in the parallel programming community to denote an abstract
building block that has a predefined implementation on a parallel machine. In or-
der to obtain an implementation the abstract program must be composed of these
skeletons. The advantage of such an approach is that it raises the level of abstrac-
tion, since programmers program in their language and do not even have to be
aware of the underlying parallel architecture. Specialists can be used to design the
implementation of these skeletons.

Algorithmic skeletonshave been introduced by Cole [25] and are based on algo-
rithms and encapsulate their control structure. Skillicorn [104] uses homomorphic
skeletons that are based on composite data types. This approach uses the Bird-
Meertens formalism and allows also equational reasoning. Bird demonstrates how
to derive programs from specifications using lists [17], arrays and trees [18] as data
types. As Skillicorn points out implementations with guaranteed performance can
be built for computers that are based on standard topologies. Also cost measures
can be provided since the complete schedule of computation and communication
is known from the implementation of the skeleton.

The concept of ForSyDe process constructors is based on the work on homo-
morphic skeletons. The work of Bird on equational reasoning on list homomor-
phisms has been the starting point for the work on semantic preserving transforma-
tions of ForSyDe process networks.

34 Chapter 2. Background

A good overview about program transformation in general is given in [88] and
for transformation of functional and logical programs in [89]. One of the most
well-known transformation systems is the CIP (computer-aided, intuition-guided
programming) project [8]. Inside CIP, program development is viewed as an evo-
lutionary process that usually starts with a formal problem specification and ends
with an executable program for the intended target machine. The individual trans-
formations are done by semantic preserving transformation rules, which guarantees
that the final version of the program still satisfies the initial specification. Such an
approach has the following advantages [8]:

• the final program is correct by construction;

• the transitions can be described by schematic rules and thus be reused for a
whole class of problems;

• due to formality the whole process can be supported by the computer;

• the overall structure is no longer fixed throughout the development process,
so that the approach is quite flexible.

However, in order to allow for a successful transformation of a specification into an
effective implementation, a transformation framework has to provide a sufficient
number of transformation rules and there must also exist a transformation strategy
in order to choose a suitable order of transformation rules. This strategy ideally
interacts with an estimation tool that shows if one implementation is more efficient
than another. Since program transformation requires a well-developed framework,
it has so far been mainly used for small programs or modules inside a larger pro-
gram, where software correctness is critical.

Most of the transformational approaches are concerned with software programs
where concepts of synchronous sub-domains and resource sharing, as discussed in
this thesis, have no relevance. There are also a number of other transformational
approaches targeting hardware design, e.g. [90] [100], but none of them explicitly
develops the concept of design decisions or addresses the refinement of a syn-
chronous model into multiple synchronous sub-domains as we attempt in this ar-
ticle. In particular the ForSyDe approach allows to use the large amount of work
that exists for high-level synthesis [33] [77] by defining design decision transfor-
mations for refinement techniques like re-timing or resource sharing.

Voeten points out that each transformational design that is based on a general-
purpose language will suffer from fundamental incompleteness problems [109].
This means that the initial model to a large extent determines whether an effective
and satisfying implementation can be obtained or not, since only a limited part of

2.5. Introduction to Haskell 35

the design space can be explored. The same problem is known in the context of
high-level synthesis as syntactic variance problem [34], which in general is unsolv-
able.

2.5 Introduction to Haskell

Since the functional language Haskell is used to express the system models in
ForSyDe, this section gives a small introduction to functional languages and Has-
kell in particular. Many examples are taken from “A Gentle Introduction to Haskell
98” [51], a good textbook on Haskell is [108].

A functional program is a function that receives the program’s input as argu-
ment and delivers the program’s output as result. Usually the main function is
defined in terms of other functions, which can be composed of still other functions
until at the bottom of the functional hierarchy the functions are language primitives.
Each function is free from side-effects, i.e. they have no internal state. This means
that the whole functional program is free from side-effects and thus behaves totally
deterministic. Given the same inputs, the functional program will always produce
identical outputs. Since all functions are free from side-effects, the order of evalu-
ation is only given by data dependencies. But this means also that there may exist
several possible orders for the execution of a functional program. Considering the
function

f(x, y) = u(h(x), g(y))

the data dependencies imply that the functionsh(x) andg(y) have to be evaluated
beforeu((h(x), g(y)) can be evaluated. However, since there is no data depen-
dency between the functionsh andg, there are the following possible orders of
execution:

• h(x) is evaluated beforeg(y);

• g(y) is evaluated beforeh(x);

• h(x) andg(y) are evaluated in parallel.

Thus functional programs contain implicit parallelism, which is very useful when
dealing with embedded system applications, since they typically have a consid-
erable amount of built-in parallelism. Of course it is also possible to parallelize
imperative languages like C++, but it is much more difficult to extract parallelism
from programs in such languages, since the flow of control is also expressed by the
order of statements.

36 Chapter 2. Background

The foundations of functional languages have been discussed in depth in [49],
while [52] discusses how functional languages can be used to improve modular-
ity. There is also a study [50] that supports the claimed advantages of functional
languages - brevity, rapidity of development and ease of understanding - over con-
ventional imperative languages as C++ and ADA.

The following part introduces the functional programming language Haskell
and shows some important features.

To date the ForSyDe methodology uses Haskell 98 which is defined in ”Haskell
98 Language and Libraries” [62]. Haskell’s standard library, the “standard prelude”
defines basic types, operators and functions. Other modules can be developed and
imported, such as the ForSyDe Standard Library, which defines data types and
functions for ForSyDe.

In addition to common data types, such asBool , Int andDouble , the standard
prelude also defines lists and tuples. An example for a list is[1,2,3,4] ::

[Integer] , which is a list of integers. The notation “:: ” means “has type”.
An example for a tuple, which is a structure of different types is(’A’, 3) ::

(Char, Integer) where the first element is a character and the second one is an
integer.

Haskell has adopted the Hindley-Milner type system [81], which was devel-
oped for the functional language ML [37]. It has the following significant features
[49]:

1. It is strongly and statically typed.

2. It uses type inference to determine the types of every expression, instead of
relying on explicit type declarations.

3. It allows polymorphic functions and data structures; that is, functions may
take arguments of arbitrary type, if in fact the function does not depend on
that type (similarly for data structures).

4. It has user-defined constructs and abstract data types.

The type system is not only strongly typed, like the type system for VHDL or
ADA, but it is also capable to infer (calculate) the maximal possible data type for
an expression. Given the function

fst (x, y) = x

which returns the first value of a pair, Haskell’s type system will determine the type
as

2.5. Introduction to Haskell 37

fst :: (a,b) -> a

This type declaration means thatfst is a function that has a tuple (a pair) as input
parameter, where the first value is of some data typea and the second value is of
some data typeb. The output value is of data typea. The type declaration does
not imply thata andb have to be of a different type, but since the type declaration
gives the maximal type, it is allowed that they are of different types.

The functionfst can now be used with all kinds of pairs, such asfst(3,

[1,2,3]) , fst(1,2) or fst(’A’, 3) .
Haskell is based on the lambda-calculus and allows to write functions incur-

ried form, after the mathematician Haskell B. Curry, where the arguments are writ-
ten by juxtaposition. The functionadd is written in curried form.

add :: Numa => a -> a -> a
add x y = x + y

Since ’-> ’ associates from right to left, the ”real” type ofadd is add :: Num

a => a -> (a -> a) . This means that given the first argument, which is of a
numeric typea, it returns a function froma to a. This can be used forpartial
applicationof a curried function. New functions can then be defined by applying
the first argument, e.g.

inc x = add 1
dec x = dec 1

These functions only have one argument and the following type

inc :: Numa => a -> a
dec :: Numa => a -> a

It is not possible to use partial application, if theuncurriedform of add is used,

add :: Numa => (a, a) -> a
add(x, y) = x + y

since there is only one argument, which is a tuple of two values and must be sup-
plied as a whole.

Another powerful concept in functional languages is thehigher-order function.
A higher-order function is a function that takes functions as argument and/or pro-
duces a function as output. An example of a higher-order function ismap, which
takes a function and a list as argument and applies (“maps”) the functionf on each
value in the list. The function is defined as follows

map f [] = [] -- Pattern 1 (empty list)
map f (x:xs) = f x : map f xs -- Pattern 2 (all other lists)

38 Chapter 2. Background

The higher-order function uses an additional feature of the language, which is
calledpattern matchingand is illustrated by the evaluation ofmap (+1) [1,2,3] .

map (+1) [1,2,3]

⇒ map (+1) (1:[2,3]) Pattern 2 matches
⇒ 1+1 : map (+1) [2,3] Evaluation of Pattern 2
⇒ 2 : map (+1) (2:[3]) Pattern 2 matches
⇒ 2 : 2+1 : map (+1) [3] Evaluation of Pattern 2
⇒ 2 : 3 : map (+1) (3:[]) Pattern 2 matches
⇒ 2 : 3 : 4 : map (+1) [] Evaluation of Pattern 2
⇒ 2 : 3 : 4 : map (+1) [] Pattern 1 matches
⇒ 2 : 3 : 4 : [] Evaluation of Pattern 2
⇒ [2,3,4]

During an evaluation the patterns are tested from the top to the bottom. If a
pattern, the left hand side, matches, the corresponding right hand side is evaluated.
The expressionmap (+1) [1,2,3] does not match the first pattern since the list
is not empty ([]). The second pattern matches, since (x:xs) matches a list that is
constructed of a single value and a list. Since the second pattern matches, the right
hand side of this pattern is evaluated. This procedure is repeated recursively until
the first pattern matches, where the right hand side does not include a new function
call. As this example shows, lists are constructed and processed from head to tail.

The higher-order functionmapcan now be used with all functions and lists that
fulfill the type declaration formap, which Haskell infers as

map :: (a -> b) -> [a] -> [b]

The type declaration reads as follows. The first argument ofmap is a function
that takes a value of some data typea and returns a value of another data typeb.
The second argument is a list of some data typeb and the result is a list of some
data typeb.

Thus functions asfst andmap are polymorph and can be used with several
types. However, Haskell has a static type system, that ensures that Haskell pro-
grams aretype safe, i.e. all type errors are detected at compile time. The type sys-
tem will allow function calls likemap even [1,2,3] , which will be evaluated to
a list of Boolean values[False, True, False] :: [Bool] , but reject the
list [1,’A’,3] since this list contains elements of different types.

A very powerful higher-order function isfunction composition, which is ex-
pressed by the composition operator ’.’.

(.) :: (b -> c) -> (a -> b) -> (a -> c)

2.5. Introduction to Haskell 39

f . g = \x -> f (g x)

This definition uses ”lambda abstractions” and is read as follows. The higher-order
functionf . g produces a function that takes a valuex as argument and produces
the valuef(g(x)). The expressionf = (+3) . (*4) creates a functionf that
performsf(x) = 4x + 3. Function composition is extremely useful in ForSyDe
since it is allows to merge processes in a structured way.

Haskell allows to define own data types using adata declaration. It allows for
recursive and polymorph declarations. A data type for a list could be recursively
defined as

data AList a = Empty
| Cons a (AList a)

The declaration has twodata constructors. The data constructorEmpty con-
structs the empty list andCons constructs a list by adding a value of typea to a
list. ThusCons 1 (Cons 2 (Cons 3 Empty)) constructs a list of numbers.
The termtype constructordenotes a constructor that yields a type. In this case
AList is a type constructor.

As mentioned before, in Haskell 98 the list data type is predefined. Here[]

corresponds toEmpty and: to Cons. [a] corresponds toAList a .
An important aspect of Haskell is that it useslazy evaluation, which is in con-

trast toeager evaluation. Here, the value⊥T is used to denote thevalue for a
non-terminating expression or an expression that result in some kind of run-time
error, such as1/0 . A functionf is strict, if

f(⊥T) =⊥T

In most program languagesall functions are strict and this means that all argu-
ments to a function must terminate and must not cause a run-time error in order to
terminatef . But this is not the case in a lazy language as Haskell. Consider the
constant 1 functionconst1 , defined by:

const1 x = 1

The result ofconst ⊥T 1 in Haskell is1, since Haskell never attempts to eval-
uate its argument as the result is always1. Functions likeconst1 arenon-strict
functions, which are also called “lazy functions”, as they evaluate their arguments
“lazily” or “by need”. Thus expressions likeconst1 (1/0) evaluate to1. In an
eager language like Standard ML [84], where all functions are strict, the result will
be a run-time error since the program tries to evaluate1/0 .

Lazy evaluation is of great use when dealing with possibly infinite data struc-
tures such as signals, since the program will only evaluate an expression when
needed. Thus, it is possible to define an infinite list of the natural numbersnat as

40 Chapter 2. Background

nat = numsFrom 1
where

numsFrom n = n : numsFrom (n+1)

Of course it is still not possible to evaluate the whole (infinite structure)nat , but
finite parts of it can be evaluated such as

head nat => 1
take 5 nat => [1,2,3,4,5]
(take 5 . map (̂ 2)) nat => [1,4,9,16,25]

Abstract data types can be defined using the Haskell module system. A mod-
ule is a collection of functions. Inside a module all functions and data types are
visible for each other. Other modules may only access the functions that are ex-
plicitly exported by the module. The following code shows a part of the module
SynchronousLib , which is part of the ForSyDe Standard Library.

module SynchronousLib(
module Vector, module Signal, module AbsentExt,
mapSY, zipWithSY, zipWith3SY,
zipWith4SY, zipWithxSY, scanlSY,
scanl2SY, scanl3SY, scanldSY, scanld2SY,
scanld3SY, delaySY, delaynSY, whenSY,
fillSY, holdSY, zipSY, zip3SY, unzipSY,
unzip3SY, zipxSY, unzipxSY, mapxSY, mooreSY,
moore2SY, moore3SY, mealySY, mealy2SY,
mealy3SY, fstSY, sndSY, groupSY, sourceSY

) where

import Signal
import Vector
import AbsentExt

The module imports the librariesSignal , Vector andAbstExt , which are part
of the ForSyDe core language (Section 3.5). It exports the modulesSignal ,
Vector , AbstExt and the functions given in the parameter list of the module
SynchronousLib beginning withmapSYuntil sourceSY . Functions that are de-
fined in the module, but not listed in the parameter list are not visible to other
modules.

The ”Haskell Home Page” [2] is a web page that works as a portal for Haskell
related tools and information. Haskell compilers and interpreters are freely avail-
able. The ForSyDe project uses mainly the interpreter Hugs98 and the compiler
Glasgow Haskell Compiler (GHC). All examples in this thesis have been tested
with Hugs98.

Chapter 3

System Models of ForSyDe

This chapter defines the system models of ForSyDe, i.e. the specification model
and the implementation model. The specification model is based on a synchronous
model of computation. The implementation model extends the specification model
through the use of domain interfaces with the possibility to establish synchronous
sub-domains. It uses a multi-rate model of computation. The chapter introduces
the concept of process constructors and domain interfaces and presents how system
models are formulated. In addition an overview of the ForSyDe Standard Library
is given, which serves as a basis to express ForSyDe models in the functional lan-
guage Haskell.

3.1 Formal Models in ForSyDe

The design process in ForSyDe starts with an abstract and high-level specification
model. The idea of ForSyDe is to bridge the abstraction gap between the specifica-
tion model and the implementation by means of transformational refinement inside
the functional domain. In order to define design transformations formally it is of
utmost importance that the models used in ForSyDe are formal and well-defined.
Also formal verification methods, though not incorporated into ForSyDe at present,
require a formal semantics.

ForSyDe defines two system models. The specification model is based on a
synchronous computational model, since this model offers a clean mathematical
formalism and allows for a high level abstraction of physical time, which is needed
to formulate timing constraints. The implementation model shall include all neces-
sary and low-level implementation details in order to allow for an efficient mapping

41

42 Chapter 3. System Models of ForSyDe

onto a system architecture. So far the implementation model uses a synchronous
computational model extended by synchronous sub-domains. This model is called
amulti-rate modelthroughout this thesis and allows a direct and efficient mapping
to hardware as discussed in Chapter 6. However other computational models may
be more suitable for the mapping onto other architectures, for instance a data flow
model may be more suitable for software. Thus the intention is to allow addi-
tional computational models inside the ForSyDe implementation model. In order
to use these models they must be defined formally, and transformation rules and
efficient mapping techniques to architectural components must be developed. Also
interfaces between all computational models that are allowed in the implementa-
tion model have to be developed. Some preliminary libraries have already been
developed for ForSyDe and can be downloaded from the ForSyDe web page [1].

The definition of ForSyDe is based on mathematics and independent of a mod-
eling language. Processes are defined as functions and compositions of processes
result in another process. As discussed in Section 2.2 ForSyDe does not explic-
itly define a semantics for zero-delay feedback loops, but simply forbids them. To
date the functional language Haskell is used to express a ForSyDe model, since the
functional paradigm fits nicely with the formal definition of ForSyDe models.

The next section gives a framework for the definition of computational models
in ForSyDe. Section 3.3 defines the specification model and Section 3.4 the imple-
mentation model. Finally, Section 3.5 presents how ForSyDe models are expressed
in Haskell, the modeling language of ForSyDe.

3.2 Definition of the Computational Models of ForSyDe

P1 P2

−→s1

P3−→
i2

−→
i1

−→s2

−→o1

−→o2

Figure 3.1. Systems are modeled as communicating concurrent processes

In order to compare the properties of different models of computation, Lee
and Sangiovanni-Vincentelli have developed aframework for comparing models
of computation[70] that is based on the view of a system as anetwork of concur-
rent processesas illustrated in Figure 3.1. The general definition of the ForSyDe

3.2. Definition of the Computational Models of ForSyDe 43

computational models used in this thesis uses a similar notation and is closely re-
lated to the basic concepts of this framework.

3.2.1 Signals

e0e1e2e3e4 Event

Value

Tag

t4

v4

t3

v3

t2

v2

t1

v1

t0

v0

Figure 3.2. A signal is a sequence of events

A signal is a sequence ofevents, where each event has atag and avalue. Tags
can be used to model physical time, the order of events and other key properties of
the computational model.

Definition 3.1 (Event) An evente has a tagt ∈ T and a valuev ∈ V.

e = (t, v)

The set of all events is denoted byE.

The set of tagsT depends on the computational model. While some models
of computation model physical time with the tags, other models use them only to
express the order of events. This order can even be a partial order as in the case of
data flow process networks.

The set of valuesV is not restricted to certain data types. However, some com-
putational models, such as the synchronous computational model, define a special
value⊥ to model the absence of a value at a given tag. A data typeD can be
extended toD⊥ by adding the value⊥.

D⊥ = D ∪ {⊥}
Such a data type is called anextended data type.

The functionTe(e) extracts the tag and the functionVe(e) extracts the value of
an evente = (t, v).

Te(e) = t

Ve(e) = v

44 Chapter 3. System Models of ForSyDe

Definition 3.2 (Signal) A signal−→s is an infinite sequence of events according to

−→s =< e0, e1, · · · >
where
∀j ∈ N0.Ve(ej) ∈ V ∧ Te(ej) ∈ T
∀j ∈ N0.Te(ej) ≤ Te(ej+1)

The set of all signals is denoted byS.

Definition 3.2 implies that all events in a signal have values of the same data type
V and that these are sorted by the tags in ascending order. The relationTe(ej) ≤
Te(ej+1) is used to be able to integrate additional computational models, such as
data flow models, into ForSyDe. For the existing ForSyDe models the relation
Te(ej) < Te(ej+1) is sufficient.

A signal with values of an extended data type is called anextended signal.
Definition 3.2 does not put any restriction on the order relation of the events in
different signals. They may not be related to each other at all.

The following functions are defined in order to access events in a signal−→s =
< e0, e1, · · · >.

E(−→s , j) = ej

T (−→s , j) = Te(ej)
V (−→s , j) = Ve(ej)

For convenience, the operator
⊕

is introduced to express a possibly infinite
sequencex =< x0, x1, . . . , xn > in a different way.

x =
n⊕

j=0

xj =< x0, x1, . . . , xn >

Thus a signal−→s =< e0, e1, · · · > can be expressed as−→s =
∞⊕

j=0

ej .

The functionTS(−→s) returns the tags in a signal−→s . The functionVS(−→s) re-
turns the values in a signal−→s .

TS(−→s) = < T (−→s , 0), T (−→s , 1), · · · > =
∞⊕

j=0

T (−→s , j)

VS(−→s) = < V (−→s , 0), V (−→s , 1), · · · > =
∞⊕

j=0

V (−→s , j)

3.2. Definition of the Computational Models of ForSyDe 45

In this thesis input signals are usually denoted by
−→
i , output signals by−→o and

internal signals by−→s .

3.2.2 Processes

−→
im

−→
i1

−→on

−→o1
P

Figure 3.3. Process

A process (Figure 3.3) maps input signals onto output signals. Depending on
the computational model that is used, different types of processes can be defined.

Definition 3.3 (Process)A processP is a functional mapping fromm ∈ N0 input
signals

−→
i1 , . . . ,

−→
im onton ∈ N1 output signals−→o1 , . . . ,−→on .

P (
−→
i1 , . . . ,

−→
im) = (−→o1 , . . . ,−→on)

The set of all processes is denoted byP.

Definition 3.3 does also include processes that do not have any input signals.
These processes can be used to model signalsources. A useful example is a timer.

PB−→
im

−→
i1 −→o

Figure 3.4. A basic process has only one output signal

A basic process(Figure 3.4) is a process with only one output signal.

Definition 3.4 (Basic Process)A basic processPB is a functional mapping from
m ∈ N0 input signals

−→
i1 , . . . ,

−→
im onto one output signal−→o .

PB(
−→
i1 , . . . ,

−→
im) = −→o

The set of all basic processes is denoted byPB.

Processes can be composed of other processes. The termprocess networkis
used for processes that are composed by other processes, but includes also single

46 Chapter 3. System Models of ForSyDe

processes. The process network of Figure 3.1 is in itself a processP and can be
formulated as

P (
−→
i1 ,

−→
i2) = (−→o1 ,−→o2)

where−→o1 = P2(−→s1 ,−→s2)−→o2 = −→s2−→s1 = P1(
−→
i1)

−→s2 = P3(
−→
i1 ,

−→
i2)

P1

P2

P1

P2

(b)

P1

P2

(c)(a)

Figure 3.5. Composition of processes can lead to compositions with no input (a), no
output (b) or neither input nor output (c)

Using process composition it is possible to produce compositions (Figure 3.5)
that have no input (a), no output (b) or neither input nor output (c). However,
since process are functional mappings from input to output signals, compositions
with no output are not sensible and cannot be regarded as processes. On the other
hand compositions with only output signals and no input signal can be viewed as
constant functional mappings and are thus valid processes. These processes are
calledsourcesand can be used in the modeling process as signal generators.

Proposition 1 states that all processes can be composed of basic processes.

Proposition 1 Any processP with the input signals
−→
i1 , . . . ,

−→
im and the outputs

signals−→o1 , . . . ,−→on can be modeled as a networkPN of n basic processesP1, . . . ,
Pn where

∃PN(
−→
i1 , . . . ,

−→
im).PN(

−→
i1 , . . . ,

−→
im) = P (

−→
i1 , . . . ,

−→
im)

where
P (

−→
i1 , . . . ,

−→
im) = (−→o1 , . . . ,−→on)

PN(
−→
i1 , . . . ,

−→
im) = (−→o1 , . . . ,−→on)

where
−→o1 = P1(

−→
i1 , . . . ,

−→
im)

...
−→on = Pn(

−→
i1 , . . . ,

−→
im)

3.2. Definition of the Computational Models of ForSyDe 47

Since processes are mathematical functions of the input signals, Proposition 1
can be explained as follows. Since the tuple of outputs is a function of all inputs,
each single output must also be a function of the inputs and thus can be modeled
as a basic process.

Considering again the process network of Figure 3.1, it can be modeled by
two basic processesPB1 andPB2 according to Proposition 1. This equivalence is
illustrated in Figure 3.6.

P1 P2

PB1

PB2

−→s1

P3−→
i2

−→
i1

−→s2

−→o1

−→o2

m
−→
i1−→
i2

−→
i2

−→
i1 −→o2

−→o1

P (
−→
i1 ,

−→
i2) = (−→o1 ,−→o2)

where
−→o1 = PB1(

−→
i1 ,

−→
i2)

−→o2 = PB2(
−→
i1 ,

−→
i2)

where
PB1(

−→
i1 ,

−→
i2) = P2(P1(

−→
i1), P3(

−→
i1 ,

−→
i2))

PB2(
−→
i1 ,

−→
i2) = P3(

−→
i1 ,

−→
i2)

Figure 3.6. Two equivalent process networks

ForSyDe defines two composition operators in order to allow sequential (Def-
inition 3.6) and parallel composition (Definition 3.7). Sequential composition is
based on function composition as defined in Definition 3.5.

Definition 3.5 (Function Composition) Two functionsf : γ → β and g : (α1,
. . . , αn) → γ can be composed into a new functionh : (α1, . . . , αn) → β by
application of thefunction composition operator◦n.

h = f ◦n g
where
h(x1, . . . , xn) = f(g(x1, . . . , xn))

48 Chapter 3. System Models of ForSyDe

g f
x1

xn

y

h = f ◦n g

Figure 3.7. Function composition

Function composition is illustrated in Figure 3.7.

Definition 3.6 (Sequential Process Composition)Two processesP1 : Sγ → Sβ

and P2 : (Sα1 , . . . ,Sαm) → Sγ can be composed sequentially by means of the
function composition operator◦m to yield a basic processPB : (Sα1 , . . . ,Sαm) →
Sβ .

P = P1 ◦m P2

where
P (

−→
i1 , . . . ,

−→
im) = P1(P2(

−→
i1 , . . . ,

−→
im))

P2 P1

P = P1 ◦m P2−→
i1
−→
im

−→o

Figure 3.8. Sequential process composition

Sequential process composition is illustrated in Figure 3.8

Definition 3.7 (Parallel Process Composition)Two processesP1 : Sα1 → Sβ1

and P2 : Sα2 → Sβ2 can be composed by means of the parallel composition
operator‖ to yield a new processP : (Sα1 ,Sα2) → (Sβ1 ,Sβ2) .

P = P1 ‖ P2

where
P (

−→
i1 ,

−→
i2) = (P1(

−→
i1), P2(

−→
i2))

Parallel process composition is illustrated in Figure 3.9.
Other compositions including non-zero delay feedback loops can be defined as

sets of equations.
The computational model of the specification model can be seen as a special

case of the implementation model. To date the implementation model is restricted

3.2. Definition of the Computational Models of ForSyDe 49

P2

P1

P = P1 ‖ P2

−→o2

−→o1
−→
i1

−→
i2

Figure 3.9. Parallel process composition

to multi-rate models and does not allow additional computational models. In order
to establish a multi-rate model, domain interfaces are introduced, which allow to
establish process networks with a different set of tags inside the implementation
model. These sub-networks are internally also based on the synchronous assump-
tion. However they do not share the same set of tags as in the main network. These
models are denotedmulti-rate models, since they have several basic clocks (one
for each sub-network) with a different event rate.

To characterize signals in a multi-rate model the termperiodic signalis defined
in Definition 3.8.

Definition 3.8 (Periodic Signal) A signal−→s =< e0, e1, · · · > is a periodic sig-
nal, if

∃c ∈ Q.∀j ∈ N0.Te(ej+1) = Te(ej) + c c > 0
T (e0) = 0

wherec is theevent cycleof the signal−→s . The functionC(−→s) returns the event
cycle of a periodic signal−→s .

C(−→s) = c

The subset of signals that are periodic is denoted bySP.

The termsignal rateis defined in Definition 3.9.

Definition 3.9 (Signal Rate) A periodic signal−→s ∈ SP is associated with asig-
nal rateR(−→s) according to

R(−→s) =
1

C(−→s)

Using Definitions 3.8 and 3.9 the set of tags for a periodic signal can be deter-
mined either by the event cycle or the signal rate according to

Ts(−→s) = < 0, C(−→s), 2C(−→s), · · · >

= < 0, 1/R(−→s), 2/R(−→s), · · · >

50 Chapter 3. System Models of ForSyDe

Since a periodic signal−→s ∈ Sp is completely defined by the set of valuesVs(−→s)
and the signal rateR(−→s), the short notation

−→s = < (0, v0), (1/R(−→s), v1), (2/R(−→s), v2), · · · >
= � v0, v1, . . . �R(−→s)

is introduced.

Tag

Index

Tag

Index

10Index

Tag 10
R(−→s) = 1

0

2

1 2

2

2

3 64 5

3 4 5 6

4 6

3
R(−→s) = 1

2

0

0 1 2 3 4 5 6 7 8 9 10 11 1312

0 42 61 3 51
2

3
2

5
2

7
2

9
2

11
2

13
2

R(−→s) = 2

Figure 3.10.Relation of tags in periodic signals

Figure 3.10 visualizes the relation of tags for periodic signals with different
signal rates. All signals have their first event at tag 0. The following events appear
periodically with an event cycleC(−→s) = 1/R(−→s). If all signals in a process
network are periodic, there is a total order of the tags in all signals.

Note, that the tags do not give an explicit notion of time, but only a total order
of the events. Whenever two events have the same tag, they occur at the same
instance of time. It does not mean that the event rate implies a periodic clock in the
final implementation. In fact a multi-rate system model can be implemented with
no clock at all as long as the total order of events is preserved.

It is possible to transform a multi-rate model into a synchronous model by
defining a basic clock with an event rate that is calculated by the least common
multiplier of the event rates of all sub-networks. However this may lead to a large
amount of absent values, since these are needed to synchronize the clocks. If the
following event rates exist in a model,R(−→s1) = 1, R(−→s2) = 2, R(−→s3) = 3 and
R(−→s4) = 4, then the least common multiplier is 12 and signal−→s1 will have 11
absent values for each present value.

The multi-rate model restricts the implementation to a larger extent than syn-
chronous data flow, since it implies a total order between the events of different
sub-networks. The multi-rate model was chosen with a synchronous hardware im-
plementation in mind. Thus when mapping to synchronous hardware, this does not
restrict the implementation and allows a simple and efficient mapping. However, a

3.2. Definition of the Computational Models of ForSyDe 51

mapping to a distributed and asynchronously communicating implementation will
impose unnecessary requirements on the implementation, since the total order of all
tags, even those that are not meant for synchronization have to be preserved. Thus
the multi-rate model should be restricted to a special class of implementations and
in order to allow for a more efficient mapping to other architecture components,
other models of computations, e.g. SDF, should be integrated into ForSyDe.

In order to model aperiodic signals the specification and implementation model
define the value⊥ to denote an absent value. The ForSyDe methodology also
defines the functionΨ that extends a functionf : D → R into an extended function
f⊥ : D⊥ → R⊥ that is also defined for the absent value.

Ψ(f(x)) = f⊥(x)
where
f : D → R
f⊥ : D⊥ → R⊥

f⊥(x) =
{ ⊥ if x =⊥

f(x) otherwise

(3.1)

To date the ForSyDe methodology is restricted to periodic processes (Defini-
tion 3.10), since ForSyDe only allows a multi-rate model in the implementation
model.

Definition 3.10 (Periodic Process)Aperiodic processPP is a functional mapping
from m input signals

−→
i1 , . . . ,

−→
im onton output signals−→o1 , . . . ,−→on , where all input

signals and output signals are periodic signals.

P (
−→
i1 , . . . ,

−→
im) = (−→o1 , . . . ,−→on)

where−→
ij ∈ SP ∀j.1 ≤ j ≤ m−→ok ∈ SP ∀k.1 ≤ k ≤ n

The set of periodic processes is denoted byPP.

In ForSyDe most processes are constructed byprocess constructors1. A process
constructor takes functions and values as argument and generates a process as out-
put. Functions are used to model the computation behavior inside a process, while
values are used to define parameters or the value of an initial state of a process.
Examples for process constructors are given later in this chapter.

1There is the exception ofcombinator processesthat do not perform any computation. They
transform signals of tuples into tuples of signals and vice versa. The combinator processeszipSY m

andunzipSY n are defined in the next section.

52 Chapter 3. System Models of ForSyDe

Definition 3.11 (Process Constructor)A process constructorPC is a function
that takes0 to m combinational functionsfi and 0 to n valuesvi and produces
a processP as output.

PC(f1, . . . , fm, v1, . . . , vn) = P ∈ P

The set of all process constructors is denoted byPC.

3.3 The Specification Model

A ForSyDe specification model is a network of concurrent synchronous processes.
These processes communicate with each other synchronously by means of signals,
which are normalized to a signal raterS = 1. Thus, all signals have the same set
of tags, i.e.

Ts(−→s) =< 0, 1, 2, · · · >

Since all signals in the specification model have the same signal rateR(−→s) =
1, the following short notation for a signal−→s with a signal rateR(−→s) = 1 is
introduced: −→s = � v0, v1, v2, . . . �1

= � v0, v1, v2, . . . �
The specification model is based on the synchronous assumption, which also forms
the base for the family of the synchronous languages (Section 2.2). The syn-
chronous abstraction leads to a clean separation between computation and com-
munication. Below follows the formal definition of a synchronous process and of
the specification model.

Definition 3.12 (Synchronous Process)A synchronous processPS is a periodic
process where all input signals

−→
i1 , . . . ,

−→
im and all output signals−→o1 , . . . ,−→on have

the same signal rater.

P (
−→
i1 , . . . ,

−→
im) = (−→o1 , . . . ,−→on)

where
PS ∈ PP

R(
−→
ij) = r ∀i.1 ≤ j ≤ m

R(−→ok) = r ∀j.1 ≤ k ≤ n

The set of all synchronous processes is denoted byPS.

3.3. The Specification Model 53

Definition 3.13 (Specification Model)A specification modelMS is a process net-
work that is composed of synchronous processes and models a system. All signals
in the process network have the signal raterS = 1.

MS ∈ PS

The set of all specification models is denoted byMS.

The specification model reflects the design principles of the ForSyDe method-
ology. In order to allow for formal design on a high abstraction level, the specifi-
cation model has the following characteristics:

• It is based on asynchronous computational model, which cleanly separates
computation from communication.

• It is purely functionalanddeterministic.

• It usesideal data typessuch as lists with infinite size.

• It uses the concept of well definedprocess constructorswhich implement
the synchronous computational model.

• It is formally defined and can be expressed in the functional language Haskell
[62].

The specification model abstracts from implementation details, such as buffer sizes
and low-level communication mechanisms. This enables the designer to focus on
the functional behavior on the system rather than structure and architecture. This
abstract nature leaves a wide design space for further design exploration and design
refinement, which is supported by the transformational refinement techniques of
ForSyDe (Chapter 5).

In order to be able to model signals with aperiodic behavior or lower data rates,
a data typeV can be extended to an extended data typeV⊥ = V∪{⊥} by adding
the absent value⊥. Thus a signal

−→s =�⊥,⊥,⊥,⊥,⊥,Reset ,⊥,⊥�

models a reset signal with the valueReset at tag 5, and no value at all other tags.
To model a synchronous process the concept ofsynchronous process construc-

tors is used. A synchronous process constructor is a higher-order function that may
take combinational functions, i.e a function that has no internal state, and variables
as argument and produces a synchronous process as output. For the specification

54 Chapter 3. System Models of ForSyDe

model only synchronous process constructors are allowed. However, it is possible
to formulate process constructors for other computational models and these may
be integrated in future into the implementation model.

Definition 3.14 (Synchronous Process Constructor)Asynchronous process con-
structorPCS is a function that takes0 to m combinational functionsfi and0 to n
valuesvi and has a basic synchronous processPS as output.

PCS(f1, . . . , fm, v1, . . . , vn) = PS ∈ PS

The set of synchronous process constructors is denoted byPCS.

7 6 5 4

31

7 6 5 4

32

Event

mapSY

inc

Computation

Process
Communciation

6 3 2

Value

Tag

7 4 3

Figure 3.11.Synchronous process constructors separate timing from communication

The concept of synchronous process constructors is illustrated by means of
Figure 3.11. Here the synchronous process constructormapSY , which is formally
defined in Figure 3.12, takes the increment functioninc to construct a process that
maps the functioninc on each value of the input signal.

Since the computational model is synchronous each produced output event has
the same tag as the corresponding consumed input event. Figure 3.11 shows clearly
the separation between timing (gray shaded), performed by the process construc-
tor mapSY , and computation (white shaded) which is performed by the supplied
functioninc. The process is formally defined as

PS = mapSY (inc)
where
inc(x) = x + 1

The process constructormapSY is used to model combinational processes
with one input and one output signal. The supplied function defines the compu-
tational behavior of the process.

The ForSyDe methodology obliges the designer to use synchronous process
constructors for the modeling of processes in the specification model. This leads to

3.3. The Specification Model 55

mapSY
(f)

−→
i −→o

mapSY (f) = PS ∈ PS

where
−→o = PS(

−→
i)

T (−→o , j) = T (
−→
i , j) ∀j ∈ N0

V (−→o , j) = f(V (
−→
i , j)) ∀j ∈ N0

Figure 3.12.The process constructormapSY

a well-defined specification model where almost all processes are constructed by
synchronous process constructors. Please remember that definition 3.11 disallows
the use of non-combinational functions as argument for process constructors.

The concept of synchronous process constructors gives the following benefits:

• Synchronous process constructors implement thesynchronous computational
model.

• Due to the construction of processes with process constructors and combi-
national functions, there is aclean separation between synchronization and
computation. Synchronization is implemented inside the process construc-
tors and computation is achieved by the supplied combinational functions.

• There is a family of process constructors that generate a process with alocal
state. However, there is no explicit global state in the model, which would
make it more difficult to reason formally about the system model.

• Process constructors have astructural hardware and software interpretation.
This means, that a system model, which is composed of process constructors
also has an interpretation in hardware, software or a mixture of both. The
hardware semantics is described in Chapter 6, for the software semantics
please refer to [73].

• As process constructors are higher-order functions, the work oncorrectness-
preserving transformations[89] can be used for the development of semantic
preserving transformations (Chapter 5)

• A characteristic function, which is a useful tool for design transformations,
can be determined for all process constructors (Section 5.2).

56 Chapter 3. System Models of ForSyDe

In the following we define additional synchronous process constructors for
combinational processes, i.e. processes that have no internal state, and for sequen-
tial process, i.e. processes that have an internal state.

zipWithSY m
(f)

−→o−→
im

−→
i1

zipWithSY m(f) = PS ∈ PS

where
−→o = PS(

−→
i1 , . . . ,

−→
im)

T (−→o , j) = T (
−→
i1 , j) = · · · = T (

−→
im , j) ∀j ∈ N0

V (−→o , j) = f(V (
−→
i1 , j), . . . , V (

−→
im , j)) ∀j ∈ N0

Figure 3.13.The process constructorzipWithSY

The synchronous process constructorzipWithSY m applies a functionf to the
current values ofm input signals

−→
i1 , . . . ,

−→
im (Figure 3.13). It is used to model

combinational processes with more than one inputs.

delaySY k
(s0)

−→
i −→o

delaySY k(s0) = PS ∈ PS

where
−→o = PS(

−→
i)

T (−→o , j) = T (
−→
i , j) ∀j ∈ N0

V (−→o , j) =
{

s0 if j < k

V (
−→
i , j − k) otherwise

∀j ∈ N0

Figure 3.14.The process constructordelaySY

The basic sequential synchronous process constructor isdelaySY k (Figure
3.14). It takes an initial values0 and delays a signal

−→
i by k event cycles as il-

lustrated by the following example.

delaySY 2(⊥) � 1, 2, 3, 4, . . . �=�⊥,⊥, 1, 2, 3, 4, . . . �

In the following we also use the short notations3 for mapSY , �m for
zipWithSY m and4k for delaySY k. More complex process constructors are
defined by a composition of the basic constructorsmapSY , zipWithSY m and
delaySY k.

3.3. The Specification Model 57

delaySY 1
(s0)

mapSY (f)

−→o
sourceSY (f, s0)

−→s

sourceSY (f, s0) = PS ∈ PS

where−→o = PS−→o = delaySY 1(s0)(−→s)−→s = mapSY (f)(−→o)

Figure 3.15.The process constructorsourceSY

The process constructorsourceSY (f, s0) (Figure 3.15) is used to define a
source process. The process will generate an infinite series of output values. Since
there is no input signal, the tags of the output signal of the source process are im-
plicitly defined by other signals and processes that are part of the system model as
indicated in Figure 3.16.

−→o−→
i

−→s
�2(f)

PSource

TS(−→s) = TS(
−→
i) = TS(−→o)

Figure 3.16. The tags in an output signal of a source process are implicitly defined
by other signals and processes in the system model

A useful example for a process based onsourceSY is a counter that counts
from m to n and is expressed as follows:

counterSY (m, n) = sourceSY (f, m)
where

f(x) =
{

m if x ≥ n
x + 1 otherwise

The process constructorsscanlSY m(f, s0) (Figure 3.17) andscanldSY m(f, s0)
(Figure 3.18) model finite state machines without an output decoder. The differ-
ence is the location of the delay process. This means that the output of a process

58 Chapter 3. System Models of ForSyDe

zipWithSY m+1
(f)

delaySY 1
(s0)

−→s

−→o
scanlSY m(f, s0)

−→
im

−→
i1

scanlSY m(f, s0) = PS ∈ PS

where
−→o = PS(

−→
i1 , . . . ,

−→
im)

−→o = zipWithSY m+1(
−→
i1 , . . . ,

−→
im ,−→s)−→s = delaySY 1(s0)(−→o)

Figure 3.17.The process constructorscanlSY

−→o
scanldSY m(f, s0)

(s0)

−→s delaySY 1
(f)

zipWithSY m+1

−→
i1−→
im

scanldSY m(f, s0) = PS ∈ PS

where
−→o = PS(

−→
i1 , . . . ,

−→
im)−→o = delaySY 1(s0)(−→s)

−→s = zipWithSY m+1(
−→
i1 , . . . ,

−→
im ,−→o)

Figure 3.18.The process constructorscanldSY

scanldSY (f, s0) is one event cycle delayed compared to a processscanlSY (f, s0)
as shown in the following example.

scanlSY ((+), 0) � 1, 2, 3, 4, . . . � = � 1, 3, 6, 10, . . . �
scanldSY ((+), 0) � 1, 2, 3, 4, . . . � = � 0, 1, 3, 6, 10, . . . �

The synchronous process constructorsmooreSY m (Figure 3.19) andmealySY m

(Figure 3.20) model finite state machines of Moore and Mealy type. The difference
between these FSMs is the following. In a Moore machine the result of an output
decoder (represented by the processmapSY (g)) does only depend on the state
(represented by−→s), but not on the input signals. In a Mealy machine, the result of
the output decoder (zipWithSY m+1(g)) depends not only on the state, but also on
the input signals. Both process constructors usescanldSY (f, s0) in their definition

3.3. The Specification Model 59

−→o
−→
i1−→
im (g)

mooreSY m(f, g, s0)

(f, s0)

−→sscanldSY m mapSY

mooreSY m(f, g, s0) = PS ∈ PS

where
−→o = PS(

−→
i1 , . . . ,

−→
im)−→o = mapSY (g)(−→s)

−→s = scanldSY m(f, s0)(
−→
i1 , . . . ,

−→
im)

Figure 3.19.The process constructormooreSY

−→
i1−→
im (f, s0)

−→s
scanldSY m

(g)
−→ozipWithSY m+1

mealySY m(f, g, s0)

mealySY k(f, g, s0) = PS ∈ PS

where
−→o = PS(

−→
i1 , . . . ,

−→
im)

−→o = zipWithSY m+1(g)(
−→
i1 , . . . ,

−→
im ,−→s)

−→s = scanldSY m(f, s0)(
−→
i1 , . . . ,

−→
im)

Figure 3.20.The process constructormealySY

since this follows traditional synchronous hardware design style where a register is
located after the next state decoder in order to make the design more reliable.

ForSyDe defines thecombinator processeszipSY m (Figure 3.21) andunzipSY n

(Figure 3.22). These processes do not perform any computation but convert a tuple
of signals into signals of tuples (zipSY m) and vice versa (unzipSY n) as shown in
the following example.

−→s1 = � 0, 1, 2, . . . �−→s2 = � a, b, c, . . . �
zipSY 2(

−→s1 ,−→s2) = � (0, a), (1, b), (2, c), . . . �
unzipSY 2 � (0, a), (1, b), (2, c), . . . � = (� 0, 1, 2, . . . �,� a, b, c, . . . �)

The specification model is a hierarchy of processes and can be viewed as a
layered model as illustrated in Figure 3.23.

60 Chapter 3. System Models of ForSyDe

−→o−→
im

−→
i1

zipSY m

zipSY m(f) = PS ∈ PS

where
−→o = PS(

−→
i1 , . . . ,

−→
im)

T (−→o , j) = T (
−→
i1 , j) = · · · = T (

−→
im , j) ∀j ∈ N0

V (−→o , j) = (V (
−→
i1 , j), . . . , V (

−→
im , j)) ∀j ∈ N0

Figure 3.21.The combinator processzipSY

unzipSY n

−→o1−→on

−→
i

unzipSY n(f) = PS ∈ PS

where
(−→o1 , . . . ,−→on) = PS(

−→
i)

V (
−→
i , j) = (vj(1), . . . , vj(n)) ∀j ∈ N0

T (−→o1 , j) = · · · = T (−→on , j) = T (
−→
i , j) ∀j ∈ N0

V (−→ok , j) = (vj(k)) ∀j ∈ N0;∀k.1 ≤ k ≤ n

Figure 3.22.The combinator processunzipSY

M

−→
i1−→
i2

−→o1−→o2

PN1

PN2

PN3

−→
i1

−→
i2

−→o1

−→o2

−→s1
−→s3−→s2

PB2PB1

PB3−→
i2

−→o2

−→s3
−→s4−→s2

Process Network Layer

Process Layer

System Layer

Figure 3.23.The specification model can be viewed as a layered model

3.4. The Implementation Model 61

The system layercontains the top-level process that is a composition of all
other processes and defines by its signals the interface to the environment. The
system model may, but does not need to have, a number ofprocess network layers,
where each layer consists of one or more process networks. In Figure 3.23 there is
only one process network layer. Theprocess layeris the bottom layer and consists
of networks of basic processes, which are constructed by process constructors to-
gether with their supplied functions and values, and combinator processes. Figure
3.23 shows only the processes for the process networkPN2, the processes for the
process networksPN1 andPN3 are not part of this figure.

The system layer and the structure of the process network layer of Figure 3.23
are expressed by the following set of equations:

M(
−→
i1 ,

−→
i2) = (−→o1 ,−→o2)

where

(−→s1 ,−→s2) = PN1(
−→
i1)

(−→s3 ,−→o2) = PN2(
−→
i2)

o1 = PN3(−→s1 ,−→s3)

In the same manner the processPN2 is expressed by another set of equations:

PN2(−→s2 ,
−→
i2) = (−→s3 ,−→o2)

where−→s4 = PB1(
−→s1)

−→o2 = PB2(
−→s4 ,

−→
i2)−→s3 = PB3(

−→s4)

The processesPB1, PB2 andPB3 are not explicitly given here but they are
defined by process constructors and supplied combinational functions and values.

3.4 The Implementation Model

The implementation model is a product of the refinement process (Chapter 5). In
contrast to the specification model, which is a network of concurrent synchronous
processes, it may also include processes of other computational models. However,
to date the ForSyDe methodology allows in addition to synchronous processes only
domain interfaces2 in the implementation model. Domain interfaces are defined in
Definition 3.15.

2In principle these interfaces should be called multi-rate domain interfaces, but for shortness they
are only called domain interfaces in this thesis.

62 Chapter 3. System Models of ForSyDe

Definition 3.15 (Domain Interface) A domain interfacePD is a periodic process
where all input signals

−→
i1 , . . . ,

−→
im have a signal rateri, which is different from the

signal ratero of the output signals−→o1 , . . . ,−→on .

P (
−→
i1 , . . . ,

−→
im) = (−→o1 , . . . ,−→on)

where
PD ∈ PD

R(
−→
ij) = ri ∀j.1 ≤ j ≤ m

R(−→ok) = ro ∀k.1 ≤ k ≤ n
ri 6= ro

The set of all domain interfaces is denoted asPD.

Domain interfaces are used to establishsynchronous sub-domains, which com-
prise a local synchronous process network with a different signal rate. This is
illustrated in Figure 3.24.

PD1 PD2

Main Synchronous Main

(Rate:r)
Domain Sub-Domain

(Rate:r′) (Rate:r)
Domain

−→
im

−→
i1

−→o1

−→on

PD2 ∈ PDPD1 ∈ PD PN ∈ PS

−→ak

−→a1
−→
b1

−→
bl

Domain Interface

PN

Figure 3.24.Synchronous sub-domains are introduced by domain interfaces

The domain interfacesPD1 andPD2 establish a synchronous sub-domain. In
the main domain all signals have the event rater, but in the synchronous sub-
domain the event rate isr′. Thus domain interfaces introduce an interface between
two synchronous process networks with different event rates and establish a multi-
rate process network.

PS2 R(−→o1) = 3

R(−→o2) = 1

R(−→s2) = 3
PS1 PD

R(−→s1) = 1
R(

−→
i) = 1

PN 6∈ PS ∪ PD

PS3

Figure 3.25.A process network with several input and output signal rates

3.4. The Implementation Model 63

The implementation model allows both synchronous processes and domain in-
terfaces. However the composition of these processes may generate periodic pro-
cesses that cannot be classified as synchronous process or domain interface as il-
lustrated in Figure 3.25, where the process networkPN has two output signals
with a different event rate.

This leads to the following definition of an implementation model3.

Definition 3.16 (Implementation Model) An implementation modelMI is a pro-
cess network that is composed of synchronous processes and domain interfaces
and models a system.

MI ∈ PP

The set of all implementation models is denoted byMI.

Synchronous processes and domain interfaces belong to the class ofhomoge-
neous periodic processesthat is defined in Definition 3.17.

Definition 3.17 (Homogeneous Periodic Process)A homogeneous periodic pro-
cessPH is a periodic process, where all input signals

−→
i1 , . . . ,

−→
im have the rateri

and all output signals−→o1 , . . . ,−→on have the ratero.

PH(
−→
i1 , . . . ,

−→
im) = (−→o1 , . . . ,−→on)

where
PH ∈ PP

R(
−→
ij) = ri ∀j.1 ≤ j ≤ m

R(−→ok) = ro ∀k.1 ≤ k ≤ n

The set of all homogeneous periodic processes is denoted byPH.

Proposition 2 The set of all homogeneous periodic processes is the union of all
possible synchronous processes and domain interfaces.

PH = PS ∪ PD

Definition 3.18 (System Model)A system modelM is either a specification model
or an implementation model.

M ∈ MS ∪ MI

The set of system models is denoted asM.

3This definition has to be extended, if additional models of computation are integrated into the
ForSyDe methodology

64 Chapter 3. System Models of ForSyDe

Since synchronous sub-domains violate the synchronous assumption they are
not allowed in the specification model, but are introduced by well-defined trans-
formations during the refinement process. Inside a synchronous sub-domain the
synchronous assumption is still valid and the same formal techniques can be used
as for the initial system model. However, since also domain interfaces have a
formal definition, the whole implementation model can be formally analyzed and
modified as further elaborated in Chapter 5.

ForSyDe defines process constructors for domain interfaces. These process
constructors are calleddomain interface constructors(Definition 3.19).

Definition 3.19 (Domain Interface Constructor) A domain interface constructor
PCD is a function that takes0 to m combinational functionsfi and0 to n values
vi and has a domain interfacePD as output.

PCD(f1, . . . , fm, v1, . . . , vn) = PD ∈ PD

The set of domain interface constructors is denoted byPCD.

downDI
(k)

−→
i −→o

downDI (k) = PD ∈ PD

where
−→o = PD(k)(

−→
i)

T (−→o , j) = T (
−→
i , kj) ∀j ∈ N0

V (−→o , j) = V (
−→
i , kj) ∀j ∈ N0

R(−→o) = R(
−→
i)/k

Figure 3.26.The domain interface constructordownDI

The domain interface constructorsdownDI (Figure 3.26) andupDI (Figure
3.27) generate processes for down- and up-sampling4. Figure 3.28 illustrates the
functionality ofdownDI andupDI by a small example.

Note thatupDI (k) introduces an output signal with an event rate that isk times
higher than the event rate of the input signal by insertion ofk − 1 absent events
and not by outputting each valuek times. This may look strange at first sight, but
has a reason. Assume that the output ofupDI (k) is the input of an accumulation

4For the definition of domain interface constructors the functions div(m,n) and rem(m,n) are used.
The function div(m,n) performs integer division and truncates the result, while rem(m,n) returns the
remainder of an integer division. Thus the result of div(5, 3) is 1 and the result of rem(5, 3) is 2.

3.4. The Implementation Model 65

upDI
(k)

−→
i −→o

upDI (k) = PD ∈ PD

where
−→o = PD(k)(

−→
i)

T (−→o , j) = j
kC(

−→
i) ∀j ∈ N0

V (−→o , j) =
{

V (
−→
i , div(j, k)) if ∃u ∈ N0.j = uk

⊥ otherwise
∀j ∈ N0

R(−→o) = kR(
−→
i)

Figure 3.27.The domain interface constructorupDI

(3)
� 1, 2, 3, 4, . . . �1 � 1, 4, . . . �1/3

(3)
� 1, 2, . . . �1 � 1,⊥,⊥, 2,⊥,⊥, . . . �3

downDI

upDI

Figure 3.28.Example for down- and up-sampling

process. Then a wrong result will be produced if each value is accumulatedk-
times. ThusupDI (k) is just up-sampling the event rate, but does not introduce
new values. If this is needed a processholdSY (s0) can be introduced as shown in
Figure 3.29. The processholdSY (s0) is based onscanlSY and outputs for each
absent input value the last present input value. In case that the input signal starts
with an absent value, the output value iss0. The usage ofholdSY is shown in
Figure 3.29.

� 1, 2, . . . �1 � 1,⊥,⊥, 2,⊥,⊥, . . . �
(3)

upDI
(3)

upDI

� 1, 2, . . . �1 holdSY
(0)

� 1, 1, 1, 2, 2, 2, . . . �

Figure 3.29.Usage ofholdSY

The domain interface constructorp2sDI (m) (Figure 3.30) generates a process
that transforms parallel input signals into a serial signal with a signal rate that is
m times higher than the signal rate of the inputs. The domain interface constructor
s2pDI (n) (Figure 3.31) generates a process that performs the opposite operation,

66 Chapter 3. System Models of ForSyDe

−→
i1

−→
im

p2sDI

(m)
−→o

p2sDI (m) = PD ∈ PD

where
−→o = PD(

−→
i1 , . . . ,

−→
im)

T (−→o , j) = j
mC(

−→
i1) = · · · = j

mC(
−→
im) ∀j ∈ N0

V (−→o , j) = V (
−→
iu , w)

whereu = rem(j,m) + 1
w = div(j,m)

∀j ∈ N0

R(−→o) = mR(
−→
i1) = · · · = mR(

−→
im)

Figure 3.30.The domain interface constructorp2sDI

−→o1

−→on

−→
i

s2pDI

(n)

s2pDI (n) = PD ∈ PD

where

(−→o1 , . . . ,−→on) = PD(
−→
i)

T (−→ok , j) = T (
−→
i , nj) ∀j, k.j ∈ N0 ∧ 1 ≤ k ≤ n

V (−→ok , j) =
{ ⊥ if j = 0

V (
−→
i , (j − 1)n + k − 1) otherwise

∀j, k.j ∈ N0 ∧ 1 ≤ k ≤ n

R(−→ok) = R(
−→
i)/n ∀k.1 ≤ k ≤ n

Figure 3.31.The domain interface constructors2pDI

i.e. the transformation of a serial signal inton parallel signals.
Figure 3.32 illustrates that the sequential composition ofp2sDI (k) ands2pDI (k)

introduces an extra delay. This is because of the fact that all signals have their first
value at tag 0 and that the processs2pDI (n) needsn event cycles (of the input
signal) to determine all values of all output signals during an output event cycle.

3.5 The ForSyDe Modeling Language

In principle all languages that are able to express ForSyDe’s computational mod-
els may be used as modeling language for ForSyDe. Since ForSyDe has started

3.5. The ForSyDe Modeling Language 67

p2sDI

(2) (2)

s2pDI� 0, 5, 1, 6, . . . �1/2

� 0, 1, . . . �1

� 5, 6, . . . �1

�⊥, 0, 1, . . . �1

�⊥, 5, 6, . . . �1

Figure 3.32.The composition ofp2sDI (k) ands2pDI (k) introduces an extra delay

from a research perspective, the functional language Haskell [62], which was in-
troduced in Section 2.5 has been selected as modeling language, because it is free
from side-effects and supports many of the key concepts of ForSyDe due to con-
cepts like higher-order functions and lazy evaluation. Thus the implementation of
signals, process constructors, domain interfaces and the absent extension function
Ψ is straight forward and allows to express ForSyDe models in a clean way with
minimal effort.

In contrast to Haskell, imperative languages, such as C++, Java or VHDL,
do not directly support all concepts of ForSyDe, in particular not the concept of
higher-order functions. Hence, a system model expressed in these languages will
be not as elegant as a Haskell model.

On the other hand, industrial system designers are used to imperative languages
and may have difficulties to accept Haskell as their modeling language. However,
for an eventual future industrialization of ForSyDe, there are at least two possible
approaches in order to make it more appealing for designers.

• An incorporation of a more accepted modeling language would enable the
designer to use ForSyDe without learning a new language paradigm. How-
ever the use of that language should be restricted in accordance to the ForSy-
De principles. A similar idea has been used successfully in using VHDL for
logic synthesis, where the synthesis semantics differ from the simulation se-
mantics. Such an approach would allow to gradually introduce new concepts
into industrial design practice.

It seems that C++ together with System C [38] is a good candidate, since it
allows the development of a class library for process constructors. However,
in contrast to Haskell, it is weakly typed and not free from side effects. Thus
C++ will not aid the designer to the same extent.

• The development of a graphical user interface for ForSyDe would allow to
”hide” Haskell from the designer. The designer would be able to pick process
constructors, which may have more intuitive names likecomb1 or comb2

instead ofmapSY and zipWithSY , and only need to formulate the cor-
responding combinational functions and initial values in order to specify a

68 Chapter 3. System Models of ForSyDe

process. The specification model can then be developed by drawing signals
between processes. Such a GUI could also assist the designer during design
refinement, where the tool ideally would highlight possible transformations
together with estimation data and the designer selects one of the proposed
transformations.

Naturally, both approaches can be combined.

Application Libraries

Haskell 98

ForSyDe Core Language

System Functions
LibrariesLibraries

Computational
Model System Data Types

Figure 3.33.The ForSyDe Standard Library

The ForSyDe Standard Library5 consists of several layers as illustrated in Fig-
ure 3.33. The bottom layer is the Haskell 98 language [62]. The layer above
Haskell 98 defines theForSyDe Core Language. Here the fundamental data types,
such as signal and vector, and the corresponding functions are defined. Computa-
tional models are defined in aComputational Model Librariesand are located on
top of the core language. Also on top of the core language there are theLibraries of
System Functions and Data Types, which contain functions and data types that are
typical for system applications and are independent of the computational model.
Examples for such functions are the DFT6 and FFT7 (Appendix A.3.3). The top
layer of the ForSyDe Standard Library consists ofApplication Libraries. These
libraries include components and functions that are modeled for specific computa-
tional models, such as a FIR8-filter that is modeled for the synchronous computa-
tional model (Appendix A.5.2).

5Appendix A shows a large part of the ForSyDe Standard Library. This part contains the library
for the synchronous and the multi-rate model, which is sufficient to model the examples given in this
thesis.

6Discrete Fourier Transform
7Fast Fourier Transform
8Finite Impulse Response

3.5. The ForSyDe Modeling Language 69

The ForSyDe Standard library is under continuous development. The idea is
to keep the ForSyDe core library and the existing computational model libraries
stable. The extension of the library is planned to be done by the incorporation of
new computational models and new system functions and data types. The version
of the ForSyDe Standard Library that is discussed in this thesis is version 2.3,
which can be downloaded from the ForSyDe web page [1].

To date, all signals in ForSyDe are modeled with the same data typeSignal .
This data type models signals as a sequence (list) of events, with the exception that
there is no more information about the tags of a signal than the order of the tags,
which is given by the position in the sequence. However, this is sufficient for the
modeling purpose, since information about signal rates is implicitly given by the
chosen process constructors and domain interfaces.

The data typeSignal is defined as

data Signal a = NullS
| a :- (Signal a)

This reads as follows. A signal with values of a data typea is either empty (NullS)
or recursively composed by a value of typea and a signal of typea, e.g.

1 :- 2:- 3 :- 4 :- 5 :- NullS

is a signal of integers. The output from the Haskell program is given in the short
notation

{1,2,3,4,5}

for this signal.
In order to be able to model the absent value⊥, ForSyDe defines the data type

AbstExt a that extends a data typeA into the extended data typeA⊥.

data AbstExt a = Abst
| Prst a

Abst denotes the absent value⊥ and Prst a denotes a value of typeA. The
extended data type is used for aperiodic signals, e.g. reset signals and signals with
a low data rate. The data type

Signal (AbstExt Int)

models a signal that in addition to integer values also contains absent values. Sig-
nals, that have a defined value at each tag, are modeled with regular data types.

The ForSyDe Standard Library defines the functionpsi that implements the
higher-order functionΨ ((3.1)) that extends a function of typea -> b into a func-
tion of data typeAbstExt a -> AbstExt b .

70 Chapter 3. System Models of ForSyDe

psi f = f’
where f’ Abst = Abst

f’ (Prst x) = Prst (f x)

Process constructors are implemented with higher-order functions.

mapSY f NullS = NullS
mapSY f (x:-xs) = f x :- mapSY f xs

The higher-order functionmapSYis defined in the same way as the functionmap

of the Haskell ”standard prelude”. It has two arguments. The first argument is
a functionf and the the second argument is a signal of any type. The definition
of mapSYuses pattern matching. The first pattern matches, if the signal is empty
(NullS). The second pattern matches, if the signal has at least one value, i.e. it is
constructed by a head valuex and a signal tailxs . In this casef is applied tox and
the result of this function will be the first value of the output signal. The rest of the
output signal is calculated recursively by the function callmapSY f xs .

Infinite signals can be generated using the implementation of the process con-
structorsourceSY . Them-to-n counter is part of the application library for the
synchronous computational model inside the ForSyDe Standard Library.

counterSY m n = sourceSY f m
where

f x | x >= n = m
| otherwise = succ x

The signal definition

countSignal = counterSY 0 4

defines an infinite signal that repetitively counts from 0 to 4. Although the signal
can never be evaluated in total, the definition is very useful, since the laziness of
Haskell allows to evaluate parts of the infinite signal as discussed in Section 2.5.
To allow for this, the ForSyDe Standard Library defines the functiontakeS n that
returns the firstn values of a signal and the functionatS that returns then-th value
(counted from 0) of a signal. In the following a session with the Haskell interpreter
Hugs98 is shown to illustrate how possibly infinite signals can be accessed.

Hugs98Prompt> takeS 10 countSignal
{0,1,2,3,4,0,1,2,3,4} :: Signal Integer
Hugs98Prompt> atS 4 countSignal
4 :: Integer

The ForSyDe Standard Library implements the domain interface constructors
downDI , upDI , p2sDI and s2pDI . Their use is illustrated in the following
Hugs98 session, where the last example illustrates the composition ofp2sDI (2)

3.6. Summary 71

ands2pDI (2)9 as shown in Figure 3.32. In this session the signals−→s1 and−→s2 are
defined as −→s1 =� 0, 1, 2, 3, 4 �−→s2 =� 5, 6, 7, 8, 9 �

Hugs98Prompt> downDI 2 (takeS 10 (counterSY 0 4))
{0,2,4,1,3}
Hugs98Prompt> upDI 2 (takeS 5 (counterSY 0 4))
{0,_,1,_,2,_,3,_,4,_}
Hugs98Prompt> par2ser2DI s1 s2
{0,5,1,6,2,7,3,8,4,9}
Hugs98Prompt> ser2par2DI (par2ser2DI s1 s2)
{(_,_),(0,5),(1,6),(2,7),(3,8),(4,9)}

Process networks are modeled either with composition operators of as a set of
equations.

The functions for sequential and parallel function composition (Definition 3.5-
3.7) are implemented asfunComb1 , funComb2 , . . . andparComb. The operation
funComb1 is identical to the Haskell function composition operator ’.’, which in-
stead forfunComb1 is used throughout this thesis. The process network of Figure
3.1 is expressed as a set of equations.

system i1 i2 = (o1, o2)
where

o1 = p2 s1 s2
o2 = s2
s1 = p1 i1
s2 = p3 i1 i2

3.6 Summary

This chapter defines the specification and implementation model of ForSyDe. The
specification model is based on a synchronous computational model and models
a system as a hierarchical process network. Processes are constructed by process
constructors, which among other benefits implement the synchronous computa-
tional model, allow for design transformation (Chapter 5) and which can be given
an implementation semantics (Chapter 6).

The implementation model uses domain interfaces together with synchronous
processes in order to establish synchronous sub-domains, i.e. a process network

9The domain interface constructorsp2sDI (2) ands2pDI (2) are implemented aspar2ser2DI

andser2par2DI respectively.

72 Chapter 3. System Models of ForSyDe

with a different signal rate. Such model is called a multi-rate model. So far
ForSyDe uses only a multi-rate model inside the implementation model, but other
computational models can be integrated in future.

The ForSyDe modeling language is embedded into the functional language
Haskell. The ForSyDe Standard Library provides among others data types, pro-
cess constructors and domain interfaces, which allow it to express and simulate
specification and implementation models using Haskell. Chapter 4 illustrates the
development of a ForSyDe specification model by means of a digital equalizer. The
full specification model expressed in Haskell is given in Appendix B.

Chapter 4

Development of the Specification
Model

The topic of this chapter is the development of a specification model in ForSyDe.
The first part discusses the importance of modeling rules. Since ForSyDe models
are expressed with the functional language Haskell, modeling rules are needed to
ensure that the model complies with the formal definition of the ForSyDe specifi-
cation model, in particular with the synchronous computational model. The second
part illustrates modeling in ForSyDe by means of the specification model of a dig-
ital equalizer.

4.1 Modeling in ForSyDe

System design in ForSyDe starts with the development of an abstract and func-
tional system specification model that is based on a synchronous computational
model. As discussed in Section 3.5 at present the ForSyDe modeling language
is embedded in Haskell. This means that the designer is restricted to a subset of
possible Haskell programs. This subset is implicitly defined by themodeling rules
of ForSyDe. These rules guarantee that a ForSyDe specification model complies
to the synchronous computational model and thus can be interpreted as a network
of concurrent processes. The most important modeling rule is that the specifica-
tion model must be expressed as a composition of processes. The composition is
either done by composition operators or as a set of equations as discussed in Chap-
ter 3. Since the semantics of ForSyDe define a system model as a function of the

73

74 Chapter 4. Development of the Specification Model

input signals, the functional language paradigm is well suited to express ForSyDe
models.

A modeling rule states that processes are either constructed by process con-
structors or are combinator processes or a composition of other processes. As
discussed in Chapter 3 the use of process constructors has a lot of benefits. In
particular they implement the computational model and also allow to give an im-
plementation semantics to a process as illustrated in Chapter 6 for the mapping of
ForSyDe processes to hardware.

Another important modeling rule defines that process constructors may only
be used together with combinational, i.e. stateless, functions, in order to ensure a
clear semantics of the model. There are only local states in a ForSyDe model and
these states reside inside the processes that are constructed by sequential process
constructors.

ForSyDe allows both a top-down and a bottom-up design process. Compo-
nents in the form of process networks or even system models can be stored in a
design library and reused in a bottom-up approach. However, due to the functional
characteristic of ForSyDe, where the model is a hierarchy of functions, a top-down
process is very natural and will be used for the development of the specification
model in the next section.

It should be pointed out that the designer models in the ForSyDe modeling
language, which to date is embedded in Haskell. The designer is never confronted
directly with the formal definition of ForSyDe (as given in the previous section).
However, since ForSyDe is not restricted to Haskell, the following specification
model is given using the mathematical notation of ForSyDe. In order to show that
there is almost a one-to-one mapping between the formal notation and Haskell,
parts of the model are also given in Haskell.

4.2 The Equalizer Specification Model

The development of a specification model is illustrated by means of a digital equal-
izer. The equalizer has originally been used in [20] to illustrate the MASCOT1

methodology. MASCOT [21] uses SDL2 [29] to model control and Matlab3 [45]
to model data flow parts. SDL has been used heavily, in particular by the telecom-
munication industry, for the specification of control-intensive applications. It is

1Matlab and SDL Codesign Techniques
2Specification and Description Language
3Matrix Laboratory

4.2. The Equalizer Specification Model 75

based on concurrent finite state machines. In contrast Matlab contains very power-
ful mathematical operations and has been mainly used for the modeling of signal
processing algorithms.

This section presents the main parts of the ForSyDe equalizer specification
model and uses mainly the formal notation of Chapter 3. The complete executable
equalizer specification model, expressed in Haskell, is given in Appendix B.

The discussion of the specification model starts from the top. In general the
interfaces to the environment are given by a requirement specification written in
a natural language. The task of the equalizer is to modify an audio input signal
according to the position of the buttons for the bass and treble levels and to output
the modified signal. In addition the equalizer also monitors the output signal in
order to prevent damage to the speakers in case of a too high bass level. Figure 4.1
shows the equalizer as a black box together with its environment.

Equalizer

−−−−−→
AudioIn

−−−−−−→
AudioOut

−−−−−→
BassDn

−−−−−−→
TrebleDn

−−−−−→
BassUp

−−−−−−→
TrebleUp

Figure 4.1. The equalizer and its environment

This specification can be naturally decomposed into four functions and a delay
process as shown in Figure 4.2.

Button
Control Control

Audio
Analyzer

Audio
Filter

Distortion

−−−→
Bass

−−−−→
Treble

−−−−−→
BassDn

−−−−−−→
AudioOut

−−−−−→
AudioIn

−−−→
Overr

−−−−−→
DistFlag

−−−−−−−−→
DelDistFlag

−−−−−→
BassUp

−−−−−−→
TrebleDn

−−−−−−→
TrebleUp

(⊥)

delaySY 1

Figure 4.2. Subsystems of the equalizer

TheButtonControl subsystem monitors the position of the button inputs and
the override signal from the subsystemDistortionControl and adjusts the cur-
rent bass and treble levels. This information is then passed to the subsystem
AudioFilter , which receives the audio input, and filters and amplifies the audio

76 Chapter 4. Development of the Specification Model

signal according to the current bass and treble levels. This signal, the output sig-
nal of the equalizer, is analyzed by theAudioAnalyzer subsystem, which deter-
mines, whether the bass exceeds a predefined threshold. The result of this analysis
is passed to the subsystemDistortionControl , which decides, if a minor or major
violation is encountered and issues the necessary commands to theButtonControl
subsystem. Since the equalizer has an internal feedback loop a delay process has
been introduced between theAudioAnalyzer and theDistortionControl in order
to give the system a defined start value.

As indicated in Figure 4.2 the equalizer model can be divided into two parts.
The data flow part (white boxes) is responsible for the processing of the audio
signal. The control part (gray shaded) controls the signal processing according
to the input buttons and the output from theAudioAnalyzer and sets the current
bass and treble levels. While data flow signals such as

−−−−−→
AudioIn and

−−−−−−→
AudioOut

have a defined value for each event cycle, the control signals
−−−−−→
BassUp,

−−−−−→
BassDn,−−−−−−→

TrebleUp,
−−−−−−→
TrebleDn are aperiodic and not asserted for most of the time. The out-

put of theAudioAnalyzer , the signalDistFlag , outputs only one valid value for
a certain number of input values (depending on the size of the DFT inside the
AudioAnalyzer) and thus has to be modeled with an extended data type.

Since the specification model is a synchronous model, the absence of valid
values is modeled with the special value⊥. Thus, there are two types of signals in
the equalizer model. The signals

−−−−−→
AudioIn,

−−−−−−→
AudioOut ,

−−−→
Bass and

−−−−→
Treble always have

valid values and are modeled as signals with a non-extended data type, in this case
R. All other signals will at certain tags not have a valid value and are modeled with
extended data types, which include the value⊥. A signal with extended data types
does not have a present value during all event cycles. This information is very
useful for design refinement as elaborated in Chapter 5. Table 4.1 summarizes the
data types used for the signals.

Signal Data Type of Signal Values

−−−−−→
AudioIn,

−−−−−−→
AudioOut ,

−−−→
Bass,

−−−−→
Treble R−−−−−→

BassUp,
−−−−−→
BassDn,

−−−−−−→
TrebleUp,

−−−−−−→
TrebleDn Extended enumeration type−−−→

Overr ,
−−−−−→
DistFlag ,

−−−−−−−−→
DelDistFlag Extended enumeration type

Table 4.1.Data types for signals

The interaction of the subsystems is modeled by means of a set of equations,
where each equation specifies the input and output signals of a subsystem. The
formal ForSyDe description is given below.

4.2. The Equalizer Specification Model 77

Equalizer(
−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,

−−−−−−→
TrebleUp,

−−−−−→
AudioIn)

=
−−−−−−→
AudioOut

where

(
−−−→
Bass,

−−−−→
Treble) = ButtonControl(

−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,−−−−−−→

TrebleUp,
−−−→
Overr)−−−−−−→

AudioOut = AudioFilter(
−−−→
Bass,

−−−−→
Treble,

−−−−−→
AudioIn)−−−→

Overr = DistortionControl(
−−−−−−−−→
DelDistFlag)−−−−−→

DistFlag = AudioAnalyzer(
−−−−−−→
AudioOut)−−−−−−−−→

DelDistFlag = delaySY 1(⊥)(
−−−−−→
DistFlag)

Since the equalizer contains a feedback loop there is a need for an initial value
in order to stabilize the system. This is also required by the ForSyDe modeling
rules, since zero-delay feedback loops are forbidden. This is done by the insertion
of a processdelaySY 1(⊥), which delays the signal

−−−−−→
DistFlag one event cycle and

produces the value⊥ as its first value.
Below follows the corresponding Haskell code for this level of the equalizer

model. It is a direct mapping of the formal ForSyDe description. This code does
also include the four parameters of the equalizer model, which have been abstracted
away in the formal description. The parameterslpCoeff , bpCoeff andhpCoeff

give the coefficients for the three FIR-filters that are used to define the character-
istics of the low pass, the band pass and the high pass filters in theAudioFilter
subsystem. The parameterdftPts gives the number of points for the DFT that is
used in theAudioFilter subsystem.

equalizer :: Vector Double -> Vector Double -> Vector Double -> Integer
-> Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)
-> Signal Double -> Signal Double

equalizer lpCoeff bpCoeff hpCoeff dftPts
bassUp bassDn trebleUp trebleDn input = output

where
(bass, treble) = buttonControl overrides bassUp bassDn

trebleUp trebleDn
output = audioFilter lpCoeff bpCoeff hpCoeff

bass treble input
distFlag = audioAnalyzer dftPts output
overrides = distortionControl delayedDistFlag
delayedDistFlag = delaySY Abst distFlag

78 Chapter 4. Development of the Specification Model

Button
ControlInterface
Level

−−−−−−→
TrebleUp

−−−−−−→
TrebleDn

−−−−−→
BassUp

−−−−−→
BassDn

−−−→
Overr

Hold
Level

−−−−→
Levels

−−−−→
Button

−−−−→
Treble

−−−→
Bass

unzipSY 2

Figure 4.3. The subsystemButtonControl

4.2.1 The SubsystemButtonControl

The subsystemButtonControl (Figure 4.3) works as a user interface in the equal-
izer system. It receives the four input signals

−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,

−−−−−−→
TrebleUp

and the override signal
−−−→
Overr from theDistortionControl and calculates the new

bass and treble values for the output signals
−−−→
Bass and

−−−−→
Treble. The subsystem

contains the main processesButtonInterface and LevelControl . The process
ButtonInterface monitors the four input button signals and outputs the value of
the pressed button or the absent value, if no button is pressed during an event cy-
cle. The processLevelControl keeps track of the current bass and treble levels and
adjusts them, if either an event from the signal

−−−−→
Button or

−−−→
Overr is present. In this

case the process outputs the current levels, otherwise the output value is absent.
The processHoldLevel holds the value of the current bass and treble levels until a
new value is computed. It is modeled by means of the processholdSY (0 .0 , 0 .0)
(Figure 3.29) that outputs the last present value, if the input value is absent. The
processunzipSY 2 transforms a signal of tuples (the current bass and treble level)
into a tuple of signals (a bass and a treble signal). The process network from Figure
4.3 is expressed as a set of equations in the formal notation

ButtonControl(
−−−→
Overr ,

−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,

−−−−−−→
TrebleUp)

= (
−−−→
Bass,

−−−−→
Treble)

where

(
−−−→
Bass,

−−−−→
Treble) = unzipSY 2(

−−−−→
Levels)−−−−→

Levels = (HoldLevel ◦2 LevelControl)(
−−−−→
Button,

−−−→
Overr)−−−−→

Button = ButtonInterface(
−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,

−−−−−−→
TrebleUp)

and in Haskell:

buttonControl :: Signal (AbstExt OverrideMsg) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Sensor) -> (Signal Bass, Signal Treble)

buttonControl overrides bassDn bassUp trebleDn trebleUp
= (bass, treble)

4.2. The Equalizer Specification Model 79

where (bass, treble) = unzipSY levels
levels = ((holdSY (0.0, 0.0)) ‘funComb2‘ levelControl)

button overrides
button = buttonInterface bassDn bassUp trebleDn trebleUp

The ProcessButtonInterface

The processButtonInterface monitors the four input buttons
−−−−−→
BassDn,

−−−−−→
BassUp,−−−−−−→

TrebleDn,
−−−−−−→
TrebleUp and outputs the value for the pressed button

−−−−→
Button. If two

or more buttons are pressed the conflict is resolved by the priority order of the
buttons. If no button is pressed the output is absent. Since the process is purely
combinational and has four inputs, it is modeled by means of a process that is based
on the process constructorzipWithSY 4.

ButtonInterface(
−−−−−→
BassUp,

−−−−−→
BassDn,

−−−−−−→
TrebleUp,

−−−−−−→
TrebleDn)

= (zipWithSY 4(f))(
−−−−−→
BassUp,

−−−−−→
BassDn,

−−−−−−→
TrebleUp,

−−−−−−→
TrebleDn)

where

f (
−−−−−→
BassUp,

−−−−−→
BassDn,

−−−−−−→
TrebleUp,

−−−−−−→
TrebleDn)

=

BassUp if bassUp = Active
BassDn if bassUp =⊥ ∧

bassDn = Active
TrebleUp if bassUp =⊥ ∧

bassDn =⊥ ∧
trebleUp = Active

TrebleDn if bassUp =⊥ ∧
bassDn =⊥ ∧
trebleUp =⊥ ∧
trebleDn = Active

⊥ otherwise

Observe that the use of process constructors simplifies the task for the designer.
Since the process constructor (herezipWithSY) implements the synchronous com-
putational model, the designer has only to formulate the combinational function
(f), which will be applied by the process constructor to all values of the incoming
signal.

The ButtonInterface is modeled with help of pattern matching. Instead of
writing a large number ofif-then-else clauses, pattern matching allows to
write conditional patterns in a readable and concise way. The value ’’ works as a
wild card.

buttonInterface :: Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)

80 Chapter 4. Development of the Specification Model

Locked

b:=decL(b,s)b:=decL(b,c) t:=incL(t,s) t:=decL(t,s)

CutBass TrebleDn

BassDn TrebleUp

Locked

Operating

b:=decL(b,s)b:=incL(b,s) t:=incL(t,s) t:=decL(t,s)

BassUp TrebleDn

BassDn TrebleUp

Operatingt:=0
b:=0

Operating

Locked

Lock Release

Figure 4.4. The State diagram of the processLevelControl

-> Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Button)

buttonInterface bassUp bassDn trebleUp trebleDn
= zipWith4SY f bassUp bassDn trebleUp trebleDn

where f (Prst Active) _ _ _ = Prst BassUp
f _ (Prst Active) _ _ = Prst BassDn
f _ _ (Prst Active) _ = Prst TrebleUp
f _ _ _ (Prst Active) = Prst TrebleDn
f _ _ _ _ = Abst

The ProcessLevelControl

The state diagram of the processLevelControl is shown in Figure 4.2.1. The
functionality has been extended compared to the original MASCOT model. The
state diagram is inspired by the original SDL diagram.

The process has a local state expressing the current values for the bassb and
treblet . TheLevelControl has two modes, in the modeOperating the bass and tre-
ble values are stepwise changed in steps of 0.2. However, there exists a maximum
and a minimum value of +5.0 and -5.0 respectively. The process enters the mode
Locked when the

−−−→
Overr has the valueLock. In this mode an additional increase of

the bass level is prohibited and even decreased by 1.0 in case the signal
−−−→
Overr has

the valueCutBass. The subsystem returns to the modeOperating on the
−−−→
Overr value

4.2. The Equalizer Specification Model 81

Release. The output of the process is an absent extended signal of tuples with the
current bass and treble levels.

LevelControl(
−−−−→
Button,

−−−→
Overr)

= mealySY 2(nextState, output , (s0, b0, t0))(
−−−−→
Button,

−−−→
Overr)

where
s0 = Operating
b0 = 0
t0 = 0
nextState((s, b, t), btn, ov) = (s+, b+, t+)
where

s+ =

Locked if (s = Operating ∧ ov = Lock) ∨
(s = Locked ∧ ov 6= Release)

Operating if (s = Operating ∧ ov 6= Lock) ∨
(s = Locked ∧ ov = Release)

b+ =

incL(b,Step) if (s = Operating ∧ btn = BassUp)
∧(ov 6= CutBass)

decL(b,Step) if (btn = BassDn)∧
(ov 6= CutBass)

decL(b, cutStep) if (ov = CutBass)

t+ =
{

incL(t,Step) if btn = TrebleUp
decL(t,Step) if btn = TrebleDn

Step = 0.2
CutStep = 1.0
MaxLevel = 5.0
MinLevel = −5.0

incL(x, step) =
{

MaxLevel if (x + step) ≥ MaxLevel
x + step otherwise

decL(x, step) =
{

MinLevel if (x − step) ≥ MinLevel
x − step otherwise

output((s, b, t), btn, ov) =
{ ⊥ if btn =⊥ ∧ov =⊥

(b, t) otherwise

The process is modeled by means of the process constructormealySY 2, which
has a next-state functionnextState, an output functionoutput and an initial state
as arguments. Since the process constructor implements the computational model,
the designer has only to formulate the initial state, the next-state and the output
function. The state is divided into a mode (with the initial values0 = Operating),
a bass value (b0 = 0) and a treble value (t0 = 0). The next-state function can be
extracted from the state diagram. The output function selects the bass and treble

82 Chapter 4. Development of the Specification Model

values from the state in case of a present value of either
−−−−→
Button or

−−−→
Overr . Otherwise

the output event has an absent value.
The Haskell code follows the formal ForSyDe description and can be found in

Appendix B.

4.2.2 The SubsystemDistortionControl

The Distortion Control is directly developed from the SDL-specification that has
been used for the MASCOT-model [20]. The specification is shown in Figure 4.5.

Process DistortionCtrl 1(1)

dcl Cnt integer := 0;
dcl Lim integer := 3;

Passed

Pass Fail

Passed Lock

Cnt := Lim

Failed

Pass Fail

Locked CutBass

Fail Pass Failed

Cnt := Lim Cnt :=
Cnt − 1

Failed Cnt

Release Locked

Passed

0

ELSE

Figure 4.5. SDL-description of theDistortionControl

TheDistortionControl is a single FSM, which can be modeled by means of
the process constructormealySY . The global state is not only expressed by the
modes -Passed, Failed andLocked -, but also by means of the variablecnt . The
state machine has two possible input values,Pass andFail, and three output values,

4.2. The Equalizer Specification Model 83

Lock, Release andCutBass. It takes two functions,ns to calculate the next state
andout to calculate the output. The state is represented by a pair of the mode and
the variablecnt . The initial state is the same as in the SDL-model, given by the
tuple (Passed, 0). Whenever an input value matches a pattern of thens function
the corresponding right hand side is evaluated, giving the next state. An event with
an absent value leaves the state unchanged. The output function is modeled in a
similar way. The output is absent, when there is no output message as indicated in
the SDL-model.

The ForSyDe model for theDistortionControl is given below.

DistortionControl = mealySY 1(ns, out, (Passed, lim))
where

ns((st , cnt), inp)

=

(st , cnt) if inp =⊥
(Passed, cnt) if st = Passed ∧ inp = Pass
(Failed, lim) if st = Passed ∧ inp = Fail
(Locked, cnt) if st = Failed ∧ inp = Pass
(Failed, cnt) if st = Failed ∧ inp = Fail
(Failed, lim) if st = Locked ∧ inp = Fail
(Passed, cnt − 1) if st = Locked ∧ inp = Pass ∧ cnt = 1
(Locked, cnt − 1) if st = Locked ∧ inp = Pass ∧ cnt 6= 1

out((st , cnt), inp)

=

Lock if st = Passed ∧ inp = Fail
CutBass if st = Failed ∧ inp = Fail
Release if st = Locked ∧ inp = Pass ∧ cnt = 1
⊥ otherwise

lim = 3

4.2.3 The SubsystemAudioFilter

The task of theAudioFilter (Figure 4.6) is to amplify different frequencies of the
audio signal independently according to the current bass and treble levels. The au-
dio signal is split into three identical signals, one for each frequency region. The
signals are filtered and then amplified according to the assigned amplification level.
As the equalizer in this design only has a bass and treble control, the middle fre-
quencies are not amplified. The output signal from theAudioFilter is the addition
of the three filtered and amplified signals. This level is also modeled as set of
equations.

84 Chapter 4. Development of the Specification Model

Low Pass

Band Pass

High Pass

Amplifier

Amplifier

−−−−−−−→
AudioOut

−−−→
Bass

−−−−→
Treble

−−−−−→
AudioIn

Figure 4.6. Subsystems of theAudioFilter

AudioFilter(
−−−→
Bass,

−−−−→
Treble,

−−−−−→
AudioIn) =

−−−−−−→
AudioOut

where−−−−−−→
AudioOut = Sum(

−−→
Low ,

−−−−→
Middle,

−−→
High)−−→

Low = (Amplifer(
−−−→
Bass) ◦ LowPass)(

−−−−−→
AudioIn)−−−−→

Middle = BandPass(
−−−−−→
AudioIn)−−→

High = (Amplifer(
−−−−→
Treble) ◦ BandPass)(

−−−−−→
AudioIn)

The subsystems of theAudioFilter are implemented as processes. A paramet-
ric processFIR that models a FIR-filter, is used to implement all filter functions,
i.e. for the low pass, band pass and high pass filter. A FIR-filter is described by the
equation

yn =
k∑

m=0

xn−mhm

xn−2

h0 h2 hkh1

z−1z−1
xn−1 xn−kxn

z−1

yn

InnerProd(h)

SIPO(k + 1, 0)

Figure 4.7. FIR-filter

4.2. The Equalizer Specification Model 85

The FIR-filter is modeled as shown in Figure 4.7 as a composition of a shift
register with parallel outputs (SIPO(k + 1 , 0)) which captures the current state
of the filter and a combinational processInnerProd(h) that calculates the inner
product of the outputs of the shift register and the coefficient vectorh.

FIR(h) = InnerProd(h) ◦ SIPO(k + 1, 0)
whereh = 〈h0, . . . , hk〉

The shift registerSIPO has two parameters for the sizen and the initial values
s0 and consists of two parts.

SIPO(n, s0) = unzipSY n ◦ scandSY 1(shiftr , 〈s0, . . . , s0︸ ︷︷ ︸
n

〉)

The sequential process constructorscandSY 1(shiftr , 〈v, . . . , v〉) creates a pro-
cess, which models a shift register with a vector of sizen, where all elements have
the initial values0. However, according to the definition of the process constructor
scandSY 1 the output of the shift register is a signal of a vector withn elements,
which has to be converted inton parallel signals. This conversion is done be the
combinator processunzipSY n. The processInnerProd(h) has the coefficient vec-
tor h as parameter. It is modeled with the process constructorzipWithSY k+1. The
supplied parametric functionipV (h) calculates the inner product of the coefficient
vector and the given state vector.

InnerProd(h) = zipWithSY k+1(ipV (h))
where(ipV (h))(x0, . . . , xn) = h0x0 + · · · + hkxn

The formal FIR-filter description is directly translated to Haskell. Here the
functionszipWithxSY andunzipxSY are Haskell implementations of the process
constructorzipWithSY m and the combinator processunzipSY n that use vectors
of signals of equal type.

fir h = innerProd h . sipo k 0.0
where k = lengthV h

sipo n s0 = unzipxSY . scanldSY shiftrV initState
where initState = copyV n s0

innerProd h = zipWithxSY (ipV h)
where ipV NullV NullV = 0

ipV (h:>hv) (x:>xv) = h*x + ipV hv xv

86 Chapter 4. Development of the Specification Model

DFT Spectrum Bass
Check

−−−−−→
AudioIn Group

Samples

−−−−−−−−−−→
DistortionFlag

Figure 4.8. TheAudioAnalyzer Subsystem

The parametric FIR filter can now be used to express various FIR-filters of
different order. The band pass filter in the equalizer is expressed as

BandPass = FIR([0.063, 0.081, 0.095, 0.104, 0.107
0.104, 0.095, 0.081, 0.063])

For other processes in theAudioFilter see Appendix B.4.

4.2.4 The SubsystemAudioAnalyzer

TheAudioAnalyzer analyzes the current bass level and raises a flag when the bass
level exceeds a limit.

As illustrated in Figure 4.8 theAudioAnalyzer is divided into four blocks. The
input signal is first grouped into samples of sizek by the processGroupSamples,
since the processDFT operates on a vector ofk samples. The processDFT calcu-
lates the frequency spectrum of the signal. Then the power spectrum is calculated
in Spectrum. In CheckBass the lowest frequencies are compared with a threshold
value. If they exceed this value, the output

−−−−−→
DistFlag will have the valueFail.

SinceGroupSamples needsk cycles for the grouping, it producesk−1 absent
values⊥ for each grouped sample. Thus the following processesDFT , Spectrum
andCheckBass are allΨ-extended (3.1) in order to be able to process the absent
value⊥. This means that also the output signal

−−−−−→
DistFlag hask − 1 absent values

for each present value.

AudioAnalyzer(
−−−−−−→
AudioOut) =

−−−−−→
DistFlag

where
AudioAnalyzer = CheckBass ◦ Spectrum◦

DFT ◦ GroupSamples
where
CheckBass = mapSY (Ψ(checkBass))
Spectrum = mapSY (Ψ(spectrum))
DFT = mapSY (Ψ(dft(k)))
GroupSamples = groupSY (k)

4.2. The Equalizer Specification Model 87

The processGroupSamples is expressed by the library processgroupSY (k).
The process is based onmooreSY and defined as follows.

groupSY (k) = PS ∈ PS

where
−→o = PS(

−→
i1 , . . . ,

−→
im)

PS = mooreSY 1(f, g, s0)
where
s0 = 〈〉
f(x, s) =

{ 〈x〉 if #s = k ∨ #s = 0
s ⊕ x otherwise

g(s) =
{

s if #s = k
⊥ otherwise

(4.1)

The concatination operator⊕ is defined as

〈〉 ⊕ x = 〈x〉
〈v1, . . . , vn〉 ⊕ x = 〈v1, . . . , vn, x〉

and#v returns the number of elements in the vectorv.

groupSY (k)

−→o =< 〈〉,⊥, . . . ,⊥︸ ︷︷ ︸
k−1

, 〈v0, . . . , vk−1〉,⊥, · · · >

−→
i =< v0, v1, · · · >

−→
i −→o

Figure 4.9. The processgroupSY

The processgroupSY (k) is illustrated in Figure 4.9. Each input value is read
and stored in the internal state vector ofgroupSY until the state vector hask values.
At that point the state vector is written to the output and afterwards reset to an
empty vector. SincegroupSY is a synchronous process, absent values have to
be produced for each input value as long as the grouping is not completed. The
process starts with the empty vector as initial state, which is also sent to the output.

For other processes in theAudioAnalyzer see Appendix B.5.

88 Chapter 4. Development of the Specification Model

4.3 Discussion

This chapter illustrated modeling in ForSyDe by the example of a specification
model of a digital equalizer. The ForSyDe modeling technique leads to very com-
pact4, well-structured models, which may have many levels of hierarchy. Process
networks are described as sets of equations, which capture the structure of a sys-
tem in a much cleaner way than netlists in VHDL. Control is modeled by means
of sequential process constructors that result in processes that can be directly im-
plemented as finite state machines. The functional character of ForSyDe allows an
efficient modeling of data flow parts.

The specification model shows how important absent values are in modeling.
Absent values are used in several signals to indicate that there is not a present
value in all event cycles, which is also reflected in the data type of the signal. This
information can be used during design refinement in order to obtain a more efficient
implementation as elaborated in Chapter 5.

The example showed also, that there is a direct correspondence between the
formal notation of ForSyDe and Haskell. Haskell’s powerful type system gives
additional benefits to system design. Haskell programs are type-safe and since the
type system allows type inference, functions, process constructors and processes
can be formulated in a flexible way that facilitates the development of a design
library. A good example for the potential of ForSyDe is the processFIR that is
modeled with very few lines of code, is parametric for any number of coefficients
and has a direct interpretation in hardware. Thus ForSyDe gives support for a com-
bined top-down and bottom-up modeling process, which leads to abstract models
that can be refined during transformational design refinement as discussed in Chap-
ter 5.

In principle there is also the possibility to formulate ForSyDe models on a
less abstract level, since the implementation model also belongs to the functional
domain. Such a low-level model could then without transformation directly be
mapped into an implementation. This may be useful for application areas for which
not enough transformations have been developed. These low-level models could
then be combined with abstract models of other application areas, for which a
sufficient amount of transformations exists. However, the intention of ForSyDe is
to start with an abstract specification model with a large design space, but ForSyDe
also allows to start from lower abstraction levels.

4A Haskell program is considerably shorter than a corresponding VHDL description [50].

Chapter 5

Design Refinement

This chapter presents transformational design refinement, which is one of the key
concepts in ForSyDe. The objective is to refine an abstract specification model
by the application of formally defined transformation rules into a detailed imple-
mentation model. The transformational approach is based on the formal definition
of ForSyDe and in particular the concept of process constructors. Transformation
rules are classified as semantic preserving and design decision. Each rule is ac-
companied with an implication that indicates the semantical changes caused by a
transformation. The first part of this chapter gives the foundations for transforma-
tional design refinement in ForSyDe, in particular it is shown how a characteristic
function can be derived for all process networks in ForSyDe. In addition seman-
tic preserving transformations and design decisions are introduced by illustrative
examples. The second part uses the model of the digital equalizer to illustrate
some powerful design transformations, such as clock domain and communication
refinement.

5.1 Transformational Design Refinement

One of the key ideas of the ForSyDe methodology is to move large parts of the
synthesis, which traditionally are part of the implementation domain, into the func-
tional domain. This is done in the refinement phase where the specification model
M0 is stepwise refined by well defined design transformationsTi into a final im-
plementation modelMn (Figure 5.1). Only at this late stage of the design process
the implementation model is translated using the ForSyDe hardware and software
semantics into a synthesizable implementation description.

89

90 Chapter 5. Design Refinement

T1

M1 Mn
Tn

M0

Specification
Model

Implementation
Model

Figure 5.1. Transformational design refinement

A transformation(Definition 5.2) is the application of atransformation rule
(Definition 5.1) to a process network that is a part of a system model as illustrated
in Figure 5.2.

P1

P3 P4

P2

PN

M

P1 P2

P ′

PN ′

M ′

T (PN,Rule)−→

Figure 5.2. Design transformation

Here, the transformation ruleRuleis applied to the process networkPN inside
the system modelM . The result of the transformation is the system modelM ′.
The only difference betweenM andM ′ is the replacement ofPN by PN ′.

Definition 5.1 (Transformation Rule) A transformation ruleR : P → P is a
functional mapping of a process networkPN onto another process networkPN ′

with the same number of input signals and the same number of output signals. A

transformation rule is denoted byR(PN) = PN ′ or PN
R−→ PN ′.

The set of all transformation rules is denoted byR.

Definition 5.2 (Transformation) A transformationT : (M,P,R) → M is a
functional mapping of a system modelM onto another system modelM ′ with the
same input signals and the same number of output signals. Using the transforma-
tion ruleR the internal process networkPN in M is replaced byR(PN) to yield
M ′. A transformation is denoted byT (M, PN, R) = M ′ = M [R(PN)/PN] or

M
T (PN,R)−→ M ′ = M [R(PN)/PN], where[x/y] reads asy is replaced byx.
The set of all transformations is denoted byT.

5.1. Transformational Design Refinement 91

In order to be able to compare process networks and to develop and classify
transformation rules, ForSyDe defines the characteristic function for basic pro-
cesses in Definition 5.3 and extends it to processes in general in Definition 5.4.

Definition 5.3 (Characteristic Function of a Basic Process)The characteristic
functionEPB

(
−→
i1 , . . . ,

−→
im , j) of a basic processPB with the input signals

−→
i1 , . . . ,

−→
im

and the output signal−→o expresses the dependence of any output event with index
j ∈ N0 on the input signals.

EPB
(
−→
i1 , . . . ,

−→
im , j) = E(−→o , j) = E(PB(

−→
i1 , . . . ,

−→
im), j)

= (T (PB(
−→
i1 , . . . ,

−→
im), j), V (PB(

−→
i1 , . . . ,

−→
im), j))

= (TPB
(
−→
i1 , . . . ,

−→
im , j), VPB

(
−→
i1 , . . . ,

−→
im , j))

TPB
is thecharacteristic tag functionandVPB

is thecharacteristic value function
of a processPB.

PB

−→
i1
−→
im

< EPB
(
−→
i1 , . . . ,

−→
im , 0),EPB

(
−→
i1 , . . . ,

−→
im , 1), · · · >

Figure 5.3. A process is completely defined by its characteristic function

The characteristic functionEPB
is sufficient to specify the behavior of the basic

processPB with the input signals
−→
i1 , . . . ,

−→
im by means of

−→o = PB(
−→
i1 , . . . ,

−→
im)

= < EPB
(
−→
i1 , . . . ,

−→
im , 0), EPB

(
−→
i1 , . . . ,

−→
im , 1), · · · >

as illustrated in Figure 5.3. Since any process can be expressed as a network of
basic processes as stated in Proposition 1, all processes can be completely defined
by their characteristic function, if there exists a characteristic function for each
basic process.

Definition 5.4 (Characteristic Function of a Process)Thecharacteristic function
EP (

−→
i1 , . . . ,

−→
im , j) of a processP with the input signals

−→
i1 , . . . ,

−→
im and the output

signals−→o1 , . . . ,−→on expresses the dependence of the output events at indexj ∈ N0

on the input signals.

92 Chapter 5. Design Refinement

EP (
−→
i1 , . . . ,

−→
im , j) = (EPB1

(
−→
i1 , . . . ,

−→
im , j), . . . ,EPBn

(
−→
i1 , . . . ,

−→
im , j))

where
(−→o1 , . . . ,−→on) = P (

−→
i1 , . . . ,

−→
im)

−→o1 = PB1(
−→
i1 , . . . ,

−→
im)

−→o2 = PB2(
−→
i1 , . . . ,

−→
im)

...
−→on = PBn(

−→
i1 , . . . ,

−→
im)

As discussed later in this chapter, a characteristic function can be derived for
each process constructed by a synchronous process constructor or domain interface
constructor and for each combinator process. It is also possible to give a character-
istic function for compositions of these processes. The characteristic function can
be given for all process networks and system models in ForSyDe that do not include
a zero-delay feedback loop and have at least one input signal. Thus a characteristic
function for a pure source process cannot be determined.

The characteristic function is sufficient to fully describe the behavior of a pro-
cess. In the following basic processes are classified as causal, synchronous, com-
binational or sequential. These classifications can be extended to cover processes
with more than one output signal.

• A basic processPB with the input signals
−→
i1 , . . . ,

−→
im is causal, if and only if

there exists a functionf(
−→
i1 , . . . ,

−→
im), such that

VPB
(
−→
i1 , . . . ,

−→
im , j) = f(V (

−→
i1 , 0), . . . , V (

−→
i1 , k1), . . . ,

V (
−→
im , 0), . . . , V (

−→
im , km))

where∀l.1 ≤ l ≤ m and∀j, kl ∈ N0

T (
−→
il , kl) ≤ TPB

(
−→
i1 , . . . ,

−→
im , j)

Thus a process is causal, if all output events only depend on input events that
do not have a larger tag than the produced output event. ForSyDe considers
only causal systems.

• A basic processPB with the input signals
−→
i1 , . . . ,

−→
im is synchronous, if and

only if ∀j ∈ N0

TPB
(
−→
i1 , . . . ,

−→
im , j) = T (

−→
i1 , j) = · · · = T (

−→
im , j)

5.1. Transformational Design Refinement 93

• A basic processPB with the input signals
−→
i1 , . . . ,

−→
im is combinational, if it

is synchronous and∀j ∈ N0

VPB
(
−→
i1 , . . . ,

−→
im , j) = f(V (

−→
i1 , j), . . . , V (

−→
im , j))

• A basic processPB with the input signals
−→
i1 , . . . ,

−→
im is sequential, if and

only if it is synchronous and∀j ∈ N0

∃k ∈ N1.VPB
(
−→
i1 , . . . ,

−→
im , j) = f(. . . , V (

−→
i1 , j − k), . . .)

In contrast to other transformational approaches for the design of software [88]
[89], which only allow the application ofsemantic preservingtransformation rules,
ForSyDe also definesdesign decisiontransformation rules, which change the se-
mantics of the model in a defined manner. Design decisions are mainly motivated
by the application domain of ForSyDe. ForSyDe targets embedded systems, which
often have to fulfill hard requirements on performance or power dissipation. To ful-
fill these requirements the resources of the system have to be used efficiently. The
purpose of the specification model is to model a system on a level that abstracts
from implementation details. Thus the ForSyDe specification model uses ideal (in-
finite) buffers, floating-point numbers and a simple synchronous communication
scheme. On the other hand an efficient implementation has to use finite buffers and
fixed-point numbers and may have to use versatile communication mechanisms
for the synchronization of different components in a distributed implementation.
Clearly it is not possible to transform a high-level specification model into such an
implementation without changing the semantics. Thus design decisions are needed
to bridge the abstraction gap.

The application of a semantic preserving transformation rule does not change
the meaning of the system model and is mainly used to optimize the model for syn-
thesis. In contrast, the application of a design decision rule changes the meaning
of a system model. A typical design decision is the refinement of an infinite buffer
into a fixed-size buffer with a size ofn elements. While such a design decision
clearly modifies the semantics of the system model, the transformed model may
still behave in the same way as the original model under a certain precondition.
For instance, if it is possible to prove, that the ideal buffer will never contain more
thann elements, it can be replaced by a finite buffer of sizen and will behave as
the ideal buffer for the given precondition.

Design transformation rules can be classified assemantic preserving(Defini-
tion 5.5) ordesign decision(Definition 5.6).

94 Chapter 5. Design Refinement

Definition 5.5 (Semantic Preserving Transformation Rule)A transformation rule

PN
R−→ PN ′ is semantic preserving rule, if and only if

EPN (
−→
i1 , . . . ,

−→
im , j) = EPN ′(

−→
i1 , . . . ,

−→
im , j).

A design decision changes the semantics of the design only to a small extent,
i.e. there is a close relation between the original design and the transformed design.
This is reflected in Definition 5.6, where such a relation is required.

Definition 5.6 (Design Decision Rule)A transformation rulePN
R−→ PN ′ is a

design decision rule, if it is not semantic preserving

EPN (
−→
i1 , . . . ,

−→
im , j) 6= EPN ′(

−→
i1 , . . . ,

−→
im , j).

and there exists a relationrel betweenPN andPN ′.

PN rel↔ PN ′

These relations are in practice often difficult to express and it is up to the creator
of a transformation rule to ensure that there exists a meaningful relation. Exam-
ples for close relations between an original and a transformed process network are
functional equivalence (Definition 5.7) and tail equivalence (Definition 5.8), which
are discussed in Section 5.3.

The rest of this chapter is structured as follows. Section 5.2 gives the char-
acteristic functions for processes constructed by process constructors and process
networks. Section 5.3 shows how the characteristic function is used for the devel-
opment and classification of transformation rules. Finally, Section 5.4 illustrates
the potential of transformational design refinement by the example of the digital
equalizer, where powerful design transformations are applied.

5.2 Characteristic Functions for Processes and Process Net-
works

In this section the characteristic function is given for processes based on syn-
chronous process constructors, domain interface constructors, combinator processes
and process networks.

5.2.1 Processes based on Synchronous Process Constructors

Synchronous processes output the events at the same tag as the corresponding input
event. Thus for a synchronous process, the characteristic tag function yields the tag
of the corresponding input event for a given indexj.

5.2. Characteristic Functions for Processes and Process Networks 95

Combinational processes, such as processes based onmapSY andzipWithSY
have a characteristic function that only depends on current input events.

The characteristic function of a process based onmapSY (Figure3.12) is

E3(f)(
−→
i , j) = (T3(f)(

−→
i , j), V3(f)(

−→
i , j))

where

T3(f)(
−→
i , j) = T (

−→
i , j)

V3(f)(
−→
i , j) = f(V (

−→
i , j))

(5.1)

The characteristic function of a process based onzipWithSY m (Figure 3.13)
is

E�m (f)(
−→
i1 , . . . ,

−→
im , j) = (T�m (f)(

−→
i1 , . . . ,

−→
im , j), V�m (f)(

−→
i1 , . . . ,

−→
im , j))

where

T�m (f)(
−→
i1 , . . . ,

−→
im , j) = T (

−→
i1 , j) = · · · = T (

−→
im , j)

V3(f)(
−→
i1 , . . . ,

−→
im , j) = f(V (

−→
i1 , j), . . . , V (

−→
im , j))

Sequential processes, such as processes based ondelaySY , depend also on
past input events.

The characteristic function of a process based ondelaySY k(s0) (Figure 3.14)
is

E4k (s0)(
−→
i , j) = (T4k (s0)(

−→
i , j), V4k (s0)(

−→
i , j))

where

T4k (s0)(
−→
i , j) = T (

−→
i , j)

V4k (s0)(
−→
i , j) =

{
s0 if j < k

V (
−→
i , j − k) otherwise

The characteristic function of a process based onscanlSY m(f, s0) (Figure
3.14) is recursively expressed by

96 Chapter 5. Design Refinement

EscanlSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j) = (TscanlSY m (f ,s0)(

−→
i1 , . . . ,

−→
im , j),

VscanlSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j))

where

TscanlSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j) = T (

−→
i1 , j) = · · · = T (

−→
im , j)

VscanlSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j) = f(V (

−→
i1 , j), . . . , V (

−→
im , j), sj)

where

sj =
{

s0 if j = 0
f(V (

−→
i1 , j − 1), . . . , V (

−→
im , j − 1), sj−1) if j > 0

The first elements of the characteristic value function ofscanlSY m(f, s0) can
be explicitly given by

VscanlSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j)

=

f(V (
−→
i1 , 0), . . . , V (

−→
im , 0), s0) if j = 0

f(V (
−→
i1 , 1), . . . , V (

−→
im , 1), f(V (

−→
i1 , 0), . . . , V (

−→
im , 0), s0)) if j = 1

...
...

This example shows that a characteristic function has increasing complexity
with increasing sequential depth.

The characteristic function of a process based onscanldSY m(f, s0) (Figure
3.18) is recursively expressed by

EscanldSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j) = (TscanldSY m (f ,s0)(

−→
i1 , . . . ,

−→
im , j),

VscanldSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j))

where

TscanldSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j) = T (

−→
i1 , j) = · · · = T (

−→
im , j)

VscanldSY m (f ,s0)(
−→
i1 , . . . ,

−→
im , j) = sj

where

sj =
{

s0 if j = 0
f(V (

−→
i1 , j − 1), . . . , V (

−→
im , j − 1), sj−1) if j > 0

The characteristic function of a process based onmooreSY m(f, g, s0) (Figure
3.19) is recursively expressed by

5.2. Characteristic Functions for Processes and Process Networks 97

EmooreSY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j) = (TmooreSY m (f ,g,s0)(

−→
i1 , . . . ,

−→
im , j),

VmooreSY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j))

where

TmooreSY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j) = T (

−→
i1 , j) = · · · = T (

−→
im , j)

VmooreSY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j) = g(s0)

where

sj =
{

s0 if j = 0
f(V (

−→
i1 , j − 1), . . . , V (

−→
im , j − 1), sj−1) if j > 0

The characteristic function of processes based onmealySY m(f, g, s0) (Figure
3.20) is recursively expressed by

EmealySY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j) = (TmealySY m (f ,g,s0)(

−→
i1 , . . . ,

−→
im , j),

VmealySY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j))

where

TmealySY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j) = T (

−→
i1 , j) = · · · = T (

−→
im , j)

VmealySY m (f ,g,s0)(
−→
i1 , . . . ,

−→
im , j) = g(V (

−→
i1 , j), . . . , V (

−→
im , j), sj)

where

sj =
{

s0 if j = 0
f(V (

−→
i1 , j − 1), . . . , V (

−→
im , j − 1), sj−1) if j > 0

5.2.2 Processes based on Domain Interface Constructors

The characteristic function of the domain interface constructors is given below,
where ’div’ is the integer division function and ’rem’ the remainder function. Re-
member thatC(−→s) is the event cycle of a periodic signal−→s (Definition 3.8).

The characteristic function of the domain interface constructordownDI (Fig-
ure 3.26) is

EdownDI (k)(
−→
i , j) = (TdownDI (k)(

−→
i , j), VdownDI (k)(

−→
i , j))

where

TdownDI (k)(
−→
i , j) = T (

−→
i , kj)

VdownDI (k)(
−→
i , j) = V (

−→
i , kj)

The characteristic function of the domain interface constructorupDI (Figure
3.27) is

98 Chapter 5. Design Refinement

EupDI (k)(
−→
i , j) = (TupDI (k)(

−→
i , j), VupDI (k)(

−→
i , j))

where

TupDI (k)(
−→
i , j) = j

kC(
−→
i)

VupDI (k)(
−→
i , j) = V (

−→
i , div(j, k))

The characteristic function of the domain interface constructorp2sDI (Figure
3.30) is

Ep2sDI (m)(
−→
i1 , . . . ,

−→
im , j) = (Tp2sDI (m)(

−→
i1 , . . . ,

−→
im , j), Vp2sDI (m)(

−→
i1 , . . . ,

−→
im , j))

where

Tp2sDI (m)(
−→
i1 , . . . ,

−→
im , j) = j

mC(
−→
i1) = · · · = j

mC(
−→
im)

Vp2sDI (m)(
−→
i1 , . . . ,

−→
im , j) = V (

−→
iu , w)

where
u = rem(j, m) + 1
w = div(j, m)

The characteristic function of the domain interface constructors2pDI (Figure
3.31) is

Es2pDI (n)(
−→
i , j) = (EP1 (

−→
i , j), . . . ,EPn (

−→
i , j))

where∀k.1 ≤ k ≤ n

EPk
(
−→
i , j) = (TPk

(
−→
i , j), VPk

(
−→
i , j))

TPk
(
−→
i , j) = T (

−→
i , jn)

VPk
(
−→
i , j) =

{ ⊥ if j = 0
V (

−→
i , (j − 1)n + k − 1) otherwise

5.2.3 Combinator Processes

The characteristic function of the combinator processeszipSY m (Figure 3.21) is

EzipSY m
(
−→
i1 , . . . ,

−→
im , j) = (TzipSY m

(
−→
i1 , . . . ,

−→
im , j), VzipSY m

(
−→
i1 , . . . ,

−→
im , j))

where

TzipSY m
(
−→
i1 , . . . ,

−→
im , j) = T (

−→
i1) = · · · = T (

−→
im)

VzipSY m
(
−→
i1 , . . . ,

−→
im , j) = (V (

−→
i1 , j), . . . , V (

−→
im , j))

The characteristic function of the combinator processesunzipSY n (Figure
3.22) is

5.2. Characteristic Functions for Processes and Process Networks 99

EunzipSY n
(
−→
i , j) = (EPB1

(
−→
i , j), . . . ,EPBn

(
−→
i , j))

where

V (
−→
i , j) = (vj(1), . . . , vj(n))

TPBk
(
−→
i , j) = T (

−→
i , j) ∀k.1 ≤ k ≤ n

VPBk
(
−→
i , j) = vj(k) ∀k.1 ≤ k ≤ n

5.2.4 Network of Processes

The characteristic function of a process networkP1 ◦m P2 composed by sequential
composition can be determined by

EP1 ◦mP2 (
−→
i1 , . . . ,

−→
im , j) = EP1 (

∞⊕
k=0

EP2 (
−→
i1 , . . . ,

−→
im , k), j)

since the output from the processP2 is
∞⊕

k=0

EP2 (
−→
i1 , . . . ,

−→
im , k).

The characteristic function of a process networkP1 ‖ P2 composed by parallel
composition can be determined by

EP1 ‖P2
(
−→
i1 ,

−→
i2 , j) = (EP1 (

−→
i1 , j), EP2 (

−→
i2 , j))

In order to illustrate how the characteristic functions of more complicated net-
works can be calculated, the characteristic function of the network in Figure 5.4 is
derived.

P1 P2

−→s1

P3−→
i2

−→
i1

−→s2

−→o1

−→o2

P1 = delaySY 1(0)
P2 = zipWithSY 2(∗)
P3 = zipWithSY 2(+)

Figure 5.4. Process network

The first step is to transform the process network into its equivalent form with
two basic processes as shown in Figure 5.5.

100 Chapter 5. Design Refinement

PB1

PB2

−→
i1−→
i2

−→
i2

−→
i1 −→o2

−→o1

PB1(
−→
i1 ,

−→
i2) = P2(P1(

−→
i1), P3(

−→
i1 ,

−→
i2))

PB2(
−→
i1 ,

−→
i2) = P3(

−→
i1 ,

−→
i2)

Figure 5.5. Equivalent process network

For this process network the characteristic function can be derived as

EPN (
−→
i1 ,

−→
i2 , j) = (E(−→o1 , j), E(−→o2 , j))

= (EPB1
(
−→
i1 ,

−→
i2 , j), EPB2

(
−→
i1 ,

−→
i2 , j))

= ((TPB1
(
−→
i1 ,

−→
i2 , j), VPB1

(
−→
i1 ,

−→
i2 , j)),

(TPB2
(
−→
i1 ,

−→
i2 , j), VPB2

(
−→
i1 ,

−→
i2 , j)))

(5.2)

The characteristic tag function is

TPB1
(
−→
i1 ,

−→
i2 , j) = TPB2

(
−→
i1 ,

−→
i2 , j) = T (

−→
i1 , j) = T (

−→
i2 , j)

since all processes are synchronous processes.
The characteristic value functionVPB1

can be derived by

VPB1
(
−→
i1 ,

−→
i2 , j) = V (−→o1 , j)

= VP2 (−→s1 ,−→s2 , j)
= V (−→s1 , j) ∗ V (−→s2 , j)
= VP1 (

−→
i1 , j) ∗ VP3 (

−→
i1 ,

−→
i2 , j)

where VP1 (
−→
i1 , j) =

{
s0 j = 0
V (

−→
i1 , j − i) otherwise

VP3 (
−→
i1 ,

−→
i2 , j) = V (

−→
i1 , j) + V (

−→
i2 , j)

=

{
s0 ∗ (V (

−→
i1 , 0) + V (

−→
i2 , 0)) if j = 0

V (
−→
i1 , j − 1) ∗ (V (

−→
i1 , j) + V (

−→
i2 , j)) if j > 0

and the characteristic value functionVPB2
by

VPB2
(
−→
i1 ,

−→
i2 , j) = V (−→o2 , j)

= VP3 (
−→
i1 ,

−→
i2 , j)

= V (
−→
i1 , j) + V (

−→
i2 , j)

5.3. Design Transformations 101

The results can be inserted into the expression of the characteristic function of
(5.2).

Since ForSyDe disables zero-delay feedback loops, it is possible to derive a
characteristic function for all meaningful process networks that are based on the
process constructors and processes defined in Chapter 3 and which have at least
one input signal. In practice only small process networks can be described by their
characteristic function, since the mathematical expressions increase in complexity
with the number of processes, the sequential depth and the number of synchronous
sub-domains. However, this is often sufficient, since the characteristic function is
mainly used for design transformation rules that are applied to process networks of
limited size.

5.3 Design Transformations

The designer applies transformations to a system model by choosing transforma-
tion rules from thetransformation library. The transformation rules are charac-
terized by aname, the required format and constraints of the original process
network, the format of the transformed process networkand theimplication for
the design, i.e. the relation between the original and transformed process network
expressed by the characteristic function.

Transformation rules are exemplified by the semantics preserving transforma-
tion MapMergethat is based on the identity

mapSY (f ◦ g) = mapSY (f) ◦ mapSY (g)

The transformation ruleMapMergetakes a process network of the form

PN (
−→
i) = (mapSY (f) ◦ mapSY (g))(

−→
i)

and transforms it into the form

PN ′(
−→
i) = (mapSY (f ◦ g))(

−→
i)

as illustrated in Figure 5.6.
Using the characteristic function for both expressions, it can be formally proven

that both process networksPN andPN ′ are semantically equivalent. This means
that the transformationMapMergeis semantic preserving. The proof is given be-
low.

102 Chapter 5. Design Refinement

mapSY (g)
−→s−→

i −→o
mapSY (f)

mapSY (f ◦ g)

−→

−→
i −→o

MapMerge

Figure 5.6. Illustration of the transformation ruleMapMerge

First the characteristic function formapSY (f ◦ g) is derived. The character-
istic function can be divided into the characteristic tag functionT3(f ◦g) and the
characteristic value functionV3(f ◦g).

E3(f ◦g)(
−→
i , j) = (T3(f ◦g)(

−→
i , j), V3(f ◦g)(

−→
i , j))

The characteristic tag and value functions are derived following the general
expression formapSY (5.1).

T3(f ◦g)(
−→
i , j) = T (

−→
i , j)

V3(f ◦g)(
−→
i , j) = (f ◦ g)(V (

−→
i , j))

= f(g(V (
−→
i , j)))

The characteristic functionE3(f)◦3(g) is given as

E3(f)◦3(g)(
−→
i , j) = (T3(f)◦3(g)(

−→
i , j), V3(f)◦3(g)(

−→
i , j))

where the characteristic tag function is derived as

T3(f)◦3(g)(
−→
i , j) = T (

−→
i , j)

sincemapSY is a synchronous process constructor.
The characteristic value function returns the output value of the signal−→o at

indexj of the process3(f) ◦ 3(g). The output signal−→o is given by3(f)(−→s) as
indicated in Figure 5.6. ThusV3(f ◦g)(

−→
i , j) can be formulated as

V3(f ◦g)(
−→
i , j) = V (−→o , j)

= VmapSY (g)(
−→s , j)

5.3. Design Transformations 103

The signal−→s can be expressed as

−→s =
∞⊕

k=0

E3(g)(
−→
i , k)

which leads to

V3(f ◦g)(
−→
i , j) = V3(f)(

−→s︷ ︸︸ ︷
∞⊕

k=0

E3(g)(
−→
i , k), j)

= f(V (
∞⊕

k=0

g(V (
−→
i , k)), j))

= f(g(V (
−→
i , j)))

Since the characteristic function of both process networksPN and PN ′ is
equivalent, it shows that the transformation ruleMapMergeis semantic preserv-
ing.

Transformation Rule: MapMerge(PN)
Orignal Process Network:
−→o = PN (

−→
i)

PN (
−→
i) = (mapSY (f) ◦ mapSY (g))(

−→
i)

Transformed Process Network:
−→o = PN ′(

−→
i)

PN ′(
−→
i) = (mapSY (f ◦ g))(

−→
i)

Implication:

EPN (
−→
i , j) = EPN ′(

−→
i , j)

Figure 5.7. The transformation ruleMapMerge

The transformation rule forMapMergeis given in Figure 5.7. All process net-
works that match the format given inOriginal Process Network can be transformed
by the application ofMapMergeinto the format given inTransformed Process
Network. The Implication expresses that the transformation rule is semantic pre-
serving and thus does not change the meaning of the process network, since the
characteristic functions of both process networks are identical.

The implication part provides the designer with the information to what extent
an application of a transformation rule changes the meaning of the original process
network.

104 Chapter 5. Design Refinement

The transformation rule can be expressed in Haskell by the following code.

-- Transformation MapMerge
mapMerge f g s = pn_ref f g s

-- Original Process
pn_org f g s = (mapSY f . mapSY g) s

-- Transformed Process
pn_ref f g s = mapSY (f . g) s

An occurrence of the patternmapSY f . mapSY g in a ForSyDe model can
be replaced by the patternmapSY (f . g) or alternatively with the pattern
mapMerge f g . Given a signal

−→s1 =� 1, 2, 3, 4, 5, 6 �
the following Haskell session with the Haskell interpreter Hugs 98 shows how the
transformation ruleMapMergecan be used.

Hugs98Prompt> (mapSY (+1) . mapSY (*3)) s1
{4,7,10,13,16,19}
Hugs98Prompt> (mapSY ((+1) . (*3))) s1
{4,7,10,13,16,19}
Hugs98Prompt> mapMerge (+1) (*3) s1
{4,7,10,13,16,19}

In the same way all other transformation rules can be expressed and applied in
Haskell. To date transformations are introduced manually in the Haskell code of the
system model. However, tools like ULTRA1 [3], which is an interactive program
transformation system for Haskell programs, may be used in future versions of
ForSyDe to support the transformation process.

SinceMapMergeis semantic preserving, there also exists the reverse transfor-
mation rule, which is namedMapSplitand given in Figure 5.8.

Figure 5.9 illustrates the application of a transformation rule by a simple ex-
ample. Here,MapMergeis used to merge two processes into a single process over
subsystem borders. Given the trivial case that

f(x) = x + 2
g(x) = x + 5

the transformed process ismapSY (h), where

h(x) = x + 7
1Ulm’s transformation tool

5.3. Design Transformations 105

Transformation Rule: MapSplit(PN)
Orignal Process Network:
−→o = PN (

−→
i)

PN (
−→
i) = (mapSY (f ◦ g))(

−→
i)

Transformed Process Network:
−→o = PN ′(

−→
i)

PN ′(
−→
i) = (mapSY (f) ◦ mapSY (g))(

−→
i)

Implication:

EPN ′(
−→
i , j) = EPN (

−→
i , j)

Figure 5.8. The transformation ruleMapSplit

P1 mapSY (f) P2mapSY (g)

Subsystem 2Subsystem 1 PN

T (PN ,MapMerge)

P1 P2

PN ′

mapSY (f ◦ g)

Figure 5.9. Application of a semantic preserving transformation

106 Chapter 5. Design Refinement

Thus the merging of the two processes would optimize the design by saving one
adder.

Note, that two processes of the formmapSY (f) ◦ mapSY (g) can always be
merged, while the splitting of a processmapSY (h) into two processes usually
needs support from the designer, since two suitable functionsf andg have to be
selected, so thath = f ◦ g. The splitting of processes is often not efficient as in the
case ofh(x) = x + 7.

Figure 5.9 illustrates another powerful feature of ForSyDe. Since a system
model is a hierarchy of functions, processes can easily be moved between subsys-
tem borders as in the case of Figure 5.9, wheremapSY (f ◦ g) can be moved from
subsystem 2 to subsystem 1 and vice versa..

Another example for a semantic preserving transformation isBalancedTree
which is illustrated in Figure 5.10.

�2(g)

�2(g)

�2(g)

�2(g)

−→
i1
−→
i2
−→
i3
−→
i4

−−−→
im−3−−−→
im−2

−−−→
im−1

−→
im

�2(g)

�2(g)

Stage 1

Stage 2

Stagelog2m

�2(g) −→o

−→o
−→
i1

−→
im

�m(f)

BalancedTree

Figure 5.10. Illustration of the transformation ruleBalancedTree

The transformationBalancedTreetransforms a combinationalm-input process
into a balanced network ofm − 1 processes with two inputs. In contrast to the
transformationMapMerge, which is applicable to all processes that have the format
3(f)◦3(g), the transformationBalancedTreeputs additional requirements on the
process format.

It is not sufficient, that the combinational process has the format�m(f), but
there are also constraints on the number of inputsm, which has to be 4,8,16,. . . and

5.3. Design Transformations 107

on the form of the combinational function

f(x1, . . . , xm) = x1 ⊗ · · · ⊗ xm

where the operator⊗ must be associative. These additional requirements are
formulated in theOriginal Process Network part of the transformation ruleBal-
ancedTreethat is given in Figure 5.11. The transformation ruleBalancedTreecan
for instance be used to transform a 4-input adder into a balanced circuit with three
2-input adders as shown later in this section.

Transformation Rule: BalancedTree(PN)
Orignal Process Network:
−→o = PN (

−→
i1 , . . . ,

−→
im)

PN (
−→
i1 , . . . ,

−→
im) = �m(f)(

−→
i1 , . . . ,

−→
im)

m = 2k k ∈ N1

f(x1, . . . , xm) = x1 ⊗ · · · ⊗ xm; ⊗ is associative
Transformed Process Network:
−→o = PN ′(

−→
i1 , . . . ,

−→
im)

PN ′(
−→
i1 , . . . ,

−→
im) = �2(g)(�2(g) . . . (�2(g)(�2(g)(

−→
i1 ,

−→
i2),�2(g)(

−→
i3 ,

−→
i4))),

�2(g) . . . (�2(g)(�2(g)(
−−−→
im−3 ,

−−−→
im−2),�2(g)(

−−−→
im−1 ,

−→
im))))

g(x, y) = x ⊕ y

Implication:

EPN ′(
−→
i1 , . . . ,

−→
im , j) = EPN (

−→
i1 , . . . ,

−→
im , j)

Figure 5.11.The transformation ruleBalancedTree

Design decisions change the meaning of the system model and thus imply also
a change of the characteristic function of the transformed process. Using the char-
acteristic function design decision rules can be defined that change the meaning of
the system model in a controlled manner.

In order to classify design decision rules, the termsfunctional equivalence
(Definition 5.7) andtail equivalence(Definition 5.8) are introduced.

Definition 5.7 (Functional Equivalence) A processP ′ is functionally equivalent
to a processP , if and only if

E4k (s0)◦mP (
−→
i1 , . . . ,

−→
im , j) = EP ′(

−→
i1 , . . . ,

−→
im , j)

for somek > 0 ands0.

The output of the processP ′ is the output of the processP n cycles delayed.

108 Chapter 5. Design Refinement

Definition 5.8 (Tail Equivalence) Two processesP andP ′ are tail equivalent, if
there exists ak such that

EP (
−→
i1 , . . . ,

−→
im , j) = EP ′(

−→
i1 , . . . ,

−→
im , j) ∀j > k ∈ N0

The output signals of the process networksP andP ′ are identical for events with
indexj > k, but not for the initialk + 1 events.

A transformation rule that transforms a processP into a processP ′ is called
a functionally equivalent transformation rule, if the processesP ′ is functionally
equivalent toP , and atail equivalent transformation rule, if the processesP and
P ′ are tail equivalent.

Functional equivalence and tail equivalence are examples for a relation be-
tween original and transformed process network as required by the definition of a
design decision rule (Definition 5.6).

Transformation Rule: AddDelay(k, s0)
Orignal Process Network:
−→o = PN(

−→
i1 , . . . ,

−→
im)

Transformed Process Network:−→
o′ = PN ′(

−→
i1 , . . . ,

−→
im)

PN ′(
−→
i1 , . . . ,

−→
im) = 4k(s0) ◦m PN(

−→
i1 , . . . ,

−→
im)

Implication:

EPN ′(
−→
i1 , . . . ,

−→
im , j) = E4k (s0)◦mPN (

−→
i1 , . . . ,

−→
im , j)

Figure 5.12.The transformation ruleAddDelay

The transformation ruleAddDelay(Figure 5.12), which is illustrated in Figure
5.13 is the basic example for a functionally equivalent transformation rule. The
application of this rule adds a delay process to the output of the original process
network.

PN −→o−→
im

−→
i1

PN−→
im

−→
i1 4k(s0)

−→
o′

AddDelay(k, s0)

Figure 5.13. Illustration of the transformation ruleAddDelay

5.3. Design Transformations 109

Transformation Rule: MoveDelayToInput(k, s0)
Orignal Process Network:
−→o = PN(

−→
i1 , . . . ,

−→
im)

PN(
−→
i1 , . . . ,

−→
im) = 4k(s0) ◦m �m(

−→
i1 , . . . ,

−→
im)

Transformed Process Network:−→
o′ = PN ′(

−→
i1 , . . . ,

−→
im)

PN ′(
−→
i1 , . . . ,

−→
im) = �m(f)(4k(s0)(

−→
i1), . . . ,4k(s0)(

−→
im))

Implication:

EPN ′(
−→
i1 , . . . ,

−→
im , j) = EPN (

−→
i1 , . . . ,

−→
im , j) ∀j ≥ k

Figure 5.14.The transformation ruleMoveDelayToInput

The transformation ruleMoveDelayToInput(Figure 5.14), which is illustrated
in Figure 5.15 is an example of a tail equivalent transformation rule. The applica-
tion of this rule moves a delay from the output of the original process network to
the input.

−→
im

−→
i1 4k(s0)

MoveDelayToInput(k, s0)

−→o

�m(f)
−→
o′

4k(s0)

4k(s0)

−→
i1

−→
im

�m(f)

Figure 5.15. Illustration of the transformation ruleMoveDelayToInput

The transformation rulesAddDelayand MoveDelayToInputare used for the
more complex design decision rulePipelinedTree(Figure 5.16), which is illustrated
in Figure 5.17.

This transformation rule is composed of an initialAddDelay(log2 m, s0) trans-
formation and a number ofMoveDelayToInput(1, s0) transformations.The impli-
cation ofPipelinedTreeshows that this transformation is a combination of func-
tional equivalent and tail equivalent transformations. The output isk cycles de-
layed, but is otherwise equivalent to the output of the original process network for
all indexesj > k.

Combining the transformation rulesBalancedTree andPipelinedTree, a new
transformation ruleBalancedPipelinedTreecan be generated that can be used to

110 Chapter 5. Design Refinement

Transformation Rule: PipelinedTree
Orignal Process Network:
−→o = PN(

−→
i1 , . . . ,

−→
im)

PN(
−→
i1 , . . . ,

−→
im) = �2(fm−1)(. . . (�2(f1)(

−→
i1 ,

−→
i2), . . .),

. . . (�2(. . . ,�2(fm/2)(
−−−→
im−1 ,

−→
im)))

m = 2k k > 1
Transformed Process Network:

PN ′(
−→
i1 , . . . ,

−→
im) = 41(s0) ◦ �2(fm−1)(. . . (41(s0) ◦ �2(f1)(

−→
i1 ,

−→
i2), . . .),

. . . (. . . ,41(m0) ◦ �2(fm/2)(
−−−→
im−1 ,

−→
im)))

Implication:

EPN ′(
−→
i1 , . . . ,

−→
im , j) = E4k (m0)◦PN (

−→
i1 , . . . ,

−→
im , j) ∀j ≥ k

Figure 5.16.The transformation rulePipelinedTree

41(s0)

41(s0)

41(s0)

41(s0)

41(s0)

41(s0)

�2(fm
2
−1)−−−→

im−2

−−−→
im−3

�2(fm
2
)

−−−→
im−1

−→
im

�2(f 3m
4

)

41(s0)

Stage 1

�2(f1)−→
i2

−→
i1

�2(f2)

−→
i3
−→
i4

�2(fm
2

+1)

�2(fm−1)

Stagelog2 m

Stage 2

−→
o′

�2(fm
2
−1)−−−→

im−2

�2(fm
2
)

−−−→
im−1

−→m

�2(f 3m
4

)

−−−→
im−3

�2(fm−1)

Stage 1

Stagelog2 m

�2(f1)−→
i2

−→
i1

�2(f2)

−→
i3
−→
i4

�2(fm
2

+1)

Stage 2

PipelinedTree

Figure 5.17. Illustration of the transformation rulePipelinedTree

5.3. Design Transformations 111

enhance the throughput of a combinational function by pipelining as illustrated in
Figure 5.18.

�2(g)

�2(g)

�2(g)

�2(g)

−→
i1
−→
i2
−→
i3
−→
i4

−−−→
im−3−−−→
im−2

−−−→
im−1

−→
im

Stage 1

−→o
−→
i1

−→
im

�m(f)

BalancedPipelinedTree

�2(g)

�2(g)

Stage 2

Stagelog2m

�2(g) −→o

41(s0)

41(s0)

41(s0)

41(s0)

41(s0)

41(s0)

41(s0)

Figure 5.18.CombiningBalancedTreeandPipelinedTree

A direct translation of a computation intensive algorithm such as ann-th-
order FIR-filter results in an implementation with a large amount of multipliers
and adders. Using the concept of synchronous sub-domains the transformation
SerialClockDomain was developed to transform a combinational process with a
regular structure into a structure with two separate clock domains. The transformed
process network uses an FSM process to schedule the operations into several clock
cycles. This transformation, illustrated in Figure 5.19 and formally given in Figure
5.20, allows an efficient implementation, if there are identical operations that can
be shared.

−→o
−→
i1

−→
im

�m(f)

downDI (m)PFSMp2sDI (m)

−→
i1

−→
im

−→
o′

SerialClockDomain

Figure 5.19. Illustration of the transformation ruleSerialClockDomain

112 Chapter 5. Design Refinement

Transformation Rule: SerialClockDomain
Orignal Process Network:
−→o = PN(

−→
i1 , . . . ,

−→
im)

PN(
−→
i1 , . . . ,

−→
im) = �m(f)(

−→
i1 , . . . ,

−→
im)

f(x1, . . . , xm) = gm−1(hm−1(xm), (. . . , (g1(h1(x2), h0(x1))) . . .))
Transformed Process Network:−→
o′ = PN ′(

−→
i1 , . . . ,

−→
im)

PN ′(
−→
i1 , . . . ,

−→
im) = (downDI (m) ◦ PFSM ◦ p2sDI (m))(

−→
i1 , . . . ,

−→
im)

PFSM = mooreSY (u,w, s0)

u(x, (k, s)) =

(1, hk(x)) if k = 0
(k + 1, gk(hk(x), s)) if 0 < k < m − 1
(0, gk(hk(x), s)) if k = m − 1

w(k, s) =
{

s k = 0
⊥ 0 < k < m

s0 = (0, initValue)
Implication:

EPN ′(
−→
i1 , . . . ,

−→
im , j) = E41 (s0)◦PN (

−→
i1 , . . . ,

−→
im , j)

Figure 5.20.Transformation ruleSerialClockDomain

The transformation rule requires the combinational functionf to have the for-
mat

f(x1, . . . , xm) = gm−1(hm−1(xm), (. . . , (g1(h1(x2), h0(x1))) . . .))

in order to be able to schedule the computation off into m steps. In the first step

y0 = h0(x1)

is calculated and in the followingm − 1 steps the intermediate valueyi−1 is used
to calculate the final resultym−1 according to

yi = gi(hi(x(i + 1)), yi−1)

The transformed process network works as follows. During an input event
cycle the domain interfacep2sDI (m) (Parallel to Serial) reads all input values at
signal rater and outputs them as a sequence< x1, . . . , xm > with the signal rate
mr one by one in the correspondingm event cycles. The processPFSM is based
on the process constructormooreSY and executes the combinational functionf
of the original process withinm event cycles. In state 0 the functionh0 is applied

5.3. Design Transformations 113

to the first input valuex1 and the result is stored as intermediate values. In the
n − 1 following states the functiongi is applied tohi(xi+1) and the intermediate
value. At tag 0,m,2m,. . . the process outputs the intermediate value, otherwise the
output is absent (⊥). The domain interfacedownDI (m) down-samples the input
signal to signal rater and outputs only eachm-th input value starting with tag0,
thus suppressing the absent values from the output ofPFSM .

As domain interfaces can be characterized by a characteristic function, it means
that, though not shown here, the characteristic function for the whole transformed
process network can be developed. It follows thatSerialClockDomain delays the
output of the transformed process network one event cycle compared to the original
process network as stated in theImplication. The first event of the output signal has
the second component of the initial state, the valueinitValue.

The transformation is expressed in Haskell as follows. The original process
format is express by

pn_org hs gs = zipWithxSY f
where f = makeFunc hs gs

wherezipWithxSY is the vector-based implementation ofzipWithSY m for any
sizem andmakeFunc hs gs expresses the format of the combinational function
f according to the format given inOriginalProcessNetwork; hs andgs are lists of
functions, wherehs represents the functionshi andgs the functionsgi.

makeFunc [h] [] (x:>NullV) = h x
makeFunc (h:hs) (g:gs) (x:>xv) = g (h x) (makeFunc hs gs xv)

The transformed process is expressed by

pn_ref hs gs s_0 = (downDI m . p_fsm hs gs s_0 . par2serxDI)
where

p_fsm hs gs s_0 = mooreSY u w s_0
u (k,s) x | k == 0 = (1, h(k) x)

| 0 < k && k < m-1 = (k+1, g(k) (h(k) x) s)
| k == m-1 = (0, g(k) (h(k) x) s)

w (k,s) | k == 0 = Prst s
| 0 < k && k < m = Abst

h(k) = hs !! k
g(k) = gs !! (k-1)
m = length hs

wherehs !! k returns thek-th value (starting with 0) in the lisths . ThusSeri-
alClockDomainis a functionally equivalent transformation rule.

114 Chapter 5. Design Refinement

The parameters0 is always a tuple of the kind(0, initValue) whereinitValue
can be any value of the demanded data type. Thus the transformation is expressed
as

serialClockDomain hs gs s_0 = pn_ref hs gs s_0

�4

−→
i4

−→
i3

−→
i1−→
i2 −→o

(f)

−→o = zipWithSY 4(f)(
−→
i1 ,

−→
i2 ,

−→
i3 ,

−→
i4)

where
f(x1, x2, x3, x4) = x1 + x2 + x3 + x4

Figure 5.21.A four-input adder process

The chapter is concluded by the example of a four input adder (Figure 5.21)
that is refined with the following transformations.

• BalancedTree

• PipelinedBalancedTree

• SerialClockDomain

The example is expressed in Haskell to show the result of the transformations. For
all examples a tuple of four signals,vs, is used, which has the following values.

vs = (� 1, 2, 3, 4, 5 �,� 1, 2, 3, 4, 5 �,� 1, 2, 3, 4, 5 �,� 1, 2, 3, 4, 5 �)

SinceBalancedTreeis a semantic preserving design transformation rule the
refined adder behaves exactly as the original one.

Hugs98Prompt> balancedTree (+) vs
{4,8,12,16,20}

The refined pipelined adder introduces two extra delays. Here 0 is given as
initial value for the delay elements.

Hugs98Prompt> balancedPipelinedTree 0 (+) vs
{0,0,4,8,12}

Using the transformationSerialClockDomainthe adder is refined into

5.4. Refinement of the Equalizer 115

adder_ref = serialClockDomain hs gs s0
where

hs = [id , id , id , id]
gs = [(+), (+), (+)]
s0 = (0, 0)

Simulation shows that the output of the refined adder is one event cycle de-
layed.

Hugs98Prompt> adder_org vs
{4,8,12,16,20}
Hugs98Prompt> adder_ref vs
{0,4,8,12,16}

5.4 Refinement of the Equalizer

Pass

Pass

Pass

DFT

Spectrum

Low Freq.

Audio
Analyzer

Samples

Filter

Control
Distortion

Level
Control

Power

Group

Check

Audio

Low

Band

High

Sum

Amplifier

Hold
Level

Amplifier

ButtonButton
Control

Control
Distortion

Interface

(
−−−→
Bass,

−−−−→
Treble)

−−−−−→
AudioIn

−−−−→
Treble

−−−→
Bass

−−−−−−−→
AudioOut

−−−−−−→
Dist .Flag

(
−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,

−−−−−−→
TrebleUp)

1

2

3

3

3

Figure 5.22.Refinement of the equalizer (simplified figure)

In the following the specification model of the equalizer (Chapter 4) is used to
discuss three refinement techniques as indicated in Figure 5.22.

1. Refinement of the Clock Domain (Section 5.4.1)

2. Communication Refinement (Section 5.4.2)

116 Chapter 5. Design Refinement

3. Resource Sharing (Section 5.4.3)

5.4.1 Refinement of the Clock Domain

DFT Spectrum Bass
Check

−−−−−→
AudioIn Group

Samples

−−−−−−−−−−→
DistortionFlag

R⊥ S⊥Q⊥(k)G(k)

P⊥(k)

Figure 5.23.TheAudioAnalyzer

Figure 5.23 shows theAudio Analyzersubsystem, which includes a Discrete-
Fourier Transform (DFT) algorithm. The internal functiondft takes a vector ofk =
2u samples and produces the corresponding DFT result in form of a vector of sizek
that is denoted as〈x0, x1, . . . , xk−1〉. The DFT is used to determine the frequency
spectrum of a signal and is modeled in the processDFT (Q⊥(k)). The process
Power Spectrum(R⊥) calculates the power spectrum. The processCheck Low
Frequencies(S⊥) analyzes if the power of the low frequencies exceeds a threshold
and issues a warning in this case, which is sent to theDistortion Control. The
processGroup Samples(G(k)) readsk samples and groups them into a vector of
sizek. The computation of this vector takesk event cycles and serves as input
for the DFT. Since a synchronous computational model is used in the specification
model, the grouping process has to produce an output event for each input event.
This results in the output ofk−1 absent values (⊥) for each computed DFT value.

Power
Spectrum Low Freq.DFT

Check
Samples
Group

C1

Figure 5.24.Direct implementation of theAudioAnalyzer

Due to the definition ofGroupSamples, which is based ongroupSY and de-
fined in (4.1), the processP⊥(k) has to process many absent values. This is not a
drawback for the specification phase, but a direct implementation (Figure 5.24) us-
ing the semantics of Chapter 6 can make no use of the fact, that the DFT has only to
be calculated at eachk-th clock cycle. Instead the DFT process has to produce the
result during a single event cycle and will be idle duringk − 1 clock cycles. This
implementation of theAudio Analyzeris very inefficient, since the computation of
the DFT function is clearly the most time consuming and will determine the clock
period for the whole system and thus the overall system performance.

5.4. Refinement of the Equalizer 117

In order to get a more efficient specification, the ForSyDe methodology allows
to introduce synchronous sub-domains into the system model during the refinement
process as discussed in Section 3.4.

The idea of the following transformation is to introduce a new clock domain
after the processGroupSamples, in order to filter the absent values and allow for
a more efficient use of the DFT process.

In order to develop this transformation, the characteristic function forP⊥(k) ◦
G(k) has to be known.

The characteristic function ofG(k) is given as

EG(k)(
−→
i , j) = (TG(k)(

−→
i , j), VG(k)(

−→
i , j))

where

TG(k)(
−→
i , j) = T (

−→
i , j)

VG(k)(
−→
i , j) =

〈〉 if j = 0
〈V (

−→
i , j − k), . . . , V (

−→
i , j − 1)〉 if ∃w ∈ N1.j = wk

⊥ otherwise

All processesQ⊥(n), R⊥, S⊥ are constructed with the process constructormapSY
and the absent extension functionΨ (3.1).

Q⊥(k) = mapSY (Ψ(q(k)))
R⊥ = mapSY (Ψ(r))
S⊥ = mapSY (Ψ(s)

whereq(k), r ands model the computation functions of the processesQ⊥(k), R⊥
andS⊥.

Using the identities

Ψ(f) ◦ Ψ(g) = Ψ(f ◦ g)
mapSY (f) ◦ mapSY (g) = mapSY (f ◦ g)

which gives

mapSY (Ψ(f)) ◦ mapSY (Ψ(g)) = mapSY (Ψ(f ◦ g))

these processes can be composed into one single processP⊥(k).

P⊥(n) = mapSY (Ψ(p(k)))
wherep(k) = s ◦ r ◦ q(k)

118 Chapter 5. Design Refinement

with the characteristic function

EP⊥(k)(
−→
i , j) = (TP⊥(k)(

−→
i , j), VP⊥(k)(

−→
i , j))

where

TP⊥(k)(
−→
i , j) = T (

−→
i , j)

VP⊥(k)(
−→
i , j) =

{
⊥ if V (

−→
i , j) =⊥

p(V (
−→
i , j)) otherwise

G(k)

−→
i −→s −→o

−→s =< 〈〉,⊥, . . . ,⊥︸ ︷︷ ︸
k−1

, 〈v0, . . . , vk−1〉,⊥, · · · >

−→o =< p(〈〉),⊥, . . . ,⊥︸ ︷︷ ︸
k−1

, p(〈v0, . . . , vk−1〉),⊥, · · · >

−→
i =< v0, v1, · · · >

P⊥(k)

Figure 5.25.Mathematical abstraction of the specification model

Thus the specification model of theAudio Analyzercan be expressed asP⊥(k)◦
G(k) and is illustrated in Figure 5.25. The process network has the characteristic
function

EP⊥(k)◦G(k)(
−→
i , j) = (TP⊥(k)◦G(k)(

−→
i , j), VP⊥(k)◦G(k)(

−→
i , j))

where

TP⊥(k)◦G(k)(
−→
i , j) = T (

−→
i , j)

VP⊥(k)◦G(k)(
−→
i , j)

=

p(〈〉) if j = 0
p(〈V (

−→
i , j − k), . . . , V (

−→
i , j − 1)〉) if ∃w ∈ N1.j = wk

⊥ otherwise

(5.3)

Following the initial idea that is based on the introduction of a synchronous
sub-domain, the identity

G(k) = U(k) ◦ D(k) ◦ G(k)

whereU(k) = upDI(k) andD(k) = downDI(k), can be derived. The identity
uses the special characteristic of the grouping processG(k)2 and is proven by

2U(k) ◦ D(k) is not an identity!

5.4. Refinement of the Equalizer 119

comparison of the characteristic functionsEG(k) andEU (k)◦D(k)◦G(k). First the
characteristic function of the process networkU(k) ◦ D(k) is developed.

The characteristic tag function for the processU(k) ◦ D(k) is

TU (k)◦D(k)(
−→
i , j) = TU (k)(

∞⊕
u=0

ED(k)(
−→
i , u), j)

= j
kC(

∞⊕
u=0

ED(k)(
−→
i , u))

= j
kkC(

−→
i)

= T (
−→
i , j)

The characteristic value function for the processU(k) ◦ D(k) is

VU (k)◦D(k)(
−→
i , j) = VU (k)(

∞⊕
u=0

ED(k)(
−→
i , u), j)

=

 V (

∞⊕
u=0

ED(k)(
−→
i , u), mod(j, k)) if ∃w ∈ N0.j = wk

⊥ otherwise

=
{

V (ED(k)(
−→
i , mod(j, k))) if ∃w ∈ N0.j = wk

⊥ otherwise

=
{

VD(k)(
−→
i , mod(j, k)) if ∃w ∈ N0.j = wk

⊥ otherwise

=
{

V (
−→
i , mod(j, k)) if ∃w ∈ N0.j = wk

⊥ otherwise

The characteristic function of the processU(k) ◦ D(k) shows that the process is
synchronous. The process propagates only everyk-th event (counted from 0) to
the output. All other output events have an absent value.

The characteristic function of the processU(k) ◦ D(k) is used to derive the
characteristic function forU(k) ◦ D(k) ◦ G(k). The characteristic tag function is
trivial, since both processesU(k) ◦ D(k) andG(k) are synchronous.

TU (k)◦D(k)◦G(k)(
−→
i , j) = T (

−→
i , j)

120 Chapter 5. Design Refinement

The characteristic value function forU(k) ◦ D(k) ◦ G(k) is given below.

VU (k)◦D(k)◦G(k)(
−→
i , j)

=

 V (

∞⊕
u=0

(
−→
i , u), mod(j, k)) if ∃w ∈ N0.j = wk

⊥ otherwise

=
{

VG(k)(
−→
i , mod(j, k)) if ∃w ∈ N0.j = wk

⊥ otherwise

=

<> if j = 0
< V (

−→
i , w − k), . . . , V (

−→
i , w − 1) > if ∃w ∈ N0.j = wk

⊥ otherwise

Thus it is shown by their characteristic function thatG(k) andU(k)◦D(k)◦G(k)
are equivalent processes.

Using another identity

P⊥(k) ◦ U(k) = U(k) ◦ P⊥(k)

which can easily be proven, it follows that

P⊥(k) ◦ G(k) = P⊥(k) ◦ U(k) ◦ D(k) ◦ G(k)
= U(k) ◦ P⊥(k) ◦ D(k) ◦ G(k)
= U(k) ◦ P (k) ◦ D(k) ◦ G(k)

(5.4)

In the last stepP⊥(k) is replaced withP (k) sinceD(k) ◦ G(k) does not produce
any absent values. Since only semantic preserving transformations have been used,
it follows that the refined process network has the same semantical meaning as the
process network of Figure 5.25 and thus the same characteristic function (5.3).
Analyzing (5.4) it can be stated that the processP (k) processes events only at
eachk-th tag and thus can be implemented with a slower clock.

Based on these considerations a semantic-preserving transformation that ex-
presses the identity

P⊥(k) ◦ G(k) = U(k) ◦ P (k) ◦ D(k) ◦ G(k)

and introduces a synchronous sub-domain can be defined. This transformation is
calledGroupToMultiRateand given in Figure 5.26.

The synchronous sub-domain is implemented with a clock frequencyfC2 that
is k = 2u times slower than the clock frequencyfC1 of the main synchronous

5.4. Refinement of the Equalizer 121

Transformation Rule: GroupToMultiRate
Orignal Process Network:
−→o = PN(

−→
i)

PN(
−→
i) = (mapSY (Ψ(f)) ◦ groupSY (k))(

−→
i)

Transformed Process Network:
−→o = PN ′(

−→
i)

PN ′(
−→
i) = (upDI (k) ◦ mapSY (f) ◦ downDI (k) ◦ groupSY (k))(

−→
i)

Implication:

EPN (
−→
i , j) = EPN ′(

−→
i , j)

Figure 5.26.Transformation ruleGroupToMultiRate

domain. In a further design step the DFT can be refined into an FFT3. The imple-
mentation of the transformedAudioAnalyzer is illustrated in Figure 5.27, where
the time interval that is available for the calculation of the DFT isk times longer
than in Figure 5.24 without slowing down the rest of the system.

Low Freq.
Check

Spectrum
Power

FFT
Down

Sample

DT (n)G(n)

C1

C2

Sample

UT (n)

C1

P (n)

UpGroup
Samples

Figure 5.27.TheAudioAnalyzer after Refinement

The transformationGroupToMultiRatecan be directly expressed in Haskell.
The implementation of the processGroupSamples follows directly the formal def-
inition of the process in (4.1).

groupSY k = mooreSY f g s0
where

s0 = NullV
f v x | lengthV v == 0 = unitV x

| lengthV v == k = unitV x
| otherwise = v <: x

g v | lengthV v == 0 = Prst NullV
g v | lengthV v == k = Prst v
g v | otherwise = Abst

The original process format is expressed in Haskell as
3Both algorithms are part of the ForSyDe standard library (Appendix A.3.3).

122 Chapter 5. Design Refinement

pn_org f k = mapSY (psi f) . groupSY k

where f and k can be seen as variables for the functionf and the parameterk
that are used in the transformationGroupToMultiRate. Since Haskell supports the
concept of higher-order functions, the transformation can be expressed by means
of

groupToMultiRate f k = pn_ref
where

pn_ref = upDI k . mapSY (psi f) . downDI k . groupSY k

Given a simple process network

PN = mapSY (Ψ(sumV)) ◦ G(k)
where

sumV (v) =
{

0 if v = 〈〉
v1 + · · · + vn if v = 〈v1, . . . , vn〉

The transformed network can now be expressed in Haskell fork = 3 as

groupToMultiRate sumV 3

Simulation shows that both process networksPNorg andPNref have as expected
the same behavior (k = 3). For these examples a signal

−→s =� 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 �

is used.

Hugs98Prompt> pn_org sumV 3 s
{0,_,_,6,_,_,15,_,_,24,_,_}
Hugs98Prompt> groupToMultiRate sumV 3 s
{0,_,_,6,_,_,15,_,_,24,_,_}

However, there is a difference in the types of the results, since Haskell infers an
double extended data type as output. This results from the fact thatupDI extends
the extended data type a second time, due to the type declaration ofupDI .

upDI :: Numa => a -> Signal b -> Signal (AbstExt b)

Haskell logically infers the data typeSignal (AbstExt (AbstExt Integer)) ,
since it lacks the knowledge that a double extended data type is not meaningful
here. However this phenomena refers to the type system of Haskell and is not a
principle problem of ForSyDe.

There is also the possibility to define a transformation that works in the same
way asGroupToMultiRate, but without the up-sample process in the last stage of

5.4. Refinement of the Equalizer 123

the transformed process network. Such a transformation would be very useful
since very often there is no need to up-sample the frequency data rate after pro-
cesses like DFT or FFT. Such a transformation would of course introduce a design
decision and may also affect other parts of the system. In the case of the equal-
izer it would require another transformation in order to introduce an up-sample
domain interface, since the internal feedback loop would otherwise lead to signal
rate inconsistencies.

5.4.2 Communication Refinement

The specification model uses the same synchronous communication mechanism
between all its subsystems. This is a nice feature for modeling and analyzing, since
partitioning issues and special interfaces between subsystems have not to be taken
into account in this phase. However, large systems are usually not implemented
as one single unit, but are partitioned into hardware and software blocks commu-
nicating with each other via a dedicated communication protocol. The ForSyDe
methodology offers transformations of a synchronous communication into other
protocols. Looking at the equalizer example, the rate of present values of the input
and output signals of theButton Controland theDistortion Controlsubsystems is
considerably lower than the rate for the corresponding signals of theAudio Filter
andAudio Analyzer. In the following, it is assumed that theButton ControlandDis-
tortion Control shall be implemented in software and theAudio Filter andAudio
Analyzerin hardware. For the communication between these parts a handshaking
protocol withFIFO , SendandReceiveprocesses is chosen.

The refinement of the synchronous interface between theButton Controland
the Audio Filter subsystems is shown in Figure 5.28. The figure emphasizes the
data types of the signals. Please note that the data typesB⊥, O⊥, L⊥ are extended
data types, containing absent values. Such signals have a lower rate of present
values as the corresponding signals with the data typesB, O, L since they do not
carry a value in each event cycle. The processHold Level4 is used to convert an
absent extended signal into a with no absent values by outputting the last present
value, when receiving an absent value.

The refinement is done in two steps. First, the processHold Levelis moved out
of the subsystemButton Controlin order to implement the interface between the
processLevel Controland the processHold Level, since this communication chan-
nel has a significantly lower data rate as expressed by the data type of the signal
(L⊥). The second step is to refine the interface into a handshake protocol. This is

4Hold Levelis modeled by means ofholdSY (see Figure 3.29)

124 Chapter 5. Design Refinement

Audio
Filter

S

O⊥ S

Audio
Filter

S

O⊥ S
Button Control

Step 1:Move Subsystem Borders

Step 2: Interface Refinement
O⊥

FIFO Send Rec
Audio
Filter

S

S

B⊥

B⊥ L

L⊥ L

B⊥

L⊥

L

Control
Hold
Level

Hold
Level

Level
Control

Level
Control

Hold
Level

Level

L⊥

−→o

L⊥−→sd

−→
fo

−→
i

−→rm

−→sm

−→sf

Figure 5.28.Refinement into a handshake protocol

done by the transformation of the channel betweenLevel ControlandHold Level
by means of the transformationChannelToHandshake, which is given in Figure
5.29.

The transformation introduces aFIFO , a Sendand aReceiveprocess. When
Sendis idle, it tries to read data from theFIFO on−→sf . Then it sends the message
DataReady on−→sm to theReceiverand after receiving the messageReady on−→rm ,
it sends the data on−→sd . TheReceiversends a messageAck on−→rm , when the data is
received.

The handshake protocol implies a delay of several cycles for each event, as
SendandReceiveare synchronous processes. This means, that the timing behavior
of the refined interface is different from the original interface. This does also mean,
that theAudio Filter will not process exactly the same combination of values in
each event cycle as in the system model.

These consequences have to be taken into account, when interfaces are refined.
In this case, it can be shown that the refined interface still behaves in practice as
the system model, if two assumptions are made.

1. The average data rate of the processLevel Controlis much lower than the
data rate of theAudio Filter. If the FIFO is correctly dimensioned there will

5.4. Refinement of the Equalizer 125

Transformation Rule: ChannelToHandshake
Orignal Process Network:
−→o =

−→
i wheresigtype(−→o) = sigtype(

−→
i) = V⊥

Transformed Process Network:
−→o = PN ′(

−→
i)

where
(−→o ,−→rm) = receive(−→sm ,−→sd)
(−→sm ,−→sd ,−→sf) = send(

−→
fo ,−→rm)−→

fo = fifo(
−→
i ,−→sf)

Implication:
see text

Figure 5.29.The transformationChannelToHandshake

be no buffer overflow in the FIFO and all values reach theAudio Control
after a small number of event cycles.

2. The output function of theAudio Filter does not change significantly, if the
input signals of theLevel Controlare delayed. That is clearly the case, as a
small delay of the level signal only delays the change of the amplitude for
the same small time, but does not effect the signals shape.

These assumptions point to obligations on other design activities. A further formal-
ization of the design decisions will allow to make all assumptions and obligations
explicit. The FIFO buffers have to be dimensioned sufficiently large based on a
separate analysis. This will imply a further design decision transformation as illus-
trated in Figure 5.30. Assumptions about the environment and the application, such
as the kind of expected input signal, in this case the data rate, have to be validated
to justify the applied design decisions.

RestrictFIFOBuffer(n)

(Buffer =∞)
FIFO

−−−−→
DataIn −−−−−−→

DataOut
−−−→
Read

(Buffer = n)

−−−−→
DataIn

−−−→
Read

−−−−−−→
DataOutFIFO

Figure 5.30.Refinement of a FIFO buffer

126 Chapter 5. Design Refinement

The interface can be synthesized using the hardware semantics of ForSyDe.
The sole purpose of the transformation is topreparefor an asynchronous imple-
mentation. Note that the model derived is not truly asynchronous in the sense that
it is still completelydeterministicwithout non-deterministic channel delays. Of
course, the channel can be modeled more realistically if desired. The ForSyDe
methodology suggests to avoid a non-deterministic model but to use a stochastic
channel model instead, which is supported by means of stochastic process con-
structors [59].

5.4.3 Resource Sharing

Figure 5.31 shows the application of the design decisionSerialClockDomainto the
FIR-filter of Figure 4.7. Since the processipV (h) is defined as

�k+1(ipV (h))SIPO(k + 1, 0)

SIPO
(k + 1) PFSM (k + 1)

downDIp2sDI
(k + 1, 0)

Main Domain
(Rate:r)

Synchronous Sub-Domain
(Rate:nr)

(Rate:r)

Main Domain
(Rate:r)

M2

M1

T (M1,�k+1(ipV (h)), SerialClockDomain)

Figure 5.31.Transformation of a FIR-filter

(ipV (h))(x0, . . . , xn) = h0x0 + · · · + hnxn

it complies to theInput Process Network format of the transformation ruleSerial-
ClockDomain, where

gi(x, y) = x + y
hi(x) = hix

This rule can be used to apply the transformation

T (M1, zipWithSYk+1 (ipV (h)),SerialClockDomain)

to the FIR-filter modelM1 in order to receive a modelM2, whereSIPO(k + 1)
remains unchanged and the FIR-filter is realized with two clock domains and only
one multiplier and one adder (Figure 5.31). The original and transformed FIR-filter
have been translated to VHDL and synthesized [73] using the mapping procedure
given in Chapter 6.

5.5. Summary and Discussion 127

5.5 Summary and Discussion

The objective of transformational design refinement in ForSyDe is to convert an
abstract and high-level specification model into an implementation model that in-
cludes all the necessary details in order to allow for an efficient mapping of the
implementation model onto the selected target architecture as elaborated in Chap-
ter 6.

ForSyDe allows the application of design decision rules, i.e. transformation
rules that change the semantics of the design. Design decisions are needed in order
to transform abstract concepts like infinite buffers or real numbers into represen-
tations (finite buffers, fixed-point numbers) that can be mapped efficiently onto an
architectural component.

In order to allow for a transparent refinement process, each transformation rule
is accompanied with a design implication that informs the designer to what extent
the application of the rule changes the semantical meaning of the process network.
This chapter presented how the characteristic function of a process network can be
used to express the implication of a transformation rule. In addition the potential
of transformational refinement has been illustrated by the application of powerful
transformations to the digital equalizer model.

A transformational refinement approach leads to a well-documented and struc-
tured design refinement, where each refinement step is given by the application of
a transformation rule. Thus the designer can trace the entire refinement process
and may select other transformation options at any point in the refinement process,
if the final result was not satisfactory.

As discussed in Section 2.4 a transformational refinement method requires a
sufficient amount of transformation rules and an efficient transformation strategy
in order to yield good solutions. A prerequisite for a transformation strategy is the
availability of cost measures that allow it to indicate, if one model can be imple-
mented more efficiently on a given architecture than another. Such cost measures
could be given by an estimation tool that provides estimates in terms of speed, area
or power for a particular model implemented on a given architecture.

The transformation problem can be compared with chess. Each transformation
rule corresponds to a chess move and each estimation corresponds to the evalua-
tion of a position on the chess board. This analogy also indicates how complex the
transformation task is. In chess the average number of possible moves in a typical
position is around 30 to 40 and the majority of chess games finishes after no more
than 50 moves of white and 50 moves of black. Although there is quite a large mar-
ket for commercial chess programs, these programs - running on faster and faster

128 Chapter 5. Design Refinement

hardware - have not been able to show their superiority to human chess players5.
The situation in chess can be transfered to system design, although the problem
in system design is even more complicated due to the large number of possible
moves (transformations) in systems of increasing complexity. While a tool has
to check all possible transformations, an experienced designer often knows which
transformations may give an improvement of the design.

At present ForSyDe defines only a limited amount of transformations, but this
should be sufficient to indicate the potential of ForSyDe. In order to make ForSyDe
applicable for larger problems, more transformations have to be developed and an
estimation tool has to be incorporated. In order to use the experience of the de-
signer, the future transformation process should be semi-automatic. A tool should
provide the designer with information about possible transformations, their impli-
cation (defined in the transformation rule) and their possible design improvement.
The designer selects transformations and may also go back one or more steps in
order to find an efficient solution.

Since the architecture of embedded systems is heterogeneous and extremely
complex, it is likely that ForSyDe will initially only be used for dedicated parts
in an embedded system. Possible areas are communication refinement for selected
protocols and communication patterns, e.g. a GALS structure using handshake pro-
tocols, or the refinement of a data-flow path for given architectures.

5In 2002 the chess program ”Deep Fritz” drew the match (4-4) against Vladimir Kramnik who
is number 2 of the world chess rating list, and in 2003 ”Deep Junior” drew the match (3-3) against
Garry Kasparov (number 1 in the rating list).

Chapter 6

Implementation Mapping

This chapter describes how a ForSyDe implementation model is mapped onto a
pure hardware implementation. The mapping procedure converts the implemen-
tation model into a VHDL-description. This description can be synthesized into
a netlist of gates for a given ASIC-technology using commercial logic synthesis
tools. In order to obtain an effective solution, the implementation model must al-
ready be optimized for the given architecture, since the mapping process does not
focus on optimization. A discussion on the mapping of an implementation model
to other architectures concludes the chapter.

6.1 Introduction

During implementation mappingthe implementation model is mapped onto a given
architecture. For system-on-chip designs these architectures can consist of many
different components, such as micro-controller cores, digital signal processors,
memories, switches and routers or custom logic. A large part of a system will
be implemented in software that may run on different operating systems. Several
IP1-blocks may be part of the design.

Thus implementation mapping is very complex. It involves the subtasks of
partitioning, allocation, scheduling and mapping, which are research areas in hard-
ware/software co-synthesis as discussed in Section 2.3.1.

1Intellectual property (IP) refers to the creation of mind. Here an IP-block is a component that
can be acquired from an IP-vendor. An example for such a component is a microprocessor core that
can be placed on a system on a chip.

129

130 Chapter 6. Implementation Mapping

To date ForSyDe defines a mapping to hardware (VHDL) and sequential soft-
ware (C/C++). This thesis focuses on the mapping to hardware, while the mapping
to software is described in [73] and [72]. At this state ForSyDe does not support
hardware/software partitioning. This task is left to the designer.

6.2 Mapping of the implementation model to VHDL

ForSyDe defines mapping rules from the implementation model to VHDL. In or-
der to get a good implementation, the implementation model must include the nec-
essary details that allow to map it into efficient synthesizable VHDL-code. The
implementation model can be viewed as the design entry to RTL2 synthesis and
compared to other RTL-descriptions like RTL-VHDL or Verilog. The better the
implementation model can be mapped onto a VHDL-description for which an effi-
cient implementation exists, the more efficient is the hardware implementation.

The concept of process constructors allows to define these efficient mappings.
For each process based on process constructors there exists a mapping onto a
VHDL-component or a netlist of VHDL-components that allows an efficient hard-
ware implementation. In addition the mapping procedure comprises other activities
such as the mapping of functions, data types or process networks. The procedure
for the mapping activities is given below.

1. Generation of a VHDL-description for processes defined by a single process
constructor

• Selection of a VHDL-template according to the process constructor

• Mapping of data types

• Mapping of process parameters and constants

• Translation of functions to VHDL

2. Generation of a VHDL-description for process networks

The mapping procedure is illustrated by two examples. Section 6.2.1 uses the
processDistortionControl from Section 4.2.2 to explain how VHDL-descriptions
are generated for processes that are based on a single process constructor. Pro-
cesses that are based on other process constructors are translated in an analog way
into VHDL. Appendix C gives VHDL-templates for synchronous processes and

2Register Transfer Level

6.2. Mapping of the implementation model to VHDL 131

domain interface constructors. Section 6.2.2 uses the ForSyDe model for the hand-
shake protocol from Section 5.4.2 to show how VHDL-descriptions are generated
from a process network.

6.2.1 Generation of a VHDL-description for a process that is defined
by a process constructor

The model of the processDistortionControl was discussed in Section 4.2.2. The
ForSyDe model of this process is given here once again in order to illustrate the
generation of VHDL-descriptions for a process based on a process constructor.

DistortionControl = mealySY 1(ns, out, (Passed, lim))
where
ns((st , cnt), inp)

=

(st , cnt) if inp =⊥
(Passed, cnt) if st = Passed ∧ inp = Pass
(Failed, lim) if st = Passed ∧ inp = Fail
(Locked, cnt) if st = Failed ∧ inp = Pass
(Failed, cnt) if st = Failed ∧ inp = Fail
(Failed, lim) if st = Locked ∧ inp = Fail
(Passed, cnt − 1) if st = Locked ∧ inp = Pass ∧ cnt = 1
(Locked, cnt − 1) if st = Locked ∧ inp = Pass ∧ cnt 6= 1

out((st , cnt), inp)

=

Lock if st = Passed ∧ inp = Fail
CutBass if st = Failed ∧ inp = Fail
Release if st = Locked ∧ inp = Pass ∧ cnt = 1
⊥ otherwise

lim = 3

The first step is to select the appropriate VHDL-template for the process con-
structor of the processDistortionControl . Since the process is defined as

DistortionControl = mealySY 1(ns, out, (Passed, lim))

the mapping template for a process based onmealySY 1 has to be selected. The
mapping is visualized in Figure 6.1, which shows that the result of the mapping is
the VHDL-description of a Mealy finite state machine. The combinational func-
tionsf andg are mapped to the combinational circuitsfHW andgHW, wherefHW

reads as ”the hardware implementation off ”. The internal processdelaySY 1(s0)

132 Chapter 6. Implementation Mapping

is mapped on a bank of registers, where the reset state is given bys0. The registers
have an asynchronous active low reset.

−→
i1−→
im (f, s0)

−→s
scanldSY m

(g)
zipWithSY m+1 −→o

mealySY m(f, g, s0)

gHW

REG
fHW

CLK

I m

I 1 O

⇒

RESETN

Mapping

Figure 6.1. Hardware implementation of a process based onmealySY 1

The VHDL-template formealySY 1(f, g, s0) can be divided into two parts, the
entity partand thepackage part.

The entity part gives the entity and architecture declaration, while the pack-
age part defines the data types, constants and functions that are used in the entity
part. The entity part of the VHDL-template formealySY 1 is shown below. The
architecture declaration contains two processes. The first process is a sequential
process and implements the state registers of the finite state machine. The second
process is a combinational process that implements both the next-state decoder (by
means of the functionf) and the output decoder (by means of the functiong).
Please note that the entity part will be basically the same for all processes based
on mealySY 1. The only difference is that all occurrences ofmealySY f g are
replaced by the name of the process, hereDistortionControl .

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE work.mealySY_f_g_lib. ALL;
LIBRARY synopsys;
USE synopsys.attributes. ALL;

ENTITY mealySY_f_g IS
PORT (

i : IN type_mealySY_f_g_i;

6.2. Mapping of the implementation model to VHDL 133

o : OUT type_mealySY_f_g_o;
clk : IN std_logic;
resetn : IN std_logic);

END mealySY_f_g;

ARCHITECTURESeq OF mealySY_f_g IS
SIGNAL state, nextstate : type_mealySY_f_g_state;
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF Seq : ARCHITECTURE IS "state";

BEGIN -- Seq
PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
state <= s0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
state <= nextstate;

END IF;
END PROCESS;

PROCESS(i,state)
BEGIN -- PROCESS

nextstate <= f(i,state);
o <= g(i,state);

END PROCESS;
END Seq;

The package part of the VHDL-template ofmealySY 1 is shown next. This
part defines the data types, functions and constants for the process. During the
mapping procedure, all occurrences ofmealySY f g are exchanged with the name
of the process, hereDistortionControl , and all occurrences ofto be defined

are replaced by the corresponding VHDL expression for each ForSyDe data type,
constant or function.

PACKAGEmealySY_f_g_lib IS
TYPE type_mealySY_f_g_i IS to_be_defined; -- Type of i
TYPE type_mealySY_f_g_o is to_be_defined; -- Type of o
TYPE type_mealySY_f_g_state IS to_be_defined;

-- Type of state
CONSTANTs0 : type_mealySY_f_g_state := to_be_defined;

-- Initial Value
FUNCTION f (

i : type_mealySY_f_g_i;
state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_state;

FUNCTION g (
i : type_mealySY_f_g_i;

134 Chapter 6. Implementation Mapping

state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_state;

END;

PACKAGE BODYmealySY_f_g_lib IS
FUNCTION f (

i : type_mealySY_f_g_i;
state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_o IS

BEGIN
RETURNto_be_defined; -- Definition of f;

END;

FUNCTION g(
i : type_mealySY_f_g_i;
state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_o IS

BEGIN
RETURNto_be_defined; -- Definition of g;

END;
END mealySY_f_g_lib;

The next step in the mapping process is to map the ForSyDe data types to
VHDL. Chapter 3 did not explicitly define data types for ForSyDe. However it is
assumed, that the notation can be easily extended to include data types, like in the
Haskell representation of ForSyDe models.

The values of the input signals are of an extended data type (they include the
value⊥). Extended data types can be mapped to a VHDL data type in two ways.
The first possibility is to model these data types as aRecord of two variables.
The first entryisPresent defines, if the value is present, while the second entry
value gives the value, if present. Following this approach, the extended data type

D⊥ = {⊥, v1, v2, v3}

is mapped to

TYPE type_D_Abst IS RECORD
isPresent : boolean;
value: type_D;

END RECORD;

The disadvantage of this approach is that it may create unnecessary logic and reg-
isters, such as in case of the example above, whereisPresent has to be repre-
sented by one bit andvalue by another two bits, though only two bits are needed
for D⊥.

6.2. Mapping of the implementation model to VHDL 135

This leads to the second approach, which can be used efficiently for enumera-
tion types. Here the absent value⊥ is treated as an additional value of the enumer-
ation type, which leads to the following type definition.

TYPE type_D_Abst IS (Abst, v1, v2, v3);

However, this technique can not be used for extended integers or real data types
and thus in order to keep the mapping process simple, this thesis does only use the
mapping technique based on records.

In this example the data type of the values of the input signal
−→
i is an extended

data type with the values⊥, Pass andFail and thus mapped to

TYPE type_i_value IS (Pass, Fail);
TYPE type_DistortionControl_i IS RECORD

isPresent : boolean;
value : type_i_value;

END RECORD;

Also the values of the output signal have an extended data type, which is mapped
on

TYPE type_o_value IS (Lock, CutBass, Release);
TYPE type_DistortionControl_o IS RECORD

isPresent : boolean;
value : type_o_value;

END RECORD;

The internal state of the processDistortionControl is a tuple, where the first part
st is an enumeration type, while the second partcnt is a constrained integer. A
ForSyDe tuple is mapped on a VHDL record, which in this case has two entries,
one is an enumeration type and the other one is a constrained integer.

TYPE type_st IS (Passed, Locked, Failed);
SUBTYPE type_cnt IS integer RANGE0 TO 3;
TYPE type_DistortionControl_state IS RECORD

st : type_st;
cnt : type_cnt;

END RECORD;

The processDistortionControl defines also two constants. The constants0 =
(Passed, 0) is the initial state of the finite state machine and will be translated as
reset state, whilelim = 3 is an internal parameter. These constants are also defined
in the package part.

CONSTANTs0 : type_DistortionControl_state := (Passed, 0);
CONSTANTlim : integer RANGE0 TO 3 := 3;

Finally the combinational functionsns andout have to be translated into VHDL.
Since ForSyDe demands to use combinational functions and so far restricts them

136 Chapter 6. Implementation Mapping

to non-recursive functions when targeting hardware, the mapping onto a VHDL
function is straight forward. In the case of the processDistortionControl , both
the ForSyDe model of the nextstate and the output decoder are described by if-
clauses which naturally translate to if-clauses in VHDL. Below is the VHDL-code
for the functionns (implemented as functionf) which implements the next state
decoder of the finite state machine.

FUNCTION f (
i : type_DistortionControl_i;
state : type_DistortionControl_state
) RETURNtype_DistortionControl_state IS
VARIABLE result : type_DistortionControl_state;

BEGIN
IF (i.isPresent = false) THEN

result := (state.st, state.cnt);
ELSIF (state.st = Passed) AND (i.value = Pass) THEN

result := (Passed, state.cnt);
ELSIF (state.st = Passed) AND (i.value = Fail) THEN

result := (Failed, state.cnt);
ELSIF (state.st = Failed) AND (i.value = Pass) THEN

result := (Locked, state.cnt);
ELSIF (state.st = Failed) AND (i.value = Fail) THEN

result := (Failed, state.cnt);
ELSIF (state.st = Locked) AND (i.value = Fail) THEN

result := (Failed, lim);
ELSIF (state.st = Locked) AND (i.value = Pass)

AND (state.cnt = 1) THEN
result := (Passed, state.cnt-1);

ELSIF (state.st = Locked) AND (i.value = Pass)
AND (state.cnt /= 1) THEN

result := (Passed, state.cnt-1);
END IF;
RETURNresult;

END;

and the functionout (implemented as functiong) which implements the output
decoder.

FUNCTION g(
i : type_DistortionControl_i;
state : type_DistortionControl_state
) RETURNtype_DistortionControl_o IS
VARIABLE result : type_DistortionControl_o;

BEGIN
IF (state.st = Passed) AND (i.value = Pass) THEN

result := (true, Lock);
ELSIF (state.st = Failed) AND (i.value = Fail) THEN

result := (true, CutBass);

6.2. Mapping of the implementation model to VHDL 137

ELSIF (state.st = Locked) AND (i.value = Pass)
AND (state.cnt = 1) THEN

result := (true, Release);
ELSE

result := (false, Lock);
END IF;
RETURNresult;

END;

The VHDL implementation of the processDistortionControl is synthesizable.
The synthesis result of a synthesis process for the LSI 10K technology3 and is given
as schematic in Figure 6.2.

6.2.2 Generation of a VHDL-description for a process network

The refinement of a signal with values of an extended data type into a handshake
protocol has been discussed in detail in Section 5.4.2. It is illustrated in Figure 5.28.
The Figure did not give all details of the processes involved in the handshaking
protocol. In particular, it did not show the delay processes, which must exist in
the ForSyDe model in order to prevent zero-delay feedback loops. The ForSyDe
model for the handshake protocol is given below.

−→o = handshake(
−→
i)

where
(−→o ,−→rm) = receive(−→sm ,−→sd)
(−→sm ,−→sd ,−→sf) = send(

−→
fo ,−→rm)−→

fo = fifo(
−→
i ,−→sf)

Figure 6.3 shows the delay processes in the ForSyDe model of the handshake
protocol explicitly. All delay processes are located inside the processSend . It also
shows the mapping of a process network into a VHDL-description of hardware.

A process network is translated into a structural VHDL-description where

• ForSyDe signals are mapped to VHDL signals;

• ForSyDe processes are mapped to VHDL-components.

The following code shows the structural VHDL-description of the handshake
protocol. Each ForSyDe process is translated into a component and each ForSyDe

3The design has a maximum clock frequency offmax = 170 MHz and occupies an area equiva-
lent to 74 NAND-gates.

138 Chapter 6. Implementation Mapping

Figure 6.2. The synthesized implementation of the processDistortionControl

6.2. Mapping of the implementation model to VHDL 139

41(⊥)
41(⊥)

41(⊥)

I
SenderReadFifo Receiver

O

FO

on VHDL components
ForSyDe processes are mapped

mapped on VHDL signals
ForSyDe signals are

−→
i

SenderReadFifo Receiver
−→o−→sd

−→sm

−→sf

−→
fo

−→rm

Reg
SF2 SF1 Reg

Reg
SM2

SD2

RM

SM1

SD1

Send

Figure 6.3. Mapping of the handshake protocol to hardware

signal into a VHDL signal. The code is a VHDL netlist of components. The archi-
tecture part lists the components and defines internal signals. Then the components
are connected to the internal and external signals byPORT MAP. Since the output
of the componentsSender andReceiver are records of signals, each signal in
these records has to be connected to an internal signal as expressed in the last lines
of the architecture description.

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE work.Handshake_Pkg. ALL;

ENTITY HandshakeProtocol IS

PORT (
i : IN type_fifoValues;
o : OUT type_fifoValues;
resetn : IN std_logic;
clk : IN std_logic);

END HandshakeProtocol;

ARCHITECTUREStructure OF HandshakeProtocol IS

COMPONENTReadFifo

PORT (
i : IN type_fifoValues;
readFifo : IN type_readFifo;
o : OUT type_fifoValues;

140 Chapter 6. Implementation Mapping

clk : IN std_logic;
resetn : IN std_logic);

END COMPONENT;

COMPONENTSender

PORT (
fifoOutput : IN type_fifoValues;
recMsg : IN type_recMsg;
o : OUT type_senderOutput;
clk : IN std_logic;
resetn : IN std_logic);

END COMPONENT;

COMPONENTReceiver

PORT (
sendMsg : IN type_SendMsg;
sendData : IN type_fifoValues;
o : OUT type_ReceiverOutput;
clk : IN std_logic;
resetn : IN std_logic);

END COMPONENT;

COMPONENTdelaySendMsg
PORT

(
i : IN type_sendMsg;
o : OUT type_sendMsg;
resetn : IN std_logic;
clk : IN std_logic
);

END COMPONENT;

COMPONENTdelayReadFifo
PORT

(
i : IN type_readFifo;
o : OUT type_readFifo;
resetn : IN std_logic;
clk : IN std_logic
);

END COMPONENT;

6.2. Mapping of the implementation model to VHDL 141

COMPONENTdelaySendData
PORT

(
i : IN type_fifoValues;
o : OUT type_fifoValues;
resetn : IN std_logic;
clk : IN std_logic
);

END COMPONENT;

SIGNAL fo : type_fifoValues;
SIGNAL sf1, sf2 : type_readFifo;
SIGNAL sm1, sm2 : type_sendMsg;
SIGNAL sd1, sd2 : type_fifoValues;
SIGNAL rm : type_recMsg;

SIGNAL senderOutput : type_senderOutput;
SIGNAL receiverOutput : type_receiverOutput;

BEGIN
fifo : ReadFifo

PORT MAP(
i => i,
readFifo => sf2,
o => fo,
clk => clk,
resetn => resetn);

send : sender
PORT MAP(

fifoOutput => fo,
recMsg => rm,
o => senderOutput,
clk => clk,
resetn => resetn);

rec : receiver
PORT MAP(

sendMsg => sm2,
sendData => sd2,
o => receiverOutput,
clk => clk,
resetn => resetn);

delSM : delaySendMsg
PORT MAP(

i => sm1,

142 Chapter 6. Implementation Mapping

o => sm2,
resetn => resetn,
clk => clk);

delRM : delayReadFifo
PORT MAP(

i => sf1,
o => sf2,
resetn => resetn,
clk => clk);

del : delaySendData
PORT MAP(

i => sd1,
o => sd2,
resetn => resetn,
clk => clk);

sm1 <= senderOutput.sendMsg;
sd1 <= senderOutput.sendData;
sf1 <= senderOutput.readFifo;

rm <= receiverOutput.recMsg;
o <= receiverOutput.recData;

END Structure;

Since all ForSyDe processes in the handshake protocol are constructed by pro-
cess constructors, they have been mapped to VHDL using the techniques described
in Section 6.2.1. The handshake protocol has been synthesized with the LSI 10K
standard cell library as target architecture. The top module of the synthesized de-
scription is shown in Figure 6.4. The Figure shows clearly the mapping of ForSyDe
processes onto VHDL-components. The synthesis results are given in Table 6.4.

Component Area Max. Frequency

ReadFifo 201 100 MHz
Sender 94 130 MHz
Receiver 63 180 MHz

Total Design 421 100 MHz

Table 6.1.Synthesis results for the handshake protocol

6.2. Mapping of the implementation model to VHDL 143

Figure 6.4. The synthesized implementation of the handshake protocol (top module)

144 Chapter 6. Implementation Mapping

6.2.3 The Importance of an optimized Implementation Model

The mapping technique described in the previous sections can be used to translate
ForSyDe implementation models into VHDL-descriptions, since for all ForSyDe
leaf processes a VHDL mapping template is defined. So far the mapping is done
manually, but since VHDL-templates and mapping rules are defined, the mapping
process can be automated.

In order to be able to synthesize an implementation model into hardware, it
is obvious that the ForSyDe implementation model must be synthesizable, i.e. all
ForSyDe constructs must be mappable to synthesizable VHDL-constructs. Thus
a FIFO, which contains an infinite buffer is not synthesizable, since there are no
infinite data structures in hardware.

In order to get anefficienthardware implementation, the ForSyDe implemen-
tation model must be optimized, since the translation from ForSyDe to VHDL is a
mapping process and does not include any optimization. If the application is speed
critical, already the implementation model must be optimized in order to minimize
thecritical path.

R CLCL CL CL R CL CL CL R CL

Process

Comb.

ProcessProcess

Comb. Seq.Seq.

Process

Seq.

Process

Path 2Path 1

Mapping

Figure 6.5. The critical path in the implementation model

The critical path is illustrated in Figure 6.5. A ForSyDe model contains com-
binational and sequential processes. Each sequential process is translated to com-
binational components and registers. The maximum frequency of the circuit is
determined by the path with the longest combinational delay, i.e. the critical path.

Thus it is of crucial importance that the implementation model is already op-
timized for the critical path. But this means also that the transformational design
process must be supported by an estimation tool that allows to give a good estimate
for the combinational delay in process networks. However, to date ForSyDe does
not have support from an estimation tool.

6.3. Discussion 145

6.3 Discussion

This chapter describes the mapping of a ForSyDe implementation model into cus-
tom hardware. ForSyDe defines a mapping for processes and process networks to
VHDL. The VHDL-description is synthesized by commercial synthesis tools into
a gate netlist of the chosen target technology. At present the mapping process is
done manually, but can be automated.

In order to target more complex embedded systems, mappings from a ForSyDe
implementation model to other architectures have to be defined. The paper [73]
describes a mapping procedure for sequential software aimed for a single micro-
processor and discusses a possible hardware/software implementation of the digital
equalizer.

P1 P2

MA

P ′
1 P ′

2 P ′
3

S

Implementation

Memory

Microprocessor

P3

Specification Model

Design
Transformation

Implementation Model

=⇒
Implementation

Mapping

S MA

P ′
3P ′

2P ′
1

Figure 6.6. Design transformation and implementation mapping for concurrent soft-
ware running on a single processor with a scheduling processS

However, compared to the mapping onto other architectures used in embedded
systems, the mapping to pure hardware and sequential software is almost straight-
forward. If the target architecture is a single processor, where processes run in
parallel and communicate via a shared memory the design task gets more diffi-
cult. As illustrated in Figure 6.6 the process network of the specification model,
where processes communicate directly with each other via signals, has to be trans-
formed into an implementation model, where a scheduling processS takes care of

146 Chapter 6. Implementation Mapping

the scheduling of processes and where the communication is done indirectly via a
memory access processMA. Then each process in the implementation model can
be mapped onto software components. If a real-time operating system (RTOS) is
used, the scheduling process could be mapped on the RTOS.

This example shows that each architecture does not only need its own map-
ping procedure, but there must also exist transformation rules that allow to prepare
the implementation model for mapping. The development of these transformation
and mapping rules is feasible, but will require a lot of effort. As ForSyDe is a re-
search project, transformation and mapping rules may only be defined for a limited
amount of architectures.

Chapter 7

Conclusion

This chapter concludes the thesis by giving a summary of the previous chapters,
where the key ideas and concepts of ForSyDe are emphasized. Based on the present
state of ForSyDe it gives an overview about future directions for research with the
objective to use ForSyDe for larger applications.

7.1 Summary of the Thesis

The increasing capacity of integrated circuits makes it possible to integrate more
and more functionality on a single chip. SoC architectures may include a variety of
components and allow the design of very powerful applications. Ideally a design
process for such applications starts with a high-level and abstract model that allows
the designer to capture the functionality of the system. On the other hand many
low-level details are required to efficiently implement a system on such target ar-
chitectures. Thus there exists a large abstraction gap between an ideal specification
model and an efficient implementation.

The objective of the ForSyDe methodology is to bridge this abstraction gap.
ForSyDe has been based on carefully chosen foundations. The specification model
uses a synchronous computational model that separates computation from com-
munication and is expressed by a clean and simple mathematical formalism that
allows for formal reasoning. In addition a synchronous model implies a total or-
der of events that allows the formulation of abstract timing constraints. Processes
are constructed by synchronous process constructors, which implement the syn-
chronous computational model, allow for design transformation, and facilitate the

147

148 Chapter 7. Conclusion

mapping of process networks to custom hardware or sequential software. The im-
plementation model allows the establishment of synchronous sub-domains inside
a multi-rate model. These foundations prepare ForSyDe for the incorporation of
formal methods, which will be of increasing importance, since simulation alone
will not be able to solve the verification task for systems of increasing size.

The details of the ForSyDe methodology are described in Chapter 3 to 6. The
definitions of the specification and implementation model are given in Chapter
3. These models can be expressed and simulated using the functional language
Haskell. System modeling in ForSyDe is illustrated by the specification model of
the digital equalizer in Chapter 4. Chapter 5 describes transformational design re-
finement in ForSyDe. This phase uses both semantic preserving transformations
and design decisions. The effect of a design decision is given in the implication
part of the transformation rule as information for the designer. The characteristic
function, which can be derived for any process network in ForSyDe, serves as a
useful tool for the development of a transformation rule. The potential of transfor-
mational refinement has been illustrated by means of powerful transformations that
have been applied to the specification model of the digital equalizer. The last step
in the ForSyDe design flow is implementation mapping and is discussed in Chapter
6. So far mapping rules exist for custom hardware and sequential software. The
mapping procedure does not include optimization, since the idea of ForSyDe is to
move design refinement to higher levels of abstraction. Thus optimization shall be
performed during transformational design refinement inside the functional domain
of ForSyDe. Only during implementation mapping the design process leaves the
functional domain. Here commercial tools, such as software compilers or logic
synthesis tools, take over in order to generate a software or hardware implementa-
tion.

The main contribution of the thesis is to show how the system design process
can be moved to a higher level of abstraction by using a carefully selected model
of computation together with the high-level concept of process constructors. Al-
though ForSyDe has not been used for larger examples, the thesis should give an
indication that a transformational system design approach at least can be used for
application-specific domains in system design.

7.2 Future Work

To date the main concepts of ForSyDe have been formulated and validated by
smaller case studies. In order to target more realistic applications, future work

7.2. Future Work 149

should focus on restricted application domains and target architectures. The fol-
lowing list defines areas for future work on ForSyDe.

• Incorporation of other models of computation

The multi-rate model is very suitable to model applications that shall be im-
plemented in custom hardware. However, if the target architecture is concur-
rent software that runs on a single processor other computational models like
synchronous data flow [67] [68] or communicating sequential processes [47]
are better suited and candidates for the integration into the implementation
model of ForSyDe.

• Transformation rules

The number of transformation rules in ForSyDe has to be extended and must
include data type and memory refinement. The effort should be put on the
development of transformation rules for the selected application domain and
the selected target architecture.

• Tool support for design refinement

A transformation tool should be developed that informs the designer of the
possible transformations, their implications and ideally also the possible im-
provement in terms of performance measures which could be given by an
estimation tool. A starting point could be to incorporate the ULTRA tool [3]
into ForSyDe, which allows to apply transformations on Haskell code.

• Automation of the mapping of a ForSyDe implementation model to
VHDL

As indicated in this thesis the mapping of a ForSyDe implementation model
can be automated. A similar tool could also be developed for the synthesis
to software and future architectures.

• Incorporation of verification methods

Since ForSyDe is based on a formal synchronous model, similar verification
methods as used for Lustre [43] or Esterel [14] could be incorporated into
ForSyDe. Also the Haskell based hardware description Lava [19] includes
formal verification methods and it should be investigated to which extent
such methods could be used in ForSyDe.

150 Chapter 7. Conclusion

• Modeling language

Industrial designers are in general used to languages like C or VHDL and
do not have any experience with a functional language like Haskell. Thus in
order to make ForSyDe more attractive for industry, another modeling lan-
guage like SystemC might be a better practical choice for ForSyDe, though
it does not support the concepts of ForSyDe to the same extent as Haskell.

• Graphical user interface

A graphical user interface (GUI) would also increase the acceptance in in-
dustry. A GUI could hide many formal concepts of ForSyDe and instead
presents them in a way that designers are familiar with. A process construc-
tor mooreSY could be represented by a schematic of a Moore finite state
machine, where the designer has to specify the initial state and the functions
for the next state and output decoder.

References

[1] The ForSyDe webpage.http://www.ele.kth.se/ForSyDe .

[2] The Haskell home page.http://www.haskell.org .

[3] The ULTRA home page.http://www.informatik.uni-ulm.de/
pm/ultra/ .

[4] A. Allan, D. Edenfeld, W. H. Joyner Jr., A. B. Kahng, M. Rodgers, and
Y. Zorian. 2001 technology roadmap for semiconductors.IEEE Computer,
January 2002.

[5] J. Armstrong, R. Virding, C. Wikstr̈om, and M. Williams. Concurrent
Progamming in ERLANG. Prentice-Hall, 1996.

[6] F. Balarin, M. Chiodo, P. Giusti, H. Hsieh, A. Jurescka, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara.Hardware-Software Co-Design of Embedded Systems: The Po-
lis Approach. Kluwer Academic Publishers, 1997.

[7] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
A. Sangiovanni-Vincentelli, E. M. Sentovich, and K. Suzuki. Synthesis of
software programs for embedded control applications.IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 18(6):834–
849, June 1999.

[8] F. L. Bauer, B. M̈oller, H. Partsch, and P. Pepper. Formal program construc-
tion by transformations – computer-aided, intuition guided programming.
IEEE Transactions on Software Engineering, 15(2), February 1989.

[9] A. Benveniste and G. Berry. The synchronous approach to reactive and real-
time systems.Proceedings of the IEEE, 79(9):1270–1282, September 1991.

151

152 References

[10] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and
R. D. Simone. The synchronous languages 12 years later.Proceedings of
the IEEE, 91(1):64–83, January 2003.

[11] J. Öberg, A. Kumar, and A. Hemani. Grammar-based hardware synthesis
from port size independent specifications.IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(2):184–194, 2000.

[12] G. Berry. Real time programming: Special purpose or general purpose lan-
guage. In G. Ritter, editor,Information Processing 8, pages 11–18. Elsevier
Science Publishers B.V., North-Holland, 1989.

[13] G. Berry. A hardware implementation of pure Esterel. InProc. International
Workshop on Formal Methods in VLSI Design, January 1991.

[14] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte,
editors,Proof, Language and Interaction: Essays in Honour of Robin Mil-
ner. MIT Press, 1998.

[15] G. Berry. The constructive semantics of pure Esterel. Draft Version 3, 1999.

[16] G. Berry and G. Gonthier. The Esterel synchronous programming language:
Design, semantics, implementation.Science of Computer Programming,
19(2):87–152, 1992.

[17] R. S. Bird. An Introduction to the theory of lists. Oxford University Com-
puting Laboratory, Technical Monograph PRG-56 edition, 1986.

[18] R. S. Bird. Lectures on Constructive Functional Programming. Oxford
University Computing Laboratory, Technical Monograph PRG-69 edition,
1988.

[19] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design
in Haskell. InInternational Conference on Functional Programming, 1998.

[20] P. Bjuŕeus and A. Jantsch. MASCOT: A specification and cosimulation
method integrating data and control flow. InProceedings of the Design and
Test Europe Conference (DATE), 2000.

[21] P. Bjuŕeus and A. Jantsch. Modeling of mixed control and dataflow systems
in MASCOT. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 9(5):690–703, 2001.

References 153

[22] F. Boussinot and R. de Simone. The ESTEREL language.Proceedings of
the IEEE, 79(9):1293–1304, September 1991.

[23] C. G. Cassandras.Discrete Event Systems: Modeling and Performance
Analysis. Asken Associates, 1993.

[24] K. Claessen.Embedded Languages for Describing and Verifying Hardware.
PhD thesis, Chalmers University of Technology and Göteborg University,
2001.

[25] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. Research Monographs in Parallel and Distributed Computing. Pit-
man, London, 1989.

[26] R. Dömer, D. Gajski, and A. Gerstlauer. SpecC methodology for high-level
modeling. In9th IEEE/DATC Electronic Design Processes Workshop, Mon-
terey, California, April 2002.

[27] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design
of embedded systems: Formal models, validation, and synthesis.Proceed-
ings of the IEEE, 85(3):366–390, March 1997.

[28] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorf-
fer, S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, January 2003.

[29] J. Ellsberger, D.Hogrefe, and A. Sarma.SDL - Formal Object Oriented
Language for Communicating Systems. Prentice-Hall, 1997.

[30] R. Ernst. Codesign of embedded systems: Status and trends.IEEE Design
& Test of Computers, 15(2):45–54, April–June 1998.

[31] R. Ernst, J. Henkel, and T. Brenner. Hardware-software cosynthesis from
microcontrollers.IEEE Design & Test of Computers, 10(4):64–75, Decem-
ber 1993.

[32] M. J. Flynn. Some computer organisations and their effectiveness.IEEE
Transactions on Computers, C-21(9):948–960, September 1972.

[33] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin.High-Level Syn-
thesis. Kluwer Academic Publishers, 1992.

154 References

[34] D. D. Gajski and L. Ramachdran. Introduction to high-level synthesis.IEEE
Design & Test of Computers, 11(4), 1994.

[35] D. D. Gajski, J. Zhu, R. D̈omer, A. Gerstlauer, and S. Zhao.Spec C: Speci-
fication Language and Methodology. Kluwer Academic Publishers, 2000.

[36] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines with
multiple concurrency models.IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 18(6):742–760, June 1999.

[37] M. Gordon, R. Milner, L. Morris, M. Newey, and C. P. Wadsworth. A met-
alanguage for interactive proof in LCF. InConference Record of the 5th
Annual ACM Symposium on Principles of Programming Languages, pages
119–130. ACM, 1978.

[38] T. Grötker, S. Liao, G. Martin, and S. Swan.System Design with SystemC.
Kluwer Academic Publishers, 2002.

[39] P. L. Guernic, T. Gautier, M. L. Borgne, and C. de Marie. Programming
real-time applications with SIGNAL.Proceedings of the IEEE, 79(9):1321–
1335, September 1991.

[40] R. K. Gupta.Co-Synthesis of Hardware and Software for Digital Embedded
Systems. Kluwer Academic Publishers, 1995.

[41] R. K. Gupta and G. D. Micheli. Hardware-software cosynthesis for digital
systems.IEEE Design & Test of Computers, 10(3):29–41, September 1993.

[42] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, 1993.

[43] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE.Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[44] N. Halbwachs and P. Raymond. Validation of synchronous reactive systems:
from formal verification to automatic testing. InASIAN’99, Asian Comput-
ing Science Conference, Phuket (Thailand), December 1999. LNCS 1742,
Springer Verlag.

[45] D. C. Hanselman and B. Littlefield.Mastering MATLAB 5: A comprehen-
sive Tutorial and Reference. Prentice-Hall, 1998.

References 155

[46] D. Harel. Statecharts: A visual formalism for complex systems.Science of
Computer Programming, 8(3):231–274, 1987.

[47] C. A. R. Hoare. Communicating sequential processes.Communications of
the ACM, 21(8), 1978.

[48] H. Hsieh, F. Balarin, L. Lavagno, and A. Sangiovanni-Vincentelli. Syn-
chronous approach to functional equivalence of embedded system imple-
mentations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits, 20(8):1016–1033, August 2001.

[49] P. Hudak. Conception, evolution, and application of functional program-
ming languages. ACM Computing Surveys, 21(3):359–411, September
1989.

[50] P. Hudak and M. Jones. Haskell vs Ada vs C++ vs Awk vs. . . : An ex-
periment in software prototyping productivity. Technical report, Dept. of
Computer Science, Yale University, July 1994.

[51] P. Hudak, J. Peterson, and J. H. Fasel.A Gentle Introduction to Haskell 98.
October 1999.http://www.haskell.org/tutorial .

[52] J. Hughes. Why Functional Programming Matters.Computer Journal,
32(2):98–107, 1989.

[53] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE,
2001.

[54] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE, 2002.

[55] J. D. II, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu, L. Mu-
liadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Overview
of the Ptolemy project. Technical Report UCB/ERL No. M99/37, Dept.
EECS, University of California, Berkeley, CA 94720, 1999.

[56] A. Jantsch and P. Bjuréus. Composite signal flow: A computational model
combining events, sampled streams, and vectors. InProceedings of the De-
sign and Test Europe Conference (DATE), 2000.

[57] A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J.Öberg, A. Hemani,
P. Ellervee, and M. O’Nils. Comparison of six languages for system level
descriptions of telecom systems. InFirst International Forum on Design

156 References

Languages - Proceedings, volume 2, pages 139–148, Lausanne, Switzer-
land, September 1998.

[58] A. Jantsch and I. Sander. On the roles of functions and objects in system
specification. InProceedings of the International Workshop on Hardware/-
Software Codesign, 2000.

[59] A. Jantsch, I. Sander, and W. Wu. The usage of stochastic processes in
embedded system specifications. InProceedings of the Ninth International
Symposium on Hardware/Software Codesign, April 2001.

[60] A. Jantsch and H. Tenhunen, editors.Networks on Chip. Kluwer Academic
Publishers, 2003.

[61] G. Jones and M. Sheeran. Circuit design in Ruby. InFormal Methods for
VLSI Design, pages 13–70. North-Holland, 1990.

[62] S. P. Jones.Haskell 98 Language and Libraries. Cambridge University
Press, 2003.

[63] G. Kahn. The semantics of a simple language for parallel programming. In
Proceedings IFIP Congress ’74. North-Holland, 1974.

[64] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel pro-
cesses. InIFIP ’77. North-Holland, 1977.

[65] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: Orthogonolization of concerns and
platform-based design.IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, 19(12):1523–1543, December 2000.

[66] E. A. Lee. What’s ahead for embedded software.IEEE Computer, 33(9):18–
26, September 2000.

[67] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing.IEEE Transactions on Comput-
ers, C-36(1):24–35, January 1987.

[68] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.Proceedings of
the IEEE, 75(9):1235–1245, September 1987.

[69] E. A. Lee and T. M. Parks. Dataflow process networks.IEEE Proceedings,
1995.

References 157

[70] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing
models of computation.IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(12):1217–1229, December 1998.

[71] Y. Li and M. Leeser. HML, a novel hardware description language and its
translation to VHDL.IEEE Transactions on VLSI, 8(1):1–8, February 2000.

[72] Z. Lu. Refinement of a system specification for a digital equalizer into HW
and SW implementations. Master’s thesis, Department of Microelectron-
ics and Information Technology, Royal Institute of Technology, December
2001. IMIT/2001-18.

[73] Z. Lu, I. Sander, and A. Jantsch. A case study of hardware and software
synthesis in ForSyDe. InProceedings of the 15th International Symposium
on System Synthesis, Kyoto, Japan, October 2002.

[74] W. Luk and T. Wu. Towards a declarative framework for hardware-software
codesign. InProc. Third International Workshop on Hardware/Software
Codesign, pages 181–188, 1994.

[75] F. Maraninchi. The Argos language: Graphical representation of automata
and description of reactive systems. InIEEE Workshop on Visual Lan-
guages, oct 1991.

[76] J. Matthews, B. Cook, and J. Launchbury. Microprocessor specification in
HAWK. In International Conference on Computer Languages, 1998.

[77] G. D. Micheli. Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[78] G. D. Micheli, R. Ernst, and W. Wolf.Readings in Hardware/Software Co-
Design. Morgan Kaufmann Publishers, 2002.

[79] G. D. Micheli and R. K. Gupta. Hardware/software co-design.Proceedings
of the IEEE, 85(3):349–365, March 1997.

[80] A. Mihal, C. Kulkarni, M. Moskewicz, M. tsai, N. Shah, S. Weber, Y. Jin,
K. Keutzer, C. Sauer, K. Vissers, and S. Malik. Developing architectural
platforms: A disciplined approach.IEEE Design & Test of Computers,
19(6):6–16, November-December 2002.

[81] R. Milner. A theory of type polymorphism in programming.Journal of
Computer and System Sciences, 1978.

158 References

[82] R. Milner. A calculus of communicating systems.LNCS, 92, 1980.

[83] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[84] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Stan-
dard ML - Revised. MIT Press, 1997.

[85] G. E. Moore. Cramming more components onto integrated circuits.Elec-
tronis, 38(8), 1965.

[86] A. Mycroft and R. Sharp. Hardware/software co-design using functional
languages. InProceedings of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 2031 ofLNCS. Springer-Verlag,
2000.

[87] J. O’Donnell. From transistors to computer architecture: Teaching func-
tional circuit specification in Hydra. In Springer-Verlag, editor,Sympo-
sium on Functional Programming Languages in Education, volume 1022
of LNCS, pages 195–214, 1995.

[88] H. A. Partsch. Specification and Transformation of Programs. Springer-
Verlag, 1990.

[89] A. Pettorossi and M. Proietti. Rules and strategies for transforming func-
tional and logic programs.ACM Computing Surveys, 28(2):361–414, June
1996.

[90] J. Plosila.Self-Timed Circuit Design - The Action Systems Approach. PhD
thesis, University of Turku, Finland, 1999.

[91] J. G. Proakis and D. G. Manolakis.Digital Signal Processing. Prentice Hall,
3 edition, 1996.

[92] H. J. Reekie.Realtime Signal Processing. PhD thesis, University of Tech-
nology at Sydney, Australia, 1995.

[93] F. Rocheteau and N. Halbwachs. Implementing reactive programs on cir-
cuits: A hardware implementation of lustre. InREX Workshop Proceedings,
June 1992.

[94] I. Sander and A. Jantsch. Formal system design based on the synchrony
hypothesis. InProceedings of the 12th international conference on VLSI
Design, pages 318–323, Goa, India, January 1999.

References 159

[95] I. Sander and A. Jantsch. System synthesis based on a formal computational
model and skeletons. InProceedings IEEE Workshop on VLSI’99, pages
32–39, Orlando, Florida, April 1999. IEEE Computer Society.

[96] I. Sander and A. Jantsch. System synthesis utilizing a layered functional
model. InProceedings Seventh International Workshop on Hardware/Soft-
ware Codesign, pages 136–140, Rome, Italy, May 1999. ACM Press.

[97] I. Sander and A. Jantsch. Transformation based communication and clock
domain refinement for system design. In39th Design Automation Confer-
ence (DAC 2002), New Orleans, USA, June 2002.

[98] I. Sander and A. Jantsch. System modeling and transformational design
refinement in ForSyDe. Submitted to the JournalIEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2003.

[99] I. Sander, A. Jantsch, and Z. Lu. Development and application of design
transformations in ForSyDe. InDesign, Automation and Test in Europe
Conference (DATE 2003), pages 364–369, Munich, Germany, March 2003.

[100] T. Seceleanu.Systematic Design of Synchronous Digital Circuits. PhD
thesis, University of Turku, Finland, 2001.

[101] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip interconnect
woes through communication based design. InDesign Automation Confer-
ence (DAC 2001), Las Vegas, Nevada, USA, June 2001.

[102] R. Sharp and A. Mycroft. A higher level language for hardware synthesis.
In Proceedings of 11th Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME), volume 2144 of
LNCS. Springer-Verlag, 2001.

[103] S. Singh. System level specifcation in Lava. InDesign, Automation and Test
in Europe Conference (DATE 2003), pages 370–375, March 2003.

[104] D. Skillicorn.Foundations of Parallel Programming. Cambridge University
Press, 1994.

[105] D. B. Skillicorn and D. Talia. Models and languages for parallel computa-
tion. ACM Computing Surveys, 30(2):123–169, June 1998.

160 References

[106] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich. Fun-
State - an internal design representation for codesign.IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 9(4):524–544, August 2001.

[107] B. Stroustrup.The C++ Programming Language. Addison Wesley, 2000.

[108] S. Thompson.Haskell - The Craft of Functional Programming. Addison-
Wesley, 2 edition, 1999.

[109] J. Voeten. On the fundamental limitataions of transformational design.ACM
Transactions on Design Automation of Electronic Systems, 6(4):553–552,
October 2001.

[110] Z. Wan. Functional reactive programming from first principles. InProgram-
ming Language Design and Implementation (PLDI ’00), 2000.

[111] Z. Wan, W. Taha, and P. Hudak. Real-time FRP. InInternational Conference
on Functional Programming (ICFP ’01), 2001.

[112] Z. Wan, W. Taha, and P. Hudak. Event-driven FRP. InFourth Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL
’02), 2002.

[113] G. Winskel.The Formal Semantics of Programming Languages. MIT Press,
1993.

[114] W. H. Wolf. Hardware-software co-design of embedded systems.Proceed-
ings of the IEEE, 82(7):967–989, July 1994.

[115] W. Wu, I. Sander, and A. Jantsch. Transformational system design based
on a formal computational model and skeletons. InForum on Design Lan-
guages 2000, Tübingen, Germany, September 2000.

[116] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI—a system
model for heterogeneously specified embedded systems.IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 10(4):379–389, Au-
gust 2002.

Appendix A

The ForSyDe Standard Library

A.1 Introduction

Application Libraries

Haskell 98

ForSyDe Core Language

System Functions
LibrariesLibraries

Computational
Model System Data Types

Figure A.1. The ForSyDe Standard Library

The ForSyDe Standard Library consists of several layers as illustrated in Figure
A.1. The bottom layer is the Haskell 98 language [62]. The layer above Haskell
98 defines theForSyDe Core Language. Here the fundamental data types, such
as signal and vector, and the corresponding functions are defined. Computational
models are defined in aComputational Model Libraryand are located on top of
the core language. Also on top of the core language there are theLibraries of
System Functions and Data Types, which contains functions and data types that are
typical for system applications and are independent of the computational model.
The top layer of the ForSyDe Standard Library consists ofApplication Libraries.

161

162 Appendix A. The ForSyDe Standard Library

These libraries include components and functions that are modeled for specific
computational models.

The ForSyDe Standard Library can be imported with

import ForSyDeStdLib

which includes all sub-modules of the library.
This appendix covers only the parts of the library that are used in this thesis.

For preliminary versions of other computational models or the stochastic library
see the ForSyDe web page [1].

The code is written in literate Haskell style, which makes it possible to include
LATEX code for documentation. Only those parts of the literate program that are
entirely enclosed between\begin{code} ... \end{code} are treated as
program text; all other lines are comments. This allows to include usual LATEX text,
but also figures and equations as comments.

A.1.1 The ModuleForSyDeStdLib

Overview

The ForSyDe Standard Library contains the data types and functions for the ForSyDe
design methodolgy.

The moduleForSyDeStdLib works as a container and exports all other li-
braries.

module ForSyDeStdLib(
module DomainInterfaces,
module SynchronousProcessLib,
module SynchronousLib,
module Vector, module Signal, module Memory,
module AbsentExt, module Queue,
module Combinators, module DFT,
module FIR

) where

import DomainInterfaces
import SynchronousProcessLib
import SynchronousLib
import Vector
import Signal
import Memory
import AbsentExt
import Queue

A.2. ForSyDe Core Language 163

import Combinators
import FIR
import DFT

A.2 ForSyDe Core Language

The ForSyDe core language includes the modulesSignal , Vector , AbsentExt

andCombinators .

A.2.1 The ModuleSignal

Overview

The moduleSignal defines the data typeSignal and functions operating on this
data type.

module Signal(Signal (NullS, (:-)), (-:), (+-+), (!-),
signal, fromSignal,
unitS, nullS, headS, tailS, atS, takeS, dropS,
lengthS, infiniteS, copyS, selectS, writeS, readS

)
where

infixr 5 :-
infixr 5 -:
infixr 5 +-+
infixr 5 !-

The Data TypeSignal

A signal is defined as a list of events. An event has a tag and a value. The tag of an
event is defined by the position in the list.

data Signal a = NullS
| a :- Signal a deriving (Eq)

A signal is defined as an instance of the classesRead andShow. The signal1
:- 2 :- NullS is represented as{1,2 }.

Functions on the Data TypeSignal

The module defines the following functions on the data typeSignal :

164 Appendix A. The ForSyDe Standard Library

signal :: [a] -> Signal a
fromSignal :: Signal a -> [a]
unitS :: a -> Signal a
nullS :: Signal a -> Bool
headS :: Signal a -> a
tailS :: Signal a -> Signal a
atS :: Int -> Signal a -> a
takeS :: Int -> Signal a -> Signal a
dropS :: Int -> Signal a -> Signal a
selectS :: Int -> Int -> Signal a -> Signal a
lengthS :: Numa => Signal b -> a
infiniteS :: (a -> a) -> a -> Signal a
writeS :: Show a => Signal a -> [Char]
readS :: Read a => [Char] -> Signal a
(-:) :: Signal a -> a -> Signal a
(+-+) :: Signal a -> Signal a -> Signal a

The functionssignal and fromSignal convert a list into a signal and vice
versa. The functionunitS creates a signal with one value. The functionnullS

checks if a signal is empty. The functionheadS gives the first value - the head - of a
signal, whiletailS gives the rest of the signal - the tail. The functionatS returns
then-th event in a signal. The numbering of events in a signal starts with 0. There
is also an operator version of this function,(!-) . The functiontakeS returns the
first n values of a signal, while the functiondropS drops the firstn values from a
signal. The functionselectS takes three parameters, an offset, a stepsize and a
signal and returns some elements of the signal such as in the following example:

Signal> selectS 2 3 (signal[1,2,3,4,5,6,7,8,9,10])
{3,6,9} :: Signal Integer

New signals can be created by means of the following functions. The data con-
structor(:-) adds an element to the signal at the head of the signal. The operator
(-:) adds at an element to a signal at the tail. Finally the operator(+-+) con-
catinates two signals into one signal. The functionlengthS returns the length of
a finite stream. The functioninfiniteS creates an infinite signal. The first argu-
ment f is a function that is applied on the current value. The second argumentx

gives the first value of the signal.

Signal> takeS 5 (infiniteS (*3) 1)
{1,3,9,27,81} :: Signal Integer

The functioncopyS creates a signal withn valuesx . The functionwriteS trans-
forms a signal into a string of the following format:

Signal> writeS (signal[1,2,3,4,5])

A.2. ForSyDe Core Language 165

"1\n2\n3\n4\n5\n" :: [Char]

The functionreadS transforms such a formatted string into a signal.

Signal> readS "1\n2\n3\n4\n5\n" :: Signal Int
{1,2,3,4,5} :: Signal Int

The combinatorfanS takes two processesp1 andp2 and and generates a process
network, where a signal is split and processed by the processesp1 andp2.

fanS :: (Signal a -> Signal b) -> (Signal a -> Signal c)
-> Signal a -> (Signal b, Signal c)

instance (Show a) => Show (Signal a) where
showsPrec p NullS = showParen (p > 9) (

showString "{}")
showsPrec p xs = showParen (p > 9) (

showChar ’{’ . showSignal1 xs)
where

showSignal1 NullS
= showChar ’}’

showSignal1 (x:-NullS)
= shows x . showChar ’}’

showSignal1 (x:-xs)
= shows x . showChar ’,’

. showSignal1 xs

instance Read a => Read (Signal a) where
readsPrec _ s = readsSignal s

readsSignal :: (Read a) => ReadS (Signal a)
readsSignal s = [((x:-NullS), rest)

| ("{", r2) <- lex s,
(x, r3) <- reads r2,
("}", rest) <- lex r3]

++ [(NullS, r4)
| ("{", r5) <- lex s,

("}", r4) <- lex r5]
++ [((x:-xs), r6)

| ("{", r7) <- lex s,
(x, r8) <- reads r7,
(",", r9) <- lex r8,
(xs, r6) <- readsValues r9]

readsValues :: (Read a) => ReadS (Signal a)
readsValues s = [((x:-NullS), r1)

166 Appendix A. The ForSyDe Standard Library

| (x, r2) <- reads s,
("}", r1) <- lex r2]

++ [((x:-xs), r3)
| (x, r4) <- reads s,

(",", r5) <- lex r4,
(xs, r3) <- readsValues r5]

signal [] = NullS
signal (x:xs) = x :- signal xs

fromSignal NullS = []
fromSignal (x:-xs) = x : fromSignal xs

unitS x = x :- NullS

nullS NullS = True
nullS _ = False

headS NullS = error "headS : Signal is empty"
headS (x:-_) = x

tailS NullS = error "tailS : Signal is empty"
tailS (_:-xs) = xs

atS _ NullS
= error "atS: Signal has not enough elements"

atS 0 (x:-_) = x
atS n (_:-xs) = atS (n-1) xs

(!-) xs n = atS n xs

takeS 0 _ = NullS
takeS _ NullS = NullS
takeS n (x:-xs) | n <= 0 = NullS

| otherwise = x :- takeS (n-1) xs

dropS 0 NullS = NullS
dropS _ NullS = NullS
dropS n (x:-xs) | n <= 0 = x:-xs

| otherwise = dropS (n-1) xs

selectS offset step xs = select1S step (dropS offset xs)
where

A.2. ForSyDe Core Language 167

select1S step NullS = NullS
select1S step (x:-xs) = x :- select1S step (dropS (step-1) xs)

(-:) xs x = xs +-+ (x :- NullS)

(+-+) NullS ys = ys
(+-+) (x:-xs) ys = x :- (xs +-+ ys)

lengthS NullS = 0
lengthS (_:-xs) = 1 + lengthS xs

infiniteS f x = x :- infiniteS f (f x)

copyS 0 x = NullS
copyS n x = x :- copyS (n-1) x

fanS p1 p2 xs = (p1 xs, p2 xs)

writeS NullS = []
writeS (x:-xs) = show x ++ "\n" ++ writeS xs

readS xs = readS’ (words xs)
where

readS’ [] = NullS
readS’ ("\n":xs) = readS’ xs
readS’ (x:xs) = read x :- readS’ xs

A.2.2 The ModuleVector

Overview

The moduleVector defines the data typeVector and the corresponding func-
tions. It is a development of the moduleVector defined by Reekie in [92]. Though
the vector is modeled as a list, it should be viewed as an array, i.e. a vector has a
fixed size. Unfortunately, it is not possible to have the size of the vector as a param-
eter of the vector data type, due to restrictions in Haskells type system. Still most
operations are defined for vectors with the same size.

module Vector (
Vector (..), vector, fromVector, unitV, nullV, lengthV,
atV, replaceV, headV, tailV, lastV, initV, takeV, dropV,
selectV, groupV, (<+>), (<:), mapV, foldlV, foldrV, scanlV,
scanrV, meshlV, meshrV, zipWithV, filterV, zipV, unzipV,

168 Appendix A. The ForSyDe Standard Library

concatV, reverseV, shiftlV, shiftrV, rotrV, rotlV,
generateV, iterateV, copyV, serialV, parallelV)

where

infixr 5 :>
infixl 5 <:
infixr 5 <+>

The Data TypeVector

The data typeVector is modeled similar to a list. It has two data type constructors.
NullV constructs the empty vector, while:> a vector by adding an value to an
existing vector. Using the inheritance mechanism of Haskell we have declared
Vector as an instance of the classesRead andShow.

This means that the vector1:>2:>3:>NullV is shown as<1,2,3> .

data Vector a = NullV
| a :> (Vector a) deriving (Eq)

Functions on the Data Typevector

The functionvector converts a list into a vector, while the functionfromVector

converts a vector into a list.

vector :: [a] -> Vector a
fromVector :: Vector a -> [a]

The functionunitV creates a vector with one element. The functionnullV

returnsTrue if a vector is empty. The functionlengthV returns the number of
elements in a value. The functionatV returns then-th element in a vector, starting
from zero. The functionreplaceV replaces an element in a vector.

unitV :: a -> Vector a
nullV :: Vector a -> Bool
lengthV :: Numa => Vector b -> a
replaceV :: Vector a -> Int -> a -> Vector a
atV :: Numa => Vector b -> a -> b

The functionsheadV andlastV return the first element or the the last element
of a vector. The functionstailV returns all, but the first element of a vector, while
initV returns all but the last elements of a vector. The functiontakeV returns the
first n elements of a vector while the functiondropV drops the firstn elements of
a vector.

A.2. ForSyDe Core Language 169

headV :: Vector a -> a
tailV :: Vector a -> Vector a
lastV :: Vector a -> a
initV :: Vector a -> Vector a
takeV :: (Numa, Ord a) => a -> Vector b -> Vector b
dropV :: (Numa, Ord a) => a -> Vector b -> Vector b

The functionselectV selects elements in the vector. The first argument gives
the initial element, starting from zero, the second argument gives the stepsize be-
tween elements and the last argument gives the number of elements.

selectV :: (Numa, Ord a) => a -> a -> a -> Vector b -> Vector b

The functiongroupV groups a vector into a vector of vectors of sizen.

groupV :: (Numa, Ord a) => a -> Vector b -> Vector (Vector b)

The data constructor(:>) adds an element add the front of the vector, while
the operator(<:) adds an element at the end. The operator<+> concatinates two
vectors. The functionconcatV concats a vector of vectors into a single vector.

(<+>) :: Vector a -> Vector a -> Vector a
(<:) :: Vector a -> a -> Vector a

The higher-order functionmapVapplies a function on all elements of a vector.

mapV :: (a -> b) -> Vector a -> Vector b

The higher-order functionzipWithV applies a function pairwise on to vectors.

zipWithV :: (a -> b -> c) -> Vector a -> Vector b -> Vector c

The higher-order functionsfoldlV andfoldrV fold a function from the right
or from the left over a vector using an initial value.

foldlV :: (a -> b -> a) -> a -> Vector b -> a
foldrV :: (b -> a -> a) -> a -> Vector b -> a

The higher-functionfilterV takes a predicate function and a vector and cre-
ates a new vector with the elements for which the predicate is true.

filterV :: (a -> Bool) -> Vector a -> Vector a

The functionzipV zips two vectors into a vector of tuples. The function
unzipV unzips a vector of tuples into two vectors.

zipV :: Vector a -> Vector b -> Vector (a, b)
unzipV :: Vector (a, b) -> (Vector a, Vector b)

170 Appendix A. The ForSyDe Standard Library

The functionshiftlV shifts a value from the left into a vector. The function
shiftrV shifts a value from the right into a vector. The functionsrotlV , rotrV

rotates a vector to the left or to the right. Note that these fuctions do not change the
size of a vector.

shiftlV :: Vector a -> a-> Vector a
shiftrV :: Vector a -> a -> Vector a
rotrV :: Vector a -> Vector a
rotlV :: Vector a -> Vector a

The functionconcatV transforms a vector of vectors to a single vector. The
functionreverseV reverses the order of elements in a vector.

concatV :: Vector (Vector a) -> Vector a
reverseV :: Vector a -> Vector a

The functioniterateV generates a vector with a given number of elements
starting from an initial element using a supplied function for the generation of
elements. The functiongenerateV behaves in the same way, but starts with th
e application of the supplied function to the supplied value. The functioncopyV

generates a vector with a given number of copies of the same element.

Vector> iterateV 5 (+1) 1
<1,2,3,4,5> :: Vector Integer
Vector> generateV 5 (+1) 1
<2,3,4,5,6> :: Vector Integer
Vector> copyV 7 5
<5,5,5,5,5,5,5> :: Vector Integer

iterateV :: Numa => a -> (b -> b) -> b -> Vector b
generateV :: Numa => a -> (b -> b) -> b -> Vector b
copyV :: Numa => a -> b -> Vector b

The functionsserialV andparallelV can be used to construct serial and
parallel networks of processes.

serialV :: Vector (a -> a) -> a -> a
parallelV :: Vector (a -> b) -> Vector a -> Vector b

The functionsscanlV andscanrV ”scan” a function through a vector. The
functions take an initial element apply a functions recursively first on the element
and then on the result of the function application.

scanlV :: (a -> b -> a) -> a -> Vector b -> Vector a
scanrV :: (b -> a -> a) -> a -> Vector b -> Vector a

A.2. ForSyDe Core Language 171

Reekie also proposed themeshlV andmeshrV iterators. They are like a com-
bination ofmapVandscanlV or scanrV . The argument function supplies a pair
of values: the first is input into the next application of this function, and the second
is the output value. As an example consider the expression:

f x y = (x+y, x+y)

s1 = vector [1,2,3,4,5]

HeremeshlV can be used to calculate the running sum.

Vector> meshlV f 0 s1
(15,<1,3,6,10,15>)

meshlV :: (a -> b -> (a, c)) -> a -> Vector b -> (a, Vector c)
meshrV :: (a -> b -> (c, b)) -> b -> Vector a -> (Vector c, b)

Implementation

instance (Show a) => Show (Vector a) where
showsPrec p NullV = showParen (p > 9) (

showString "<>")
showsPrec p xs = showParen (p > 9) (

showChar ’<’ . showVector1 xs)
where

showVector1 NullV
= showChar ’>’

showVector1 (x:>NullV)
= shows x . showChar ’>’

showVector1 (x:>xs)
= shows x . showChar ’,’

. showVector1 xs

instance Read a => Read (Vector a) where
readsPrec _ s = readsVector s

readsVector :: (Read a) => ReadS (Vector a)
readsVector s = [((x:>NullV), rest) | ("<", r2) <- lex s,

(x, r3) <- reads r2,
(">", rest) <- lex r3]

++
[(NullV, r4) | ("<", r5) <- lex s,

172 Appendix A. The ForSyDe Standard Library

(">", r4) <- lex r5]
++

[((x:>xs), r6) | ("<", r7) <- lex s,
(x, r8) <- reads r7,
(",", r9) <- lex r8,
(xs, r6) <- readsValues r9]

readsValues :: (Read a) => ReadS (Vector a)
readsValues s = [((x:>NullV), r1) | (x, r2) <- reads s,

(">", r1) <- lex r2]
++
[((x:>xs), r3) | (x, r4) <- reads s,

(",", r5) <- lex r4,
(xs, r3) <- readsValues r5]

vector [] = NullV
vector (x:xs) = x :> (vector xs)

fromVector NullV = []
fromVector (x:>xs) = x : fromVector xs

unitV x = x :> NullV

nullV NullV = True
nullV _ = False

lengthV NullV = 0
lengthV (_:>xs) = 1 + lengthV xs

replaceV vs n x
| n <= lengthV vs && n >= 0 = takeV n vs <+> unitV x

<+> dropV (n+1) vs
| otherwise = vs

NullV ‘atV‘ _ = error "atV: Vector has not enough elements"
(x:>_) ‘atV‘ 0 = x
(_:>xs) ‘atV‘ n = xs ‘atV‘ (n-1)

headV NullV = error "headV: Vector is empty"
headV (v:>_) = v

tailV NullV = error "tailV: Vector is empty"
tailV (_:>vs) = vs

A.2. ForSyDe Core Language 173

lastV NullV = error "lastV: Vector is empty"
lastV (v:>NullV) = v
lastV (_:>vs) = lastV vs

initV NullV = error "initV: Vector is empty"
initV (_:>NullV) = NullV
initV (v:>vs) = v :> initV vs

takeV 0 _ = NullV
takeV _ NullV = NullV
takeV n (v:>vs) | n <= 0 = NullV

| otherwise = v :> takeV (n-1) vs

dropV 0 vs = vs
dropV _ NullV = NullV
dropV n (v:>vs) | n <= 0 = v :> vs

| otherwise = dropV (n-1) vs

selectV f s n vs | n <= 0
= NullV

| (f+s*n-1) > lengthV vs
= error "selectV: Vector has not enough elements"

| otherwise
= atV vs f :> selectV (f+s) s (n-1) vs

groupV n v
| lengthV v < n = NullV
| otherwise = selectV 0 1 n v

:> groupV n (selectV n 1 (lengthV v-n) v)

NullV <+> ys = ys
(x:>xs) <+> ys = x :> (xs <+> ys)

xs <: x = xs <+> unitV x

mapV _ NullV = NullV
mapV f (x:>xs) = f x :> mapV f xs

zipWithV f (x:>xs) (y:>ys) = f x y :> (zipWithV f xs ys)
zipWithV _ _ _ = NullV

foldlV _ a NullV = a
foldlV f a (x:>xs) = foldlV f (f a x) xs

174 Appendix A. The ForSyDe Standard Library

foldrV _ a NullV = a
foldrV f a (x:>xs) = f x (foldrV f a xs)

filterV _ NullV = NullV
filterV p (v:>vs) = if (p v) then

v :> filterV p vs
else

filterV p vs

zipV (x:>xs) (y:>ys) = (x, y) :> zipV xs ys
zipV _ _ = NullV

unzipV NullV = (NullV, NullV)
unzipV ((x, y) :> xys) = (x:>xs, y:>ys)

where (xs, ys) = unzipV xys

shiftlV vs v = v :> initV vs

shiftrV vs v = tailV vs <: v

rotrV NullV = NullV
rotrV vs = tailV vs <: headV vs

rotlV NullV = NullV
rotlV vs = lastV vs :> initV vs

concatV = foldrV (<+>) NullV

reverseV NullV = NullV
reverseV (v:>vs) = reverseV vs <: v

generateV 0 _ _ = NullV
generateV n f a = x :> generateV (n-1) f x

where x = f a

iterateV 0 _ _ = NullV
iterateV n f a = a :> iterateV (n-1) f (f a)

copyV k x = iterateV k id x

serialV fs x = serialV’ (reverseV fs) x
where

serialV’ NullV x = x
serialV’ (f:>fs) x = serialV fs (f x)

A.2. ForSyDe Core Language 175

parallelV NullV NullV = NullV
parallelV _ NullV

= error "parallelV: Vectors have not the same size!"
parallelV NullV _

= error "parallelV: Vectors have not the same size!"
parallelV (f:>fs) (x:>xs) = f x :> parallelV fs xs

scanlV _ _ NullV = NullV
scanlV f a (x:>xs) = q :> scanlV f q xs

where q = f a x

scanrV _ _ NullV = NullV
scanrV f a (x:>NullV) = f x a :> NullV
scanrV f a (x:>xs) = f x y :> ys

where ys@(y:>_) = scanrV f a xs

meshlV _ a NullV = (a, NullV)
meshlV f a (x:>xs) = (a’’, y:>ys)

where (a’, y) = f a x
(a’’, ys) = meshlV f a’ xs

meshrV _ a NullV = (NullV, a)
meshrV f a (x:>xs) = (y:>ys, a’’)

where (y, a’’) = f x a’
(ys, a’) = meshrV f a xs

A.2.3 The ModuleAbsentExt

Overview

The moduleAbsentExt is used to extend existing data types with the value ”ab-
sent” (⊥).

module AbsentExt(
AbstExt (Abst, Prst), fromAbstExt, abstExt, psi,
isAbsent, isPresent, abstExtFunc)

where

The data typeAbstExt has two constructors. The constructorAbst is used to
model the absence of a value, while the constructorPrst is used to model present
values.

data AbstExt a = Abst
| Prst a deriving (Eq)

176 Appendix A. The ForSyDe Standard Library

The data typeAbstExt is defined as an instance ofShow andRead. ’ ’ repre-
sents the valueAbst while a present value is represented with its value, e.g.Prst

1 is represented as ’1’.

Functions on the Data TypeAbsentExt

The module defines the following functions:

fromAbstExt :: a -> AbstExt a -> a
isPresent :: AbstExt a -> Bool
isAbsent :: AbstExt a -> Bool
abstExtFunc :: (a -> b) -> AbstExt a -> AbstExt b
psi :: (a -> b) -> AbstExt a -> AbstExt b

The functionabstExt converts a value into an extended value. The function
fromAbstExt converts a value from a extended value.

The functionsisPresent and isAbsent check for the presence or absence
of a value.

The functionabstExtFunc extends a function in order to process absent ex-
tended values. If the input is⊥, the output will also be⊥. The functionpsi is
identical toabstExtFunc and should be used in future.

Implementation of Library Functions

instance Show a => Show (AbstExt a) where
showsPrec _ x = showsAbstExt x

showsAbstExt Abst = (++) "_"
showsAbstExt (Prst x) = (++) (show x)

instance Read a => Read (AbstExt a) where
readsPrec _ x = readsAbstExt x

readsAbstExt :: (Read a) => ReadS (AbstExt a)
readsAbstExt s = [(Abst, r1) | ("_", r1) <- lex s]

++ [(Prst x, r2) | (x, r2) <- reads s]

abstExt v = Prst v

fromAbstExt x Abst = x
fromAbstExt _ (Prst y) = y

isPresent Abst = False

A.3. Libraries of System Functions and Data Types 177

isPresent (Prst _) = True

isAbsent = not . isPresent

abstExtFunc f = f’
where f’ Abst = Abst

f’ (Prst x) = Prst (f x)

psi = abstExtFunc

A.2.4 The ModuleCombinators

Overview

The module contains operators for function (sequential) composition and parallel
composition.

module Combinators where

funComb1 = (.)

funComb2 p1 p2 = p
where p s1 s2 = p1 (p2 s1 s2)

funComb3 p1 p2 = p
where p s1 s2 s3 = p1 (p2 s1 s2 s3)

funComb4 p1 p2 = p
where p s1 s2 s3 s4 = p1 (p2 s1 s2 s3 s4)

parComb p1 p2 = p
where p s1 s2 = (p1 s1, p2 s2)

A.3 Libraries of System Functions and Data Types

A.3.1 The ModuleMemory

Overview

This module contains the data structure and access functions for the memory model.

module Memory (
module AbsentExt, Memory (..), Access (..),
MemSize, Adr, newMem, memState, memOutput

178 Appendix A. The ForSyDe Standard Library

) where

import Vector
import AbsentExt

Data Structure

The data typeMemory is modeled as a vector. The data tpeAccess defines two
access patterns,Read adr andWrite adr val , whereadr can be of any type..

type Adr = Int
type MemSize = Int

data Memory a = Mem Adr (Vector (AbstExt a))
deriving (Eq, Show)

data Access a = Read Adr
| Write Adr a

deriving (Eq, Show)

Functions on the data typeMemory

The module defines the following access functions for the memory:

newMem :: MemSize -> Memory a
memState :: Memory a -> Access a -> Memory a
memOutput :: Memory a -> Access a -> AbstExt a

The functionnewMemcreates a new memory, where the number of entries is
given by a parameter. The functionmemState gives the new state of the memory,
after an access to a memory. ARead operation leaves the meory unchanged. The
functionmemOutput gives the output of the memory after an access to the memory.
A Write operation gives an absent value as output.

Implementation of Functions

newMem size = Mem size (copyV size Abst)

writeMem :: Memory a -> (Int , a) -> Memory a
writeMem (Mem size vs) (i, x)

| i < size && i >= 0 = Mem size (replaceV vs i (abstExt x))
| otherwise = Mem size vs

A.3. Libraries of System Functions and Data Types 179

readMem :: Memory a -> Int -> (AbstExt a)
readMem (Mem size vs) i

| i < size && i >= 0 = vs ‘atV‘ i
| otherwise = Abst

memState mem (Read _) = mem
memState mem (Write i x) = writeMem mem (i, x)

memOutput mem (Read i) = readMem mem i
memOutput _ (Write _ _) = Abst

A.3.2 The ModuleQueue

Overview

The moduleQueue provides two data types, that can be used to model queue struc-
tures, such as FIFOs. There is a data type for an queue of infinite sizeQueue and
one for finite sizeFiniteQueue .

The data type Queue

A queue is modeled as a list. The data typeFiniteQueue has an additional pa-
rameter, that determines the size of the queue.

module Queue where

import AbsentExt

data Queue a = Q [a] deriving (Eq, Show)
data FiniteQueue a = FQ Int [a] deriving (Eq, Show)

Functions on the data typesQueue and FiniteQueue

Table A.3.2 shows the functions an the data typesQueue andFiniteQueue .

pushQ :: Queue a -> a -> Queue a
pushListQ :: Queue a -> [a] -> Queue a
popQ :: Queue a -> (Queue a, AbstExt a)
queue :: [a] -> Queue a
pushFQ :: FiniteQueue a -> a -> FiniteQueue a
pushListFQ :: FiniteQueue a -> [a] -> FiniteQueue a
popFQ :: FiniteQueue a

-> (FiniteQueue a, AbstExt a)
finiteQueue :: Int -> [a] -> FiniteQueue a

180 Appendix A. The ForSyDe Standard Library

infinite finite description

pushQ pushFQ pushes one element on the queue
pushListQ pushListFQ pushes a list of elements on the queue
popQ popFQ pops one element from the queue
queue finiteQueue transforms a list into a queue

Table A.1. Functions on the data typesQueue andFiniteQueue

Implementation

pushQ (Q q) x = Q (q ++ [x])

pushListQ (Q q) xs = Q (q ++ xs)

popQ (Q []) = (Q [], Abst)
popQ (Q (x:xs)) = (Q xs, Prst x)

queue xs = Q xs

pushFQ (FQ n q) x = if length q < n then
(FQ n (q ++ [x]))

else
(FQ n q)

pushListFQ (FQ n q) xs = FQ n (take n (q ++ xs))

popFQ (FQ n []) = (FQ n [], Abst)
popFQ (FQ n (q:qs)) = (FQ n qs, Prst q)

finiteQueue n xs = FQ n (take n xs)

A.3.3 The ModuleDFT

The module includes the standard Discrete Fourier Transform (DFT) function,
which is formulated as

X(K) =
N−1∑
n=0

x(n)W kn
N 0 ≤ k ≤ N − 1 (A.1)

where

A.3. Libraries of System Functions and Data Types 181

x0

x1 X1 = x − 0 − W ′
Nx1−1

W ′
N

X0 = x0 + W ′
Nx1

Figure A.2. Basic butterfly computation in the decimiation-in-time algorithm

WN = e−j2π/N (A.2)

and a fast Fourier transform (FFT) algorithm, for computing the DFT, when
the sizeN is a power of 2.

module DFT(dft, fft) where

import Signal
import Vector
import Complex

Here follows the ForSyDe implementation of the DFT:

dft bigN x | bigN == (lengthV x) = mapV (bigX_k bigN x) (nVector x)
| otherwise = error "DFT: Vector has not the right size!"

where
nVector x = iterateV (lengthV x) (+1) 0
bigX_k bigN x k = sumV (zipWithV (*) x (bigW k bigN))
bigW k bigN = mapV (** k) (mapV cis (fullcircle bigN))
sumV = foldlV (+) (0:+ 0)

fullcircle :: Integer -> Vector Double
fullcircle n = fullcircle1 0 (fromInteger n) n

where
fullcircle1 l m n

| l == m = NullV
| otherwise = -2* pi *l/(fromInteger n)

:> fullcircle1 (l+1) m n

Here follows the Radix 2-FFT algorithm (decimation in time) implementation
[91]. It is a divide and conquer algorithm, which reuses the calculation of the basic
butterfly (Figure A.2):

182 Appendix A. The ForSyDe Standard Library

x(0)

x(4) −1

W 0
8

x(1)

x(5) −1

W 0
8

−1

−1

x(2)

x(6) −1

−1

−1

−1

−1

x(3)

x(7) −1

−1

−1

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

W 0
8

W 0
8

W 0
8

W 2
8

W 0
8

W 2
8

W 0
8

W 1
8

W 2
8

W 3
8

Figure A.3. Eight-point decimation-in-time FFT algorithm

X(k) =
(N/2)−1∑

m=0

feven(m)W km
N/2 + W k

N

(N/2)−1∑
m=0

fodd(m)W km
N/2

= Feven(k) + W k
NFodd(k) k = 0, 1, . . . , N − 1

where
feven(n) = x(2n)
fodd(n) = x(2n + 1)

(A.3)

The calculation of an eight-point FFT is illustrated in Figure A.3.

fft bigN xv | bigN == (lengthV xv) = mapV (bigX xv) (kVector bigN)
| otherwise = error "FFT: Vector has not the right size!"

kVector bigN = iterateV bigN (+1) 0

bigX (x0:>x1:>NullV) k | even k = x0 + x1 * bigW 2 0
| odd k = x0 - x1 * bigW 2 0

bigX xv k = bigF_even k + bigF_odd k * bigW bigN (fromInteger k)
where bigF_even k = bigX (evens xv) k

bigF_odd k = bigX (odds xv) k
bigN = lengthV xv

bigW bigN k = cis (-2 * pi * (fromInteger k) / (fromInteger bigN))

A.4. Computational Model Libraries 183

evens NullV = NullV
evens (v1:>NullV) = v1 :> NullV
evens (v1 :>_:>v) = v1 :> evens v

odds NullV = NullV
odds (_:>NullV) = NullV
odds (_:>v2:>v) = v2 :> odds v

A.4 Computational Model Libraries

A.4.1 The ModuleSynchronousLib

Overview

The synchronuous librarySynchronousLib defines process constructors and pro-
cesses for the synchronous computational model. A process constructor is a higher
order function which together with combinatorial function(s) and values as argu-
ments constructs a process. Thus a process constructor can also be viewed as a
process constructor.

module SynchronousLib(
module Vector, module Signal, module AbsentExt,
mapSY, zipWithSY, zipWith3SY,
zipWith4SY, zipWithxSY, scanlSY,
scanl2SY, scanl3SY, scanldSY, scanld2SY,
scanld3SY, delaySY, delaynSY, whenSY,
fillSY, holdSY, zipSY, zip3SY, zip4SY, unzipSY,
unzip3SY, unzip4SY, zipxSY, unzipxSY, mapxSY,
mooreSY, moore2SY, moore3SY, mealySY, mealy2SY,
mealy3SY, fstSY, sndSY, sourceSY

) where

import Signal
import Vector
import AbsentExt

Process Constructors for Combinatorial Processes

Combinatorial processes do not posess an internal state, so that the output only
depends on input signals.

The module includes the following process constructors for combinatorial pro-
cesses:

184 Appendix A. The ForSyDe Standard Library

mapSY :: (a -> b) -> Signal a -> Signal b
zipWithSY :: (a -> b -> c) -> Signal a -> Signal b -> Signal c
zipWith3SY :: (a -> b -> c -> d) -> Signal a -> Signal b

-> Signal c -> Signal d
zipWith4SY :: (a -> b -> c -> d -> e) -> Signal a -> Signal b

-> Signal c -> Signal d -> Signal e
zipWithxSY :: (Vector a -> b) -> Vector (Signal a) -> Signal b
mapxSY :: (a -> b) -> Vector (Signal a) -> Vector (Signal b)

The process constructormapSYtakes a combinatorial function as argument and
returns a process with one input signal and one output signal. This is shown in the
following, wheremapSY (+1) is a process which increments all values of an input
signal.

In a similar wayzipWithSY , zipWith3SY andzipWith4SY apply a combi-
natorial function on a number of input signals.

The process constructorzipWithxSY works aszipWithSY , but works with a
vector of signals as input.

The process constructormapxSYcreates a process network that maps a function
onto all signals in a vector of signals.

Process Constructors for Sequential Processes

Sequential processes have a local state. Process Constructors that construct such
processes take not only functions but also values as arguments to express the value
of the local state of the process. The output of sequential processes is deterministic
and depends on the initial state and the input signals.

The module includes the following process constructors for sequential pro-
cesses:

delaySY :: a -> Signal a -> Signal a
delaynSY :: a -> Int -> Signal a -> Signal a
scanlSY :: (a -> b -> a) -> a -> Signal b -> Signal a
scanl2SY :: (a -> b -> c -> a) -> a -> Signal b -> Signal c

-> Signal a
scanl3SY :: (a -> b -> c -> d -> a) -> a -> Signal b

-> Signal c -> Signal d -> Signal a
scanldSY :: (a -> b -> a) -> a -> Signal b -> Signal a
scanld2SY :: (a -> b -> c -> a) -> a -> Signal b -> Signal c

-> Signal a
scanld3SY :: (a -> b -> c -> d -> a) -> a -> Signal b

-> Signal c -> Signal d -> Signal a
mooreSY :: (a -> b -> a) -> (a -> c) -> a -> Signal b -> Signal c
moore2SY :: (a -> b -> c -> a) -> (a -> d) -> a -> Signal b

A.4. Computational Model Libraries 185

-> Signal c -> Signal d
moore3SY :: (a -> b -> c -> d -> a) -> (a -> e) -> a -> Signal b

-> Signal c -> Signal d -> Signal e
mealySY :: (a -> b -> a) -> (a -> b -> c) -> a -> Signal b

-> Signal c
mealy2SY :: (a -> b -> c -> a) -> (a -> b -> c -> d) -> a

-> Signal b -> Signal c -> Signal d
mealy3SY :: (a -> b -> c -> d -> a) -> (a -> b -> c -> d -> e) -> a

-> Signal b -> Signal c -> Signal d -> Signal e
sourceSY :: (a -> a) -> a -> Signal a
filterSY :: (a -> Bool) -> Signal a -> Signal (AbstExt a)

The process constructordelaySY delays the signal one event cycle by intro-
ducing an initial value at the beginning of the output signal. The process construc-
tor delaynSY delays the signaln events by introducingn identical default values.

We define two different basic process constructors to construct sequential pro-
cesses,scanlSY andscanldSY . Both process constructors take a functionns and
a statemas arguments. Both process constructors use the functionns to calculate
the next state, but calculate the output in a different way.scanlSY behaves like
the Haskell prelude functionscanl and has the value of the new state as its out-
put value, whilescanldSY has the current state value as output. The following
example exemplifies this:

SynchronousLib> scanlSY (+) 0 (signal [1,2,3,4])
{1,3,6,10} :: Signal Integer
SynchronousLib> scanldSY (+) 0 (signal [1,2,3,4])
{0,1,3,6} :: Signal Integer

Process Constructors likescanl2SY , scanl2DelaySY are used in the same way
for several input signals.

The process constructorsmooreSY andmealySY are used to model state ma-
chines. These process constructors are based on the process constructorscanldSY

as is naturally for state machines in hardware, that the output operates on the cur-
rent state and not on the next state.

These process constructors take a functionns to calculate the next state, a
functiono to calculate the output and an valuemfor the initial state. In a process
based on themooreSY process constructor the output functiono operates only on
the current state of the process. In contrast the output function of a process based on
themealySY process constructor operates on both the current state and the input.

The processsourceSY takes a functionf and an initial states0 and generates
an infinite signal starting with the initial states0 as first output followed by the

186 Appendix A. The ForSyDe Standard Library

recursive application off on the current state which also serve as output values.
The process that has the infinite signal of natural numbers as output is constructed
by

SynchronousLib> takeS 5 (sourceSY (+1) 0)
{0,1,2,3,4} :: Signal Integer

The process constructorfilterSY takes a predicatep and produces a process, that
discards all values that do not fullfil the predicatep. In this case the output is⊥.

Processes

The module also contains the following synchronous processes:

whenSY :: Signal (AbstExt a) -> Signal (AbstExt b)
-> Signal (AbstExt a)

fillSY :: a -> Signal (AbstExt a) -> Signal a
holdSY :: a -> Signal (AbstExt a) -> Signal a
zipSY :: Signal a -> Signal b -> Signal (a,b)
zip3SY :: Signal a -> Signal b -> Signal c -> Signal (a,b,c)
zip4SY :: Signal a -> Signal b -> Signal c -> Signal d

-> Signal (a,b,c,d)
unzipSY :: Signal (a,b) -> (Signal a,Signal b)
unzip3SY :: Signal (a, b, c) -> (Signal a, Signal b, Signal c)
unzip4SY :: Signal (a,b,c,d)

-> (Signal a,Signal b,Signal c,Signal d)
zipxSY :: Vector (Signal a) -> Signal (Vector a)
unzipxSY :: Signal (Vector a) -> Vector (Signal a)
fstSY :: Signal (a,b) -> Signal a
sndSY :: Signal (a,b) -> Signal b

The process constructorwhenSYcreates a process that synchronizes a signal of
timed values with another signal of timed values. The output signal has the value
of the first signal whenever an event has a present value and⊥ when the event has
an absent value.

The process constructorfillSY creates a process that ’fills’ a signal with
timed values by replacing absent values with a given value.

The process constructorholdSY creates a process that ’fills’ a signal with val-
ues by replacing absent values by the preceding present value. Only in cases, where
no preceding value exists, the absent value is replaced by the supplied value.

The processzipSY ’zips’ two incoming signals into one signal of tuples, while
the processunzipSY ’unzips’ a signal of tuples into two signals. The functions

A.4. Computational Model Libraries 187

zip3SY , zip4SY , unzip4SY andunzip4SY perform the corresponding function
for three and four signals.

The processzipxSY ’zip’ a signal of vectors into a vector of signals. The
processunzipxSY ’unzips’ a vector of signals into a signal of vectors.

The processesfstSY andsndSY select the always the first or second value
from a signal of pairs.

Implementation of Library Functions

mapSY _ NullS = NullS
mapSY f (x:-xs) = f x :- (mapSY f xs)

zipWithSY _ NullS _ = NullS
zipWithSY _ _ NullS = NullS
zipWithSY f (x:-xs) (y:-ys) = f x y :- (zipWithSY f xs ys)

zipWith3SY _ NullS _ _ = NullS
zipWith3SY _ _ NullS _ = NullS
zipWith3SY _ _ _ NullS = NullS
zipWith3SY f (x:-xs) (y:-ys) (z:-zs) = f x y z

:- (zipWith3SY f xs ys zs)

zipWith4SY _ NullS _ _ _ = NullS
zipWith4SY _ _ NullS _ _ = NullS
zipWith4SY _ _ _ NullS _ = NullS
zipWith4SY _ _ _ _ NullS = NullS
zipWith4SY f (w:-ws) (x:-xs) (y:-ys) (z:-zs)

= f w x y z
:- (zipWith4SY f ws xs ys zs)

zipWithxSY f = mapSY f . zipxSY

mapxSY f = mapV (mapSY f)

scanlSY _ _ NullS = NullS
scanlSY f mem (x:-xs) = f mem x :- (scanlSY f newmem xs)

where newmem = f mem x

scanl2SY _ _ NullS _ = NullS
scanl2SY _ _ _ NullS = NullS
scanl2SY f mem (x:-xs) (y:-ys) = f mem x y

:- (scanl2SY f newmem xs ys)
where newmem = f mem x y

188 Appendix A. The ForSyDe Standard Library

scanl3SY _ _ NullS _ _ = NullS
scanl3SY _ _ _ NullS _ = NullS
scanl3SY _ _ _ _ NullS = NullS
scanl3SY f mem (x:-xs) (y:-ys) (z:-zs)

= f mem x y z :- (scanl3SY f newmem xs ys zs)
where newmem = f mem x y z

scanldSY _ _ NullS = NullS
scanldSY f mem (x:-xs) = mem :- (scanldSY f newmem xs)

where newmem = f mem x

scanld2SY _ _ NullS _ = NullS
scanld2SY _ _ _ NullS = NullS
scanld2SY f mem (x:-xs) (y:-ys) = mem :- (scanld2SY f newmem xs ys)

where newmem = f mem x y

scanld3SY _ _ NullS _ _ = NullS
scanld3SY _ _ _ NullS _ = NullS
scanld3SY _ _ _ _ NullS = NullS
scanld3SY f mem (x:-xs) (y:-ys) (z:-zs)

= mem :- (scanld3SY f newmem xs ys zs)
where newmem = f mem x y z

delaySY e es = e:-es

delaynSY e n xs | n <= 0 = xs
| otherwise = e :- delaynSY e (n-1) xs

mooreSY nextState output initial
= mapSY output . (scanldSY nextState initial)

moore2SY nextState output initial inp1 inp2 =
mapSY output (scanld2SY nextState initial inp1 inp2)

moore3SY nextState output initial inp1 inp2 inp3 =
mapSY output (scanld3SY nextState initial inp1 inp2 inp3)

mealySY nextState output initial signal =
zipWithSY output (scanldSY nextState initial signal) signal

mealy2SY nextState output initial inp1 inp2 =
zipWith3SY output (scanld2SY nextState initial inp1 inp2)

inp1 inp2

A.4. Computational Model Libraries 189

mealy3SY nextState output initial inp1 inp2 inp3 =
zipWith4SY output (scanld3SY nextState initial inp1 inp2 inp3)

inp1 inp2 inp3

filterSY p NullS = NullS
filterSY p (x:-xs) = if (p x == True) then

Prst x :- filterSY p xs
else

Abst :- filterSY p xs
sourceSY f s0 = o

where
o = delaySY s0 s
s = mapSY f o

whenSY NullS _ = NullS
whenSY _ NullS = NullS
whenSY (_:-xs) (Abst:-ys) = Abst :- (whenSY xs ys)
whenSY (x:-xs) (_:-ys) = x :- (whenSY xs ys)

fillSY a xs = mapSY (replaceAbst a) xs
where replaceAbst a Abst = a

replaceAbst _ (Prst x) = x

holdSY a xs = scanlSY hold a xs
where hold a Abst = a

hold _ (Prst x) = x

zipSY (x:-xs) (y:-ys) = (x, y) :- zipSY xs ys
zipSY _ _ = NullS

zip3SY (x:-xs) (y:-ys) (z:-zs) = (x, y, z) :- zip3SY xs ys zs
zip3SY _ _ _ = NullS

zip4SY (w:-ws) (x:-xs) (y:-ys) (z:-zs) = (w, x, y, z)
:- zip4SY ws xs ys zs

zip4SY _ _ _ _ = NullS

unzipSY NullS = (NullS, NullS)
unzipSY ((x, y):-xys) = (x:-xs, y:-ys) where (xs, ys) = unzipSY xys

unzip3SY NullS = (NullS, NullS, NullS)
unzip3SY ((x, y, z):-xyzs) = (x:-xs, y:-ys, z:-zs) where

190 Appendix A. The ForSyDe Standard Library

(xs, ys, zs) = unzip3SY xyzs

unzip4SY NullS = (NullS, NullS, NullS, NullS)
unzip4SY ((w,x,y,z):-wxyzs) = (w:-ws, x:-xs, y:-ys, z:-zs) where

(ws, xs, ys, zs) = unzip4SY wxyzs

zipxSY NullV = NullS
zipxSY (NullS :> xss) = zipxSY xss
zipxSY ((x:-xs) :> xss) = (x :> (mapV headS xss))

:- (zipxSY (xs :> (mapV tailS xss)))

unzipxSY NullS = NullV
unzipxSY (NullV :- vss) = unzipxSY vss
unzipxSY ((v:>vs) :- vss) = (v :- (mapSY headV vss))

:> (unzipxSY (vs :- (mapSY tailV vss)))

fstSY = mapSY fst

sndSY = mapSYsnd

A.4.2 The ModuleDomainInterfaces

Overview

The moduleDomainInterfaces defines domain interface constructors for the
multi-rate computational model.

module DomainInterfaces(downDI, upDI, par2serxDI, ser2parxDI,
par2ser2DI, par2ser3DI, par2ser4DI,
ser2par2DI, ser2par3DI, ser2par4DI) where

import Signal
import Vector
import SynchronousLib

Domain Interface Constructors

The domain interface constructorsdownDI and upDI take a parameterk and
down- and up-sample an input signal.

The domain interface constructorspar2ser2DI , par2ser3DI and par2-

ser4DI implement the domain interface constructorp2sDI (m) for m = 2, 3, 4.
The domain interface constructorspar2serxDI implements the domain interface
constructorp2sDI (m) for a variablem.

A.4. Computational Model Libraries 191

The domain interface constructorsser2par2DI , ser2par3DI and ser2-

par4DI implement the domain interface constructors2pDI (m) for m = 2, 3, 4.
The domain interface constructorsser2parxDI implements the domain interface
constructors2pDI (m) for a variablem.

downDI :: Numa => a -> Signal b -> Signal b
upDI :: Numa => a -> Signal b -> Signal (AbstExt b)
par2serxDI :: Vector (Signal a) -> Signal a
ser2parxDI :: (Numa, Ord a) => a -> Signal (AbstExt b)

-> Vector (Signal (AbstExt b))
par2ser2DI :: Signal a -> Signal a -> Signal a
par2ser3DI :: Signal a -> Signal a -> Signal a -> Signal a
par2ser4DI :: Signal a -> Signal a -> Signal a -> Signal a

-> Signal a
ser2par2DI :: Signal a -> Signal (AbstExt a,AbstExt a)
ser2par3DI :: Signal a -> Signal (AbstExt a,AbstExt a,AbstExt a)
ser2par4DI :: Signal a

-> Signal (AbstExt a,AbstExt a,AbstExt a,AbstExt a)

Implementation

downDI n xs = down1 n 1 xs
where down1 n m NullS = NullS

down1 1 1 (x:-xs) = x :- down1 1 1 xs
down1 n 1 (x:-xs) = x :- down1 n 2 xs
down1 n m (x:-xs) = if m == n then

down1 n 1 xs
else

down1 n (m+1) xs

upDI n NullS = NullS
upDI n (x:-xs) = (Prst x) :- ((copyS (n-1) Abst) +-+ upDI n xs)

par2ser2DI xs ys = par2ser2DI’ (zipSY xs ys)
where par2ser2DI’ NullS = NullS

par2ser2DI’ ((x,y):-xys) = x:-y:- par2ser2DI’ xys

par2ser3DI xs ys zs = par2ser3DI’ (zip3SY xs ys zs)
where par2ser3DI’ NullS = NullS

par2ser3DI’ ((x,y,z):-xyzs) = x:- y :-z :- par2ser3DI’ xyzs

par2ser4DI ws xs ys zs = par2ser4DI’ (zip4SY ws xs ys zs)
where par2ser4DI’ NullS = NullS

192 Appendix A. The ForSyDe Standard Library

par2ser4DI’ ((w,x,y,z):-wxyzs)
= w:-x:-y:-z:- par2ser4DI’ wxyzs

ser2par2DI = group2SY . delaynSY Abst 2 . mapSY abstExt

ser2par3DI = group3SY . delaynSY Abst 3 . mapSY abstExt

ser2par4DI = group4SY . delaynSY Abst 4 . mapSY abstExt

par2serxDI = par2serxDI’ . zipxSY
where par2serxDI’ NullS = NullS

par2serxDI’ (xv:-xs) = (signal . fromVector) xv
+-+ par2serxDI’ xs

ser2parxDI n = unzipxSY . delaySY (copyV n Abst)
. filterAbstDI . group n

group2SY NullS = NullS
group2SY (x:-NullS) = NullS
group2SY (x:-y:-xys) = (x, y) :- group2SY xys

group3SY NullS = NullS
group3SY (x:-NullS) = NullS
group3SY (x:-y:- NullS) = NullS
group3SY (x:-y:-z:- xyzs) = (x, y, x) :- group3SY xyzs

group4SY NullS = NullS
group4SY (w:-NullS) = NullS
group4SY (w:-x:- NullS) = NullS
group4SY (w:-x:-y:- NullS) = NullS
group4SY (w:-x:-y:-z:- wxyzs) = (w, x, y, z) :- group4SY wxyzs

filterAbstDI :: Signal (AbstExt a) -> Signal a
filterAbstDI NullS = NullS
filterAbstDI (Abst:-xs) = filterAbstDI xs
filterAbstDI ((Prst x):-xs) = x :- filterAbstDI xs

group n xs = mapSY (output n) (scanlSY (addElement n) (NullV, 0) xs)
where addElement m (vs, n) x | n < m = (vs <: x, n+1)

| n == m = (unitV x, 1)
output m (vs, n) | m == n = Prst vs

| m /= n = Abst

A.5. Application Libraries 193

A.5 Application Libraries

A.5.1 The ModuleSynchronousProcessLib

Overview

The synchronous process librarySynchronousProcessLib defines processes
for the synchronous computational model. It is based on the synchronous library
SynchronousLib .

module SynchronousProcessLib(
module SynchronousLib,
module Signal,
module AbsentExt,
fifoDelaySY, finiteFifoDelaySY,
memorySY, mergeSY, groupSY, counterSY

) where

import SynchronousLib
import Signal
import AbsentExt
import Queue
import Memory

Processes

The library defines the following processes:

fifoDelaySY :: Signal [a] -> Signal (AbstExt a)
finiteFifoDelaySY :: Int -> Signal [a] -> Signal (AbstExt a)
memorySY :: Int -> Signal (Access a) -> Signal (AbstExt a)
mergeSY :: Signal (AbstExt a) -> Signal (AbstExt a)

-> Signal (AbstExt a)
counterSY :: (Enum a, Ord a) => a -> a -> Signal a

The processfifoDelaySY implements a synchronous model of a FIFO with
infinite size, while the processfiniteFifoDelaySY implements a FIFO with
finite size. Both FIFOs take a list of values at each event cycle and output one
value. There is a delay of one cycle. The processmemorySY implements a syn-
chronous memory. It uses access functions of the typeRead adr andWrite adr

value . The processmergeSY merges two input signals into a single signal. The
process has an internal buffer in order to prevent loss of data. The process is de-
terministic and outputs events according to their time tag. If there are two valid
values at on both signals. The value of the first signal is output first. The function

194 Appendix A. The ForSyDe Standard Library

groupSY groups values into a vector of sizen, which takesn cycles. While the
grouping takes place the output from this process consists of absent values. The
processcounter implements a counter, that counts frommin to max. The process
counterS has no input and its output is an infinite signal.

Implementation of Processes

fifoDelaySY xs = mooreSY fifoState fifoOutput (queue []) xs

fifoState :: Queue a -> [a] -> Queue a
fifoState (Q []) xs = (Q xs)
fifoState q xs = fst (popQ (pushListQ q xs))

fifoOutput :: Queue a -> AbstExt a
fifoOutput (Q []) = Abst
fifoOutput (Q (x:xs)) = Prst x

finiteFifoDelaySY n xs
= mooreSY fifoStateFQ fifoOutputFQ (finiteQueue n []) xs

fifoStateFQ :: FiniteQueue a -> [a] -> FiniteQueue a
fifoStateFQ (FQ n []) xs = (FQ n xs)
fifoStateFQ q xs = fst (popFQ (pushListFQ q xs))

fifoOutputFQ :: FiniteQueue a -> AbstExt a
fifoOutputFQ (FQ n []) = Abst
fifoOutputFQ (FQ n (x:xs)) = Prst x

memorySY size xs = mealySY ns o (newMem size) xs
where

ns mem (Read x) = memState mem (Read x)
ns mem (Write x v) = memState mem (Write x v)
o mem (Read x) = memOutput mem (Read x)
o mem (Write x v) = memOutput mem (Write x v)

mergeSY xs ys = moore2SY mergeState mergeOutput [] xs ys
where

mergeState [] Abst Abst = []
mergeState [] Abst (Prst y) = [y]
mergeState [] (Prst x) Abst = [x]
mergeState [] (Prst x) (Prst y) = [x, y]
mergeState (u:us) Abst Abst = us

A.5. Application Libraries 195

mergeState (u:us) Abst (Prst y) = us ++ [y]
mergeState (u:us) (Prst x) Abst = us ++ [x]
mergeState (u:us) (Prst x) (Prst y) = us ++ [x, y]

mergeOutput [] = Abst
mergeOutput (u:us) = Prst u

groupSY k = mooreSY f g s0
where

s0 = NullV
f v x | lengthV v == 0 = unitV x

| lengthV v == k = unitV x
| otherwise = v <: x

g v | lengthV v == 0 = Prst NullV
g v | lengthV v == k = Prst v
g v | otherwise = Abst

counterSY m n = sourceSY f m
where

f x | x >= n = m
| otherwise = succ x

A.5.2 The ModuleFIR

A FIR-filter is described by the following equation, which is illustrated in Figure
A.4:

yn =
k∑

m=0

xn−mhm (A.4)

xn−2

h0 h2 hkh1

yn

z−1z−1
xn−1 xn−kxn

z−1

Figure A.4. FIR-filter

The state of the FIR-Filter can be seen as a shift register with parallel output.
The first element in the shift register at cyclen is xn and the last element isxn−k.
In the next cycle a new valuexn+1 is shifted into the register from the left, all other

196 Appendix A. The ForSyDe Standard Library

elements are shifted one place to the right, and the valuexn−k is discarded. We
model the shift register with the processshiftregk. The process is based on the
process constructorscanlSY which which takes the shift functionshiftrV as
first argument and an initial vector of sizek + 1 with zeroes as initial values.

The output of the shiftregister, a signal of vectors, is transformed with the pro-
cessunzipxSY into a vector of signals. Then the processinnerProd calculates
the inner product of the coefficient vectorh and the output of the shift register.
The process is implemented by the process constructorzipWithSY that takes a
parametized functionipV (h) as arguments.

Signal a

Signal (Vector a)

shiftregk

unzipxSY

Signal a

Vector (Signal a)

zipWithSY k+1

Figure A.5. FIR-filter model

module FIR (fir) where

import SynchronousLib

fir h = innerProd h . sipo k 0.0
where k = lengthV h

sipo n s0 = unzipxSY . scanldSY shiftrV initState
where initState = copyV n s0

innerProd h = zipWithxSY (ipV h)
where ipV NullV NullV = 0

ipV (h:>hv) (x:>xv) = h*x + ipV hv xv

All kinds of FIR-filters can now be modeled by means offir . The only argu-
ment needed is the list of coefficients, which is given as a vector of any size. To

A.5. Application Libraries 197

illustrate this, an 8-th order band pass filter is modeled as follows.

bp = fir (vector [
0.06318761339784, 0.08131651217682,
0.09562326700432, 0.10478344432968,
0.10793629404886, 0.10478344432968,
0.09562326700432, 0.08131651217682,
0.06318761339784])

198

Appendix B

The Equalizer Specification
Model

This chapter gives the executable code of the equalizer specification model. The
code is written in literate Haskell style, which makes it possible to include LATEX
code for documentation. Only those parts of the literate program that are entirely
enclosed between\begin{code} ... \end{code} are treated as program
text; all other lines are comments. This allows to include usual LATEX text, but also
figures and equations as comments.

B.1 The ModuleEqualizer

B.1.1 Overview

The main task of the equalizer system is to adjust the audio signal according to the
ButtonControl , that works as a user interface. In addition, the bass level must not
exceed a predefined threshold to avoid damage to the speakers.

This specification can be naturally decomposed into four functions shown in
Figure B.1. The subsystemsButtonControl andDistortionControl , are control
dominated (grey shaded), while theAudioFilter and theAudioAnalyzer are data
flow dominated subsystems.

TheButtonControl subsystem monitors the button inputs and the override sig-
nal from the subsystemDistortionControl and adjusts the current bass and treble
levels. This information is passed to the subsystemAudioFilter , which receives
the audio input, and filters and amplifies the audio signal according to the current
bass and treble levels. This signal, the output signal of the equalizer, is analyzed

199

200 Appendix B. The Equalizer Specification Model

Button
Control Control

Audio
Analyzer

Audio
Filter

Distortion

−−−→
Bass

−−−−→
Treble

−−−−−→
BassDn

−−−−−−→
AudioOut

−−−−−→
AudioIn

−−−→
Overr

−−−−−→
DistFlag

−−−−−−−−→
DelDistFlag

−−−−−→
BassUp

−−−−−−→
TrebleDn

−−−−−−→
TrebleUp

(⊥)

delaySY 1

Figure B.1. Subsystems of theEqualizer

by theAudioAnalyzer subsystem, which determines, whether the bass exceeds
a predefined threshold. The result of this analysis is passed to the subsystem
DistortionControl , which decides, if a minor or major violation is encountered
and issues the necessary commands to theButtonControl subsystem.

The frequency characteristics of theEqualizer is adjusted by the coefficients
for the three FIR-filters in theAudioFilter .

module Equalizer(equalizer) where

import ForSyDeStdLib
import EqualizerTypes
import ButtonControl
import DistortionControl
import AudioAnalyzer
import AudioFilter

The structure of the equalizer is expressed as a network of blocks:

equalizer lpCoeff bpCoeff hpCoeff dftPts
bassUp bassDn trebleUp trebleDn input = output

where
(bass, treble) = buttonControl overrides bassUp bassDn

trebleUp trebleDn
output = audioFilter lpCoeff bpCoeff hpCoeff bass

treble input
distFlag = audioAnalyzer dftPts output
overrides = distortionControl delayedDistFlag
delayedDistFlag = delaySY Abst distFlag

Since the equalizer contains a feedback loop, the signalDistFlag is delayed
one event cycle using the initial value⊥.

B.2. The ModuleButtonControl 201

Button
ControlInterface
Level

−−−−−−→
TrebleUp

−−−−−−→
TrebleDn

−−−−−→
BassUp

−−−−−→
BassDn

−−−→
Overr

Hold
Level

−−−−→
Levels

−−−−→
Button

−−−−→
Treble

−−−→
Bass

unzipSY 2

Figure B.2. The SubsystemButtonControl

B.2 The ModuleButtonControl

B.2.1 Overview

The subsystemButtonControl works as a user interface in the equalizer system.
It receives the four input signals

−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,

−−−−−−→
TrebleUp and the

override signalOverride from theDistortionControl and calculates the new bass
and treble values for the output signals

−−−→
Bass and

−−−−→
Treble. The subsytem contains the

main processesButtonInterface andLevelControl . The processLevelControl
outputs a new value, if either the signal

−−−−→
Button or the signal

−−−→
Overr is present,

otherwise the output value is absent. The processHoldLevel is modeled by means
of holdSY (0 .0 , 0 .0) that outputs the last present value, if the input value is absent.
The processunzipSY transforms a signal of tuples (the current bass and treble
level) into a tuple of signals (a bass and a treble signal).

module ButtonControl (buttonControl) where

import ForSyDeStdLib
import EqualizerTypes

data State = Operating
| Locked deriving (Eq, Show)

type Level = Double
type Bass = Level
type Treble = Level

buttonControl :: Signal (AbstExt OverrideMsg) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Sensor) -> (Signal Bass, Signal Treble)

buttonControl overrides bassDn bassUp trebleDn trebleUp
= (bass, treble)

where (bass, treble) = unzipSY levels
levels = ((holdSY (0.0, 0.0)) ‘funComb2‘ levelControl)

button overrides
button = buttonInterface bassDn bassUp trebleDn trebleUp

202 Appendix B. The Equalizer Specification Model

B.2.2 The ProcessButtonInterface

TheButtonInterface monitors the four input buttons
−−−−−→
BassDn,

−−−−−→
BassUp,

−−−−−−→
TrebleDn,−−−−−−→

TrebleUp and indicates if a button is pressed. If two or more buttons are pressed
the conflict is resolved by the priority order of the buttons.

buttonInterface :: Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Sensor) -> Signal (AbstExt Sensor)
-> Signal (AbstExt Button)

buttonInterface bassUp bassDn trebleUp trebleDn
= zipWith4SY f bassUp bassDn trebleUp trebleDn

where f (Prst Active) _ _ _ = Prst BassUp
f _ (Prst Active) _ _ = Prst BassDn
f _ _ (Prst Active) _ = Prst TrebleUp
f _ _ _ (Prst Active) = Prst TrebleDn
f _ _ _ _ = Abst

B.2.3 The ProcessLevelControl

The process has a local state that consists of a mode and the current values for the
bass and treble levels (Figure B.3). TheLevelControl has two modes, in the mode
Operating the bass and treble values are stepwise changed in 0.2 steps. However,
there exists maximum and minimum values which are -5.0 and +5.0. The process
enters the modeLocked when theOverride input has the valueLock. In this mode an
additional increase of the bass level is prohibitet and even decreased by 1.0 in case
theOverride signal has the valueCutBass. The subsystem returns to theOperating

mode on the override valueRelease. The output of the process is an absent extended
signal of tuples with the current bass and treble levels.

levelControl :: Signal (AbstExt Button) -> Signal (AbstExt OverrideMsg)
-> Signal (AbstExt (Bass, Treble))

levelControl button overrides
= mealy2SY nextState output (initState, initLevel) button overrides

nextState :: (State,(Double , Double)) -> AbstExt Button
-> AbstExt OverrideMsg -> (State,(Double , Double))

nextState (state, (bass, treble)) button override
= (newState, (newBass, newTreble)) where

newState = if state == Operating then
if override == Prst Lock then

Locked
else

Operating

B.2. The ModuleButtonControl 203

Locked

b:=decL(b,s)b:=decL(b,c) t:=incL(t,s) t:=decL(t,s)

CutBass TrebleDn

BassDn TrebleUp

Locked

Operating

b:=decL(b,s)b:=incL(b,s) t:=incL(t,s) t:=decL(t,s)

BassUp TrebleDn

BassDn TrebleUp

Operatingt:=0
b:=0

Operating

Locked

Lock Release

Figure B.3. The State Diagram of the ProcessLevelControl

else
if override == Prst Release then

Operating
else

Locked

newBass = if state == Locked then
if override == Prst CutBass then

decreaseLevel bass cutStep
else

if button == Prst BassDn then
decreaseLevel bass step

else
bass

else -- state = Operating
if button == Prst BassDn then

decreaseLevel bass step
else

if button == Prst BassUp then
increaseLevel bass step

else

204 Appendix B. The Equalizer Specification Model

bass

newTreble = if button == Prst TrebleDn then
decreaseLevel treble step

else
if button == Prst TrebleUp then

increaseLevel treble step
else

treble

output :: (a, (Bass, Treble)) -> AbstExt Button -> AbstExt OverrideMsg
-> AbstExt (Bass, Treble)

output _ Abst Abst = Abst
output (_, levels) _ _ = Prst levels

The process uses the following initial values.

initState = Operating
initLevel = (0.0, 0.0)
maxLevel = 5.0
minLevel = -5.0
step = 0.2
cutStep = 1.0

The process uses the following auxiliary functions.

decreaseLevel :: Level -> Level -> Level
decreaseLevel level step = if reducedLevel >= minLevel then

reducedLevel
else

minLevel
where reducedLevel = level - step

increaseLevel :: Level -> Level -> Level
increaseLevel level step = if increasedLevel <= maxLevel then

increasedLevel
else

maxLevel
where increasedLevel = level + step

B.3 The ModuleDistortionControl

The blockDistortionControl is directly developed from the SDL-specification,
that has been used for the MASCOT-model [20]. The specification is shown in

B.3. The ModuleDistortionControl 205

Figure B.4.

Process DistortionCtrl 1(1)

dcl Cnt integer := 0;
dcl Lim integer := 3;

Passed

Pass Fail

Passed Lock

Cnt := Lim

Failed

Pass Fail

Locked CutBass

Fail Pass Failed

Cnt := Lim Cnt :=
Cnt − 1

Failed Cnt

Release Locked

Passed

0

ELSE

Figure B.4. SDL-description ofDistortion Control

The DistortionControl is a single FSM, which is modeled by means of the
skeletonmealySY . The global state is not only expressed by the explicit states
- Passed, Failed and Locked -, but also by means of the variablecnt . The state
machine has two possible input values,Pass andFail, and three output values,Lock,
Release andCutBass.

The mealySY creates a process that can be interpreted as a Mealy-machine.
It takes two functions,nxtSt to calculate the next state andout to calculate the
output. The state is represented by a pair of the explicit state and the variablecnt .
The initial state is the same as in the SDL-model, given by the tuple(Passed, 0).
The nxtSt function uses pattern matching. Whenever an input value matches a
pattern of thenxtSt function the corresponding right hand side is evaluated, giving

206 Appendix B. The Equalizer Specification Model

the next state. An event with an absent value leaves the state unchanged. The
output function is modeled in a similar way. The output is absent, when no output
message is indicated in the SDL-model.

module DistortionControl (distortionControl) where

import ForSyDeStdLib
import EqualizerTypes

data State = Passed
| Failed
| Locked

distortionControl :: Signal (AbstExt AnalyzerMsg)
-> Signal (AbstExt OverrideMsg)

distortionControl distortion
= mealySY nxtSt out (Passed, 0) distortion

lim = 3

-- State Input NextState
nxtSt (state, cnt) (Abst) = (state,cnt)
nxtSt (Passed,cnt) (Prst Pass) = (Passed,cnt)
nxtSt (Passed,_) (Prst Fail) = (Failed,lim)
nxtSt (Failed,cnt) (Prst Pass) = (Locked,cnt)
nxtSt (Failed,cnt) (Prst Fail) = (Failed,cnt)
nxtSt (Locked,_) (Prst Fail) = (Failed,lim)
nxtSt (Locked,cnt) (Prst Pass) = (newSt, newCnt)

where newSt = if (newCnt == 0) then Passed
else Locked

newCnt = cnt - 1

-- State Input Output
out (Passed,_) (Prst Pass) = Abst
out (Passed,_) (Prst Fail) = Prst Lock
out (Failed,_) (Prst Pass) = Abst
out (Failed,_) (Prst Fail) = Prst CutBass
out (Locked,_) (Prst Fail) = Abst
out (Locked,cnt) (Prst Pass) =

if (cnt == 1) then Prst Release
else Abst

out _ Abst = Abst

B.4. The ModuleAudioFilter 207

B.4 The ModuleAudioFilter

B.4.1 Overview

Figure B.5 shows the structure of theAudioFilter . The task of this subsystem is
to amplify different frequencies of the audio signal independently according to the
assigned levels. The audio signal is splitted into three identical signals, one for
each frequency region. The signals are filtered and then amplified according to the
assigned amplification level. As the equalizer in this design only has a bass and
treble control, the middle frequencies are not amplified. The output signal from
theAudioFilter is the addition of the three filtered and amplified signals.

Low Pass

Band Pass

High Pass

Amplifier

Amplifier

−−−−−−−→
AudioOut

−−−→
Bass

−−−−→
Treble

−−−−−→
AudioIn

Figure B.5. Subsystems of theAudio Filter

We model this structure as a network of blocks directly from Figure B.5. It
consists of three filters, two amplifiers and an adder. These blocks are modeled in
the process layer. TheAudioFilter has the filter coefficients for the low pass, band
pass and high pass filter as parameters.

module AudioFilter where

import ForSyDeStdLib

audioFilter :: Floating a => Vector a -> Vector a -> Vector a
-> Signal a -> Signal a -> Signal a -> Signal a

audioFilter lpCoeff bpCoeff hpCoeff bass treble audioIn = audioOut
where audioOut = zipWith3SY add3 bassPath middlePath treblePath

bassPath = ((amplify bass) . lowPass) audioIn
middlePath = bandPass audioIn
treblePath = ((amplify treble) . highPass) audioIn
lowPass = fir lpCoeff
bandPass = fir bpCoeff
highPass = fir hpCoeff

208 Appendix B. The Equalizer Specification Model

DFT Spectrum Bass
Check

−−−−−→
AudioIn Group

Samples

−−−−−−−−−−→
DistortionFlag

Figure B.6. TheAudio Analyzersubsystem

amplify = zipWithSY scale
add3 x y z = x + y + z
scale x y = y * (base ** x)
base = 1.1

B.5 The ModuleAudioAnalyzer

B.5.1 Overview

TheAudioAnalyzer analyzes the current bass level and raises a flag when the bass
level exceeds a limit.

As illutsrated in Figure B.6 theAudioAnalyzer is divided into four blocks. The
input signal is first grouped into samples of sizeN in the processGroupSamples
and then processed with aDFT in order to get the frequency spectrum of the
signal. Then the power spectrum is calculated inSpectrum. In CheckBass the
lowest frequencies are compared with a threshold value. If they exceed this value,
the outputDistortionFlag will have the valueFail.

SinceGroupSamples needsN cycles for the grouping, it producesN − 1
absent values⊥ for each grouped sample. Thus the following processesDFT ,
Spectrum andCheckBass are allΨ-extended in order to be able to process the
absent value⊥.

module AudioAnalyzer (audioAnalyzer) where

import ForSyDeStdLib
import Complex
import EqualizerTypes

limit = 1.0
nLow = 3

audioAnalyzer pts = mapSY (psi checkBass) -- Check Bass
. mapSY (psi spectrum) -- Spectrum
. mapSY (psi (dft pts)) -- DFT
. groupSY pts -- Group Samples
. mapSY toComplex

B.6. The ModuleEqualizerTypes 209

spectrum = mapV log10 . selectLow nLow . mapV power . selectHalf . dropV 1
where

log10 x = log x / log 10
selectLow n xs = takeV n xs
selectHalf xs = takeV half xs

where half = floor ((lengthV xs) / 2)
power x = (magnitude x) ˆ 2

checkBass = checkLimit limit . sumV
where

checkLimit limit x | x > limit = Fail
| otherwise = Pass

sumV vs = foldlV (+) 0.0 vs

toComplex x = x :+ 0

B.6 The ModuleEqualizerTypes

B.6.1 Overview

This module is a collection of data types that are used in the equalizer model.

module EqualizerTypes where

data AnalyzerMsg = Pass
| Fail deriving (Show, Read, Eq)

data OverrideMsg = Lock
| CutBass
| Release deriving (Show, Read, Eq)

data Sensor = Active deriving (Show, Read, Eq)

data Button = BassDn
| BassUp
| TrebleDn
| TrebleUp deriving (Show, Read, Eq)

210

Appendix C

VHDL-Templates for ForSyDe
Processes

This appendix gives an overview of templates that are used for the mapping of
ForSyDe processes to a hardware description in VHDL. The appendix is divided
into the following three parts:

• VHDL-template for processes based on combinational process constructors
(Section C.1)

• VHDL-template for processes based on sequential process constructors (Sec-
tion C.2)

• VHDL-template for processes based on domain interface process construc-
tors (Section C.3)

C.1 VHDL-Templates for combinational Process Construc-
tors

C.1.1 VHDL-Template for Processes constructed bymapSY

−→
i −→o

(f)
mapSY I OfHW⇒

Figure C.1. Hardware implementation ofmapSY

Figure C.1 illustrates the mapping of a processmapSY (f) to hardware. The
VHDL code for the template is given below.

211

212 Appendix C. VHDL-Templates for ForSyDe Processes

PACKAGEmapSY_f_lib IS
TYPE type_mapSY_f_i IS to_be_defined; -- Type of i
TYPE type_mapSY_f_o IS to_be_defined; -- Type of o
FUNCTION f(x : type_mapSY_f_i) RETURNtype_mapSY_f_o;

END;

PACKAGE BODYmapSY_f_lib IS
FUNCTION f(x : type_mapSY_f_i) RETURNtype_mapSY_f_o IS
BEGIN

RETURNto_be_defined; -- Definition of f
END;

END;

USE work.mapSY_f_lib. ALL;

ENTITY mapSY_f IS
PORT(

i : IN type_mapSY_f_i;
o : OUT type_mapSY_f_o
);

END;

ARCHITECTUREComb OF mapSY_f IS
BEGIN

o <= f(i);
END;

C.1.2 VHDL-Template for Processes constructed byzipWithSY

zipWithSY m
(f)

−→o−→
im

−→
i1

fHW O
I m

I 1⇒

Figure C.2. Hardware implementation ofzipWithSY m

Figure C.2 illustrates the mapping of a processzipWithSY m(f) to hardware.
The VHDL code for the template is given below (m = 2).

PACKAGEzipWithSY_f_lib IS
TYPE type_zipWithSY_f_i1 IS to_be_defined; -- Type of i1
TYPE type_zipWithSY_f_i2 IS to_be_defined; -- Type of i2
TYPE type_zipWithSY_f_o IS to_be_defined; -- Type of o
FUNCTION f(x: type_zipWithSY_f_i1; y : type_zipWithSY_f_i2)

RETURN type_zipWithSY_f_o;
END;

C.2. VHDL-Templates for sequential Process Constructors 213

PACKAGE BODYzipWithSY_f_lib IS
FUNCTION f(x: type_zipWithSY_f_i1; y : type_zipWithSY_f_i2)

RETURN type_zipWithSY_f_o IS
BEGIN

RETURN-- to be defined; Definition of f
END;

END;

USE work.zipWithSY_f_lib. all ;

ENTITY zipWithSY_f is
port

(
i1 : IN type_zipWithSY_f_i1;
i2 : IN type_zipWithSY_f_i2;
o : OUT type_zipWithSY_f_o
);

end ;

architecture Comb OF zipWithSY_f is
begin

o <= f(i1, i2);
end ;

C.2 VHDL-Templates for sequential Process Constructors

C.2.1 VHDL-Template for Processes constructed bydelaySY

delaySY k
(s0)

−→
i −→o REGI REG O

CLK
RESETN

1 k

⇒

Figure C.3. Hardware implementation ofdelaySY k

Figure C.3 illustrates the mapping of a processdelaySY 1(s0) to hardware. The
VHDL code for the template is given below.

PACKAGEdelaySY_1_lib IS
TYPE type_delaySY_1_i IS to_be_defined; -- Definition of i
TYPE type_delaySY_1_o IS to_be_defined; -- Definition of o
CONSTANTs0 : type_delaySY_1_o := to_be_defined;

--Initial State

214 Appendix C. VHDL-Templates for ForSyDe Processes

END;

LIBRARY ieee;
USE ieee.std_logic_1164. all ;
USE work.delaySY_1_lib. ALL;

ENTITY delaySY_1 IS
PORT

(
i : IN type_delaySY_1_i;
o : OUT type_delaySY_1_o;
resetn : IN std_logic;
clk : IN std_logic
);

END;

ARCHITECTURESeq OF delaySY_1 IS
SIGNAL s : type_delaySY_1_o := s0;

BEGIN
PROCESS(clk, resetn)
BEGIN

IF resetn = ’0’ THEN
s <= s0;

ELSIF rising_edge(clk) THEN
s <= i;

END IF ;
END process ;

o <= s;
END;

C.2.2 VHDL-Template for Processes constructed byscanlSY

zipWithSY m+1
(f)

delaySY 1
(s0)

−→s

−→o
scanlSY m(f, s0)

−→
im

−→
i1

REG
fHW

CLK RESETN

I m

I 1

O

⇒

Figure C.4. Hardware implementation ofscanlSY m

Figure C.4 illustrates the mapping of a processscanlSY m(f, s0) to hardware.
The VHDL code for the template is given below (m = 1).

C.2. VHDL-Templates for sequential Process Constructors 215

PACKAGEscanlSY_f_lib IS
TYPE type_scanlSY_f_i IS to_be_defined; -- Type of i
TYPE type_scanlSY_f_o IS to_be_defined; -- Type of o
SUBTYPE type_scanlSY_f_state IS type_scanlSY_f_o;
CONSTANTs0 : type_scanlSY_f_state := to_be_defined;

-- initial State
FUNCTION f (

i : type_scanlSY_f_i;
state : type_scanlSY_f_state
) RETURNtype_scanlSY_f_o;

END;

PACKAGE BODYscanlSY_f_lib IS

FUNCTION f (
i : type_scanlSY_f_i;
state : type_scanlSY_f_state
) RETURNtype_scanlSY_f_o IS

BEGIN
RETURNto_be_defined; -- Definition of f

END;

END scanlSY_f_lib;

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE work.scanlSY_f_lib. ALL;
LIBRARY synopsys;
USE synopsys.attributes. ALL;

ENTITY scanlSY_f IS

PORT (
i : IN type_scanlSY_f_i;
o : OUT type_scanlSY_f_o;
clk : IN std_logic;
resetn : IN std_logic);

END scanlSY_f;

ARCHITECTURESeq OF scanlSY_f IS
SIGNAL state, nextstate : type_scanlSY_f_state;
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF Seq : ARCHITECTURE IS "state";

BEGIN -- Seq

216 Appendix C. VHDL-Templates for ForSyDe Processes

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
state <= s0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
state <= nextstate;

END IF;
END PROCESS;

PROCESS(i,state)
BEGIN -- PROCESS

nextstate <= f(i,state);
END PROCESS;

o <= nextstate;
END Seq;

C.2.3 VHDL-Template for Processes constructed byscanldSY

−→o
scanldSY m(f, s0)

(s0)

−→s delaySY 1
(f)

zipWithSY m+1

−→
i1−→
im

REG
fHW

CLK RESETN

I m

I 1 O⇒

Figure C.5. Hardware implementation ofscanldSY m

Figure C.5 illustrates the mapping of a processscanldSY m(fp, s0) to hard-
ware. The VHDL code for the template is given below (m = 1).

PACKAGEscanldSY_f_lib IS
TYPE type_scanldSY_f_i IS to_be_defined; -- Type of i
TYPE type_scanldSY_f_o IS to_be_defined; -- Type of o;
SUBTYPE type_scanldSY_f_state IS type_scanldSY_f_o;
CONSTANTs0 : type_scanldSY_f_state := to_be_defined;

-- Initial State
FUNCTION f (

i : type_scanldSY_f_i;
state : type_scanldSY_f_state
) RETURNtype_scanldSY_f_o;

END;

PACKAGE BODYscanldSY_f_lib IS

C.2. VHDL-Templates for sequential Process Constructors 217

FUNCTION f (
i : type_scanldSY_f_i;
state : type_scanldSY_f_state
) RETURNtype_scanldSY_f_o IS

BEGIN
RETURNi and state;

END;

END scanldSY_f_lib;

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE work.scanldSY_f_lib. ALL;
LIBRARY synopsys;
USE synopsys.attributes. ALL;

ENTITY scanldSY_f IS

PORT (
i : IN type_scanldSY_f_i;
o : OUT type_scanldSY_f_o;
clk : IN std_logic;
resetn : IN std_logic);

END scanldSY_f;

ARCHITECTURESeq OF scanldSY_f IS
SIGNAL state, nextstate : type_scanldSY_f_state;
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF Seq : ARCHITECTURE IS "state";

BEGIN -- Seq

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
state <= s0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
state <= nextstate;

END IF;
END PROCESS;

PROCESS(i,state)
BEGIN -- PROCESS

nextstate <= f(i,state);
o <= state;

END PROCESS;

218 Appendix C. VHDL-Templates for ForSyDe Processes

END Seq;

C.2.4 VHDL-Template for Processes constructed bymooreSY

−→o
−→s

−→
i1−→
im

mapSY
(g)

mooreSY m(f, g, s0)

(f, s0)
scanldSY m

REG
fHW

CLK RESETN

I m

I 1
gHW

O⇒

Figure C.6. Hardware implementation ofmooreSY m

Figure C.6 illustrates the mapping of a processmooreSY m(f, g, s0) to hard-
ware. The VHDL code for the template is given below (m = 1).

PACKAGEmooreSY_f_g_lib IS
TYPE type_mooreSY_f_g_i IS to_be_defined; -- Type of i
TYPE type_mooreSY_f_g_o IS to_be_defined; -- Type of o
TYPE type_mooreSY_f_g_state IS to_be_defined; -- Type of state
CONSTANTs0 : type_mooreSY_f_g_state := to_be_defined;

-- Initial State
FUNCTION f (

i : type_mooreSY_f_g_i;
state : type_mooreSY_f_g_state
) RETURNtype_mooreSY_f_g_state;

FUNCTION g (
state : type_mooreSY_f_g_state
) RETURNtype_mooreSY_f_g_o;

END;

PACKAGE BODYmooreSY_f_g_lib IS

FUNCTION f (
i : type_mooreSY_f_g_i;
state : type_mooreSY_f_g_state
) RETURNtype_mooreSY_f_g_state IS

BEGIN
RETURNto_be_defined; --Definition of f

END;

FUNCTION g(
state : type_mooreSY_f_g_state
) RETURNtype_mooreSY_f_g_o IS

BEGIN
RETURNto_be_defined; -- Definition of g

C.2. VHDL-Templates for sequential Process Constructors 219

END;

END mooreSY_f_g_lib;

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE work.mooreSY_f_g_lib. ALL;
LIBRARY synopsys;
USE synopsys.attributes. ALL;

ENTITY mooreSY_f_g IS

PORT (
i : IN type_mooreSY_f_g_i;
o : OUT type_mooreSY_f_g_o;
clk : IN std_logic;
resetn : IN std_logic);

END mooreSY_f_g;

ARCHITECTURESeq OF mooreSY_f_g IS
SIGNAL state, nextstate : type_mooreSY_f_g_state;
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF Seq : ARCHITECTURE IS "state";

BEGIN -- Seq

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
state <= s0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
state <= nextstate;

END IF;
END PROCESS;

PROCESS(i,state)
BEGIN -- PROCESS

nextstate <= f(i,state);
o <= g(state);

END PROCESS;

END Seq;

220 Appendix C. VHDL-Templates for ForSyDe Processes

−→
i1−→
im (f, s0)

−→s
scanldSY m

(g)
zipWithSY m+1 −→o

mealySY m(f, g, s0)

gHW

REG
fHW

CLK

I m

I 1 O

⇒
RESETN

Mapping

Figure C.7. Hardware implementation ofmealySY m

C.2.5 VHDL-Template for Processes constructed bymealySY

Figure C.7 illustrates the mapping of a processmealySY m(f, g, s0) to hardware.
The VHDL code for the template is given below (m = 1).

PACKAGEmealySY_f_g_lib IS
TYPE type_mealySY_f_g_i IS to_be_defined; -- Type of i
TYPE type_mealySY_f_g_o is to_be_defined; -- Type of o
TYPE type_mealySY_f_g_state IS to_be_defined; -- Type of state
CONSTANTs0 : type_mealySY_f_g_state := to_be_defined;

-- Initial State
FUNCTION f (

i : type_mealySY_f_g_i;
state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_state;

FUNCTION g (
i : type_mealySY_f_g_i;
state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_o;

END;

PACKAGE BODYmealySY_f_g_lib IS

FUNCTION f (
i : type_mealySY_f_g_i;
state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_state IS

BEGIN
RETURNto_be_defined; -- Definition of f;

END;

C.2. VHDL-Templates for sequential Process Constructors 221

FUNCTION g(
i : type_mealySY_f_g_i;
state : type_mealySY_f_g_state
) RETURNtype_mealySY_f_g_o IS

BEGIN
RETURNto_be_defined; -- Definition of g;

END;

END mealySY_f_g_lib;

LIBRARY ieee;
USE ieee.std_logic_1164. ALL;
USE work.mealySY_f_g_lib. ALL;
LIBRARY synopsys;
USE synopsys.attributes. ALL;

ENTITY mealySY_f_g IS

PORT (
i : IN type_mealySY_f_g_i;
o : OUT type_mealySY_f_g_o;
clk : IN std_logic;
resetn : IN std_logic);

END mealySY_f_g;

ARCHITECTURESeq OF mealySY_f_g IS
SIGNAL state, nextstate : type_mealySY_f_g_state;
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF Seq : ARCHITECTURE IS "state";

BEGIN -- Seq

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
state <= s0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
state <= nextstate;

END IF;
END PROCESS;

PROCESS(i,state)
BEGIN -- PROCESS

nextstate <= f(i,state);
END PROCESS;

222 Appendix C. VHDL-Templates for ForSyDe Processes

o <= g(i,state);
END Seq;

C.3 VHDL-Templates for Domain Interfaces

C.3.1 VHDL-Template for Processes constructed bydownDI

downDI
(k)

−→
i −→o

I

CLK
RESETN

⇒
OFSM

Figure C.8. Hardware implementation ofdownDI (k)

A processdownDI (k) is implemented with a counter that counts from 1 tok
(Figure C.8). Only when the counter has the value 1, the input value is send to the
output. In practice this means that the output clock is divided byk.

The VHDL-template fork = 4 is given below.

PACKAGEdownDI_4_lib IS

TYPE Type_downDI_4 IS to_be_defined; -- Type for i and o

END downDI_4_lib;

LIBRARY IEEE;
USE IEEE.std_logic_1164. ALL;
USE work.downDI_4_lib. ALL;

ENTITY downDI_4 IS

PORT (
i : IN type_downDI_4;
clk : IN std_logic;
resetn : IN std_logic;
o : OUT type_downDI_4);

END downDI_4;

ARCHITECTURESeq OF downDI_4 IS

SIGNAL div_clk : std_logic;
SIGNAL cnt : integer RANGE0 TO 4;

C.3. VHDL-Templates for Domain Interfaces 223

CONSTANTn : integer := 4;
BEGIN -- Seq

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN
cnt <= 1;

ELSE
IF rising_edge(clk) THEN

CASE cnt IS
WHENn => cnt <= 1;

div_clk <= ’1’;
WHEN OTHERS=> cnt <= cnt + 1;

div_clk <= ’0’;
END CASE;

END IF;
END IF;

END PROCESS;

PROCESS(i,div_clk)
BEGIN -- PROCESS

IF rising_edge(div_clk) THEN
o <= i;

END IF;
END PROCESS;

END Seq;

C.3.2 VHDL-Template for Processes constructed byupDI

upDI
(k)

−→
i −→o

CLK
RESETN

⇒
FSM

O VALUE

I O IS PRESENT

Figure C.9. Hardware implementation ofupDI (k)

A processupDI (k) is implemented with a counter that counts from 1 tok
(Figure C.9). When the counter has the value 1, the output valueo.is present

is True and the output valueo.value gets the input value. Otherwise the out-
put value is absent (o.is present has the valueFalse). The clockclk has a
frequency that isk-times higher than the corresponding input frequency and deter-
mines the clock of the output signal.

224 Appendix C. VHDL-Templates for ForSyDe Processes

The VHDL-template fork = 4 is given below.

PACKAGEupDI_4_lib IS

TYPE type_upDI_4 is to_be_defined; -- Type for o and value of i
TYPE type_upDI_4_o IS RECORD

value : type_upDI_4;
is_present : boolean;

END RECORD;
TYPE type_upDI_4_i IS type_upDI_4;

END upDI_4_lib;

LIBRARY IEEE;
USE IEEE.std_logic_1164. ALL;
USE work.upDI_4_lib. ALL;

ENTITY upDI_4 IS

PORT (
i : IN type_upDI_4_i;
o : OUT type_upDI_4_o;
clk : IN std_logic;
resetn : IN std_logic);

END upDI_4;

ARCHITECTURESeq OF upDI_4 IS
CONSTANTn : integer := 4;
SIGNAL cnt : integer RANGE1 TO n := 1;

BEGIN -- Seq

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
cnt <= 1;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
CASE cnt IS

WHENn => cnt <= 1;
WHEN others => cnt <= cnt + 1;

END CASE;
END IF;

END PROCESS;

PROCESS(clk,cnt,i)
BEGIN -- PROCESS

o.value <= i;
CASE cnt IS

C.3. VHDL-Templates for Domain Interfaces 225

WHEN1 => o.is_present <= True;
WHEN others => o.is_present <= False;

END CASE;
END PROCESS;

END Seq;

C.3.3 VHDL-Template for Processes constructed byp2sDI

CLK
RESETN

⇒
O−→o

−→
im

−→
i1

(m)
p2sDI

I 1

I M
FSM

Figure C.10. Hardware implementation ofp2sDI (m)

The processp2sDI (m) is implemented as a FSM where counter counts to
k. Whenever the counter is in statek, the input valueI k is forwarded to the
output. The clockclk determines the output frequency and isk times faster than
the frequency of the input signal.

The VHDL template fork = 2 is given below.

PACKAGEpar2serDI_2_lib IS

TYPE type_par2serDI_2 IS to_be_defined;
-- Type for i1, i2, and o

END par2serDI_2_lib;

LIBRARY IEEE;
USE IEEE.std_logic_1164. ALL;
USE work.par2serDI_2_lib. ALL;

ENTITY par2serDI_2 IS

PORT (
i1 : IN type_par2serDI_2;
i2 : IN type_par2SerDI_2;
o : out type_par2serDI_2;
clk : IN std_logic;
reset_n : IN std_logic);

END par2serDI_2;

226 Appendix C. VHDL-Templates for ForSyDe Processes

ARCHITECTURESeq OF par2serDI_2 IS
SIGNAL cnt : integer RANGE0 TO 1 := 0;

BEGIN -- Seq

PROCESS(clk, reset_n)
BEGIN -- PROCESS

IF reset_n = ’0’ THEN -- asynchronous reset (active low)
cnt <= 0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
CASE cnt IS

WHEN0 => cnt <= 1;
WHEN1 => cnt <= 0;
WHEN OTHERS=> NULL;

END CASE;
END IF;

END PROCESS;

PROCESS(cnt, i1, i2)
BEGIN -- PROCESS

CASE cnt IS
WHEN0 => o <= i1;
WHEN1 => o <= i2;
WHEN OTHERS=> NULL;

END CASE;
END PROCESS;

END Seq;

C.3.4 VHDL-Template for Processes constructed bys2pDI

s2pDI
(n)

−→
i −→o

I

CLK
RESETN

⇒
FSM FSM

O 1 IS PRESENT
O 1 VALUE

O N IS PRESENT
O N VALUE

T 1

T 2

Figure C.11. Hardware implementation ofs2pDI (n)

The processs2pDI (n) is implemented with two FSMs. The first FSM directs
the output in a round-robin style, while the second FSM is used for clock division
to guarantee that the outputs are synchronized with the output clock. In the reset
state the output values are absent.

C.3. VHDL-Templates for Domain Interfaces 227

The VHDL template forn = 2 is given below.

PACKAGEser2parDI_2_lib IS

SUBTYPE type_ser2parDI_2 IS to_be_defined;
TYPE type_ser2parDI_2_o IS RECORD

value : type_ser2parDI_2;
is_present : boolean;

END RECORD;
END ser2parDI_2_lib;

LIBRARY IEEE;
USE IEEE.std_logic_1164. ALL;
USE work.ser2parDI_2_lib. ALL;

ENTITY ser2parDI_2 IS

PORT (
i : IN type_ser2parDI_2;
o1 : OUT type_ser2parDI_2_o;
o2 : OUT type_ser2parDI_2_o;
clk : IN std_logic;
resetn : IN std_logic);

END ser2parDI_2;

ARCHITECTURESeq OF ser2parDI_2 IS
SIGNAL cnt : integer RANGE0 TO 2 := 0;
SIGNAL cnt2 : integer RANGE0 TO 1 := 0;
SIGNAL t1, t2 : type_ser2parDI_2_o;

BEGIN -- Seq

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
cnt <= 0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
CASE cnt IS

WHEN0 => cnt <= 1;
WHEN1 => cnt <= 2;
WHEN2 => cnt <= 1;
WHEN OTHERS=> NULL;

END CASE;
END IF;

END PROCESS;

PROCESS(cnt, i)
BEGIN -- PROCESS

228 Appendix C. VHDL-Templates for ForSyDe Processes

t1.is_present <= true;
t2.is_present <= true;
CASE cnt IS

WHEN0 => t1.value <= i;
t1.is_present <= false;
t2.is_present <= false;

WHEN1 => t2.value <= i;
WHEN2 => t1.value <= i;
WHEN OTHERS=> NULL;

END CASE;
END PROCESS;

PROCESS(clk, resetn)
BEGIN -- PROCESS

IF resetn = ’0’ THEN -- asynchronous reset (active low)
cnt2 <= 0;

ELSIF clk’event AND clk = ’1’ THEN -- rising clock edge
CASE cnt2 IS

WHEN0 => cnt2 <= 1;
WHEN1 => cnt2 <= 0;
WHEN OTHERS=> NULL;

END CASE;
END IF;

END PROCESS;

PROCESS(cnt2, t1, t2)
BEGIN -- PROCESS

CASE cnt2 IS
WHEN0 => o1 <= t1;

o2 <= t2;
WHEN OTHERS=> NULL;

END CASE;
END PROCESS;

END Seq;

