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Abstract

The ForSyDe (Formal System Design) methodology is targeted at modelling
systems, with the goal of using a high level of abstraction in the specification
of its models.

Although it is a general system modelling methodology, the initial scope of
ForSyDe has specifically been Synchronous Systems (systems in which a global
clock is used to synchronize the different parts of the system). A well-known
type of such system is synchronous hardware, which is the main subject of this
thesis. A synchronous system in ForSyDe is based on the concept of processes
which “map input signals onto output signals”.

Currently, the software implementation of ForSyDe is based upon the
Haskell programming language. The designer specifies the system model in
Haskell as a network of cooperating process constructors with the assistance
of the ForSyDe Library.

Until now, there has not been an automated way to synthesize ForSyDe
models (i.e. generate an equivalent low-level implementation from which to
build real hardware) . However, as a result of this thesis, hardware synthesis
is now a feature of ForSyDe, enabling ForSyDe designs to finally reach silicon.
That is possible thanks to the development of a ForSyDe-to-VHDL compiler.
By using this compiler, a ForSyDe model can be first translated to synthesiz-
able VHDL93 (one of the two most common hardware design languages) and
then, the designer can use any of the existing VHDL-tools to synthesize the
model.

This thesis report is aimed at documenting the background, design, imple-
mentation and use of the compiler.
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Preface

This thesis report is aimed at documenting the background, design, imple-
mentation and use of a compiler which translates ForSyDe (Formal System
Development) specifications into VHDL93 [2] synthesizable code.

The current implementation of ForSyDe, in which the compiler was em-
bedded, is written in the Haskell [3] programming language. That means the
compiler has unavoidably been coded in the same language. For that reason,
it will be assumed that the reader of this report is fluent in Haskell.
Introducing the reader to Haskell is out of the scope of the present text. There
are many resources from where to acquire the necessary knowledge. Just to
mention three of them, A Gentle Introduction to Haskell [4] is available online
at no cost and is supposed to be a friendly text for the newcomers, Thomson’s
book Haskell: the Craft of Functional Programming [5] on the other hand
is longer but covers the language in greater detail and finally the upcoming
Real-World Haskell book1 [6] will be freely available online and will help to
get involved with serious real-world Haskell code and practical Haskell pro-
gramming. Mastering Haskell is not a prerequisite to understand the overall
content of the thesis. However, wide Haskell programming-experience and
familiarity with its common extensions would definitively be useful (and is
probably needed) to comprehend the compiler’s design and implementation
details.

In addition, it will be assumed that the reader is familiar with digital hard-
ware design and development through HDLs (Hardware Design Languages)
or, in the worst case, understands the concepts behind it. This prerequisite
is weaker than knowing Haskell, since specific knowledge of VHDL is not es-
sential to read the report. However, being aware of the purpose of an HDL is
vital to understand the goals which were achieved.

This thesis report is divided in five chapters:
Chapter 1 introduces the reader to ForSyDe and the thesis goals. It also

introduces the concept of Embedded DSL (Domain Specific Language) which
is essential to understand ForSyDe’s implementation.

1Not ready by the time of writing this preface.
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vi PREFACE

Chapter 2 is targeted at comparing ForSyDe with Lava, a successful
Haskell-embedded HDL (Hardware Description Language ) and verification
environment. The comparison was written before developing the compiler,
in order to acquire the necessary background in the Hardware Design and
Functional Languages research field, hoping to be able to later reuse previous
research results and provide ForSyDe’s compiler with state-of-the-art features.

ForSyDe’s translator to VHDL turned out to be strongly influenced by
Lava. As a result of the comparison, the compiler is intended to inherit Lava’s
virtues and overcome some of its problems such as its current lack of compo-
nent reusability on the compiler-level. Chapter 3 describes the design of the
compiler and the motivation behind it whereas Chapter 4 is targeted at the
end-user and contains a tutorial to help getting familiar with the tool and its
API.

Finally Chapter 5 closes the thesis analyzing its results and outlining
potential improvements and further work.

As an add-on, appendix A has been written with future developers in
mind. They will surely find this appendix useful to get familiar with the
compiler’s implementation in first instance, and later improve it or extend it
at will (the sources are available under the BSD licence at http://www.imit.
kth.se/info/FOFU/ForSyDe/HDForSyDe/).

http://www.imit.kth.se/info/FOFU/ForSyDe/HDForSyDe/
http://www.imit.kth.se/info/FOFU/ForSyDe/HDForSyDe/
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Chapter 1

Introduction

This chapter is aimed at introducing the reader to ForSyDe and the goals of
this thesis.

The main intention of this introduction is to bring the reader to under-
stand ForSyDe in a friendly way. Thus, when necessary, clarity was chosen
over formalisms. If a complete and more accurate description of ForSyDe is
required, please refer to [7] and [1].

1.1 What is ForSyDe?
ForSyDe, which stands for Formal System Design, is a system design method-
ology “which has been developed with the objective to move system design to
a higher level of abstraction and to bridge the abstraction gap by transforma-
tional design refinement” [1].

ForSyDe targets system modelling in general. However, by the time of
writing this thesis, the methodology only covers Synchronous Systems (sys-
tems in which a global clock is used to synchronize the different parts of the
system). A well-known type of such system is synchronous hardware, which
is the main topic of the thesis.

1.1.1 Why a higher abstraction level?
The systems designed nowadays, with microelectronic systems as a partic-
ular example, are tremendously complex due to the increasing feature and
functionality demands of the market.

Furthermore, not only designs are more complex, the aggressive compet-
itivity of industry requires companies to also shorten the time-to-market of
their products, affecting the development cycle.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: ForSyDe’s design flow

For the reasons mentioned above, previous techniques, such as the RTL
(Register Transfer Level) languages developed during the 80’s (mainly Verilog
and VHDL) give too much detail for the designer to handle. In other words,
the level of abstraction of those techniques is too low and hinders the design
process. As a result, a big effort was devoted to raise the abstraction level of
design automation tools, resulting in the System-level Design research field,
to which ForSyDe belongs.

1.1.2 ForSyDe’s design flow
1.1.2.1 Specification model

Figure 1.1 summarizes ForSyDe’s design flow. The design is initiated by writ-
ing its specification model.

As it was previously stated, ForSyDe currently only covers Synchronous
Systems. For that reason, the specification model follows a synchronous model
of computation. The specification model of a synchronous system in ForSyDe
is based on the concepts of synchronous signal and process:

• A synchronous signal is a general term in Computer Science and the
Telecommunications field. It can be defined as an entity transmitting
information in a synchronous manner. That is, the transmission of in-
formation is arbitrated by a clock and remains static during each clock
period, only allowed to change between periods.
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Figure 1.3: A Synchronous system model in ForSyDe

ForSyDe uses the following notation to express a synchronous signal −→s ,

−→s =� v0, v1, v2, . . .�

where vi indicates the value of the signal during period i of the clock.
From now on, this report will use the terms signal and synchronous
signal equivalently.

• The meaning of process is specific to ForSyDe and is represented in
Figure 1.2. A process can be defined as a computational entity which
takes n ∈ N0 synchronous input signals, might process them and then
produce m ∈ N0 synchronous signals as output.

A synchronous system in ForSyDe is modelled as a network of intercon-
nected cooperating processes which are in charge of taking the input signals of
the system, process them and finally produce its output signals. A simplified
example can be seen in figure 1.3. As a result, writing the specification model
consists in defining the aforementioned process network.

The ForSyDe methodology provides a wide variety of primitive and derived
process constructors (entities used to build processes) in which to base a model.
Consult [1] for details on the available process constructors.

The following examples help to understand how the specification model is
written and how processes work:

• mapSY (figure 1.4a) is a primitive process constructor aimed at process-
ing an input signal (i) through a function (f , which must be provided to
the constructor in advance) and output it for later processing by other
parts of the system.
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mapSY
(f)

−→
i −→o

(a) mapSY

delaySY k
(s0)

−→
i −→o

(b) delaySY

delaySY 1
(s0)

mapSY (f)

−→o

sourceSY (f, s0)

−→s

(c) sourceSY

Figure 1.4: Primitive and derived process constructors

• The delaySYk primitive process constructor (figure 1.4b), on the other
hand takes an initial value s0 and delays a signal −→i by k clock periods
delaySYk is useful to avoid zero-loops (known as combinational loops in
the hardware world), which are not allowed in ForSyDe as it will be seen
in next chapter.

• sourceSY (figure 1.4c) is a derived process constructor aimed at produc-
ing a custom source signal. It is derived from delaySY and mapSY .

• Figure 1.5 contains a simple specification model, in which the reader can
see its different processes. It is worth to note the use of numerical signals
and the zipWithSY k process constructor, which is a generalization of
mapSY for k inputs.

1.1.2.2 Implementation model

The next step in the design flow is to transform the specification model into
the implementation model.

The purpose of this intermediate step is to refine the design and to add
low level information details which might be needed for an efficient implemen-
tation. As it was stated before, ForSyDe’s tries to to “bridge the abstraction
gap by transformational design refinement”, which is exactly what happens in
this stage.

The initial specification model is refined by automatic design transforma-
tion rules which rely on the formal foundations of ForSyDe.
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P1 P2
−→s1

P3−→
i2

−→
i1

−→s2

−→o1

−→o2

P1 = delaySY 1(0)
P2 = zipWithSY 2(∗)
P3 = zipWithSY 2(+)

Figure 1.5: A simple specification model

Unfortunately, by the time of writing this thesis, the automatization of this
stage has not yet been implemented and constitutes a tremendously complex
task by itself due to the wide range of possible transformations.

1.1.2.3 Implementation mapping

The last stage of the design flow consists in transforming the implementation
model into an architecture-specific model, such as a software implementation
(e.g. C, C++, . . .) or hardware specifications (e.g. VHDL,Verilog,. . .) from
which to synthesize hardware.

In the same way as the design transformation rules, the implementation
mapping stage was not automated before this thesis was written. However,
the main goal and outcome of the thesis has been to produce a compiler to
translate ForSyDe specifications into VHDL. From the VHDL model any of
the available tools can be used to build or simulate real hardware, making
possible to automatically synthesize ForSyDe specifications.

1.2 ForSyDe’s implementation

In order to use ForSyDe in practice, the designer needs a language in which to
specify the model. Current implementation of ForSyDe is based on a EDSL
(Embedded Domain Specific (programming) Language).
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Application Libraries

Haskell 98

ForSyDe Core Language

System Functions

LibrariesLibraries

Computational

Model System Data Types

Figure 1.6: ForSyDe’s Library

1.2.1 Embedded DSLs
A DSL (Domain Specific (programming) Language), in contrast to a general-
purpose programming language such as C, is a programming language designed
for a specific kind of task. ForSyDe is specifically targeted at System Mod-
elling and for that reason, the language chosen to write ForSyDe models must
necessarily be a DSL.

On the other hand, an embedded language is a programming language
which relies on an existing language, called host language, as opposed to the
embedded language itself which is called guest language. In practice, the guest
language is embedded by adding a library to the host language.

The main advantage of the language embedding approach is the reutiliza-
tion of the syntax of the host language, its surrounding tools and documenta-
tion. Strongly-typed languages like Haskell, help embedding and are a good
choice as host languages due to their encapsulation properties. However, an
embedded language has, as well, many disadvantages due to the syntactical
and semantical dependence on the host language.

Examples of popular EDSLs are YACC (the C-based parser generator) and
EmacsLisp (used as the scripting language of the popular Emacs editor).

1.2.2 ForSyDe’s Library
ForSyDe is implemented as a Haskell-embedded DSL. All ForSyDe’s process
constructors, together with other functionalities, are included in a Haskell
library. Figure 1.6 illustrates the structure of ForSyDe’s Library which is used
by the designer to write the specification model in Haskell.

Choosing Haskell as the host language was not an arbitrary decision. Func-
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tional languages have proven to fit nicely with hardware design [8]. Even if
ForSyDe is aimed at system design in general, it matches perfectly with the
characteristics of Haskell:

• As it was previously described, a signal in ForSyDe is viewed as stream
of values. That makes it possible to model a signal as a list, which is
the main data structure of functional languages in general and Haskell
in particular.

• Processes take signals as input, process them and output new signals
which are later forwarded to other processes, forming a network. That
fits perfectly well with functional languages. A process can be modelled
as a function which makes computations over lists.

• The majority of ForSyDe’s process constructors, such as mapSY , take
functions as input. Yet again, that can be easily modelled making use
of higher order functions, which are available in Haskell. Note that this
reflects the initial intention of embedding ForSyDe in Haskell since its
process constructors are named after widely-used higher-order Haskell
functions (e.g. map, zipWith . . .).

During the rest of this thesis the term ForSyDe refers indistinctively to
both the methodology and its library.

1.3 Thesis scope and goals
The task of this master’s thesis is to develop a tool that takes a ForSyDe
implementation model as input and produces a hardware description in VHDL.
The master’s thesis must attain the following goals:

1) Study of ForSyDe and related work relevant to this thesis.

2) Definition of a relevant subset of Haskell that is accepted by the synthesis.

3) Development of the synthesis tool according to [1].

4) Evaluation of the tool, identifying and including possible improvements.

5) Detailed documentation of the tool.

It is important to note that it has not been possible to use the imple-
mentation model as input due to the lack of an automatic tool to apply the
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transformation rules. Instead, the compiler takes the specification model di-
rectly. Automating the Transformational Design Refinement constitutes a
much larger project by itself and would have required a high percentage of
this thesis to be completed, hindering the development of the compiler.



Chapter 2

Lava vs ForSyDe

This chapter is aimed at comparing Lava and ForSyDe, two DSLs (Domain
Specific Languages) embedded in Haskell. The comparison was made at the
initial stage of the thesis, as a means of acquiring a picture of the previous
work in the Functional Programming and Hardware Description field, in order
to hopefully reuse earlier design techniques and to provide ForSyDe’s compiler
with state-of-the-art features. Thus, at the time of writing this comparison
the compiler was not yet designed.

During the comparison, the reader will get familiar with the important
concept of Embedded Compiler. Furthermore, by the end of the chapter he (or
she) will ...

• ... be able to understand the problems related to represent circuits in a
purely functional programming language such as Haskell.

• ... hopefully have acquired a valuable background in the Hardware de-
sign and Functional Languages field along with an up-to-date view of
the previous work related to this thesis.

2.1 Introduction
The complexity of electronic designs has tremendously risen during the past
two decades which, together with the Industry’s exigency of extremely short
time-to-market periods have made RTL-level tools no longer fit nowadays
circuit design requirements. Thus, there has been a natural move to a higher
level of abstraction known as System Level Design.

The two most commonly-used RTL-level HDLs (Verilog and VHDL) are far
too verbose and concrete to cleanly give a general view of a complex system.

9
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Therefore, new languages are needed to provide a solution for the afore-
mentioned problems. Among other approaches which require creating a new
programming language from scratch, the Embedded Approach saves the de-
signer having to learn a new syntax and makes possible to reuse all the existing
tools (i.e. compilers, interpreters ...) surrounding the host language.

Furthermore, the expressiveness of declarative languages such as Haskell
seems to suit the abstraction level of System Level Design [9] and hardware
design semantics [8].

During the rest of this chapter, two Haskell-embedded language approaches
will be compared: Lava [10] and ForSyDe [7]. The later targets synchronous
systems in general (that is, systems in which a single global clock is used1),
while the first specifically describes synchronous hardware (a concrete type of
synchronous system after all) and is the most mature of the two.

2.2 Design flow
Lava and ForSyDe were independently developed by the Swedish universities
of Chalmers and KTH.

Figures 2.1 and 2.2 contain diagrams describing the simplified design flow
to be followed when modelling with Lava and ForSyDe. As it will be later
seen, the flow is quite similar to the traditional compilation model of a general-
purpose programming language.

It is easy to suspect that both Lava and ForSyDe follow a similar approach,
sequentially divided in two stages:

1) The designer models a circuit in Haskell, making use of the Lava or ForSyDe
libraries.

2) The obtained model is automatically processed by a compiler in order to
attain different goals: simulation, testing, verification and translation to a
less abstract HDL (e.g. VHDL) directly synthesizable to hardware. The
different flavours of this stage are known as Interpretations in Lava and
Implementation Mappings in ForSyde. In the rest of this chapter I will
refer to them with the wider spread term: backends. The details of these
backends will be described in next section.

1ForSyDe supports as well a multi-rate model by using multi-rate interfaces, able to
connect different synchronous sub-domains working at different clock rates.
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This stage slightly differs depending on the language used, being more
complex, and potentially more likely to include optimizations in the case
of ForSyDe, due to the application of Design Transformations.
ForSyDe has a strong formal base which allows the designer to work at a
highly abstract functional level. The abstraction level is lowered2 by ap-
plying Transformation Rules to the provided hardware descriptions. That
is captured in figure 2.2 as the transition from 2a to 2b.
The internal details of ForSyDe’s Refinement are out of the scope of this
chapter but is worth to mention that the Transformation Rules can be
divided in semantic preserving and design decisions. The later ones change
the semantics of the model and thus, its application must be supervised by
the designer.

2.3 Backends
As it was mentioned previously, Lava is in a more mature state than ForSyDe,
having a whole set of tools surrounding it.

On the other hand, ForSyDe only currently supports simulation by di-
rect execution of its Haskell models3. Even with that, a template system, in
which every library function has a preassigned VHDL template, has been al-
ready planed and a few prove-of-concept examples [1, Chapter 6] back it as a
promising approach.

As of the time of writing this thesis, Lava has three available backends:

• Simulation and random testing. A circuit simulation is carried out
by interpreting each component of its structure4.
In addition, Lava allows to test properties of a design on random data
through a language which is highly inspired in QuickCheck [12].
QuickCheck is as well embedded in Haskell and has been developed inde-
pendently of the Lava system. That makes it suitable of being used for
other purposes than testing circuit properties. Indeed, QuickCheck has
been successfully employed in many other projects and could certainly
be integrated into ForSyDe if desired.

2ForSyDe currently lacks an automatic tool for this purpose and transformations need
to be applied manually. Either the case, [1] proves it would not only feasible but quite
straight-forward to implement.

3Zero-delays, circuit feedback loops without delays, are forbidden in ForSyDe and thus
cannot be simulated.

4Zero-delays are only permitted when performing a constructive simulation by using
simulateCon, see Lava’s documentation [11] for details.
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• Verification. Lava is able to generate a logical formula representing the
circuit. That formula, along with properties defined by the designer, are
given to an external theorem prover which can prove or disprove their
validity.
Despite how promising verification can seem at first sight, there is a well-
known underlying theoretic limitation within First Order Logic which
makes it semi-decidable5. Furthermore, First Order Logic verification
is computationally expensive (a NP-complete problem) and usually the
prover has to be “helped” by splitting proves in smaller ones.
Fortunately random testing is still at hand and, although it does not
answer the validity question, it can be good enough in most of the cases.
Nevertheless, theorem provers can give an answer about the validity
of many circuit properties, being especially valuable in critical design
parts6. As opposed to simulation and random testing, validation pro-
vides certainty over circuit properties. Thus, it is more desirable but
frequently more difficult to apply.

• RTL-level language generation. In order to synthesize a design to
hardware, Lava includes a VHDL backend. As it will shown in the
next section, such kind of translation is quite straight-forward to achieve
in Lava due to the way in which circuits are internally represented.
ForSyDe opts for more-behavioural semantics making the translation
more difficult to implement.

2.4 Language features
Both Lava and ForSyDe can be used to describe synchronous circuits7. The
functional paradigm invites to model circuits as functions which receive signals
as arguments, process them and finally return them or forward them to other
functions. Furthermore, higher-order types allow having functions (circuits)

5Any valid theorem can be proven but invalid clauses are not always identified.
6Intel designers surely regret not making extensive use of formal verification methods in

an earlier stage. Famous bugs as the Pentium R©’s F00f [13] and FDIV [14], could probably
have been avoided by applying formal methods. Nowadays Intel makes use of the Forte
Verification Environment [15], currently based on reFLect [16], and formerly on FL [17], two
functional programming languages.

7ForSyDe also allows having synchronous subsections working at different clock rates,
the so-called synchronous sub-domains. However, those domains are generated during the
Refinement stage, which means they cannot be included in the initial hardware description
or Specification Model.
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as first-class citizens, permitting to combine and nest them in an elegant and
intuitive way.

Thus, a hardware model in both Lava and ForSyDe can be viewed as an
interconnected set of functions which interact and process signals.

A signal in ForSyDe is defined with the following recursive algebraic type.� �
data Signal a = NullS | a :- Signal a� �

It is worth to note that

• Signals are represented using a data stream metaphor. Its definition is
isomorphic to a Haskell list without syntactic sugar (i.e. the surrounding
box brackets [ ] and interspersed commas).
A similar definition can be found in Hawk [18], a Haskell-embedded DSL
aimed at microprocessor design. Unfortunately the development of the
language seems to be dead at the moment of writing the present thesis.

• Signals are polymorphic. The fact that signal can contain values of any
type makes them flexible and provides them with abstraction capabili-
ties.

• Following the signal/data-stream metaphor, it is natural to process sig-
nals in the same way as lists. In fact, ForSyDe provides higher or-
der functions similar to the Haskell broadly-used list traversers map,
zipWith, . . .

• The lack of encapsulation of the signal type (i.e. its definition is not
hidden to the programmer) makes it really flexible but as it will be later
discussed, it does not permit embedded compilation to other represen-
tations such as VHDL.

On the other hand, a signal in Lava is more complex than a stream of
values, and is hidden to the programmer through an abstract data type.� �
newtype Signal a = Signal Symbol� �

The definition of Symbol is not public, and the phantom type parameter
a is used as a means to provide a type safety layer for signals.

A signal in Lava hiddenly represents the internal structure of the circuit:
“Instead of implementing signals as streams of booleans, we implement it

as a datatype which explicitly keeps track of which gates were used to construct
it” [11, section 1.6].

That has three immediate implications
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1) A circuit description in Lava is unavoidably and deliberately structural8.
On the other hand, ForSyDe is inherently structural as well9, but the rep-
resentation of signals as streams allows the designer to describe systems in
a more behavioural manner if required.
For that reason, it can be said that ForSyDe stands on a higher abstraction
level. As a drawback, processing the netlist of a circuit is potentially much
harder to achieve.

2) A component-wise signal eases the task of processing, translating and trans-
forming a circuit (i.e. simulation, verification, translation to a different tar-
get language . . .), permitting to include a translator within the language
library.
This technique (known as Embedded Compiling [20]) has been successfully
used in many other specific domains such as databases [21], music compo-
sition [22] and image processing [23].

3) A circuit is naturally represented as a graph, whereas the closest data
structure directly offered by Haskell is a tree through the use of algebraic
types.
In order to represent the structure of a circuit and to avoid infinite recur-
sion problems related to circuit loops, Lava offers two solutions: Monads
(currently discarded) and Observable Sharing which will be described later
on.

Among other differences, it should be remarked how both languages make
use of Haskell characteristics. Lava makes an elegant use of type classes
whereas ForSyDe’s programming style is closer to the one used by a general-
purpose Haskell programmer:

• Curryfied functions are used in ForSyDe while Lava uses an uncurryfied
style.

• ForSyDe makes use of higher order functions and polymorphic signals
which aids reusability. Furthermore, a ForSyDe description consists of
a network of cooperating processes joined together through process con-
structors which isolate computation and communication. Each construc-
tor has the capability of using a different computational model if desired
[24].

8Part of the Lava team has proposed another imperative behavioural language called
Flash [19].

9A model in ForSyDe is presented as the result of connecting different processes.
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On the other hand, instead of offering traditional higher order functions
(in the sense of data processing callbacks), Lava offers circuit combi-
nators such as serial and parallel composition. Unfortunately, even if
the Lava’s signal type is polymorphic, only monomorphic Int and Bool
signals can be used in practice10.

• The functions offered by the ForSyDe library follow Haskell’s philosophy
and naming scheme (e.g. mapSY, zipWithSY, scanlSY . . .).

2.4.0.1 Layout-oriented Lava: Xilinx-Lava

Throughout the rest of this thesis the term Lava will refer to the main branch
of the HDL designed in Chalmers university, also known as Chalmers-Lava.
However, Satnam Singh, one of the Lava researchers developed a layout-
oriented branch of the language, known as Xilinx-Lava, which is aimed at
describing circuits for implementation of Xilinx’s Virtex family of FPGAs
[25].

As opposed to Chalmers-Lava, Xilinx-Lava provides a combinator library
to build circuits in a way which allows controlling the final layout of the FPGA
(i.e. how the FPGA blocks are allocated and interconnected) without losing
Lava’s elegance. So much so that it beats traditional HDLs when it comes to
optimizing floorplanning [26].

Due to its layout capabilities, Xilinx-Lava is unavoidably less abstract than
Chalmers-Lava and, unfortunately, as its name clearly indicates, is specific to
Xilinx’s technology.

2.4.1 Representing a circuit in a pure functional language
Hardware design with functional languages has been a matter of research
for many years. Its history is neatly summarized by paper [27], which is
definitely recommended to read in order to acquire a deeper background in
functional HDLs. More specifically, the problem of representing a circuit in
a pure functional programming language has been addressed and extensively
discussed for more than 20 years, mainly by O’Donnell [28, 29, 30, 31, 32, 33].

“The problem is that circuits are finite graphs - but viewing them as alge-
braic (lazy) data types makes them indistinguishable from potentially infinite
regular trees.” [31]. In other words, there is no way to directly detect feedback
loops within a circuit if an algebraic type is chosen to represent it.

10The encapsulation of the signal type in addition to the aforementioned type-safety
layer only allows Int and Bool signals to be created and propagated. That ensures type
correctness and saves the trouble of having to add typechecker to the embedded compiler.
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In order to solve that problem, there are four main alternatives: explicit
labeling, monads, observable sharing and host language transformations.

2.4.1.1 Explicit labeling

This method was proposed by O’Donnell in [29]. In order to prepare the
circuit for later traversing, the designer explicitly chooses a label for each
node (component) of the circuit.

The approach has many problems, described by O’Donnell himself later
on:

“The use of labeling solves the problem of traversing circuit graphs, at the
cost of introducing two new problems.
It forces a notational burden onto the circuit designer which has nothing to
do with the hardware, but is merely an artifact of the embedding technique.
Even worse, the labeling must be done correctly and it cannot be checked by
the traversal algorithms.
Suppose that a specification contains two different components that were mis-
takenly given the same label. Simulation will not bring out this error, but the
netlist will actually describe a different circuit than the one that was simu-
lated. Later on the circuit will be fabricated using the erroneous netlist. No
amount of simulation or formal methods will help if the circuit that is built
doesn’t match the one that was designed.” [33]

2.4.1.2 Monads

This approach was initially adopted and later discarded by the creators of
Lava. The labels of the circuit are uniquely and automatically generated
through a state monad and stored in the signal abstract data type.

It solves the main problems caused by explicit labeling but its main draw-
back is that, by introducing monads, the syntax in which circuits are expressed
changes completely11 making circuit descriptions less intuitive for the designer.

Furthermore, feedback cannot longer be expressed by means of equational
recursion (because of the loss of local naming), and loop, a special monadic
combinator is required. Again, O’Donnell analyzed the disadvantages of this
approach and justified why it was not included in his functional HDL: Hydra
[35]

“there are two disadvantages of using monads for labeling [..] The first
problem is that monads introduce new names one at a time, in a sequence of
nested scopes, while Hydra requires the labels to come into scope recursively,

11Monads have long been one of the biggest learning barriers for Haskell [34], being
deeply confusing for the newcomers.
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all at once, so that they are all visible throughout the scope of a circuit defi-
nition.[..] A more severe problem is that the circuit specification is no longer
a system of simultaneous equations, which can be manipulated formally just
by ’substituting equals for equals’. Instead, the specification is now a sequence
of computations that —when executed— will yield the desired circuit. It feels
like writing an imperative program to draw a circuit, instead of defining the
circuit directly.” [33]

An alternative to Monads: Arrows Arrows [36] are a computation ab-
straction similar to Monads. Furthermore, Arrows are more general than
Monads and are semantically closer to a circuit since they are often intro-
duced from the perspective of stream processors.

Contrary to Monads, they offer combinator primitives which can be tar-
geted at parallel stream processing. Hughes and Paterson even suggested to
use Arrows to simulate synchronous circuits [37, 38], nonetheless, no Haskell-
embedded HDL has so far made use of them.

Arrows are not covered by the Haskell standard. However, GHC (Glasgow
Haskell Compiler) offers a notation extension [37] which provides extra syn-
tactic sugar to treat Arrows in a similar way as Monads. The same result can
be achieved by preprocessing the code with the compiler-independent Arrows
bundle.

Even with its semantical advantages, Arrows are prone to suffer the same
syntactic problems as Monads since they make use of a very similar notation
and a loop fixpoint combinator is still required to express feedback within the
circuit.

2.4.1.3 Observable Sharing

This is the currently preferred approach in Lava [31].
The method consists in using references12 (pointers) to represent the nodes

within the graph structure of the circuit (like it would naturally be done in an
imperative language). Then, during the graph traversal, loops are detected
by comparing the reference of current node against the one of every visited
node, whose reference must have been properly saved in advance.

In order to perform such equality comparison, the language needs to be
extended with a side-effecting operation known as unsafePerformIO13.

12References are only implicitly used within the signal ADT and are transparently han-
dled for the programmer. Making the reference comparison explicit would constitute a
different solution known as Pointer Equality.

13All current up-to-date Haskell implementations offer this feature.
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Observable Sharing allows to design circuits using recursive equations,
without the drawbacks of explicit labeling nor the inconvenient monadic syn-
tax. As a tradeoff, Haskell needs to be extended into a language which violates
referential-transparency, making equational reasoning unsound.

Furthermore, the programmer needs to be aware of such extension since it
affects the way in which connections are shared by the different components
of the circuit.

2.4.1.4 Host language transformations

The host language (Haskell in this case) is preprocessed in order to add the
node labels.

As result of the translation an equivalent circuit description is obtained,
with correct automatically-added labels, not prone to designer errors, without
side-effects14 nor unsuitable monad notation.

As it can be suspected, this approach entails the extra effort of parsing
the language and translating it, loosing the pleasant reusability of machin-
ery expected from an embedded language. Furthermore, supporting the full
language syntax can be an enormous task and could make the resulting tool
difficult to maintain.

The advantages of the embedded language approach, in and of themselves
normally questioned [39], are reduced. Syntax reusability would be the only
remaining advantage, not being clear if a stand-alone language (as opposed to
embedding) would be preferable.

However, a subtle transformation of Hydra was carried out by O’Donnell
[33] by making use of TH (Template Haskell).

TH [40] is a Haskell extension that provides type-safe (and type-aware)
compile-time meta-programming. In his paper, O’Donnell makes use of TH
as a macro system to automate the node labeling of the circuit.

Contrary to other popular macro systems, not only is TH type-safe but
also gives parsing and AST data structures for free. That allowed O’Donnell
to forget about parsing and code his translator as a simple compiler backend,
avoiding an otherwise tremendous effort.

Nonetheless, O’Donnell’s approach suffers from various problems:

• Obfuscation. As result of preprocessing, the original design is obfus-
cated and difficult to understand at first sight.

14The translated code is pure but it could be said that the original description includes
side-effects anyway, implicitly carried out by the translation.
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• GHC-specific. Template Haskell is not part of the Haskell standard
[3] and is only currently supported by GHC. Nevertheless, GHC is the
current de facto reference Haskell compiler.

• Host language limitations The publicly available Hydra/TH imple-
mentation is very limited and does not support the full feature set of
Haskell (not even lambda abstractions are supported). Of course, TH
supports the whole Haskell standard and Hydra could be extended to
supported. However this shows that supporting it would have made the
host language transformations more difficult to implement.

• Maintainability. The dependency on an experimental tool as TH and
the wide scope of its use in this approach (traversing the full Haskell
AST) makes Hydra/TH difficult to maintain. As a matter of fact, the
latest Hydra/TH public version available is outdated at the moment of
writing this thesis due to changes in the API of TH.

2.5 Lava and ForSyDe in practice
The general characteristics of ForSyDe and Lava have been so far discussed
and compared. Even with that, it is difficult to get an overall impression of
both languages without having a look at a practical example.

As it was previously stated, ForSyDe is aimed at designing synchronous
systems in general, being synchronous hardware just an example of such sys-
tems. However, for comparison purposes, a hardware design example (a simple
bit adder) was picked from the Lava tutorial [41].

Here is a half adder design in Lava.� �
halfAdd :: ( Signal Bool , Signal Bool) -> ( Signal Bool , Signal Bool)
halfAdd (a,b) = (sum , carry)

where sum = xor2 (a,b)
carry = and2 (a,b)� �

And here is the full adder, making use of the definition of halfAdd.� �
fullAdd :: ( Signal Bool ,( Signal Bool , Signal Bool ))

-> ( Signal Bool , Signal Bool)
fullAdd (carryIn , (a,b)) = (sum , carryOut )

where
(sum1 , carry1 ) = halfAdd (a, b)
(sum , carry2 ) = halfAdd (carryIn , sum1)
carryOut = xor2 (carry1 , carry2 )� �
Lava can interpret (i.e. analyse) the model in three different ways.

• Simulating it
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> simulate fullAdd (high,(low,high))
(low,high)

• Verifying certain properties. For instance, this property is aimed at
checking that the adder is commutative. It is out of scope to explain the
details of how this is internally done.� �
prop_c (c, (a,b)) = ok

where out1 = fullAdd (c, (a, b))
out2 = fullAdd (c, (b, a))
ok = out1 <==> out2� �

The property can be easily validated from a Haskell interpreter.

> verify prop_c
Proving: ... Valid.

• Generating equivalent VHDL code.

> writeVhdl "fullAdd" fullAdd
Writing to file "fullAdd.vhd" ... Done.

This small example already leads to a few important conclusions

• Circuit ports
As it was previously mentioned, Lava circuits are uncurryfied. It can
seem unnatural to a Haskell programmer, but this design decision was
not arbitrarily made.
An uncurryfied function takes only an argument and thus, it can be en-
capsulated through typeclass contexts, allowing to treat inputs (outputs)
in a uniform way.
The inputs (outputs) admitted by a Lava-interpretable circuit can be
defined by induction as the set I where:

– ∀s ∈ Signals.s ∈ I
– ∀i ∈ I.[i] ∈ I
– ∀i1, i2 ∈ I.(i1, i2) ∈ I
– ∀i1, i2, i3 ∈ I.(i1, i2, i3) ∈ I

...
– ∀i1,2,...,7 ∈ I.(i1, i2, . . . , i7) ∈ I
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Where Signals represents the set of all the valid Signal types of Lava
and the brackets keep the same meaning as in Haskell.
The above definition leads to multiple representations of the same circuit
input (output). For instance, let’s picture the argument of a circuit
taking three signals, a Bool signal, followed by an Int signal and lastly
a Bool signal.
There are as well, three possible types for the argument of the circuit’s
function:

1) (Signal Bool, Signal Int, Signal Bool)

2) ((Signal Bool, Signal Int), Signal Bool)

3) (Signal Bool, (Signal Int, Signal Bool))

This feature can be considered redundant and confusing rather than
flexible, since it requires a convention on how to structure the circuit
inputs. Furthermore it is impossible to avoid the use of nested tuples
if the number of input signals is higher than seven. The largest tuple
size could be incremented, of course, but it would always remain being
finite, and considering the number of inputs required by large VLSI chips
nowadays, it does not seem the best solution.
The inputs (outputs) of a circuit are more intuitively expressed with
a port, in the same way as it is done in traditional HDLs. A good
representation for a port could be a fixed size heterogeneous collection
(i.e. a collection whose elements can have different types).
Haskell, due to its type strictness and unlike some dynamically-typed
functional languages such as Lisp, does not directly support hetero-
geneous collections. Nonetheless, heterogeneous lists are possible in
Haskell as shown by HList [42], a library which relies on common exten-
sions of the language.
Ports could be implemented either through heterogeneous collections or
a self made ADT, aware of the internal representation of signals.
The price to pay for using ports would be some extra verbosity in the
circuit descriptions (negligible if the design is big enough) and the effort
of including a typechecker in case the ADT option is chosen (ports, due
to their heterogeneous nature, would no longer be able to take advantage
of the type safety layer provided by the phantom signal types).
However, circuit ports would make the treatment of inputs (outputs)
uniform, scalable and intuitive.
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• Component hierarchy
Reusability and hierarchical structures are two major needs of System
Design. Lava provides solutions to those needs through mechanisms
already available in Haskell. Reusability is achieved by factoring code
in functions and hierarchy is offered by delegating parts of the design to
subcircuits (which are functions after all).
In this way, fullAdd makes use of halfAdd without needing to replicate
its code and delegating a smaller task to it.
However, the internal representation of the circuit is not aware of such
delegation and therefore, the different backends are not able to reflect
the use of hierarchy in the target language.
That is not a major problem in the case of HDL backends (the com-
ponents are anyway replicated when the model is synthesized15) but it
certainly is undesirable in other cases. Suppose that, for instance, a C
backend was available. Then code of halfAdd would be replicated in
the target source file, making it more difficult to understand than if a
subroutine was generated instead. Furthermore, compilation would later
lead to a larger binary.
In order to make the backends aware of the circuit hierarchy, the designer
would be required to make reusability explicit to Lava. That entails
providing component instantiation primitives in the same way it is done
in traditional HDLs. As a tradeoff, the verbosity of designs would be
increased.

Getting back to ForSyDe, an adder could be directly designed as� �
addSY :: (Ord a, Num a) => Signal a -> Signal a -> Signal (a,Bool)
addSY = zipWithSY add

where add a b = let sum = a + b
carry = sum < a || sum < b

in (sum , carry)� �
This behavioural model admits any pair of numbers (in the Haskell sense)

as input and calculates their sum and carry (assuming both numbers are
unsigned).

The function zipWithSY behaves exactly in the same way as Haskell-
Prelude’s zipWith. Remember that ForSyDe models signals as data-streams.

Due to its numerical-representation independence, the model accepts num-
bers of any length and is highly abstract. However, for the same reason, addSY

15However, the lack of reusability could affect the behaviour of the synthesizer. For
instance, there is no way to split the design in various parts, which can give a hard time to
the synthesizer if the circuit is big enough.
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is not really useful in practice (at least regarding hardware design): there is
not a clear way in which the circuit could be easily synthesizable.

Furthermore, this example would not be fair to Lava, whose fullAdd is
proven to be translatable to hardware. A closer approach would be the fol-
lowing� �
halfAddSY :: Signal Bool -> Signal Bool -> Signal (Bool ,Bool)
halfAddSY = zipWithSY halfAdd

where halfAdd a b = let sum = a /= b
carry = a && b

in (sum ,carry)

fullAddSY :: Signal Bool -> Signal Bool -> Signal Bool
-> Signal (Bool , Bool)

fullAddSY carryIn a b = zipSY sum carryOut
where (sum1 , carry1 ) = unzipSY $ halfAddSY a b

(sum , carry2 ) = unzipSY $ halfAddSY carryIn sum1
carryOut = zipWithSY (/=) carry1 carry2� �

Note that, even if ForSyDe makes use of curryfied functions, their outputs
suffer from the same structural redundancy problem as in Lava (i.e. nested
tuples).

Furthermore, ForSyDe allows signals to be compound and contain tuples,
which can be lifted and unlifted through unzipSY and zipSY, adding even
more redundancy and demanding another convention to be followed by the
designer.

Due to the previous reasons, ForSyDe could also benefit from the circuit
port approach. However, the component hierarchy remark does not apply in
this case, since ForSyDe descriptions are still not synthesizable and thus, not
yet representable in terms of components.

2.6 Conclusions
The features offered by functional languages are suitable to embed a System
Level HDL. Both Lava and ForSyDe follow a similar approach. However,
Lava has a whole set of tools surrounding it while ForSyDe only currently
offers simulation. Even though, [1] establishes concrete guidelines on how to
automate the refinement stage and the VHDL backend for ForSyDe.

Both Lava and ForSyDe can be considered structural languages. Nonethe-
less Lava is intrinsically structural due to its internal representation of signals
while ForSyDe admits behavioural descriptions of a higher abstraction level
if desired. As a drawback, the translation from ForSyDe to other languages
(e.g. input for a theorem prover or hardware synthesizer) is potentially more
difficult to achieve.



Chapter 3

Design of the compiler

The first part of this chapter describes the compiler’s design, including the
decisions and arguments which have leaded to it. In advance, it can be said
that it follows Lava’s embedded compilation model.

The second part of this chapter explains some improvements which were
incorporated to ForSyDe in order to overcome the drawbacks of Lava analyzed
in chapter 2.

3.1 Design alternatives
After studying ForSyDe’s background and related work, it was necessary to
choose between three design alternatives before starting to implement the
compiler:

1) Traditional stand-alone compiler. This alternative implies coding a
full Haskell-to-VHDL compiler from scratch.

2) Customizing an existing compiler. The Haskell-to-VHDL compiler
would be added to an existing tool by incorporating a custom VHDL back-
end.

3) Using an embedded compilation model. As it was described in chapter
2, the embedded compilation model involves including the compiler in the
language library. This model is used in Lava based on the fact that Lava-
signals are component-wise and store a structural description of the circuit.

The third alternative was chosen over the others for various reasons ex-
plained in next section.

25
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3.1.1 Why an embedded compiler?
There are various reasons for which the embedded compilation model was
chosen:

• It is realistic.
The time and man-power resources of a master’s thesis are very limited.
GHC, the popular Haskell compiler, in its current version (6.6) is com-
posed of around 150.000 lines of Haskell code (or 72 years of estimated
one-man full-time dedication)1. Even trying to implement a less ambi-
tious compiler, would anyway had been impossible.
A custom backend would obviously had required a much smaller effort,
but it would have been impossible as well. GHC’s code generation mod-
ules are composed of more than 5.000 lines of code (14 estimated months
of one-man full-time dedication).
On the other hand, the embedded approach was expected to be feasible
for one person. In fact, the whole compiler is composed of less than
2.000 lines of Haskell code.

• Saves unnecessary effort.
The goal of the compiler is to translate ForSyDe specifications to VHDL.
Customizing a backend or coding a full compiler would have allowed to
translate any Haskell file (including ForSyDe descriptions in particular).
Such a general translation is not the goal of this thesis. Mapping any
Haskell program to VHDL would have been unnecessary and extremely
difficult (if not impossible).

• Previous success.
The embedded compilation model was adopted from Lava, where it was
previously used to build a successful hardware development and verifi-
cation environment.
A previous success always gives a good initial point from were to start
working.

• It is easily maintainable.
Using the embedded compilation model, the compiler is included in
ForSyDe’s Library making it easy to maintain and distribute.

1measured with the sloccount command, (http://www.dwheeler.com/sloccount/)

http://www.dwheeler.com/sloccount/
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• It is independent of the internal design of third-party tools.
Modifying an existing compiler to implement a VHDL backend would
have caused ForSyDe to depend on a third party tool, making it prone
to get outdated by internal design changes in the tool.

3.2 Differences with Lava’s implementation
Some differences between Lava and ForSyDe made impossible to simply repli-
cate Lava’s compilation model.

Those differences had to be analyzed and taken into account in order to
be able to preserve Lava’s approach. The differences were identified in last
chapter and fortunately, an appropriate solution was found for each case:

• ForSyDe already defines a Signal type.
The embedded compilation model requires to use a signal type which
stores the structure of the circuit.
However, ForSyDe’s library implements the Signal type as a stream
of values. Furthermore, the Signal type is not encapsulated (that is,
the data type is not hidden to the programmer), making impossible to
modify it without causing regressions.
There were two alternatives

a) Transform the original Signal type of ForSyDe, into an ADT which
kept track of the circuit structure, causing a regression.

b) Create an alternative signal type which fulfilled the requirements
of embedded compiling and which could live together with the old
Signal type.

Option b was chosen, mainly because ForSyDe is targeted at design of
systems in general not simply hardware. The details about the new
signal type are explained in section 3.3.

• ForSyDe is more behavioural than Lava.
The behaviour of Lava’s gates (e.g and, or, xor . . .) is hardcoded and
cannot be modified, which is perfectly natural for a purely structural
language.
On the other hand, most of ForSyDe’s process constructors are imple-
mented as higher-order functions, which behave in one way or another
depending on the function passed as argument.
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Keeping the structure of the circuit in a the signal ADT was no longer
enough to perform the translation to VHDL. In addition, a way to store
the body of the functions passed to the process constructors had to be
found.
The biggest problem was that an embedded compiler does not have
direct access to AST of the host language. The only information it can
work with has to be provided by the library in which the compiler is
embedded.
One possible solution would have been developing yet another embedded
language in which to express the body of those functions. However, it
would have implied designing a new sublanguage, with its new syntax,
which would had to be learned by the designer.
Instead, inspired by Hydra’s implementation [33], it was decided to make
use of Template Haskell through a new ADT: HDFun. HDFun is covered
in section 3.4.

• Polymorphism.
Even if the Lava’s signal type is polymorphic, only monomorphic Int
and Bool signals can be used in practice.
On the other hand ForSyDe’s original Signal is polymorphic and so are
its process constructors. There is no automatic way to transform every
kind of signal value into VHDL code, and thus, the subset of supported
ForSyDe signals has to be controlled.
HDPrimType type-class constraints were used in process constructors
as way to control the supported signal subset. The details about the
HDPrimType typeclass are described in section 3.5.

The next sections give explicit details about how Lava’s embedded compi-
lation model was adapted to ForSyDe.

In order to make it more intuitive for the reader. Each section incre-
mentally refers to the specific changes which were made to mapSY, originally
defined in ForSyDe’s Library as:� �
mapSY :: (a -> b) -> Signal a -> Signal b
mapSY _ NullS = NullS
mapSY f (x:-xs) = f x :- (mapSY f xs)� �

Remember that the definition of Signal is isomorphic to Haskell lists and
is defined as:� �
data Signal a = NullS

| a :- Signal a� �
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(+1)
−→omapSY−→

i

Figure 3.1: plus1

To illustrate how the design modifications affect the end-user, the trans-
formations suffered by the original definition of a simple system will be used
as example. plus1 (figure 3.1) is a trivial system which merely adds 1 to its
numerical input and returns the resulting value. Its code, using the original
ForSyDe Library is:� �
plus1 :: Num a => Signal a -> Signal a
plus1 = mapSY (+1)� �

3.3 HDSignal: The Hardware Description Signal
In order to avoid regressions, instead of modifying the original Signal type,
an alternative signal type, HDSignal (Hardware Description Signal) was in-
troduced.

HDSignal works similarly to signals in Lava. It is an ADT hidden to the
user which secretly stores the structure of the circuit.

HDSignal makes use of Observable Sharing [31] (introduced in chapter 2)
to achieve its goal. Understanding the concrete implementation details of
Observable Sharing requires an advance knowledge of Haskell which is out of
the scope of this report. Therefore, HDSignal will simply be treated as an
abstract type with unknown implementation.� �
data HDSignal a = ... -- hidden� �

Providing an alternative version of Signal required as well to provide new
process constructors, which were initially renamed to avoid name-clashes.

Thus, an alternative definition of mapSY using HDSignal was created:� �
hdMapSY :: (a->b) -> HDSignal a -> HDSignal b
hdMapSY ... -- hidden implementation� �

plus1 also needed to renamed and modified to make use of HDSignals� �
hdPlus1 :: Num a => HDSignal a -> HDSignal b
hdPlus1 = hdMapSY (+1)� �
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3.4 HDFun: the Hardware Description Function
Using the definition of previous section, hdMapSY takes a standard Haskell
function as argument:� �
hdMapSY :: (a->b) -> HDSignal a -> HDSignal b� �

However, there is no possible way of generating VHDL code from a (a->b)
value. Instead, a new type, HDFun (Hardware Description Function), capable
of storing the definition of a function was introduced.

HDFun, contrary to a standard Haskell function, contains a syntax tree
thanks to the use of Template Haskell.

3.4.1 Introduction to Template Haskell
TH [40] (Template Haskell) was previously mentioned in chapter 2. It is a
Haskell extension that enables to use compile-time meta-programming. Un-
fortunately, as it was stated before, TH is only currently supported by GHC.

Meta-programming allows to write programs which manipulate and/or
generate other programs. In Template Haskell, that is done by processing
the AST (Abstract Syntax Tree) of Haskell declarations or expressions.

In the case of HDFuns, Template Haskell gives access to the AST of func-
tion declarations, allowing ForSyDe’s embedded compiler to translate them to
VHDL.

The key abstractions that Template Haskell operates on are Expressions,
Declarations, and Types. Fragments of concrete Haskell code can be lifted into
the meta-world through the use of quasi-quotations. Expression, declaration
and type fragments each have their own variation on the quotation syntax:� �
[| expr |] -- lifts a concrete expression
[d| decl |] -- lifts a concrete declaration
[t| type |] -- lifts a concrete type� �

As a result of lifting, the AST of the quoted expression, declaration or type
is obtained for later processing.

In order to generate code, Template Haskell provides splices which are
executed at compile-time and return an AST. GHC automatically merges the
resulting AST with the rest of the source code as if the programmer actually
wrote it. Informally, it can said that splices work like C macros, but are
type-safe, ensuring the generation of correct code.

Splices have their own notation. A splice is written $x, where x is an
identifier, or $(. . .), where “. . .” is an arbitrary Haskell expression. This
use of $ overrides its meaning as an infix operator. To be interpreted as an
operator, $ needs to be surrounded by spaces.
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The biggest advantage of using Template Haskell is the reutilization Haskell
syntax, which saves the designer from learning a new embedded language. As
a drawback, TH introduces syntax extensions (quotes and $) which anyway
require certain learning, and makes ForSyDe GHC-dependant.

3.4.2 HDFuns in practice
With the introduction of HDFun, the type of hdMapSY changes to� �
hdMapSY :: HDFun (a->b) -> HDSignal a -> HDSignal b� �
which is still quite similar to the original definition of mapSY.

Furthermore, plus1 needs as well to be readapted:� �
hdPlus1 :: Num a => HDSignal a -> HDSignal a
hdPlus1 = hdMapSY doPlus1

where doPlus1 = $( mkHDFun [d| doPlus1 :: Num a => a -> a
doPlus1 a = a + 1 |])� �

The internal HDFun of hdPlus1 is generated at compile-time as follows:

1) The declaration of doPlus1 is lifted to its AST thanks to the enclosing
brackets ([| . . . d|]).

2) Its AST is processed by a splice in which the mkHDFun constructor function
creates the HDFun.

It is worth to note that doPlus1 is defined as� �
doPlus1 a = a + 1� �
instead of simply� �
doPlus1 = (+1)� �
due to the limitations of mkHDFun.

Those limitations are:

• The number of formal parameters in the function must equal its number
of arguments.

• The signature of the function is mandatory and only one definition clause
is admitted.

• Pattern matching is only supported with literals, variables and the wild-
card “_” pattern. No other kind of pattern matching is allowed.

• where clauses are not supported.
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• The only valid expressions are: variables, constructors, infix operations
(excluding infix constructors and sections), if, case and the expresions
resulting form their combination. let, lambda abstractions, and the
rest kinds of expressions are not supported.

These limitations can be considered excessive. However, they provide a
sufficient inital functionality. Thanks to the use of TH, this limitations can
be easily overcome by extending the supported Haskell subset of HDFun (see
A for details).

3.5 Controllling polymorphism: the HDPrimType
type class

As it was previously said, there is no automatic way to transform every Haskell
type into VHDL, and thus, the subset of supported ForSyDe signals has to be
controlled somehow.

Indeed, only instances of HDPrimType (Hardware Description Primitive
Type) can be handled by the compiler. Currently, only Int and Bool instan-
tiate HDPrimType.

The process constructors have to reflect that limitation. For that reason, a
HDPrimType constraint was introduced in each of its parameters. In the case
of hdMapSY, its type changes to:� �
hdMapSY :: ( HDPrimType a, HDPrimType b) =>

HDFun (a->b) -> HDSignal a -> HDSignal b� �
That means as well that plus1 can no longer support numerical signals in

general. A concrete type has to be specified so that the compiler can chose an
adequate VHDL representation.� �
hdPlus1 :: HDSignal Int -> HDSignal Int
hdPlus1 = hdMapSY doPlus1

where doPlus1 = $( mkHDFun [d| doPlus1 :: Int -> Int
doPlus1 a = a + 1 |])� �

The implementation details of HDPrimType are not significant. However,
it is worth to note that it shares certain similarities with Haskell’s Data.-
Typeable.Typeable class. Thus, HDPrimType can be considered a particular
implementation of dynamic types.
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3.6 Integration with ForSyDe’s Library
So far, the original mapSY function has been renamed to hdMapSY and modified
to include all the requirements of the embedded compiler.

Both functions use different types but are intended to attain a similar goal.
Therefore, it would be desirable to make them share the same name (mapSY),
without causing a name-clash.

Thanks to a Haskell extension called MPTC [43] (Multi Parameter Type
Classes), it is possible to make them share mapSY as their name:� �
class SynchronousM f_a_b signal a b | signal a b -> f_a_b where

mapSY :: f_a_b -> signal a -> signal b

instance SynchronousM (a->b) Signal a b where
mapSY _ NullS = NullS
mapSY f (x:-xs) = f x :- (mapSY f xs)

instance ( HDPrimType a, HDPrimType b)
=> SynchronousM (HDFun (a->b)) HDSignal a b where

mapSY = -- hidden details� �
SynchronousM is a multi-parameter type class. As its name clearly in-

dicates, a MPTC, in contrast to a traditional type class, admits multiple
parameters and serves as a way of associating various types with a group of
operations.

However, the use of multiple parameters leads to ambiguity problems in
the type inference algorithm (i.e. makes difficult to resolve whether a set
of types conform a MPTC instance or not). Thus, it is necessary to help
the type inferer with certain constraints named functional dependencies. In
this case, “signal a b -> f_a_b” is a functional dependency which tells the
inferer that signal, a and b depend on f_a_b, or, in other words, providing
the signal, a and b parameters of a SynchronousM instance, the inferer can
automatically determine f_a_b because the dependency guarantees that it will
be unique.

SynchronousM permits to use the name mapSY both for the original Signal
process constructor and the HDSignal one. The same scheme was applied to
the other two basic process constructors: delaySY and zipWithSY, leading to
the SynchronousD and SynchronousZ MPTCs.

The use of MPTCs has a sweet and intended consequence. The existent
code which purely relies on the aforementioned process constructors behaves
nicely both for the Signal and HDSignal worlds without any modifications.

For example, sourceSY is derived from mapSY and delaySY, and its original
definition is� �
sourceSY f s0 = o

where o = delaySY s0 s
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s = mapSY f o� �
which indeed works for both Signal and HDSignal since its type is� �
sourceSY :: ( SynchronousD signal a, SynchronousM f_a_b signal a a) =>

f_a_b -> a -> signal a� �
which satisfies both� �
sourceSY :: (a->a) -> a -> Signal a� �
and� �
sourceSY :: HDPrimType a => HDFun (a->a) -> a -> HDSignal a� �

Thanks to MPTCs the new signal type HDSingal was easily integrated
with the original ForSyDe Library.

3.7 Improvements over Lava’s original design
Chapter 2 analyzes some features which are lacked by Lava but which would
certainly be helpful in hardware design: Ports and Hierarchical Structures.
The following two sections explain those concepts in deeper detail and describe
how they were incorporated in ForSyDe.

3.7.1 Ports
A Port serves as an interface between the system and the outside world. Ports
hold signals which the system can accept and produce.

They work similarly to VHDL’s port clause within an entity declaration.
However, instead of allowing to mix input and output signals in the same port,
it was decided to distinguish between Input Ports (figure 3.2a) which provide
incoming signals to the system and Output Ports (figure 3.2b) which forward
output signals from the system to the outside world.

A port in ForSyDe has an associated descriptor which indicates the name
and signal types of the port. The constructor functions mkInPort and mkOutPort
are in charge of creating a Input (Output) Port.

In the case of the trivial hdPlus1 system, its input and output ports are:� �
-- hdPlus1 input port
plus1In :: InPort
plus1In = mkInPort 1 [(" plus1Input ", Int )]

-- hdPlus1 output port
plus1Out :: OutPort
plus1Out = mkOutPort 1 [(" plus1Output ", Int )]� �
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The main advantage of using ports is readability and organization, which
is better observed in bigger systems (i.e. with several inputs and outputs).
However, this example is enough to understand the concept of ports.

3.7.2 Hierarchical structures
The Circuit, Block and Block Instance structures provide ForSyDe with hier-
archical design capabilities, in a similar way as components and port maps do
in VHDL.

3.7.2.1 Circuit

A circuit (figure 3.2c) is modelled as a function which takes an input port,
processes the signals provided by the port and finally generates output signals
which are stored in an output port, hence its type� �
type Circuit = ( InPort -> OutPort )� �

The following code builds the Circuit for the plus1 system� �
plus1Circ :: InPort -> OutPort
plus1Circ ip = supplySig plus1Sig " plus1Output " plus1Out

where plus1Sig = plugSig " plus1Input " ip hdPlus1� �
The code reads as “Given an input port ip, supply plus1Sig to entry

"plus1Output" of output port plus1Out, where plus1Sig is the result of
plugging the process constructor hdPlus1 to the entry "plus1Input" of ip”

supplySignal is useful to supply a signal to an output port whereas
plugSignal plugs a process constructor into one the signal sockets of an input
port.

3.7.2.2 Block

Circuits are not useful by themselves. They need to be transformed into a
Block (figure 3.2d) before running the compiler to generate VHDL.

A Block is a white-box which defines a sub-system. Its internals are known,
but it is isolated from the outside world. All its content exists but is not acces-
sible, there is no way to directly connect a Block to other system structures.
It is similar to an entity-architecture pair in VHDL.

plus1Circ can be transformed to a Block by using the mkBlock construc-
tor.� �
plus1Block :: Block
plus1Block = mkBlock "plus1" plus1In plus1Circ� �
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mkBlock takes the name of the block, its input port and a circuit, creating
the corresponding Block.

To translate the model to VHDL, one can simply use the writeVHDL func-
tion, which calls the VHDL compiler.

> writeVHDL plus1Block
Writing VHDL code to plus1.vhd ... done!

Later, the designer could use that VHDL description to synthesize hard-
ware. The full Haskell source of the plus1 model, its VHDL translation and a
RTL-level hardware model obtained from it, can be seen in appendix B.

3.7.2.3 Block Instance

A Block Instance (figure 3.2e) is the equivalent of a component in the VHDL
world.

A Block is a white-box, an isolated section of the system whose internals
are known. On the other hand, a Block Instance is functionally equivalent to
a Block, but behaves like a black-box: its content is unknown, but its input
and output ports are viewable from the outside world, making it connectable
to the rest of the system.

In order to obtain a Block Instance from a Block, the Block needs to be
instantiated.� �
plus1Ins :: BlockIns
plus1Ins = instantiate plus1Block� �

The code above creates an instance from plus1Block. Now the functions
plugSig and supplySig could be used directly with the plus1Ins to inter-
connect its ports with other parts of a system.





Chapter 4

User’s tutorial

This chapter is aimed at introducing the end-user to the compiler and its API.
First, a simple identity system will be used to show how connections are

made. Then, a reasonably complex example gives further details on how to
use the compiler.

4.1 Prerequisites
In order to be able to follow this tutorial it is required to have a working copy
of:

• ForSyDe Standard Library with compiling support1.

• GHC version 6.6 or higher.

• Haskell’s mtl (Monad Template Library)2.

4.2 Identity system
As an example of how to make connections within a model, an Identity system
(figure 4.1) will be built.

The system could not be simpler: It has six inputs and six outputs which
are connected in parallel.

First, the name of the module is declared and the required libraries are
imported.

1It can be downloaded from http://www.imit.kth.se/info/FOFU/ForSyDe/
HDForSyDe/.

2Normally included in the GHC distributions. It can be downloaded from http://
hackage.haskell.org/.
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Figure 4.1: Identity system

� �
module Identity
import HD� �

Then the input and output ports are defined.� �
idIn :: InPort
idIn = mkInPort 6 [(" input0 ",Int),

(" input1 ",Int),
(" input2 ",Int),
(" input3 ",Bool),
(" input4 ",Bool),
(" input5 ",Bool )]

idOut :: OutPort
idOut = mkOutPort 6 [(" output0 ",Int),

(" output1 ",Int),
(" output2 ",Int),
(" output3 ",Bool),
(" output4 ",Bool),
(" output5 ",Bool )]� �

The type of the ports is not significant, any other type combination would
have been valid.

Using the full power of Haskell, those ports could have been defined as� �
iname = "input"
oname = " output "
nInts = 3
nBools = 3

(idIn ,idOut) = ( portDesc iname , portDesc oname)
where types = replicate nInts Int ++ replicate nBools Bool

indexes = iterate (+1) 0
portDesc name = zipWith3 join ( repeat name) indexes
join id ix t = (id ++ show ix , t)� �
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permitting to easily change the number of inputs/outputs and their names.
This example can be a bit obscure, but shows how the embedded compilation
model permits making use of Haskell features.

Once the ports are defined, the circuit description can be written. A way
to do so is using the connectIx function, which connects an input-port signal
with an output-port one, and returns the modified output port.� �
idCirc :: Circuit -- ( InPort -> OutPort )
idCirc inP = ( connectIx " input5 " inP " output5 ".

connectIx " input4 " inP " output4 ".
connectIx " input3 " inP " output3 ".
connectIx " input2 " inP " output2 ".
connectIx " input1 " inP " output1 ".
connectIx " input0 " inP " output0 ") idOut� �

connectIx can use the signal identifiers as index, but it can also use nu-
merical indexes or both.� �
idCirc :: Circuit
idCirc inP = ( connectIx 5 inP " output5 " .

connectIx " input4 " inP 4 .
connectIx 3 inP 3 .
connectIx " input2 " inP " output2 " .
connectIx " input1 " inP " output1 " .
connectIx " input0 " inP " output0 " ) idOut� �

The advantage of using numeric indexes is that they work with an input
port independently of its signal identifiers.

connectIx is easy to understand but makes the design quite verbose.
Subports are a better option. A subport is a range of signals within port.

The identity circuit can be built making use of them.� �
idCirc :: Circuit
idCirc inP = connectSP

(" input0 " , " input5 " ) inP
(" output0 ", " output5 ") idOut� �

connectSP is used to connect signals "input0" to "input5") at the input
port with signals "output0" to "output5" at the output port.

connectSP also admits mixing numbers and identifiers in the same way as
connectIx:� �
idCirc :: Circuit
idCirc inP = connectSP (" input0 ", " input5 ") inP

(0 , 5 ) idOut� �
Another possible option is to omit the subport of the origin or destination.

In way, it will be implicitly assumed that all the signals of the of the input
(output) port take part in the connection.

One can omit the input subport . . .



42 CHAPTER 4. USER’S TUTORIAL

� �
idCirc :: Circuit
idCirc3 inP = connectFrom inP

(" output0 ", " output5 ") idOut� �
. . . or the output subport� �
idCirc :: Circuit
idCirc inP = connectTo (0, 5) inP

idOut� �
Lastly, there is a more elegant way to connect all inputs and outputs of

two ports at once.� �
idCirc :: Circuit
idCirc inP = inP ‘connect ‘ idOut� �

So far the circuit of the system was defined. However, the circuit needs to
be transformed to a Block before translating the design to VHDL.� �
idBlock :: Block
idBlock = mkBlock " identity " idIn idCirc� �

mkBlock takes an identifier, an input port and the circuit, and returns the
corresponding Block.

4.2.1 Compiling the model
To compile the model to VHDL simply

1) Save the model in a file named Identity.hs

2) Execute “ForSyDe Identity.hs” making sure that the bin/ directory of
ForSyDe’s Library is in the execution path3.

3) From ghci’s prompt, type

*Identity> writeVHDL idBlock
Writing VHDL code to identity.vhd ... done!

4.3 A more complex system
Figure 4.2 illustrates a still trivial but slighty more complex system descripo-
tion.

3If you are a windows user this does not apply to you. Load the model in ghci making
sure that the src/ directory of ForSyDe’s library is in the import directory list (-i flag).
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Figure 4.2: A more complex system

• It has 4 inputs and 5 outputs.

• The system checks if −→i0 and −→i1 are opposite and connects the result to
−→o0 .

• Signal −→i2 is compared with 0. The result is connected to −→o2 .

• Input −→i2 is directly connected to −→o1 .

• Output −→i3 is connected to a cycle counter.

• The rest of inputs and outputs remain unused.

First, the name of the module is declared together with the import list� �
{-# OPTIONS_GHC -fth # -}
-- -fth is required due to the use of Template Haskell
module MoreComp where
import HD
import SynchronousLib (mapSY , zipWithSY , sourceSY )� �

Then, the ports of the system are declared:� �
MCIn = mkInPort 4 [("in0",Int),

("in1",Int),
("in2",Int),
("in3",Bool )]

MCOut = mkOutPort 5 [("out0",Bool),
("out1",Int),
("out2",Bool),
("out3",Int),
("out4",Int )]� �
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Then, the code related to the computations performed within the system
is written.

This function performs the comparison with zero:� �
isZero :: HDSignal Int -> HDSignal Bool
isZero = mapSY doIsZero

where doIsZero = $( mkHDFun [d| doIsZero :: Int -> Bool
doIsZero a = a == 0 |])� �

Note the use of Template Haskell.
In order to check if two values are opposite, first they will be added and

then, the result will be compared with zero (for which isZero is reused).� �
plus :: HDSignal Int -> HDSignal Int -> HDSignal Int
plus = zipWithSY doPlus

where doPlus = $( mkHDFun [d| doPlus :: Int -> Int -> Int
doPlus a b = a + b |])

areOpposite :: HDSignal Int -> HDSignal Int -> HDSignal Bool
areOpposite a b = isZero (plus a b)� �

The only computing part of the system is the cycle counter:� �
cycleCounter :: HDSignal Int
cycleCounter = sourceSY plus1 1

where plus1 = $( mkHDFun [d| plus1 :: Int -> Int
plus1 i = i + 1 |])� �

The initial value of the counter is 1. Once the system is started plus1 will
be executed in every cycle, incrementing the value of the counter.

The only thing left to complete the system is creating the connections
within the circuit and producing a block from where to generate VHDL.

The circuit can be defined as follows:� �
MCCircuit :: InPort -> OutPort
MCCircuit ip =

( supplySig ( plugSig2 "in0" "in1" ip areOpposite ) "out0".
supplySig ( plugSig "in2" ip isZero ) "out2".
connectIx "in2" ip "out1".
supplySig cycleCounter "out3") MCOut� �
connectIx was already introduced in previous section. However, there are

some new functions which must be commented:

• supplySig supplies a signal to an output port. The output port changes
and for that reason a new port is returned.

• plugSig plugs a function to a signal coming from an input port.

• plugSig2 is the two-argument variant of plugSig. It plugs a two-
argument function to two signals of an input port.
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Finally, a Block is created from which the model can be translated to
VHDL.� �
MCBlock :: Block
MCBlock = mkBlock "MC" MCIn MCCircuit� �
*MoreComp> writeVHDL MCBlock
Writing VHDL code to MC.vhd ... done!





Chapter 5

Conclusions and further work

5.1 Conclusions

ForSyDe provides a methodology to design systems with a high level of ab-
straction in mind. An initial implementation of ForSyDe, based upon Haskell,
was available before the research related to this thesis began. However, the
two key stages of ForSyDe’s design flow, Transformational Design Refinement
and Implementation Mapping remained unimplemented. As a result of this
thesis, ForSyDe now counts with a new VHDL translator which automates
the Implementation Mapping phase.

An initial study was made to try to take advantage of previous work in
the Hardware Design and Functional Programming field. Consequently, the
compiler is inspired on Lava, a successful hardware design environment based
upon Haskell too.

The embedded approach, adopted from Lava, has allowed to develop a full
compiler during the limited time frame of a master’s thesis. On the other
hand, implementing a stand-alone Haskell compiler or a customized backend
would have been unfeasible, given the associated complexity of such a task
together with the time and man-power limitations. In ideal conditions, even if
such a compiler was developed, it would certainly had been difficult to main-
tain. With the embedded approach, the compiler is integrated with ForSyDe’s
library, making it maintainable, easy to distribute and independent of third
party tools.

Furthermore, the compiler was designed to be extensible, providing a
framework where to experiment with ForSyDe and easily include other back-
ends such as simulation, verification, graphical representation of ForSyDe
models etc. . . . In order to ease the incorporation of new developers, the
compiler’s use and implementation was thoroughly documented (see chapter
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4 and appendix A).
In addition to the initial goals of the thesis, an effort was made add features

lacked by Lava to the compiler. Lava, at the moment of writing this report,
does not provide a way to create hierarchical designs (in the sense of reusing
hierarchical components), and lacks the concept of ports, which make models
more intuitive and readable. The compiler implemented during this thesis has
overtaken those limitations by including three new structures: Port, Block
and Block Instance which where described in chapter 3. Those features have
been needed in Lava for a long time. As a matter of fact, Koen Claessen, a
member of Lava’s research group, is currently developing a new version of Lava
in which components are explicit, making them accessible to the designer.

Even if the compiler is based on Lava, the characteristics of ForSyDe’s im-
plementation have made impossible to simply replicate Lava’s design. ForSyDe
is much more behavioural, whereas Lava is purely structural, its functions are
monomorphic and the type of signals accepted by the language are limited
and hardcoded in the compiler. To overcome those differences, the compiler
makes use of metaprogramming through Template Haskell in order to access
the AST (Abstract Syntax Tree) of the design. Curiously, in parallel to this
thesis a similar solution [44] was designed by IBM’s Andrew Martin for the
OCaml programming language. Martin’s solution makes use of MetaOCaml,
which shares certain similarities with Template Haskell.

5.1.1 Goal analysis
In order to objectively conclude whether the goals of this thesis where achieved,
this section summarizes the obtained results based on the goals outlined in
chapter 1.

1) Study of ForSyDe and related work relevant to this thesis.
In the initial phase of this thesis, a deep study of ForSyDe and its imple-
mentation took place. As a result, chapter 1 tries to introduce ForSyDe to
the reader in a friendly way.
Then, a big effort was devoted to analyze the previous work in the Func-
tional Programming and Hardware Design field, in order to make use of it
during the development of the compiler. Chapter 2 gives an overview of it.
Many of the features described in that chapter ended up incorporated in
the compiler.

2) Definition of a relevant subset of Haskell that is accepted by the synthesis.
With the exception of HDFun, the whole Haskell standard is supported by
the compiler, thanks to its embedded design. The concrete limitations of
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HDFun are described in chapter 3. However, due to the use of Template
Haskell, it should be possible to easily extend the supported language sub-
set.
Another unavoidable limitation of the compiler is the set of signal types it
can deal with. Due to the time and man-power restrictions of the thesis it
was decided to only support Int and Bool signals. However, in the same
way as HDFun, the signal-type subset of the compiler was implemented in
a way which makes it fairly easy to extend (see appendix A).

3) Development of the synthesis tool according to [1].
[1] presents a template-based translation approach, which was not imple-
mented before this thesis took place.
The template approach was considered and later replaced with a AST-
driven implementation for various reasons:

• Templates lead to an obscure application design.
Using simple text to represent the structure of the target language
made the compiler design unorganized and more difficult to under-
stand. A structured XML approach would have been substantially
better (at least regarding the organization of the program), but it
would have entailed transforming XML to usable VHDL at certain
point, causing an undesired overhead.
• Lack of flexibility.

Using in-memory data structures to represent the target language
makes the translation more flexible and easy to extend. Modifying or
extending the AST representation of VHDL is easier and cleaner than
dealing with plain text.

4) Evaluation of the tool, identifying and including possible improvements.
The tool was tested with a set of source examples written for that purpose.
However, due to the research nature of the tool and the lack of a user-base,
it was not possible to check if the compiler suits the needs of future users.
Nevertheless, the compiler was later reviewed and additional features such
as circuit ports and hierarchical design were identified and incorporated in
the compiler.

5) Detailed documentation of the tool.
This thesis reflects the big effort done to exhaustively document the com-
piler. Chapters 3 and 4 describe the design and use of the compiler, while
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appendix A is intended to give implementation details for future develop-
ers.

5.2 Further work
The compiler presented in this thesis allows to synthesize hardware from
ForSyDe specifications and establishes a development framework where to
experiment with ForSyDe. However, the compiler can still only considered a
research tool. In order to obtain a realistic development environment there is
still a lot of work to be done. The following list proposes general and specific
tasks which would help to transform the compiler into an industrial-strength
solution.

• Automatization of the Transformational Design Refinement
stage
The compiler implements one of the two main phases of ForSyDe’s design
flow, the aforementioned Implementation Mapping stage. However, the
Transformational Design Refinement stage has not still been automated.
This stage is essential, since it is the way to bridge the high abstraction
level imposed by ForSyDe, taking advantage of ForSyDe’s strong formal
base. Thus, it of major importance to put it in practice through an
appropriate tool. A good way to do it, would be extending the compiler
by adding an initial transformation phase.

• Development of a test suite
During the development of the compiler, several sample design mod-
els were tested. However that cannot be considered a way to test the
compiler thoroughly.
For that reason, it is advisable to create a robust test suite to detect
bugs which remained unnoticed or were introduced during development.

• Inclusion of new backends
To date, the compiler can only process a ForSyDe model in order to per-
form a translation to VHDL. However, other backends would certainly
be useful:

– Simulation. Currently, a model developed with HDSignals can
only be simulated from its VHDL translation. A simulation back-
end would allow to avoid translating to VHDL and to test models
without leaving ForSyDe’s development environment. Furthermore
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it could be used to provide interoperability between the Signal and
HDSignal types.

– Graphical representation backend. This backend would allow
to generate a graph of the ForSyDe models, which could be used
to easily and automatically document them.

• Development of a graphical frontend

The introduction of a graphical CAD (Computer Aided Design) tool
would allow to design models by simply and visually connecting pro-
cess constructors and thus, it would save the designer from having a
functional programming background, attracting new users.

• Support for new signal types

The compiler can only deal with signals carrying Int and Bool values.
In order to support the full ForSyDe specification [1] it would be nec-
essary to extend that subset, including, for instance, enumerated types.
Appendix A gives guidelines to perform this extension.

• Extension of HDFun’s Haskell subset

Current limitations of HDFuns are outlined in chapter 3. Their supported
Haskell subset makes the compiler functional but is probably not enough
for a realistic production environment. Again, appendix A documents
how to extend HDFun.

• Development of Block and HDFun combinational libraries

Process constructors are easily combinable, through, for example, se-
quential and parallel composition. The same idea could be applied to
the Block and HDFun types by implementing appropriate combinational
libraries.

• Promotion of ForSyDe

Many research projects like ForSyDe remain unknown to the main public
due to their closed development model. In order to promote a broader
adoption and development it would be necessary to make ForSyDe more
appealing for, at least, the Haskell community. That entails opening
its development together with making it easier to install, distribute and
develop. A few modifications in ForSyDe’s development model would be
advisable:
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– Document ForSyDe with Haddock1, the most used Haskell docu-
mentation system.

– Create an open mailing list where to discuss the development of
ForSyDe and give support to its users.

– Make the latest development version of ForSyDe available through
a version control system (Darcs2 is the most widely-used within the
Haskell community).

– Package ForSyDe’s stable versions with Cabal3 and upload them to
HackageDB4 in order to make them more accessible and easier to
install. It is worth to note that including the project in HackageDB
would require to change the module naming scheme of ForSyDe,
taking global hierarchical naming in account, to avoid name clashes
with other projects.

1http://www.haskell.org/haddock/
2http://www.abridgegame.org/darcs/
3http://www.haskell.org/cabal/
4http://hackage.haskell.org/

http://www.haskell.org/haddock/
http://www.abridgegame.org/darcs/
http://www.haskell.org/cabal/
http://hackage.haskell.org/


Appendix A

Hacker’s guide to the compiler

Master’s theses are, in many cases, just a small piece of effort taking part
in a more-widely scoped project. They generally lead to immature research
results which might need to be further-polished or, quite oftenly, consist in
continuing the work of yet another thesis. Thus, they are generally subject to
be extended and modified.

However, when it comes to practical results such us source code, they
tend to be weakly documented, hindering the first steps of a potential future
developer.

The main purpose of this guide is to help contributors getting involved
with the implementation details of the compiler and to save them having to
figure out the steps required to carry out the most common extensions.

A.1 Prerequisites
In order to understand the compiler’s code, a developer is obviously required
to be fluent in Haskell98 [3]. It is also advisable to have some experience with
mtl (Monad Transformer Library) which is extensively used throughout the
sources.

Furthermore, in order to understand the full source code tree, it is as-
sumed that he (or she) will be familiar with common Haskell extensions such
as MPTC [43] (Multi-parameter Type Classes), Existential Types and Tem-
plate Haskell [40], which unfortunately, by the time of writing this thesis are
not still documented in a friendly way. The best current resource to get
familiar with them is the GHC User’s Guide [45]. However, the upcoming
publication of a promising (and free) book, Real-World Haskell [6], covering
those extensions will certainly be helpful. Even though, there still could be
certain small tasks whose accomplishment should not necessarily rely on the
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aforementioned extensions.
Being familiar with VHDL is specifically required to understand the cop-

miler’s VHDL backend. It is advisable to have access of the VHDL93 [2]
standard, or other exhaustive reference material before trying to extend this
backend.

The compiler was developed and tested with GHC version 6.6 under a
GNU/Linux system1. The use of non-standard extensions make it GHC-
dependant and will eventually lead to regression problems which will have
to be addressed before performing extensions or even making use of it.

Lastly, this guide is not self-contained, it complements the rest of the thesis
(especially chapter 3) and was isolated in an appendix due to covering specific
implementation details not considered of general-interest. Therefore, in order
to understand this guide, it will be assumed that the reader had already gone
through the rest of the thesis report.

A.2 Compiler modules overview
Figure A.1 contains the module dependency graph of the compiler.

HD is the main module, it stands for Hardware Description and its purpose
is simply to re-export other modules (simplifying the importing task for the
end-user) and to hide certain implementation details to the outside world.

The rest of the modules will be explained in the next sections, where they
are grouped according to their functionality.

It is highly advisable to follow the same module-order when getting familiar
with the compiler in order to be able to understand it in an incremental
manner.

A.2.1 Core modules
They constitute the heart of the compiler and are the ones to be studied in
first place.

• HD.Types. This module contains the mechanisms and definitions re-
lated to the possible value-types which a signal (or more accurately an
HDSignal) can carry2 and the type-representation of a function (HDFunType).
Basically, a signal can transport values of any type belonging to the class
HDPrimType, standing for Hardware Description Primary Type.

1Although it was not tested under other operating systems, any development environ-
ment with GHC support could in theory be used.

2Bool and Int at the moment of writing this appendix.
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• HD.HDSignal. It is, without doubt, the most important module. It
contains the definition of the user-hidden Hardware Description Signal.

As it was previously mentioned, an HDSignal secretly stores the struc-
ture of the circuit for latter processing, it is the compiler’s intermediate
representation of a circuit-description, and thus, it is the only usable
information which a backend can work with.

An HDSignal uses the same signal approach as Lava [10], called Observ-
able Sharing [31] which was earlier introduced in chapter 2. Actually,
both the modules HD.Ref (the Observable Sharing implementation) and
HD.Dyn (unsafe dynamic types, used internally in HD.Ref) were taken
and adapted from the Lava distribution.

It is encouraged to fully understand the details of this module before
attempting to extend the compiler or even trying to understand any
other part of the source tree.

• HD.HDFun. Most of the ForSyDe process constructors, such as mapSY
(see chapter 1) are represented in terms of a higher order function. That
is, a function is passed along with the signal in order process it.

The syntactical information of those functions needs to be internally
stored (bundled with an HDSignal) for latter translation to the tar-
get language. The HD.HDFun module makes use of Template Haskell
to make it possible: It provides a data structure (HDFun) which stores
all the function information and a constructor (mkHDFun) to create such
structure from the Template-Haskell representation ( Q[Dec]) of a func-
tion. Colaterally, HD.HDFun is responsible of establishing the Haskell
syntax-subset supported by HDFuns.

Familiarity with Template Haskell is obviously a must in order to deal
with this module.

A.2.2 Miscellaneous auxiliary functions and types
HD.Misc contains miscellaneous helper functions and types which are too small
to be splitted in their own modules. The only important part to highlight is
the EProne a type, which holds an error-prone value and uses mtl’s Error
monad class to handle those errors.

Error management within the compiler is handled, to a large extend,
through the Eprone type.
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A.2.3 Ports, Blocks and Block Instances
The concepts of a Port,Block and Block Instance were introduced in chapter
3. The HD.Port module implements them and enables their use, providing as
well an API to the end-user to deal with them.

The introduction of Ports has implied as well the introduction of typechek-
ing (there is no way to statically assure whether a the type of a port entry
matches a signal attached to it).

Moreover, due to the fact that the compiler is Embedded in Haskell, com-
pilation of the guest language (i.e. ForSyDe models) strangely takes place at
runtime, and unavoidably so does typechecking.

As a result, the functions which attach or obtain signals to/from a port
(namely plugSig and supplySig) are in charge of doing typechecking.

Moreover, due to the restrictions imposed by the host language, type-
checking turns to be a difficult task. A tricky solution using dynamic signals
(that is, forall3a.HDPrimType a => HDSignal a) was figured out. It works
nicely in practice, but it certainly could (and probably should) be redesigned
or improved.

The coexistence of static and dynamic signals requires a way of conversion
between them. That is the purpose of the sigCast function.

A.2.4 Backends
A backend is in charge of interpreting the intermediate representation of the
source code. The most common form of interpretation is a translation into
another language (e.g. VHDL) but some other possibilities are: simulation,
design verification, generation of a graphical representation etc . . ..

In our case, a backend uses a Block as input, whose netlist (the internal
circuit graph) is traversed to achieve the aforementioned interpretation.

The module HD.NetList (which was imported and adapted from Lava)
provides the developer with netlist, a function which carries out the traver-
sal of the circuit. Due to the use of Observable Sharing in the circuit represen-
tation, which is right now is restricted to IO-references (see module HD.Ref)
netlist is subdued to the IO Monad. Furthermore, in order to allow reading
and modifying state data during the traversal, the IO Monad is wrapped into
mtl’s StateT monad transformer.

There could be interpretations, such as simulation, for which a ST version
of netlist would be preferable to current IO version. Adding an alternative

3If you are confused with the forall keyword, that means you should get familiar with
existential types before trying to go through this module.
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ST version would involve including ST-references in HD.Ref (maybe from the
Lava-project, which already offers them).

Currently, the only available backend is a translator to VHDL, which is
divided in three modules

• HD.VHDL. It is in charge of the VHDL translation, which is accessible
through the writeVHDL function.

• HD.VHDL.AST defines data structures to hold the AST (Abstract Syntax
Tree) of the generated VHDL modules.
It is based in the grammar of the VHDL93 standard but only supports
the subset of VHDL’s syntax which has been needed. However, due to
being based in the standard it could be easily extended in the future if
desired.

• HD.VHDL.Ppr. A pretty-printer library for the VHDL AST-structures
mentioned above. It is in charge of the transformation and output of
the AST into readable VHDL text modules.

A.2.5 Integration with ForSyDe
The development of the compiler did not entail big changes in the ForSyDe
library. A new alternative signal type (HDSignal) was developed to avoid
modifying ForSyDe’s original stream-based Signal type.

However, one of the main compiler design-requirements was to be able to
reuse the original name and semantics of ForSyDe’s signal-processing func-
tions with the new signal type. It is a certainly nice feature, since it allows all
earlier documentation to still apply for both signal types. In order to make it
possible, ForSyDe’s original SynchronousLib module had to be modified. Its
mapSY, zipWithSY and delaySY functions (the only ForSyDe processes cur-
rently supported natively by the compiler) were transformed into type classes4

and instances were created for both Signal and HDSignal.
The new type classes and Signal instances remain in SynchronousLib

while the HDSignal ones were included in a new module: HDSynchronousLib.
It is worth to note that, even if the compiler only currently supports

mapSY , zipWithSY and delaySY natively as primitives5, due to the type class
scheme described above, all their derived process constructors (e.g. sourceSY ),

4Due to the nature of the the signal processing functions, the type classes required
various parameters, and thus Multiparameter Type Classes (a common Haskell extension)
where used for that purpose.

5It can be said that they constitute the primitive processes of the compiler.
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are automatically supported. However they are treated as compound processes
and thus, there is currently no way to internally identify them as individual
entities. Treating those derived processes as primitives would be desirable for
a more precise control of the way in which the design is interpreted, allowing
optimizations and improving code generation in the backends.

A.3 Recipes to extend the compiler
The following sections are targeted at suggesting the steps to follow when
developing common extensions for the compiler.

The main purpose of these recipes is to help new developers, only interested
in certain extensions, to get familiar with the compiler. Depending on the
extension, some other changes might be required. As a result, it is encouraged
to take the recipes with a grain of salt and expect further modifications to be
needed in the process.

A.3.1 Adding support for new types of signal values
Bool and Int HDSignals might be enough for many designs, but it can be a
good idea to support other signal values such as tuples, enumerates etc . . .

To add a new type, say a

1) Add a constructor for a in HD.HDTypes.HDType

2) Make a an instance of HD.HDTypes.HDPrimType

3) Add a constructor for a in HD.HDTypes.HDPrimConst

4) Adjust the backends to handle the new type. In the VHDL backend that
roughly means changing HD.VHDL.hDST2TM and HD.VHDL.hDPC2Expr.

5) The new type might require extending the Haskell subset supported by
HDFuns. For instance, tuples would be difficult to use without pattern
matching. Read on for details about how to perform this extension.

6) Consider adding support for new functions within an HDFun. As an exam-
ple, in the case of choosing to add support for tuples, it would be desirable
to get support for well-known fst and snd functions. Details about how
to do this are covered in a following section.
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A.3.2 Treating more ForSyDe processes as primitives
As it was previously stated, the only process constructors treated natively as
primitives are mapSY , zipWithSY and delaySY . sourceSY , for example, is
handled as a compound of mapSY and delaySY .

In order to treat a process, say sourceSY from ForSyDe’s original SynchronousLib,
as a primitive:

1) Add sourceSY to HD.HDSignal.HDSignal

2) Transform SynchronousLib.sourceSY into a type class and use its previ-
ous definition to make Signal an instance of it.

3) Modify HD.HDSynchronousLib by making HDSignal an instance of the new
SourceSY class.

4) Adjust the backends to handle the new primitive. Basically, that entails
changing the new and define functions passed to netlist, see HD.VHDL
for more details.

A.3.3 Extending HDFun’s Haskell-syntax subset
The Haskell syntax admited by HDFuns (more precisely by HD.HDFun.mkHDFun)
is quite limited. For example, neither constructor pattern-matching nor where-
clauses are allowed (chapter 3 gives a precise description of the supported
subset).

To broaden the supported Haskell-subset.

1) Locate what type in the the Template Haskell AST (Language.Haskell.TH.Syntax)
holds the desirable syntax extension.

2) Modify the corresponding Lift instantiate for that type in HD.HDFun in
order to give support to the new feature.

3) Adapt the compiler backends to the change.

A.3.4 Adding support for new functions within HDFuns
The functions which a designer can use within a HDFun (e.g. (&&), (==), (-),
(+) . . . ) are limited. That limitation, however, is not intrinsic to HDFuns
themselves, which can indeed make use of any valid Haskell function as long
as it is done in a correct manner. The problem is that those functions have
to be interpreted at some point by the translation backends.



A.3. RECIPES TO EXTEND THE COMPILER 61

Thus, in order to support new functions within an HDFun, the backend has
to be aware of them and know how to handle them. For that reason, to add
in a new function simply ...

• Adapt the backends to support the new function.

The way to dispatch those functions depends highly on the translation
backend, for example, in the VHDL backend, translation tables are kept to help
mapping them from Haskell to VHDL.

A simulation backend on the other hand does not involve a translation
and could make use of the original Haskell function (which is stored in the
HDFun algebraic type). That makes possible to forget about the HDFun AST
and translation tables.

A.3.5 Adding a new backend
To add a new backend such as simulation, translation to another target lan-
guage or code verification, the intermediate representation the ForSyDe model
has to be traversed and processed. A good way to start up would be looking at
the sources of current VHDL backend to understand how the netlist function
works in practice.

A simulation backend could be coded as follows.

1) Verify whether the HD.NetList.netlist function fulfils the needs of the
backend and otherwise create an alternative version.
Simulation could serve as a means of translating between HDSignals and
Signals but unfortunately netlist depends on IO from which no one can
safely escape (transforming an IO a value into a causes side effects). Thus,
a ST-netlist6 version would be necessary to bypass IO. See section A.2.4
for more details.

2) Check if the intermediate representation of the circuit (contained in HD.-
HDSignal.HDSignal) needs to be extended.
A simulation backend would need to make use of the original Haskell func-
tion stored in HDFuns to avoid having to traverse its AST. However, the
function itself is not stored in an HDSignal

3) Lastly, code the backend.

6The a value of ST a can be extracted through runST
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A.4 Improving the source code
Every piece of software is an evolving entity which can always be improved.
The compiler produced during this thesis is no exception and is far for being
perfect in many ways.

Due to the time-limitation of the thesis, I was not able to make the code
be organized and work as good I would have liked to, but at least I was careful
enough to anotate and coment all the potential improvements I could notice.
I used the traditional FIXME and TODO tags for that purpose.

Reading the output produced by grep -ri ’TODO\|FIXME’ * in the HD
directory gives a good hint about where to start working.



Appendix B

Examples

B.1 plus1

B.1.1 Plus1.hs

ForSyDe specification model of a simple adder system.� �
{-# OPTIONS_GHC -fth # -} -- The use of -fth is due to splicing mkHDFun
module Plus1 where
-- A simple addaing system

import HD
import SynchronousLib (mapSY)

-- hdPlus1 input port
plus1In :: InPort
plus1In = mkInPort 1 [(" plus1Input ", Int )]

-- hdPlus1 output port
plus1Out :: OutPort
plus1Out = mkOutPort 1 [(" plus1Output ", Int )]

hdPlus1 :: HDSignal Int -> HDSignal Int
hdPlus1 = mapSY doPlus1

where doPlus1 = $( mkHDFun [d| doPlus1 :: Int -> Int
doPlus1 a = a + 1 |])

plus1Circ :: InPort -> OutPort
plus1Circ ip = supplySig plus1Sig " plus1Output " plus1Out

where plus1Sig = plugSig " plus1Input " ip hdPlus1

plus1Block :: Block
plus1Block = mkBlock " plus1_block " plus1In plus1Circ� �
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B.1.2 plus1.vhd

VHDL code generated from its Haskell model. Note that the code depends on
ForSyDe’s VHDL Library, which is included in appendix C.� �
-- Generated with ForSyDe
library forsyde ;
library ieee;
use ieee. std_logic_1164 .all;
use ieee. numeric_std .all;

entity plus1 is
port ( plus1Input : in forsyde .types.int32;

plus1Output : out forsyde .types.int32;
clk : in std_logic ;
resetn : in std_logic );

end entity plus1;

architecture Structural of plus1 is
signal mapSY_0 : forsyde .types.int32;

begin
plus1Output <= mapSY_0 ;

mapSY_0_block : block
port ( mapSY_input : in forsyde .types.int32;

mapSY_output : out forsyde .types.int32 );
port map ( mapSY_input => plus1Input ,

mapSY_output => mapSY_0 );
function doPlus1 (a : forsyde .types.int32)

return forsyde .types.int32 is
begin

return a + TO_SIGNED (1, 32);
end;

begin
mapSY_output <= doPlus1 (a => mapSY_input );

end block mapSY_0_block ;
end architecture Structural ;� �
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B.1.3 RTL model of plus1
RTL model obtained with Altera’s Quartus II software after compiling the
VHDL model for a Stratix FPGA.

Figure B.1: RTL model of plus1





Appendix C

ForSyDe’s VHDL Library

C.1 forsyde.vhd

The following listing conatins the, still very simple, source code of forsyde.vhd,
a VHDL library used by the target VHDL models.� �
library ieee;
use ieee. numeric_std .all;

package types is
subtype int32 is signed (31 downto 0); -- 32 bit integers

end types;� �
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