
A Synchronization Algorithm for Local Temporal
Refinements in Perfectly Synchronous Models with Nested

Feedback Loops

Tarvo Raudvere, Ingo Sander, Axel Jantsch
Royal Institute of Technology

Stockholm, Sweden
tarvo,ingo,axel@imit.kth.se

ABSTRACT
Due to the abstract and simple computation and communication
mechanism in the synchronous computational model it is easy to
simulate synchronous systems and to apply formal verification meth-
ods. In synchronous models, a local temporal refinement that in-
creases the delay in a single computation block may affect the func-
tionality of the entire model. To preserve the system’s functionality
after temporal refinements we provide a synchronization algorithm
that applies also to models with nested feedback loops. The algo-
rithm adds pure delay elements to the model in order to balance the
delay caused by refinement and to assure concurrent data arrival
at computation blocks. It is done so that the refined model stays
latency equivalent to the original model. The advantages of our ap-
proach are that (a) we remain fully within the synchronous model
of computation, (b) we preserve the functionality of the existing
computation blocks, and (c) we do not require additional computa-
tion resources, wrapper circuits or schedulers.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids; J.6 [Computer-aided Engi-
neering]: Computer-aided Design (CAD)

General Terms
Design, Algorithms

Keywords
System Design, Design Refinement, Synchronization

1. INTRODUCTION
Synchronous computational models are popular in system design

targeting safety critical applications and in the aerospace industry
[13]. The synchronous hypothesis assumes that the computation in
processes and communication between them takes no time. In this
kind of models local temporal refinements like the introduction of
pipelining and resource sharing are a potential source of errors due

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

to changed time behavior, especially if models contain nested feed-
back loops. In this paper the term local temporal refinement means
the replacement of a block A with an equivalent block B, which
has longer delay than A. The additional delays cause mismatch in
data arrival and therefore the system’s correct behavior has to be
restored.

Pf ∆(⊥)

Block B”c)

fclk

delay = 1 cycle

comb

fclk
comb

Pf

a)

delay = 0

Block B

Domain interfaces
up- and down-sample
the data rate m-times

1

DATA
PATH

interfaceinterface
domain

REG.
FILE

1

domain

b) Block B’

CONTROL
m∗ fclk

delay = 1 cycle

m

m

Figure 1: Resource sharing leads to several clock domains and
adds an extra delay at the system level.

The problem is illustrated with a refinement in Figure 1, where
a combinational function based on many identical operations in
Block B is mapped onto Block B′, which implements resource shar-
ing. We note that these two blocks do not have the same behavior.
Due to the feedback signal from the register file to the data path,
Block B′ has internally a noticeable built-in delay. This delay is
explicitly modeled in an equivalent Block B′′. In the system per-
spective (a) the initial value in the additional delay generates un-
expected output values and (b) concurrently arrived values in the
original model will arrive at different time instants to multi-input
processes.

In this paper we present a synchronization algorithm that is ap-
plied after local temporal refinements in order to balance the de-
lay of all paths in the entire model. The algorithm preserves the
system’s functional behavior such that the refined model will be
latency equivalent to the original one, i.e., the same output values
appear in the same order but they are delayed. The refined model
is correct-by-construction.

The general idea of the synchronization technique is illustrated
in Figure 2. A refinement adds a delay to the process P0. Any initial
integer value of this delay will change the system’s reaction to the
input signal. Instead of integrating a controller to the model that
executes processes when correct data is available, we use special

P2
comb

P0
comb

∆

comb

P1

3,2,1
18,6,1

a)

+ ∗ + ∗

delay from the refinement

P2
∆comb

∆

∆
combinational processes synchronization delay

b) P1

P0

delay process

initial value

⊥

⊥

P3

⊥,3,⊥,2,⊥,1
18,⊥,6,⊥,1,⊥

00

Figure 2: Problem introduction: a) initial model b) refined and
synchronized model

absent values (⊥) for initialization of delays. To preserve concur-
rent data arrival at destinations (P2) we add delay processes (P3). In
addition, we extend input signals with regular ⊥-values. Although
⊥-values appear in output signals as well, the refined model is la-
tency equivalent to the original one.

2. RELATED WORK
Many researchers agree that a system design approach must start

with a formal system model on a high level of abstraction [10, 7].
The initial model must then be refined manually or automatically
[1] into a concrete implementation. Our synchronization technique
supports design methodologies that use formal design transforma-
tions in a synchronous computational model. The latter model
is the base for languages like Lustre [8] and Esterel [3], which
have successfully been used for safety-critical industrial applica-
tions. The computational model has also similarities to the syn-
thesizable subset in VHDL and Verilog languages that employ a
clocked-synchronous computational model, which makes our ap-
proach very applicable in practice.

Retiming and pipelining are well-known techniques that address
latency and data arrival problems. In order to reduce the circuit
area or a critical path retiming algorithms [12, 11] relocate already
existing memory elements. Although retiming techniques address
synchronization problems, these problems are not caused by addi-
tional delays inserted to the model. On the other hand, the intro-
duction of additional delays to the model is elaborated in pipelin-
ing transformations. In software pipelining different models than
the perfectly synchronous one are used. In hardware the data syn-
chronization is solved by a pipeline controller, derived from a high
level system specification [15]. Our technique makes it possible
to introduce pipelining in a synchronous model with nested feed-
back loops, without adding controllers or changing computational
models.

In order to avoid synchronizations problems caused by temporal
refinements desynchronization [2, 14] or latency insensitive de-
sign [5] (LID) techniques can be applied. The former technique
transfers a synchronous model to an asynchronous one, which is
less sensitive to delayed data arrival. LID targets the mapping of a
synchronous model based on IP-blocks to hardware, where longer
wires entail delayed data arrival. The synchronization problem is
solved by (1) wrappers around IP-blocks stalling computation if in-
put data is not available, and (2) by handshake channels and relay
stations between IP-blocks that replace synchronous communica-
tion. The handshake mechanism distributes stalling messages and
a relay station buffers data items if the destination process cannot
consume them.

Although both of these techniques are common in practice, they
have side effects that our synchronization algorithm avoids. We
avoid unnecessary discontinuities in the design process caused by
changes in the computational model. It is impractical to switch

the computational model due to a single local temporal refinement.
The use of the same computational model makes it much easier to
verify refined models against each other. In addition, verification
in deterministic synchronous models by using simulation or formal
methods is simpler than in other models. On the other hand our
synchronization technique is complimentary applicable within re-
finements in a synchronous island of GALS model or in an IP block
of LID.

Our technique has similarities with the work in [9], where the
labeling of delay processes is used to verify refined circuits with
nested feedback loops. In our algorithm identical labels of delay
processes show that the data from these processes reach a com-
mon destination process at the same time instant. If a refinement
increases the delay on one path to the destination, it must be com-
pensated on all others as well. The latter is similar to the work about
software adaptation to reconfigurable hardware in [4], though this
work does not address the synchronization of nested feedback loops
in synchronous models.

3. SYNCHRONIZATION

3.1 System Model
We describe systems in the synchronous model of computation

as a set of processes, which communicate through synchronous sig-
nals. Processes can be grouped into blocks of processes. Blocks
may run at different clock speeds to model different clock domains.
In this paper we assume that a system contains only combinational
processes Pcomb and simple delays P∆. More complex components
can be constructed by combining combinational and delay pro-
cesses. A signal is defined as a sequence of events
{e0,e1,e2, . . . ei, . . .}, where an event ei carries a value v and the
index i is used as a time tag. All signals share the same set of
tags for synchronization purposes. The signal direction is from the
source process to the destination process, and every process has
only one output signal. Every combinational process has a dedi-
cated combinational function f . For each tag i, a combinational
process consumes from its input signals s0, . . . ,sn−1 events with the
tag i carrying values v0, . . . ,vn−1 and produces to its output signal
sk an event with the tag i and a value vn = f (v0, . . . ,vn−1).

There are two kinds of events: (1) present events that carry a
value and (2) absent events that are used only for synchronization.
An absent event e j shows that a signal contains no value at a time
instant j. We use the mark > as an abstract value if we refer to
present values, and ⊥ for absent values. For example, the abstract
presentation of signal {11,42,⊥3,24, . . .} is {>,>,⊥,>, . . .}. To
extend a data type T to T⊥ the ⊥-value is added to its domain.
We assume that the reaction of any n-input combinational process
to input events is Pcomb(e1, . . . ,en) = ⊥, if for all i (1 ≤ i ≤ n),
ei = ⊥. A system is ⊥-consistent if every process at every time
instant receives only one type of values (> or ⊥). We initialize the
delay processes that temporal refinements introduces to the model
with ⊥-values. In order to keep the refined system ⊥-consistent
our algorithm synchronizes the model by inserting additional ∆(⊥)
processes. We use the terms >-delay process and ⊥-delay process
to indicate the initial value of delay elements, i.e., ∆(>) and ∆(⊥)
respectively. A path is a sequence of processes connected by sig-
nals that have the same direction from one end to the other. A loop
is a cyclic path including no process twice. A common source is
a process, whose output signal is connected to inputs of more than
one process. A common destination is a multi-input process. A
pair of paths contains two paths having one common source and
one common destination, and no other process belongs to both of
the paths.

3.2 Pattern Equivalence
In order to preserve the latency equivalence of synchronous mod-

els the delay of the paths that feed a common destination process
(process P4 in Figure 3.a) may be only increased equally. If a refine-
ment adds a ⊥-delay process to one path (P5 in path1), the rest of
the paths have to be extended with ⊥-delays as well (P6 in path2).
The synchronization procedure gets much more complex if the sys-
tem contains multiple feedback loops. If we insert a ⊥-delay pro-
cess (process P10 in Figure 3.b) to a path (path3) that feeds a loop
(loop1), it is necessary to add a ⊥-delay process (process P11) to
the loop as well. Otherwise the common process of the path and
the loop receives in some clock cycles different types of events,
which makes the system ⊥-inconsistent. Since the ⊥-values will
be reproduced in the loop, the feeder system part has to deliver reg-
ularly ⊥-values to the loop. The regularity is denoted as a pattern.

∆

loop1

P0

P8

comb
+

∆

path3

for path1 and path2
common destination

common destination
for path3 and loop1

∆

P2 P3

P1

P4

comb
+

a) path1

path2

∆

∆
b)

P7 P10

⊥

⊥

P5

⊥

>

P11

⊥

P9

P6

Figure 3: Synchronization of a) paths and b) loops

Pattern: A pattern is defined as a minimal sequence
V = {v0, . . . ,vi, . . . ,vn−1} of values > and ⊥, which cannot be con-
structed by a single repetitive subpart {v0, . . . ,vi}.

For a process the pattern shows in which order ⊥ and >-values
arrive.

Pattern Equivalence: Two patterns V a and V b are equiva-
lent if they have the same length n, and there exists an integer
constant k such that for all i ∈ {0, . . . ,n−1}, va

i = vb
j , where j =

((i+ k) mod n).
The pattern V1 = {>,>,⊥,⊥} is equivalent to V2 = {>,⊥,⊥,>},

but not to the pattern V3 = {>,⊥,>,⊥}. Elements in equivalent
patterns can be rotated but not shuffled.

Let’s consider a fragment of a loop where Pcomb1 sends data to
Pcomb2 and there is only a ∆(⊥) process between them. If Pcomb1
has the pattern {⊥,>,>,⊥}, then the equivalent pattern {⊥,⊥,>,>}
corresponds to Pcomb2. Due to the direct or indirect connections be-
tween all processes, the extension of one loop by a ⊥-delay process
leads to a scenario, where all processes have to operate with equiv-
alent patterns, in order to preserve ⊥-consistency. Since the delay
of any loop divided by the pattern length has to give an integer re-
sult, we find the greatest common integer divider (gcd) of the loop
delays in the original model. This is the basis of the pattern length
(N). In addition, the pattern length has to correspond to the de-
lay differences of all the pairs of paths that have a common source
(fork) and a common destination (join). The delay difference of
these paths has to be a multiple number of the pattern length. Af-
ter the first temporal refinement, which adds a ⊥-delay process to
the model, the N + 1 element pattern can be formed. According to
this pattern the synchronization ⊥-delay processes will be inserted
to the rest of the model. For the pattern length calculation we do
not need to take into account the loops, which are a combination of

other loops since gcd(n1,n2) = gcd(n1,n2,n1 + n2). Also we con-
sider only pairs of paths from a fork to a join, i.e., the pairs that do
not have a common prefix or infix.

3.3 Algorithm
The synchronization algorithm contains two parts: (1) to ana-

lyze the structure of the original model in terms of delay processes,
(2) and based on the analysis to insert synchronization ⊥-delays
to the refined model. A system input can be imagined as a shift
register, where one value enters to the system at every clock cycle.
Similar to the changes in the system we extend the input signals
with ⊥-values.

ALGORITHM 1. Labeling of delay Processes

Step 1 Find the delays (Dloop
i) of all feedback loops.

Step 2 For all pairs of the paths (patha,pathb) with a common
source and a common destination, find the delay difference
of the paths, Dpath

a,b = abs(Dpath
a −Dpath

b).

Step 3 Calculate the greatest common integer divider N for the
values found in the previous steps. N is the length of the
equivalent patterns.

Step 4 Create an ordered set Label that contains N items -
{L0,L1, . . . ,LN−1}. In the following we use capital letters
A,B,C, . . . as labels.

Step 5 Select a reference input and attribute a label L j,
j = (DPi mod N), to every delay process Pi according to
the delay DPi from the reference input to Pi. (The refer-
ence input is chosen arbitrarily without any influence to the
synchronization result.)

Step 6 According to the delay Dei from the input event
ei to the reference input, assign the label L j
to ei, j = (−Dei mod N).

In the worst case the number of loops and pairs of paths grows
exponentially with the number of processes np in the model, which
gives an exponential complexity to the algorithm O(knp),(k > 2).
In practice, there are not signals between every two processes, and
the number of loops and pairs of paths is close to the number of pro-
cesses in the model. Our heuristic implementation of the algorithm
finds if there exists a loop with m delay processes in the model, but
does not necessarily find all such loops.

The labeling can be illustrated on the system presented in Fig-
ure 4.a that contains eight combinational processes and four >-
delay processes. (Step 1) The given system contains two feedback
loops: loop1 = {p1, p2, . . . , p11} and loop2 = {p4, p5, . . . , p9}, hav-
ing delays: Dloop

1 = 4 and Dloop
2 = 2. (Step 2) There are two pairs

of paths: from P0 to P6, and from P9 to P4. Path1 runs through
P1,P2, . . . ,P5 and path2 is the direct connection between P0 and
P6. The delays of these two paths are two and zero clock cycles re-
spectively and the difference of them is Dpath

1,2 = 2. The delay differ-
ence of path3,(P10,P11,P1,P2,P3), and path4, the direct connection
from P9 to P4, is Dpath

3,4 = 2. (Step 3) The greatest common integer
divider for the found values is N = 2. (Step 4) Thus the ordered
set of labels contains two items, L0 = A and L1 = B. (Step 5) The
processes P3 and P8 get the label L0 = A, since the delays from
the system (reference) input are DP3 mod N = 0 mod 2 = 0 and
DP8 mod N = 2 mod 2 = 0. In the same way P5 and P11 get the

P11

⊥ comb
P2

comb
P1
comb

P2
comb

P3

>

A
∆

P4
comb

>

B
∆

P6
comb

P7
comb

P8

>

A
∆

P9
combcomb∆

P0

B

P5

P10

>

a)

comb

comb
>

∆

P0

BP11

P3

>

A
∆

P4
comb

>

B
∆

P6
comb

P7
comb

P8

>

A
∆

P9
comb

P5C

⊥
∆comb

P1

P10

⊥
∆

P12C

b)

A B
e3 e2

A B
e1 e0

A B
e1 e0

CA B
e3

C
⊥e2

Refined process

synchronization delay

Figure 4: Synchronization example : (a) initial model after labeling and (b) refined model

label L1 = B. (Step 6) The input events are labeled following the
given rule.

Algorithm 1 gives labels so that any multi-input combinational
process (P1 or P4) operates at any clock cycle with values from de-
lay processes, which have the same label. The latter condition holds
also in the refined model, which is synchronized by Algorithm 2.
The algorithm adds ⊥-delay processes in order to make the refined
model ⊥-consistent. Since the >-values are processed in the same
order in the original model and in the ⊥-consistent refined model
after synchronization, these two models are latency equivalent.

ALGORITHM 2. Balance the path delays

Step 7 Find the delay Dnew
∆(⊥) from the system input to the inserted

delay process ∆new(⊥).

Step 8 A new label L j will be associated with the delay element,
where j = Dnew

∆(⊥) mod N.

Step 9 Increment the pattern length: N = N +1.

Step 10 As the new label has got the position j in the set Label,
shift all these labels in the set that had before the indexes
{ j, . . . , i, . . . ,N−1} such that Lnew

i+1 = Lold
i . According to the

new positions of the labels a new pattern is formed, where
⊥ corresponds to L j.

Step 11 Insert a delay process ∆(⊥) with label L j to every
path in the system before the delay L j+1 (if j = N
then L0) or after L j−1 (if j = 0 then LN). Extend the
input signal with ⊥-values in the same way. In the
new model the distances DL j from the system input to
any process with label L j have to satisfy the equation:
DL j mod N = j.

In the example in Figure 4.b a temporal refinement adds a delay
∆(⊥) to process P1. Algorithm 2 synchronizes the refined model as
follows. (Step 7) The delay from the main input to the new delay
in process P1 is 0. (Step 8) The respective new label C will have
the first position in the set Label, i.e., L0 = C. (Step 9) N = 3 and
(Step 10) the labels have new positions Label = {L0 = C,L1 =
A,L2 = B}. All processes will operate with patterns equivalent to
{⊥,>,>}. (Step 11) Therefore we have to insert a delay process
on every path after B-delays or before A-delays. Thus the process

P12 can locate anywhere between P5 and P8. If it is before P6, there
has to be a C-delay on the lower input of P6. According to the labels
we extend the input signal as well.

In order to synchronize the system after further local temporal
refinements we apply Algorithm 2. However, the previously added
synchronization ⊥-delay processes can be reused in refined pro-
cesses without introducing new ones. It is allowed to shift ⊥-
delay processes in a non-branching structure between other de-
lay processes. The shifting is valid since the sequential compo-
sition1 P∆(⊥) ◦Pf = Pf ◦P∆(⊥), if f is a combinational function and
f (⊥) = ⊥.

comb comb∆
P0

comb
P1

∆
P2b) c) P0

comb
⊥

∆
AP2 P1

comb
P1

P1

comb
⊥
∆

P0d)

combcomb

robust refinement of P0 smart refinement of P0

P0
∆

a)

B

⊥

A

P2 A

⊥

A

⊥

Figure 5: Delay processes can be relocated

Figure 5 presents two choices how to model a temporal refine-
ment in P0 (model a). In model b an additional delay is added to P0.
In the alternative case (models c and d), we shift the delay process
P2 next to P0, and instead of introducing a new delay we merge
P0 and P2. The latter choice performs the same refinement without
increasing the system’s delay.

In order to show that our algorithm can be applied to any system
after a temporal refinement, we prove that there exists at least one
pattern for any system and the system synchronized according to
that pattern is ⊥-consistent.

Assertion 1: There exists a pattern that fits to all loops and paths
with a common source and a common destination.

Proof: According to Algorithm 1, the initial pattern length is
calculated as the greatest common divider. Since the integer value
one is a common divider for any set of integers, the respective one
element pattern {>} exists for any system structure. In this case

1Sequential composition (◦) of processes P1(x) and P2(x) is defined
as P1(x)◦P2(x) = P2(P1(x))

after a temporal refinement and synchronization all processes have
to operate with patterns equivalent to {⊥,>}.

Assertion 2: The system, which is synchronized according to
the pattern {⊥,>} is ⊥-consistent.

Proof: Let’s replace in the original model every >-delay process
∆(>) by a sequential composition of delay processes
∆(⊥) ◦∆(>). The modified model is ⊥-consistent since at every
second time instant all processes operate on ⊥-values (the patterns
are equivalent to {>,⊥}). As we showed earlier (Figure 5), it is
allowed to shift ⊥-delays between two >-delays 2. In fact, all com-
binational processes in the modified model are between ∆(>) and
∆(⊥). Thus the ∆(⊥) can be shifted to the combinatorial process
for a temporal refinement. The system stays ⊥-consistent and op-
erates with the pattern {⊥,>}. The described model is equivalent
to the model synchronized by our algorithm.

The same assertion can be easily proved for any pattern length.

4. CASE STUDY: REFINEMENT OF
A DIGITAL AUDIO EQUALIZER

We illustrate the synchronization algorithm within the design
process of a digital audio equalizer (Figure 6.a). The equalizer
divides the input signal into three frequency bands and amplifies
two of them according to the button settings in the button control
block. The sum of the amplified signals gives the equalizer output.
The audio analyzer and the distortion control blocks adjust the bass
amplification level to protect the speakers.

i0
A

i1i2i3
AAA

⊥

∆

∆

∆AmplifierFIR
low

∆Amplifierhigh
FIR

mid.
FIR Sum

Control
Button

Distortion
Control

Audio
Analyzer

OUT

Audio Filter

IN

a)

b)

loop1

join2

fork1
join1

fork2

i0
A

⊥i1
B BA mid.

FIR ∆ Sum

Control
Button

Distortion
Control

Audio
Analyzer

OUT

Audio Filter

FIR
low ∆ ∆Amplifier

high
FIR ∆ ∆Amplifier

IN

P1

A

⊥

P1

>

P5

A

>

AP0

B

⊥

>

P3

P0

⊥

P2

>

A

B

B

⊥

B

⊥

P4 B

loop2

Figure 6: Audio equalizer: a) initial model b) after the clock
domain refinement of the process FIRlow

The equalizer contains three order-k FIR-filters with polynomial
functions f (d,c) = Σk−1

i=0 (dici) of delayed input values d and the fil-
ter coefficients c. Instead of implementing the function f in FIRlow
as a large combinational circuit, we introduce resource sharing like
in Figure 1. Due to the feedback signals in resource sharing, the
refined block has an additional delay. In order to keep the refined
models latency equivalent to the original one we apply the synchro-
nization algorithm. In the following we shorten the explanation of
2In some extend shifting is also valid in branching structures.

the algorithm steps by viewing the FIR-filters as combinational pro-
cesses and abstract from the existence of registers in the FIR-filter
blocks3.

The system contains two loops (loop1 and loop2 in Figure 6)
with one delay process in each. The delay difference of common
source/destination paths between respective fork and join points is
in all cases equal to zero. Since the greatest common divider of
the found values is one (N = 1), we create a one-element set Label
{L0 = A} and mark the delay processes P0 and P1 and input events
with A.

The ⊥-delay added to the process FIRlow by the refinement gets a
new label B. The delay from the system input to that process is zero.
According to Algorithm 2 this gives a new content of Label, {L0 =
B,L1 = A} (N = 2), and processes operate with patterns equivalent
to {>,⊥}. In order to synchronize the system, we have to insert
⊥-delay processes with label B between A-delays and between all
input events. FIRmid and FIRhigh are refined in a similar way and
the existing ⊥-delay processes P2 and P3 are encapsulated in the
refined blocks.

Control

Audio
Analyzer

OUT

sync island I3

Button

Distortion
Control

Amplifier

Amplifier

Sum

IN
handshake

handshake

handshake

handshake
channel channel

channel

channel

∆

∆

∆

high

FIR
low

FIR
mid.

FIR

buffer

buffer

buffer

buffer

sync island I1 sync island I2

Figure 7: Implementation of audio equalizer as GALS or LID
model

In Figure 7 an LID or GALS model based solution to the syn-
chronization problem is showed. After adding delays to the FIR-
filters, the data arrival from the filters and the button control block
to the amplifiers is not synchronized. In order to restore the sys-
tem functionality it is divided into three (1) asynchronously com-
municating synchronous islands or (2) synchronous blocks of LID,
communicating via handshake channels. Computation in an island
is executed when data is delivered by all its channels.

Although the LID method does not add any explicit delay pro-
cess for synchronization, there are buffers in every channel, which
increase the circuit area. In order to implement the absent exten-
sion at RT-level, we needed only one bit signal to inform processes
about the current data type of an input value (absent or present).
This is equivalent to the one bit signal in LID used to distribute
stalling events between computation blocks. The input/output la-
tency of LID and our model were the same, and both models had
to work with two times more values than the original model. The
LID relay stations in the channels are initialized with stalling val-
ues. Since the system contains feedback loops these values are
reproduced [6]. Due to the feedback loops, the absent events are
reproduced in our model as well.

The LID and GALS approaches are common in IP-block based
design. Though they may not be the best candidates for refine-
ments in small synchronous blocks, since create very small and

3In the actual implementation all FIR-filters receive the delayed
data values from a common block of shift registers. The synchro-
nization algorithm labels all cells in the register by A, and inserts a
⊥-delay between all of them. The rest of the system is identical to
the described one

disproportionate islands, like I1 and I3. Due to the complex com-
munication mechanism between synchronous islands, formal veri-
fication and formal refinements in this kind of models are consid-
erably more complex. In addition, our model is more expressive,
since the impact of refinements is explicit. The labels indicate rela-
tions between refined computation blocks and paths with increased
delays. The explicit synchronization delay processes can be shifted
to proper positions and reused for the further refinements. In the
hardware model many of the ⊥-delay processes can be mapped
onto latches between combinational processes. Processes that feed
latches with the same label have to have the same latency. Our
synchronization algorithm does not point out the exact positions
of ⊥-delay processes or respective latches between combinational
processes. However it is possible to find better places by using ex-
isting retiming techniques in order to reduce the number of memory
elements or to maximize clock frequency.

5. CONCLUSION
The introduction of resource sharing and pipelining in computa-

tion blocks are only some examples of design refinements, which
increase the delay in the refined blocks compared to the original
ones. Although the explicit change is made in a single block, it
influences the functional behavior of the entire system in the syn-
chronous model of computation. The proposed algorithm solves
the synchronization problem and allows to use the synchronous
model even at late stages of the design process. On the other hand,
the proposed method is also a good candidate to refine synchronous
blocks in LID or GALS model.

Our synchronization algorithm (1) does not change combina-
tional processes, (2) does not add schedulers or controllers like they
are used for process execution in pipelined systems and in data-flow
models, and (3) does not introduce wrappers and handshake com-
munication channels. This leaves the blocks simpler to analyze,
verify, and to apply the further design refinements. The only re-
sources we add to the model are the regularly placed
⊥-delay processes. We have implemented these delays as latches
at the RT-level, where the real gate delays are considered instead of
the ideal computation time at a high level of abstraction. The num-
ber of the synchronization delay processes can be further reduced
to a minimum by using retiming techniques.

6. REFERENCES
[1] S. Abdi and D. Gajski. Automatic generation of equivalent

architecture model from functional specification. In
Proceedings of the Design Automation Conference, pages
608–613, 2004.

[2] A. Benveniste, B. Caillaud, and P. L. Guernic. From
synchrony to asynchrony. In Proceedings of the International
Conference on Concurrency Theory, pages 162–177, 1999.

[3] G. Berry, M. Kishinevsky, and S. Singh. System level design
and verification using a synchronous language. In
Proceedings of the International Conference on
Computer-Aided Design (ICCAD), page 433, Washington,
DC, USA, 2003. IEEE Computer Society.

[4] T. Callahan and J. Wawrzynek. Adapting software pipelining
for reconfigurable computing. In Proceedings of the
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES), San Jose, CA,
2000. ACM.

[5] L. Carloni, K. McMillan, and A. SangiovanniVincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design, 20(9), 2001 2001.

[6] L. P. Carloni and A. L. Sangiovanni-Vincentelli. A
framework for modeling the distributed deployment of
synchronous designs. Formal Methods in System Design,
28(2):93–110, 2006.

[7] S. Edwards, L. Lavagno, E. A. Lee, and
A. Sangiovanni-Vincentelli. Design of embedded systems:
Formal models, validation, and synthesis. Proceedings of the
IEEE, 85(3):366–390, March 1997.

[8] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and
verifying real-time systems by means of the synchronous
data-flow language LUSTRE. Software Engineering,
18(9):785–793, 1992.

[9] S. Huang, K. Cheng, and K. Chen. On verifying the
correctness of retimed circuits. In Proceedings of the the
Great Lakes Symposium on VLSI, 1996.

[10] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design:
Orthogonalization of concerns and platform-based design.
IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[11] C. E. Leiserson and J. B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5–35, 1991.

[12] N. Maheshwari and S. S. Sapatnekar. Minimum area
retiming with equivalent initial states. In Proceedings of the
International Conference on Computer-Aided Design, pages
216–219, 1997.

[13] S. Nadjm-Tehrani and J.-E. Strömberg. Formal verification
of dynamic properties in an aerospace application. Formal
Methods in System Design, 14(2):135–169, March 1999.

[14] D. Potop-Butucaru and B. Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous
specifications. In Proceedings of the International
Conference on Application of Concurrency to System
Design, St Malo, France, 2005.

[15] M. Weinhardt and W. Luk. Pipeline vectorization. In IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pages 234–248, Feb 2001.

