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Abstract

The Formal System Design methodology
ForSyDe [1,2,3] is extended by a systematic
refinement methodology based on
transformations, which gradually transforms a
high-level, function oriented system description
into a synthesizable model. We group
transformations according to three different
criteria: (1) whether  they preserve semantics or
they constitute a design decision; (2) whether
they are simple rewriting rules or complex
patterns; (3) whether they transform
combinatorial functions, skeletons or data types.
We illustrate the use of transformations with
three examples taken from an ATM based
network terminal system.

1. Introduction

System level functional validation has been
identified as one of the most severe obstacles to
increased design productivity and quality. It is
most likely that this will not fundamentally
change unless a rich portfolio of validation
techniques becomes an integral part of the
system specification and design process. In
addition to simulation, which is the main
validation vehicle today, formal analysis and
verification techniques must be available to the
designer. Unfortunately, the full potential of
formal techniques can only be exploited when
they become an equal partner to simulation and
design activities, which means that modeling and
design techniques have to adapt and change
significantly. Most current and proposed design
languages such as VHDL, C++, Superlog [4],
SystemC [5], etc., are foremost simulation
languages. Considerations about formal analysis

and verification are only taken up as an
afterthought. This will always be insufficient
because the semantics of these languages
fundamentally limits the kind of formal analysis
that can be performed.

We have proposed ForSyDe (Formal System
Design) [1,2,3], a system modeling method
based on a formal functional model and on
skeletons with the objective to eventually
develop both powerful formal analysis
techniques and a full fledged refinement and
synthesis process. In [1] we have argued that a
carefully designed modeling method is the solid
basis for efficient verification and refinement.
Now we take the next step and propose a
refinement technique, which takes formal
verification into account up front. It is based on
transformations, which allows to split the system
validation into numerous small steps, one
separate verification step for each applied
transformation. Thus, the seemingly impossible
task of verifying the functionality of an entire
complex system becomes feasible because it is
reduced to many smaller and simpler steps.

The main contribution of this paper is the
extension of ForSyDe methodology with a
transformational refinement process of the
system model. We outline different types of
transformations, which together are powerful
enough to allow refinement of a system level
functional specification into a synthesizable
description. The technique is illustrated by
applying selected transformations on a system
model of an ATM switch.

We review the related work in this area in
section 2, introduce our system model in section
3, discuss transformational design in section 4,



illustrate transformation examples in section 5
and conclude our paper in section 6.

2. Related work

Transformational system design supports the idea
of designing at a higher level of abstraction
which implies describing the behavior of the
required system in high level languages and then
transforming this into a description at a lower
level, possibly in a hardware description
language. Such kind of design methodology can
reduce the overall design time and ensure the
correctness of the implemented system. A great
deal of the pioneering work in transformation
systems was undertaken by Burstall and
Darlington [6]. Their system transformed
applicative recursive programs to imperative
ones and their ideas have heavily influenced
today’s transformation systems.

Haskell [7] is a modern functional language that
provides a common ground for research into
functional languages and functional
programming. However, now it has also been
used in hardware design. In the Hawk project
[8], Hawk is a library of Haskell functions that
are appropriate building blocks (or structural
units) for describing the micro-architecture level
of a microprocessor. In their work, Hawk has
been used to specify and simulate the integer
part of a pipelined DLX microprocessor. Lava
[9] is a collection of Haskell modules. It assists
circuit designers in specifying, designing,
verifying and implementing hardware. O'Donnell
[10] has developed a Haskell library called
Hydra that models gates at several levels of
abstraction ranging from implementations of
gates from using CMOS and NMOS, up to
abstract gate representations using lists to denote
time-varying values. Möller [11] provided a
deductive hardware design approach for basic
combinational and sequential circuits. The goal
of his approach is the systematic construction of
a system implementation starting from its
behavior specification. Gofer/Haskell (Gofer is
an interpreter for Haskell) has been used in his
work to formulate a functional model of
directional, synchronous and deterministic
systems with discrete time. However, all of the
above approaches are targeted on gate-level or
circuit designs which differ significantly from
our approach. Reekie [12] used Haskell to model
digital signal processing applications. He
modeled streams as infinite lists and used higher-

order functions to operate on them. Finally,
correctness-preserving transformations were
applied to transform a system model into a more
effective representation. However, in Reekie’s
work, the target applications are data flow
networks and the final representation is not
synthesized. In our approach, we targeted at both
data flow and control intensive applications and
the final system is synthesized to a VHDL and C
model.

There are also some other languages to support
hardware design. The Ruby language, created by
Jones and Sheeran [13], is a circuit specification
and simulation language based on relations,
rather than functions. The target applications are
regular, data flow intensive algorithms, and
much of its emphasis is on layout issues. In
contrast, our approach is based on a functional
language, addresses data flow and control
dominated applications, uses a fully fledged
functional language, and links to commercial
logic synthesis tools rather than dealing with
layout directly. HML [14] is a hardware
modeling language based on the functional
language ML, which is a functional language
similar to Haskell used in our approach.
However, HML attempts to replace VHDL or
Verilog as hardware description languages, while
we propose a hardware and system specification
concept on a significantly higher abstraction
level with a very different computational model.

3. System model

Today, system design often starts with a
description of concurrent processes
communicating with each other by means of
complicated mechanisms (shared variable,
remote procedure call or asynchronous message
passing). We have argued [15] that such a
system model does not serve as a good starting
point for system design, because many design
decisions are already taken. In particular, it is
difficult to change the process structure of the
system model, i.e. to move functions from one
process to another, since this will require the
redesign of the communication structure between
the processes.

We have addressed this problem in our design
methodology by adopting a purely functional
specification of the system based on data
dependencies and written in the functional
language Haskell, for which a formal semantics



exists.Our computational model is based on the
synchronous hypothesis which assumes the
outputs of a system are synchronized with the
system inputs, while the reaction of the system
takes no observable time. For a formal definition
of the computational model, we use the
denotational framework of Lee and Sangiovanni-
Vincentelli [16]. It defines a signal as a set of
events, where an event has a tag and a value. A
signal is shown in Figure 1. Here events are

totally ordered by their tags. Events with the
same tag are processed synchronously. A special
value '⊥' ("bottom") is used to model the absence
of an event. Absent events are necessary to
establish a total ordering among events for real
time systems with variable event rates.
Compared with finite state machines which are
more operational in their nature, this approach
leads to a computational model with a definite
denotational flavor.

The system is modeled by means of concurrent
processes which are supported by the use of
skeletons. Skeletons are higher-order functions
whose inputs and outputs are signals. Elementary
functions are the basic components inside the
skeleton. In terms of a clocked system,
elementary functions can model the behavior of
system components in one clock cycle. On the
other hand, each skeleton has a representation in
the design library and can be directly mapped
into a hardware or software component based on
the information from a design library.

Due to its formal nature of the system model,
which can be regarded as consisting of
mathematical entities, it can be further analyzed
by using mathematical methods, which in turn
can also be mechanized. For example, the formal
model can be integrated with theorem provers,
model checkers and other formal analysis and
verification techniques, which can in some way
guarantee the correctness of the specification
model.

4. Transformational design

4.1. Introduction

With transformational design, we mean starting
the system design with a formal specification
model and then applying transformation
techniques on this model to get a synthesizable
system model, i.e. the specification can be
transformed through a series of steps to a final
synthesizable system model which meets the
system requirement and constraints imposed by
designers (Figure 2). These steps can be either
semantics preserving or non-semantics
preserving. The later introduces design decisions
imposed by the designer. The transformation
result of each step is sufficiently close to the
previous expression that the effort of verifying
the transformation is not excessive. The benefits
of this approach are:

• Each step in the system refinement is closer
to the final implementation.

• The final implementation is either a true
implementation of the initial specification
which is guaranteed by the use of semantics
preserving transformation rules in the
library, or can be proofed correct for certain
assumptions w.r.t non-semantics preserving
transformations which are introduced by
design decisions.

• The design process and design decisions are
documented, thus the whole process is
repeatable.

• A transformation approach made up of a
sequence of small steps is very effective and
much more efficient than theorem proving
which is usually very difficult because the
gap between implementation and
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Figure 2. Transformational system design
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specification is much larger than the gaps
between each transformation steps.

Of course, there are still difficulties in applying a
purely transformational approach to large system
design. However, the incorporation of this
approach into the design methodology will offer
the opportunities to improve the design process.
For example, in HW/SW co-design,
transformation techniques can be employed in
the system's custom parts that are not covered by
pre-designed building blocks (IPs).

4.2. Refinement of the system model by
transformation

We distinguish two levels of transformations:

• Transformation rules are primitive
transformations as developed over the last
three decades [6,17]. They include
� Definition: Introduce new functions to

the system model;
� Unfolding: Replace a function call

with its definition;
� Folding: the opposite of unfolding;
� Abstraction: Abstract common

expressions used in system models into
one separate function to be reused;

� Algebraic rules;
• Transformation patterns describe more

complex transformations which in many
cases can be application and
implementation related. For instance, if a
finite state machine model contains a large
and regular structured state, a
transformation pattern can transform this
into a simpler finite state machine and a
memory skeleton. In the synthesis step
such a model can later be implemented as a
memory with memory controller, which is
far more suitable than an FSM-
implementation with many registers.
Essentially, transformation patterns capture
intelligent design techniques.

Orthogonal to this we classify transformations in
the following way:

• Semantic preserving transformations do not
change the functionality of the system, but
they may have an impact on non-functional
properties such as performance and cost.
Semantic preserving transformations have
the beautiful property, that they can be

freely applied without changing the
functionality. This greatly alleviates the
validation and allows for fast design space
exploration. Transformation rules are
always semantic preserving, but
transformation patterns may or may not be.

• Decision transformations inject a design
decision into the refinement process. During
the refinement process from a high
abstraction level down to the
implementation a number of decisions must
be taken which also change the
functionality. For instance, the high-level
functional model will in many cases use
infinite buffers (FIFO) for communication
between entities. However, during
refinement the infinite buffers must be
reduced to finite buffers which invariably
changes the behavior, because the finite
buffers may overflow for certain input
sequences. Decision transformations may be
proved by adding additional assumptions.
E.g. if we assume that the input sequences
are constrained in such a way, that the finite
buffers will never overflow, we can proof
that the two descriptions behave identically.
This has the additional benefit of making all
these assumptions explicit and part of the
system specification.

In addition, we can group the transformations in
the following way: skeleton-based
transformations on skeletons, local
transformations on elementary functions which
are usually the essential part of a skeleton, and
data-type transformations for data types. This is
also orthogonal to other classifications.

• Skeleton-based transformations are done on
a higher level than local transformations on
elementary functions. They are usually
employed on the architecture model and will
depend heavily on the design library which
contains implementations for skeletons and
library elements. In our design
methodology, this kind of transformation
will include merge and split skeletons, move
functions between skeletons to minimize the
communications between skeletons etc. and
share elementary functions between
skeletons.

• Local transformations are employed on the
elementary functions inside the skeleton.
They can be introduced by skeleton-based
transformations, for example merging and



splitting skeletons usually give rise to the
reconstruction of internal elementary
functions which permits further
optimization.

• Data type transformations are usually
employed to transform one list to multi-lists
or vice versa, split a signal into several
signals to be processed by several processes
simultaneously to acquire high efficiency,
transform data structures (e.g. trees and
lists) to meet the specialized system
implementation and transform unbounded
data types to bounded data types.

During design exploration, these transformations
are employed on the system model to optimize
the system and thereby to meet the specified
constraints. The system model is successively
refined by means of applying small
transformational steps to the model in order to
receive a synthesizable system model, which
meets the specified constraints. The refinement
process is also supported by estimation values
for possible transformations.

4.3. Synthesis of the synthesizable system
model

After the refinement process the HW parts of the
synthesizable system model are synthesized into
VHDL, while the SW parts are synthesized into
C. Here we use the HW and SW interpretations
of the skeletons. The VHDL model is then
further processed by logic synthesis tools while
the C-code is compiled for a specific processor
[2,3].

5. Experiments in the ATM case study

In this section we illustrate the transformational
design methodology by several examples from
our case study, an ATM switch. A more detailed
description of the design of this ATM switch can
be found in [1]. The ATM switch has operation
and maintenance functionality. This case study
has the following aspects:

• The original specification model is written
completely in Haskell with skeletons used.

• The aforementioned transformation rules
and patterns are employed manually during
the design explorations.

• The design exploration utilizes the results
from library estimation as one of the
exploration criteria.

• The final system is a functional model
which can be easily synthesized into a
VHDL and C model.

Example I

First we introduce the skeletons used in these
examples:
mapT is the skeleton that applies a function f on
to the values of all events in a signal. It is based
on the function map which maps a function on a
list. It is defined like this in the functional
specification:

mapT :: (a -> b) -> TimedSignal a -> TimedSignal b
mapT f (Sig xs) = Sig (map f xs)

Figure 3 shows skeleton mapT with elementary
function inc which increments the value in each
event.

filterT  is the skeleton that filters out the events
in a signal which doesn't satisfy property p. Here
is its definition:

filterT :: (a -> Bool) -> TimedSignal a -> TimedSignal a
filterT p = mapT (check p)
where check p x = if p x then x else Absent

Figure 4 shows the skeleton filterT with
elementary function even which filters out events
with odd values.

In the ATM system, we use the following
functional description which checks the status of
a virtual path and generates OAM cells if a
certain condition is met. This is also shown in
the first part of Figure 5.

sendDownstream = mapT action.filterT isSendCondition
where
isSendCondition (Present (vpi, (VPI_OK, _))) = False
isSendCondition (Present (vpi, (VPI_AIS, 1000))) = True
isSendCondition (Present (vpi, (_, _))) = False

action (Present (vpi, (VPI_AIS, time))) =
Present (F4_OAM (VPI vpi) VPI_RDI)

action _ = Absent

Figure 3. Skeleton mapT
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sendDownStream first filters out the events in
incoming signal according to isSendCondtion,
then it takes action on the outgoing signal from
the previous process.

This specification can be transformed to:
newSendDownstream
= mapT action . filterT isSendCondition (0)
= mapT action . mapT (check isSendCondition) (1)
= mapT (action . (check isSendCondition)) (2)
= mapT newAction (3)

newAction Present (vpi, (VPI_AIS, 1000))
     = Present (F4_OAM (VPI vpi) VPI_RDI)

newAction _ = Absent

Step (0) is the definition of
newSendDownStream. The transformation step
from (1) to (2) is a skeleton-based transformation
which is based on the rule mapT f . mapT g =
mapT (f.g). However, the transformation step
from (2) to (3) is an elementary-based
transformation, which is aimed to optimize the
elementary function inside the skeleton. This
example also shows that transformation allows
the optimization of internal functions. The
advantage of this transformation is apparent if
we compare them in Figure 5. The original
structure will usually be implemented in two
processes, either HW or SW. There is intensive
communication between these two processes.
However, in the new specification, only one
process is needed in the final implementation.

Example II

To get the system work reliably under some
critical environments, we need some fault
tolerance in the system design. In the ATM
switch we can duplicate the switch to achieve
this goal. This is shown in Figure 6, where

atmSwitch is the original switch module and
newSwitch is the resulting system which is
derived from atmswitch. The definition of
newSwitch is as following:

newSwitch atmin = (atmOut1, atmOut2)
where
atmOut1 = zipwith3T selectF atmUpOut1

atmMiddleOut1 atmDownOut1
atmOut2 = zipwith3T selectF atmUpOut2

atmMiddleOut2 atmDownOut2
(atmUpOut1, atmUpOut2) = atmSwitch atmUpin
(atmMiddleOut1, atmMiddleOut2) = atmSwitch atmMiddlein
(atmDownOut1, atmDownOut2) = atmSwitch atmDownin
(atmUpIn, atmMiddleIn,atmDownIn) = fan3T id id id atmin

fan3T f g h x = (f x, g x, h x)
zipWith3T :: (a -> b -> c) -> TimedSignal a ->

     TimedSignal b -> TimedSignal c
zipWith3T f (Sig (x:xs)) (Sig (y:ys)) (Sig (z:zs))
= Sig (f x y z: zipWith3 f xs ys zs)

Function fan3T fans one ATM stream into three
which are then fed into three ATM switches in
newSwitch. The results of all switches are later
sent to (zipWith3T selectF) which selects one
value as output. Function selectF can be defined
in different ways. A common implementation
can be majority vote, which compares the inputs
and selects the value, which is equal in two or
three of the inputs. The correctness of this
transformation can be easily proved. As a result,
the object system is more reliable than the
original one. Similar transformations to make the
design more parallel can be beneficial also for
performance reasons.

Example III

The previous examples are semantics preserving
transformation. There are also non-semantics
preserving transformations. We will illustrate

mapT
action .(check

isSendCondtion)
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this with the FIFO design in this ATM case
study.

In the ATM example, an unconstrained FIFO is
defined as:

unconstrainedFifoT :: TimedSignal [a] -> TimedSignal a
unconstrainedFifoT = mooreS fifoState fifoOutput []

The function fifoState is used to calculate the
new state of the buffer. The function fifoOutput
analyses the buffer and outputs the first element.

In the final implementation, the FIFO will only
have a fixed buffer size and can only consume a
fixed number of items during one event cycle.
To solve this, we obtain a template by replacing
the function fifoState with a new function
constrainedFifoState with two additional
parameters b for the buffer size and i for the
number of parallel inputs.

ConstrainedFifoTemplate :: Int -> Int ->
             TimedSignal [a]  -> TimedSignal a

constrainedFifoTemplate b i
= mooreS (constrainedFifoState b i) fifoOutput []

We can then build instances of constrained
FIFOs by specifying the parameters b and i. For
example:  (Figure 7)

constrainedFifoT_b8_i4 :: TimedSignal [a] ->
           TimedSignal a

constrainedFifoT_b8_i4 = constrainedFifoTemplate 8 4

The result of this transformation is much closer
to the final synthesizable model and this
transformation can be used in several parts of the
case study.

We have illustrated some transformation
techniques with the ATM case study. The
purpose of this case study is to validate our
transformational system design methodology.
Furthermore, through this case study, we have
obtained a better understanding of the required
transformations and how they can be
mechanized to solve real industry problems.
However, this is only a small subset of the

complete transformation library which will
eventually include a rich set of transformation
patterns. Besides the transformations in this case
study, it also includes memory-based
transformations for FSM, communication
transformations and other transformations on
skeletons. This set of transformation patterns
combined with the various transformation rules
should be sufficient to derive a synthesizable
model from the functional specification.

6. Conclusion and future work

We introduced transformational refinement to
our design methodology for HW/SW co-design
which starts with a formally defined functional
system model and abstracts from the
implementation details. The system model is
stepwise refined by formally defined
transformations leading to a synthesizable
system model. Due to the use of skeletons the
synthesizable model can be synthesized into an
efficient implementation incorporating HW and
SW parts.

As the next step of our current work, we will
focus on how to mechanize some of the
transformations we have proposed and how to
verify these transformations.
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