
Flexible Bus and NoC Performance Analysis with Configurable Synthetic
Workloads

Rikard Thid, Ingo Sander, Axel Jantsch
Royal Institute of Technoogy

Stockholm, Sweden
{thid, ingo, and axel}@imit.kth.se ∗

Abstract

We present a flexible method for bus and network on chip
performance analysis, which is based on the adaptation of
workload models to resemble various applications. Our
analysis method assists in the selection of a communication
infrastructure early in the design process. The method uses
(1) synthetic workload models which are similar to timed
Petri nets and (2) the b-model for self-similar workloads.
This allows the exploration of larger portions of the design
space than possible with traditional stochastic models. The
method is illustrated with tutorial examples where both a
NoC and a bus based platform are analyzed.

Keywords - NoC, Bus, Performance Analysis, Simula-
tion, Benchmark, Synthetic Workloads

1 Introduction

Benchmarks are important tools to estimate the perfor-
mance of various systems and components. Accurate archi-
tectural performance analysis of Networks on Chip (NoC)
requires the right combination of relevant workload models,
the right metrics, and model of interfering traffic. In this
context workload models define the communication that is
simulated and measured directly during performance analy-
sis. Workload models can be defined at different abstraction
levels. CPU benchmarks are often very exact while many
network workloads use abstract stochastic processes. No
matter what abstraction level is used, a benchmark will only
reflect the performance under a particular workload. This is
very important to keep in mind since benchmarks are often
used when a platform is selected for a specific application.
The more the application differs from the benchmark work-

∗The authors would like to thank S. González Pestana and K. Gossens
at Philips Research for many discussions and cooperation during an earlier
phase of this work.

load, the more unsound such a method is. Instead, we pro-
pose that high-level models which can be configured to re-
semble the target application are used in such cases. Since
we are interested in the performance of NoCs, which are
likely to run multiple parallel tasks, it is very important to
be able to model the interfering traffic in a flexible way as
well.

Metrics are the characteristics that a benchmark mea-
sures. Preferably, the metric is expressed in a unit that is
in itself an important property of the system. For instance,
benchmark runtime is the best way to measure how fast a
microprocessor system is. However, in some benchmarks
properties that are of secondary importance are measured.
In microprocessor benchmarks, measuring the memory la-
tency does not necessarily give a comprehensive view of
how the system acts since it is not the only contributing fac-
tor to microprocessor performance. In the same way, net-
work characteristics such as bandwidth and latency are not
the only factors that influence a NoC applications perfor-
mance.

Recent research emphasizes the impact that variability
of workloads has on evaluation of microprocessor perfor-
mance [1]. While microprocessors are deterministic, small
changes in the initial state of the surrounding system (such
as interfering peripheral devices, task schedule) may have
a large impact on execution time. Variability is an emerg-
ing problem in multi-threaded applications where different
tasks share resources. Comparisons between simulations
with different settings may lead to incorrect conclusions if
the variability of the results is high and dominates differ-
ences. The authors argue that instead of comparing sin-
gle simulations, several simulations (with slightly different
boundary conditions) should be used and the average run-
time should be the performance metric while confidence in-
tervals indicate the magnitude of variability.

One major research challenge is that we do not know
exactly what the future applications that will use NoCs are,
how they will be decomposed into subcomponents, and how
the communication infrastructure will be used. In spite of

this, many NoC communication infrastructures have been
developed and now there is a need to evaluate these and
find out how they perform under various scenarios. The
major benefit with our approach is that we do not rely on
traces of real applications. Instead, we use synthetic work-
loads which are easily modifiable in terms of burstiness and
topology. This allows us to try a wide range of configura-
tions and learn what the best design patterns are for different
NoCs.

We present a method for performance analysis that is:

• Configurable in topology

• Investigating a wide rage of bursty behaviour

• Measuring simulated runtime

• Addressing the variability

The remainder of this paper is organized as follows. Sec-
tion 2 presents previous research in NoC performance esti-
mation and benchmarks in adjacent fields. Section 3 ex-
plains how our performance analysis method works. In Sec-
tion 4, our method is used in order to compare a bus with a
NoC infrastructure and Section 5 draws final conclusions.

2 Related work

This section summarizes related work regarding perfor-
mance analysis from NoCs and adjacent areas from which
much can be learned.

Analyzing performance on the Internet is an interesting
but difficult topic. The difficulty lies in the ever changing
topology and set of applications on the Internet. The Inter-
net Engineering Task Force (IETF) is a joint effort that has
defined metrics and a methodology that helps to standardize
the performance measurement process for the Internet [9].
Performance is normally measured in terms of throughput
and latency since they have direct impact on most Internet
applications.

When networks of more limited sizes such as local area
networks and multiprocessor interconnection networks are
benchmarked Traffic patterns may be used. A Traffic Pat-
tern [3] is a graph that describes the spatial distribution of
traffic in the network. In general, they focus on the amount
of traffic that is to be transmitted and not on the dependen-
cies between them.

Microprocessors are benchmarked with the runtime for
different applications. MiBench [5] and Mediabench [2]
contain applications that are representative for media appli-
cations. Dhrystone [15] is a synthetic benchmark that rep-
resents not a specific but an average of applications. Multi-
processor computers are used for more computation-heavy
applications which for instance the SPLASH-2 bench-
marks [17] reflect.

Skadron et al. [12] argue that benchmarks that are used
to evaluate computer architectures do not give an accurate
view of performance in emerging application areas such as
embedded systems, mobile computing, and real-time sys-
tems. The solution to the performance analysis problem
for an ever increasing design space is not to throw even
more benchmarks at it. Instead the authors propose syn-
thetic benchmarks that are parametrized to model a range
of different behaviors. We have allowed these insights to
influence our work this paper describes.

A Petri net [10] is a graphical and mathematical repre-
sentation of distributed systems. Petri nets consist of places,
transitions, and arcs that interconnect them. Places store to-
kens that express the state that the model is in. It is possible
to include time in the simulation model with a static delay or
a stochastic delay before the transition fires. The main ben-
efit with timed Petri nets is that they model both qualitative
behaviour of timing (dependence, throttling) and quantita-
tive properties (delay in single subcomponents).

It is well known that self-similar burstiness occur in
many areas such as LAN traffic [7], disk I/O, and CPU-to-
memory communication [13]. Self-similar workloads are
not only interesting because they occur in many real world
applications, they also behave very different in comparison
to simpler models such as Poisson-processes. Therefore,
incorporation of self-similarity in workload models is es-
sential for NoC performance analysis. An effective method
to create self-similar workload models is described in [14].

Lahiri et al. [6] present an efficient performance analy-
sis technique for bus-based SoC architectures. Low-level
resource models are abstracted away with a graph that ex-
presses the behaviour of the application. Mahadevan et
al. [8] use a similar approach. A graph representation of the
data-dependencies and computational delays is extracted
from benchmarks and this graph is used as a basis for sim-
ulation of the very same benchmark on different commu-
nication infrastructures with little loss of accuracy but at
high speed. While both these approaches speed up the ac-
tual run time for simulations, the novelty of our method is
the configurability of the workloads spatial distribution and
self-similar burstiness.

The work that has been done on NoC performance anal-
ysis has focused on either measuring plain latency and
throughput of statistical processes [4, 16], or using bench-
marks from other areas such as multicomputers [18]. To our
knowledge, no other NoC benchmarks that allow modeling
of self-similar burstiness have been presented until now.

3 Method

This section describes our approach that has the advan-
tages previously mentioned. We describe how the different
subelements in a model are interconnected through a com-

munication graph, how tokens are sent in the model and
how burstiness is modeled using the b-model. Finally, two
workload patterns are introduced.

3.1 Communication graph

We describe the spatial composition of the workload-
model with a graph where the edges represent workload el-
ements and the arches define channels over which all inter-
process communication occurs. Each channel is simplex
so bidirectional communication is modeled with two chan-
nels. Either a resource element is active, which means that
it emits tokens so that they represent the generated b-model,
or it is reactive, responding to incoming tokens after a delay
decided by the b-model. It is possible to model sinks with
reactive elements that are configured to receive but not send
tokens.

Channel Channel

Active Element Reactive Element Sink Element

Figure 1. A simple communication graph.

3.2 Tokens

The benchmarks work together with a NoC or a bus
simulator (hereafter called “interconnect simulator”) as de-
picted in Figure 2. Tokens are sent between workload ele-
ments through a interconnect simulator. In the boundaries
between workload and interconnect simulator, tokens are
converted to transactions and vice versa. In our simulation
setup, a token corresponds to a 64-bit transaction but may
be refined differently in other interconnects. For example, if
a 32-bit bus is benchmarked one token would be represented
by two bus transactions.

����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�
���������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�
���������������������������������

Modelled with
NoC/Bus simulator

Modelled with Benchmark

ElementElement ChannelChannel

Figure 2. The channels in the workload model
are executed in an interconnect simulator.

3.3 Timing

Our approach is inspired by timed Petri nets [10]. In
order to model bursty workloads with self-similarity, each
token is delayed with a time that is calculated with the b-
model [14]. This separates our approach from conventional
timed petri nets. The b-model is very simple and can ef-
ficiently generate realistic traces of self-similar and bursty
data. It requires only one parameter to describe the level of
burstiness.

The b-model initially assumes that the level of activity
is evenly distributed over time. The total time is divided in
two equally long blocks which are given an amount of the
total activity specified by b and (1−b) respectively. The part
that is given the larger portion is decided by a random num-
ber generator for which each resource element has its own
unique seed. This procedure is repeated on the blocks recur-
sively until the block-size equals the time resolution. Fig-
ure 3 depicts how the level of activity over time is changed
for every recursion step.

1

1 1

11

1
I II III

Time

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

Time Time

2b

2(
1−

b)

4b
(1

−b)

4b
(1

−b)

4 b

4(
1−

b)
2

2

Figure 3. The b-model is created by gradually
dividing a block (I) into subblocks(II), which
are also divided into subblocks(III).

A trace of an active element is shown in Figure 4. The
b parameter has been selected to three different values. A b
parameter of exactly 1/2 generates uniform traffic. If the b
parameter is slightly more than 1/2, the traffic looks like it
has been generated with a Poisson process with burstiness
on smaller timescales primarily.

One parameter that quantifies the burstiness of a process
is the Hurst parameter which varies between 1/2 and 1. In

the b-model the b parameter has the following relation with
the Hurst parameter: H ≈ 1

2− 1
2 log2(b2+(1−b)2). A small

selection of typical b parameters and their corresponding
Hurst parameters are shown in the following table:

b parameter Hurst parameter
0.5 1
0.7 0.89
0.9 0.64
1 0.5

When larger timescales are studied, the process looks
smoother. This is typical for simple stochastic processes
and they are called short range dependent. A higher parame-
ter means that burstiness occurs on more than one timescale.
Many processes found in real world applications have a
Hurst-value near 0.7. This is called the Hurst effect and
it can be modeled with a b parameter near 0.86. A detailed
explanation of this phenomenon and its consequences for
network modeling is given in [7].

It is only the duration of tokens in the resource elements
that is modeled with the b model, note that the communica-
tion is modeled with a cycle-level network simulator.

Time

T

ok
en

s
em

itt
ed

B=.5
B=.7
B=.9

Figure 4. The number of tokens that are emit-
ted by an active element over time. The three
different graphs have different b parameters.

3.4 Measurement

Performance is defined as the time it takes for a num-
ber of tokens to be processed by a specific workload ele-
ment. It is sufficient to base performance measurement on
only one element if the workload elements are reactive and
depending on each other for propagation. We call this the
“measurement element”.

Before measurements start it is necessary to warm the
simulator up by running it until a predefined number of to-
kens (Nwu) have been processed by the measurement el-
ement. This is done to make sure that measurements do
not start with an empty NoC or bus which would give an
impression of an unrealistically fast execution. Nwu may
differ for different combinations of workloads and intercon-
nects. It is important that Nwu remains constant when ex-
periments are repeated with different parameters or random
seeds. It is common to let the simulator automatically de-
tect when the load of the interconnect is stabilized and then
decide that the warm-up phase is complete. But the inter-
connect will only stabilize if there is no burstiness on large
timescales as in a Poisson process. In self-similar work-
loads with high Hurst parameters a “steady state” will not
occur and therefore it is necessary to set Nwu manually in
this case. When Nwu elements have been processed by the
measurement element the simulation time Twu is registered.
The simulation proceeds until Nr more tokens have been
processed by the measurement element when the simula-
tion time Tr is registered and simulation is stopped. The
workload runtime is then defined as: Tr − Twu.

Since there is a risk that variability in any benchmark
can lead to misleading conclusions unless it is taken into
consideration [1], the benchmarks are run several times
with one particular configuration but with different random-
seeds. This is described in [3] as the replication method.
Averages and standard deviations are calculated so that the
variability of the results can be estimated. Given the mean
runtime, its standard deviation, and the number of repeated
experiments1 confidence intervals can be calculated using
the Students t-distribution which is found in standard math-
ematical tables [19].

3.5 Workload patterns

The workload elements can be organized into different
workload patterns. While a workload patterns may model
any abstract application model, this paper focuses on two
patterns that are representative in many cases.

3.5.1 Fork-Join

A typical signal processing application can be parallelized
by distributing the work in different “fingers”. These fingers
can be implemented in pipelines for further parallelization.
The Fork-Join communication pattern is designed to mimic
this type of applications. It begins with a workload element
that emits tokens to four fingers. Each finger consists of
two subsequent workload elements. Tokens are sent from
the end of each finger to the last workload element which
has a feedback connection to the first. This synthetic signal

1Also known as samples

processing application is accompanied with six workload
elements that create interfering traffic. This communication
pattern is illustrated in Figure 5.

Figure 5. Fork-Join and its Background com-
munication pattern.

3.5.2 Processor-Memory

This communication pattern models a processor that is con-
nected to a memory. The workload element that represents
the processor will emit tokens to the memory and cannot
proceed until the token is returned. The processor and mem-
ory models are deliberately mapped to adjacent locations
for efficiency reasons. Six workload elements provide eas-
ily configurable background traffic just like in the previous
communication pattern.

Figure 6. Processor - Memory and its Back-
ground communication pattern.

4 Case Study

To demonstrate the usefulness of the performance anal-
ysis method a small case study is conducted. A bus and a
NoC, which are two fundamentally different communica-
tion infrastructures, are compared using the previously de-
scribed communication patterns. This is a relevant study
since busses and NoCs represent two different generations

of interconnects and it is important to see how they respond
to different workloads.

4.1 Communication infrastructures

The bus is 64-bits wide using round-robin arbitration and
a 1 GHz clock frequency is used. One transaction is com-
pleted every clock cycle and succeeded by a transaction
from another sender.

Nostrum [11] is a NoC platform that uses hot potato rout-
ing which has the advantages that requires no queues and
avoids contention. If a switch has more than one packet that
is preferably routed in a particular direction simultaneously
only one will be sent there while the others will be routed
elsewhere. In our tests, we have set the clock frequency to 1
GHz and each transaction is 64 bit 2. Nostrum uses a mesh
topology of variable size and here a size of 4x4 is used.

Some general conclusions can be drawn just by looking
at the design of these two communication infrastructures;

• The bus is suitable for situations where latency must
be kept low and when the bandwidth demands are low.

• A NoC can be expected to handle a much larger band-
width but its multi-hop topology will affect the lower
bound on latency.

Still, benchmarks provide further insights on the differ-
ence between the two platforms. Since the main benefit of
this performance analysis method is that burstiness can be
explicitly modified, we shall study this effect and see how
it affects both interconnects.

4.2 Experiments

The b parameter for the workload has been selected to
0.5, 0.7, and 0.9. Since the results do not differ very much
between these values, only graphs where b is 0.7 for the
workload are shown. The background b parameter is varied
between 0.5 and 1. Simulations are repeated 12 times with
different random seeds and the averaged value is used in the
graphs.

Figure 7 shows how the performance varies when the
workload burstiness is changed. It is remarkable how large
influence burstiness has on performance for the bus solu-
tion. There is up to a 25% difference in runtime between
the highest and the lowest degree of burstiness. In Nostrum
this ratio is 9% at most. However, the bus is much faster
than the NoC for this application since it is very dependent
on low latency. The reason for this is that the processor in
the model will stall when it waits for tokens to arrive from
the memory. The big impact of bursty background traffic

2The actual link bit-width is 128 bytes but only the payload is counted
as a transaction.

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.5 0.6 0.7 0.8 0.9 1

R
un

tim
e

Background b-Parameter

Workload: Processor Memory , Workload b-parameter: 0.7

Bkg Bandwidth: 4.6 GB/s , Nostrum
Bkg Bandwidth: 9.2 GB/s , Nostrum

Bkg Bandwidth: 18.4 GB/s , Nostrum
Bkg Bandwidth: 36.8 GB/s , Nostrum

Bkg Bandwidth: 460 MB/s , Bus
Bkg Bandwidth: 2.3 GB/s , Bus
Bkg Bandwidth: 4.6 GB/s , Bus
Bkg Bandwidth: 5.6 GB/s , Bus
Bkg Bandwidth: 6.4 GB/s , Bus

Figure 7. Impact of the burstiness of back-
ground traffic in the Processor - Memory pat-
tern.

affirms our claims that this is a very important property that
should be included in an accurate performance analysis.

Figure 8 depicts how the runtime varies when the band-
width of the interfering traffic is changed. The range of the
background traffic bandwidth is much smaller for the bus
since it has a much lower saturation point than the NoC.
Here, the confidence intervals are included in the plots and
we can see that it is very small. Notice that the overall run-
time is not very dependent on the background traffic for the
NoC while it shows an almost exponential growth when the
bus is used.

From these graphs we can conclude that the bus is a good
candidate for the Processor-Memory application but it is
very sensitive to its surrounding environment. It is clear that
the NoC has drawbacks when it comes to latency but thanks
to its adaptive nature it is not very sensitive to burstiness or
the amount of background traffic.

The results form the Fork-Join pattern are very differ-
ent from the previous. Figure 10 illustrates how the run-

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 9e-05

 0.0001

 0 5 10 15 20 25 30 35 40

R
un

tim
e(

s)

Background Bandwidth(GB/s)

Workload: Processor Memory , Workload b-parameter: 0.7

Bus
Nostrum

Bus Confidence Interval 95%
Nostrum Confidence Interval 95%

Figure 8. Runtime as a function of back-
ground bandwidth for Nostrum and the bus
in the Processor - Memory pattern.

time varies with different background workloads. As in the
former traffic pattern, the overall runtime is very sensitive
to the amount of background traffic in the bus based de-
sign whereas the Nostrum based design is not affected very
much.

Figure 9 shows how the runtime varies with the b pa-
rameter. The burstiness does not affect the overall runtime
in the bus based design since the graphs are completely flat.
However, the situation in the Nostrum based design requires
some explanation.

It may appear that the burstiness is affecting the exe-
cution time but since the confidence intervals overlap no
conclusions can be drawn about the impact of burstiness or
background bandwidth in this setting. The large confidence
intervals are caused by a high variability in runtime when
Nostrum is used. Since such large confidence intervals were
found the hypothesis that variability must be dealt with was
correct.

We can conclude that the bus is the fastest communica-
tion infrastructure for the Processor-Memory pattern while
Nostrum handles the Fork-Join pattern most effectively.
Also, it is clear that burstiness of the background traffic is
a property that has an impact for performance in some in-
stances and therefore it is very important in heterogeneous
NoC environments.

5 Conclusions and future work

This paper introduces a novel method for performance
analysis for networks on chip and traditional bus intercon-
nects. Instead of focusing on performance of single spe-
cific applications or random traffic, our method uses syn-

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
un

tim
e(

s)

Background b-parameter

Workload: Fork-Join, Workload b-parameter: 0.7, Bus

Bkg BW: 350 MB/s
Bkg BW: 1.76 GB/s
Bkg BW: 5.27 GB/s

Bkg BW: 350 MB/s, Confidence Interval 95%
Bkg BW: 1.76 GB/s, Confidence Interval 95%
Bkg BW: 5.27 GB/s, Confidence Interval 95%

(a) Bus

 8.2e-06

 8.4e-06

 8.6e-06

 8.8e-06

 9e-06

 9.2e-06

 9.4e-06

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

R
un

tim
e(

s)

Background b-parameter

Workload: Fork-Join, Workload b-parameter: 0.7, Nostrum

Bkg Bandwidth(BW): 350 MB/s
Bkg BW: 1.76 GB/s

Bkg BW:8.8 GB/s
Bkg BW: 350 MB/s Confidence Interval 95%
Bkg BW: 1.76 GB/s Confidence Interval 95%
Bkg BW: 8.8 GB/s Confidence Interval 95%

(b) Nostrum

Figure 9. The impact of burstiness in back-
ground traffic in (a) Bus and (b) Nostrum. No-
tice the large confidence intervals for Nos-
trum.

thetic workload models that are configurable so that they
can model any system at an early stage in a design process.
Our method accentuates the communication patterns and
the data dependences between system components. The use
of the b-model offers much more realistic and configurable
bursty workloads than traditional stochastic processes do.
Using our method, we have shown that the burstiness is a
parameter that has a significant impact on results and that it
must be considered. We have applied our method to two rel-
evant application patterns and analyzed the performance on
NoC and bus systems. These experiments show that already

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 0 2 4 6 8 10 12 14 16 18 20

R
un

tim
e(

s)

Background Bandwidth(GB/s)

Workload: Fork-Join, Workload b-parameter: 0.7

Bus
Nostrum

Bus Confidence Interval 95%
Nostrum Confidence Interval 95%

Figure 10. In the fork-join pattern, the back-
ground bandwidth has a similar impact as
before but the NoC is always faster than the
bus.

at an early design stage our method is capable to investigate
important properties like the impact of burstiness for many
applications.

We plan to apply modifications in the NoC architecture
and investigate how overall performance and burstiness tol-
erance is affected. Our method can be very useful in such
a study. It would also be interesting to try the method on
other NoC architectures than Nostrum.

So far we did not have the opportunity to assess the ac-
curacy of our workload models with real NoC applications.
While it would be very interesting to conduct such a study,
one should keep in mind that 100% accuracy can never
be achieved without an exact workload model and that the
strength of our method is that it enables performance anal-
ysis very early in the design process before any refinement
has been done.

References

[1] A. Alameldeen and D. Wood. Addressing Workload Vari-
ability in Architectural Simulations . IEEE Micro, 23(6):94–
98, November - December 2003.

[2] M. P. C. Lee and H. Mangione-Smith. MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communi-
cations Systems. In Proceedings of the 30th Annual Inter-
national Symposium on Microarchitecture, December 1997.

[3] W. J. Dally and B. Towles. Principles and Practices of In-
terconnection Networks. Morgan Kaufmann, 2004.

[4] S. González Pestana, E. Rijpkema, A. Rădulescu,
K. Goossens, and O. P. Gangwal. Cost-Performance Trade-
Offs in Networks on Chip: A Simulation-Based Approach.
In Proceedings of the conference on Design, automation and
test in Europe, volume 2, pages 764–769, February 2004.

[5] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commer-
cially representative embedded benchmark suite. In IEEE
4th Annual Workshop on Workload Characterization, pages
3–14, December 2001.

[6] K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of
the Traffic-Performance Characteristics of System-on-Chip
Communication Architectures. In Fourteenth International
Conference on VLSI Design, pages 29–35, January 2001.

[7] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson.
On the self-similar nature of Ethernet traffic (extended ver-
sion). IEEE/ACM Transactions on Networking, 2(1):1–15,
1994.

[8] S. Mahadevan, F. Angiolini, M. Storgaard, R. G. Olsen,
J. Sparso, and J. Madsen. A Network Traffic Generator
Model for Fast Network-on-Chip Simulation. In Proceed-
ings of the conference on Design, Automation and Test in
Europe, pages 780–785, 2005.

[9] J. Mahdavi and V. Paxson. RFC2678-2681.
http://www.ietf.org/rfc.html, September 1999.

[10] M. A. Marsan, G. C. G. Balbo, S. Donatelli, and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets.
Wiley Series in Parallel Computing. John Wiley and Sons,
1995.

[11] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch.
The Nostrum backbone - a communication protocol stack
for networks on chip. In Proceedings of the International
Conference on VLSI Design, pages 693–696, January 2004.

[12] K. Sadron, M. Martonosi, D. I. August, M. D. Hill, D. J.
Lilja, and V. S. Pai. Challenges in Computer Architecture
Evaluation. IEEE Computer, 36(8):30–36, August 2003.

[13] J. Voldman, B. Mandelbrot, L. Hoevel, J. Knight, and
P. Rosenfeld. Fractal Nature of Software-Cache Interaction.
IBM Journal of Research and Development, 27(2):164–170,
March 1983.

[14] M. Wang, N. H. Chan, S. Papadimitriou, C. Faloutsos, and
T. Madhyastha. Data Mining Meets Performance Evalua-
tion: Fast Algorithms for Modeling Bursty Traffic. In Pro-
ceedings of the 18th International Conference on Data En-
gineering, pages 507–516, February 2002.

[15] R. P. Weicker. Dhrystone: A Synthetic Systems Pro-
gramming Benchmark. Communications of the ACM,
27(10):1013–1030, October 1984.

[16] D. Wiklund, S. Sathe, and D. Liu. Network on chip simu-
lations for benchmarking. In Proceedings of the 4th IEEE
International Workshop on System-on-Chip for Real-Time
Applications, pages 269–274. IEEE Computer Society, July
2004.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, June 1995.

[18] T. T. Ye, L. Benini, and G. D. Micheli. Packetization and
routing analysis of on-chip multiprocessor networks. Jour-
nal of Systems Architecture, 50(2-3):81–104, 2004.

[19] D. Zwillinger, editor. CRC Standard Mathematical Tables
and Formulae. Chemical Rubber Company Press, 30th edi-
tion, 1995.

