*

Verification of Design Decisions in ForSyDe

Tarvo Raudvere, Ingo Sander, Ashish Kumar Singh, Axel Jantsch
Royal Institute of Technology
Stockholm, Sweden

tarvo,ingo,ashish,axel@imit.kth.se

ABSTRACT from communication. Also the methodology has to make it pos-
_sible to incorporate formal methods to verify systems at different

The ForSyDe methodology has been developed for system level de : . . .) >
levels of abstraction, since simulation alone is not sufficient.

sign. Starting with a formal specification model that captures the

functionality of the system at a high abstraction level, it provides F The;e alr:gumelnts have %een a basishfo(; tlhe dev;z_lorr])mggt of the
formal design transformation methods for a transparent refinement orSyDe (Formal System Design) methodology which addresses

process of the specification model into an implementation model € transformational design of embedded systems. A series of trans-
that is optimized for synthesis. A transformation may be semantic formations is applied to an initial abstract formal and functional
preserving or a design decision. The latter modifies the seman- SPecification model to refine the model into a final implementa-
tics of the system level description and changes the meaning of thetio model. In [14, 15] we have introduced transformations for
model. The main contribution of this paper is the incorporation of FOrSyDe.

model checking to verify that refined system blocks satisfy the de- The odbjlectiv_e of this paper igf_to verify _that tf)tloclés qf th;: Sys-
sign specification. We illustrate the translation of the ForSyDe code tem model satisfy system specific properties after design decision

to the SMV language and the verification of local design decisions transformations. Simulation techniques can not guarantee the cor-

with a case study of a ForSyDe equalizer model rect behavior for all input stimuli. For complex designs producing
' a mathematical proof in order to prove the effect of design deci-

. . . sions on the system behavior requires high level of expertise and
Categories and Subject Descriptors may be impossible in practice. An alternative approach to validate
a system is to apply formal verification techniques to prove that the
system satisfies the specification. We intend to use model checking
in cooperation with abstraction to validate that after each design
decision the refined system block locally satisfies system specific
General Terms properties.

Design, Verification

B.6.3 [Logic Design: Design Aids—Verification C [Computer
Systems Organizatioff: Systems specification methodology

2. RELATED WORK

Keywords According to the tagged signal model developed by Lee and
Sangiovanni-Vincentelli [10] the ForSyDe system model can be
classified as a synchronous computational model. Itis based on the
synchrony hypothesis, that also forms the base for the synchronous
1. INTRODUCTION languages. According to Benveniste and Berry "the synchronous

Future applications and architectures with extreme complexity @Pproach is based on a relatively small variety of concepts and
can be imp|emented on a sing|e Ch|p since the Capacity of inte- methods based on deep, elegant, but Slmp|e .mathematlcal princi-
grated circuits is continually growing. In order to develop these Ples” [3]. The synchronous assumption implies a total order of
applications we believe that a system design methodology has to€vents and leads to a clean separation between computation and
start at a high abstraction level, where (1) functions should be sep- communication and gives a solid base for formal methods.
arated from architecture and (2) computation should be separated TWo of the well known formal techniques for verification of the

design correctness are theorem proving [7, 8] and model checking
*This research was supported by the Swedish Foundation for [6]. In the former case the correctness of a system is determined
Strategic Research within the INTELECT program. through mathematical proof composed by the designer which de-
mands good knowledge and ingenuity. The latter method applies
state exploration techniques to decide over the correctness of a sys-
tem. The state space of a system must be finite for this approach.
Permission to make digital or hard copies of all or part of this work for N order to have a finite state space abstraction techniques can be
personal or classroom use is granted without fee provided that copies areapplied.
not made or distributed for profit or commercial advantage and that copies A good overview about program transformation in general is
bear this notice and the full citation on the first page. To copy otherwise, to gjven in [12] and for transformation of functional and logical pro-
republish, to post on servers or to redistribute to lists, requires prior specific grams in [13]. One of the most well known transformation systems

permission and/or a fee. : . o . . ;i
CODES+ISSS'030ctober 1-3, 2003, Newport Beach, California, USA. is the CIP (computer-aided, intuition-guided programming) project

Copyright 2003 ACM 1-58113-742-7/03/001G55.00. [2]. Inside CIP, program development is viewed as an evolutionary

System Design, Design Refinement, Verification

process that usually starts with a formal problem specification and focus on the functional behavior of the system rather than struc-
ends with an executable program for the intended target machine.ture and architecture. The specification model leaves a wide design
The individual transformations are done by semantic preserving space for further design exploration and design refinement, which
transformation rules, which guarantees that the final version of the is supported by our transformational refinement techniques (Sec-
program still satisfies the initial specification. tion 4).

Transformational approaches have been used mostly for develop- We describe our computational model in the sense of signals
ment of software programs [13] but software transformational ap- and processes where processes are executed concurrently and syn-
proaches do not deal with synchronous sub-domains and resource&chronous communication between them is modeled by signals. A
sharing which are required in ForSyDe. There are also a hnumber ofsignal is defined as a set of events where each eydras a value
other transformational approaches targeting hardware design, e.gand a tag. As we use the perfect synchrony hypothesis [3], all
[16], but none of them explicitly develops the concept of design signals have the same set of tags. In order to model the absence of
decisions or addresses the refinement of a synchronous model inta value at a certain tag, a data typecan be extended into a data
multiple synchronous sub-domains. type D, by adding the special valu¢. Absent values are used

Lava [5] is a hardware description language based on Haskell. to establish a total order of events when dealing with signals with
Theorem proving is used for the verification of Lava programs. different or aperiodic event rates. A system can be constructed as a
An abstract circuit should be constructed containing both a sys- network of processes and modeled as a set of equations.
tem and a property for a theorem proving method. In our approach We implement the synchronous computational model with the
we are performing a direct mapping of ForSyDe into a state ma- concept oforocess constructord\ process constructor is a higher-
chine description in SMV from which properties can be verified by order function that takesombinational functionandvaluesas in-
automatic tools. Hence, little expertise is needed for constructing put and produces a process as output. The ForSyDe methodology
a proof and this makes it easier for transformations verification. obliges the designer to use process constructors for the modeling
Esterel [4] is a synchronous language for programming reactive of processes. This leads to a well defined specification model with
systems. Both an Esterel and a ForSyDe model can be translateda clean separation betwesynchronization(process constructors)
into a form of a finite state machine as an input for automata ver- and computation(combinational function). In addition each pro-
ification systems to perform behavior analysis and proofs. How- cess constructor has a structunatdware and software semantics
ever the ForSyDe model may include more complex data-flow de- which is used to translate the implementation model into a hard-
scriptions compared with Esterel which is mostly control oriented. ware/software implementation [11].

Therefore the task of verification is more involved. Lustre [9]isa The process constructorapSY(Figure 1) takes a combinational
synchronous data-flow language for programming critical real-time function f and constructs a process with one input and output sig-
systems. The advantage of the ForSyDe methodology is that a sys-al, wheref is applied on all values of the input signal.

tem model may have control and data-flow behaviors at the same

_time. The Lustre program incIuc}es a system description as a set _of S, mapSYf) s,
input/output relations, assumption about the behavior of the envi-

ronment as a set of assertions and finally a set of properties which

will be checked by a verification tool. The verification will be done mrz]apS\(f) - E _ ¢
similar to the symbolic model checking by using binary decision where fg;)) _ o
- I

diagrams for state space exploration. In the ForSyDe methodology _ o
we are using a step-wise transformational approach where we need Figure 1: The Combinational Process ConstructomapSY
to verify each of these transformations against a design specifica-

tion. Figure 2 illustrates anooreSY process which modelsminput
Moore state machine. The process construgtooreSY takes two
combinational functiond andg as next state function and output

3. THE FORSYDE METHODOLOGY function andmy as initial state. The process construai@WithSY

3.1 The Design Process is similar tomapSYand applies a-variable combinational func-

tion f to all events of the input signals. The process constructor

The ForSyDe design process starts with the development of adelaySY models one-cycle delay and emits as the first value of
formal, abstract, functionadpecification modethat can be exe- the output signal.

cuted using the functional language Haskell [17]. This model is

then refined inside th&nctional domainby a stepwise applica- mooreS¥(f,g, mo)

tion of well defined design transformations intoiexplementation s ’ ’

model As the implementation model is a refined version of the *Q Zip\é\?;hSXJrlH d‘?'r?%/)SY }_T{ mapSYg)Fi
specification model, the same validation and verification methods S

can be applied to both models. In the partitioning phase, the imple-

mentation model is partitioned into hardware and software blocks,

which are mapped on architectural components. Only now, in the Figure 2: The mooreSY, Process Constructor
code generation phase, we leave the functional domain and enter

the implementation domaito produce VHDL or C/C++ for the

hardware and software parts as discussed in [11]. 3.3 |mp|ementaﬂ0n Model
ipe . The implementation model is the result of the refinement pro-
3.2 The SpeC|f|Cat|0n Model cess (Section 4). In contrast to the specification model which is a

The specification model is based on a synchronous computa-network of concurrent synchronous processes it may also include
tional model and uses ideal data types such as real numbers andynchronous sub-domains with a different signal rate. Synchronous
infinite buffers. It abstracts from implementation details, such as sub-domains violate the synchronous assumption since not all sig-
low-level communication mechanisms and enables the designer tonals share the same set of tags. Thus they are not allowed in the

specification model, but are introduced by well-defined transfor- @ Vi 7@
mations during the refinement process. Inside a synchronous sub-
domain the synchronous assumption is still valid and the same for- Step 1 : Introduction of identity process

mal technigues can be used as for the specification model. A A

Step 2 : Design Transformati@@hannelToHandshake
4. REFINEMENTOF THE SYSTEM MODEL Iterface

The initial specification model is stepwise refined through the N K

! ata
use of well defined design transformations into a final implementa- Vil e 222 < DataReady’ A
tion model. @ ! FIFO éﬁ';y ‘

|

. . -
There are two classes of transformation techniques: ! ReadFIFO 3 !

Semantic Preserving Transformationsdo not change the mean-
ing and the behavior of the model, rather these are mainly Figure 3: Refinement into a Handshake Protocol
used to optimize the model for synthesis.

5. VERIFICATION IN FORSYDE

Design Decisionschange the meaning of a model. A typical de- The design flow starting from the development of a specifica-
sign decision is the refinement of an infinite buffer into a tion modelMgp to an implementation modéfl,, through transfor-
fixed-size buffer withn elements. While such a design de- mationsT; is shown in Figure 4. A transformation(M, R, PN) —
cision clearly modifies the semantics, the transformed model M[R(PN)/PN] refines the process netwoRdN, which is a part of
may still behave in the same way as the original model. For the entire process network inside the molgl according to the
instance, if it is possible to verify that a certain buffer will ~ transformation ruleR. The result of the transformation is an in-
never contain more thamelements, the ideal buffer can be termediate system modkl’ where in contrast to the model M the
replaced by a finite one of size process networRN is replaced witfR(PN). In order to verify the

correctness of system blocks after design decisions we incorporate

The designer applies transformations to a system model by choos™M©del checking techniques.

ing transformation rules from the transformation library. The trans-

. . . M Mn

formation rules are characterized by a name, the required format Spetcom ™ ;1 o) My TRZ o) i T};ﬂ o) Imple
. L. cation ,Re, sRo, h-1,Rn, mentation

and constraints of the original process network, the format of the |mode] " s . model

transformed process network and the implication for the design,
i.e. the relation between original and transformed process network crL | [Process oL Process- cTL Process-
is expressed by the characteristic function. For a more elaborate ‘emp'a‘e sz“gﬂk ‘emp'a“? r&flgﬁfzk ‘emp'ata ”e“gfﬁﬂk
discussion see [15].
Since the system properties are preserved by semantic preserving [fg;’}?;@ [bsuac@ [Pg;';gs; [Abstract}n [ng”p%”] [Abstrac}n
transformations the verification is needed only for design decisions.
Design decisions can be put into various categories, for instance
clock domain refinementhich introduces multiple clock domains
in the original synchronous model aommunication refinement
which can be used to partition the system into hardware and soft-
ware parts and the communication interface between them [14].
We will take up an example of communication refinement of a syn-
chronous channel into an asynchronous protocol which is suitable
to model hardware-software interfaces (Figure 3). For this trans-
formation the channel is required to be typevgf. First an iden-
tity process is introduced, and then this process is refined into the
handshaking protocol by introducing the proce$3€©, Sendand model
Receive WhenSendis idle it tries to read data fromaIFO. If the
reading was successful th8endemits the messadeataReady to
Receiveand after receiving the messaBeady, it sends the data. Figure 4: Verification of Design Transformations
After the data is received thiReceivesends a messadek to Send
The timing behavior of the refined interface is different from the For every design transformation we have a set of predefined spec-
original interface since the handshake protocol implies a delay of ification templates which helps the designer to construct a CTL
several cycles for each event,@sndandReceiveare synchronous specification. For example a decision may be taken based on as-
processes. Also the sub-system in Receiveside of the channel sumptions about system environment. \We can assume some certain
will not process exactly the same combination of values in each data rate in the input of a FIFO buffer and according to the rate to
event cycle as in the specification model. These consequences haveet the size of the buffer. To verify that the size of the FIFO buffer
to be taken into account, when interfaces are refined. In order to will not be exceeded we offer a configurable input pattern generator
validate that the refined system block satisfies the design specifi-and a template for a CTL specification.
cation for given assumptions about the input characteristics of the In contrast to theorem proving techniques model checking can be
channel and size of the FIFO buffer, we need to incorporate verifi- applied only to systems with a finite state space. Since a ForSyDe
cation. specification model is allowed to describe a system with an infi-

Abstract
process-
network

Ri(PNa1)

Abstract
process-
network

R2(PNx2)

Translatign
to SMV
SMV progral

Abstract
process-
network

Rn(PNan)

SMV progral

SMV progral

nite state space the designer has to determine the finite state spaceitions for all the ForSyDe datatypes with some minor restriction.
through abstraction. The design flow continues with the transla-

tion of the refined part of the system model with the abstract state ¢ Integers are defined as Scalars which demands the user to

specify the range of all reachable values. The SMV tool

space into the input language of a model checking tool. We use treats them as Integers and provides arithmetic and logic op-
the Cadence version of SMV (Symbolic Model Verifier) since the eration on them. In the following we give an example of
tool has been used successfully for model checking and there is a datatype definition ofnt_0_7 which covers Integers values
straightforward mapping from the ForSyDe language to the SMV fromOto 7

language as described in Section 5.2.

. . typedef Int_0_7 0..7;
The translation from ForSyDe into SMV can be fully automated

and we give the guideline of properties which should to be verified. ~ ® A definition of a Scalar datatype contains the name of the
Based on the latter we estimate that the verification flow without new datatype and a set of all possible values. An example of
abstraction takes much less time than the designer needs for select- the RecState type definition is the following:

ing proper design decisions. typedef RecState = {WaitDataReady |,

WaitData , OutputData};
5.1 The SMV Tool
SMV [1] is a tool for the formal verification of finite state sys-
tems. The tool is based on a technique called symbolic model
checking and can be used to check whether a system satisfies a

e Constructor based datatypes will be translated to structural
datatypes. For example an absent extended Integer with pos
sible valuesAbstand Prst Int.0_7 has the following defini-

specification given in the temporal logic CTL. CTL makes it possi- tion:

ble to define various properties composing liveness, fairness, sf'ifety typedef AbSExt {PrstAbst};

and deadlock freedom which can describe very complex relations typedef Abst_Int_0_7 struct {

of signals in terms of timing and values. If the system does not Con : AbstExt ; Val : Int_0_7};

satisfy the given specification then the tool gives a counter exam- o i .
ple. The counter example is a trace from the system initial state to ~ ® A listis defined as a pair of an Array and an Integer value

a state where the verified property does not hold. Systems can be where the Integer value is employed to store the count of
expressed in the SMV language which offers modular hierarchical elements in the list. We assume that lists have a finite size
descriptions and reusable components of a system. defined by the user.

5.2 Translation from ForSyDe to SMV e Each element of a tuple will be defined as an independent

]) variable with its own datatype.
The system mapping from ForSyDe to SMV entails datatype def-

initions, translation of function and process definitions, and spec- 9.4 Functions

ification of connections between processes. Each of these steps is Functions which are arguments for process constructors in

described in further detail in the following subsections. ForSyDe will be expressed as modules in SMV. In ForSyDe a func-
The translation is illustrated with a receiver which is a part of tion has the following shape:

the refined equalizer model (Section 6). The equalizer specific function_name::inputl_type->...->inputN_type->output_type

ForSyDe code of a part of the receiver is given in Figure 5. The function.name conditionl = expressionl

state of the receiver is modeled as a tuple of two elements, the firstfunction_name conditionM = expressionM

element tells if the receiver is waiting for data or has received the _— . —_ .

data and the second element is used to keep the values of events re- The first line of a functlon_defl_nltlon EXpress Input and_ QUIpUt

ceived from the sender. The first component of the state may havedatatypes. E_ach of the folloyv_mg !|nes consists of ane condition a_nd

valueswWaitDataReadyWaitDataor OutputDatawhich are defined one expression. If the condltlon is satisfied then the corresponding

through the scalar datatypgRecState The receiver is constructed expression t_evaluates the funct|on_ output. The SM\./ modulg gener-

with the process constructoroore2S¥Yvhich has the state function ated according to the upper function has the following style:

recState the output functiorrecOutputand the initial state value MODULE function_name(inputd,...,inputN){

(WaitDataReady0) as arguments. The state transition function and gﬂ: f_déc‘itgp??

the output function are defined using pattern matching. The last ' condition] : expression1:

three lines in Figure 5 defines the output functieeOutput If

the first element of the current statéi&itDataReadyhen the first conditionM : expressionM;}}

output has valuerst Ackand the second has valbst The lineout : datatype defines a new variableut and the next

line assigns a value to the variable through a conditional case ex-
pression. To address the variable one has to furitetion.nameout.

5.5 Processes

data RecState = WaitDataReady | WaitData | OutputData

receiver = moore2SY recState recOutput (WaitDataReady,0)

recOutput (WaitDataReady,) = (Prst Ack ,Abst . . i
recoutgut EWaitData y:)) = ((Prst Ready Abst)) Process constructors in the ForSyDe library are classified as con-
recOutput (OutputData ,v) = (Abst Prst v) structors for predefined processes and constructors for user defined

processes. For the former we have predefined SMV modules since
their functionality is fixed for example memories. The latter pro-
Figure 5: Receiver in ForSyDe cess constructors are higher order functions which take a set of user
defined functions as arguments. The definition of a process P which
has behavior of a Moore state machinéis- mooreS¥(f, g, m0)
5.3 Datatypes where f is a next state functiorg is an output function andnO
The datatypes offered by the SMV language are Boolean, Scalar,is an initial state value of the state machine. The process has the
Struct and Array. This is a proper base to construct datatype defi- following translation into SMV:

MODULE Pmoore(inp1,...,inpN){

state : datatype;
output : datatype;
stateFunc . f(state,inp1l,...,inpN);

outputFunc : g(state);
init(state) := mo;

next(state) := stateFunc.out;
output = outputFunc.out;}

In the SMV languagénit denotes the initial value of a variable
andnextdenotes its value in the next state.

5.6 Netlists

A system is modeled as a network of processes in ForSyDe where
signals are used to connect processes with each other. The network
is expressed as a netlist. In SMV we construct a similar netlist in
the main module. For example the process network in Figure 6 is
expressed in ForSyDe as the following:

system sl = s5

where

(s2,s3) = P1 sl

s4 = P3 s3
s5 = P2 s2 s4

S1 Pl S p2 S

S\ p, 1%

Figure 6: A Network of Processes

and the corresponding definition in SMV is the following:

s23 : P1(sl);
s4 : P3(s23.out2);
s5 : P2(s23.outl,s4.out);

In the SMV code the signak23outl ands23out2 correspond to
the ForSyDe signals2 ands3respectively.

6. VERIFICATION OF DESIGN TRANSFOR-
MATIONS

We illustrate refinement and verification in ForSyDe by means
of the system model of an equalizer (Figure 7). The main task of
the equalizer is to adjust the audio signal according tcBthiton
Control.

Butt — .
uions Distortion| Pist
Button Control \b

Control
Level | [Distortion j
Hold Level === Conrol Cont }é

I | rol

Communication

Refinement — ™ | Levels

Audioln |

Band ‘ | Sro
Pass H Amplifier }% Sum | | Sam;\gs
Treble Audio

Audio Analyzer
Filter

AudioOut
Figure 7: Subsystems of the Equalizer

The Button Controlsubsystem monitors the button inputs and
the override signal from the subsyst@ristortion Controland ad-
justs the current bass and treble levels. Since the aperiodic data
rate of theButton Controland theDistortion Controlsubsystem is
much lower than the data rate of tAedio Filter and Audio Ana-
lyzer, theButton ControlandDistribution Controlare implemented

in software and théudio Filter and Audio Analyzeiin hardware.
We use the design transformati@hannelToHandshakgigure 3)
[15] to refine the communication between tBetton Controland
the Audio Filterin Figure 7.

We translated the refined handshake protocol into SMV. In order
to verify the correctness of the refined system block and to estimate
the size of the FIFO buffer we checked the following properties:

Property 1 The implementation of the handshake protocol includes

a finite size FIFO buffer. It is obvious that any higher data
rate of input values than the buffer size was dimensioned for,
will cause buffer overflow and the loss of data. We can ver-
ify that any data entering the channel when there was at least
one empty slot in the FIFO buffer will be transmitted into the
channel output. If this property holds we can say that there is
no data lost other than caused by overflow. The specification
of this property expressed in CTL is the following:

SPEC AG ((input_stream.Con=Prst &
input_stream.Val = 0 &
fifoOutput.st2 < SIZE-1) ->
AF (recOutput.out2.Con = Prst

& recOutput.out2.Val = 0));

The signalinput_streamis the input of the channel and may
have any value type oAbstExtIint_0_7. The state variable
fifoOutputst2 represents the current number of elements in
the FIFO buffer. The constant SIZE is defined as maximum
number of elements the FIFO buffer can stoezOutputout2

is the output signal of the channel. The given specification
defines the following property: Always if the FIFO buffer
has at least one empty slot and the channel input holds an
eventPrst0 then the channel always in the future emits value
Prst0. In a similar way we can verify the property for any
other value instead of 0.

Property 2 We specified the handshake protocol so that it takes

seven clock cycles to transport a data from the channel input
to the output if the sender process is in the initial state when
the data enters into the channel. The CTL specification of
this property is the following:

SPEC AG ((input_stream.Con = Prst &
fifoOutput.st 2 = 0 &
sender.stl = ReadFifo) ->
(AX AX AX AX AX AX AX
recOutput.out2.Con = Prst));

The variablesenderstlrepresents the state of the sender pro-
cess and initial value of the sender according to the system
model isReadFifo

Property 3 Based on the last property which says that it takes

seven clock events to transport data through the channel we
expected that if an input stream is composed of sub-streams
length of eight and containing at most one present value in
every sub-stream then the buffer size stays finite. In order to
verify this property we defined in SMV a non-deterministic
FSM which generates these sub-streams and we checked the
following property:

SPEC AG (fifoOutput.st2 < SIZE);

The SMV tool reported that the given specification is incor-

rect and gave a trace which lead to the state where the prop-
erty was not satisfied. Later we increased the length of sub-
streams from eight to nine and the proposed specification was

true. The first specification did not hold because it takes two
event cycles for the receiver to ask for the next data after it
has delivered the last data.

The designer can in a similar way estimate the required buffer
size according to any other input stream by defining a corre-
sponding FSM to generate input sub-streams.

The wrong presumption about the safe input data rate is a
typical mistake which shows that in order to validate a sys-
tem we need to incorporate formal techniques instead of us-
ing only the designer intuition or simulation techniques.

Property 4 Finally we checked that present values in the output

preserves the same order they have in the input.

The CPU time of a Sun Ultra 5 (192 MB RAM) required to verify
the properties and the number of BDD nodes created by the SMV
tool are given in Table 1.

| Property [CPU time (sec.) BDD nodes|
Property 1 2.54 61961
Property 2 0.28 0
Property 3 0.44 3739
Property 4 9.05 127040

Table 1: Verification Time and Number of BDD Nodes

We have shown that the design transformatidrannelToHand-
shakecan be used for the communication refinement from a syn-
chronous channel into an asynchronous protocol.

7.

CONCLUSION

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

In the ForSyDe methodology the design flow starts from the de- [14]
velopment of a specification model to an implementation model
through design transformations. The contribution of this paper is
the integration of a model checker for verification of refined sys-
tem blocks by introduction of mapping rules from ForSyDe to state [15]
machine descriptions in SMV. For the transformations presented in
the transformation library we offer a set of specification templates
that helps the designer to construct a CTL specification.

At present we have not incorporated a methodology to reduce [16] Tiberiu SeceleanuBystematic Design of Synchronous Digital
the state space of SMV specifications and thus the abstraction has
to be done by the user. Therefore we plan to incorporate state spacg17] Simon ThompsonHaskell The Craft of Functional
abstraction techniques in order to elaborate a methodology which
helps the user to create an abstract system model with finite and
reduced number of states.

8.
(1]

(2]

REFERENCES
The SMV model checker.
http://www-cad.eecs.berkeley.edienmcemil/smv/.
Friedrich Ludwig Bauer, Bernhrad Mlér, Helmut Partsch,
and Peter Pepper. Formal program construction by
transformations — computer-aided, intuition guided
programminglEEE Transactions on Software Engineering
15(2), February 1989.

[3] Albert Benveniste and &ard Berry. The synchronous

[4]

[5]

approach to reactive and real-time systeRreceedings of

the IEEE 79(9):1270-1282, September 1991.

Gerard Berry and Georges Gonthier. The esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programmintp(2):87-152, 1992.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam
Singh. Lava: Hardware design in Haskell.llternational
Conference on Functional Programmirit998.

Edmund M. Clarke, Orna Grumberg, and David E. Long.
Model checking and abstraction. Rroceedings of the 19th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languagepages 343 — 354. ACM Press, 1992.
David Cyrluk, S. Rajan, Natarajan Shankar, and

Mandayam K. Srivas. Effective theorem proving for
hardware verification. ITheorem Provers in Circuit Design
(TPCD '94), volume 901 ofLecture Notes in Computer
Sciencepages 203-222, Bad Herrenalb, Germany, sep 1994.
Springer-Verlag.

Michael J.C. Gordon and Tom F. Melhaintroduction to

HOL: A Theorem Proving Environment for Higher-Order
Logic. Cambridge University Press, 1993.

Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel.
Programming and verifying real-time systems by means of
the synchronous data-flow language LUSTBEftware
Engineering 18(9):785-793, 1992.

Edward A. Lee and Alberto Sangiovanni-Vincentelli. A
framework for comparing models of computatidBEE
Transactions on Computer-Aided Design of Integrated
Circuits and System47(12):1217-1229, December 1998.
Zhonghai Lu, Ingo Sander, and Axel Jantsch. A case study of
hardware and software synthesis in ForSyDeRloceedings

of the 15th International Symposium on System Synthesis
Kyoto, Japan, October 2002.

Helmut A. PartschSpecification and Transformation of
Programs Springer-Verlag, 1990.

Alberto Pettorossi and Maurizio Proietti. Rules and strategies
for transforming functional and logic progranfCM

Computing Survey28(2):361-414, June 1996.

Ingo Sander and Axel Jantsch. Transformation based
communication and clock domain refinement for system
design. In39th Design Automation Conference (DAC 2Q02)
New Orleans, USA, June 2002.

Ingo Sander, Axel Jantsch, and Zhonghai Lu. Development
and application of design transformations in ForSyDe. In
Design, Automation and Test in Europe Conference (DATE
2003) Munich, Germany, March 2003.

Circuits. PhD thesis, University of Turku, Finland, 2001.

Programming Second EditioAddison-Wesley, 1999.

