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ABSTRACT buffers and the interconnect architecture between processes. The

We propose a system synthesis method which bridges the gdjgSulting design decisions are explicit inputs to the synthesis

between a highly abstract functional model and an efficient hardProcess whlch fills in all the details |mp]|ed by thg design decisions

ware or software implementation. The functional model is based ond the functional model. The synthesis deals with several aspects,
a formal semantics and the synchrony hypothesis. However, the us&- Skeletons, elementary functions, timing model, lists and data
of skeletons in conjunction with a proper computational modeltyP€s, and communication. The result is synthesizable VHDL and

structures the system description into three layers, the system layér, code. However, in this paper we focus mainly on hardware

the skeleton layer, and the elementary layer. The synthesis proce8¥nthesis of skeletons and elementary functions.

takes advantage of this_ structure and uses a different technique fqhe next section discusses related work, Section 3 gives an
each layer: (a) connection of components and processes at the s\§rerview of the design methodology, Section 4 introduces the

tem layer; (b) template based generation of compound entities pogomputational model and skeletons, and Section 5 describes the
sibly containing state information, memory, and complex control atsynthesis techniques and gives some results.

the skeleton layer; this layer also determines the communication

and timing behaviour; (c) direct translation into combinatorial func-2, RELATED WORK

tions at the elementary layer. Thus, without compromising the foriiany computational models have been described in the literature.
mal properties of the abstract system model we provide an efficientor a comprehensive overview see Edwards et al. [4]. Very often

synthesis method. real-time systems are specified by means of concurrent processes,
which communicate asynchronously. Such a communication model
1. INTRODUCTION forms the base for languages such as SDL and VHDL. While this

High abstract, formal models can be conveniently used to capturghodel serves as a good implementation model, due to its closeness
the essential fUnCtionality of a system and to utilize theoremto architecture, we argue, that it is not a good choice for a
provers, model checkers, and other formal analysis and Veriﬁcatiomnctionaj system model. Many design decisions are already
techniques. On the other hand, there is a significant gap betwegitesent in such a model, in particular the partitioning into processes
high abstract, formal models and all the details of anand the communication mechanism between the processes. It is
implementation, which has so far prohibited efficient synthesisyery difficult to correct a wrong design decision in the later design
techniques. We attempt to bridge this gap without compromisinghhases. The complexity of the communication mechanism in some
the formal properties and the hlgh abstraction level of a functiona f these |anguages’ such as asynchronous message passing with
model. We do this with (1) a carefully selected computationalinfinite buffers e.g. in SDL, is a major difficulty for both, the
model based on timed signals for communication and skeletons fafinctional design exploration and the subsequent implementation,
typical design patterns, (2) a two-phase design exploration, i.e. dalgyen though its simple usage in these languages does not make it
type exploration and architecture exploration, and (3) a synthesigiways apparent.
method based on skeletons which uses explicitly formulated design . )
decisions to infer all the details of an implementation. The synchrony hypothesis [1] forms the base for the family of

) ] synchronous languages. It assumes, that the outputs of a system are
The computational model [11] is based on the perfect synchrongynchronized with the system inputs, while the reaction of the
hypothesis and data flow as communication concept. It essentiallystem takes no observable time. The synchrony hypothesis
provides abstractions @ommunicatiorandtime This allows the abstracts from physical time and serves as a base for a
concentration on the important system functionality. Furthermoremathematical formalism. All synchronous languages are defined
due to the abstract communication, functions can be addedormally and system models are deterministic. Synchronous
removed and re-grouped very easily, in contrast to many modellinganguages are either dedicated for data flow applications (e.g.
approaches based on concurrent processes with complicatgdstre [5]) or control oriented applications (e.g. ESTEREL [3]).
asynchronous or synchronous communication mechanisms. However, there is no language, which is good in both areas as

Our synthesis method is based on skeletons which provide §l@borated in [1]. We use this theory for our computational model,

structural hardware and software interpretation. During a desigiyyt 90 beyond it by using a more powerful language paradigm,

exploration phase design parameters are evaluated, e.g. the sizth’)tFiCI,h ?Ilows us to address both, data flow and control flow
applications.

Reekie [8] used the functional language Haskell [7] to model digital
signal processing applications. He modelled streams as infinite lists
and used higher-order functions to operate on them. Finally,
correctness preserving transformations were applied to transform a
system model into an effective implementation.

The parallel programming community has used functional
languages to derive parallel programs from a functional
specification [9, 10]. They use skeletons to structure a problem.



This formulation is then transformed into an efficient system functionality rather than structure and architecture. The

implementation for a chosen parallel computer architecture. behaviour of the system model is only based on data-dependences.

It abstracts from implementation details, in particular from low-

. e - . . level communication and timing mechanisms. The system model is

Iﬁgs"%%?ﬁ{r?'nge? ﬁC(i::flslselfllg?tl(\)/\rl]itgy Sﬂﬁgﬁg ninmeznaile],;%o unconstrainedn the sense, that it uses unconstrained data types,
g P y p ' ppIng such as infinite lists and numbers with arbitrary precision. The

communication |mpI|C|t in the mo_del and therefore left to be_ . nature of the unconstrained system model leaves a wider design
decided by the design and synthesis. However, the use of a specific

computational model and skeletons restrict the model to a static lspace comparcleqd to\t/ﬁglﬂogaleyst%rrunodels based on imperative
structure with bounded communication which can be determined '29429€s such as ' » of )

at synthesis time. Because of this restriction cost measures can béuring data type exploratiorunconstrained system functions are
developed to control and predict performance and cost of an constrained by replacing infinite data types with fixed size data
implementation, as elaborated in [12]. types. The resultinglata type decisionserve as input to the next
step in the design space exploration proceas;hitecture
exploration

Our modelling approach has been described in detail in [11] and it

Only few attempts to synthesize hardware from an abstract,
functional specification have been published. All of them differ
significantly from our approach. Ruby [14] is a circuit description Architecture exploration uses the unconstrained system model
language based on relations. The target applications are regularfogether with the data type decisions andiesign library The

data flow intensive algorithms, and much of its emphasis is on design library contains possible implementations for skeletons and
layout issues. The same idea is the base for Lava [2], which is alibrary elements. The resultingrchitecture decisionslefine the

tool to assist circuit designers in specifying, designing and details of interfaces and implementation necessary to generate the
implementing hardware. It is based on the functional language details in a VHDL model. An example of the activities in this
Haskell. Our approach uses the same language, but addresses bofthase is the exploration of sequential-parallel trade-offs of
data flow and control dominated applications and uses links to communication links.

commercial logic synthesis tools rather than dealing with
structures on lower levels. HML [13] is a hardware description
language based on Standard ML, which is a functional language
similar to Haskell. However, HML attempts to replace VHDL or
Verilog as hardware description languages, while we propose a
system specification concept on a significantly higher abstraction
level with a very different computational model. In [13] a direct

translation of HML to VHDL is described, which would not be 4. COMPUTATIONAL MODEL
possible in our approach since we propose a design spaceq 1 Definition

exploration and synthesis method which requires explicit user
input in the form of design decisions.

Synthesis is done in two steps. First the unconstrained system
model, guided by data type and architecture decisions, is
synthesized into VHDL-Code for hardware and C-Code for
software. In the second step the design is further processed by
traditional hardware synthesis and software compilation.

For a formal definition of the computational model we use the
denotational framework of Lee and Sangiovanni-Vincentelli [6].
To summarize, we base our work on the synchrony hypothesis, They define a signal as a set of events, where an event has a tag and
place it in a functional environment, use skeletons to limit the a value. Tags are used to model the order of events. In our model
models to statically determined computation and communication events are totally-ordered by their tags. We model synchronous
structures, and propose a design and synthesis method whictsystems, that means every signal has the same set of tags. Events
involves design space exploration and explicit design decisions. with the same tag are processed synchronously. To model the
absence of an event, we use a special valgottom”). Absent
3. DESIGN METHODOLOGY events are necessary to establish a total ordering among events for
In our design methodology (Fig. 1) system design starts with the real time systems with variable event rates.
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Figure 2. A signal is a set of events

A system is modelled by means of concurrent processes. Events
with the same tag are processed synchronously. The output signals
of a process are synchronized with its input signals and are

Data type| Architecture | Unconstrained
Decisions| Decisions System Model

( Synthesis to VHDL and C )_ generated instantaneously. There is no delay inside a process.
Implementation ¢ :
Domain ( Further Design Processing ) 4.2 MOde”mg Lang.uage )
We have chosen the functional language Haskell as our modelling
Figure 1. Design Methodology language, as it is based éormal semanticsis purely functional,

) i . supportshigher-order functionshas alazy evaluatiormechanism,
development of amnconstrained functionadystem model which  hrovides a variety of control constructs to facilitate also the
is ba_sed on a syr_lchronous computatl_onal model (Section 4.1), @modelling of complex control flow and is executable to allow the
functional modelling language (Section 4.2) and the use of gimylation of the system model.
skeletons (Section 4.3). The system modefusctional in the ) ] ) ] -
sense, that it uses formally defined functions to focus on the A Haskell program is a function, which consists of a composition

of other functions. Functions produce only one result. However, a



result can be a tuple (similar to a record) consisting of values of “.”, which takes two function§ andg as arguments and produces

different data types. a new function. The composition operator is defined by
4.3 System Modelling with Skeletons and (f-9) x=1(g(x) N N
E tion Composition Systems are merIIQd by composition pf processes. In qddltlon,
unc P libraries of application-oriented functions can be built by

FO”OWing the definition of our Computational model in Section 4.1 Composition of skeletons. Hence each |ibrary element has a
we describe in this section how a system is modelled. First, we hardware interpretation. However, often an effective

discuss the modelling of signals. Second, we show how skeletonsimplementation is known for a certain library element and can be
are used to model processes, and finally we introduce function added to the design library.

composition, which is used to compose the system model. . o .
This concept is illustrated with a small example. We use the

Signals.We model signals in the functional language Haskell by skeletonsmapSandscanlS to constitute a new library element
means of infinite lists, where the tag corresponds to the position in mooreS.

the list. In our model we usémed signals, which can contain

absent events. We define a data tyjsken, which is used to ~ MO°reS nextState output initState

b fth = mapSoutput . scanlS nextState initState
represent absent events or present events of theaje . mooreS can be interpreted as a Moore-FSM. It takes two
data Token value = Absent elementary functionspextState  and output , and a value

| Present value initState ~~ for the initial state as arguments (Fig. 5).

A timed signal is a signal of the typ€oken value . This is s
expressed by means of a type synofiymed :

mooreS

scanlS nextState

-

type Timed value = [Token value]

Elementary ProcessesElementary processes are modelled with

skeletons A skeleton is ahigher-order function which takes Figure 5. The composite process mooreS

elementary functionand signals as input parameters and produces

signals as output. We define an elementary function as a function,5. SYSTEM SYNTHESIS

that is combinatorial and does not include any timing behaviour.  While the system model is only based on data dependences and

thus abstracts from implementation details, such as a low-level

communication mechanism, the use of skeletons makes it possible

+ Skeletons are used for the synchronization of signals. They sep-to give the system model a hardware and software interpretation.
arate timing behaviour from computation, the latter is done by In the following discussion we use an ATM switch system as
means of the elementary functions. example.

* Skeletons can contain state information. Our design methodology leads to system models, which are

* Askeleton has a hardware and a software interpretation. Thus,composed of a hierarchy of functions. This results in a tree
a system model, which is a composition of skeletons, has also structure where the root of the tree is thystem functianin this
an interpretation in hardware, software or a mixture of both. ~ function tree we distinguish three layers with different

« As skeletons are higher-order functions, the work on correct- composition techniques (Fig. 6). The top layer is siystem layer
ness-preserving transformations can be used to transform a sysWhere composition is done by means of a set of equations. This
tem model into a more effective implementation model. layer can consist of several levels, depending on the size of the

In the following we present two important skeletons and give a system. The middle Iaye.r' Is thekeleton layenwhere functions are
hardware interpretation for each of them. composed by composition of skeletons. Skeletons cannot be

hierarchical because skeletons contain both structural and timing

The use of skeletons is the following:

The skeletonmapS is based on the higher-order functiomap, information. The bottom layer is thidementary layeconsisting of
which applies a functio on all elements of a lismapScan be elementary, pure combinatorial functions with arbitrary
interpreted as a combinatorial component with one input. hierarchical depth.

s={ee. } s = {fsel) f(ey), ..} Our synthesis methodology reflects the layered structure of the

) system model. We divide the synthesis task into three sub-tasks,
Figure 3. The skeleton mapS each of them corresponding to one layer and discuss the synthesis
The skeletonscanlS applies a functiorf on the events of a of thfe_ S)l/lstet:n Ialyer (Sectlcin 5.1), the skeleton layer (Section 5.2)
signal and an internal stateem The result of the functiori is and finally the elementary layer (Section 5.3).
used as the new state and as outpcénlS can be interpreted as  We point out, that our method includes hardware and software

a state machine with no output decoder. The needed memorysynthesis. However, in this paper the focus lies mainly on hardware
elements can be derived from the data typmeri synthesis to VHDL.

s={ge,.}

scanlS f

5.1 System Layer

Functions on the system level are composed of a set of equations.

m={my€e,, €, ..} e, = f(me) They are synthesized into a netlist of software processes and
R . hardware components. During hardware synthesis an entity

€ = f(ei_p &) ifi>1 interface is derived from the type declaration of the function. The

Figure 4. The skeleton scanlS functions on the right hand side of the equations result in

components in the netlist, while the interconnection scheme is

Composition of ProcessedMe use function composition to given by the function parameters, which work as equation

compose new processes. Haskell provides a composition operatowariables. Fig. 7 illustrates how the functi@am is synthesized



System Layer

Skeleton Layer

Figure 6. Functional hierarchy of the ATM switch system model

oam_Extractor  :: ATM_Channel ->
(VPI_Record_Channel, ATM_Channel)
oam_Extractor  atmCells
=( parS extract_oam_Information id
. partitionT is_oamCell) atmCells

‘ extract OAM ‘

Information

into a netlist.

oam:: ATM_Channel -> ATM_Channel ->
(ATM_Channel, ATM_Channel)
loam atmUp_In atmDown_In = (atmUp_Out, atmDown_Out) where
atmUp_Out oam_lInserter  userUp oamUp
atmDown_Out oam_lInserter  atmDown_In oamDown
(oamlinf, userUp) = oam_Extractor atmUp_In
(oamUp, oamDown) = oam_Handler oaminf

partitionT

atmUp_In [ oaum usertp OAM | &tmUp_Out [S_OAM Cel} identity pars
P Extractor | oaminf OamUpI Inserter g >
OAM
Handler [ oamDown FUNCTION partitionT_is_oamcCell (input : IN ATM_Token)
atmDown_Out RETURN Tuple_ATM_Token_ATM_Token IS
<+— OAM atmDown_In VARIABLE result : Tuple_ATM_Token ATM_Token ;
Inserter -
BEGIN
IF is_oamCell (input) = true THEN

Figure 7. System level functions are synthesized into a netlist result.outputl := input;

result.output2.event := Absent;
result.output2.value := input.value;
ELSE

5.2 Skeleton Layer

Each skeleton has a hardware and software interpretation, which is
incorporated as a template in the synthesis library. During
hardware synthesis a VHDL-template is modified depending on

result.outputl.event := Absent;
result.outputl.value := input.value;
result.output2 := input;

END IF;

the datatype of the skeleton and the used elementary function. RETURN result:

END partitionT_is_oamCell ;

Figure 8. Skeletons without state information are
transformed into VHDL-functions

oam_Handler ::VPI_Record_Channel ->
(ATM_List_Channel, ATM_List_Channel)
oam_Handler oaminf
=( fanS generateOAM_up generateOAM_down)
. ( mooreS updateTable toToken

A skeleton, which does not contain state information, is
synthesized into a VHDL-function. We illustrate this by the
synthesis of the skeletopartitionT which is part of the
function oam_Extractor . partitionT takes the function
is_oamCell as argument and returns a record®dM_Tokens

as result. Fig. 8 shows the synthesized result. Note that only the
boldface parts had to be changed from the VHDL-template for

partitionT (emptyTable, startTime)) oaminf

Skeletons which contain state information are synthesized into a mput | Next 2‘;?; Memory | gyat output | 5utout
VHDL-implementation of a FSM. This is illustrated by the 4 State Elements e> Decoder _‘
synthesis of the library elememhooreS, which is part of the Decoder _>

function oam_Handler. It is synthesized into three VHDL I E‘I'e“;

processes implementing an FSM. Here, the process for the next o¢ State

state decoder is synthesized from the elementary function Figure 9. Synthesis of mooreS into a FSM

updateTable  and the process for the output decoder from \HpL- or C-functions. We illustrate this by hardware synthesis of
toToken . In addition a register process for the memory elements the elementary functiols_oamCell  in Fig. 10.

using arevent clocks inferred as a direct consequenceraoreS ) T ) ]

as it contains state information. This event clock is the clock signal The function declaration is derived from the type declaration of
used in the VHDL model to define a synchronous hardware iS_OAMCell . Pattern Matching is synthesized info- or CASE
implementation. The state parameter models the initial state and isStatements.

interpreted as the reset state (Fig. 9). 54 Synthesis Results
5.3 Elementary Layer We have manually transformed the Haskell model of the

Elementary functions are combinatorial and thus synthesized into Subsystenoam (Fig. 7) with simplified data types for the ATM



is_oamCell :: ATM_Token -> Bool 7
is_oamCell Absent = False [1]
is_oamCell (Present EmptyCell) = False

is_oamCell  (Present (UserCell vci (VPI vpi)))= False

is_oamCell (Present (F5_OAM vci state)) = True

is_oamCell (Present (F4_OAM (VPI vpi) state))= True

2
FUNCTIONis_oamCell [ ]
RETURN boolean IS
VARIABLE result : boolean;
BEGIN
IF atmCell.event = Absent THEN
result := false;
ELSE
CASE atmCell.value.cellType IS
WHEN UserCell => result := false;
WHEN EmptyCell => result := false;
WHEN F4_OAM =>result := true;
WHEN F5_OAM => result := true;
END CASE;
END IF;
RETURN result;
END is_OAMCell ;

Figure 10. An elementary function is synthesized into a
VHDL-function
cells into a synthesizable VHDL model according to the described [6]
method with the Synopsys Design Compiler using the LSI_10K
library. The size of the synthesized design is 2611 gates.

(atmCell : IN ATM_Token)
(3]

[4]

[5]

In addition, we have compared the synthesized results for the FIFO
part of the design with a manually written design with different [7]
timing constrains. As illustrated in Table 1 the number of gates
generated with our synthesis method is only slightly higher than [8]
for a design directly written in VHDL.

Table 1: Synthesis results for the FIFO part

9]

Frequency Manual Design Synthesized Design Difference
(number of gates) (number of gates) (in percent)
20 Mhz 645 671 4.03%
40 Mhz 680 692 1.76%
50 Mhz 692 758 9.54%

6. CONCLUSION

We presented a novel design methodology for system design. We
combine the synchrony hypothesis with the functional language
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