
 ABSTRACT
We propose a system synthesis method which bridges the gap
between a highly abstract functional model and an efficient hard-
ware or software implementation. The functional model is based on
a formal semantics and the synchrony hypothesis. However, the use
of skeletons in conjunction with a proper computational model
structures the system description into three layers, the system layer,
the skeleton layer, and the elementary layer. The synthesis process
takes advantage of this structure and uses a different technique for
each layer: (a) connection of components and processes at the sys-
tem layer; (b) template based generation of compound entities pos-
sibly containing state information, memory, and complex control at
the skeleton layer; this layer also determines the communication
and timing behaviour; (c) direct translation into combinatorial func-
tions at the elementary layer. Thus, without compromising the for-
mal properties of the abstract system model we provide an efficient
synthesis method.

1.  INTRODUCTION
High abstract, formal models can be conveniently used to capture
the essential functionality of a system and to utilize theorem
provers, model checkers, and other formal analysis and verification
techniques. On the other hand, there is a significant gap between
high abstract, formal models and all the details of an
implementation, which has so far prohibited efficient synthesis
techniques. We attempt to bridge this gap without compromising
the formal properties and the high abstraction level of a functional
model. We do this with (1) a carefully selected computational
model based on timed signals for communication and skeletons for
typical design patterns, (2) a two-phase design exploration, i.e. data
type exploration and architecture exploration, and (3) a synthesis
method based on skeletons which uses explicitly formulated design
decisions to infer all the details of an implementation.

The computational model [11] is based on the perfect synchrony
hypothesis and data flow as communication concept. It essentially
provides abstractions ofcommunicationand time. This allows the
concentration on the important system functionality. Furthermore,
due to the abstract communication, functions can be added,
removed and re-grouped very easily, in contrast to many modelling
approaches based on concurrent processes with complicated
asynchronous or synchronous communication mechanisms.

Our synthesis method is based on skeletons which provide a
structural hardware and software interpretation. During a design
exploration phase design parameters are evaluated, e.g. the size of

buffers and the interconnect architecture between processes. The
resulting design decisions are explicit inputs to the synthesis
process which fills in all the details implied by the design decisions
and the functional model. The synthesis deals with several aspects,
i.e. skeletons, elementary functions, timing model, lists and data
types, and communication. The result is synthesizable VHDL and
C code. However, in this paper we focus mainly on hardware
synthesis of skeletons and elementary functions.

The next section discusses related work, Section 3 gives an
overview of the design methodology, Section 4 introduces the
computational model and skeletons, and Section 5 describes the
synthesis techniques and gives some results.

2.  RELATED WORK
Many computational models have been described in the literature.
For a comprehensive overview see Edwards et al. [4]. Very often
real-time systems are specified by means of concurrent processes,
which communicate asynchronously. Such a communication model
forms the base for languages such as SDL and VHDL. While this
model serves as a good implementation model, due to its closeness
to architecture, we argue, that it is not a good choice for a
functional system model. Many design decisions are already
present in such a model, in particular the partitioning into processes
and the communication mechanism between the processes. It is
very difficult to correct a wrong design decision in the later design
phases. The complexity of the communication mechanism in some
of these languages, such as asynchronous message passing with
infinite buffers e.g. in SDL, is a major difficulty for both, the
functional design exploration and the subsequent implementation,
even though its simple usage in these languages does not make it
always apparent.

The synchrony hypothesis [1] forms the base for the family of
synchronous languages. It assumes, that the outputs of a system are
synchronized with the system inputs, while the reaction of the
system takes no observable time. The synchrony hypothesis
abstracts from physical time and serves as a base for a
mathematical formalism. All synchronous languages are defined
formally and system models are deterministic. Synchronous
languages are either dedicated for data flow applications (e.g.
Lustre [5]) or control oriented applications (e.g. ESTEREL [3]).
However, there is no language, which is good in both areas as
elaborated in [1]. We use this theory for our computational model,
but go beyond it by using a more powerful language paradigm,
which allows us to address both, data flow and control flow
applications.

Reekie [8] used the functional language Haskell [7] to model digital
signal processing applications. He modelled streams as infinite lists
and used higher-order functions to operate on them. Finally,
correctness preserving transformations were applied to transform a
system model into an effective implementation.

The parallel programming community has used functional
languages to derive parallel programs from a functional
specification [9, 10]. They use skeletons to structure a problem.
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This formulation is then transformed into an efficient
implementation for a chosen parallel computer architecture.

Our modelling approach has been described in detail in [11] and it
falls, according to a classification by Skillicorn and Talia [12], into
the “nothing explicit” level, with parallelism, mapping and
communication implicit in the model and therefore left to be
decided by the design and synthesis. However, the use of a specific
computational model and skeletons restrict the model to a static
structure with bounded communication which can be determined
at synthesis time. Because of this restriction cost measures can be
developed to control and predict performance and cost of an
implementation, as elaborated in [12].

Only few attempts to synthesize hardware from an abstract,
functional specification have been published. All of them differ
significantly from our approach. Ruby [14] is a circuit description
language based on relations. The target applications are regular,
data flow intensive algorithms, and much of its emphasis is on
layout issues. The same idea is the base for Lava [2], which is a
tool to assist circuit designers in specifying, designing and
implementing hardware. It is based on the functional language
Haskell. Our approach uses the same language, but addresses both
data flow and control dominated applications and uses links to
commercial logic synthesis tools rather than dealing with
structures on lower levels. HML [13] is a hardware description
language based on Standard ML, which is a functional language
similar to Haskell. However, HML attempts to replace VHDL or
Verilog as hardware description languages, while we propose a
system specification concept on a significantly higher abstraction
level with a very different computational model. In [13] a direct
translation of HML to VHDL is described, which would not be
possible in our approach since we propose a design space
exploration and synthesis method which requires explicit user
input in the form of design decisions.

To summarize, we base our work on the synchrony hypothesis,
place it in a functional environment, use skeletons to limit the
models to statically determined computation and communication
structures, and propose a design and synthesis method which
involves design space exploration and explicit design decisions.

3.  DESIGN METHODOLOGY
In our design methodology (Fig. 1) system design starts with the

development of anunconstrained functionalsystem model which
is based on a synchronous computational model (Section 4.1), a
functional modelling language (Section 4.2) and the use of
skeletons (Section 4.3). The system model isfunctional in the
sense, that it uses formally defined functions to focus on the

system functionality rather than structure and architecture. The
behaviour of the system model is only based on data-dependences.
It abstracts from implementation details, in particular from low-
level communication and timing mechanisms. The system model is
unconstrainedin the sense, that it uses unconstrained data types,
such as infinite lists and numbers with arbitrary precision. The
nature of the unconstrained system model leaves a wider design
space compared to traditional system models based on imperative
languages such as VHDL, SDL, or C++.

During data type explorationunconstrained system functions are
constrained by replacing infinite data types with fixed size data
types. The resultingdata type decisionsserve as input to the next
step in the design space exploration process,architecture
exploration.

Architecture exploration uses the unconstrained system model
together with the data type decisions and adesign library. The
design library contains possible implementations for skeletons and
library elements. The resultingarchitecture decisionsdefine the
details of interfaces and implementation necessary to generate the
details in a VHDL model. An example of the activities in this
phase is the exploration of sequential-parallel trade-offs of
communication links.

Synthesis is done in two steps. First the unconstrained system
model, guided by data type and architecture decisions, is
synthesized into VHDL-Code for hardware and C-Code for
software. In the second step the design is further processed by
traditional hardware synthesis and software compilation.

4.  COMPUTATIONAL MODEL

4.1  Definition
For a formal definition of the computational model we use the
denotational framework of Lee and Sangiovanni-Vincentelli [6].
They define a signal as a set of events, where an event has a tag and
a value. Tags are used to model the order of events. In our model
events are totally-ordered by their tags. We model synchronous
systems, that means every signal has the same set of tags. Events
with the same tag are processed synchronously. To model the
absence of an event, we use a special value⊥ (“bottom”). Absent
events are necessary to establish a total ordering among events for
real time systems with variable event rates.

A system is modelled by means of concurrent processes. Events
with the same tag are processed synchronously. The output signals
of a process are synchronized with its input signals and are
generated instantaneously. There is no delay inside a process.

4.2  Modelling Language
We have chosen the functional language Haskell as our modelling
language, as it is based onformal semantics,is purely functional,
supportshigher-order functions,has alazy evaluationmechanism,
provides a variety of control constructs to facilitate also the
modelling of complex control flow and is executable to allow the
simulation of the system model.

A Haskell program is a function, which consists of a composition
of other functions. Functions produce only one result. However, a
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result can be a tuple (similar to a record) consisting of values of
different data types.

4.3  System Modelling with Skeletons and
Function Composition

Following the definition of our computational model in Section 4.1
we describe in this section how a system is modelled. First, we
discuss the modelling of signals. Second, we show how skeletons
are used to model processes, and finally we introduce function
composition, which is used to compose the system model.

Signals.We model signals in the functional language Haskell by
means of infinite lists, where the tag corresponds to the position in
the list. In our model we usetimed signals, which can contain
absent events. We define a data typeToken , which is used to
represent absent events or present events of the typevalue .

data Token value =  Absent
                  | Present value

A timed signal is a signal of the typeToken value . This is
expressed by means of a type synonymTimed :

type Timed value = [Token value]

Elementary Processes.Elementary processes are modelled with
skeletons. A skeleton is ahigher-order function, which takes
elementary functionsand signals as input parameters and produces
signals as output. We define an elementary function as a function,
that is combinatorial and does not include any timing behaviour.

The use of skeletons is the following:

• Skeletons are used for the synchronization of signals. They sep-
arate timing behaviour from computation, the latter is done by
means of the elementary functions.

• Skeletons can contain state information.
• A skeleton has a hardware and a software interpretation. Thus,

a system model, which is a composition of skeletons, has also
an interpretation in hardware, software or a mixture of both.

• As skeletons are higher-order functions, the work on correct-
ness-preserving transformations can be used to transform a sys-
tem model into a more effective implementation model.

In the following we present two important skeletons and give a
hardware interpretation for each of them.

The skeletonmapS is based on the higher-order functionmap,
which applies a functionf on all elements of a list.mapScan be
interpreted as a combinatorial component with one input.

The skeletonscanlS applies a functionf on the events of a
signal and an internal statemem. The result of the functionf is
used as the new state and as output.scanlS can be interpreted as
a state machine with no output decoder. The needed memory
elements can be derived from the data type ofmem.

Composition of Processes.We use function composition to
compose new processes. Haskell provides a composition operator

“.”, which takes two functionsf andg as arguments and produces
a new function. The composition operator is defined by

(f . g) x = f(g(x))

Systems are modelled by composition of processes. In addition,
libraries of application-oriented functions can be built by
composition of skeletons. Hence each library element has a
hardware interpretation. However, often an effective
implementation is known for a certain library element and can be
added to the design library.

This concept is illustrated with a small example. We use the
skeletonsmapSandscanlS to constitute a new library element
mooreS .

mooreS  nextState output initState
   = mapS output . scanlS  nextState initState

mooreS can be interpreted as a Moore-FSM. It takes two
elementary functions,nextState and output , and a value
initState  for the initial state as arguments (Fig. 5).

5.  SYSTEM SYNTHESIS
While the system model is only based on data dependences and
thus abstracts from implementation details, such as a low-level
communication mechanism, the use of skeletons makes it possible
to give the system model a hardware and software interpretation.
In the following discussion we use an ATM switch system as
example.

Our design methodology leads to system models, which are
composed of a hierarchy of functions. This results in a tree
structure where the root of the tree is thesystem function. In this
function tree we distinguish three layers with different
composition techniques (Fig. 6). The top layer is thesystem layer,
where composition is done by means of a set of equations. This
layer can consist of several levels, depending on the size of the
system. The middle layer is theskeleton layer, where functions are
composed by composition of skeletons. Skeletons cannot be
hierarchical because skeletons contain both structural and timing
information. The bottom layer is theelementary layerconsisting of
elementary, pure combinatorial functions with arbitrary
hierarchical depth.

Our synthesis methodology reflects the layered structure of the
system model. We divide the synthesis task into three sub-tasks,
each of them corresponding to one layer and discuss the synthesis
of the system layer (Section 5.1), the skeleton layer (Section 5.2)
and finally the elementary layer (Section 5.3).

We point out, that our method includes hardware and software
synthesis. However, in this paper the focus lies mainly on hardware
synthesis to VHDL.

5.1  System Layer
Functions on the system level are composed of a set of equations.
They are synthesized into a netlist of software processes and
hardware components. During hardware synthesis an entity
interface is derived from the type declaration of the function. The
functions on the right hand side of the equations result in
components in the netlist, while the interconnection scheme is
given by the function parameters, which work as equation
variables. Fig. 7 illustrates how the functionoam is synthesized
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into a netlist.

5.2  Skeleton Layer
Each skeleton has a hardware and software interpretation, which is
incorporated as a template in the synthesis library. During
hardware synthesis a VHDL-template is modified depending on
the datatype of the skeleton and the used elementary function.

A skeleton, which does not contain state information, is
synthesized into a VHDL-function. We illustrate this by the
synthesis of the skeletonpartitionT which is part of the
function oam_Extractor . partitionT takes the function
is_oamCell as argument and returns a record ofATM_Tokens
as result. Fig. 8 shows the synthesized result. Note that only the
boldface parts had to be changed from the VHDL-template for
partitionT .

Skeletons which contain state information are synthesized into a
VHDL-implementation of a FSM. This is illustrated by the
synthesis of the library elementmooreS , which is part of the
function oam_Handler. It is synthesized into three VHDL
processes implementing an FSM. Here, the process for the next
state decoder is synthesized from the elementary function
updateTable and the process for the output decoder from
toToken . In addition a register process for the memory elements
using anevent clockis inferred as a direct consequence ofmooreS
as it contains state information. This event clock is the clock signal
used in the VHDL model to define a synchronous hardware
implementation. The state parameter models the initial state and is
interpreted as the reset state (Fig. 9).

5.3  Elementary Layer
Elementary functions are combinatorial and thus synthesized into

VHDL- or C-functions. We illustrate this by hardware synthesis of
the elementary functionis_oamCell  in Fig. 10.

The function declaration is derived from the type declaration of
is_OAMCell . Pattern Matching is synthesized intoIF - or CASE-
statements.

5.4  Synthesis Results
We have manually transformed the Haskell model of the
subsystemoam (Fig. 7) with simplified data types for the ATM
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oam :: ATM_Channel -> ATM_Channel ->
       (ATM_Channel, ATM_Channel)
oam atmUp_In atmDown_In = (atmUp_Out, atmDown_Out) where
    atmUp_Out         = oam_Inserter  userUp oamUp
    atmDown_Out       = oam_Inserter  atmDown_In oamDown
    (oamInf, userUp)  = oam_Extractor  atmUp_In
    (oamUp, oamDown)  = oam_Handler  oamInf
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Figure 8. Skeletons without state information are
transformed into VHDL-functions

oam_Extractor  :: ATM_Channel ->
                 (VPI_Record_Channel, ATM_Channel)
oam_Extractor  atmCells
   = ( parS  extract_oam_Information id

. partitionT  is_oamCell) atmCells

FUNCTION partitionT_is_oamCell (input : IN ATM_Token)
   RETURN Tuple_ATM_Token_ATM_Token  IS
      VARIABLE result : Tuple_ATM_Token_ATM_Token ;
BEGIN
   IF is_oamCell (input) = true THEN
      result.output1 := input;
      result.output2.event := Absent;
      result.output2.value := input.value;
   ELSE
      result.output1.event := Absent;
      result.output1.value := input.value;
      result.output2 := input;
   END IF;
   RETURN result;
END partitionT_is_oamCell ;
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cells into a synthesizable VHDL model according to the described
method with the Synopsys Design Compiler using the LSI_10K
library. The size of the synthesized design is 2611 gates.

In addition, we have compared the synthesized results for the FIFO
part of the design with a manually written design with different
timing constrains. As illustrated in Table 1 the number of gates
generated with our synthesis method is only slightly higher than
for a design directly written in VHDL.

6.  CONCLUSION
We presented a novel design methodology for system design. We
combine the synchrony hypothesis with the functional language
paradigm in order to design both control and data flow dominated
systems. The design starts with a high level system model, that is
purely functional and only based on data dependences. This
means, that the system model abstracts from implementation
issues such as detailed communication mechanisms and its formal
nature supports formal methods and verification. However, despite
of its high abstraction level, the use of skeletons makes it possible
to interpret the system model as hardware, software or a mix of
both leading to an efficient implementation.

The design flow consists of a design exploration and a synthesis
phase. The design exploration results in design decisions which are
input to the synthesis process. We discussed mainly the synthesis
of hardware from the system model, which is organised in three
layers. Our method reflects these layers and uses suitable synthesis
strategies for each of them. We illustrated the feasibility of our
method by the synthesis of the OAM subsystem of an ATM switch.

We will focus our future work on (1) software synthesis, (2)
communication synthesis between heterogeneous components
under consideration of memory structures (message passing,
shared memory), (3) architecture exploration and (4) the
connection of formal verification methods to our design
methodology.
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Table 1: Synthesis results for the FIFO part

Frequency Manual Design
(number of gates)

Synthesized Design
(number of gates)

Difference
(in percent)

20 Mhz 645 671 4.03%

40 Mhz 680 692 1.76%

50 Mhz 692 758 9.54%

is_oamCell  :: ATM_Token -> Bool
is_oamCell  Absent                            = False
is_oamCell  (Present EmptyCell)               = False
is_oamCell  (Present (UserCell vci (VPI vpi)))= False
is_oamCell  (Present (F5_OAM vci state))      = True
is_oamCell  (Present (F4_OAM (VPI vpi) state))= True

FUNCTION is_oamCell (atmCell : IN ATM_Token)
   RETURN boolean IS
      VARIABLE result : boolean;
BEGIN
   IF atmCell.event = Absent THEN
      result := false;
   ELSE
      CASE atmCell.value.cellType IS
         WHEN UserCell  => result := false;
         WHEN EmptyCell => result := false;
         WHEN F4_OAM    => result := true;
         WHEN F5_OAM    => result := true;
      END CASE;
   END IF;
   RETURN result;
END is_OAMCell ;

Figure 10.  An elementary function is synthesized into a
VHDL-function


