Probabilistic Verification of Multiple-Valued Functions

Elena Dubrova

Department of Electronics
Royal Institute of Technology

S-164 40 Kista
Sweden
elena@ele.kth.se

Abstract

This paper describes a probabilistic method for verify-
ing the equivalence of two multiple-valued functions. Each
function is hashed to an integer code by transformingit to a
integer-valued polynomial and the equival ence of two poly-
nomialsischecked probabilistically. The hash codesfor two
equivalent functions are always the same. Thus, the equiv-
alence of two functions can be verified with a known proba-
bility of error, arising from collisions between inequivalent
functions. Such a probabilistic verification can bean attrac-
tive alternative for verifying functions that are too large to
be handled by deterministic verification methods.

1. Introduction

In recent years, advances in integrated circuit technology
made feasible fabrication of several commercial products
benefiting from multiple-valued logic, such as 256-Mbit 4-
valued flash memory [1] and 4-Gbit 4-valued DRAM [2].
These products can be seen as first steps toward recognitio
of the increasing role of multiple-valued logic in the next
generation of electronic systems. However, for further prac-
tical utilization, efficient computer-aided tools for design,
testing and verification of multiple-valued logic circuits are
needed. Some existing tools, such as Berkeley’s tool for
verification and synthesis VIS [3], provide a solution for the
special case of multiple-valued input binary-valued output
functions, but the general problem is still open.

This paper focuses on the problem of verification of
multiple-valued functions. Up to now, very little research
is done in this area. Some techniques for verification

Harald Sack
FB IV - Informatik
Universit Trier
D-54286 Trier
Germany
sack@uni-trier.de

Diagrams (ROBDDs) [6] can adapted to Multiple-valued
Decision Diagrams (MDD) [7] as shown in [8]. However,
the MDD verification methods representing functions as
single, monolithic graph might be infeasible for large func-
tions. We believe that deterministic methods of verification
will not be practical for the multiple-valued logic domain
due to the increasing complexity of the problem.

In this paper we present a probabilistic method for de-
sign verification of multiple-valued logic functions, which
generalizes the method introduced in [9]. We define a func-
tional transformationd which converts a multiple-valued
functionf : M™ — M on a setM Cl:f{(),l,...,m— 1}
into a polynomial of typed,, [f] : Z} — Z, over a finite
field of integersZ, modulop, for some prime. This poly-
nomial is used to generate a hash codeffdny evaluating
the value ofA,,[f](z1,...,z,) for randomly chosen val-
ues ofz; from Z,, i € {1,...,n}. The hash codes for two
equivalent functions are always the same. Thus, the equiva-
lence of two functions can be verified with a known proba-
bility of error, arising from collisions between inequivalent
functions.

The paper is organized as follows. In Section 1, the
Bansformiis defined and its properties are studied. Section 2
shows how to compute the integer-valued polynomial given
by A-transform. Section 3 defines the notion of hash code
for a function. In Section 4, we give a conclusion and de-
scribe the topics for further research.

2. Definition and properties of A-transform

To define the transformatias, we associate key poly-
nomial with each of then™ input assignments of a multiple-
valued functionf(zy,...,z,). We then sum up the key

of Boolean circuits, such as random simulation or sym- polynomials of assignments producing the non-zero output
bolic simulation, can be directly applied to verification of value of f, and interpret the result as a integer-valued func-
multiple-valued logic case [4], [5]. Similarly, verification tion A, [f](z1,...,z,) OverZ,.

procedures employing Reduced Ordered Binary Decision The key polynomial for a given row of the truth table is a

0-7695-0692-5/00 $10.00 ® 2000 IEEE

product of terms, where each term is associated with a par-

ticular input variabler;, i € {1,...,n}. If b; represents the
value ofz; in a given row of the truth table, then the corre-
sponding termw(b;, ;) in the key polynomial is defined as
follows:

Definition 1 For anym > 1, w : Z, x Z, = Z, isdefined
by

= 1forb = ¢ and

i izt
It is easy to see that [=% =
jeM—{}

0 for b # 1.

%’; = Therefore, parametdr
jeM—{i}
—T

acts as a selector between the termH J]—

—1

jeM—§}
ferent values ofi € M, ie. w(0,z) = []
jeM—{o}

H]%'”f and so on. On the other hand, each
jem—{1}
of the terms H JJ_Tf represents a polynomial which

jeM—§}

evaluates to 1 for. = i and evaluatesto O far € M — {i}.

for dif-

j—x
j L

w(l,z) =

So, such a polynomial has a behavior similar to the behavior

of the literal operatofv:

pd [om—1 if o =14
10 otherwise
except that forr = i the literalz evaluates ton — 1, and

notto 1.

Thekey polynomial W, for an assignmerb,, ..., b,) €
M™ of n variables is defined as the product of th@;, ;)
terms,i € {1,...,n}:

Definition 2 For anyn > 0 andm > 1, the key polynomial
W, : 22" — Z, isdefined by

n

[T w(bi,)

i=1

Wn(bl,.-.,bn,xl,-.-,xn)

For example, forn = 3:
1
W2(0, 1,1‘1,1‘2) = 5(1 — .7,'1)(2 — .7,'1)1'2(2 — .’L‘g).
Similarly:

Wa(1,2,21,0) = 21 (2 — xl)(—%:@)u _ 22).

0-7695-0692-5/00 $10.00 ® 2000 IEEE

Now, we define the transformatiof as a sum of key
polynomialsW,, for all assignmentsb,...,b,) € M",
each multiplied by the value gof for the corresponding as-
signment. We give a definition, applicable for general func-
tionsZ; — Z, overthe fieldZ,. Note that, sincé/ C Z,,

the multiple-valued function8/™ — M are a subset of the
field functionsZ} — Z,. While a field function is defined

for inputsz; ¢ M as well, the values which the function
produces for such assignments do not participate in the def-
inition. To distinguish between multiple-valued and field
functions, throughout the paper we use the unsubscribed
lettersf, g for multiple-valued functions of typ&/™ — M

and the subscribed lettefs, g, for field functions of type

Zy = Zy.

Definition 3 Given a function of type f. : Z} — Z, and
m > 1, the polynomial A,,[f.] : Z}} — Z, is defined by

Anmlfl(z1,.. . 20) =
= Z fz(bla"abn)'Wn(bla"abnawla"'axn)
(b1,..,bn)EM™

For example, form = 3 andn 2, the polynomial

As[f:](x1,z2) is given by

A

o
— =
o

w
8

[
=]

™)
Il

=~ o~

8 wlrolhg)—

(
(2 — I .7,'2(2 —1'2) +
(

N = ON = ON -

—z1)(1 —21)(1 —22)(2 —22) +
—z1)(1 — z1)w2(2 — m2) +
—.%’1)(]. — .%‘1)(—.7)2)(1 — .7,‘2).

++++++++1

SR TR SR TR S S S ey

NN N == OO

N N N N N N N N
&

o~ o~

NN S

E.g. for the 3-valued functioffi(x1,x2) = MIN(x1,x2),
the corresponding polynomial is

Ag[f](&?l,&?g) ZE1(2 — 371)372(2 — 372) + iL'l(
1) (=22)(1—22) + (—21) (1= 21) 22 (2—22) +2(—121)
l‘l)(—l‘Q)(]. — 1'2) = gxlwz 2

2 —

(1~
1

— 1123 — 23w + 5;6%362.

Note that theA-transform is defined only for assign-
ments(by, ..., b,) € M™. Therefore, if two field functions
f- andg, have the same values for &, ..., b,,) € M"™,
then they are treated identically by tHetransform. We say
that two such functions are-equivalent:

Definition 4 Thefunctions f, and g. of type Z} — Z, are
m-equivalentif andonlyif f,(b1,...,bn) = gz(b1,...,by)
for any assignment (b, ...,b,) € M™.

We write f. = g. to denote thaf. andg. arem-equivalent. in the following way
If both f andg are multiple-valued functions of type ™ —

M thenf 2 g is the same ag = g. m—1 E
By Definition 3, f. Z g. implies A,[f.] = Anlf] = H T A [frimi]
Apnlf:]. However, can we concludd,,[f.] # Am[f:] =0 \keM—§} k=

from f, ; g.? To answer this question let us examine the
behavior of polynomiali,,.[/] when itis evaluated for some Proof: In order to simplify the exposition and without loss
assignmentby,...,b,) € M". Itis easy to see that for of generality, we show the proof for the casexef= z;.
anyb, b’ € M, w(b,b') = 1if b = V', andw(b,b') = 0 We useX as an abbreviation far, , . .., z,,.
otherwise. Therefore, for any:,...,b,), (b},..., b)) €
M"™, W(by,...,bp,by,...,0) = 1if b; = b, for all A
yrrr T T Tt = X
i€ {1,...,n}, andW(by,...,bu,b,,...,b,) = 0 oth- ml/] D Jube) Walbr,- o ba, X)
. . . (bl,..,bn)EM"
erwise. Using these facts, we can prove the following theo- o
{Definition 3}

rem:
m—1
Z Z f(jab2a"7bn)'Wn(j7b27"'7b7HX)

3=0 (ba,..,bn)EMn—1

Theorem 1 For anyfunction f. : Z" — Z,, Ap[f:] = f-.

. TNt ! ! n
E;S(;f:. By Definition 3, for any(b},...,b,) € M™ we {re-grouping

m—1
A A => Yoo fGbaba) - [

J=0 (b2,eesby) €M1 ke M-}
= Z fz(bla-'-7b’n)'Wn(bla"'abn7bll7"'7b'ln)
(b1,..,bp)EM™

“Wi1(b2y .- bny T2, -,)

Since Wby, ...,bn,bl,...,0.) = 1 only if b; = b {w(j,z1) =[] %=, Definition 2}
for all i € {1,...,n}, and O otherwise, this gives us keM—{}
AplfJ00,...,0) = f(¥,...,b") - 1. Since it holds !
forany(by,...,b!,) € M", we getd,,[f.] = f.. O - II =) Anlfesi]

Jj=0 \keM- {7}

It follows from the theorem that, though applying the
A-transform to a multiple-valued functigfi increases the {Definition 3} O
domain of f from M™ to Z,}, the polynomialA,,[f] still

yields the same values g5 when evaluated for an as- next we prove a lemma showing how the term

signment(by,...,b,) € M"™. Therefore, the polynomi- bz .
als for two different multiple-valued functiong and g ke]\l/;[{i}kj J € M, can be expressed by arequivalent
differ on all assignmentsb,,...,b,) € M™ for Wh_lch polynomial in linear form.
fby,...,b,) # g(by,...,b,). Consequentlyf # g im-
plies A, [f] # Aulg].
Lemmal For any variable z from Z,, any fixed j € M,
3. Computing the A-transform andm > 2:
.

Computing A-transforms using Definition 3 is feasible Za,oxi ifj =0
for very small functions. For larger functions, we developed = ‘
an alternative method, which is described in this section. k— ”7 m a]-jxj + aj(m,j);vm*j, if j € M—{0}

Let fa.,=; Qenote a subfunct_ion .of the function beM— {j}k —=J andj £ m—j
f(zy,...,z,) with the variabler; being fixed to the value
j, ie. fxiZj d:f f(mla s 7wi71aj7wi+17 s awn)'] ajjwj, If'] € M_{O} andj - m_j

We can apply the following decomposition to a polyno-
mial A,,,[f], which can be considered as a generalization of where Vi, j € M, aij = %, with D and D;; given by
Shannon decomposition of Boolean functions:

m—1 m—1
Theorem 2 Every polynomial 4,,[f], m > 1, can be de- D= H it H (m—1)
composed with respect toavariablex; of f,i € {1,...,n}, i1 i1

0-7695-0692-5/00 $10.00 ® 2000 IEEE

4 m—1 m—1
H kkOmi _ H k(m_k)®7ni7 ifj =0
k=1 k=1
m—1
k=1
m—1
R andj #1
m—1 m—1
1. (Hkk_ Hkmk> ifj £0andj—i
k=1 k=1
| 0, otherwise
1)

where ” @,,, 7 denotes addition modulo m and all other
operations are regular arithmetic operationsin Z,,.

Proof: We compute the coefficients;, ¢,j € M, by solv-
ing the following system ofn linear equations withr un-
known elements:

0 +a1 0 +a2
].0-|-(11j]. -|—(lz

0 + .. +a(m 1)] - _bO
12"‘ +a(m 1)j " 1m 1_b1

agj - (m —1)° +ay; - (m — 1! +ay; - (m —1)* +
ot amenyj (=1 = by
whereVi € M, b; = H ’,jj; Such a system can be

keM—{}
described by matrices 8 - a = b, where

00 01 02 Omfl
X _ 10 11 12 1m71
(m=1)° (m—1)' (m—1)> .. (m—1)m!
ao; bo
a— ayj b= by
A(m—1); bm—1

Examining the structure ab;;, we can derive the fol-
lowing properties of the elements of;:

% Vi,j: suchthaf =0ori=jori=m—j
a5 =
N 0 otherwise

(2)
So, the only elements;; which can possibly have non-
zero values are;, for all i € M, anda;; and a;(,_;
forall j € M — {0}. Therefore, the expression for the term

[T %= canbe simplified to:

keM—{}

((m—1
Zawxi, if] =0

;@ + aj(mgyx™ 7, if j € M—{0}
andj #m—j

[ajja?, if j € M—{0}andj =m—j
O

k—z
k=i

As we mentioned above, H has a behavior

keM—{}
similar to the behavior of the literal operatjo,rexcept that
forz = j the literal evaluates ton — 1, and not to 1.

Therefore,t ™ m-1-] ¥=%, and thus, from
keM—{j}
Lemma 1, we can conclude that
(m—1
(m—1)- Zaomi ifj=0
. i=0
22 (m=1)-(aj;27 + ajimpz™7), if j € M—{0}
andj #m —j
L (m—=1)-a;;27, if je M —{0}andj =m —j

We use Theorem 2 and Lemma 1 to derive another type
of decomposition of4,,,[f], which will be used later to de-
rive a canonical expansion fe,, [f]. Before giving the de-
composition, we first summarize some propertied gf f1,
obvious from Definition 3.

Lemma 2 For any field functions f, and g. and any con-

From linear algebra we know that such a system always hastant ¢ € Zp,

a solution, and this solution is unique [10]. We compute

theith element ok by applying Kramer's rule, which says
that, for anyi € M, a;; is given by the formula,;; = %,
whereD is thedeterminant of X, andDy; is the determi-
nant computed after the replacement ofitmecolumn ofX
by vectorb.

Observe, that matriXX has a very regular structure,

namely for alli,j € M, z;; = i/. Therefore, by applying

standard rules for computing determinants [10], it is easy to

show thatD andD;; are given by the equation (1).

0-7695-0692-5/00 $10.00 ® 2000 IEEE

@ Amlc- fz]=c- A [f].

(b) A, [f~ + g~] [fz] + An [gz]'
Theorem 3 Every polynomial 4,,[f], m > 1, can be de-
composed with respect to a variable z of f in the following
way:
casel: if m isodd, then

m—1
Anf] = aoo Am[fr=0] +Z ((ajoAm[fe=o0]+
j=1

+ajjAm[fw=j] + a](m—_j)Am[fwszj]) : CUj)

case 2: if m iseven, then

m—1

Anlf] = a0 Amlfe=ol + Y ((@joAm[fo=o] +
J¢=m/2
+a.7.7 [fz_]]‘r%m])A rfw m— J]) wj_|_

+ (amoAm[fomo] + am o Ap[fomm2]) - £™/?)

whereVi, j € M, a;; = 2, and D and D;; given by ().

Proof: An[f] =
7j=0

k—x;
II =
keM—{j}
m—1

Zazoiﬂ Al fe=o] +
'Am—[x:j]

> “An|fe=t] {Theorem 2

m—1
> (aj;a7 + ajm—pa™)
j=1

{Lemma 1

m—1
= agoAm[fa=o0] + Z (ajoAm[fomo] + ajj Am[fomj]+
j=1
+ a’j(mfj)Am[fx:m—]]) {reordering

a

Let F' be the vector of coefficients of the truth table of
the functionf and A™ be a transformation matrix, defined
as follows:

Definition 5 Them™ xm™ matrix A™ isdefinedinductively
by:

1.4t 4
apo 0 0 0
aio ar 0 a1(m—1)
a20 0 a22 0
a(m_2)0 0 a(m_2)2 0
A(m—-1)0 G(m—1)1 0 A(m—1)(m—1)

whereVi, j € M, the coefficients a;; are given by (2).
2. 4n L 41 g gn-t
where” @ denotes the Kronecker product of two matrices.

Clearly, if Theorem 3 is successively applied to the poly-
nomials A4,,[f.,=«] Of subfunctionsf,,—, about all the
remaining variables, we will finally get an expression in
which A,,[f] is expanded in all the variables §f

0-7695-0692-5/00 $10.00 ® 2000 IEEE

Theorem 4 Every polynomial A4,,[f], m > 2, of an n-
variable m-valued function f can be expressed in the fol-
lowing canonical form

m"—1

fl= Z cj oot x gl
Jj=0

where (iyis . . . i,,) iSthemrary expansion of 4, with i, being
theleast significant digit, and the coefficients¢; are given by

the vector C 4 [coct - .. cmn—1] COMputedasC = A™ - F

Proof: By induction onn. We show the proof only for the
case ofim being odd. Forn - even the proof is similar.

1) Letn = 1. According to Theorem 3, any polynomial
Ap[f] of a functionf () of one variabler can be decom-
posed with respect to as:

fz 0] + Z a;o -
Amrfw—J] +a](m—j) A[fw—m]])

where f,—, = f(k). By Lemma 2,4,,[c] = ¢ for any
constant € Z,. So, we can express the above as:

Anlf] = ago - m [fz=0] +

T ajj -

Am[f] = a0 - f(0 +Z ajo - f(0
j=1
+ @jim—yjy - f(m —3j)) -z

) +ajj - f(4) +

which can be re-written as

m—1
= E c;x’
i=0

wherecy = ago - £(0) andc; = ajo - f(0) + aj; - f(j) +
Aj(m—j) - f(m —j), forall j € M — {0}. Examining the
structure of the matrid!, we can conclude that = Al - F

2) Hypothesis: Assume the result fer According to The-
orem 3, any4,,,[f] of a functionf of n + 1 variables can be
decomposed with respecttg, in the following way:

m—

Z (ajoAm[fe=0] +

+ a]] [fx j] + Qj(m—])A [f;c:mfj]) . CU;_H

Am[.f] = agoAm fan_O

By the induction hypothesis, we can express edghof the
subfunctions of: variables in the canonical form. We use
the notation:¥ to denote théth coefficient of the canonical
form of the subfunctiory, ,,,—» andF}, for the truth table
vector of f,. ., —. To simplify the exposition we also use
the abbreviatiorX to stand for the term* - x5

. gl
T

m—1

So, we replace each df,,[f.,, =], k € M, by Zcf X,
=0
with c¥ given byCy, = A™ - F},. Then we get:

m"—1 m"—1
] = aoo - ZCOX+Z< ZCOX‘|‘
m”—1
+ ajj - ZC X+a](m 9 ZCI”JX> zb+1

Since”
above as

m"—1
= (ZGOO'C?'X>' n+1+Z<
=0

0 J m—j J
¢+ ajj ¢t im—j)C)X) STy

m"—1
a]()
i=0

which can be re-written as

m"—1

12 i
g cj - x R/ e

wheree; = ago - ¢, for0 <i <m—1,ande; = ajo - +

ajj- c’—i—a](m ner I forj-m<i<j-m+m-—1,for

allj € M—{0}. Since the coeﬁicientﬁ are givenbyC; =

A"-Fj, thisis equivalentt@® = (A'® A")-F = A"+L.F.

|

For example, forn = 3 andn = 2, the matrixA? is
constructed as follows:

=N O
|
== O

andA4? =

WS [0 D] [I [© |] MW
w

BRI O BlwRWw O NE N O
w

o O o O

|
o o o o

Bl W NE R RRNE O O O

|
—_

|
—_
BRI BE O RIFEFR-E O ©O O O

|
[\
[N ol] [s B S
|

WIE = O N

Wi = O W

1

So, we can computés|[f] for f = MIN(xy,z2) with F' =
[000011012],asC =42 -F=[00003 —10 —114],
2

giving As[f](z1, z2) = g;leg — 1123 — xiwy + %x%xz

0-7695-0692-5/00 $10.00 ® 2000 IEEE

-7 is distributive over’ + 7, we can re-order the

4. Computing hash code of the function

We compute the hash code of the functipby assign-
ing randomly chosen integer values frafiy to the input
variables off, and then evaluatingl,,[f] for this values.
The resulting number is thieteger hash code of f. This
code requires less space than the canonical MDD represen-
tation of the same function and distinguishes any pair of
multiple-valued functions with a quantifiable probability of
success. The hash codes for two equivalent functions are
always the same. Thus, the equivalence of two functions
can be verified with a known probability of error, which
arises from collisions between inequivalent functions. Ac-
cording to Schwartz-Zippel Theorem [11, p. 165], if the
assignments of values of variables ..., z, are taken in-
dependently and uniformly at random from a figldbf size
| 7|, then the hash codes for two equivalent functions can be
distinguished with the probability at Iea%. In our case

F = Zp and|F| = p, so we get:. A smaller error bound

(P%)” is derived in [9].

As an example, consider the 3-valued 2-variable function
f = MIN(z,,z2) and let the variables be assigned the
random values:; = 2, z, = 4. SinceAs[f] = gmlazz —
w123 — wiws + Sxiz, the hash code fof is 4.

As another example consider the functign =

MAX(MIN(Q 3317332) MIN(]. 371,332)) SlnceA3[] =
-2z + 2x129 — %$1x2 + 2x1 — 2x1x2 + x1x2, if we
assignz; = 2 andz, = 4 we obtain the same hash code
4 as for MIN function and therefore get collision between
two inequivalent functions.

However, we can substantially decrease the probability
of collision by makingmultipleruns. On each run, an inde-
pendent set of input variable assignment is randomly cho-
sen, and the two function values are computed. If the val-
ues differ, we are assured that the two functions are not the
same. If they are equal, we choose a new set of input as-
signments and re-evaluate. The probability of incorrectly
deciding that the functions are equal decrease exponentially
with the number of runs: if the error probability of a single
run ise, then aftek runs the error probability is* [12]. For
example, if we make a second run for the functions speci-
fied above, with the random values = 3 andz, = 1, then
the hash code fodM I N function is 0 and hash code fgr
function is 3. So, we can conclude that# g.

5. Conclusion

This paper lays a theoretical foundation of a probabilis-
tic method for verification of multiple-valued functions. We
define a functional transformation, which is can be used
to obtain an integer code from a multiple-valued function.

The integer codes allow us to determine probabilistically [10] G. Birkhoff, S. MacLaneBrief Survey of Modern Al-
whether two functions are equivalent. gebra, 4th ed., New York, Macmillan, 1977.
Further research remains designing an efficient proce-
dure for computing integer hash codes. A simple way to
compute a hash code would be to build an MDD or similar

structure from the input function and then apply a proce- [12] M. Blum, A. K. Chandra, M. N. Wegman, Equivalence
dure for reducing this structure to an appropriate integer. of free Boolean graphs can be decided probabilisti-
Of course, the efficiency of such a scheme would be lim- cally in polynomial time,Information Processing let-
ited by the need to create and evaluate an MDD representa- ;o 10, No. 2, (1980), 80-82.

tion of the entire function. A better approach, which we are

currently pursuing, is first to symbolically decompose the

function, and then hash it incrementally. This can be done

by first hashing some of its parts, and then using these more

compact intermediate forms to complete the hashing of the

entire function.

[11] R. Motwani, P. RaghavarRandomized Algorithms,
Cambridge University Press, 1995.

References

[1] A. Nozoe et al., A 256-Mb multilevel flash memory
with 2 MB/s program rate for mass storage applica-
tions, Proc. of 1999 IEEE Int. Solid-Sate Circuits
Conference (ISSCC'99), (1999), 110-111.

[2] T. Okuda, T. Murotani, A four-level storage 4-Gb
DRAM I|EEE Journal of Solid-State Circuits 32, 11,
(1997), 1743 - 1747.

[3] The VIS Group, VIS: A system for verification and
synthesis,Proc. 8th Int. Conf. on Computer Aided
\erification, Springer Lecture Notes in Computer Sci-
ence,1102, Edited by R. Alur and T. Henzinger, New
Brunswick, NJ, (1996), 428-432.

[4] R. Drechsler, M. Keim, B. Becker, Fault simulation
for sequential multi-valued logic networkBroc. 27th
Int. Symp. on Multiple-Valued Logic (1997), 145-150.

[5] R. E.Bryant, C.-J. H. Seger, Digital circuit verification
using partially-ordered state modeRroc. 24th Int.
Symp. on Multiple-Valued Logic (1994), 2-7.

[6] R.E.Bryant, Graph-based algorithm for Boolean func-
tion manipulation|EEE Transactions on Computers
C-35No. 8 (1986), 677-691.

[7] D. M. Miller, Multiple-valued logic design tools,
Proc. 23rd Int. Symp. on Multiple-Valued Logic
(1993), 2-11.

[8] R. Drechsler, Verification of multiple-valued logic net-
works,Proc. 26th Int. Symp. on Multiple-Valued Logic
(1996), 10-15.

[9] J. Jain, J. Bitner, D. S. Fussell, J. A. Abraham, Prob-
abilistic verification of Boolean functionsiormal
Methods in System Design, Kluwer Academic Pub-
lishers,1, (1992), 63-117.

0-7695-0692-5/00 $10.00 ® 2000 IEEE

