
Probabilistic Verification of Multiple-Valued Functions

Elena Dubrova Harald Sack
Department of Electronics FB IV - Informatik

Royal Institute of Technology Universit¨at Trier
S-164 40 Kista D-54286 Trier

Sweden Germany
elena@ele.kth.se sack@uni-trier.de

Abstract

This paper describes a probabilistic method for verify-
ing the equivalence of two multiple-valued functions. Each
function is hashed to an integer code by transforming it to a
integer-valued polynomial and the equivalence of two poly-
nomials is checked probabilistically. The hash codes for two
equivalent functions are always the same. Thus, the equiv-
alence of two functions can be verified with a known proba-
bility of error, arising from collisions between inequivalent
functions. Such a probabilistic verification can be an attrac-
tive alternative for verifying functions that are too large to
be handled by deterministic verification methods.

1. Introduction

In recent years, advances in integrated circuit technology
made feasible fabrication of several commercial products
benefiting from multiple-valued logic, such as 256-Mbit 4-
valued flash memory [1] and 4-Gbit 4-valued DRAM [2].
These products can be seen as first steps toward recognition
of the increasing role of multiple-valued logic in the next
generation of electronic systems. However, for further prac-
tical utilization, efficient computer-aided tools for design,
testing and verification of multiple-valued logic circuits are
needed. Some existing tools, such as Berkeley’s tool for
verification and synthesis VIS [3], provide a solution for the
special case of multiple-valued input binary-valued output
functions, but the general problem is still open.

This paper focuses on the problem of verification of
multiple-valued functions. Up to now, very little research
is done in this area. Some techniques for verification
of Boolean circuits, such as random simulation or sym-
bolic simulation, can be directly applied to verification of
multiple-valued logic case [4], [5]. Similarly, verification
procedures employing Reduced Ordered Binary Decision

Diagrams (ROBDDs) [6] can adapted to Multiple-valued
Decision Diagrams (MDD) [7] as shown in [8]. However,
the MDD verification methods representing functions as
single, monolithic graph might be infeasible for large func-
tions. We believe that deterministic methods of verification
will not be practical for the multiple-valued logic domain
due to the increasing complexity of the problem.

In this paper we present a probabilistic method for de-
sign verification of multiple-valued logic functions, which
generalizes the method introduced in [9]. We define a func-
tional transformationA which converts a multiple-valued

functionf : Mn ! M on a setM
df
= f0; 1; : : : ;m� 1g

into a polynomial of typeAm[f] : Zn
p ! Zp over a finite

field of integersZp modulop, for some primep. This poly-
nomial is used to generate a hash code forf , by evaluating
the value ofAm[f](x1; : : : ; xn) for randomly chosen val-
ues ofxi fromZp, i 2 f1; : : : ; ng. The hash codes for two
equivalent functions are always the same. Thus, the equiva-
lence of two functions can be verified with a known proba-
bility of error, arising from collisions between inequivalent
functions.

The paper is organized as follows. In Section 1, theA-
transform is defined and its properties are studied. Section 2
shows how to compute the integer-valued polynomial given
by A-transform. Section 3 defines the notion of hash code
for a function. In Section 4, we give a conclusion and de-
scribe the topics for further research.

2. Definition and properties of A-transform

To define the transformationA, we associate akey poly-
nomial with each of themn input assignments of a multiple-
valued functionf(x1; : : : ; xn). We then sum up the key
polynomials of assignments producing the non-zero output
value off , and interpret the result as a integer-valued func-
tionAm[f](x1; : : : ; xn) overZp.

The key polynomial for a given row of the truth table is a

0-7695-0692-5/00 $10.00 � 2000 IEEE

product of terms, where each term is associated with a par-
ticular input variablexi, i 2 f1; : : : ; ng. If bi represents the
value ofxi in a given row of the truth table, then the corre-
sponding termw(bi; xi) in the key polynomial is defined as
follows:

Definition 1 For any m > 1, w : Zp�Zp ! Zp is defined
by

w(b; x) =

m�1X
i=0

0
@ Y
j2M�fig

j � b

j � i
�
Y

j2M�fig

j � x

j � i

1
A

It is easy to see that
Y

j2M�fig

j�b
j�i = 1 for b = i and

Y
j2M�fig

j�b
j�i = 0 for b 6= i. Therefore, parameterb

acts as a selector between the terms
Y

j2M�fig

j�x
j�i for dif-

ferent values ofi 2 M , i.e. w(0; x) =
Y

j2M�f0g

j�x
j ,

w(1; x) =
Y

j2M�f1g

j�x
j�1 , and so on. On the other hand, each

of the terms
Y

j2M�fig

j�x
j�i , represents a polynomial which

evaluates to 1 forx = i and evaluates to 0 forx 2M �fig.
So, such a polynomial has a behavior similar to the behavior

of the literal operator
i
x:

i
x
df
=

�
m� 1 if x = i
0 otherwise

except that forx = i the literal
i
x evaluates tom � 1, and

not to 1.
Thekey polynomialWn for an assignment(b1; : : : ; bn)2

Mn of n variables is defined as the product of thew(bi; xi)
terms,i 2 f1; : : : ; ng:

Definition 2 For any n � 0 andm > 1, the key polynomial
Wn : Z2n

p ! Zp is defined by

Wn(b1; : : : ; bn; x1; : : : ; xn) =

nY
i=1

w(bi; xi)

For example, form = 3:

W2(0; 1; x1; x2) =
1

2
(1� x1)(2� x1)x2(2� x2):

Similarly:

W2(1; 2; x1; x2) = x1(2� x1)(�
1

2
x2)(1� x2):

Now, we define the transformationA as a sum of key
polynomialsWn for all assignments(b1; : : : ; bn) 2 Mn,
each multiplied by the value off for the corresponding as-
signment. We give a definition, applicable for general func-
tionsZn

p ! Zp over the fieldZp. Note that, sinceM � Zp,
the multiple-valued functionsMn !M are a subset of the
field functionsZn

p ! Zp. While a field function is defined
for inputsxi =2 M as well, the values which the function
produces for such assignments do not participate in the def-
inition. To distinguish between multiple-valued and field
functions, throughout the paper we use the unsubscribed
lettersf; g for multiple-valued functions of typeMn !M
and the subscribed lettersfz; gz for field functions of type
Zn
p ! Zp.

Definition 3 Given a function of type fz : Zn
p ! Zp and

m > 1, the polynomial Am[fz] : Z
n
p ! Zp is defined by

Am[fz](x1; : : : ; xn) =

=
X

(b1;::;bn)2Mn

fz(b1; ::; bn) �Wn(b1; ::; bn; x1; : : : ; xn)

For example, form = 3 and n = 2, the polynomial
A3[fz](x1; x2) is given by

A3[fz](x1; x2) =

= f(0; 0) � 12 (1� x1)(2� x1)(1� x2)(2� x2) +
+ f(0; 1) � 12 (1� x1)(2� x1)x2(2� x2) +
+ f(0; 2) � 14 (1� x1)(2� x1)(�x2)(1� x2) +
+ f(1; 0) � x1(2� x1)(1� x2)(2� x2) +
+ f(1; 1) � x1(2� x1)x2(2� x2) +
+ f(1; 2) � x1(2� x1)(�x2)(1� x2) +
+ f(2; 0) � 12 (�x1)(1� x1)(1� x2)(2� x2) +
+ f(2; 1) � 12 (�x1)(1� x1)x2(2� x2) +
+ f(2; 2) � 14 (�x1)(1� x1)(�x2)(1� x2):

E.g. for the 3-valued functionf(x1; x2) = MIN(x1; x2),
the corresponding polynomial is

A3[f](x1; x2) = x1(2 � x1)x2(2 � x2) + x1(2 �
x1)(�x2)(1�x2)+(�x1)(1�x1)x2(2�x2)+2(�x1)(1�
x1)(�x2)(1� x2) =

5
2x1x2 � x1x

2
1 � x21x2 +

1
2x

2
1x

2
2:

Note that theA-transform is defined only for assign-
ments(b1; : : : ; bn) 2Mn. Therefore, if two field functions
fz andgz have the same values for all(b1; : : : ; bn) 2 Mn,
then they are treated identically by theA-transform. We say
that two such functions arem-equivalent:

Definition 4 The functions fz and gz of type Zn
p ! Zp are

m-equivalent if and only if fz(b1; : : : ; bn) = gz(b1; : : : ; bn)
for any assignment (b1; : : : ; bn) 2Mn.

0-7695-0692-5/00 $10.00 � 2000 IEEE

We writefz
m
= gz to denote thatfz andgz arem-equivalent.

If bothf andg are multiple-valued functions of typeMn !
M thenf

m
= g is the same asf = g.

By Definition 3, fz
m
= gz implies Am[fz] =

Am[fz]. However, can we concludeAm[fz] 6= Am[fz]

from fz
m

6= gz? To answer this question let us examine the
behavior of polynomialAm[f] when it is evaluated for some
assignment(b1; : : : ; bn) 2 Mn. It is easy to see that for
any b; b0 2 M , w(b; b0) = 1 if b = b0, andw(b; b0) = 0
otherwise. Therefore, for any(b1; : : : ; bn); (b01; : : : ; b

0
n) 2

Mn, W (b1; : : : ; bn; b
0
1; : : : ; b

0
n) = 1 if bi = b0i for all

i 2 f1; : : : ; ng, andW (b1; : : : ; bn; b
0
1; : : : ; b

0
n) = 0 oth-

erwise. Using these facts, we can prove the following theo-
rem:

Theorem 1 For any function fz : Zn
p ! Zp, Am[fz]

m
= fz.

Proof: By Definition 3, for any(b01; : : : ; b
0
n) 2 Mn we

have:

Am[fz](b
0
1; : : : ; b

0
n) =

=
X

(b1;::;bn)2Mn

fz(b1; : : : ; bn) �Wn(b1; : : : ; bn; b
0
1; : : : ; b

0
n)

SinceW (b1; : : : ; bn; b
0
1; : : : ; b

0
n) = 1 only if bi = b0i

for all i 2 f1; : : : ; ng, and 0 otherwise, this gives us
Am[fz](b

0
1; : : : ; b

0
n) = f(b01; : : : ; b

0
n) � 1. Since it holds

for any(b01; : : : ; b
0
n) 2Mn, we getAm[fz]

m
= fz. 2

It follows from the theorem that, though applying the
A-transform to a multiple-valued functionf increases the
domain off from Mn to Zn

p , the polynomialAm[f] still
yields the same values asf when evaluated for an as-
signment(b1; : : : ; bn) 2 Mn. Therefore, the polynomi-
als for two different multiple-valued functionsf and g
differ on all assignments(b1; : : : ; bn) 2 Mn for which
f(b1; : : : ; bn) 6= g(b1; : : : ; bn). Consequently,f 6= g im-
pliesAm[f] 6= Am[g].

3. Computing the A-transform

ComputingA-transforms using Definition 3 is feasible
for very small functions. For larger functions, we developed
an alternative method, which is described in this section.

Let fxi=j denote a subfunction of the function
f(x1; : : : ; xn) with the variablexi being fixed to the value

j, i.e. fxi=j
df
= f(x1; : : : ; xi�1; j; xi+1; : : : ; xn).

We can apply the following decomposition to a polyno-
mialAm[f], which can be considered as a generalization of
Shannon decomposition of Boolean functions:

Theorem 2 Every polynomial Am[f], m > 1, can be de-
composed with respect to a variable xi of f , i 2 f1; : : : ; ng,

in the following way

Am[f] =

m�1X
j=0

0
@ Y
k2M�fjg

k � xi
k � j

1
A �Am[fxi=j]

Proof: In order to simplify the exposition and without loss
of generality, we show the proof for the case ofxi = x1.
We useX as an abbreviation forx1; : : : ; xn.

Am[f] =
X

(b1;::;bn)2Mn

f(b1; : : : ; bn) �Wn(b1; : : : ; bn; X)

fDefinition 3g

=

m�1X
j=0

X
(b2;::;bn)2Mn�1

f(j; b2; ::; bn) �Wn(j; b2; :::; bn; X)

fre-groupingg

=

m�1X
j=0

X
(b2;:::;bn)2Mn�1

f(j; b2; : : : ; bn) �
Y

k2M�fjg

k�x1
k�j �

�Wn�1(b2; : : : ; bn; x2; : : : ; xn)

fw(j; x1) =
Y

k2M�fjg

k�x1
k�j ; Definition 2g

=

m�1X
j=0

0
@ Y

k2M�fjg

k�x1
k�j

1
A �Am[fx1=j]

fDefinition 3g 2

Next, we prove a lemma showing how the termY
k2M�fjg

k�x
k�j , j 2M , can be expressed by anm-equivalent

polynomial in linear form.

Lemma 1 For any variable x from Zp, any fixed j 2 M ,
and m > 2:

Y
k2M�fjg

k � x

k � j

m
=

8>>>>>>><
>>>>>>>:

m�1X
i=0

ai0x
i; if j = 0

ajjx
j + aj(m�j)x

m�j ; if j 2M�f0g

and j 6= m�j

ajjx
j ; if j 2M�f0g and j = m�j

where 8i; j 2M , aij =
Dij

D , with D and Dij given by

D =

m�1Y
i=1

ii �

m�1Y
i=1

i(m�i)

0-7695-0692-5/00 $10.00 � 2000 IEEE

Dij =

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

m�1Y
k=1

kk�mi �

m�1Y
k=1

k(m�k)�mi; if j = 0

1
ii �

m�1Y
k=1

kk; if j 6= 0 and j = i and j 6= m�i

� 1
(m�i)i �

m�1Y
k=1

km�k; if j 6= 0 and j = m�i

and j 6= i

1
ii �

m�1Y
k=1

kk �

m�1Y
k=1

km�k

!
; if j 6= 0 and j= i

0; otherwise
(1)

where " �m " denotes addition modulo m and all other
operations are regular arithmetic operations in Zp.

Proof: We compute the coefficientsaij , i; j 2 M , by solv-
ing the following system ofm linear equations withm un-
known elements:

8>>>><
>>>>:

a0j � 0
0 + a1j � 0

1 + a2j � 0
2 + :::+ a(m�1)j � 0

m�1= b0
a0j � 1

0 + a1j � 1
1 + a2j � 1

2 + :::+ a(m�1)j � 1
m�1= b1

: : :
a0j � (m� 1)0 + a1j � (m� 1)1 + a2j � (m� 1)2 + : : :

: : :+ a(m�1)j � (m� 1)m�1 = bm�1

where8i 2 M , bi =
Y

k2M�fjg

k�i
k�j . Such a system can be

described by matrices asX � a = b, where

X =

0
BB@

00 01 02 ::: 0m�1

10 11 12 ::: 1m�1

::: ::: ::: ::: :::
(m�1)0 (m�1)1 (m�1)2 ::: (m�1)m�1

1
CCA

a =

0
BB@

a0j
a1j
: : :

a(m�1)j

1
CCA ; b =

0
BB@

b0
b1
: : :
bm�1

1
CCA :

From linear algebra we know that such a system always has
a solution, and this solution is unique [10]. We compute
theith element ofa by applying Kramer’s rule, which says
that, for anyi 2 M , aij is given by the formulaaij =

Dij

D ,
whereD is thedeterminant of X, andDkj is the determi-
nant computed after the replacement of theith column ofX
by vectorb.

Observe, that matrixX has a very regular structure,
namely for alli; j 2 M , xij = ij . Therefore, by applying
standard rules for computing determinants [10], it is easy to
show thatD andDij are given by the equation (1).

Examining the structure ofDij , we can derive the fol-
lowing properties of the elements ofaij :

aij =

8<
:

Dij

D 8i; j : such thatj = 0 or i=j or i = m� j

0 otherwise
(2)

So, the only elementsaij which can possibly have non-
zero values areai0 for all i 2 M , andajj andaj(m�j)

for all j 2M �f0g. Therefore, the expression for the termY
k2M�fjg

k�x
k�j can be simplified to:

Y
k2M�fjg

k � x

k � j

m
=

8>>>>>>><
>>>>>>>:

m�1X
i=0

ai0x
i; if j = 0

ajjx
j+ aj(m�j)x

m�j ; if j 2M�f0g

andj 6= m�j

ajjx
j ; if j 2M�f0g andj = m�j

2

As we mentioned above,
Y

k2M�fjg

k�x
k�j has a behavior

similar to the behavior of the literal operator
j
x, except that

for x = j the literal
j
x evaluates tom � 1, and not to 1.

Therefore,
j
x

m
= (m � 1) �

Y
k2M�fjg

k�x
k�j , and thus, from

Lemma 1, we can conclude that

j
x
m
=

8>>>>>>><
>>>>>>>:

(m�1) �

m�1X
i=0

a0ix
i; if j = 0

(m�1) � (ajjx
j + aj(m�j)x

m�j); if j 2M�f0g

andj 6= m� j

(m�1) � ajjx
j ; if j 2M � f0g andj = m� j

We use Theorem 2 and Lemma 1 to derive another type
of decomposition ofAm[f], which will be used later to de-
rive a canonical expansion forAm[f]. Before giving the de-
composition, we first summarize some properties ofAm[f],
obvious from Definition 3.

Lemma 2 For any field functions fz and gz and any con-
stant c 2 Zp,

(a) Am[c � fz] = c � Am[fz]:
(b) Am[fz + gz] = Am[fz] +Am[gz]:

Theorem 3 Every polynomial Am[f], m > 1, can be de-
composed with respect to a variable x of f in the following
way:
case 1: if m is odd, then

Am[f] = a00Am[fx=0] +

m�1X
j=1

((aj0Am[fx=0]+

+ajjAm[fx=j] + aj(m�j)Am[fx=m�j]) � x
j
�

0-7695-0692-5/00 $10.00 � 2000 IEEE

case 2: if m is even, then

Am[f] = a00Am[fx=0] +

m�1X
j = 1

j 6= m=2

((aj0Am[fx=0] +

+ ajjAm[fx=j] + aj(m�j)Am[fx=m�j]) � x
j+

+ (am
2
0Am[fx=0] + am

2
m
2
Am[fx=m=2]) � x

m=2
�

where 8i; j 2M; aij =
Dij

D , and D and Dij given by (1).

Proof: Am[f] =

=

m�1X
j=0

0
@ Y

k2M�fjg

k�xi
k�j

1
A �Am[fxi=k] fTheorem 2g

=

m�1X
i=0

ai0x
i �Am[fx=0] +

m�1X
j=1

(ajjx
j + aj(m�j)x

m�j)�

�Am[fx=j] fLemma 1g

= a00Am[fx=0] +

m�1X
j=1

(aj0Am[fx=0] + ajjAm[fx=j]+

+ aj(m�j)Am[fx=m�j]) � x
j freorderingg

2

Let F be the vector of coefficients of the truth table of
the functionf andAn be a transformation matrix, defined
as follows:

Definition 5 Themn�mn matrixAn is defined inductively
by:

1. A1 df
=2

6666664

a00 0 0 ::: 0
a10 a11 0 ::: a1(m�1)

a20 0 a22 ::: 0
::: ::: ::: :::

a(m�2)0 0 a(m�2)2 ::: 0
a(m�1)0 a(m�1)1 0 ::: a(m�1)(m�1)

3
7777775

where 8i; j 2M , the coefficients aij are given by (2).

2. An df
= A1
An�1

where "
" denotes the Kronecker product of two matrices.

Clearly, if Theorem 3 is successively applied to the poly-
nomialsAm[fxi=k] of subfunctionsfxi=k about all the
remaining variables, we will finally get an expression in
whichAm[f] is expanded in all the variables off :

Theorem 4 Every polynomial Am[f], m > 2, of an n-
variable m-valued function f can be expressed in the fol-
lowing canonical form

Am[f] =

mn�1X
j=0

cj � x
i1
1 � xi22 � : : : � xinn

where (i1i2 : : : in) is the m-ary expansion of i, with i1 being
the least significant digit, and the coefficients ci are given by

the vector C
df
= [c0c1 : : : cmn�1] computed as C = An � F .

Proof: By induction onn. We show the proof only for the
case ofm being odd. Form - even the proof is similar.

1) Let n = 1. According to Theorem 3, any polynomial
Am[f] of a functionf(x) of one variablex can be decom-
posed with respect tox as:

Am[f] = a00 � Am[fx=0] +

m�1X
j=1

(aj0 �Am[fx=0] +

+ ajj � Am[fx=j] + aj(m�j) �A[fx=m�j]) � x
j

wherefx=k = f(k). By Lemma 2,Am[c] = c for any
constantc 2 Zp. So, we can express the above as:

Am[f] = a00 � f(0) +

m�1X
j=1

(aj0 � f(0) + ajj � f(j) +

+ aj(m�j) � f(m� j)) � xj

which can be re-written as

Am[f] =

m�1X
i=0

cix
i

wherec0 = a00 � f(0) andcj = aj0 � f(0) + ajj � f(j) +
aj(m�j) � f(m � j), for all j 2 M � f0g. Examining the
structure of the matrixA1, we can conclude thatC = A1�F .

2) Hypothesis: Assume the result forn. According to The-
orem 3, anyAm[f] of a functionf of n+1 variables can be
decomposed with respect toxn+1 in the following way:

Am[f] = a00Am[fxn+1=0] +
m�1X
j=1

(aj0Am[fx=0] +

+ ajjAm[fx=j] + aj(m�j)Am[fx=m�j]) � x
j
n+1

By the induction hypothesis, we can express eachAm of the
subfunctions ofn variables in the canonical form. We use
the notationcki to denote theith coefficient of the canonical
form of the subfunctionfxn+1=k andFk for the truth table
vector offxn+1=k. To simplify the exposition we also use
the abbreviationX to stand for the termxi11 � xi22 � : : : � xinn .

0-7695-0692-5/00 $10.00 � 2000 IEEE

So, we replace each ofAm[fxn+1=k], k 2M , by
m�1X
i=0

cki �X ,

with cki given byCk = An � Fk . Then we get:

Am[f] = a00 �

mn�1X
i=0

c0i �X +

m�1X
j=1

aj0 �

mn�1X
i=0

c0i �X +

+ ajj �

n�1X
i=0

cji �X + aj(m�j) �

mn�1X
i=0

cm�j
i �X

!
� xjn+1

Since" � " is distributive over" + ", we can re-order the
above as

Am[f] =

mn�1X
i=0

a00 � c
0
i �X

!
� x0n+1 +

m�1X
j=1

mn�1X
i=0

(aj0�

� c0i + ajj � c
j
i + aj(m�j)c

m�j
i) �X

�
� xjn+1

which can be re-written as

Am[f] =

mn�1X
j=0

cj � x
i1
1 � xi22 � : : : � xinn

whereci = a00 � c
0
i , for 0 � i � m� 1, andci = aj0 � c

0
i +

ajj � c
j
i +aj(m�j)c

m�j
i , for j �m � i � j �m+m� 1, for

all j 2M�f0g. Since the coefficientscji are given byCj =
An �Fj , this is equivalent toC = (A1
An)�F = An+1 �F .

2

For example, form = 3 andn = 2, the matrixA2 is
constructed as follows:

A1 =

2
4 1 0 0
� 3

2 2 � 1
2

1
2 �1 1

2

3
5

andA2 =2
66666666666666664

1 0 0 0 0 0 0 0 0

� 3
2 2 � 1

2 0 0 0 0 0 0
1
2 �1 1

2 0 0 0 0 0 0

� 3
2 0 0 2 0 0 � 1

2 0 0
9
4 �3 3

4 �3 4 �1 3
4 �1 1

4

� 3
4

3
2 � 3

4 1 �2 1 � 1
4

1
2 � 1

4
1
2 0 0 �1 0 0 1

2 0 0

� 3
4 1 � 1

4
3
2 �2 1

2 � 3
4 1 � 1

4
1
4 � 1

2
1
4 � 1

2 1 � 1
2

1
4 � 1

2
1
4

3
77777777777777775

So, we can computeA3[f] for f = MIN(x1; x2) with F =
[0 0 0 0 1 1 0 1 2], asC = A2 �F = [0 0 0 0 5

2 �1 0 �1 1
2],

givingA3[f](x1; x2) =
5
2x1x2 � x1x

2
1 � x21x2 +

1
2x

2
1x

2
2.

4. Computing hash code of the function

We compute the hash code of the functionf by assign-
ing randomly chosen integer values fromZp to the input
variables off , and then evaluatingAm[f] for this values.
The resulting number is theinteger hash code of f . This
code requires less space than the canonical MDD represen-
tation of the same function and distinguishes any pair of
multiple-valued functions with a quantifiable probability of
success. The hash codes for two equivalent functions are
always the same. Thus, the equivalence of two functions
can be verified with a known probability of error, which
arises from collisions between inequivalent functions. Ac-
cording to Schwartz-Zippel Theorem [11, p. 165], if the
assignments of values of variablesx1; : : : ; xn are taken in-
dependently and uniformly at random from a fieldF of size
jFj, then the hash codes for two equivalent functions can be
distinguished with the probability at leastnjFj . In our case
F = Zp andjFj = p, so we getnp . A smaller error bound�
p�1
p

�n
is derived in [9].

As an example, consider the 3-valued 2-variable function
f = MIN(x1; x2) and let the variables be assigned the
random valuesx1 = 2, x2 = 4. SinceA3[f] =

5
2x1x2 �

x1x
2
1 � x21x2 +

1
2x

2
1x

2
2, the hash code forf is 4.

As another example, consider the functiong =

MAX(MIN(2;
2
x1;

0
x2);MIN(1;

2
x1;

1
x2)). SinceA3[g] =

�2x1 + 2x1x2 �
1
2x1x

2
2 + 2x21 � 2x21x2 + 1

2x
2
1x

2
2, if we

assignx1 = 2 andx2 = 4 we obtain the same hash code
4 as for MIN function and therefore get collision between
two inequivalent functions.

However, we can substantially decrease the probability
of collision by makingmultiple runs. On each run, an inde-
pendent set of input variable assignment is randomly cho-
sen, and the two function values are computed. If the val-
ues differ, we are assured that the two functions are not the
same. If they are equal, we choose a new set of input as-
signments and re-evaluate. The probability of incorrectly
deciding that the functions are equal decrease exponentially
with the number of runs: if the error probability of a single
run ise, then afterk runs the error probability isek [12]. For
example, if we make a second run for the functions speci-
fied above, with the random valuesx1 = 3 andx2 = 1, then
the hash code forMIN function is 0 and hash code forg
function is 3. So, we can conclude thatf 6= g.

5. Conclusion

This paper lays a theoretical foundation of a probabilis-
tic method for verification of multiple-valued functions. We
define a functional transformation, which is can be used
to obtain an integer code from a multiple-valued function.

0-7695-0692-5/00 $10.00 � 2000 IEEE

The integer codes allow us to determine probabilistically
whether two functions are equivalent.

Further research remains designing an efficient proce-
dure for computing integer hash codes. A simple way to
compute a hash code would be to build an MDD or similar
structure from the input function and then apply a proce-
dure for reducing this structure to an appropriate integer.
Of course, the efficiency of such a scheme would be lim-
ited by the need to create and evaluate an MDD representa-
tion of the entire function. A better approach, which we are
currently pursuing, is first to symbolically decompose the
function, and then hash it incrementally. This can be done
by first hashing some of its parts, and then using these more
compact intermediate forms to complete the hashing of the
entire function.

References

[1] A. Nozoe et al., A 256-Mb multilevel flash memory
with 2 MB/s program rate for mass storage applica-
tions, Proc. of 1999 IEEE Int. Solid-State Circuits
Conference (ISSCC’99), (1999), 110-111.

[2] T. Okuda, T. Murotani, A four-level storage 4-Gb
DRAM IEEE Journal of Solid-State Circuits 32, 11,
(1997), 1743 - 1747.

[3] The VIS Group, VIS: A system for verification and
synthesis,Proc. 8th Int. Conf. on Computer Aided
Verification, Springer Lecture Notes in Computer Sci-
ence,1102, Edited by R. Alur and T. Henzinger, New
Brunswick, NJ, (1996), 428-432.

[4] R. Drechsler, M. Keim, B. Becker, Fault simulation
for sequential multi-valued logic networks,Proc. 27th
Int. Symp. on Multiple-Valued Logic (1997), 145-150.

[5] R. E. Bryant, C.-J. H. Seger, Digital circuit verification
using partially-ordered state models,Proc. 24th Int.
Symp. on Multiple-Valued Logic (1994), 2-7.

[6] R.E. Bryant, Graph-based algorithm for Boolean func-
tion manipulation,IEEE Transactions on Computers
C-35 No. 8 (1986), 677-691.

[7] D. M. Miller, Multiple-valued logic design tools,
Proc. 23rd Int. Symp. on Multiple-Valued Logic
(1993), 2-11.

[8] R. Drechsler, Verification of multiple-valued logic net-
works,Proc. 26th Int. Symp. on Multiple-Valued Logic
(1996), 10-15.

[9] J. Jain, J. Bitner, D. S. Fussell, J. A. Abraham, Prob-
abilistic verification of Boolean functions,Formal
Methods in System Design, Kluwer Academic Pub-
lishers,1, (1992), 63-117.

[10] G. Birkhoff, S. MacLane,Brief Survey of Modern Al-
gebra, 4th ed., New York, Macmillan, 1977.

[11] R. Motwani, P. Raghavan,Randomized Algorithms,
Cambridge University Press, 1995.

[12] M. Blum, A. K. Chandra, M. N. Wegman, Equivalence
of free Boolean graphs can be decided probabilisti-
cally in polynomial time,Information Processing let-
ters 10, No. 2, (1980), 80-82.

0-7695-0692-5/00 $10.00 � 2000 IEEE

