
D. Roggen et al. (Eds.): EuroSSC 2008, LNCS 5279, pp. 206–219, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Synthesizing Context for a Sports Domain on a Mobile
Device

Alisa Devlic1,2, Michal Koziuk3, and Wybe Horsman4

1 Appear Networks, Kista Science Tower,
16451 Kista, Sweden

alisa.devlic@appearnetworks.com
2 Royal Institute of Technology (KTH), Department of Communication Systems,

Electrum 418, SE-164 40 Kista, Sweden
devlic@kth.se

3 Institute of Telecommunications, Warsaw University of Technology,
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

mkoziuk@tele.pw.edu.pl
4 Capgemini NL bv, Papendorpseweg 100

3528BJ Utrecht, The Netherlands
wybe.horsman@capgemini.com

Abstract. In ubiquitous computing environments there are an increasing num-
ber and variety of devices that can generate context data. The challenge is to
timely acquire, process, and deliver these data to context-aware applications.
The role of context synthesis is to generate new knowledge, as a result of a rea-
soning process applied to context information that is already present in the sys-
tem. The success of this mechanism mainly depends on the response time that
the end-user or an application must wait for the response to a context query.
This paper describes and evaluates an approach to context synthesis on a mobile
device to be used by a set of applications in a sports domain. A scenario based
on a live race at the Super Prestige Cyclocross in Gieten, Netherlands demon-
strates the use of context synthesis to dynamically compose gaps and groups of
cyclists in order to provide a nearly real-time virtual ranking service.

Keywords: context synthesis, context operators, context modeling, sport scenario.

1 Introduction

Imagine experiencing a sport event from your phone, where you are your own direc-
tor deciding upon your own point of view by actually moving about the event locale.
Rather than simply selecting one of many video streams on your screen, instead you
utilize the abstract view of the event (as viewed on your smartphone) to select your
own personal viewpoint of the event. Therefore, you want answers to questions, such
as: what are the positions of the Rabobank riders, what gaps and groups of riders are
there on the track today, who is the virtual leader of the race at this moment, at what
time can I expect the leader to pass my current position on the track, etc. Based upon

 Synthesizing Context for a Sports Domain on a Mobile Device 207

the answers to these questions you will move to the position which you decide will
give you the best vantage point.

It is November 2007 in Gieten, Netherlands. It is cold and rainy, the perfect condi-
tions for an international cyclo-cross race. The track lies partly in the woods and
partly around a pond with steep banks. The track is about 3 km in length and each
rider must complete 7 laps. The difference between the top riders and the ones that
have a bad day is very big; after 2 laps the slowest rider is lapped by the fastest, but
by then most distinguishing features of the riders are covered with mud – thus after 3
or 4 laps it is hard to see who is who. Using devices with the MIDAS middleware and
race application preinstalled, attendees are able to see their own location and the loca-
tion of the individual riders on a map of the track, the leading cyclist in the race, the
total and remaining distance in meters, the gap between riders, as well as which riders
are riding in the same group (so called gaps and groups analysis). All of this is shown
live on your mobile device.

MIDAS (Middleware Platform for Developing and Deploying Advanced Mobile
Services) [1] is a European research project concerning 3G and beyond, which aims to
define and implement a platform to simplify and speed up the task of developing and
deploying mobile applications and services. It is specifically designed to be used in
MANETs. MIDAS enables applications running on different nodes to share informa-
tion by inserting data in and retrieving data from a shared data space. This shared data
space is implemented using a combination of data replication and remote operations –
but this fact is transparent to applications. Therefore, for the purpose of this paper, we
assume that all context information is available locally on a mobile device.

An application using this middleware calculates and displays gaps and groups of
cyclists in near real time. This calculation needs to be performed as the cyclists’ rela-
tive positions change, resulting in the synthesis of gaps and groups context. Moreover,
the presentation on the display needs to be updated to reflect the current composition
of groups. Thus, the middleware periodically obtains cyclists’ geographic locations
and utilizes information about the waypoints in the race. This data can be combined
with the cyclists’ data (such as name, team name, identification number, etc.), in order
to perform context synthesis.

This newly generated context information can be in turn used by multiple applica-
tions. Hence, applications requesting customized context may share the cost of pro-
ducing this synthesized context information. Additionally, each application need not
be concerned with how this synthesis is implemented. However, some applications
may want to implement their own synthesis functions. We refer to these functions as
context operators. Context operators enable different applications and even different
context-aware systems in the same domain to query each other about the context in-
formation which could be synthesized using the functions they implement. For exam-
ple: a racing application and media application deployed on different devices should
be able to remotely query each other (using the same middleware API and context
operators) for results of the race and rankings of all athletes in the competition. The
output of the operator is sent as a result of a context query. This result is called a syn-
thesized context, since it was generated by context synthesis.

Our motivation and the idea for context synthesis using operators was previously
presented in [2]. The main advantages of our approach are increased reusability, exten-
sibility, and interoperability, facilitated by context operators and exploiting ontology

208 A. Devlic, M. Koziuk, and W. Horsman

based context modeling. This paper describes the realization of this approach via a race
application developed on this middleware, and evaluates the context synthesis in terms
of the response time to a context query sent by the application. The response time is
divided into the time needed to find the correct operator, the time needed to obtain con-
text information (formatted as ontology data) from its repository, and the time needed
by this operator to perform the actual context synthesis.

The rest of the paper is organized in seven sections. Section 2 elaborates the MI-
DAS context modeling approach using ontologies for mobile devices. Section 3 pre-
sents our approach for context synthesis using context operators, while Section 4
describes the set of applications developed for sports scenario that illustrate the use of
context operators for context synthesis. In Section 5 we give a performance evalua-
tion. Section 6 provides a brief overview of related work. We conclude in Section 7
with a summary of the results and plans for future work.

2 Context Modeling Using Ontologies

In order for MIDAS to be a context aware framework it needs a mechanism for mod-
eling and representing context. This context model must contain information specific
to a specific domain of deployment of a MIDAS based service. A context model of a
domain describes the people, objects, and relations between them which are typically
encountered in a specific situation (or types of situations). Focusing only on a single
domain makes it possible to create a very specific model, capable of representing a
very fine level of detail, which otherwise could not be captured due to growing com-
plexity of a more general model.

The context model used is an ontology, which is provided to the system in the form
of a file. Thus the same middleware can be used in various domains given a new on-
tology file. We envision that an organizer of an event creates an ontology which
represents the domain of this event. This ontology is provided to application develop-
ers (who can create applications for this particular domain). Once this ontology is
created, other similar events can re-use the ontology, modifying it as required.

The ontology language chosen for the domain model is DL-Lite [3], which is a
subset of OWL-DL optimized for fast reasoning on top of relational databases. This
language supports the basic terms of classes and properties, and it handles statements
about subsumption, disjointness, role-typing, participation constraints, non-
participation constraints, and functionality restrictions. MIDAS implements an archi-
tecture for handling DL-Lite ontologies on a Java enabled mobile device [4].

The decision to use DL-Lite as a language for MIDAS ontologies was motivated
by the results obtained during an initial experiment [5]. This experiment showed that
using OWL-DL [6] with existing off the shelf solutions such as Jena [7] and Pellet [8]
could not be applied on mobile devices, given their poor (slow) performance even
on desktop machines and very high memory requirements. The use of existing ontol-
ogy query languages, such as RQL [9] or SPARQL [10] was not analyzed. However,
these solutions are usually not designed for mobile devices as their main focus is high
expressivity. Thus, their practical usability in a mobile device setting is unlikely. We

 Synthesizing Context for a Sports Domain on a Mobile Device 209

chose DL-Lite because of its relative simplicity and optimization for fast perform-
ance. The limitations in the description logic that made these improvements possible
turn out not to be limiting when modeling a domain.

The syntax chosen for context model ontologies is the Manchester OWL Syntax
[11] due to features which make it more suitable for applications on mobile devices
than the usual OWL Syntax [12]. The main feature is that it is much easier to parse, as
it requires only two linear scans of the ontology file, and does not require construction
of a tree structure during parsing. Another feature is that an ontology is approximately
half the size of the equivalent OWL representation, and because it is human readable
it is possible to edit it by hand if necessary.

For representing the ontology on a MIDAS enabled mobile device we created a
dedicated Lightweight Ontology library [13], which implements the Jena [7] API in a
form suitable for mobile devices. This library parses the ontology file and creates an
in-memory representation of the ontology (supporting all the structures present in
OWL-DL) based on HashTables. Its simplicity suits resource constrained devices
(such as J2ME mobile phones).

The scenario examined in this paper is a cycling race. Part of the context model on-
tology is shown in Fig. 1. This example shows only the part of the class hierarchy
from the domain model, which contains classes corresponding to roles of users. Other
classes (not shown) in the domain model are used to represent places encountered
during the event, abstract entities such as a group of cyclists, a gap between two
groups, etc.

Fig. 1. Classes that describe roles of users involved in the cycling event

We consider five types of entities, which can be characterized as owners of context
information: a person, a device, a network, a place, and an object. However, these
entities are not independent, but have the following relations (see Fig. 2): a device is
connected to a network; a person uses certain device(s); a person, device, and an ob-
ject may be located at a place; a person and a device are somehow related to some
other object(s). All entities are subclasses of the root class “Thing” in the ontology,
from which all other terms are derived. Thus, we assign all context information to a
certain entity and we can query information about an entity—i.e., user context, device
context, network context, place context, and object context.

210 A. Devlic, M. Koziuk, and W. Horsman

Person Place

ObjectDevice

Network

currentDevice relatesTo

Thing

locatedIn

connectedTo loc
ated

In

locatedIn

relatesTo

Fig. 2. Context entities and their relations in the context model

The context modeling architecture is implemented by a Context Knowledge Base
component in the middleware. The API offered by this component makes it possible
to model context by means of objects of the type DomainInstance, each of which rep-
resent physical entities. A DomainInstance can be added or removed as needed. Each
DomainInstance object can have a number of property values assigned to it, and can
belong to a number of classes. These classes are represented by objects of the type
DomainClass and DomainProperty (respectively) which correspond to those present
in the domain model ontology.

Context information needs to be stored by the middleware before it can be queried
or synthesized. In order to store, retrieve, and manipulate the formatted (higher-level)
context information, we developed a means of mechanically mapping the domain
classes from the context model to the corresponding java classes, as well as from
property names to java class variables.

3 Context Synthesis Using Context Operators

Operators for context synthesis are domain-specific functions over the context data.
The benefits of these operators are that by performing operations over the existing
context information, new context information that previously did not exist in the sys-
tem can be produced. The output of the operation performed by an operator, a synthe-
sized context, is sent to the application as a result of a context query. Operators could
be used on a higher level to synthesize information of a certain user, device, network,
place, or other object, as illustrated earlier in Fig. 2.

Operators are bundles of both a description and implementation; and described by
an ontology, similar to the representation of context. They are implemented as java
scripts that perform an action specified in the operator’s ontology. The operator’s de-
scription specifies the name of this operator, the types of the required input argu-
ments, the returned output type, and the list of other operators used in performing the
operator’s function. As with the context model, operators are created for a specific
domain and can be used by a set of applications in that domain. In order to provide
context synthesis functions for applications in another domain, a new set of operators
needs to be provided to the middleware, along with their ontology schema.

We distinguish between generic and specialized operators. Generic operators are part
of an ontology schema, representing an umbrella for all the different implementations of

 Synthesizing Context for a Sports Domain on a Mobile Device 211

a function they provide. They are also part of an API provided to application develop-
ers. On the other hand, specialized operators can be created/modified and inserted into
the middleware by application or system developers. Specialized operators are not di-
rectly visible to application developers; which operator is invoked will be determined by
the middleware at runtime.

Specialized operators are implemented as scripts using Beanshell [23], an open
source java script engine. In our implementation the operator scripts are part of the
context service process and they can be programmatically added and removed by the
middleware.

Fig. 5 shows the structure of the Operator space – a repository of operators. The
root folder (i.e. operators/) contains all generic operators (which are also folders),
containing in turn their specialized operators. Note that specialized operators are bun-
dles of an operator description (an instance of the operator ontology encoded in Man-
chester OWL format, i.e., a .man file) and an operator implementation (a java script
written in Beanshell, i.e., a .bsh file).

Generic operators

operators/

InRange/

DistanceBetween/

GetContext.bsh

getClassContext.bsh

CyclistsInRange.bsh

InRange.man

DistanceBetween.man

DistanceBetweenXYZLocations.bsh

Specialized operators

getInstanceContext.bsh

Context retrieval with synthesis

Context retrieval only

Fig. 3. Operator space file structure

The root folder of the Operator space shown in Fig. 3 also contains three specific
operator scripts which are responsible for retrieving context data of the specified con-
text owner, from the Context knowledge base: GetContext.bsh, GetClassContext.bsh,
and GetInstanceContext.bsh. Note that they do not have a generic operator represent-
ing them, and they are used for distinct purposes. As previously noted, when specific
context operators need to retrieve context, they will provide DomainInstance objects
to the GetContext operator to retrieve the missing context values. It is also possible to
retrieve context data directly from the repository without context synthesis, via the
GetClassContext and GetInstanceContext scripts. GetInstanceContext is used to ob-
tain the domain instance with the supplied datatype properties from the context query.

212 A. Devlic, M. Koziuk, and W. Horsman

We can also query the Context knowledge base for other properties of the same in-
stance. GetClassContext is used when we do not know the instance, but rather use a
domain class with the specified property name-value pair to identify this instance.

An example of an operator description file, InRange.man is presented in Fig. 4.
This file contains all the specialized operator descriptions. Fig. 3 shows only Cy-
clistsInRange, but there could be others as well (e.g., UsersInRange). The description
of the CyclistsInRange (specialized) operator is interpreted in the following way: it
has the name "CylistsInRange" and is derived from a generic operator (i.e. InRange).
It requires an input of the type Cyclist and produces an output value of the type Cy-
clist. The operator uses the result from another (simpler) operator DistanceBe-
tweenXYZLocations to calculate the distance between two locations.

InRange.man
Individual: CyclistsInRange

Types: InRange
Facts:

hasName CyclistsInRange
hasInputType Cyclist
hasOutputType Cyclist
uses DistanceBetweenXYZLocations

Fig. 4. CyclistsInRange description

In order to generate this description file, the developer needs to programmatically
set the type of this specialized operator, the list of input types, the output type, as well
as operator dependencies. The middleware will automatically append this operator
description to the correct ontology file (if this file does not exist, it will be created in
the correct location).

Note that all specialized operator scripts take as inputs DomainInstance objects,
which are instances of classes specified as input types in their operator description
file. Thus these domain instances pass the input arguments from the context query to
the operator’s method, and can be used to retrieve the missing information from the
Context knowledge base (if needed).

3.1 Operator Matching

The context synthesizing process determines the most appropriate specialized opera-
tor to invoke from the available (specialized) operators by using a reasoning process
(which takes into account the required output type and supplied input types). The idea
behind the operator matching algorithm, illustrated in Fig. 5, is to enable different
applications (or even different context systems) in the same domain (in our scenario a
sport domain) to use the same “functions” to synthesize context information, without
being concerned about the implementation of these functions. The operator matching
algorithm returns the specialized operator with either exactly the same description as
specified by the query or a more generic one.

 Synthesizing Context for a Sports Domain on a Mobile Device 213

Context synthesizer

If
Query.OutputType==SpecializedOperator .hasOutputType

(<Cyclist >==<Cyclist>)
OR If

Query.OutputType==superClass(SpecializedOperator .
hasOutputType)

(<Cyclist>==<Person>)

Then tempMatch=SpecializedOperator
(tempMatch=<CyclistsInRange>)

UsersInRange

CyclistsInRange
Individual: CyclistsInRange

Types: InRange
Facts:

hasName CyclistsInRange
hasInputType Cyclist
hasOutputType Cyclist
uses DistanceBetween

2. Get specialized operators
of <InRange>

1. Context query

3. Match output type

For each (InputType::List<inputTypes>) {
If

InputType is DomainProperty
(<PlayersNumber> propertyOf <Cyclist>)

AND
domain(InputType)==SpecializedOperator .

hasInputType
(<Cyclist>==<Cyclist >)

OR If
InputType is DomainClass

AND
InputType==SpecializedOperator .

hasInputType
(<Cyclist>==<Cyclist >)

Then
Match=tempMatch;

(Match=<CyclistsInRange>)
break;

 }

<InRange> Generic operator ,
<Cyclist> Output type,
List {<playersNumber,101>, <range,
50>} List {input type, input value}

4. Match input types
For each(InputType::List<inputTypes>) {

<Hashmap>map.add(InputType ,
InputValue);

<Cyclist>cyclist .newInstance(map);
<DomaInInstance>di=cyclist .

getDomainInstance();
<List> inputs.add(di);

}

<List>contextValues=Invoke(
SpecializedOperator , inputs);

<ContextResult >result.add(contextValues,
succeeded);

5. Invoke matched
operator

Fig. 5. This figure shows the algorithm itself, initiated by the user's context query, along with
the invocation of the matched (specialized) operator

An example of a context query is: InRange(”101”, 50, ModelConstants.Cyclist),
where the response time is bounded to 5sec. This example can be interpreted as fol-
lows: retrieve all cyclists in the range of 50 meters from the cyclist with the ID=”101”
and the result should be returned within 5 seconds. If the result is not computed by
that time, the synthesis process will be interrupted, and a response will be returned to
the query initiator containing an empty list of values and a flag indicating that the
query was unsuccessful. After receiving the query, the operator matching algorithm
retrieves all available specialized operators and processes the supplied data in order to
find an exactly matching specialized operator (by checking if output and input types
of the operator and the query match). Otherwise it will return a more generalized one,

214 A. Devlic, M. Koziuk, and W. Horsman

i.e. UsersInRange, which would return Users instead of Cyclists as result. Finally, it
invokes the matching operator.

4 Cyclist Race Application

The cyclist race application set consists of a number of applications responsible for:
1) entering static cyclist data and managing track waypoints, 2) processing and show-
ing a list of the latest rider location data and 3) showing the actual gaps and groups of
cyclists to the end user during the race. The last (end-user) application is available
with a user interface in three different form factors for display on a small device
(Nokia N800), a laptop (HP tablet), and as a side bar next to a web page shown on a
laptop. The processing application was at the time of the race not actually deployed
on a mobile device; however, in Section 5 we give an evaluation of context synthesis
on a Nokia N800.

The geographic locations of the cyclists are obtained from GPS receivers attached
to cyclists' arms and this context is synthesized into gaps and groups information. The
gaps and groups information is in turn broadcasted to all interested users equipped
with the MIDAS middleware and an end-user application installed on their devices.
The frequency of updates is about once every three seconds. A video demonstrating
the live race at the Super Prestige Cyclocross using MIDAS middleware and the de-
scribed application set can be seen at [21].

The gaps between groups of cyclists and the composition of groups are synthesized
from the following cyclists’ context: the last known cyclists position information, the
roadbook waypoints, and the configured maximum distance between two consecutive
cyclists of one group. A gap is defined as a distance between locations of two con-
secutive cyclists that exceeds a predefined threshold. In cycling a distance of about 25
meters is considered a gap. Cyclists between two consecutive gaps compose a group.
In order to calculate gaps and groups, the application needs to calculate the distance
between the successive waypoints and their distance to the finish (based on Hav-
ersine's Formula [14] combined with John P. Snyder's curvature [15]).

Figure 6 illustrates the operators used to calculate gaps and groups information. In
order to improve the performance, all real time objects are stored in the memory. To
share these objects between applications singleton instances are stored in the operator
space running environment; therefore an operator has to be used to interact with these
objects. Moreover, the output of one operator is used as an input to the other one.

CalculateGroups

GetWayPoints

GetCyclistsInRace

GetCyclistLastWayPoint

DistanceBetween

Fig. 6. Set of operators used in the application

 Synthesizing Context for a Sports Domain on a Mobile Device 215

To calculate the gaps and groups, the algorithm exploits the fact that every cyclist
cycles from one waypoint to the other and sends several GPS measurements while on
this path to reach the waypoint. Based on received GPS measurements, the algorithm
computes location, distances between cyclists, their order, and if the distance between
two cyclists is 25 meters or greater, then there is a gap.

Groups in the race are presented graphically to the user via a user application, as
shown in Fig.7. The circle represents the whole track. Each dot represents a group.
The progress of the groups is shown relative to Start and Finish. Additionally, the list
of groups is presented to the user as a textual table. The first column of the table con-
tains the group name (1 to n), the second column shows the number of cyclists present
in the group, and the third one contains the distance to the preceding group. The lead-
ing group distance is replaced with a "Leading" indicator. For every cyclist, the first
and last name, player number, as well as distance to the finish are shown. Once a
group finishes the race, the distance is replaced by a "Finished" indicator, the cyclist
icon is replaced by a flag, and the line is printed in green.

Fig. 7. Application GUI with actual data

5 Performance Evaluation

The MIDAS middleware and applications are implemented in Java. We ran all per-
formance tests on a Nokia N800 device with the JamVM virtual machine [22] with a
compiler for Java 1.4. This device was chosen by the MIDAS project because it is
Linux based, allowing network and low-level programming. We also used a third
party library for implementation of java scripts, Beanshell [23].

The performance of context synthesis is evaluated in terms of the response time of
operator matching, context retrieval, and context processing (i.e., operator invocation),

216 A. Devlic, M. Koziuk, and W. Horsman

Table 1. Response times

Average response times
with varying number of
specialized operators
(i.e., 1, 2, 5, 10)

Based on
10 first
queries

Standard de-
viation (based
on 10 first
queries)

Based on 10
subsequent
queries

Standard deviation
(based on 10 sub-
sequent queries)

Matching algorithm
time

2.49 sec 0.009 sec 1.94 sec 0.07 sec

Loading specialized &
root scripts time

1.7 sec 0.087 sec No average, for
the first time
only (1.7 sec)

No standard devia-
tion

Total operator match-
ing time

4.2 sec 0.087 sec 1.94 sec 0.07 sec

Context retrieval time 0.37 sec 0.006 sec 0.09 sec 0.001 sec

Loading dependency
scripts time

0.15 sec 0.001 sec 0.17 sec 0.015 sec

Operator invocation
time

0.67 sec 0.008 sec 0.36 sec 0.04 sec

Total query time 5.4 sec 0.045 sec 2.57 sec 0.07 sec

as well as the overall response time to a query sent by an application. The values shown
in Table 1 were obtained by sending the same context query, but varying the number of
available specific operators (i.e., 1, 2, 5, and 10) when performing the operator matching
algorithm, and then calculating the mean value.

Note that before the java scripts can be invoked, they have to be loaded into the in-
terpreter and the classpath has to point to the folder where these scripts reside. These
scripts can also invoke other scripts (from different folders), thus these other scripts
need to be invoked in the caller's context (the so called namespace). Therefore, when
the first query is sent, the total time needed to find the most appropriate specialized
operator (i.e., the total operator matching time) also includes the time needed to set
the namespace to point to the generic operator folder (e.g., InRange), as well as load
specific operator scripts from this folder and from the root operator folder. For all
successive queries this operation is cached. When invoking the specialized operator
found by the matching algorithm, some additional time is needed to load the scripts
from the dependency operator folder (e.g., DistanceBetween).

As it can be seen from Table 1, the response times for the first query are twice as
large as for the other following queries, because the caching speeds up the subsequent
operations. The operator matching algorithm takes 2 seconds on average, however for
the first query it requires 4 seconds (including the initial time needed for loading the
necessary scripts). Context retrieval (of three cyclists' data) was rather quick as was
the operator invocation time. The number of concepts required by an application was
small. With regards to performance with increasing number of domain instances,
please refer to [4]. Note that operator invocation time includes the time needed to
invoke CyclistsInRange and DistanceBetween operators. We used SQL prepared
statements to retrieve context from an HSQL database. The total time needed to re-
ceive the result of context query took on average 2.5 seconds, but 5.4 seconds for the
first query.

 Synthesizing Context for a Sports Domain on a Mobile Device 217

Note also that in some other scenario it could happen that after the second query
the first query is made again but containing some other operator, this will also require
operator matching. However, we plan (as future work) to introduce caching of queries
and matched specialized operators in order to reduce the total query time.

There were 1000 spectators along the race course. Note that this deployment was
intended as a proof of concept to validate middleware functionalities and was not de-
signed to be an evaluation of the system using a statistically significant number of
users. However, the impression of 9 users (monitoring the race on 6 tablet PCs and 3
Nokia N800 devices) was very positive. A few seconds of delay did not affect their
"near real-time experience". Furthermore, users liked the way that they could select
their favorite cyclists in the application, in order to know when he/she will pass their
location. Zooming functionality also helped to improve overcome the limitations of
the small screen when more cyclists were tracked during the race.

So far we have not examined the cases when context changes rapidly nor we have
considered the issues concerning uncertainty in the context. We plan to address these
issues in future work.

6 Related Work

Our context synthesizing work was inspired by the Aura Contextual Information Ser-
vice (CIS) research project [16]. However, our queries are not SQL-like, but instead
they are object-oriented, containing context operators which perform synthesizing
operations. Context operators can in turn use other simpler operators to execute
smaller tasks and to reuse existing functionality.

Modeling context with ontologies is in itself not a novel idea. Surveys of context
modeling frameworks clearly indicate that modeling context with ontologies is the
most expressive way to do it [17]. Typically, mobile devices being part of a context
aware system need to remotely access the ontology model, and the context data. In
case of CoBrA [18] the remote facility is an ‘intelligent agent’, called a Context Bro-
ker, which acts as a central point of the system maintaining a representation of context
common to all the devices in the network. The SOCAM [19] solution also relies on a
shared context space located on an external device (an OSGi gateway) which can be
accessed by multiple context aware services. MIDAS differs from these architectures
in that it is capable of handling ontologies on mobile devices, which makes it possible
to provide local access to context modeled with ontologies for every device in the
network. This seems especially useful in ad-hoc networks where access to a central
server cannot be provided.

J. I. Hong and J. A. Landay [20] emphasize a need for creating a basic infrastruc-
ture services and application-specific services, the latter implemented on a case-by-
case basis. One such basic infrastructure service is automatic path creation, which
transforms raw sensor data to higher-level context data. It automatically composes
operators based on high-level needs and what resources are available. Our work ex-
tends this idea to enable multiple applications or even different context-aware systems
to use the same operators designed for a specific domain without being concerned
about their implementation. Moreover, we also enable chaining of operators, where
each operator takes some existing context information (as defined by a context model)

218 A. Devlic, M. Koziuk, and W. Horsman

as input and provides new context information as an output. All applications can reuse
already deployed operators and add their own implementations of the same generic
operators.

7 Conclusion and Future Work

We have presented and evaluated the approach for context synthesis using operators
on a Nokia N800 device. Operators for context synthesizing are domain-specific func-
tions over the context data. The benefits of these operators are that by performing
operations over the existing context information, new context information that previ-
ously did not exist in the system can be produced. Moreover, applications can use the
same operators to synthesize context information, without being concerned about their
implementation. This also enables applications to share the cost of context synthesis
by querying about the result of operators invocation.

We have evaluated this operator-based context synthesis approach in terms of re-
sponse time to context query sent by the application and showed that it is possible to
perform context synthesis operation in near real time (i.e., with the average latency of
2 seconds) on the mobile device. The main advantages of context operators are the
reusability, extensibility, and interoperability, facilitated by ontology-based context
modeling. For this purpose MIDAS provides a dedicated Lightweight Ontology li-
brary for representing and manipulating ontologies on mobile devices. We also dem-
onstrated the use of context operators in the cyclist race application.

We plan to evaluate the response time of executing the remote operator invocation
as well as to use caching decisions made by operator matching algorithm for a certain
context query. We will also conduct a user study based on our next deployment. As a
next step in context synthesizing we plan to use operators to combine inference algo-
rithms in order to derive about high-level context.

Acknowledgements. The authors of this paper would like to acknowledge the partial
financial support given to this research by the EU IST MIDAS project (6th
Framework Programme, contract number 027055). We would also like to thank Prof.
Gerald Q. Maguire Jr. for his valuable comments to this research work.

References

1. EU FP6 IST MIDAS project (2008), http://www.ist-midas.org
2. Devlic, A., Klintskog, E.: Context retrieval and distribution in a mobile distributed envi-

ronment. In: Third Workshop on Context Awareness for Proactive Systems (CAPS 2007),
Guildford, UK (2007)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable
description logics for ontologies. In: 20th National Conference on Artificial Intelligence
(AAAI 2005), Pittsburgh, Pennsylvania, USA, pp. 602–607 (2005)

4. Koziuk, M., Domaszewicz, J., Schoeneich, R.O.: Mobile Context-Addressable Messaging
with DL-Lite Domain Model. In: The 3rd European Conference on Smart Sensing and
Context (EuroSSC 2008), Zurich, Switzerland, October 29-31 (to appear, 2008)

 Synthesizing Context for a Sports Domain on a Mobile Device 219

5. Domaszewicz, J., Koziuk, M., Schoeneich, R.O.: Context-Addressable Messaging with
ontology-driven addresses. In: The 7th International Conference on Ontologies, Data-
Bases, and Applications of Semantics (ODBASE 2008), Monterrey, Mexico (to appear,
2008)

6. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. W3C
Recommendation (2004), http://www.w3.org/TR/owl-guide/

7. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
Implementing the semantic web recommendations. Technical Report HPL-2003 (2003),
http://citeseer.ist.psu.edu/carroll04jena.html

8. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53
(2007)

9. Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M., Tolle, K.:
RQL: A Functional Query Language for RDF. In: Gray, P.M.D., Kerschberg, L., King,
P.J.H., Poulovassilis, A. (eds.) The Functional Approach to Data Management: Modelling,
Analyzing and Integrating Heterogeneous Data. LNCS. Springer, Heidelberg (2004)

10. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: Proceedings of the
OWLED 2007 Workshop on OWL: Experiences and Directions, Innsbruck, Austria, June
6-7 (2007)

11. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.: The Man-
chester OWL Syntax. In: OWL: Experiences and Directions 2006, Athens, Georgia, USA
(2006)

12. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics
and Abstract Syntax. W3C Recommendation (2004),

 http://www.w3.org/TR/owl-semantics/
13. Jabłonowski, M., Boetzel, P.: Middleware Layer For Semantic Object Tagging. Master

Thesis at Warsaw University of Technology, Warsaw, Poland (2007)
14. Sinnott, R.W.: Sky and Telescope. Virtues of the Haversine 68(2), 159 (1984)
15. Snyder, J.P.: Map Projections – A Working Manual., U.S. Geological Survey, Professional

Paper 1395, US Government Printing Office, Washington DC (1987)
16. Judd, G., Steenkiste, P.: Providing Contextual Information to Pervasive Computing Appli-

cations. In: First IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom 2003), Fort Worth, Texas, pp. 133–142 (2003)

17. Strang, T., Popien, C.L.: A context modeling survey. In: Workshop on Advanced Context
Modeling, Reasoning and Management as part of the 6th International Conference on
Ubiquitous Computing (UbiComp 2004), Nottingham, England, pp. 33–40 (2004)

18. Chen, H., et al.: A Context Broker for Building Smart Meeting Rooms. In: Proceedings of
the Knowledge Representation and Ontology for Autonomous Systems Symposium, 2004
AAAI Spring Symposium, Palo Alto, CA, USA (2004)

19. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model in In-
telligent Environments. In: Proceedings of Communication Networks and Distributed Sys-
tems Modeling and Simulation Conference, San Diego, California, USA (2004)

20. Hong, J.I., Landay, J.A.: An Infrastructure Approach to Context-Aware Computing. Hu-
man-Computer Interaction 16(2, 3, 4), 287–303 (2001)

21. MIDAS video (2007), http://www.youtube.com/watch?v=yulUmlVH8Jc
22. JamVM – A Compact Java Virtual Machine (2008),

 http://jamvm.sourceforge.net/
23. Beanshell - Lightweight scripting for Java (2008), http://www.beanshell.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

