
Synthesizing Real-Time Components to
Run-Time Tasks

by Kathrin Dannmann
C. v. O. University of Oldenburg

kathrin@dannmann.de
February 11, 2009

Diploma Thesis
First Examiner: Prof. Dr. Martin Fränzle,

University of Oldenburg
Second Examiner: Dr. Thomas Nolte,

Mälardalen University

conducted at:
Mälardalen Real-Time Reseach Centre

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Abstract

Component-based software engineering (CBSE) has proven to be effective for the devel-
opment of desktop applications. Its objective is to construct software applications from
reusable entities. The possibility to manage the increasing complexity, the reduction of
time-to-market and the decrease of maintenance efforts can be mentioned as advantages
brought by CBSE.

The SAVE and PROGRESS projects’ objective is to show the potential of CBSE also
for the embedded domain. This domain imposes a series of extra-functional requirements
upon the development process, typically in respect to timing, resource usage and de-
pendability. A component technology for embedded software should provide respective
support, e.g., by means of analysis tools.

An important step during the development of embedded software applications with
CBSE is the synthesis, i.e., the transformation of the component-based designs into run-
time entities. The result of the synthesis affects a number of system properties, thus it
is beneficial to use a deployment mechanism which is more elaborated than a plain code
generation step. A high number of tasks, e.g., causes a high amount of context switches.
Putting all components in one task on the other hand can result in a high processor load.
In this thesis, a functional approach for the mapping of components to tasks will be pre-
sented.

The allocation mechanism is based on a control flow analysis and a set of rules,
according to which the components are allocated to a number of tasks. The allocation is
deterministic, which provides for predictability and allows for further analysis. The result
of the components-to-tasks allocation is used for the concluding code generation step, in
which task source code files in C are automatically generated.

The applicability of the designed synthesis mechanism is presented by use in a
demonstrator project, which aims at showing the capability of the SAVE component tech-
nology.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Related Work . 2
1.3 Thesis Goal . 2

2 Theoretical Background 4
2.1 Component-Based Software Engineering 4

2.1.1 CBSE for Embedded Systems . 4
2.2 The SaveComp Component Model . 5

2.2.1 Components . 6
2.2.2 Assemblies . 7
2.2.3 Composite Components . 7
2.2.4 Switches . 7
2.2.5 Ports . 9
2.2.6 Connections . 9

3 Design & Implementation 10
3.1 Mapping SaveCCM Components to Tasks 10

3.1.1 Issues . 10
3.1.2 Strategy . 11

3.2 Implementation . 18
3.2.1 Parsing and Preprocessing . 18
3.2.2 Control Flow Analysis . 19
3.2.3 Task Tree Analysis . 31
3.2.4 Code Generation . 31

3.3 Integration Into the SAVE IDE . 42

4 Evaluation & Results 43
4.1 Testing & Evaluation . 43

4.1.1 A General Test Case . 43
4.1.2 Special Test Cases . 55

4.2 Results . 60
4.2.1 Use in the SAVE Demonstrator . 60

i

CONTENTS

5 Conclusion & Future Work 62
5.1 Conclusion . 62
5.2 Future Work . 62

5.2.1 ProSave . 63
5.2.2 Optimization . 63

Listings 65

Bibliography 67

Appendices 70

A List of Acronyms 70

B Glossary 71

C The SaveCCM XML Schema 73

D .save File for the General Test Case 79

E .save File for the Demonstrator Project 84

F Generated Task Code for the Demonstrator Project 90

ii

Chapter 1

Introduction

1.1 Introduction

Component-based software engineering (CBSE) has shown to be an effective approach
for, e.g., the development of desktop applications. It addresses important issues in the
software development process, as for example the possibility to manage the increasing
complexity, reducing time-to-market and the decrease of maintenance efforts, by creating
systems from existing components.

Recent research projects aim at demonstrating the potential of CBSE also for the
embedded domain. This domain imposes special requirements on the software that need
to be considered during the development, e.g., real-time requirements, dependability and
resource consumption. Potential benefits of applying CBSE for the embedded domain
are, amongst others, shorter development time and support for product-lines due to the
option for reuse, as well as decreased effort for upgrading and maintenance.

A component model and the corresponding component technology for embedded
software design has been developed in the SAVE research project1. The component tech-
nology developed within the SAVE project has been designed to support component-based
development of vehicular software. It includes mechanisms that pay regard to the special
requirements of the embedded domain during the whole software design process. The
PROGRESS project2 will supersede SAVE with a broadened scope and build on the results
that have been obtained.

This thesis has been carried out within SAVE and PROGRESS. Its objective is the
deployment of the component-based designs for the execution on a target system. The
requirements of the embedded domain should also be considered during this synthesis
step, because it affects several properties of the system. The main task that needs to be
performed during the synthesis is the allocation of components to task. The approach

1see http://www.mrtc.mdh.se/SAVE/
2see http://www.mrtc.mdh.se/progress/

1

CHAPTER 1: INTRODUCTION

which will be presented in this thesis has been based on a control flow analysis.

1.2 Related Work

Component technologies generally provide a deployment mechanism for the automatic
generation of source code from higher level system designs. However, the allocation of
components to tasks is often not considered.

[Stewart et al., 1997] describes a component concept called port-based objects (PBOs),
which in combination with specific real-time operating system (RTOS) mechanisms builds
a framework that supports the design and implementation of sensor-based control systems.
The framework provides an automatic code generation from a PBO design to C, which
minimizes the manual coding effort for the system developer. One run-time task is created
from every PBO, i.e., a one-to-one allocation.

The COMDES-II framework, presented in [Ke et al., 2007], also supports the auto-
matic generation of C-code from the higher-level component-based designs. The alloca-
tion of components to tasks is not explicitly mentioned.

The PECOS framework ([Genßler et al., 2002]) pursues a different strategy. The
code generation takes advantage of the concepts of object-oriented programming lan-
guages. The component-based designs are mapped into a class hierarchy in either Java or
C++. A detailed description is available in [Schönhage and van den Born, 2002]. How-
ever, the mapping of components to tasks is not mentioned.

The Rubus component model takes the mapping of components to tasks into ac-
count. According to [Hänninen et al., 2008], "the RubusCMv3 model provides possibil-
ities to map several components into one executable thread, minimizing contexts switch
overhead." However, a detailed description of the allocation mechanism is not given.

An approach to map components to run-time tasks is presented in [Fredriksson et al.,
2005]. It uses simulated annealing and genetic algorithms to find an optimal allocation,
concerning a specified system property. For the work in this thesis, probabilistic or heuris-
tic methods are not suitable, since the allocation strategy is aspired to be predictable and,
e.g., applicable for hard real-time analysis.

1.3 Thesis Goal

The goal of this thesis is to design and implement an approach for the automatic deploy-
ment of SaveCCM applications (see 2.2), i.e., the translation of component-based soft-
ware design into an executable format. The main objective is the mapping of components
to tasks, which is to be done in a deterministic manner to provide for predictability.

The component-based designs are delivered by means of system descriptions in an
XML format. The expected final result of the synthesis is task source code in C which

2

CHAPTER 1: INTRODUCTION

implements the designed system. The source code will be compiled for a target system
with an available standard compiler.

This report is organized as follows.

Chapter 2

The background on which this thesis is based is presented. This chapter particularly
includes the introduction of the SaveComp component model.

Chapter 3

First, the approach which has been chosen for the component to task allocation will be in-
troduced and motivated, whereupon the implementation of the designed synthesis mech-
anism is presented. This chapter covers the essential part of the work which has been
carried out within this thesis.

Chapter 4

The testing of the implemented synthesis tool is described and the results, which have
been achieved within this thesis, are presented.

Chapter 5

The work and achievements which have been accomplished within this thesis are summa-
rized. An outlook on potential further development on the presented synthesis conclude
the thesis report.

3

Chapter 2

Theoretical Background

2.1 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is a comparatively young branch in the
software engineering discipline. Its objective is to construct software applications from
reusable entities, i.e., software components, following the common practice in mechanical
engineering where constructions are mainly assembled from already existing parts. By
modifying or replacing single components in the application, maintenance and upgrading
can be facilitated [Crnkovic, 2001]. CBSE comprises the development of applications
from components as well as the development of reusable components, the building blocks
for applications.

With this strategy, the development time for software systems can be reduced, due
to the possibility for reuse, and therefore lead to a shorter time-to-market. Moreover,
maintenance efforts can be decreased. CBSE has shown effectiveness in development of
desktop and web applications [Lüders, 2004].

2.1.1 CBSE for Embedded Systems

Software development for embedded systems becomes more and more challenging. While
the software is expected provide increasingly sophisticated functionality, the time to mar-
ket decreases at the same time. The costs for embedded software development are rising
continually as the software developers struggle to meet the tight deadlines [Kang et al.,
2005].

These problems can be addressed by applying CBSE for embedded software. CBSE
has shown to be an effective way to handle complex software designs and also to shorten
the development time. The development of an application does not need to start from
scratch, but can build upon previously achieved results. Furthermore, CBSE can provide
support for product lines, which are common in many embedded domains, e.g., the mobile
phone or car industry, since it allows for reuse and reduces the effort for maintenance and

4

CHAPTER 2: THEORETICAL BACKGROUND

upgrading.
The embedded domain imposes special requirements on the software and thereby

also on the development process. Embedded computers are often responsible for safety
critical control tasks, which implies that they have to fulfill real-time requirements. More-
over they are produced in a high quantity and the amount of physical space in the system
into which the computer shall be integrated is limited. To keep the costs for the utilized
hardware within the bounds of economic possibility, the cheapest feasible option will be
chosen which leads to tight resource constraints. Resource-efficiency, predictability and
safety are important issues that should be considered throughout the whole software life-
cycle. This implies that a component technology suitable for the software development
for embedded systems should provide opportunities for analysis and verification in all
stages of the development [Åkerholm et al., 2005].

Furthermore the constraints should be regarded during the deployment of the soft-
ware designs, i.e., the transfer of components into run-time entities. The method how
components are mapped to tasks has impact on for instance memory consumption, pro-
cessor utilization and schedulability. A low number of tasks, for example, consumes less
memory and involves less context switches, yet it can cause a high processor utilization
when the components have different periodicities [Fredriksson, 2008].

2.2 The SaveComp Component Model

This thesis has been carried out within the SAVE1 and PROGRESS research project. A core
part of the SAVE project is the SaveComp component technology, herein after referred
to as SaveCCT, which has been designed to support component-based development of
vehicular software. The SaveCCT incorporates a series of tools that provide support for
the special requirements of the embedded domain throughout the whole software design
process.

The underlying component model is the SaveComp component model, in the follow-
ing referred to as SaveCCM, which provides the syntax and semantics of the component
language.

The remainder of this section will introduce the elements of SaveCCM. The graph-
ical representation of the elements is presented in Figure 2.1. Further details about
SaveCCM can be found in [Carlson et al., 2006] and [Åkerholm et al., 2007b]. [Åker-
holm et al., 2007a] delivers insight into the SaveComp component technology.

1See http://www.mrtc.mdh.se/SAVE/ for further information.

5

CHAPTER 2: THEORETICAL BACKGROUND

Figure 2.1: The graphical representation of the SaveCCM elements

2.2.1 Components

Components are the main element in SaveCCM. A component’s interface consists of input
and output ports and can also include a number of quality attributes, such as (worst case)
execution time, reliability estimates or safety models. The functionality of a component
is typically implemented by an entry function in C.

The execution of a component follows strict "read-execute-write" semantics. Ini-
tially, the component is inactive and remains in that state until it is triggered, i.e., all
input trigger ports have been activated. The execution starts with a read phase, in which
the data from the input ports is transferred for calculations during the subsequent execute
phase. Once the calculations have been performed, the execution will conclude with a
write phase. The output data is written to the output data ports, the output trigger ports
are activated and the component transits into the inactive state again.

Figure 2.2: Graphical representation of the Clock and the Delay component

The model also includes two special types of components, Clock and Delay (see Fig-
ure 2.2), which can be used to manipulate timing of triggers. A Clock has two parameters
T and J for period and jitter. A trigger is generated within J time units after the start
of a new period, every T time units. A Delay component has two parameters D and P ,
for delay and precision, and will pass on an incoming trigger between D and D + P time
units after its arrival.

6

CHAPTER 2: THEORETICAL BACKGROUND

2.2.2 Assemblies

Assemblies are used to encapsulate a set of components. An example assembly can be
seen in Figure 2.3. They contain an internal structure of components and interconnections,
which is by this means hidden from the rest of the system and can only be accessed
through the assembly’s ports.

Figure 2.3: An example for an assembly

Assemblies do not fulfill the requirements of a component. They are not triggered,
but immediately pass incoming data and trigger signals according to their internal con-
nection. Therefore, assemblies can solely be considered a means to assemble and name
a group of components, in contrast to Composite Components (see Section 2.2.3), which
comply with the execution semantics of a SaveCCM component.

2.2.3 Composite Components

A composite component is a component whose behavior is specified by an internal com-
position of components. The graphical notation is shown in Figure 2.4.

The dashed lines indicate how data is transferred to and from the internal composi-
tion during the read and write phase, respectively. Trigger signals are not passed on in this
manner. The internal trigger ports will be activated once the composite component en-
ters the active state, i.e., when all its trigger ports have been activated. When all internal
components become inactive again, the write phase will be initiated and the composite
component will return to the idle state again.

2.2.4 Switches

Switches allow to modify the component interconnection structure. The modifications
can either be conducted statically for pre-runtime static configuration or dynamically, for

7

CHAPTER 2: THEORETICAL BACKGROUND

Figure 2.4: Graphical representation of the composite component
(from: [Åkerholm et al., 2007b]

example to implement modes and mode switches. A switch consists of a set of internal
connection patterns, which partially map the switch’s input to its output ports. A logical
expression over incoming data guards each of the connection patterns. An example is
presented in Figure 2.5.

(a) A switch (b) Inside the switch

Figure 2.5: An example for a switch

As assemblies, switches are not triggered. They instantly react on new incoming
data or trigger signals and forward a trigger signal corresponding to the currently active
connection pattern. The switches only purpose is the evaluation of the connection pattern
guards and perform no other computations.

The SaveCCM switch concept is similar to that in Koala [van Ommering et al.,
2000].

8

CHAPTER 2: THEORETICAL BACKGROUND

2.2.5 Ports

In SaveCCM ports are classified as input or output ports and as trigger ports or typed data
ports. All ports have a name. Data ports must also be assigned a type and can have an
initial value. The components input ports, the output ports of the system, and the input
ports of switches which are used in a connection pattern guard are one-place buffers with
overwrite semantics. The data on all further input as well as output ports is not buffered,
but passed on immediately.

External ports are ports which are mapped to some external entity, as for example
I/O-ports, interrupts, or real-time database pointers. A combined port is data as well as
trigger port at the same time.

For the connection between ports, their characteristics must be regarded. Trigger
output ports may only be connected to trigger input ports. Data output ports have to be
consistent with connected data input ports concerning the type. Combined ports can be
connected to all three kinds of ports, provided that the data type is compatible.

2.2.6 Connections

SaveCCM distinguishes between immediate and complex connections.
Immediate connections typically exist between components that are located on the

same node, which implies loss-less, automatic migration of data or trigger signals from
one port to another.

Complex connections represent connections in distributed systems between compo-
nents on different nodes. They incorporate data and control transfer over channels with
possible delay and information loss.

9

Chapter 3

Design & Implementation

3.1 Mapping SaveCCM Components to Tasks

The objective of this thesis is to design and implement an approach to transform SaveCCM
component-based software designs into a runnable format. This implies particularly the
allocation of components to runtime tasks. The two most elementary approaches are ev-
idently to either create one task for each component, i.e., a one-to-one allocation, or to
map all components to the same task.

A one-to-one allocation can be disadvantageous regarding memory consumption and
can also cause overhead due to an increased number of context switches. The allocation
of all components to one task on the other hand consumes less memory, but it can lead to
a higher processor load in case the components have different periodicities [Fredriksson,
2008]. Since the task’s period has to be adjusted to the shortest component period of the
co-allocated components, components with longer periods are executed with a higher fre-
quency than required which adds up to a higher load on the processor. The way how com-
ponents are mapped to tasks has a significant impact on the compliance of extra-functional
requirements and should therefore be paid attention to. An elaborated allocation strategy
provides the means to find a satisfactory components-to-tasks mapping.

3.1.1 Issues

The allocation strategy affects several extra-functional properties of the system. The num-
ber of tasks has impact on memory consumption and the amount of necessary context
switches. The choice which components are combined in the same tasks can cause a high
processor load.

The requirements can also include isolation sets for components, which denote that
certain components may not be allocated to the same task. Furthermore, it can be required
that a component is executed on a specified physical node in a distributed system, for
example because of sensor data which is available at that particular node and needed for

10

CHAPTER 3: DESIGN & IMPLEMENTATION

the component’s computation.
Most importantly, non-functional requirements within the embedded real-time do-

main naturally comprehend timing requirements. It is indispensable that the temporal
constraints are fulfilled, therefore it is necessary to verify that a components-to-tasks allo-
cation meets the assigned deadlines, i.e., a schedulability analysis needs to be performed.
Predictability is vitally important within real-time computing to provide safety assurance.

3.1.2 Strategy

The allocations can be optimized with regards to a series of extra-functional properties, as
for example memory consumption or CPU overhead. Finding a by some means optimal
allocation is however a highly complex problem. The assumption that the components can
be mapped to tasks in an arbitrary way results in an exponential growing search space of
possible allocations. Common ways to tackle this problem are probabilistic and heuristic
methods, such as simulated annealing or genetic algorithms, as applied in [Fredriksson,
2008]. However, deterministic approaches are preferential in areas where safety, and
therefore predictability, are vital issues.

As part of this thesis, an allocation strategy has been developed which consists of
a set of deterministic rules. The rules are based on the control flow in the component-
based designs and take the triggering mechanism and the precedence and interconnection
relations between the components into account.

For the control flow in SaveCCM designs, two trigger types, periodic and event, and
four different connection types can be identified. With regard to the further development
within the PROGRESS project, a fifth connection type will be added. All five types have
been incorporated into the set of allocation rules. The remainder of this section will
describe the different connection types and the corresponding allocation rules that have
been elaborated.

The Connection Types

The most elementary connection type is the simple connection, as shown in Figure 3.1. It
connects one component with exactly one succeeding component.

Figure 3.1: A simple connection

11

CHAPTER 3: DESIGN & IMPLEMENTATION

A control fork passes a trigger from one component to at least two succeeding com-
ponents. An example for a forked connection with two successor components can be seen
in Figure 3.2.

Figure 3.2: A forked connection

A control join or and-connection is not explicitly modeled in SaveCCM, but implic-
itly results from the semantics of the trigger mechanism. As described in Section 2.2.1, a
component is trigged when all of its trigger input ports are activated. This implies an and-
condition for the triggering of a component with more than one trigger input port. Thus,
an and-connection connects at least two components with one succeeding component. An
example is shown in Figure 3.3. A control join connection will be explicitly introduced
with the further development within the PROGRESS project.

Figure 3.3: An and-connection

The PROGRESS project will also feature a connection type which is not supported
by SaveCCM. Analog to the and-connection, an or-connection is introduced. It connects
minimum two components with one successor component, which will be triggered as
soon as at least one preceding component passes a trigger.

The last connection type results from switches, which are described in Section 2.2.4.
In PROGRESS, this concept is referred to as selection. A selection connection connects

12

CHAPTER 3: DESIGN & IMPLEMENTATION

one component with an arbitrary number of successor components under a set of con-
ditions. It can be used to establish the actual connection during runtime, based on the
current state. An example for a selection connection, implemented by a switch, can be
seen in Figure 3.4.

Figure 3.4: A selection connection, instantiated by a switch

The Allocation Rules

For each connection type, an allocation rule has been established. The rules are based on
the arrival of triggers and therefore on the activation sequence of components. Chains of
connected components can be allocated by sequential application of the rules.

The most elementary case is a single component. It will be mapped to one task, in
either case of trigger type. The activation of the task will occur according to the incoming
trigger of the component. Every component that is connected to a trigger generator, which
can be a clock or an external trigger port, marks the beginning of a control flow thread
and each of these threads will be mapped to one task.

Figure 3.5: Allocating a single component

Two components that are connected with a simple connection will be mapped to the
same task, as in Figure 3.6. The execution of component B will always succeed the ex-

13

CHAPTER 3: DESIGN & IMPLEMENTATION

ecution of component A. The trigger of component B is the same as for component A,
whether it is event or time triggered.

Figure 3.6: Allocating two components with a simple connection

Components that are linked with a forked connection will also be mapped to the
same task. An example is shown in Figure 3.7. The components B and C will always
succeed the execution of component A and also hold the same trigger. The succeeding
components will be placed after the preceding component in a deterministic order. This
concept is also valid for forked connections with more than two succeeding components.

Figure 3.7: Allocating three components with a forked connection

For a component which joins incoming triggers from several preceding components,
the allocation varies depending on the combination of trigger types. If all triggers are
periodic, i.e., time triggers, the succeeding component will be assigned to the same task

14

CHAPTER 3: DESIGN & IMPLEMENTATION

as the predecessor with the longest period. This is reasonable since all components with
a shorter period will already have been executed and generated a trigger. Therefore it will
always be the component with the longest trigger period that delivers the trigger which
will fulfill the and-condition and activate the component. This implies that the succeeding
component inherits this longest period.

Figure 3.8 demonstrates an example with periodic triggering and two preceding com-
ponents.

Figure 3.8: Allocating three components with an and-connection and periodic triggers

In the case of only event triggers, as in Figure 3.9, it is not predictable which pre-
ceding component will deliver the activating trigger. On this account, the succeeding
component will be added to the tasks of all preceding components, together with a guard
to check if all other incoming triggers have already been activated. Thus, the component
is activated only when all triggers have been set.

The last possible trigger combination, a combination of both time and event triggers,
corresponds to the case of only event triggers and will be handled the same way. This re-
sults in non-predictable activation times for the preceding components, as in the case of
event triggering.

The execution of a component which is attached to an or-connection will always fol-
low each of the preceding components’ execution. Hence, the successor component will
be mapped to every predecessors’ task (see Figure 3.10). In case the incoming triggers
include periodic triggers, the shortest period will determine the minimal inter arrival time
of an activating trigger for the successor component.

15

CHAPTER 3: DESIGN & IMPLEMENTATION

Figure 3.9: Allocating three components with an and-connection and event triggers

The last remaining connection type is the selection connection. A selection connec-
tion can be seen as a switchable simple connection. Only one of the succeeding com-
ponents will be executed subsequent to the preceding component, depending on the con-
dition guarding the connection. Hence, the allocation can be carried out as for a simple
connection combined with a conditional expression. All succeeding components will be
mapped to the same task as the preceding component. An example can be seen in Figure
3.11.

16

CHAPTER 3: DESIGN & IMPLEMENTATION

Figure 3.10: Allocating an or-connection

Figure 3.11: Allocating a selection connection

17

CHAPTER 3: DESIGN & IMPLEMENTATION

3.2 Implementation

Figure 3.12: Overview over the implementation

The synthesis, i.e., the transformation of SaveCCM component-based designs into
an executable format, consists of several consecutive steps. Figure 3.12 gives an overview
over the implementation. In the first step, the component-based design is imported and
some preprocessing is performed to prepare and facilitate the subsequent steps. Then,
the control flow is analyzed and the allocation rules are applied. Finally, the code for the
tasks is generated. A standard compilation will conclude the process and translate the
generated code into an executable form for a target system. The remainder of this section
will describe each of the work packages in detail.

3.2.1 Parsing and Preprocessing

The design which shall be synthesized is delivered as XML file with the extension .save.
The Java API JAXB1 has been chosen to retrieve the data from the XML file. JAXB
allows the mapping of Java classes to XML and vice versa. Data represented in XML

1Java Architecture for XML Binding; for further information see https://jaxb.dev.java.net/

18

CHAPTER 3: DESIGN & IMPLEMENTATION

is automatically unmarshalled into Java objects. The included tool xjc generates the
corresponding Java classes from a given schema file written in XML schema.

A specification of the SaveCCM schema in XML DTD is available in [Åkerholm
et al., 2007b]. For the use with JAXB, it has been converted into XML schema. The
resulting schema is enclosed in Appendix C. The classes, which have been automatically
generated from the schema, can be found in the package saveCCM in the source folder.

In addition to the import of the design, certain preparative steps are carried out
within this work package. All entities, such as components, switches etc., are sorted into
HashTables to provide easy access over their ids. Moreover, the connections are con-
verted into an own representation (Ctrl_Connection), which enables flexibility. This
implementation has been designed for SaveCCM, but also with a view to the extension
to ProSave in the PROGRESS project. By wrapping all information which is necessary
for the succeeding steps into independent classes, it is possible to adjust the synthesis for
different schemas by adapting merely this first step.

Furthermore, assemblies are processed at this point. Since they are solely a mecha-
nism to encapsulate an internal structure and do not feature any behavioral semantics, the
contents of an assembly are simply brought to the same level as the rest of the system.
This way, no parts of the system are "hidden" for the analysis of the entire control flow.

The corresponding code for the parsing and preprocessing step is avaible in the
parser package in the src folder. The documentation of the package and its functions
can be found in srcDoc folder.

All information about the design which has been assembled during the parsing and
preprocessing is passed to the next step, where the control flow will be analyzed.

3.2.2 Control Flow Analysis

The main part of the synthesis is carried out in this step. First, the control flow is inves-
tigated, so that subsequently the mapping of components to tasks can be performed by
applying the allocation rules. The control flow consists of all entities that handle trig-
gers, such as trigger generators and connections to and from trigger or combined ports.
Since trigger and combined ports bear the same meaning for the control flow, they will be
summarized as trigger ports within this section to enhance the readability. The code im-
plementing the tasks decribed in this section can be found in the controlFlow package
in the src folder. The corresponding documentation is available in the srcDoc folder.

The analysis of the control flow starts with the identification of the beginnings of
control flow threads, in the implementation referred to as StartingPoints. A start-
ing point is instantiated by a trigger generator and can either be a clock component, as
described in Section 2.2.1, or an external event, i.e., a connection to an external trigger
port. Each component connected to a starting point marks the beginning of one control
flow thread and accordingly implies the creation of one task.

19

CHAPTER 3: DESIGN & IMPLEMENTATION

Next, the connection types are identified. In the SaveCCM schema, connections
are composed of exactly one origin, represented by the source element’s id and the cor-
responding outport id, and an arbitrary number of destinations, each represented by the
target element’s id and the corresponding inport id. The classes representing the dif-
ferent connection types are enclosed in the package connections in the src folder.
The package contains an abstract class Connection that contains a field of the type
Ctrl_Type, which is used to specify the connection type, and two abstract methods
which return the From, i.e., the origin, and To, i.e., the destination, respectively. All
classes for the connection types are derived from the abstract class. This superclass brings
the advantage of a generic data type for the connections, which simplifies the maintenance
of connections in data structures, as for example lists or tables.

The identification of connection types needs to be performed in a hierarchical order:
from selection connections over and-connections to forked connections and finally simple
connections. The reason for this order is that connections which appear to be forked or
simple connections, because they match the pattern of one origin and more than one or
exactly one destination respectively, can actually be part of a selection connection or
and-connection. These connection parts have to be eliminated before forked and simple
connections can be properly identified. An example which demonstrates the necessity for
the hierarchical processing is shown in Figure 3.13.

Figure 3.13(a) shows an example design with several connections and their intercon-
nection. As pointed out in Figure 3.13(b), there are five original connections. When solely
considering the data about the connections, connections 2, 4 and 5 appear to be simple
connections and connections 1 and 3 forked connections, respectively. However, from the
control flow point of view, the design contains merely four connections, namely one of
each connection type. As indicated in Figure 3.13(d), connection 1 is actually not a forked
connection, but a simple connection and part of a selection connection. The apparent sim-
ple connections 4 and 5 are also part of the selection connection. Moreover, connections
2 and 3 establish a joined connection, which implicates that connection 3 results in forked
connection with only two branches. Consequently, all apparent simple connections and
branches of forked connection, which are actually part of a selection connection or joined
connection, need to be removed before simple connections and forked connections can be
correctly identified.

20

CHAPTER 3: DESIGN & IMPLEMENTATION

(a) Example connection pattern

21

CHAPTER 3: DESIGN & IMPLEMENTATION

(b) Example with original, untyped connections

(c) Table of connections

22

CHAPTER 3: DESIGN & IMPLEMENTATION

(d) Example with determined connection types

(e) Relation between
original and deter-
mined connections

(f) Table of determined connection types

Figure 3.13: Hierarchical determination of connection types

23

CHAPTER 3: DESIGN & IMPLEMENTATION

To determine selection connections, all switches within the application are con-
sidered. According to the schema (see Figure 3.14(a)), a switch contains a series of
SwitchConditions, each of which consists of an origin and a set of destinations each
combined with a conditional guard. From every SwitchCondition, a selection con-
nection is created. Since the switch describes its internal connection pattern, the origins
and destinations correspond to its inports and outports respectively. For a connection
however, the originin is expected to be a components outport just as the destination has to
be a component’s inport. Hence, the connections to and from the switch need to be found
and assigned adequately. Figure 3.14 demonstrates how selection connections are created
from a switch and its connections.

Figure 3.14(c) shows an example for a set of components which are connected
through a switch. The presented switch connects two trigger inports with three outports
and it has two setports which deliver the data that is used for the connection guards. The
corresponding XML representation is presented in Figure 3.14(d). The conditional con-
nections inside the switch are visualized in Figure 3.14(c). The figure also includes the
tables with the connections to and from the switch, which are needed for the creation of
a selection connection. Based on the available data, the corresponding selection connec-
tions are created, as illustrated in Figure 3.14(e). Since the switch contains two switch
conditions, two selection connections are created.

As mentioned before, and-connections result implicitly from the trigger mechanism
of a component. The first step to identify and-connections is to find all components with
more than one trigger input port. Then, all connection arriving at the component are gath-
ered from the connections table. Are at least two inports connected to a preceding compo-
nent, an and-connection will be created. In case ports are detected to be unconnected and
not more than one trigger actually arrives at the component, the potential and-connection
is discarded and the incoming connection will be classified correctly in one of the two
remaining steps. An example for the creation of an and-connection is shown in Figure
3.15.

Within the two previous steps, every connection or part of a connection which be-
longs to a selection or and-connection have been removed from the connections list.
Hence, all remaining connections are either forked or simple connections. A connection
which has one origin and more than one destination is classified as forked connection, all
connections with one origin and exactly one destination are simple connections.

Once the classification of all connections has been completed, the flow of the trig-
gers through the application is traced, beginning from the components that are connected
to one of the previously identified starting points. For every succeeding component, the
allocation rule which corresponds to the connection type is applied. The tasks are repre-
sented by a tree structure, referred to as TaskTree, which suits the need to map possible
divergent branches in the control flow. The trees are constructed in a way that the nodes
stand for connections and the edges represent the components which link the connections.

24

CHAPTER 3: DESIGN & IMPLEMENTATION

This is reasonable, because the connections are the main entities in the control flow and
hold the information needed to assemble the tasks.

An example for the consecutive application of the allocation rules to construct the
task trees is presented in Figure 3.16. Figure 3.16(a) shows an example design with
determined connection types. The example contains two starting points, i.e., two clock
components in this case, therefore two task trees will be created. The construction of the
trees starts with the upper control flow thread. In the first step, as illustrated in Figure
3.16(b), connection 1 is assigned as the root of the first task tree. The root also contains
the information about the starting point, such as the period or the external port in case
of an event trigger. When a connection has been assigned to the tree, the construction
continues with scanning all destination components of the connection for their outgoing
connections. In case of connection 1, two outgoing connections, one simple connection
(3) and one selection connection (4) are found and assigned as child nodes to the node of
connection 1 (see Figure 3.16(c)), according to their allocation rules. In the next step, a
joined connection (6) is encountered. For the application of the allocation rule for joined
connections, the trigger type of all incoming connections must be known. That implies
that all incoming connections must have been assigned to a task tree, because the trigger
of a component within a task tree does not necessarily correspond to the trigger of the task.
Certain connections, as selection connections and joined connections, can turn a periodic
trigger into a sporadic trigger. In the case of connection 6, not all incoming triggers are
known yet. Therefore the tree construction proceeds with the second control flow thread.
After connection 2 is assigned as the root of tree 2, connection 6 is encountered again.
Now all incoming triggers are known and the allocation rule for the joined connection
can be applied. Both tasks have periodic triggers, but since tree 1 contains a selection
connection before connection 6, the trigger from that tree is actually sporadic. Thus,
connection 6 is assigned to both trees, according to the rule for joined connections with
mixed triggers. In the last step, simple connection 7 is assigned to both task trees, since it
succeeds connection 6.

25

CHAPTER 3: DESIGN & IMPLEMENTATION

< !ELEMENT SWITCHDESC (INPORT* , OUTPORT* , SWITCHCONDITION*) >
< !ATTLIST SWITCHDESC i d ID #REQUIRED>
< !ELEMENT SWITCHCONDITION (FROM, (TO, CONDITION) *) >
< !ELEMENT CONDITION EMPTY>
< !ATTLIST CONDITION s e t p o r t IDREF #REQUIRED v a l u e CDATA #REQUIRED>

(a) XML schema for switches

p u b l i c c l a s s S e l e c t i o n C o n n e c t i o n ex tends C o n n e c t i o n {
From from ;
L i s t < S e l e c t i o n C o n d i t i o n > t o s ;
S t r i n g s w i t c h _ i d ;

}
p u b l i c c l a s s S e l e c t i o n C o n d i t i o n {

L i s t <To> t o ;
C o n d i t i o n c o n d i t i o n ;

}
p u b l i c c l a s s C o n d i t i o n {

p r o t e c t e d S t r i n g s e t p o r t ;
p r o t e c t e d S t r i n g v a l u e ;

}

(b) Excerpt from relevant Java classes for a selection connection

(c) An example switch

26

CHAPTER 3: DESIGN & IMPLEMENTATION

<SWITCHDESC i d =" ExampleSwitch ">
<INPORT mode=" d a t a " t y p e =" i n t " i d =" a _ i n " s e t p o r t =" t r u e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" b_ in " s e t p o r t =" t r u e " / >
<INPORT mode=" t r i g " i d =" in_1 " s e t p o r t =" f a l s e " / >
<INPORT mode=" t r i g " i d =" in_2 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" t r i g " i d =" out_C " / >
<OUTPORT mode=" t r i g " i d =" out_D " / >
<OUTPORT mode=" t r i g " i d =" out_E " / >

<SWITCHCONDITION>
<FROM i d =" ExampleSwitch " p o r t =" in_1 " / >

<TO i d =" ExampleSwitch " p o r t =" out_C " / >
<CONDITION s e t p o r t =" i n _ a " v a l u e =" t%l t ; 2 " / >

<TO i d =" ExampleSwitch " p o r t =" out_D " / >
<CONDITION s e t p o r t =" i n _ a " v a l u e =" t%g t ;=2 " / >

< / SWITCHCONDITION>

<SWITCHCONDITION>
<FROM i d =" ExampleSwitch " p o r t =" in_2 " / >

<TO i d =" ExampleSwitch " p o r t =" out_E " / >
<CONDITION s e t p o r t =" in_b " v a l u e =" t r u e " / >

< / SWITCHCONDITION>
< / SWITCHDESC>

(d) XML description of the example switch

(e) Corresponding Java SelectionConnection objects

Figure 3.14: From a switch to selection connections

27

CHAPTER 3: DESIGN & IMPLEMENTATION

p u b l i c c l a s s J o i n e d C o n n e c t i o n ex tends C o n n e c t i o n {
L i s t <From> from ;
To t o ;
S t r i n g cmpId ; / / t h e component where t h e c o n n e c t i o n goes t o
L i s t < S impleConnec t ion > c o n n e c t i o n s ; / / t h e i n i t i a l c o n n e c t i o n p a t t e r n

}

(a) Excerpt from the relevant Java class

(b) An example for a joined connection

(c) Corresponding Java SelectionConnection objects

Figure 3.15: Creating an and-connection

28

CHAPTER 3: DESIGN & IMPLEMENTATION

(a) Example with determined connection types

(b) Task tree construction - Step 1

(c) Task tree construction - Step 2

29

CHAPTER 3: DESIGN & IMPLEMENTATION

(d) Task tree construction - Step 3

(e) Task tree construction - Step 4

(f) Task tree construction - Step 5

Figure 3.16: Construction of task trees

30

CHAPTER 3: DESIGN & IMPLEMENTATION

When all components have been assigned to a task tree, the allocation is completed
and the code for the tasks can be generated.

3.2.3 Task Tree Analysis

With the representation of the control flow in the task trees, the control flow analysis
delivers an intermediate result which provides opportunities for further analyses. With
further exploration of the task structures, potential for optimization could be revealed and
put into effect. An implementation of this step is out of the scope of this thesis, however
the potential will be briefly discussed in the following.

Given that deadlines are provided in the application design, the task trees could be
utilized to perform a timing analysis. The satisfaction of end-to-end deadlines in the
component-based designs could for example be checked, if the execution times of the
components have been determined by means of a worst-case execution time analysis prior
to the synthesis. In case of a deadline violation, the critical path(s) could be marked in the
design to inform the developer about the problem source. Or if possible, attempts could
be made to rearrange the components so that the deadlines will be fulfilled.

Even if no deadlines are provided, a timing analysis can be performed, utilizing the
components’ WCETs, to provide the developer with the timing properties of the designed
system.

Furthermore, potential for optimization could result from the internal structure of
the tasks. When a control flow thread has been converted into a task tree, the precedence
relation between the components in that thread is determined. This fact can be the basis
for optimization. A joined connection can for example be simplified, if all incoming trig-
gers are delivered from the same task, which would per definition be the same task that
contains the joined connected component. In that case, the code for the task can be simpli-
fied, because trigger flags and an if-statement (see Section 3.2.4) for the joined connection
will become obsolete. A closer investigation about interdependencies between connection
types and their precedence relation could reveal more opportunities for optimization.

3.2.4 Code Generation

The code generation concludes the synthesis. The task trees, which have been created in
the preceding step, are transferred into corresponding C code. The source files will be
compiled for a target system with a standard compiler in a following step. In the current
implementation, the tasks are customized for the real-time operating system (RTOS) As-
terix2. However, a common interface for a series of real-time operating systems, called
SaveOS API, is created within another project. This will provide abstraction from the
operating system and therefore allow for a more general applicability of the task code.

2see http://www.mrtc.mdh.se/index.php?choice=projects&id=0026

31

CHAPTER 3: DESIGN & IMPLEMENTATION

The implementation of the code generation can be found in the codeGeneration
package in the src folder. The file CodeGenerator.java contains the main func-
tionality. The corresponding documentation is available in the srcDoc folder.

For each task tree, a header and a source file are created. The names for the files
and the task function are composed of the word "task" and a consecutive number, which
increases with each task tree. To generate the code corresponding to a task tree, the
tree is traversed in level-order, beginning from the root. That means all nodes on one
level are visited before the traversal proceeds to the next level. An exception to this is
caused by the occurrence of a selection connection. In that case, the execution will not
proceed with the component on the same level, since only one of the components after a
selection connection is selected for execution. This circumstance leads to one preorder
traversal step to first process the entire branch attached to the selected component. After
this one step the traversal is resumed in level-order until the next occurrence of a selection
connection. The traversal step in preorder also implies the continuation on the level where
the selection connection occurred, once the traversal of the branch has been completed.
The example in Figure 3.17 clarifies the prodecure.

The components’ functionality is provided in the form of entry functions imple-
mented in C. The declarations of the functions and further needed structures, as for exam-
ple for the combined ports, are generated prior to the synthesis. For all combined ports, a
struct with two fields, trigger and value, and the name inportName_combinedtype
has been created. The path to the folder which contains the source files is passed as an
argument to the synthesis. The headerfile that contains the declarations of all entry func-
tions and also all non-standard data types, as for the combined ports, is included at the
beginning of each generated source file.

The dataflow is implemented by the use of variables and assigning values to them.
To allow for inter-process communication, i.e., the exchange of data between components
assigned to different tasks, global variables are created for all outports, which are the
sole source for data. As a matter of fact, these variables are only assigned a value in one
location, namely the component’s entry function. By this means, the data provided by a
component in some task will be available in all tasks. Data connections are established
by assigning an outport’s value to the variable corresponding to the connected inport, as
shown in the example in Figure 3.18(c) for both a connection to a simple data port and a
combined port.

During the traversal of the tree, for each node the code corresponding to the encoun-
tered connection is added to the task source file. The code corresponding to all connection
types can be seen in Figures 3.19, 3.20, 3.21 and 3.22. Firstly, the values to the inport
variables are assigned. Then, the component’s entry function will be called, with the list
of inports and outports as parameters.

In the cases of a joined connection or a selection connection, some extra lines of code
must be added. For the joined connection, it needs to be checked whether all incoming

32

CHAPTER 3: DESIGN & IMPLEMENTATION

triggers have been activated. Therefore, each inport which is part of the and-condition has
a corresponding global variable. When a component, which is connected to one of these
inports, has been executed, the value of the inport variable is set to 1. Prior to the call
of the entry function of the and-connected component, an if-statement is added to check
whether all trigger input variables have been set to "1". Thus, the component will only
be executed in case all triggers have been activated. After the call of the component’s
function, the trigger variables are reset by assigning the value "0".

For a selection connection, the different branches need to be enclosed in an if-then-
else-block, using the conditions guarding the connections. The conditional statements in
SaveCCM are represented by a complex type with two elements, setport and value.
The setport holds the data inport of the switch whose value shall be compared. The nature
of the comparison is determined by the value field. It contains a string of characters,
which can express a lower than [equal], greater than [equal] or equal comparison with
a specified constant. In case the value string contains the word "true", the setport’s
value is per definition checked for equality with "0". An example for a switch with differ-
ent conditional statements is shown in Figure 3.22.

To conclude the task creation, a configuration file which describes the properties of
all tasks needs to be written for the currently used operating system Asterix. An example
configuration file is shown in Figure 3.23. For each task, a set of nine properties needs to
be specified.

1. HARD_TASK/SOFT_TASK
specifies whether the task has hard or soft real-time requirements
possible values: HARD_TASK and SOFT_TASK

2. task activation
specifies whether the task is activated periodically or sporadically
possible values: PERIODIC and APERIODIC

3. a name
assigns a name to the task

4. PERIOD_TIME
period time in number of time units based on the value of the RESOLUTION field
(for periodic tasks)

5. ACTIVATOR
the signal that activates the task (for sporadic tasks)

6. OFFSET
the delay of the start within the task’s period

33

CHAPTER 3: DESIGN & IMPLEMENTATION

7. DEADLINE
the latest time for the execution of a task

8. PRIORITY
the task’s priority
low value = low priority, high value = high priority

9. STACK
the stack size

10. ROUTINE
specifies the name of the C-funtion that implements the task’s functionality

The information about the task activation, period time and routine name can be di-
rectly copied from the task function and task trees. The name of the task’s function is
utilized as name for the task. All tasks are assumed to have hard real-time requirements.
Since neither an offset nor a deadline or priority is currently explicitly specified in the
.save file, the offset is set to "0" and the deadline to the period time, which is a safe
assumption for the deadline. The priorities are assigned statically according to the Rate
Monotonic conventions [Liu and Layland, 1973], i.e., the task with the shortest period
gets the highest priority. In case two or more tasks hold the same period time, the order is
determined by the task number, which is part of the task name. Also the stack size is not
specified by any means and will be set to a default value for all tasks.

34

CHAPTER 3: DESIGN & IMPLEMENTATION

Figure 3.17: Traversal of task trees (1/2)
35

CHAPTER 3: DESIGN & IMPLEMENTATION

Figure 3.17: Traversal of task trees (2/2)

36

CHAPTER 3: DESIGN & IMPLEMENTATION

(a) An example component

i n t s o u r c e 1 ;
s o u r c e 2 _ c o m b i n e d t y p e s o u r c e 2 ;
someDataType d a t a _ o u t ;

(b) Declaration of global Variables

void t a s k (void * i g n o r e) {
i n t d a t a _ i n 1 = s o u r c e 1 ;
d a t a _ i n 2 _ c o m b i n e d t y p e d a t a _ i n 2 ;
d a t a _ i n 2 . v a l u e = s o u r c e 2 . v a l u e ;
e n t r y f c t _ A (d a t a _ i n 1 , d a t a _ i n 2 , &d a t a _ o u t) ;

}

(c) Example code

Figure 3.18: Code generation example

(a) Example for a simple connection

void t a s k (void * i g n o r e) {
e n t r y f c t _ A (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
e n t r y f c t _ B (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;

}

(b) Code example for simple connection

Figure 3.19: Code generation example for a simple connection

37

CHAPTER 3: DESIGN & IMPLEMENTATION

(a) Example for a forked connection

void t a s k (void * i g n o r e) {
e n t r y f c t _ A (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
e n t r y f c t _ B (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
e n t r y f c t _ C (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;

}

(b) Code example for forked connection

Figure 3.20: Code generation example for a forked connection

38

CHAPTER 3: DESIGN & IMPLEMENTATION

(a) Example for a joined connection

/ / t r i g 1 and t r i g 2 are g l o b a l l y d e c l a r e d

void t a s k 0 (void * i g n o r e) {
e n t r y f c t _ A (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
t r i g 1 = 1 ; / / a c t i v a t e t h e t r i g g e r i n p u t p o r t cmp A i s c o n n e c t e d t o
i f (t r i g 1 == 1 && t r i g 2 == 1) { / / i f bo th t r i g g e r s are a c t i v e

e n t r y f c t _ C (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
/ * R e s e t o f t r i g g e r s * /
t r i g 1 = 0 ;
t r i g 2 = 0 ;

}
}

void t a s k 1 (void * i g n o r e) {
e n t r y f c t _ B (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
t r i g 2 = 1 ; / / a c t i v a t e t h e t r i g g e r i n p u t p o r t cmp B i s c o n n e c t e d t o
i f (t r i g 1 == 1 && t r i g 2 == 1) { / / i f bo th t r i g g e r s are a c t i v e

e n t r y f c t _ C (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
/ * R e s e t o f t r i g g e r s * /
t r i g 1 = 0 ;
t r i g 2 = 0 ;

}
}

(b) Code example for joined connection

Figure 3.21: Code generation example for a joined connection

39

CHAPTER 3: DESIGN & IMPLEMENTATION

(a) Example for a selection connection

void t a s k (void * i g n o r e) {
e n t r y f c t _ A (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;

i f (c o n d i t i o n B) {
e n t r y f c t _ B (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
. . . / / components f o l l o w i n g B

} e l s e i f (c o n d i t i o n C) {
e n t r y f c t _ C (/ * i n p o r t s * / , / * l i s t o f o u t p o r t s * /) ;
. . . / / components f o l l o w i n g C

}
}

(b) Code example for selection connection

Figure 3.22: Code generation example for a selection connection

40

CHAPTER 3: DESIGN & IMPLEMENTATION

SYSTEMMODE = NORMAL;
RAM = 65535;

MODE i n i t _ m o d e
{

RESOLUTION = 10000 ;

/ * Each t a s k must be c o n f i g u r a t e d h e r e * /
HARD_TASK PERIODIC A{

PERIOD_TIME = 2 0 ;
OFFSET = 0 ;
DEADLINE = 2 0 ;
PRIORITY = 1 0 ;
STACK = 2 0 ;
ROUTINE = a ;

} ;

/ * There must a lways be an i d l e t a s k * /
SOFT_TASK APERIODIC i d l e {

ACTIVATOR = 0 ;
OFFSET = 0 ;
DEADLINE = 0 ;
PRIORITY = 0 ;
STACK = 100 ;
ROUTINE = i d l e t a s k ;

} ;

/ * Pu t w a i t f r e e −communica t ion h e r e * /

/ * d e f a u l t s i g n a l s f o r i r q , do n o t e d i t * /

/ * Pu t s i g n a l s h e r e * /

/ * Pu t semaphores h e r e * /

} ;

Figure 3.23: Example config file

41

CHAPTER 3: DESIGN & IMPLEMENTATION

3.3 Integration Into the SAVE IDE

The SAVE IDE3 is the implementation of the SaveComp component technology. It is
realized as a plugin to Eclipse. Apart from the design tool for SaveCCM applications,
it also includes a series of analysis tools. More information is available in [Åkerholm
et al., 2007a] and [Sentilles et al., 2009]. The synthesis has been integrated into the SAVE

IDE and can be initiated directly out of the design tool. Figure 3.24 shows a screenshot
of the IDE. The synthesis is started by selecting it in the displayed menu, which appears
on a right click. Prior to the synthesis, the system description (the .save file) and the
C-template have to be generated.

Figure 3.24: Screenshot of the SAVE IDE

3Download & installation guide is available at http://sourceforge.net/project/showfiles.php?group_id=206364

42

Chapter 4

Evaluation & Results

This chapter is concerned with the results which have been obtained from the work within
the thesis. The first section describes how the presented implementation has been tested,
whereupon the achieved results are presented.

4.1 Testing & Evaluation

This section deals with the testing of the implementation, which has been described in
Section 3.2. First, the results produced by each work package of the synthesis will be pre-
sented by means of a general test case, which covers all relevant elements of SaveCCM.
Thereupon, a number of special test cases will be investigated.

4.1.1 A General Test Case
Figure 4.1 shows a sample SaveCCM application. The corresponding XML representa-
tion can be found in Appendix D. The example contains:

▷ three starting points, covering both trigger types

▷ one assembly with three internal components

▷ one switch

▷ a total of twelve components

▷ at least one connection of each connection type, specifically:

▸ three simple connections

▸ two forked connections

▸ one joined connection

▸ one selection connection

43

CHAPTER 4: EVALUATION & RESULTS

(a) The test application

(b) Inside AssemblyF (c) Inside SwitchH

Figure 4.1: An example application for testing

The following sections will present the results which are produced by each of the
three packages when applying the synthesis to the example.

The parser Package

The task of the parser package is to correctly unmarshal the information about the SaveCCM
design which shall be deployed from the .save file. To visualize the outcome of the
parsing step, a list containing all encountered elements has been printed into a file. As
shown in Figure 4.21, all elements contained in the example have been imported properly.
Hence, the parser package satisfies its fuctional requirements.

1The "#", followed by an integer is added to the elements’ names during the generation of the .save
file to provide for unambiguous names

44

CHAPTER 4: EVALUATION & RESULTS

A p p l i c a t i o n name: example1

Components :
Component CmpA#4
Component CmpB#7
Component CmpC#10
Component CmpD#13
Component CmpE#17
Component CmpG#31
Component CmpI#38
Component CmpJ#40
Component c l k #2

S w i t c h e s :
Swi tch SwitchH #33

A s s e m b l i e s :
Assembly AssemblyF #20 Impl

Components :
Component Cmp1#23
Component Cmp3#26
Component Cmp2#28

S w i t c h e s :
none

A s s e m b l i e s :
none

C o n n e c t i o n s
C o n n e c t i o n 1 :

From: AssemblyF #20 Impl , p o r t ou tF #22
To: CmpG#31 Impl , p o r t t r i g G #32

C o n n e c t i o n 2 :
From: Cmp1#23 Impl , p o r t ou t1 #25
To: Cmp3#26 Impl , p o r t i n 3 #27

C o n n e c t i o n 3 :
From: AssemblyF #20 Impl , p o r t inF #21
To: Cmp2#28 Impl , p o r t i n 2 #29
To: Cmp1#23 Impl , p o r t i n 1 #24

C o n n e c t i o n 4 :
From: Cmp2#28 Impl , p o r t ou t2 #30
To: AssemblyF #20 Impl , p o r t ou tF #22

Figure 4.2: Result of the parser package (1/2)

45

CHAPTER 4: EVALUATION & RESULTS

C o n n e c t i o n s
C o n n e c t i o n 1 :

From: c l k #2 Impl , p o r t c l k _ o u t #3
To: CmpB#7 Impl , p o r t t r i g B #8
To: CmpA#4 Impl , p o r t t r i g A #6

C o n n e c t i o n 2 :
From: CmpC#10 Impl , p o r t outC #11
To: CmpD#13 Impl , p o r t t r i g D 2 #15

C o n n e c t i o n 3 :
From: CmpB#7 Impl , p o r t outB #9
To: CmpD#13 Impl , p o r t t r i g D 1 #14

C o n n e c t i o n 4 :
From: CmpD#13 Impl , p o r t outD #16
To: SwitchH #33 Impl , p o r t inH #34

C o n n e c t i o n 5 :
From: SwitchH #33 Impl , p o r t outH1 #35
To: CmpI#38 Impl , p o r t t r i g I #39

C o n n e c t i o n 6 :
From: SwitchH #33 Impl , p o r t outH2 #36
To: CmpJ#40 Impl , p o r t t r i g J #41

C o n n e c t i o n 7 :
From: CmpE#17 Impl , p o r t outE #19
To: SwitchH #33 Impl , p o r t a #37

C o n n e c t i o n 8 :
From: example1 #0 Impl , p o r t e x t e r n a l T r i g g e r #1
To: CmpC#10 Impl , p o r t inC #12

C o n n e c t i o n 9 :
From: CmpA#4 Impl , p o r t outA #5
To: CmpE#17 Impl , p o r t inE #18
To: AssemblyF #20 Impl , p o r t inF #21

Figure 4.2: Result of the parser package (2/2)

46

CHAPTER 4: EVALUATION & RESULTS

The controlFlow Package

The controlFlow package has three main objectives:

1. identification of the control flow thread’s starting points, i.e., components that are
connected to a clock component or an external trigger port

2. determination of all connections’ types

3. construction of the task trees, which represent the control flow threads

To show that the controlFlow package completes all three steps with the correct out-
come, excerpts from the log-file which feature the relevant information are presented in
the following. Figure 4.3 contains the part of the log-file which informs about the iden-
tified starting points for the control flow threads. All three starting points have been
discovered and interpreted correctly.

Find S t a r t i n g P o i n t s . . .
S t a r t i n g p o i n t found !
Type: CLOCK, componen t : CmpB#7
S t a r t i n g p o i n t found !
Type: CLOCK, componen t : CmpA#4
S t a r t i n g p o i n t found !
Type: EXTERNAL TRIGGER , componen t : CmpC#10

Figure 4.3: The determined starting points

Figure 4.4 presents the determination of connection types that has been performed
by the controlFlow package. The connections are marked with colored numbers both
in the design and the list to depict the correlation. It can be seen that all seven connections
have been identified correctly.

Figure 4.5 shows the process of the task tree construction. It includes illustrations
that go along with the steps of the construction as captured in the log-file. The num-
bers representing the tree nodes correspond to those introduced previously in Figure 4.4.
During the processing of task tree 0, a joined connection is encountered. Thereupon, the
completion of that tree is postponed until all incoming triggers of that connection have
been assigned to a tree, as described in Section 3.2.2 (see Figure 3.16). For the present
example, this case occurs during the construction of tree 2, whereupon the processing of
tree 0 is resumed.

Thus, the controlFlow package has successfully completed each of its three
tasks.

47

CHAPTER 4: EVALUATION & RESULTS

Figure 4.4: The identified connections
48

CHAPTER 4: EVALUATION & RESULTS

Figure 4.5: Tree construction 49

CHAPTER 4: EVALUATION & RESULTS

The codeGeneration Package

The code generation is the last step of the synthesis and produces the aspired final out-
come, i.e., C-code which implements the tasks of the designed application. The present
example consists of three control flow threads, hence three task source files have been
generated. The result source files are presented in Figures 4.7 to 4.9. To facilitate the
traceability, Figure 4.6 demonstrates which parts of the application have been assigned to
which task. The global variables which are generated for all outports to allow for inter-
process communication are listed in Figure 4.10. Figure 4.11 shows the corresponding
configuration file for the underlying operating system.

Figure 4.6: Tasks in the application

The source files all include a file named "generated_model.h". This is the file that
contains the declarations of the components’ entry functions and all declarations of non-
standard data types for the port variables. It has been generated in a step prior to the
synthesis. In the beginning of each task function, the variables that correspond to the
inports of the components that are executed in that task are declared. Then follows the
code that reproduces the task’s control flow by means of components’ entry function calls,
if-statements and trigger flags. The data flow is implemented by assigning values to the
port variables before the components’ execution.

Task0 (Figure 4.7) first executes component CmpB, whereupon the first flag for the
following joined connection is set. Then, an if-statements checks whether all flags for the
joined connection have been set. If the condition is true, component CmpD is executed
and all flags are reset. Lastly, an if-else-statement carries out the selection connection,
which implies the execution of either component CmpJ or component CmpI, depending

50

CHAPTER 4: EVALUATION & RESULTS

the value of component CmpE’s outport outE. Task2 contains almost the same code,
except for the function call for component CmpC instead of CmpB. This results from the
joined connection which was added to both task trees, due to the mixed trigger types.
Task1 consists of only forked connections and simple connections. The components’
entry function are called subsequentially.

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 0 . h "

void t a s k 0 (void * i g n o r e) { / / T r i g g e r : Clock ; Pe r i od : 2 0 . 0
BOOL t r i g B _ i d 8 ;
BOOL t r i g D 1 _ i d 1 4 ;
BOOL t r i g D 2 _ i d 1 5 ;
BOOL t r i g J _ i d 4 1 ;
BOOL t r i g I _ i d 3 9 ;
CmpB_id7 (t r i g B _ i d 8 , &ou tB_ id9) ;
t r i g D 1 _ i d 1 4 T r i g = 1 ;
i f (t r i g D 1 _ i d 1 4 T r i g == 1 && t r i g D 2 _ i d 1 5 T r i g == 1) {

t r i g D 1 _ i d 1 4 = ou tB_ id9 ;
t r i g D 2 _ i d 1 5 = ou tC_id11 ;
CmpD_id13 (t r i g D 1 _ i d 1 4 , t r i g D 2 _ i d 1 5 , &outD_id16) ;
t r i g D 1 _ i d 1 4 T r i g = 0 ;
t r i g D 2 _ i d 1 5 T r i g = 0 ;
i f (ou tE_id19 >=5) {

t r i g J _ i d 4 1 = outD_id16 ;
CmpJ_id40 (t r i g J _ i d 4 1) ;

} e l s e i f (ou tE_id19 <5) {
t r i g I _ i d 3 9 = outD_id16 ;
CmpI_id38 (t r i g I _ i d 3 9) ;

}
}

}

Figure 4.7: The code implementing task0

The configuration file in Figure 4.11 summarizes the tasks’ properties. Task0 and
task1 are periodic tasks with a period of 20. Task2 is a sporadic task and activated by
the signal arriving at external inport externalTrigger.

Consequently, the code which implements the SaveCCM design has been success-
fully generated, which implies that the aspired outcome has been achieved.

51

CHAPTER 4: EVALUATION & RESULTS

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 1 . h "

void t a s k 1 (void * i g n o r e) { / / T r i g g e r : Clock ; Pe r i od : 2 0 . 0
BOOL t r i g A _ i d 6 ;
InE_ id18_combined type i n E_ i d 1 8 ;
I n 2 _ i d 2 9 _ c o m b i n e d t y p e i n 2 _ i d 2 9 ;
BOOL i n 1 _ i d 2 4 ;
BOOL t r i g G _ i d 3 2 ;
I n 3 _ i d 2 7 _ c o m b i n e d t y p e i n 3 _ i d 2 7 ;
CmpA_id4 (t r i g A _ i d 6 , &outA_id5) ;
i n E _ id 1 8 . v a l u e = outA_id5 . v a l u e ;
CmpE_id17 (inE_id18 , &ou tE_ id19) ;
i n 2 _ i d 2 9 . v a l u e = outA_id5 . v a l u e ;
Cmp2_id28 (in2_ id29 , &o u t 2 _ i d 3 0) ;
i n 1 _ i d 2 4 = outA_id5 ;
Cmp1_id23 (in1_ id24 , &o u t 1 _ i d 2 5) ;
t r i g G _ i d 3 2 = o u t 2 _ i d 3 0 ;
CmpG_id31 (t r i g G _ i d 3 2) ;
i n 3 _ i d 2 7 . v a l u e = o u t 1 _ i d 2 5 . v a l u e ;
Cmp3_id26 (i n 3 _ i d 2 7) ;

}

Figure 4.8: The code implementing task1

52

CHAPTER 4: EVALUATION & RESULTS

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 2 . h "

void t a s k 2 (void * i g n o r e) { / / T r i g g e r : e x t e r n a l p o r t −>
e x t e r n a l T r i g g e r #1

InC_ id12_combined type inC_id12 ;
BOOL t r i g D 1 _ i d 1 4 ;
BOOL t r i g D 2 _ i d 1 5 ;
BOOL t r i g J _ i d 4 1 ;
BOOL t r i g I _ i d 3 9 ;
CmpC_id10 (inC_id12 , &outC_id11) ;
t r i g D 2 _ i d 1 5 T r i g = 1 ;
i f (t r i g D 1 _ i d 1 4 T r i g == 1 && t r i g D 2 _ i d 1 5 T r i g == 1) {

t r i g D 1 _ i d 1 4 = ou tB_ id9 ;
t r i g D 2 _ i d 1 5 = ou tC_id11 ;
CmpD_id13 (t r i g D 1 _ i d 1 4 , t r i g D 2 _ i d 1 5 , &outD_id16) ;
t r i g D 1 _ i d 1 4 T r i g = 0 ;
t r i g D 2 _ i d 1 5 T r i g = 0 ;
i f (ou tE_id19 >=5) {

t r i g J _ i d 4 1 = outD_id16 ;
CmpJ_id40 (t r i g J _ i d 4 1) ;

} e l s e i f (ou tE_id19 <5) {
t r i g I _ i d 3 9 = outD_id16 ;
CmpI_id38 (t r i g I _ i d 3 9) ;

}
}

}

Figure 4.9: The code implementing task2

BOOL outB_id9 ;
BOOL t r i g D 1 _ i d 1 4 T r i g ;
BOOL outD_id16 ;
OutA_id5_combinedtype outA_id5 ;
i n t ou tE_ id19 ;
BOOL o u t 2 _ i d 3 0 ;
Out1_ id25_combined type o u t 1 _ i d 2 5 ;
BOOL outC_id11 ;
BOOL t r i g D 2 _ i d 1 5 T r i g ;
BOOL outD_id16 ;

Figure 4.10: Global outport variables for inter-process communication

53

CHAPTER 4: EVALUATION & RESULTS

SYSTEMMODE = NORMAL;
RAM = 65535;

MODE i n i t _ m o d e
{

RESOLUTION = 10000 ;

/ * Put user − t a s k s here * /
HARD_TASK PERIODIC TASK0{

PERIOD_TIME = 20
OFFSET = 0 ;
DEADLINE = 2 0 ;
PRIORITY = 2 ;
STACK = 2 0 ;
ROUTINE = t a s k 0 ;

} ;

HARD_TASK PERIODIC TASK1{
PERIOD_TIME = 20
OFFSET = 0 ;
DEADLINE = 2 0 ;
PRIORITY = 1 ;
STACK = 2 0 ;
ROUTINE = t a s k 1 ;

} ;

HARD_TASK APERIODIC TASK2{
ACTIVATOR = SIGNAL_ex te rna lT r igge r # 1 ;
OFFSET = 0 ;
DEADLINE = 100 ;
PRIORITY = 3 ;
STACK = 2 0 ;
ROUTINE = t a s k 2 ;

} ;

SOFT_TASK APERIODIC i d l e {
ACTIVATOR = 0 ;
OFFSET = 0 ;
DEADLINE = 0 ;
PRIORITY = 0 ;
STACK = 100 ;
ROUTINE = i d l e t a s k ;

} ;

/ * Put w a i t f r e e −communica t ion here * /

/ * d e f a u l t s i g n a l s f o r i r q , do n o t e d i t * /

/ * Put s i g n a l s here * /
SIGNAL SIGNAL_ex te rna lT r igge r #1{

USER = TASK2 ;
}

/ * Put semaphores here * /

} ;

Figure 4.11: The configuration file for the operating system

54

CHAPTER 4: EVALUATION & RESULTS

4.1.2 Special Test Cases

The general test case, which was investigated in the previous section, showed that all
packages of the synthesis deliver the expected results. In this section, a series of special
test cases will be briefly examined to show that they are covered by the synthesis as well.

Joined Connection With Only Time Triggers

The example which was investigated in the previous section contains a joined connection
with one time trigger and one event trigger, which corresponds to the case of only event
triggers. In this section it will be shown that a joined connection with only time triggers
is also allocated according to the rule which was introduced in Section 3.1.2.

Figure 4.12: Example for a joined connection with only time triggers

Figure 4.12 presents an example for a joined connection with two time triggers.
The trigger coming from component CmpA has a period of 15, the trigger delivered from
component CmpB has a period of 20. According to the rule, the joined connection has
to be allocated to the task with the longer period. Hence, component CmpC has to be
allocated to the same task as component CmpB. Figure 4.13 presents the two source files
that have been generated from the example. As expected, the joined connection, and
hence component CmpC, is only contained in task1, which is the task with the period of
20.

Forked Connection After Selection Connection

This test case will demonstrate, that a forked connection which is attached to a switch is
processed properly. The example in Figure 4.14(a) shows such a case. A forked connec-
tion leads from the switch’s outport outD2 to the components CmpC and CmpF. Figure
4.14(b) presents the outcome of the synthesis for the example. As expected, the entry

55

CHAPTER 4: EVALUATION & RESULTS

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 0 . h "

void t a s k 0 (void * i g n o r e) { / / T r i g g e r : Clock ; Pe r i od : 1 5 . 0
BOOL inA_id6 ;
CmpA_id5 (inA_id6 , &outA_id7) ;
i n C 1 _ i d 1 2 T r i g = 1 ;

}

(a) The code for task0

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 1 . h "

void t a s k 1 (void * i g n o r e) { / / T r i g g e r : Clock ; Pe r i od : 2 0 . 0
BOOL inB_id9 ;
BOOL inC1_id12 ;
BOOL inC2_id13 ;
CmpB_id8 (inB_id9 , &outB_id10) ;
i n C 2 _ i d 1 3 T r i g = 1 ;
i f (i n C 1 _ i d 1 2 T r i g == 1 && i n C 2 _ i d 1 3 T r i g == 1) {

inC1_id12 = outA_id7 ;
inC2_id13 = ou tB_id10 ;
CmpC_id11 (inC1_id12 , inC2_id13) ;
i n C 1 _ i d 1 2 T r i g = 0 ;
i n C 2 _ i d 1 3 T r i g = 0 ;

}
}

(b) The code for task1

Figure 4.13: The code implementing the tasks for the joined connection

function calls for components CmpC and CmpF are both contained in the same if state-
ment block.

56

CHAPTER 4: EVALUATION & RESULTS

(a) The example

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 0 . h "

void t a s k 0 (void * i g n o r e) { / / T r i g g e r : e x t e r n a l p o r t −>
e x t e r n a l T r i g g e r 1 #1

BOOL inA_id3 ;
BOOL inC1_id7 ;
BOOL _id16 ;
BOOL i n E _ i d 1 4 ;
CmpA_id2 (inA_id3 , &outA_id4 , &da taA_ id5) ;
i f (da taA_id5 >3) {

inC1_ id7 = outA_id4 ;
CmpC_id6 (inC1_ id7) ;
_ id16 = outA_id4 ;
CmpF_id15 (_ id16) ;

} e l s e i f (da taA_id5 <=3) {
i n E _ id 1 4 = outA_id4 ;
CmpE_id13 (i n E _ i d 1 4) ;

}
}

(b) The generated code for the task

Figure 4.14: Example for a forked connection after a selection connection

57

CHAPTER 4: EVALUATION & RESULTS

Joined Connection After Selection Connection

Another interesting case is a joined connection after a selection connection. For the execu-
tion of a joined connected component, a trigger flag needs to be set after the execution of
each of the trigger delivering components. In the case of a selection connection however,
the trigger is not delivered from the preceding component, but by the selection connection.
Figure 4.15 shows a corresponding example.

(a) The example

Figure 4.15: Example for a joined connection after a selection connection

Figure 4.16 presents the source code which has been generated for the two tasks of
the example. Task0 contains the selection connection. It can be seen that the flag for
the joined connection is set within the if statement block, i.e., right after the condition has
been evaluated as being true, the connected inport of the joined connection is triggered.

58

CHAPTER 4: EVALUATION & RESULTS

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 0 . h "

void t a s k 0 (void * i g n o r e) { / / T r i g g e r : Clock ; Pe r i od : 2 5 . 0
BOOL inA_id3 ;
BOOL inC1_id10 ;
BOOL inC2_id11 ;
BOOL i n E _ i d 1 8 ;
CmpA_id2 (inA_id3 , &outA_id4 , &da taA_ id5) ;
i f (da taA_id5 >3) {

i n C 1 _ i d 1 0 T r i g = 1 ;
i f (i n C 1 _ i d 1 0 T r i g == 1 && i n C 2 _ i d 1 1 T r i g == 1) {

inC1_id10 = outD2_id15 ;
inC2_id11 = ou tB_ id8 ;
CmpC_id9 (inC1_id10 , inC2_id11) ;
i n C 1 _ i d 1 0 T r i g = 0 ;
i n C 2 _ i d 1 1 T r i g = 0 ;

}
} e l s e i f (da taA_id5 <=3) {

i n E _ id 1 8 = outA_id4 ;
CmpE_id17 (i n E _ i d 1 8) ;

}
}

(a) The code for task0

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 1 . h "

void t a s k 1 (void * i g n o r e) { / / T r i g g e r : e x t e r n a l p o r t −>
e x t e r n a l T r i g g e r #1

BOOL inB_id7 ;
BOOL inC1_id10 ;
BOOL inC2_id11 ;
CmpB_id6 (inB_id7 , &ou tB_ id8) ;
i n C 2 _ i d 1 1 T r i g = 1 ;
i f (i n C 1 _ i d 1 0 T r i g == 1 && i n C 2 _ i d 1 1 T r i g == 1) {

inC1_id10 = outD2_id15 ;
inC2_id11 = ou tB_ id8 ;
CmpC_id9 (inC1_id10 , inC2_id11) ;
i n C 1 _ i d 1 0 T r i g = 0 ;
i n C 2 _ i d 1 1 T r i g = 0 ;

}
}

(b) The code for task1

Figure 4.16: The generated code for the example in Figure 4.15

59

CHAPTER 4: EVALUATION & RESULTS

4.2 Results

The goal of this thesis was to design and implement an approach to deploy SaveCCM
applications. The main objective was the mapping of components to tasks. Predictability
was a major requirement for the synthesizing mechanism, hence it needed to be done in a
deterministic way.

The previous section showed that the deployment mechanism, which has been de-
signed and implemented within this thesis, fulfills its function and delivers the expected
results. Apart from the task source code as final outcome, the synthesis also delivers inter-
mediate results, as for example the task trees, which can be the basis for further analyses.

The presented synthesis has been integrated into the SAVE IDE and will be used as
deployment mechanism for the designed applications. Particularly, it will be utilized in a
demonstrator project which will exhibit the achievements of the SAVE project.

4.2.1 Use in the SAVE Demonstrator

In the SAVE demonstrator project, an autonomous truck will be utilized to demonstrate
how the SAVE IDE supports the development of embedded software. A picture of the
truck can be found in Figure 4.17. The truck is equipped with Crossfire MX1 heavy-duty
electronic control-units on which the demonstrator application is executed.

Figure 4.17: Picture of the autonomous truck

Figure 4.18 shows the task which is to be performed by the truck. It is suppossed to
follow a straight line and turn around when it reaches its end to then find the line again. A
detailed description of the demonstrator application is available in [Sentilles et al., 2009].
The application implementing this task consists of three operational modes, namely:

1. Follow mode - to follow the straight line

60

CHAPTER 4: EVALUATION & RESULTS

2. Turn mode - to turn at the end of the line

3. Find mode - to search the line again after the completed turn

1: Follow

2: Turn 3: Find

Direction

Figure 4.18: The example task which is to be performed by the truck

The corresponding SaveCCM design is presented in Figure 4.19. The .save file
can be found in Appendix E. Apart from the design tool of the SAVE IDE, this example
is also used to demonstrate the tool UPPAAL PORT2, which is included in the SAVE IDE
for modeling, simulation and verification purposes, as well as the synthesis tool, which
is subject of this thesis. The result which is achieved when applying the synthesis on
the demonstrator application is presented in Appendix F. This generated code is then
compiled and executed on the truck demonstrator.

Figure 4.19: The SaveCCM design which implements the example task

2see http://www.uppaal.org/port

61

Chapter 5

Conclusion & Future Work

5.1 Conclusion

This thesis presented an approach for the deployment of SaveCCM designs. The core
part of the synthesis mechanism is a set of rules which determine how components are
mapped to tasks. The approach has been based on the trigger flow which passes through
the component-based designs. A control flow analysis establishes the basis to allocate the
components to run-time tasks. Based on the results of the control flow analysis, the alloca-
tion rules can be applied, which results in a number of tree structures holding information
about the component interconnection structure, referred to as task trees.

The task trees are the basis for the task source code generation. For each task tree, a
source code file is generated. During the traversal of a tree, the code which corresponds
to each node is added to a task’s function. The generation of a configuration file with in-
formation about the tasks for the underlying operating system completes the deployment.

By means of a series of test cases, the approach has been proven as applicable. The
proposed synthesis mechanism will be used in the SAVE IDE and the further development
in the PROGRESS project is prospective.

5.2 Future Work

The synthesis presented in this thesis can be considered a basic first approach for the
deployment of SaveCCM designs. It can be improved and further development with re-
spect to various aspects. This section presents some suggestions for future work on the
synthesis.

62

CHAPTER 5: CONCLUSION & FUTURE WORK

5.2.1 ProSave

Since SaveCCM will be superseded by a new, refined component model called ProSave
within the PROGRESS research project, the main objective for further development of the
synthesis is to adjust it to the new model. ProSave was taken into account throughout
design and implementation, hence some preparatory work has already been made. For
the full adjustment to the new component model, its schema will be required, which is
however to date not yet available. The steps that need to be performed in order to fit the
synthesis to the new model will be described in the following.

The main adjustments need to be made in the parser package, since it depends on
the given schema. The schema for ProSave needs to be available in XML schema for the
automatic generation of the ProSave classes with the xjc tool and for the automatic un-
marshaling of the ProSave design XML files with JAXB. Furthermore, all preprocessing
steps that are carried out in the parser package have to be adapted to the new ProSave
data structures.

Concerning the controlFlow package, one additional connection type has to be
integrated. With ProSave, the or-connection will be introduced. The connections
package already contains a class which represents the new connection type, however it is
not yet included in the control flow analysis. Thus, the classification of connections needs
to be upgraded so that all five connection types are determined correctly. Moreover, the
allocation rule for or-connections, as introduced in Section 3.1.2, needs to be added for
the construction of task trees.

Finally, the newly introduced connection type also needs to be considered during
the code generation. A method which prints the source code corresponding to the or-
connection, i.e. a simple call of the component’s entry function into each function of the
tasks that deliver a trigger to the or-connection, has to be added to the CodeGenerator
class.

5.2.2 Optimization

The current synthesis represents an approach that has been developed and implemented
within the tight time frame of a diploma thesis. The goal to create a mechanism for the
automatic deployment of SaveCCM designs has been achieved, yet it could be optimized
in several ways. Some of the ideas for optimization, which will be presented in the fol-
lowing, require additional information, which implies extensions to the component model
itself.

To achieve a higher level of elaboration, the set of rules that the synthesis is cur-
rently based on could be refined. For this purpose, additional parameters could be taken
into consideration when deciding about the allocation of components to task. This con-
cerns particularly the case of the and-connection, because its allocation is ambiguous.
For the decision making process, other parameters as for instance the current length of

63

CHAPTER 5: CONCLUSION & FUTURE WORK

the task tree, possibly in terms of its current worst-case execution time (WCET) which
can be determined from the chain of already allocated compontents, can be taken into con-
sideration to find the best fitting task. If end-to-end deadlines are provided, the synthesis
could attempt to perform the allocation in a way that the sum of the allocated components’
WCETs does not exceed the deadlines.

Furthermore, a simplification for the allocation of the and-connection is possible if
all incoming triggers originate in the same tasks, especially if it can be assured that all
preceding components are executed before the and-connection. In this case the global
variables for the incoming triggers of the and-connection are obsolete as well as the if-
statement before the call of the and-connected compontent’s entryfunction.

The presented synthesis mechanism is designed for applications that are executed
on a single shared resource, i.e. all tasks run on the same processor. The deployment of
applications for distributed systems would impose additional tasks on the synthesis. Apart
from the allocation of components to tasks, it also needs to be dealt with the allocation
of components, as well as taks, to physical nodes. Potential isolation rules could define
sets of components that are not allowed to be executed on the same node. Vice versa,
components could be determined to be executed on the same node or even on a specific
node, for example due to physical proximity to a sensor. The issues that a deployment
mechanism for distributed systems needs to handle add up to a highly complex problem.

Within another subproject of SAVE and PROGRESS respectively, the connection of
real-time databases to the component-based applications is being realized. For the inter-
action with these databases, a special type of connections will be introduced to connect
the application with the database. By means of these connections, data can be read and
written from and to the database. To allow for the use of databases, the database access
has to be integrated into the source code. All information that is needed for this purpose
should be provided by the database connections.

64

Listings

List of Figures

2.1 The graphical representation of the SaveCCM elements 6
2.2 Graphical representation of the Clock and the Delay component 6
2.3 An example for an assembly . 7
2.4 Graphical representation of the composite component 8
2.5 An example for a switch . 8
3.1 A simple connection . 11
3.2 A forked connection . 12
3.3 An and-connection . 12
3.4 A selection connection, instantiated by a switch 13
3.5 Allocating a single component . 13
3.6 Allocating two components with a simple connection 14
3.7 Allocating three components with a forked connection 14
3.8 Allocating three components with an and-connection and periodic triggers 15
3.9 Allocating three components with an and-connection and event triggers 16
3.10 Allocating an or-connection . 17
3.11 Allocating a selection connection . 17
3.12 Overview over the implementation . 18
3.13 Hierarchical determination of connection types 23
3.14 From a switch to selection connections 27
3.15 Creating an and-connection . 28
3.16 Construction of task trees . 30
3.17 Traversal of task trees (1/2) . 35
3.17 Traversal of task trees (2/2) . 36
3.18 Code generation example . 37
3.19 Code generation example for a simple connection 37
3.20 Code generation example for a forked connection 38
3.21 Code generation example for a joined connection 39
3.22 Code generation example for a selection connection 40
3.23 Example config file . 41

65

LIST OF FIGURES

3.24 Screenshot of the SAVE IDE . 42
4.1 An example application for testing . 44
4.2 Result of the parser package (1/2) . 45
4.2 Result of the parser package (2/2) . 46
4.3 The determined starting points . 47
4.4 The identified connections . 48
4.5 Tree construction . 49
4.6 Tasks in the application . 50
4.7 The code implementing task0 . 51
4.8 The code implementing task1 . 52
4.9 The code implementing task2 . 53
4.10 Global outport variables for inter-process communication 53
4.11 The configuration file for the operating system 54
4.12 Example for a joined connection with only time triggers 55
4.13 The code implementing the tasks for the joined connection 56
4.14 Example for a forked connection after a selection connection 57
4.15 Example for a joined connection after a selection connection 58
4.16 The generated code for the example in Figure 4.15 59
4.17 Picture of the autonomous truck . 60
4.18 The example task which is to be performed by the truck 61
4.19 The SaveCCM design which implements the example task 61

66

Bibliography

Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkansson, J., Möller, A., Pet-
tersson, P., and Tivoli, M. (2007a). The save approach to component-based develop-
ment of vehicular systems. J. Syst. Softw., 80(5):655–667. 5, 42

Åkerholm, M., Carlson, J., Håkansson, J., Hansson, H., Nolin, M., Nolte, T., and Pet-
tersson, P. (2007b). The saveccm language reference manual. Technical Report ISSN
1404-3041 ISRN MDH-MRTC-207/2007-1-SE, Mälardalen University. 5, 8, 19

Åkerholm, M., Möller, A., Hansson, H., and Nolin, M. (2005). Towards a dependable
component technology for embedded system applications. In WORDS ’05: Proceed-
ings of the 10th IEEE International Workshop on Object-Oriented Real-Time Depend-
able Systems, pages 320–328, Washington, DC, USA. IEEE Computer Society. 5

Carlson, J., Håkansson, J., and Pettersson, P. (2006). SaveCCM: An analysable compo-
nent model for real-time systems. In Liu, Z. and Barbosa, L., editors, Proceedings of
the 2nd Workshop on Formal Aspects of Components Software (FACS 2005), volume
160 of Electronic Notes in Theoretical Computer Science, pages 127–140. Elsevier. 5

Crnkovic, I. (2001). Component-based software engineering - new challenges in software
development. Software Focus. 4

Fredriksson, J. (2008). Improving Predictability and Resource Utilization in Component-
Based Embedded Real-Time Systems. PhD thesis, Mälardalen University. 5, 10, 11

Fredriksson, J., Sandström, K., and Åkerholm, M. (2005). Optimizing resource us-
age in component-based real-time systems. In the 8th International Symposium on
Component-based Software Engineering (CBSE8). 2

Genßler, T., Christoph, A., Winter, M., Nierstrasz, O., Ducasse, S., Wuyts, R., Arévalo,
G., Schönhage, B., Müller, P., and Stich, C. (2002). Components for embedded soft-
ware: the pecos approach. In CASES ’02: Proceedings of the 2002 international con-
ference on Compilers, architecture, and synthesis for embedded systems, pages 19–26,

67

BIBLIOGRAPHY

New York, NY, USA. ACM. 2

Hänninen, K., Mäki-Turja, J., Nolin, M., Lindberg, M., Lundbäck, J., and Lundbäck, K.-
L. (2008). The rubus component model for resource constrained real-time systems. In
3rd IEEE International Symposium on Industrial Embedded Systems. 2

Kang, B., Kwon, Y.-J., and Lee, R. (2005). A design and test technique for embedded
software. Software Engineering Research, Management and Applications, 2005. Third
ACIS International Conference on, pages 160–165. 4

Ke, X., Sierszecki, K., and Angelov, C. (2007). Comdes-ii: A component-based frame-
work for generative development of distributed real-time control systems. In RTCSA
’07: Proceedings of the 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, pages 199–208, Washington, DC, USA.
IEEE Computer Society. 2

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61. 34

Lüders, F. (2004). Adopting a software component model in real-time systems develop-
ment. In Proceedings of the 28th Annual NASA/IEEE Software Engineering Workshop,
pages 114–119. IEEE Computer Society Press. 4

Schönhage, B. and van den Born, R. (2002). Model mapping to c++ or java-based ultra-
light environment. 2

Sentilles, S., Pettersson, A., Nyström, D., Nolte, T., Pettersson, P., and Crnkovic, I.
(2009). Save-ide - a tool for design, analysis and implementation of component-based
embedded systems. In Proceedings of the Research Demo Track of the 31st Interna-
tional Conference on Software Engineering (ICSE). 42, 60

Stewart, D. B., Volpe, R. A., and Khosla, P. K. (1997). Design of dynamically re-
configurable real-time software using port-based objects. IEEE Trans. Softw. Eng.,
23(12):759–776. 2

van Ommering, R., van der Linden, F., Kramer, J., and Magee, J. (2000). The koala
component model for consumer electronics software. Computer, 33(3):78–85. 8

68

Appendices

Appendix A

List of Acronyms

CBSE
Component-Based Software Engineering. 4

CPU
central processing unit. 11

RTOS
real-time operating system. 2, 31

SaveCCM
SaveComp Component Model. 2, 5–12, 18, 33, 42–44, 60–62

WCET
worst-case execution time. 31, 64

XML
Extensible Markup Language. 2, 18, 24, 43

70

Appendix B

Glossary

PROGRESS project
http://www.mrtc.mdh.se/progress/. 5, 11, 12, 19, 62, 63

control flow thread
A part of the application which results in a task tree. Starts with a trigger source
(clock or external port).. 13, 19

DTD
Document Type Definition, an XML schema language. 19

Eclipse
A multi-language software development platform comprising an IDE and a plug-in
system to extend it (http://www.eclipse.org/).. 42

genetic algorithm
A global search heuristic used to find exact or approximate solutions to optimization
and search problems.. 11

JAXB
Java Architecture for XML Binding; an API in the Java EE platform for storing and
retrieving data in any XML format. For more information see https://jaxb.dev.java.net/.
18, 19, 63

ProSave
The component model introduced in the PROGRESS project.. 63

simulated annealing
A generic probabilistic metaheuristic for locating a good approximation to the global
minimum of a given function in a large search space.. 11

71

APPENDIX B: GLOSSARY

task tree
The tree representation of a task. Generated during the control flow analysis as a
result of the application of the allocation rules.. 24, 25, 31, 32, 34, 47, 51, 60, 62–64

unmarshalling
The process of retrieving the memory representation of an object from a data format
suitable for storage or transmission, as for example from XML to Java objects. 19

XML schema
An XML schema language, recommended by W3C.. 19, 63

72

Appendix C

The SaveCCM XML Schema

0 < xsd : schema x m l n s : x s d =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema">
< !−− s t r i n g s a l s i d s−−>
< x s d : e l e m e n t name="APPLICATION" t y p e =" A p p l i c a t i o n " / >
< x s d : e l e m e n t name=" comment " t y p e =" x s d : s t r i n g " / >
< xsd :complexType name=" A p p l i c a t i o n ">

5 < x s d : s e q u e n c e >
< x s d : e l e m e n t name="IODEF" t y p e =" IODef " / >
< x s d : e l e m e n t name="TYPEDEFS" t y p e =" TypeDefs " / >

< x s d : e l e m e n t name="COMPONENTLIST" t y p e =" ComponentLis t " / >
< x s d : e l e m e n t name="CONNECTIONLIST" t y p e =" C o n n e c t i o n L i s t " / >

10 < / x s d : s e q u e n c e >
< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< / xsd :complexType >

< xsd :complexType name=" IODef ">
15 < x s d : s e q u e n c e >

< x s d : e l e m e n t name="INPORT" t y p e =" I n p o r t " minOccurs=" 0 " maxOccurs="
unbounded " / >

< x s d : e l e m e n t name="OUTPORT" t y p e =" O u t p o r t " minOccurs=" 0 " maxOccurs=
" unbounded " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

20

< xsd :complexType name=" TypeDefs ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="COMPONENTDESC" t y p e =" ComponentDesc " minOccurs=" 0
" maxOccurs=" unbounded " / >

< x s d : e l e m e n t name="SWITCHDESC" t y p e =" Swi tchDesc " minOccurs=" 0 "
maxOccurs=" unbounded " / >

25 < x s d : e l e m e n t name="ASSEMBLYDESC" t y p e =" AssemblyDesc " minOccurs=" 0 "
maxOccurs=" unbounded " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

73

APPENDIX C: THE SAVECCM XML SCHEMA

< xsd :complexType name=" ComponentDesc ">
30 < x s d : s e q u e n c e >

< x s d : e l e m e n t name="INPORT" t y p e =" I n p o r t " minOccurs=" 0 " maxOccurs="
unbounded " / >

< x s d : e l e m e n t name="OUTPORT" t y p e =" O u t p o r t " minOccurs=" 0 " maxOccurs=
" unbounded " / >

< x s d : e l e m e n t name="ATTRIBUTE" t y p e =" A t t r i b u t e " minOccurs=" 0 "
maxOccurs=" unbounded " / >

< x s d : e l e m e n t name="BEHAVIOUR" t y p e =" Behav iou r " / >
35 < x s d : e l e m e n t name="REALISATION" t y p e =" R e a l i s a t i o n " / >

< / x s d : s e q u e n c e >
< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< / xsd :complexType >

40 < xsd :complexType name=" R e a l i s a t i o n ">
< x s d : c h o i c e >

< x s d : e l e m e n t name="ENTRYFUNC" t y p e =" Ent ryFunc " / >
< x s d : e l e m e n t name="CLOCK" t y p e =" Clock " / >

< x s d : e l e m e n t name="DELAY" t y p e =" Delay " / >
45 < x s d : s e q u e n c e >

< x s d : e l e m e n t name="COMPONENTLIST" t y p e =" ComponentLis t " / >
< x s d : e l e m e n t name="CONNECTIONLIST" t y p e =" C o n n e c t i o n L i s t " / >

< / x s d : s e q u e n c e >
< / x s d : c h o i c e >

50 < / xsd :complexType >

< xsd :complexType name=" Clock ">
< x s d : a t t r i b u t e name=" p e r i o d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" j i t t e r " t y p e =" x s d : s t r i n g " / >

55 < / xsd :complexType >

< xsd :complexType name=" Delay ">
< x s d : a t t r i b u t e name=" d e l a y " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" p r e c i s i o n " t y p e =" x s d : s t r i n g " / >

60 < / xsd :complexType >

< xsd :complexType name=" Swi tchDesc ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="INPORT" t y p e =" I n p o r t " minOccurs=" 0 " maxOccurs="
unbounded " / >

65 < x s d : e l e m e n t name="OUTPORT" t y p e =" O u t p o r t " minOccurs=" 0 " maxOccurs=
" unbounded " / >

< x s d : e l e m e n t name="SWITCHCONDITION" t y p e =" S w i t c h C o n d i t i o n " minOccurs=
" 0 " maxOccurs=" unbounded " / >

< / x s d : s e q u e n c e >
< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< / xsd :complexType >

74

APPENDIX C: THE SAVECCM XML SCHEMA

70

< xsd :complexType name=" S w i t c h C o n d i t i o n ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="FROM" t y p e =" From " / >
< x s d : s e q u e n c e minOccurs=" 0 " maxOccurs=" unbounded ">

75 < x s d : e l e m e n t name="TO" t y p e =" To" / >
< x s d : e l e m e n t name="CONDITION" t y p e =" C o n d i t i o n " / >

< / x s d : s e q u e n c e >
< / x s d : s e q u e n c e >

< / xsd :complexType >
80

< xsd :complexType name=" C o n d i t i o n ">
< x s d : a t t r i b u t e name=" s e t p o r t " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" v a l u e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< / xsd :complexType >
85

< xsd :complexType name=" AssemblyDesc ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="INPORT" t y p e =" I n p o r t " minOccurs=" 0 " maxOccurs="
unbounded " / >

< x s d : e l e m e n t name="OUTPORT" t y p e =" O u t p o r t " minOccurs=" 0 " maxOccurs=
" unbounded " / >

90 < x s d : e l e m e n t name="COMPONENTLIST" t y p e =" ComponentLis t " / >
< x s d : e l e m e n t name="CONNECTIONLIST" t y p e =" C o n n e c t i o n L i s t " / >
< / x s d : s e q u e n c e >

< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< / xsd :complexType >

95

< xsd :complexType name=" ComponentLis t ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="COMPONENT" t y p e =" Component " minOccurs=" 0 "
maxOccurs=" unbounded " / >

< x s d : e l e m e n t name="SWITCH" t y p e =" Swi tch " minOccurs=" 0 " maxOccurs=
" unbounded " / >

100 < x s d : e l e m e n t name="ASSEMBLY" t y p e =" Assembly " minOccurs=" 0 "
maxOccurs=" unbounded " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

< xsd :complexType name=" C o n n e c t i o n L i s t ">
105 < x s d : s e q u e n c e >

< x s d : e l e m e n t name="CONNECTION" t y p e =" C o n n e c t i o n " minOccurs=" 0 "
maxOccurs=" unbounded " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

110 < xsd :complexType name=" Component ">
< x s d : a t t r i b u t e name=" t y p e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

75

APPENDIX C: THE SAVECCM XML SCHEMA

< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< / xsd :complexType >

115 < xsd :complexType name=" Swi tch ">
< x s d : a t t r i b u t e name=" t y p e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< / xsd :complexType >

120 < xsd :complexType name=" Assembly ">
< x s d : a t t r i b u t e name=" t y p e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< / xsd :complexType >

125 < xsd :complexType name=" Behav iou r ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="MODEL" t y p e =" Model " minOccurs=" 0 " maxOccurs="
unbounded " / >

< / x s d : s e q u e n c e >
< / xsd :complexType >

130

< xsd :complexType name=" Model ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t r e f =" comment " minOccurs=" 0 " / >
< / x s d : s e q u e n c e >

135 < x s d : a t t r i b u t e name=" f i l e n a m e " t y p e =" x s d : s t r i n g " / >
< x s d : a t t r i b u t e name=" t y p e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< / xsd :complexType >

< xsd :complexType name=" Ent ryFunc ">
140 < x s d : s e q u e n c e >

< x s d : e l e m e n t name="BINDPORT" t y p e =" B i n d p o r t " minOccurs=" 0 "
maxOccurs=" unbounded " / >

< / x s d : s e q u e n c e >
< x s d : a t t r i b u t e name=" f i l e n a m e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" e n t r y " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

145 < / xsd :complexType >

< xsd :complexType name=" B i n d p o r t ">
< x s d : a t t r i b u t e name=" p o r t " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" argument " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

150 < / xsd :complexType >

< xsd :complexType name=" I n p o r t ">
< x s d : a t t r i b u t e name=" mode " t y p e ="Mode" use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" t y p e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

155 < x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" v a l u e " t y p e =" x s d : s t r i n g " / >
< x s d : a t t r i b u t e name=" e x t e r n a l " t y p e =" x s d : s t r i n g " / >

76

APPENDIX C: THE SAVECCM XML SCHEMA

< x s d : a t t r i b u t e name=" s e t p o r t " t y p e =" S e t p o r t " d e f a u l t =" f a l s e " / >
< / xsd :complexType >

160

< xsd :complexType name=" O u t p o r t ">
< x s d : a t t r i b u t e name=" mode " t y p e ="Mode" use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" t y p e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

165 < x s d : a t t r i b u t e name=" v a l u e " t y p e =" x s d : s t r i n g " / >
< x s d : a t t r i b u t e name=" e x t e r n a l " t y p e =" x s d : s t r i n g " / >

< / xsd :complexType >

< x s d : s i m p l e T y p e name="Mode">
170 < x s d : r e s t r i c t i o n base =" x s d : s t r i n g ">

< x s d : e n u m e r a t i o n v a l u e =" d a t a " / >
< x s d : e n u m e r a t i o n v a l u e =" t r i g " / >
< x s d : e n u m e r a t i o n v a l u e =" combined " / >

< / x s d : r e s t r i c t i o n >
175 < / x s d : s i m p l e T y p e >

< x s d : s i m p l e T y p e name=" S e t p o r t ">
< x s d : r e s t r i c t i o n base =" x s d : s t r i n g ">

< x s d : e n u m e r a t i o n v a l u e =" t r u e " / >
180 < x s d : e n u m e r a t i o n v a l u e =" f a l s e " / >

< / x s d : r e s t r i c t i o n >
< / x s d : s i m p l e T y p e >

< xsd :complexType name=" A t t r i b u t e ">
185 < x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< x s d : a t t r i b u t e name=" t y p e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" v a l u e " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< x s d : a t t r i b u t e name=" c r e d i b i l i t y " t y p e =" x s d : s t r i n g " / >

< / xsd :complexType >
190

< xsd :complexType name=" C o n n e c t i o n ">
< x s d : s e q u e n c e >

< x s d : e l e m e n t name="FROM" t y p e =" From " / >
< x s d : e l e m e n t name="TO" t y p e =" To" minOccurs=" 0 " maxOccurs=" unbounded " /

>
195 < x s d : e l e m e n t name="BEHAVIOUR" t y p e =" Behav iou r " minOccurs=" 0 "

maxOccurs=" 1 " / >
< / x s d : s e q u e n c e >

< / xsd :complexType >

< xsd :complexType name=" From ">
200 < x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< x s d : a t t r i b u t e name=" p o r t " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< / xsd :complexType >

77

APPENDIX C: THE SAVECCM XML SCHEMA

< xsd :complexType name=" To">
205 < x s d : a t t r i b u t e name=" i d " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >

< x s d : a t t r i b u t e name=" p o r t " t y p e =" x s d : s t r i n g " use =" r e q u i r e d " / >
< / xsd :complexType >

< / xsd : schema >

78

Appendix D

.save File for the General Test Case

<APPLICATION i d =" example1 ">

<IODEF>
<INPORT mode=" combined " t y p e =" i n t " i d =" e x t e r n a l T r i g g e r #1 " e x t e r n a l =

" t r u e " s e t p o r t =" f a l s e " / >
< / IODEF>

<TYPEDEFS>
<COMPONENTDESC i d =" c l k #2 ">

<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" c l k _ o u t #3 " / >
<REALISATION>

<CLOCK p e r i o d =" 20 " j i t t e r =" 0 " / >
< / REALISATION>

< /COMPONENTDESC>

<COMPONENTDESC i d ="CmpA#4 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" t r i g A #6 " / >
<OUTPORT mode=" combined " t y p e =" i n t " i d =" outA #5 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e ="cmpA . h " e n t r y =" entryCmpA ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="CmpB#7 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" t r i g B #8 " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" outB #9 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e ="cmpB . h " e n t r y =" entryCmpB ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

79

APPENDIX D: .SAVE FILE FOR THE GENERAL TEST CASE

<COMPONENTDESC i d ="CmpC#10 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" inC #12 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" outC #11 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e ="cmpC . h " e n t r y =" entryCmpC ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="CmpD#13 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" t r i g D 1 #14 " / >
<INPORT mode=" t r i g " t y p e =" vo id " i d =" t r i g D 2 #15 " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" outD #16 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e ="cmpD . h " e n t r y =" entryCmpD ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="CmpE#17 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" inE #18 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" outE #19 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e ="cmpE . h " e n t r y =" entryCmpE ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="Cmp1#23 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" i n 1 #24 " / >
<OUTPORT mode=" combined " t y p e =" i n t " i d =" ou t1 #25 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e =" cmp1 . h " e n t r y =" entryCmp1 ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="Cmp3#26 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" i n 3 #27 " s e t p o r t =" f a l s e " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e =" cmp3 . h " e n t r y =" entryCmp3 ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="Cmp2#28 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" i n 2 #29 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" ou t2 #30 " / >

80

APPENDIX D: .SAVE FILE FOR THE GENERAL TEST CASE

<REALISATION>
<ENTRYFUNC f i l e n a m e =" cmp2 . h " e n t r y =" entryCmp2 ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="CmpG#31 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" t r i g G #32 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e ="cmpG . h " e n t r y =" entryCmpG ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="CmpI#38 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" t r i g I #39 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e =" cmpI . h " e n t r y =" ent ryCmpI ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d ="CmpJ#40 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" t r i g J #41 " / >
<REALISATION>

<ENTRYFUNC f i l e n a m e =" cmpJ . h " e n t r y =" entryCmpJ ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<SWITCHDESC i d =" SwitchH #33 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" inH #34 " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" a #37 " s e t p o r t =" t r u e " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" outH1 #35 " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" outH2 #36 " / >
<SWITCHCONDITION>

<FROM i d =" SwitchH #33 " p o r t =" inH #34 " / >
<TO i d =" SwitchH #33 " p o r t =" outH2 #36 " / >
<CONDITION s e t p o r t =" a #37 " v a l u e =" t%g t ;=5 " / >

<TO i d =" SwitchH #33 " p o r t =" outH1 #35 " / >
<CONDITION s e t p o r t =" a #37 " v a l u e =" t%l t ; 5 " / >

< / SWITCHCONDITION>
< / SWITCHDESC>

<ASSEMBLYDESC i d =" AssemblyF #20 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" inF #21 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" outF #22 " / >

81

APPENDIX D: .SAVE FILE FOR THE GENERAL TEST CASE

<COMPONENTLIST>
<COMPONENT t y p e ="Cmp1#23 " i d ="Cmp1#23 Impl " / >
<COMPONENT t y p e ="Cmp3#26 " i d ="Cmp3#26 Impl " / >
<COMPONENT t y p e ="Cmp2#28 " i d ="Cmp2#28 Impl " / >

< /COMPONENTLIST>
<CONNECTIONLIST>

<CONNECTION>
<FROM i d =" AssemblyF #20 Impl " p o r t =" outF #22 " / >
<TO i d ="CmpG#31 Impl " p o r t =" t r i g G #32 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d ="Cmp1#23 Impl " p o r t =" ou t1 #25 " / >
<TO i d ="Cmp3#26 Impl " p o r t =" i n 3 #27 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d =" AssemblyF #20 Impl " p o r t =" inF #21 " / >
<TO i d ="Cmp2#28 Impl " p o r t =" i n 2 #29 " / >
<TO i d ="Cmp1#23 Impl " p o r t =" i n 1 #24 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d ="Cmp2#28 Impl " p o r t =" ou t2 #30 " / >
<TO i d =" AssemblyF #20 Impl " p o r t =" outF #22 " / >

< /CONNECTION>
< / CONNECTIONLIST>

< /ASSEMBLYDESC>
< / TYPEDEFS>

<COMPONENTLIST>
<COMPONENT t y p e ="CmpA#4 " i d ="CmpA#4 Impl " / >
<COMPONENT t y p e ="CmpB#7 " i d ="CmpB#7 Impl " / >
<COMPONENT t y p e ="CmpC#10 " i d ="CmpC#10 Impl " / >
<COMPONENT t y p e ="CmpD#13 " i d ="CmpD#13 Impl " / >
<COMPONENT t y p e ="CmpE#17 " i d ="CmpE#17 Impl " / >
<COMPONENT t y p e ="CmpG#31 " i d ="CmpG#31 Impl " / >
<COMPONENT t y p e ="CmpI#38 " i d ="CmpI#38 Impl " / >
<COMPONENT t y p e ="CmpJ#40 " i d ="CmpJ#40 Impl " / >
<COMPONENT t y p e =" c l k #2 " i d =" c l k #2 Impl " / >
<SWITCH t y p e =" SwitchH #33 " i d =" SwitchH #33 Impl " / >
<ASSEMBLY t y p e =" AssemblyF #20 " i d =" AssemblyF #20 Impl " / >

< /COMPONENTLIST>

<CONNECTIONLIST>
<CONNECTION>

<FROM i d =" c l k #2 Impl " p o r t =" c l k _ o u t #3 " / >
<TO i d ="CmpB#7 Impl " p o r t =" t r i g B #8 " / >
<TO i d ="CmpA#4 Impl " p o r t =" t r i g A #6 " / >

< /CONNECTION>
<CONNECTION>

82

APPENDIX D: .SAVE FILE FOR THE GENERAL TEST CASE

<FROM i d ="CmpC#10 Impl " p o r t =" outC #11 " / >
<TO i d ="CmpD#13 Impl " p o r t =" t r i g D 2 #15 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d ="CmpB#7 Impl " p o r t =" outB #9 " / >
<TO i d ="CmpD#13 Impl " p o r t =" t r i g D 1 #14 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d ="CmpD#13 Impl " p o r t =" outD #16 " / >
<TO i d =" SwitchH #33 Impl " p o r t =" inH #34 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d =" SwitchH #33 Impl " p o r t =" outH1 #35 " / >
<TO i d ="CmpI#38 Impl " p o r t =" t r i g I #39 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d =" SwitchH #33 Impl " p o r t =" outH2 #36 " / >
<TO i d ="CmpJ#40 Impl " p o r t =" t r i g J #41 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d ="CmpE#17 Impl " p o r t =" outE #19 " / >
<TO i d =" SwitchH #33 Impl " p o r t =" a #37 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d =" example1 #0 Impl " p o r t =" e x t e r n a l T r i g g e r #1 " / >
<TO i d ="CmpC#10 Impl " p o r t =" inC #12 " / >

< /CONNECTION>
<CONNECTION>

<FROM i d ="CmpA#4 Impl " p o r t =" outA #5 " / >
<TO i d ="CmpE#17 Impl " p o r t =" inE #18 " / >
<TO i d =" AssemblyF #20 Impl " p o r t =" inF #21 " / >

< /CONNECTION>
< / CONNECTIONLIST>

< / APPLICATION>

83

Appendix E

.save File for the Demonstrator
Project

<APPLICATION i d ="DEMOAPP">

<IODEF>

< / IODEF>

<TYPEDEFS>
<COMPONENTDESC i d =" Sen so r #1 ">

<INPORT mode=" t r i g " t y p e =" vo id " i d =" T r i g #5 " / >
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" S e n s o r T r i g #2 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" SensorL #3 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" SensorR #4 " / >

<REALISATION>
<ENTRYFUNC f i l e n a m e =" Sen so r " e n t r y =" Se nso r ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d =" ModeChange#6 ">
<INPORT mode=" t r i g " t y p e =" vo id " i d =" S e n s o r T r i g #7 " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" SensorL #8 " s e t p o r t =" f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" SensorR #9 " s e t p o r t =" f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" FollowFB #15 " s e t p o r t =" f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" TurnFB #16 " s e t p o r t =" f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" FindFB #17 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" ModeSensL #10 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" ModeSensR #11 " / >
<OUTPORT mode=" combined " t y p e =" i n t " i d =" F o l l o w T r i g #12 " / >
<OUTPORT mode=" combined " t y p e =" i n t " i d =" T u r n T r i g #13 " / >

84

APPENDIX E: .SAVE FILE FOR THE DEMONSTRATOR PROJECT

<OUTPORT mode=" combined " t y p e =" i n t " i d =" F i n d T r i g #14 " / >

<REALISATION>
<ENTRYFUNC f i l e n a m e =" ModeChange " e n t r y =" ModeChange ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d =" Fol low #18 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" F o l l o w T r i g #19 " s e t p o r t ="

f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" SensL #20 " s e t p o r t =" f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" SensR #21 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" FollowFB #22 " / >
<OUTPORT mode=" combined " t y p e =" i n t " i d =" Tr igOut #23 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" S t e e r #24 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" T h r o t t l e #25 " / >

<REALISATION>
<ENTRYFUNC f i l e n a m e =" Fol low " e n t r y =" Fol low ">

< /ENTRYFUNC>
< / REALISATION>

< /COMPONENTDESC>

<COMPONENTDESC i d =" Turn #26 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" T u r n T r i g #27 " s e t p o r t ="

f a l s e " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" TurnFB #28 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" S t e e r #29 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" T h r o t t l e #30 " / >
<OUTPORT mode=" combined " t y p e =" i n t " i d =" Tr igOut #31 " / >

<REALISATION>
<ENTRYFUNC f i l e n a m e =" Turn " e n t r y =" Turn ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d =" Find #32 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" F i n d T r i g #33 " s e t p o r t ="

f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" SensL #34 " s e t p o r t =" f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" SensR #35 " s e t p o r t =" f a l s e " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" FindFB #36 " / >
<OUTPORT mode=" combined " t y p e =" i n t " i d =" Tr igOut #37 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" S t e e r #38 " / >
<OUTPORT mode=" d a t a " t y p e =" i n t " i d =" T h r o t t l e #39 " / >

85

APPENDIX E: .SAVE FILE FOR THE DEMONSTRATOR PROJECT

<REALISATION>
<ENTRYFUNC f i l e n a m e =" Find " e n t r y =" Find ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d =" A c t u a t o r #40 ">
<INPORT mode=" combined " t y p e =" i n t " i d =" F o l l o w T r i g #41 " s e t p o r t ="

f a l s e " / >
<INPORT mode=" combined " t y p e =" i n t " i d =" T u r n T r i g #42 " s e t p o r t ="

f a l s e " / >
<INPORT mode=" combined " t y p e =" i n t " i d =" F i n d T r i g #43 " s e t p o r t ="

f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" F o l l o w S t e e r #44 " s e t p o r t =" f a l s e

" / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" F o l l o w T h r o t t l e #45 " s e t p o r t ="

f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" T u r n S t e e r #46 " s e t p o r t =" f a l s e " /

>
<INPORT mode=" d a t a " t y p e =" i n t " i d =" T u r n T h r o t t l e #47 " s e t p o r t ="

f a l s e " / >
<INPORT mode=" d a t a " t y p e =" i n t " i d =" F i n d S t e e r #48 " s e t p o r t =" f a l s e " /

>
<INPORT mode=" d a t a " t y p e =" i n t " i d =" F i n d T h r o t t l e #49 " s e t p o r t ="

f a l s e " / >

<REALISATION>
<ENTRYFUNC f i l e n a m e =" A c t u a t o r " e n t r y =" A c t u a t o r ">
< /ENTRYFUNC>

< / REALISATION>
< /COMPONENTDESC>

<COMPONENTDESC i d =" System Clock #50 ">
<OUTPORT mode=" t r i g " t y p e =" vo id " i d =" T r i g #51 " / >

<REALISATION>
<CLOCK p e r i o d =" 10000 " j i t t e r =" 0 " / >

< / REALISATION>
< /COMPONENTDESC>

< / TYPEDEFS>

<COMPONENTLIST>
<COMPONENT t y p e =" Sen so r #1 " i d =" Se nso r #1 Impl " / >
<COMPONENT t y p e =" ModeChange#6 " i d =" ModeChange#6 Impl " / >
<COMPONENT t y p e =" Fol low #18 " i d =" Fol low #18 Impl " / >
<COMPONENT t y p e =" Turn #26 " i d =" Turn #26 Impl " / >

86

APPENDIX E: .SAVE FILE FOR THE DEMONSTRATOR PROJECT

<COMPONENT t y p e =" Find #32 " i d =" Find #32 Impl " / >
<COMPONENT t y p e =" A c t u a t o r #40 " i d =" A c t u a t o r #40 Impl " / >
<COMPONENT t y p e =" System Clock #50 " i d =" System Clock #50 Impl " / >

< /COMPONENTLIST>

<CONNECTIONLIST>
<CONNECTION>

<FROM i d =" S en so r #1 Impl " p o r t =" S e n s o r T r i g #2 " / >
<TO i d =" ModeChange#6 Impl " p o r t =" S e n s o r T r i g #7 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" S en so r #1 Impl " p o r t =" SensorL #3 " / >
<TO i d =" ModeChange#6 Impl " p o r t =" SensorL #8 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" S en so r #1 Impl " p o r t =" SensorR #4 " / >
<TO i d =" ModeChange#6 Impl " p o r t =" SensorR #9 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" ModeChange#6 Impl " p o r t =" F o l l o w T r i g #12 " / >
<TO i d =" Fol low #18 Impl " p o r t =" F o l l o w T r i g #19 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" ModeChange#6 Impl " p o r t =" T u r n T r i g #13 " / >
<TO i d =" Turn #26 Impl " p o r t =" T u r n T r i g #27 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" ModeChange#6 Impl " p o r t =" F i n d T r i g #14 " / >
<TO i d =" Find #32 Impl " p o r t =" F i n d T r i g #33 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" ModeChange#6 Impl " p o r t =" ModeSensL #10 " / >
<TO i d =" Fol low #18 Impl " p o r t =" SensL #20 " / >
<TO i d =" Find #32 Impl " p o r t =" SensL #34 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" ModeChange#6 Impl " p o r t =" ModeSensR #11 " / >
<TO i d =" Fol low #18 Impl " p o r t =" SensR #21 " / >
<TO i d =" Find #32 Impl " p o r t =" SensR #35 " / >

< /CONNECTION>

87

APPENDIX E: .SAVE FILE FOR THE DEMONSTRATOR PROJECT

<CONNECTION>
<FROM i d =" Find #32 Impl " p o r t =" FindFB #36 " / >
<TO i d =" ModeChange#6 Impl " p o r t =" FindFB #17 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Turn #26 Impl " p o r t =" TurnFB #28 " / >
<TO i d =" ModeChange#6 Impl " p o r t =" TurnFB #16 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Fol low #18 Impl " p o r t =" FollowFB #22 " / >
<TO i d =" ModeChange#6 Impl " p o r t =" FollowFB #15 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Fol low #18 Impl " p o r t =" Tr igOut #23 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" F o l l o w T r i g #41 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Turn #26 Impl " p o r t =" Tr igOut #31 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" T u r n T r i g #42 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Find #32 Impl " p o r t =" Tr igOut #37 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" F i n d T r i g #43 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Fol low #18 Impl " p o r t =" S t e e r #24 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" F o l l o w S t e e r #44 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Fol low #18 Impl " p o r t =" T h r o t t l e #25 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" F o l l o w T h r o t t l e #45 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Turn #26 Impl " p o r t =" S t e e r #29 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" T u r n S t e e r #46 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Turn #26 Impl " p o r t =" T h r o t t l e #30 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" T u r n T h r o t t l e #47 " / >

88

APPENDIX E: .SAVE FILE FOR THE DEMONSTRATOR PROJECT

< /CONNECTION>

<CONNECTION>
<FROM i d =" Find #32 Impl " p o r t =" T h r o t t l e #39 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" F i n d T h r o t t l e #49 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" Find #32 Impl " p o r t =" S t e e r #38 " / >
<TO i d =" A c t u a t o r #40 Impl " p o r t =" F i n d S t e e r #48 " / >

< /CONNECTION>

<CONNECTION>
<FROM i d =" System Clock #50 Impl " p o r t =" T r i g #51 " / >
<TO i d =" S en so r #1 Impl " p o r t =" T r i g #5 " / >

< /CONNECTION>
< / CONNECTIONLIST>

< / APPLICATION>

89

Appendix F

Generated Task Code for the
Demonstrator Project

i n c l u d e < s t d i o . h>
i n c l u d e "C : \ save_demo \SAVE\ g e n e r a t e d _ m o d e l . h "
i n c l u d e " g l o b a l V a r s . h "
i n c l u d e " t a s k 0 . h "

void t a s k 0 (void * i g n o r e) { / / T r i g g e r : Clock ; Pe r i od : 10000 .0
BOOL T r i g _ i d 5 ;
BOOL S e n s o r T r i g _ i d 7 ;
i n t Senso rL_ id8 ;
i n t SensorR_id9 ;
i n t Fol lowFB_id15 ;
i n t TurnFB_id16 ;
i n t FindFB_id17 ;
F o l l o w T r i g _ i d 1 9 _ c o m b i n e d t y p e F o l l o w T r i g _ i d 1 9 ;
i n t SensL_id20 ;
i n t SensR_id21 ;
T u r n T r i g _ i d 2 7 _ c o m b i n e d t y p e T u r n T r i g _ i d 2 7 ;
F i n d T r i g _ i d 3 3 _ c o m b i n e d t y p e F i n d T r i g _ i d 3 3 ;
i n t SensL_id34 ;
i n t SensR_id35 ;
F o l l o w T r i g _ i d 4 1 _ c o m b i n e d t y p e F o l l o w T r i g _ i d 4 1 ;
T u r n T r i g _ i d 4 2 _ c o m b i n e d t y p e T u r n T r i g _ i d 4 2 ;
F i n d T r i g _ i d 4 3 _ c o m b i n e d t y p e F i n d T r i g _ i d 4 3 ;
i n t F o l l o w S t e e r _ i d 4 4 ;
i n t F o l l o w T h r o t t l e _ i d 4 5 ;
i n t T u r n S t e e r _ i d 4 6 ;
i n t T u r n T h r o t t l e _ i d 4 7 ;
i n t F i n d S t e e r _ i d 4 8 ;
i n t F i n d T h r o t t l e _ i d 4 9 ;
S e n s o r _ i d 1 (T r i g _ i d 5 , &S e n s o r T r i g _ i d 2 , &SensorL_id3 , &SensorR_ id4) ;
S e n s o r T r i g _ i d 7 = S e n s o r T r i g _ i d 2 ;

90

APPENDIX F: GENERATED TASK CODE FOR THE DEMONSTRATOR PROJECT

Senso rL_ id8 = Senso rL_ id3 ;
SensorR_id9 = SensorR_id4 ;
Fol lowFB_id15 = Fol lowFB_id22 ;
TurnFB_id16 = TurnFB_id28 ;
FindFB_id17 = FindFB_id36 ;
ModeChange_id6 (S e n s o r T r i g _ i d 7 , SensorL_id8 , SensorR_id9 ,

FollowFB_id15 , TurnFB_id16 , FindFB_id17 , &ModeSensL_id10 , &
ModeSensR_id11 , &F o l l o w T r i g _ i d 1 2 , &TurnTr ig_ id13 , &F i n d T r i g _ i d 1 4)
;

F o l l o w T r i g _ i d 1 9 . v a l u e = F o l l o w T r i g _ i d 1 2 . v a l u e ;
SensL_id20 = ModeSensL_id10 ;
SensR_id21 = ModeSensR_id11 ;
Fo l low_ id18 (F o l l o w T r i g _ i d 1 9 , SensL_id20 , SensR_id21 , &FollowFB_id22 ,

&Tr igOut_ id23 , &S t e e r _ i d 2 4 , &T h r o t t l e _ i d 2 5) ;
F o l l o w T r i g _ i d 4 1 T r i g = 1 ;
T u r n T r i g _ i d 2 7 . v a l u e = T u r n T r i g _ i d 1 3 . v a l u e ;
Turn_ id26 (TurnTr ig_ id27 , &TurnFB_id28 , &S t e e r _ i d 2 9 , &T h r o t t l e _ i d 3 0 , &

T r i g O u t _ i d 3 1) ;
T u r n T r i g _ i d 4 2 T r i g = 1 ;
F i n d T r i g _ i d 3 3 . v a l u e = F i n d T r i g _ i d 1 4 . v a l u e ;
SensL_id34 = ModeSensL_id10 ;
SensR_id35 = ModeSensR_id11 ;
F i n d _ i d 3 2 (F i n d T r i g _ i d 3 3 , SensL_id34 , SensR_id35 , &FindFB_id36 , &

Tr igOut_ id37 , &S t e e r _ i d 3 8 , &T h r o t t l e _ i d 3 9) ;
F i n d T r i g _ i d 4 3 T r i g = 1 ;
i f (F o l l o w T r i g _ i d 4 1 T r i g == 1 && T u r n T r i g _ i d 4 2 T r i g == 1 &&

F i n d T r i g _ i d 4 3 T r i g == 1) {
F o l l o w T r i g _ i d 4 1 . v a l u e = T r i g O u t _ i d 2 3 . v a l u e ;
T u r n T r i g _ i d 4 2 . v a l u e = T r i g O u t _ i d 3 1 . v a l u e ;
F i n d T r i g _ i d 4 3 . v a l u e = T r i g O u t _ i d 3 7 . v a l u e ;
F o l l o w S t e e r _ i d 4 4 = S t e e r _ i d 2 4 ;
F o l l o w T h r o t t l e _ i d 4 5 = T h r o t t l e _ i d 2 5 ;
T u r n S t e e r _ i d 4 6 = S t e e r _ i d 2 9 ;
T u r n T h r o t t l e _ i d 4 7 = T h r o t t l e _ i d 3 0 ;
F i n d S t e e r _ i d 4 8 = S t e e r _ i d 3 8 ;
F i n d T h r o t t l e _ i d 4 9 = T h r o t t l e _ i d 3 9 ;
A c t u a t o r _ i d 4 0 (F o l l o w T r i g _ i d 4 1 , TurnTr ig_ id42 , F i n d T r i g _ i d 4 3 ,

F o l l o w S t e e r _ i d 4 4 , F o l l o w T h r o t t l e _ i d 4 5 , T u r n S t e e r _ i d 4 6 ,
T u r n T h r o t t l e _ i d 4 7 , F i n d S t e e r _ i d 4 8 , F i n d T h r o t t l e _ i d 4 9) ;

F o l l o w T r i g _ i d 4 1 T r i g = 0 ;
T u r n T r i g _ i d 4 2 T r i g = 0 ;
F i n d T r i g _ i d 4 3 T r i g = 0 ;

}
}

91

	Introduction
	Introduction
	Related Work
	Thesis Goal

	Theoretical Background
	Component-Based Software Engineering
	CBSE for Embedded Systems

	The SaveComp Component Model
	Components
	Assemblies
	Composite Components
	Switches
	Ports
	Connections

	Design & Implementation
	Mapping SaveCCM Components to Tasks
	Issues
	Strategy

	Implementation
	Parsing and Preprocessing
	Control Flow Analysis
	Task Tree Analysis
	Code Generation

	Integration Into the Save IDE

	Evaluation & Results
	Testing & Evaluation
	A General Test Case
	Special Test Cases

	Results
	Use in the Save Demonstrator

	Conclusion & Future Work
	Conclusion
	Future Work
	ProSave
	Optimization

	Listings
	Bibliography
	Appendices
	List of Acronyms
	Glossary
	The SaveCCM XML Schema
	.save File for the General Test Case
	.save File for the Demonstrator Project
	Generated Task Code for the Demonstrator Project

