
1

A DATAFLOW SYSTEM FOR SIMULATION OF

DYNAMIC OBJECTS 1

Vladimir V. Vlasov, Alexander V. Kraynikov, Boris A. Kurdikov, and Dmitry V. Puzankov
Computer Engineering Department, Leningrad Institute of Electrical Engineering, Leningrad, USSR

May 1991

Abstract. This paper presents a dataflow machine VSPD-1, an application specific system, developed and imple-
mented at the Computer Engineering Department, Institute of Electrical Engineering (LETI), Leningrad, USSR. An
implemented VSPD-1 prototype consists of a host computer with the PDP-11 architecture and five Qbus-based pro-
cessing nodes connected via bus adapters.

In VSPD-1, dataflow computation is realized at the level of labeled Pascal code fragments calledactors. Data
flow is followed by token flow. Atokenis a signal which notifies that a datum has arrived at a destination actor. The
token is generated by a source actor after the actor sends data to the destination. The amount of token traffic can not
be less that the amount of data flow. An actor is ready for execution when it collects tokens (data) on all its inputs.
Data and token flows are controlled by a distributed run-time system (called monitor) with hardware support.

An application for VSPD-1 must be written in a specific dataflow style where actors are programmed in Pascal
with macros in Macro-11 assembler. The macros specify data dependences and can be either hand-written, or auto-
matically generated by a SDL compiler from data-token flow schemes written in Scheme Definition Language (SDL).
A dataflow application is statically partitioned and is distributed among processing nodes when the application is
loaded to VSPD-1.

A complex dataflow application was performed and evaluated on VSPD-1. The application is numeric simulation
of a dynamic object modeled by a 20-order system of differential equations solved with the Runge-Kutta method. The
paper also presents a technique used for partitioning the dataflow application in VSPD-1 and the performance of the
application.

1 The VSPD-1 Dataflow Machine
Dataflow computing is a subject of considerable interest, since this class of computer architectures exposes high

level of parallelism. The VSPD-1 dataflow machine is a research prototype of a static dataflow architecture according

to the classification of Arthur H. Veen2. A run-time environment of VSPD-1 supports static linking, partitioning and
distribution of actors among processing units. The VSPD-1 machine was developed to be used as an accelerator for a
computer with the PDP-11 architecture for numeric simulation of dynamic objects in real-time. In simulation experi-
ment reported in the paper, the requirement of real time scale means that a simulation time must “run” faster than real
time in the simulated object.

Although VSPD-1 was developed to include 16 processing nodes, a research prototype of the VSPD-1 machine
built at LETI was constructed of five processing nodes (PN1-PN5) and a host computer (PN0), as depicted in Fig.1.
Each VSPD node consists of a microcomputer MS11200.5 with the PDP-11 architecture 1MIPS processor and 32KB
of RAM, a token-flow unit (TFU), ROM for a loader ad a kernel of the dataflow run-time system, and communication
Qbus-Qbus adapters (CA).

1. This is an extended version of the article Vlassov, V.V., A.V.Kraynikov, B.A.Kurdikov, and D.V.Puzankov, A Data-
flow System for Simulation of Dynamic Objects. In: Add. Proc. SCS’91 European Simulation Multiconference, 17-
19 June, 1991, Copenhagen, Denmark, pp. 31-44.
This version was published in Russian as a part of a technical report at Dept. Comp. Eng., State Electrotechnical Uni-
versity (former Leningrad Electrotechnical Institute, LETI), St.Peresburg, Russia, May 1991.
The English translation presented here was done by Vladimir Vlassov.

2. A.H.Veen, Dataflow machine architecture, ACM Computing Surveys, Vol. 18, No. 4, 1986, pp. 365-396.

2

2 Organization of Computation Process in VSPD-1
In VSPD-1, dataflow computation is realized at the level of labeled Pascal code fragments calledactors. An actor

is enabled for execution when it collects all required data (tokens). When execution completes, result is sent to desti-
nation actors.

The system provides explicit and implicit data transfer from a source actor to destination actors. Explicit data
transfer between actors located on different processing nodes is accompanied with transmission of tokens. A token is
a synchronization signal that indicates that data has arrived to a destination actor. Implicit data transfer between
actors located on the same processing node, is done through shared variables and, if necessary, can be followed by
tokens. An actor is ready when it collects all needed tokens.

The token format is depicted in Fig.2. A token contains two 1-bit tagsE andT, and a destination address (fields
N, S, andI). The data type tagE indicates whether data followed by this token, is a vector or a scalar. The flow type
tag T indicates whether this token follows data (dataflow) or not (control flow). The destination address carried by
token, specifies three components: (i) the destination actorN, (ii) a segmentSwhere the destination actor is located,
(iii) an actor inputI to which the token is directed.

Figure 1. 5-node configuration of the VSPD-1 research prototype

Token transmission constitutes control flow since a token indicates an actor that (if ready) can be executed next to
the source actor. The amount of token traffic can not be less than that of data flow. If data is directed to actors located
on the same remote node, data and all tokens are passed in one transfer.

Figure 2. The VSPD token format

TFU Processor RAM ROM

MicroComputer MS11200.5

Q-Bus

PN3

PN1

PN2 PN5

CA PN4CA CA

PN0

E T S I N

015 14 13 11 10 8 7

3

Token and data flow is manages by a distributed run-time system (monitors) with hardware support. On each
node, a hardware Token Flow Unit (TFU) controls token flow and a queue of ready actors. The major functionality of
TFU is to receive tokens, to maintain state information on actors allocated to the processing node (ready-bit vectors),
and to supply the monitor with a number of next ready actor to execute. Data flow and execution of actors are con-
trolled by software monitors. Although hardware TFU has not been completely operational, functionality of TFU has
been implemented in software as a part of the monitor.

Each actor of a dataflow program is supplied with a number that is unique for a processing node where the actor
is located. An actor number is used to look up directory entries for the actor in the following tables (directories):

- SAT: starting address table stored in RAM, that holds starting addresses of actors;
- RT: the table of ready vectors stored in the memory of the Token Flow Unit. A ready vector is a bit vector ofn

ready bits which indicate for each of then actor inputs whether a token has arrived to the input.
A list of destination addresses (DAL) for an actor is used to send results and tokens. The list is stored in the mem-

ory of a processing node. In fact, an actor may have more than one list of destinations.

2.1 The TokenFlow Unit
As already mentioned, TFU receives tokens, maintains ready flag vectors, checks if an actor is ready, manages

the queue of ready actors and supplies the monitor with a number of a ready actor. TFU consists of the blocks
depicted in Figure 3.

Figure 3. Block-diagram of the Token Flow Unit (TFU)

A Token FIFO Buffer (TB) can accept up to six incoming tokens.
A Ready flag Table is a 4KB SRAM for 265 16-bit-wide entries that stores readiness flag vectors and constant

masks for actors allocated on the processing node. We assume, that an actor cannot have more than eight inputs,
therefore a readiness flag vector is 8 bit wide. Each actor allocated on the processing node, obtains an entry in RT.
Each record in RT is 16 bit wide, where the low byte contains eight 1-bit readiness flags (readiness vector), and the
higher byte contains an “always-ready” mask (constant flags) which indicates for each of the 8 inputs whether the
corresponding input is always ready (i.e., either a constant or not in use). When TFU receives a token, it extracts an
actor number and an input number from the token (Fig.2), and updates the readiness information for the destination
actor in RT: the readiness vector is changed to set the bit corresponding to the receiving input of the actor. As VSPD-
1 is a static dataflow machine, it does not allow multiple tokens (data) on the same actor input. A token collision is
signalled as an error if a token arrives at the input which is already occupied, i.e. appropriate readiness flag has been
already set before. On token collision, TFU inserts a staring address of an appropriate error handler in the head of the
ready actor queue (RAQ). TFU also checks if the actor that receives a token, is ready for execution. The actor is ready
when all readiness flags in the low byte of the RT record are set. This indicates that all actor inputs are provided, and

SR

TB

OLRT

CU

Tokens
Actor
number

Actor
number,
Input

Ready
flags

Ready

Control

RAQ AR

Ready
actor
number

state, mode Ready actor number

Q-Bus

4

the actor can be executed. The number of the actor is inserted to the ready actor queue (RAQ). On a request from the
monitor, TFU supplies an actor number from the head of the queue. TFU is notified by the monitor when execution of
the actor completes. When TFU receives such notification, it resets readiness flags (the low byte) masked with the
constant flags (the higher byte) in the RT record for the actor.

The Ready Actor FIFO-Queue (RAQ) with 256 8-bit-wide entries is used to store numbers of ready actors wait-
ing to be executed. If an actor is initially ready according to the initial marking of a dataflow scheme, its number is
inserted into the queue before the program execution starts. When an actor receives a token, it may become ready, and
its number is placed into RAQ. In the case of token collision, a number of a special error handler is inserted in the
head of the queue. The monitor extracts the handler number and invokes the handler.

The Actor Register (AR) contains the number of an actor executed in the processing node. On request from the
monitor, a number is extracted from the head of RAQ, passed to the requesting monitor, and placed to AR. If there are
no ready actors in RAQ, then the AR is loaded with a reserved actor number (the “no-ready-actors” actor).

The Operational Logic (OL) operates on readiness flags, performs tests for token collisions and for readiness of
actors. A TFU State Register (SR) stores information related to the state of TFU such as the TFU mode (loading or
execution) and the “no-ready-actor” flag.

The Control Unit (CU) realizes a communication protocol on the Q-bus when the TFU is accessed by the moni-
tor to fetch a ready actor, or to store a token.

2.2 The DataFlow Monitor
In each processing node, the monitor starts with a initialization phase that is performed only once to initiate state

and control structures. The initialization phase consists of the following steps.
1. The monitor creates connection tables with communication information about neighboring processing

nodes. Note that the monitor of a processing node communicates via memory mapped registers of Q-bus
adapters.

2. The monitor waits for a special signal called R marker, and when it receives the marker, it sends a local
address of a virtual shared memory segment to neighboring nodes. This address is used to access the shared
memory segment via DMA.

3. If the local node is not the last in a chain of nodes, the monitor passes the R marker to the next neighboring
node and goes to Step 4. In this way, the R marker is passed through all nodes. Each node exchanges
addresses of a shared memory segments with its neighbors. If the local node is the last in the chain of nodes,
its monitor passes a W marker back to the neighboring node from which it has received the R marker, and
proceeds to Step 5.

4. The monitor waits for a W marker. When the marker arrives, the monitor sends it to a neighboring process-
ing node and proceeds to Step 5.

5. The monitor starts execution of a dataflow program with an actor labeled MARK (“initial marking” actor)
that finds a first ready actor (if any) to execute.

After the initialization phase, the monitor executes a monitor cycle until a zero token is encountered in a destina-
tion address list (DAL) of an actor. Zero token indicates the end of computation (end of dataflow). The monitor cycle
consists of the following steps:

1. Fetch an actor. The monitor fetches a number of a ready actor from TFU. If there is no ready actor to execute,
TFU returns the “no-ready-actor” status code, and the monitor retries. If TFU returns a ready actor number, it locks
the Token Buffer for this actor, i.e. it stores the actor number and sets the input lock in the State Register (SR). Lock-
ing allows to prevent data and token collisions on inputs of the executed actor. Two locking mechanisms for actor
inputs are described later in this section.

2. Execute the actor. The monitor looks up the Starting Address Table (SAT) for a starting address of the actor
and executes a jump to the address.

3. Reset ready flags. When actor completes, the monitor informs TFU (resets an appropriate control bit in SR).
TFU resets readiness flags of the actor in RT, unlock the lock on inputs of the completed actor, and loads the Actor
Register (AR) with a number of the next ready actor (if any) from the head of the Ready Actor Queue.

4. Distribution of results and tokens to destinations. The monitor performs transfer of data and result tokens to
destination actors listed in one of the lists “attached” to the actor. If the monitor finds a zero token in the list, it aborts
the monitor loop (It transfers control to the Init system monitor, located in PROM).

5

As mentioned above, in order to avoid races that may cause data/token collisions on inputs of an actor, the actor
inputs are locked when the actor is executed, and unlocked when the execution is done. The input lock is dynamically
created when the actor is executed. The lock can be created in the State Register of the node where the actor is exe-
cuted (as described above). The number of the locked actor is stored in SR. The register is inspected by a remote node
when it intends to send data (and/or tokens) to the given node. If the actor number in SR matches to a destination
actor number, the remote node must wait until execution of the destination actor completes, and only then attempt
data and token transfer.

Another way to implement locking is to allocate locks for a given processing node on neighboring nodes. Before
starting the execution of an actor, the node stores the number of the actor to the locks on neighbors and unlocks the
locks after execution is finished.

3 Dataflow programs for VSPD-1
A dataflow application for VSPD-1 must be developed in a dataflow style as a collection of dataflow program

modules to be loaded on processing nodes. Actors are programmed in Pascal and a dataflow scheme that specifies
data dependences can be hand-written in macros in assembler Macro-11. To facilitate programming, we have devel-
oped a first version of a DataFlow Scheme definition Language (DFSL) which allows definition of dataflow schemes
and automatic generation of assembler code for dataflow modules.

A dataflow module is a Pascal program where assembler code is included as control comments in Macro-11.
Each module should include type definitions, a data segment, an actor code segment and a control segment for a data-
flow scheme. We require, that a statically declared virtual shared memory (communication variables) used for data
communication must be identical for those programming modules which communicate with each other. The commu-
nication variables must be specified at the beginning of a data segment. This is necessary because each monitor
informs neighbors about an address of the static data segment in the dataflow module loaded to a processing node.
These addresses are used for data communication via DMA. The monitor assumes that commutation variables are
located at the top of the data segment.

An actor is a Pascal code fragment labeled with a unique assembler label, which is used as an actor entry point
(starting address). All entry points are stored in a Starting Address Table (SAT). A dataflow scheme specifies data
dependencies between actors and initial marking of tokens. In a program module, the scheme is represented by desti-
nation address lists (DALs) and a table of readiness-flags and constant masks (RT). The scheme can be hand-coded in
MACRO-11 or generated from DFSL definition.

The Starting Address Table contains starting addresses of actors in order of their appearance in the module (to
ensure a correct addressing of actors).

Each actor has a collection of destination address lists (DALs) associated with it. Each DAL is a block of 16-bit
words labeled by a unique label. The first word of a DAL specifies a length of the list in words, every other word
specifies a destination address (a token, see Fig.2). A zero token in a DAL indicates the end of execution. When the
dataflow monitor fetches the zero token from the DAL, it stops execution of the dataflow module and breaks the mon-
itor cycle (See 2.2).

A Readiness flag Table (RT) contains a 16-bits vector of ready and constant flags for each actor. In RT, the first
16-bit word stores the number of actors in the module, and next words contains readiness and constant flags of actor’s
inputs. RT should be loaded into the hardware TokenFlow Unit of the processing node with TFU (See 2.1).

A result of actor execution can be a value of a communication shared variable located in the communication area
of the module. If a destination list is not empty, the value must be sent to destination actors. A code of each actor ends
with a control assembler code (a distribute macro) that loads monitor’s variables ADR, VL and DALA, with an
address of data to be sent, a length of data in words, and an address of DAL, respectively. The code then transfers con-
trol to the monitor at point MOND, and the monitor distributes the result (specified in ADR and VL), and result
tokens according to the list specified in DALA. If the distribute macro is placed in a Pascal conditional operator, then
distribution of result and tokens is performed conditionally. With conditional distribution, an actor can have several
destination lists. Conditional distribution allows programming of cyclic dataflow computation and conditional data-
flow branching.

As dataflow modules are statically distributed among processing nodes, in order to build an executable module to
be loaded to a given node, it is necessary to link the module with the following objects:

1. The VSPD-1 configuration module;

6

2. The VSPD Loader configured to be loaded into the given processing node (The Loader configuration
depends on the VSPD-1 configuration and an order of loading of VSPD-1);

3. The dataflow monitor.

4 Simulation of a Dynamic Object on VSPD-1
To evaluate application performance on the VSPD-1, we have performed real-time numeric simulation of a com-

plex dynamic object represented by a 20th-order differential equation system1.
To be executed on VSPD-1, an application must be decomposed into actors which must be then assigned to mod-

ules, and, finally, the modules must be statically distributed among processing nodes. Efficient decomposition of an
application into actors, and mapping of a dataflow program to processing nodes is an important and challenging task.
Static mapping using a priori knowledge of characteristic of an application, in particular, a dataflow scheme, and a
VSPD-1 configuration, must be determined before the execution begins. We have developed a suitable method for
static mapping of dafaflow modules to VSPD processing nodes. The main goal to be achieved in the mapping method
illustrated below is to minimize inter-node communication and to balance the workload among processing nodes.

To solve the differential equation system, we use the fourth order Runge-Kutta method. On each iteration (inte-
gration step), the method involves four evaluations of the right-hand sides. Values of left-hand sides constitute a vec-
tor of values of state parameters of the object (a state vector). We assume that for each equation, there is an actor
assigned to the equation that evaluates the right-hand side of the equation and computes a state parameter value in the
left-hand side of the equation. On each iteration, the computed value is transferred from the actor to other actors that
need the value of the state parameter to compute right-hand sides of equations assigned to them. The state parameter
value is also sent to an actor that collects all state parameters into a state vector for output.

To group actors into modules and to map modules to VSPD-1 processing nodes, we have calculated for each
actor a normalized weight proportional to the computation time of the right-hand side assigned to the actor. To calcu-
late the weights, we have used execution time estimates for floating point operations reported for the microprocessor
used on VSPD-1.

Consider a occurrence matrix where rows correspond to equations (right-hand sides) and columns correspond to
state variables (left-hand sides). An element in the i-th row and j-th column indicates whether the j-th state variable is
used in computation of the right hand side of the i-th equation, i.e., a value of the variable computed by the j-th actor
must be transferred to the i-th actor. In order to minimize communication between processing nodes, the occurrence
matrix must be as similar as possible to a block-diagonal matrix, where ones are grouped near diagonal. For example,
an ideal 3-block-diagonal matrix 6 by 6 with three blocks of size 1x1, 2x2 and 3x3 located on the diagonal looks like
this:

In our mapping method, actors (equations) that correspond to rows where one or more blocks of ones are located
can be grouped into one module to be mapped to a processing node. Actors (equations) in a group use variables that
correspond to columns where the blocks are located. Ideally, actors in the group should communicate mostly within a
group. The group computes a part of an object state vector, that can be passed to an actor collecting all state parame-
ters at the end of an integration step. As multiple hardware contexts are not supported in a node of VSPD-1, the actors
computing right hand sides and mapped to the same node can be joint together and implemented as one actor comput-
ing right hand sides of several equations assigned to it.

1. In fact, the VSPD-1 was developed as a specialized computer for numeric simulation of complex dynamic objects.

1 0 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

7

An occurrence matrix that indicates the usage of variables in the right hand sides of equations that represent the
studied dynamic object, is shown inTable 1. We compute a sum (by rows and columns) of average distances between
ones and the diagonal of the matrix:

(1)

where - is an element of the occurrence matrix;li is the number of ones in thei-th row; lj
is the number of ones in thej-th column.

To make a matrix as similar as possible to a block-diagonal one, the sum S must be minimized. A swap of a row
i1 with a row i2 and a simultaneous swap of a columni1 with a columni2 do not change occurrence of variables in
equations as specified in the initial matrix, but such two simultaneous swaps may cause a change in a value of the sum
S (1) for the new matrix. To choose pairs of rows and columns to be swapped, we use weights calculated for a rowi

(or a columnj) as average distances between ones and a position in the row (column):

(2)

A pair of swaps (as described above) should decrease weights of swapped rows and columns.
We have developed a software tool MIM that allows transformation of an initial occurrence matrix to a matrix

that is similar to a block-diagonal one. MIM was used to obtain a mapping of actors (equations) to five processing
nodes of the VSPD-1 prototype. A result occurrence matrix and a mapping of equations to processing nodes (PN) are
shown in Table 2. The table also shows weightsT proportional to computation time of the right-hand sides. The
weightsT helped to balance the workload among processing nodes. The processing node PN0 was used for loading
dataflow modules to other processing nodes, and for collecting simulation results for output.

Figures 4-7 show four dataflow schemes of the application. In figures, actors are depicted as rectangles, inputs
and outputs are numbered. Different outputs correspond to different destination address lists (DALs). Each actors has
an assigned number where a subscript indicates the processing node in which the actor is located. An entire dataflow
scheme can be obtained as a theoretical-set union of schemes in Fig.4-7.

The boot scheme is show in Fig.4. The IO actor located in PN0 is initially ready, as it has tokens on its both
inputs. The actor splits the initial 20-elements state vector (shown as a token on the first input) into five vectors of size
6, 1, 6, 2, and 5 elements according to the occurrence matrix and the mapping shown in Table 2. These vectors are
transferred through TR (“TRansit”) actors to the FL (“FLight”) actors that will compute right hand sides. Tokens that
follow the vectors are also collected at the B (“Barrier”) actor with number 8 that provides synchronous start of com-
putation in FL actors. When the B actor collects all five tokens it puts enabling tokens on control inputs of FL actors,
and integration begins.

Figure 5 shows the dataflow scheme for the first three stages of an integration step that involves three evaluations
of the right hand sides. In this scheme, each FL actor computes the right hand sides of the equations assigned to it and
exchanges results with other FL actors as specified in the scheme. The results (vectorsEV1-EV5) are transferred via
first outputs (DALs) of the FL actors.

Figure 6 shows the dataflow scheme for the fourth stage of the integration step in the fourth order Runge-Kutta
method. The FL actors exchange result vectors (EV1-EV5) with each other, and also pass the vectors to the ME
(MErge) actor. The vectors are passed from second outputs of the FL actors. The ME actor concatenates all five vec-
torsEV1-EV5 into one state vectorEV that is passed to the IO actor for output. The ME actor also synchronizes the FL
actors by passing an enabling tokens to their control inputs. When an actor receives the synchronization token, it can
start the next iteration specified by the scheme in Fig.5. Such synchronization between iterations is conservative. Nev-
ertheless, it is convenient because it allows to simplify a check for the end of simulation after each iteration and pre-
vents token collisions on the IO actor.

S
1
l i
--- ai j, j i–⋅

j 1=

n

∑⋅

i 1=

n

∑ 1
l j
--- ai j, i j–⋅

i 1=

n

∑⋅

j 1=

n

∑+=

ai j, 0 1,{ }∈ i j, 1 n,=(),

k 1 n,∈

Wi
k() 1

l i
--- ai j, j k–⋅

j 1=

n

∑⋅= i 1 n,=

Wj
k() 1

l j
--- ai j, i k–⋅

i 1=

n

∑⋅= j 1 n,=

8

Figure 4. The boot dataflow scheme.

Figure 5. The dataflow scheme of a stage of the integration step (evaluation of right hand sides)

2o

TR

3o

TR

4o

TR

5o

TR

6o

TR

31

TR

41

TR

51

TR

61

TR

71

TR

1

2

3

1

2

1

2

3

4

5

81

B

10

IO

1

2

3

4

5

11

FL

1

2

1

2

3

12

FL

1

2

1

2

3

4

13

FL

1

2

1

2

3

4

14

FL

1

2

1

2

3

15

FL

1

2

1

2

3

4

5

11

FL

1

2

1

2

3

12

FL

1

2

1

2

3

4

13

FL

1

2

1

2

3

4

14

FL

1

2

1

2

3

15

FL

1

2

EV1

EV2

EV4

EV5

EV3

9

Figure 6. The dataflow scheme of the fourth stage of the integration step

Figure 7. The dataflow scheme of the end of simulation

A dataflow scheme that implements the end of simulation is shown in Fig.7. Simulation stops when a specified
condition is true, e.g. a specified state parameter either gets to zero or changes its sign. The condition is checked by
the ME actor when it gets the state vectors. If the condition is true, the actor sends a token to the EN (“ENd”) actors
in all processing nodes that generate zero tokens. As described in 2.2, a zero token forces the monitor to stop execu-
tion of the dataflow program.

1

2

3

4

5

11

FL

1

2

1

2

3

12

FL

1

2

1

2

3

4

13

FL

1

2

1

2

3

4

14

FL

1

2

1

2

3

15

FL

1

2

EV1

EV2

EV4

EV5

EV3

1

2

3

4

5

91

ME

1

2
EV = conc (EV1; EV2, EV3, EV4, EV5)

1

2

3

1

2

10

IO

1

2

3

4

5

91

ME

1

2

1

2

3

1

2

10

IO

7o

EN

22

EN

23

EN

24

EN

25

EN

EV

10

Figure 8 shows execution time of the dynamic object simulation on the VSPD-1 for different number of process-
ing nodes. As mentioned above, the performance requirement for this application was that the simulation time must
“run” faster than real time. Figure 8 presents performance results of simulation experiments for 70 seconds of object
time.

Figure 8. Execution time of dynamic object simulation (70 Seconds of object time) versus the number of PE

VSPD-1 is a research prototype of a static dataflow architecture that illustrates how a inexpensive dataflow
machine can be realized. The VSPD-1 machine can be used, in particular, as a functional accelerator for mini com-
puters. Our future work includes developing of a convenient programming environment for the VSPD-1.

11

Table 1: The Initial Occurrence Matrix

Equations
(Actors)

State Variables

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1

4 1 1 1 1

5 1 1

6 1 1

7 1 1

8 1 1 1

9 1

10 1 1

11 1 1 1 1

12 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1

14 1

15 1 1 1 1 1 1

16 1 1

17 1 1 1 1 1

18 1 1

19 1 1 1

20 1 1 1

12

Table 2: Mapping of Equations to Processing Nodes (FL Actors)

Equations
State Variables

T PN
1 7 3 4 6 5 2 9 8 10 19 18 20 12 13 14 11 17 15 16

1 1 1 1 24 2

7 1 1 24

3 1 1

4 1 1 1 1 48

6 1 1 12

5 1 1 12

2 1 1 1 1 1 1 1 1 1 163 3

9 1 1 1

8 1 1 1 1 36

10 1 1 17

19 1 1 1 24

18 1 1 12

20 1 1 1 36

12 1 1 1 1 1 1 1 1 91 4

13 1 1 1 1 1 1 1 1 91

14 1 0 5

11 1 1 1 1 43

17 1 1 1 1 1 67

15 1 1 1 1 1 1 120

16 1 1 12

