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SIMULATION OF A VECTOR-FLOW COMPUTER SYSTEM

Today, one of efficient approaches in development of high performance computer systems is
to combine the dataflow model of execution, the RISC-architecture and pipelined hardware.

A vector-flow computer system (VPVS) presented in this paper, is based on the following
principles [1] :

1. A two-level computational model;
2. Dataflow execution on the instruction level;
3. RISC architecture;
4. Functionally distributed specialized hardware;
5. Pipelined execution of instructions.

In the two-level computational model, a dynamic recursive parallel computation model1 is
realized on the level of procedures (programming modules), while dataflow computation model is
used on the level of instructions [2] .

In fact, an instruction set for VPVS has been inspired by the CRAY vector processor architec-
ture. To design the VPVS instruction, we have looked at and analyzed programming and execu-
tion of a collection of the "Livermore loops” [3] with the results that the instruction set was
extended with additional instructions such as constant set/reset, conditional and unconditional dis-
tribution of tokens to multiple destinations.

Figure 1 shows the format used by a VPVS instruction and the data format.

Fig.1.
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OPCODE R1 R2

R3

R4

R5

Dest 1

Dest 2

Dest 3

(a)

LYE FS OV Z D

(b)

English translation of the paper:
D.I.Batalov, V. V. Vlassov, V.N. Emelin, S.V.Ivanov, and B.A. Kraynikov, Simulation of a Vector-Flow Computer

System. In: Izvestiya LETI (Proceedings of Leningrad Electrotechn.Inst.), St.Petersburg, Vol. 423, 1990, pp. 60-65.
(in Russian).



2 (5)

Instructions (Fig.1.a) have at most two operands specified by R1 and R2, and up to three des-
tinations for the data result and result tokens. Each operand field selects one of the 24 scalar regis-
ters or one of the six 32-element vector registers. The instruction set also contains special vector
load and store memory instructions.

As data flow is followed by token flow, each of the three possible destinations is specified by
two components: the register (e.g. R3) as the destination of the result of the operation, and an
address that defines the destination instruction that will receive the result token (e.g. Dest1). The
destination address is used as a token that is passed to the processing element where that destina-
tion instruction is located.

In order to reduce the instruction set, data are tagged (Fig.1.b). Each scalar and a vector ele-
ment value has four 1-bit tags associated with it: zero (Z), overflow (OV), representation, i.e.
fixed- or floating-point (FS), and last vector element (LVE).

The structure of the VPVS vector-flow processing node is presented in Fig.2.
Each vector-flow processing node consists of four processing elements (PE). Each PE con-

tains operating unit (OU), instruction processor (IP), and four banks of local memory (LM). Each
memory bank is associated with a processing element and is logically split into four segments to
store vectors (V), scalars (S), instructions and ready tags (I), and token queues (Q).

Fig.2.

In order to simulate the vector-flow processing node and to verify a dataflow run-time system
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ulator is based on the SMPL1 (Simulation and Modeling Programming Language) [4] , it is a sim-
ple discrete-event simulation package. The package includes a library of routines that operate on
event lists, facilities and queues. The package has been modified and extended with routines that
provide a convenient user interface to work in the SVM (System of Virtual Machines) on ES
EVM.

An input file with simulation parameters and a dataflow application typically contains the fol-
lowing sections:

- Simulation parameters of the vector-flow processing node;
- Code segments of the data-flow application (actors);
- The initial marking segment that specifies initial marking of a dataflow scheme for the given

application;
- Data segments to be loaded to RAM of processing elements.
Simulation parameters include the size of instruction memory and the size of RAM of a pro-

cessing element; the maximum number of procedures (actors) that can be performed concur-
rently; the number of processing elements; the number of scalar registers and the number of
vector registers in LM; the maximum length of vectors; the maximum length of token queues;
simulation time.

A dataflow application is specified in the form of code segments (actors) to be loaded to the
instruction memory of a processing element. A code segment is written in autocode (in a textual
form). An autocode instruction specifies operation code, addresses of operands and result destina-
tions. For example, vector addition instruction located in the I-th processing element can be spec-
ified as

K ADD V1 V2 V3 J L
whereK is instruction address;ADDis opcode;V1 andV2 are operands;V3, J , L are result desti-
nations, where the pair (J , L) forms a result token that specifies a PE number and the address of
destination instruction in theJ -th PE, respectively; the result vector registerV3 is located in the J-
th local memory bank (LM) of theI -th PE.

A COPY instruction copies a value in a first scalar register to three destination registers if a
value (acknowledgment) has arrived to a second operand S5:

K COPY S1 S5 S10 J P
S2 L M S7 N O

whereS1 is a source operand;S5 selects a scalar register for acknowledgment; (S10, J , P), (S2,
L, M), and (S7, N, O) are first, second and third destinations. Pairs (J , P), (L, M), and (N, O) form
result tokens.

Logically the simulator consists of three parts: a monitor, a processing element model and a
simulation subsystem.

1. A.k.a. SIMPL. -Note of Vlad Vlassov
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The monitor manages input of simulation directives and initiates execution of directives.
Major simulation directives are

1. BEG -- set initial state of the simulator.
2. AUT -- start simulation in auto mode.

The following reasons cause simulation in auto mode to stop:
(a) execution of “end of module” instruction;
(b) execution of a simulation directive read from the input file;
(c) break at a specified breakpoint (break if specified condition is true);
(d) an exception that occurs during simulation (token collision, incompatible data types,
incompatible vector dimensions, etc.
On stop, breakpoint, or exception the monitor is invoked.

3. STEP -- step by step simulation until an event occurs. The step-by-step mode allows
observing simulation in event order.

4. OUT -- output a simulation report.
5. ACT -- set a breakpoint at a specified instruction (actor) on a specified event;
6. T -- set a time to break. When the simulation time reaches the specified time, the simula-

tion continues in STEP mode.
7. LC -- set a control (monitor) level. The amount of information on events, collected and

displayed by DFSL, depends on the specified monitor level.
8. DM -- dump (inspect) the state of RAM (data memory) of a specified processing element.
9. MP -- dump (inspect) the state of the ready tag memory (I).
10. S -- dump (inspect) the scalar registers in the local memory (LM) of a specified PE.
11. V -- dump (inspect) the vector registers in the local memory (LM) of a specified PE.
12. END -- end of simulation.
A model of a processing element contains operating unit, that is considered as a facility

(resource) in SMPL, and a token queue. The operating unit model includes an interpreter, that
emulates execution of ready instructions.

The simulation subsystem represents a event-driven model of an instruction processor. It
includes a module that tests instruction ready tags and a module that manages transfer of data and
result tokens to destinations. In the simulation subsystem, events (and appropriate actions) of fol-
lowing three types are planned and appropriate actions are taken:

1. Check a input token queue for incoming tokens and set of ready tags for destination
instructions. If a destination instruction is ready (it has collected all required tokens), an
event of the 2-nd type is planned for that instruction. If the destination instruction is not
ready, an event of the 1-st type is planned for that instruction.

2. Execution of a ready instruction. If OU is available, then the instruction is scheduled, exe-
cuted, and an event of the 3-rd type is planned for this instruction. If OU is not available,
an event of 2-nd type is planned for the instruction.

3. Distribution of data and result tokens to destinations. When the distribution is done, an
event of the 1-st type is planned.
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A main event attribute is event completion time. Execution time of an instruction depends on
its opcode and types (vector/scalar) of operands. Result distribution time mainly depends on
length of data (length of vector).

A simulation report typically contains statistics on token queues, operating units and on the
instruction set, timing estimates, and utilization of the vector-flow processing node (VFPN).

References
[1] V.V. Vlasov, A.I. Vodyakho, S.I. Ivanov, et al. Vector-flow RISC processors. In Proc of the

Scient. Conf. of Electrical Faculty VST, Technical University of Kosice, Aug 1989, Kosice, Slo-
vakia, pp. 124-129.

[2] A.I. Vodyakho, V.P. Emelin, V.U. Plusnin, D.V. Puzankov. Vector-flow super-computers,
University News. Engineering, No. 10, 1987, pp. 35-40.

[3] A.I. Vodyakho, V.P. Emelin, S.I. Ivanov, et al. Realization of vector-flow systems,Univer-
sity News. Engineering, No. 9, 1989, pp. 27-33.

[4] ???


