Published in Proceedings of the Sixth Swedisbrkghop on Computer SystentiAitectue (DSAQ5),

Stockholm, Sweden, June 1985 .65-66.

Virtual Shared Memory for PVM

Vladimir Vlassov, Hallo Ahmed and Lars-Erik Thorelli

Department of Teleinformatics
Royal Institute of Technology (KTH)
Stockholm, Sweden
viad@it.kth.se

ABSTRACT

accessed using synchronization rules defined in terms of
fetchand store operations. Each shared variable may bein

This article presents mEDA-2, an extension to PVM oneof two states: full (containing data) or empty EDA rec-
which provides Virtual Shared Memory, VSM, for inter- 0gnizes four kinds of shared memory operations:

task communication and synchronization. mEDA-2 con-
sists of functions to access VSM and a daemon to manage
parallel program termination. Access to VSM is based on
the semantics of the EDA parallel programming model.
The aim of developing mEDA-2 was to facilitate construc-
tion of parallel programs in PVM by providing a unified
approach to message passing and shared memory models.

1 Introduction

Most of the parallel programming environments, such
as. PVM, P4, PARMACS, EXPRESS, MPI, etc., support
the distributed memory programming model and are based
on the message passing communication technique [1]. An
aternativeisthe shared memory model which is character-
ised by itsflexibility and ease of programming.

In this article we present mEDA-2, an extension library
for the Parallel Virtual Machine, PVM [2], which provides
Virtual Shared Memory, VSM. This is a dynamic set of
shared variables used for inter-task communication and
synchronization. Accessto VSM is based on the semantics
of the Extended Dataflow Actor model, EDA, which was
developed at the Royal Ingtitute of Technology, KTH, dur-
ing the last few years[3, 4, 5, 6, 7, §].

2 The EDA Multiprocessing Model

EDA providesaunified approach to communication and
synchronization using distributed shared memory. A for-
mal description of EDA and its first programming imple-
mentation can be found in[7, 8].

EDA objects are the executing units of an EDA pro-
gram, which arerealized in mEDA-2 asPVM tasks. Shared
variables are distributed between objects where they can be

(1) x-operations, for accessing critical regionsin mutual
exclusion and supporting synchronous producer-
consumer relationships.

(2) s-operations, for supporting asynchronous producer-
consumer relationships.

(3) i-operations, for synchronizing single writer-multi-
ple readers and OR-parallelism.

(4) u-operations, for supporting asynchronous access to
shared memory.

X-fetch and x-store operations are synchronous and al-
ternating, they may also cause the executing object to be
suspended. An x-store operation can store data only to an
emptyshared variable, otherwise, the store request is en-
gueued until the variable is emptied by extracting its value
using afetch operation. An x-fetch operation destructively
reads (extracts) the value from the full shared variable. If
the variable is empty the x-fetch enqueues the request on
that variable until it becomes full by a store operation.

Sfetch and s-store operations facilitate stream commu-
nication between objects. An s-store operation is supported
by a buffering mechanism. If the variable is aready full, a
new stored value is buffered until the variable is emptied.
An s-fetch operation on a full variable extracts its value to
local object memory.

Ani-store to afull variable isignored, while an i-fetch
operation from an empty variable enqueues the request to
that variable. An i-fetch copies datafrom afull shared var-
iableto local object memory and leaves the shared variable
intact. S-store and i- store operation do not cause the execut-
ing object to be suspended.

U-fetch and u-store operations on shared variables do
not require access synchronization. A u-store operation can
update the value of a shared variable unconditionally and a
u-fetch operation copiesthe value from ashared variable to
local memory unconditionally.

Successful extraction of a value from a full shared vari- 4 Conclusions and Future Work
able by a fetch operatior-{etch ors-fetch) allows the first
pendingx-store request to resume or the first buffered val- e have introduced mEDA-2, an extension of the PVM
ue &-store) to be stored. A successful store operation to anenvironment, to provide flexible and efficient mechanisms

empty shared variable allows the first pendirfgtch, s- for inter-task communication and synchronization by

fetch, or all pending-fetch requests to resume. means of Virtual Shared Memory and also to facilitate con-
struction of parallel applications in PVM.

3 Overview of mMEDA-2 mEDA-2 was verified by implementing several parallel

applications on a network of workstations. Our current

MEDA-2 consists of two parts: the mEDA daemon and plans include the implementation of mMEDA-2 on real mul-
the mEDA library. The main function of the daemon is to tiprocessors and the development of real-time mechanisms
manage parallel program termination. The mEDA library for it.
provides functions for accessing VSM.

VSM is a dynamic set of shared variables which are Acknowledgements
used for inter-task communication and synchronization.
Data is stored in a shared variable in the form of a message This research is supported by the Swedish National
packed in a PVM send buffer. The VSM is distributed Board for Technical and Industrial Development, NUTEK
among PVM tasks. Each variable is addressed by two com{contract No. 93-3084). Vladimir Vlassov is holding a
ponents: (i) a task identifielid, and (ii) a variable identifi- scholarship from the Wenner-Gren Center.
er,vid. The user need not declare any shared variables;
these are created dynamically by the store function and de-

stroyed by the fetch-extract function. References
The mEDA library provides the following functions to
access VSM: [1] O.A. McBryan, “An Overview of Message Passing Envi-

ronments”, Parallel Computing, Vol. 20, No. 4, pp. 417-

eda_store(int op, int *tids, int n, int vid, char *m, int size) 444, April 1994

eda_fetch(int op, int tid, int vid, char **m, int *size) [2] A. Geist, etal., “PVM3 User’s Guide and Reference Man-
) o o)) ual”. ORNL/TM-12187, Oak Ridge National Lab. Septem-
eda_prefetch(int op, int tid_from, int vid_from, int *tids, ber 1994.
intn, int vid_to) [3] H. Wu, “Extension of Data-Flow Principles for Multipro-

cessing”, TRITA-TCS-9004 (Ph D thesis), The Royal Insti-

In all functions, argumertdp defines one of four types tute of Technology (KTH), Stockholm, Sweden, 1990.

of shared memory accessésiaX, EdaS Edal orEdaU, 141 ;. milewski, H. Wu, L.-E. Thorelli, “Specification of

corresponding ta-, s-, i- or u-operations of EDA. EDAO: An Extended Dataflow Actor model”, TRITA-TCS-
The functioneda_store is used to store data to shared EDA-9208-R, KTH 1992.

variables specified by the same vid and located in a numbefs] H. wu, J. Milewski, L.-E. Thorelli, “Sharing Data in an Ac-

of tasks. The functioeda_fetch is used to fetch data from tor Model”, Proc. 1992 Int. Conf. on Parallel and Distribut-

a shared variable to local memory. The non-blocking func- ed Systems, Taiwan, 245-250, 1992.

tion eda_prefetch generates a request to prefetch data from [6] H. Wu, L.-E. Thorelli, J. Milewski, “A Parallel Program-
a shared variable to other shared variables with the same ~ ming Model for Distributed Real-Time Computing”, Proc.
vid located in other tasks. A task can serve store, fetch or Int. t_NOYKSZOE CtJ_n MeHCP}atrctm(ljc gglmggéelr 989)/35tems for Per-
refetch requests directed to it only when its computation ception and Action, Haimstad, SUL-596,1393.
iF;suspendgd y P [7] L.-E. Thorelli, “The EDA Multiprocessing Model”. Tech-

The mEDA daemon insures the synchronous exit of all PA?EIaESEOQTLRTQLT-R 94:28, CSLab, Dept. of Telein-
tasks, which ar&/SM userso avoid deadlock while ac- g1 v viassov. L-E Thorelli and H Ahmed, “Multi-EDA: A

cessing shared variables which are distributed among the Programming Environment for Parallel Computations”.
tasks.The termination problem is solved througkit bar- Technical Report TRITA-IT-R 94:29, CSLab, Dept. of Tel-

rier synchronization for VSM users einformatics, KTH. 1994.

