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ABSTRACT

accessed using synchronization rules defined in terms of
fetchand store operations. Each shared variable may bein

This article presents mEDA-2, an extension to PVM oneof two states: full (containing data) or empty EDA rec-
which provides Virtual Shared Memory, VSM, for inter- 0gnizes four kinds of shared memory operations:

task communication and synchronization. mEDA-2 con-
sists of functions to access VSM and a daemon to manage
parallel program termination. Access to VSM is based on
the semantics of the EDA parallel programming model.
The aim of developing mEDA-2 was to facilitate construc-
tion of parallel programs in PVM by providing a unified
approach to message passing and shared memory models.

1 Introduction

Most of the parallel programming environments, such
as. PVM, P4, PARMACS, EXPRESS, MPI, etc., support
the distributed memory programming model and are based
on the message passing communication technique [1]. An
aternativeisthe shared memory model which is character-
ised by itsflexibility and ease of programming.

In this article we present mEDA-2, an extension library
for the Parallel Virtual Machine, PVM [2], which provides
Virtual Shared Memory, VSM. This is a dynamic set of
shared variables used for inter-task communication and
synchronization. Accessto VSM is based on the semantics
of the Extended Dataflow Actor model, EDA, which was
developed at the Royal Ingtitute of Technology, KTH, dur-
ing the last few years[3, 4, 5, 6, 7, §].

2 The EDA Multiprocessing Model

EDA providesaunified approach to communication and
synchronization using distributed shared memory. A for-
mal description of EDA and its first programming imple-
mentation can be found in[7, 8].

EDA objects are the executing units of an EDA pro-
gram, which arerealized in mEDA-2 asPVM tasks. Shared
variables are distributed between objects where they can be

(1) x-operations, for accessing critical regionsin mutual
exclusion and supporting synchronous producer-
consumer relationships.

(2) s-operations, for supporting asynchronous producer-
consumer relationships.

(3) i-operations, for synchronizing single writer-multi-
ple readers and OR-parallelism.

(4) u-operations, for supporting asynchronous access to
shared memory.

X-fetch and x-store operations are synchronous and al-
ternating, they may also cause the executing object to be
suspended. An x-store operation can store data only to an
emptyshared variable, otherwise, the store request is en-
gueued until the variable is emptied by extracting its value
using afetch operation. An x-fetch operation destructively
reads (extracts) the value from the full shared variable. If
the variable is empty the x-fetch enqueues the request on
that variable until it becomes full by a store operation.

Sfetch and s-store operations facilitate stream commu-
nication between objects. An s-store operation is supported
by a buffering mechanism. If the variable is aready full, a
new stored value is buffered until the variable is emptied.
An s-fetch operation on a full variable extracts its value to
local object memory.

Ani-store to afull variable isignored, while an i-fetch
operation from an empty variable enqueues the request to
that variable. An i-fetch copies datafrom afull shared var-
iableto local object memory and leaves the shared variable
intact. S-store and i- store operation do not cause the execut-
ing object to be suspended.

U-fetch and u-store operations on shared variables do
not require access synchronization. A u-store operation can
update the value of a shared variable unconditionally and a
u-fetch operation copiesthe value from ashared variable to
local memory unconditionally.



Successful extraction of a value from a full shared vari- 4 Conclusions and Future Work
able by a fetch operatior-{etch ors-fetch) allows the first
pendingx-store request to resume or the first buffered val- e have introduced mEDA-2, an extension of the PVM
ue &-store) to be stored. A successful store operation to anenvironment, to provide flexible and efficient mechanisms

empty shared variable allows the first pendirfgtch, s- for inter-task communication and synchronization by

fetch, or all pending-fetch requests to resume. means of Virtual Shared Memory and also to facilitate con-
struction of parallel applications in PVM.

3 Overview of mMEDA-2 mEDA-2 was verified by implementing several parallel

applications on a network of workstations. Our current

MEDA-2 consists of two parts: the mEDA daemon and plans include the implementation of mMEDA-2 on real mul-
the mEDA library. The main function of the daemon is to tiprocessors and the development of real-time mechanisms
manage parallel program termination. The mEDA library for it.
provides functions for accessing VSM.
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