
Virtual Shared Memory for PVM

Vladimir Vlassov, Hallo Ahmed and Lars-Erik Thorelli

Department of Teleinformatics
Royal Institute of Technology (KTH)

Stockholm, Sweden
vlad@it.kth.se

ABSTRACT

This article presents mEDA-2, an extension to PVM
which provides Virtual Shared Memory, VSM, for inter-
task communication and synchronization. mEDA-2 con-
sists of functions to access VSM and a daemon to manage
parallel program termination. Access to VSM is based on
the semantics of the EDA parallel programming model.
The aim of developing mEDA-2 was to facilitate construc-
tion of parallel programs in PVM by providing a unified
approach to message passing and shared memory models.

1 Introduction

Most of the parallel programming environments, such
as: PVM, P4, PARMACS, EXPRESS, MPI, etc., support
the distributed memory programming model and are based
on the message passing communication technique [1]. An
alternative is the shared memory model which is character-
ised by its flexibility and ease of programming.

In this article we present mEDA-2, an extension library
for the Parallel Virtual Machine, PVM [2], which provides
Virtual Shared Memory, VSM. This is a dynamic set of
shared variables used for inter-task communication and
synchronization. Access to VSM is based on the semantics
of the Extended Dataflow Actor model, EDA, which was
developed at the Royal Institute of Technology, KTH, dur-
ing the last few years [3, 4, 5, 6, 7, 8].

2 The EDA Multiprocessing Model

EDA provides a unified approach to communication and
synchronization using distributed shared memory. A for-
mal description of EDA and its first programming imple-
mentation can be found in [7, 8].

EDA objects are the executing units of an EDA pro-
gram, which are realized in mEDA-2 as PVM tasks. Shared
variables are distributed between objects where they can be

accessed using synchronization rules defined in terms of
fetch and store operations. Each shared variable may be in
one of two states: full (containing data) or empty. EDA rec-
ognizes four kinds of shared memory operations:

(1) x-operations, for accessing critical regions in mutual
exclusion and supporting synchronous producer-
consumer relationships.

(2) s-operations, for supporting asynchronous producer-
consumer relationships.

(3) i-operations, for synchronizing single writer-multi-
ple readers and OR-parallelism.

(4) u-operations, for supporting asynchronous access to
shared memory.

X-fetch and x-store operations are synchronous and al-
ternating, they may also cause the executing object to be
suspended. An x-store operation can store data only to an
empty shared variable, otherwise, the store request is en-
queued until the variable is emptied by extracting its value
using a fetch operation. An x-fetch operation destructively
reads (extracts) the value from the full shared variable. If
the variable is empty the x-fetch enqueues the request on
that variable until it becomes full by a store operation.

S-fetch and s-store operations facilitate stream commu-
nication between objects. An s-store operation is supported
by a buffering mechanism. If the variable is already full, a
new stored value is buffered until the variable is emptied.
An s-fetch operation on a full variable extracts its value to
local object memory.

An i-store to a full variable is ignored, while an i-fetch
operation from an empty variable enqueues the request to
that variable. An i-fetch copies data from a full shared var-
iable to local object memory and leaves the shared variable
intact. S-store and i-store operation do not cause the execut-
ing object to be suspended.

U-fetch and u-store operations on shared variables do
not require access synchronization. A u-store operation can
update the value of a shared variable unconditionally and a
u-fetch operation copies the value from a shared variable to
local memory unconditionally.

Published in Proceedings of the Sixth Swedish Workshop on Computer System Architecture (DSA’95),
Stockholm, Sweden, June 1995. pp. 65-66.

Successful extraction of a value from a full shared vari-
able by a fetch operation (x-fetch ors-fetch) allows the first
pendingx-store request to resume or the first buffered val-
ue (s-store) to be stored. A successful store operation to an
empty shared variable allows the first pendingx-fetch, s-
fetch, or all pendingi-fetch requests to resume.

3 Overview of mEDA-2

mEDA-2 consists of two parts: the mEDA daemon and
the mEDA library. The main function of the daemon is to
manage parallel program termination. The mEDA library
provides functions for accessing VSM.

VSM is a dynamic set of shared variables which are
used for inter-task communication and synchronization.
Data is stored in a shared variable in the form of a message
packed in a PVM send buffer. The VSM is distributed
among PVM tasks. Each variable is addressed by two com-
ponents: (i) a task identifier,tid, and (ii) a variable identifi-
er, vid. The user need not declare any shared variables;
these are created dynamically by the store function and de-
stroyed by the fetch-extract function.

The mEDA library provides the following functions to
access VSM:

eda_store(int op, int *tids, int n, int vid, char *m, int size)

eda_fetch(int op, int tid, int vid, char **m, int *size)

eda_prefetch(int op, int tid_from, int vid_from, int *tids,
int n, int vid_to)

In all functions, argumentop defines one of four types
of shared memory accesses:EdaX, EdaS, EdaI or EdaU,
corresponding tox-, s-, i- or u-operations of EDA.

The functioneda_store is used to store data to shared
variables specified by the same vid and located in a number
of tasks. The functioneda_fetch is used to fetch data from
a shared variable to local memory. The non-blocking func-
tion eda_prefetch generates a request to prefetch data from
a shared variable to other shared variables with the same
vid located in other tasks. A task can serve store, fetch or
prefetch requests directed to it only when its computation
is suspended.

The mEDA daemon insures the synchronous exit of all
tasks, which areVSM users, to avoid deadlock while ac-
cessing shared variables which are distributed among the
tasks.The termination problem is solved throughexit bar-
rier synchronization for VSM users.

4 Conclusions and Future Work

We have introduced mEDA-2, an extension of the PVM
environment, to provide flexible and efficient mechanisms
for inter-task communication and synchronization by
means of Virtual Shared Memory and also to facilitate con-
struction of parallel applications in PVM.

mEDA-2 was verified by implementing several parallel
applications on a network of workstations. Our current
plans include the implementation of mEDA-2 on real mul-
tiprocessors and the development of real-time mechanisms
for it.

Acknowledgements

This research is supported by the Swedish National
Board for Technical and Industrial Development, NUTEK
(contract No. 93-3084). Vladimir Vlassov is holding a
scholarship from the Wenner-Gren Center.

References

[1] O.A. McBryan, “An Overview of Message Passing Envi-
ronments”, Parallel Computing, Vol. 20, No. 4, pp. 417-
444, April 1994.

[2] A. Geist, et al., “PVM3 User’s Guide and Reference Man-
ual”. ORNL/TM-12187, Oak Ridge National Lab. Septem-
ber 1994.

[3] H. Wu, “Extension of Data-Flow Principles for Multipro-
cessing”, TRITA-TCS-9004 (Ph D thesis), The Royal Insti-
tute of Technology (KTH), Stockholm, Sweden, 1990.

[4] J. Milewski, H. Wu, L.-E. Thorelli, “Specification of
EDA0: An Extended Dataflow Actor model”, TRITA-TCS-
EDA-9208-R, KTH 1992.

[5] H. Wu, J. Milewski, L.-E. Thorelli, “Sharing Data in an Ac-
tor Model”, Proc. 1992 Int. Conf. on Parallel and Distribut-
ed Systems, Taiwan, 245-250, 1992.

[6] H. Wu, L.-E. Thorelli, J. Milewski, “A Parallel Program-
ming Model for Distributed Real-Time Computing”, Proc.
Int. Workshop on Mechatronic Computer Systems for Per-
ception and Action, Halmstad, 301-308,1993.

[7] L.-E. Thorelli, “The EDA Multiprocessing Model”. Tech-
nical Report TRITA-IT-R 94:28, CSLab, Dept. of Telein-
formatics, KTH. 1994.

[8] V Vlassov, L-E Thorelli and H Ahmed, “Multi-EDA: A
Programming Environment for Parallel Computations”.
Technical Report TRITA-IT-R 94:29, CSLab, Dept. of Tel-
einformatics, KTH. 1994.

