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Abstract. The problem of minimizing the number of optical nodes with
signal regeneration capability can be constrained to guarantee a desired
degree of end-to-end connectivity in the all-optical transport network.
The problem can be formulated using a k-connected, k-dominating node
set, which is a known approach in mobile ad hoc wireless networks. This
paper presents a preliminary study aimed at establishing whether effi-
cient centralized solutions to this problem in optical networking ought to
be investigated to improve the decentralized solutions already available
for wireless networks.

Index Terms– Regenerator Placement, Connected Dominating Set,
k -Connectivity, Greedy Algorithm, Optical Networks.

1 Introduction

Optical networks can provide transport capabilities to routers (and other elec-
tronic nodes) via the combination of optical circuits, or lightpaths [1], and optical
signal regenerators. The former reduce the required number of total transpon-
ders in the network, while the latter regenerate the optical signal when it is
weakened by transmission impairments [2]. If well designed, this approach may
lead to a substantial cost reduction of the transport network [3, 4].

The transmission impairments of the optical medium limit the number of
network elements that can be traversed by the optical signal without making
use of regenerators [2], i.e., the maximum reach of the lightpath. In practice, one
can define for each (optical) node the transparency island (TI) [5, 6] as the subset
of nodes that can be reached all-optically — at a given minimum transmission
rate — without a significant degradation of the signal quality, e.g., bit error
rate. If the two end nodes that must be connected are not within each other’s
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TI, the optical signal must be regenerated at some intermediate node(s). One
type of regeneration is reamplification, reshaping and retiming (3R) [7]. This
type of regeneration may take place in both the electronic (OEO conversion) or
the optical domain [8]. Either solution adds to the overall network cost.

Assume that both the optical topology and nodes are given. Then a cost
function to be minimized is the number of regenerators, which are required in
the given optical topology to provide end-to-end connectivity. Some solutions
addressing this problem can be found in the literature. For example, minimal
cost placement algorithms [9] compute which subset of nodes must be provided
with regeneration capability to guarantee connectivity against any single link
failure in the network. Blocking probability (when attempting to create end-to-
end connections) due to the lack of available regenerators can be minimized by
special algorithms for placing regenerators [10–12]. The regenerator placement
problem has some similarities with the wavelength converter placement problem
and solutions devised to deal with the latter problem may be used to handle
the former [13, 14]. None of these solutions, however, looks into the regenerator
placement problem while guarantying an arbitrary degree of end-to-end connec-
tivity in the optical network.

The preliminary study in this paper tackles the problem of minimizing the
number of (optical) nodes that must be enabled with 3R capability, while guar-
antying a desired minimum degree of end-to-end (optical) connectivity. More
formally, the 3R nodes must be placed to obtain a k-connected, k-dominating
3R-node set (k-CD3S), while minimizing the number of 3R-nodes in the set.
With a guaranteed end-to-end k connectivity, the resulting transport network
offers both known resilience benefits against 3R-node failures and known load
balancing benefits when routing and setting up connections.

The problem of minimizing the size of k-CD3S is found to be the same prob-
lem already defined in mobile ad hoc wireless networks [15], whereby a subset
of nodes is selected to form a routing backbone with a guaranteed degree of
end-to-end connectivity. In the wireless network the k-connected, k-dominating
set is found using a decentralized algorithm to cope with the mobility of the
nodes. The k-CD3S minimization problem in optical networks, on the contrary,
is solved in this paper by using a centralized algorithm that is expected to be
more efficient, when compared to the decentralized one. A lower bound on the
size of k-CD3S is provided, to assess the efficiency of both algorithms.

As discussed in the paper, it appears that centralized solutions to address
the problem of minimizing k-CD3S are worth exploring as they yield results that
are substantially closer to the lower bound, when compared to the decentralized
solutions devised to solve the same problem in mobile ad hoc wireless networks.

2 Network Model and Problem Definition

This section contains the assumptions and properties of the (optical) networks
under investigation, along with the problem definition.
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A network with arbitrary physical topology is considered. Every node in
the network functions as OXC. Only a subset of the nodes has regeneration
capabilities, i.e., the 3R-nodes.

The physical topology is modeled as a graph G(N ,A), where N is the set
of nodes in the network and A is the set of directed (fiber) links connecting the
nodes. Each node is uniquely identified, e.g., node i is denoted as Ni. The link
connecting node Ni to Nv is denoted as l(i,v). Let C(r)

(i,j) be the set of all links
and nodes that can be used to establish a lightpath3 connecting node Ni to Nj

with transmission rate r, without requiring 3R. Set C(r)
(i,j) defines a subgraph

of G(N ,A). Let TI(r)
i be the transparency island of node Ni, for lightpaths

operating at transmission rate r. TI(r)
i is a subgraph of G, defined as

TI(r)
i = ∪j∈N

(
C(r)

(i,j)

)
. (1)

In summary, lightpaths originating at Ni, operating at transmission rate r, and
not requiring 3R can only be simple paths in TI(r)

i . Note that incoming links
l(j,i) are not in TI(r)

i ∀r, j, as lightpaths containing loops are not allowed.
A second graph, i.e., G′(r)(N , A′(r)), is used to represent the nodes’ connec-

tivity based on their own TI’s. Let set A′(r) be

A′(r) =
⋃

i∈N
l̄(r)(i,j), ∀j ∈ TI(r)

i . (2)

In simple terms, if l̄(r)(i,j) ∈ A′(r) it is possible to set up a lightpath from node
Ni to Nj without requiring 3R. Notice that A′(r) is a function of the employed
transmission rate r. To simplify the notation in the remainder of the paper, it is
assumed that all lightpaths operate at the same rate r, and index r is dropped,
e.g., G′(r)(N , A′(r)) is simply denoted as G′(N , A′).

1-connectivity from node Ni to Nj in G′(N , A′) is defined as follows. Let
S3R ⊆ N be the set of 3R-nodes. Ni is 1-connected to Nj if there exists a
simple path [16] p =< Ni, Na1 , Na2 , . . . , Nam−1 , Nj > in G′(N ,A′), such that
(Na1 , Na2 , . . . , Nam−1) ∈ S3R. Note that intra TI (m = 1) connectivity does
not require 3R-nodes. Inter TI connectivity requires that the lightpath signal be
regenerated at selected 3R-nodes, which form a backbone for the optical signal
to propagate and reach the end node. G′(N , A′) is 1-connected if all the pairs
(Ni, Nj), i %= j ∈ N are 1-connected.

Ni is k-connected to Nj if there exist k node-disjoint simple paths p(v) =<
Ni, Na(v)

1
, N

a(v)
2

, . . . , N
a(v)

m(v)−1

, Nj >, v = 1, 2, . . . , k in G′(N , A′), such that

(N
a(v)
1

, N
a(v)
2

, . . . , N
a(v)

m(v)−1

) ∈ S3R, ∀v = 1, 2, . . . , k. G′(N , A′) is k-connected if

all node pairs (Ni, Nj), i %= j ∈ N are k-connected.
Set S3R is a k-connected, k-dominating 3R-node set (k-CD3S) of G′(N , A′),

if and only if the following constraints are met:
3 It is assumed that if a lightpath can be established, then its performance in terms

of bit error rate is satisfactory.
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(a) k-dominating constraint: each node that is not in the 3R-node set must be
intra TI connected to at least k 3R-nodes, i.e.,

∑

j∈S3R

L(i,j) ≥ k, ∀i ∈ (N\S3R) (3)

where L(i,j) is a binary variable defined as:

L(i,j) =

{
1 if l̄(i,j) ∈ A′

0 otherwise
(4)

(b) k-node connectivity constraint: subgraph G̃(S3R, Ã), where

Ã = {l̄i,j ∈ A′ : i, j ∈ S3R} (5)

must be k-node connected. A graph is defined to be k-node connected if and
only if the removal of any of its k − 1 nodes does not cause a partition [16].

A centralized algorithm able to find a 3R-node placement such that S3R

satisfies both constraints (a) and (b), while minimizing the number of 3R-nodes,
is presented next.

3 A Centralized Algorithm to Compute k-CD3S

In this section a two-step approach, called Select-&-Prune (S-&-P), is presented
to find a sub-optimal solution to the k-CD3S problem with minimum number
of 3R-nodes. In step 1, an initial solution for the k-CD3S problem is found,
by selecting a number of nodes that are potential candidates for the 3R-node
set. In step 2, a greedy algorithm is applied to prune from the initial set of 3R-
nodes as many nodes as possible without violating the k-connected, k-dominating
constraints on k-CD3S. Table 1 contains a pseudo code description of the two
sequential steps.

3.1 Step 1: Select

The objective of this step is to find an initial set of 3R-nodes that may be included
in k-CD3S of G′(N ,A′). This initial selection consists of two substeps. In the
first substep, a set of 3R-nodes (S3R) if found solving a variation of the vertex
cover problem. In the second substep, the just computed S3R is checked to verify
the k-node connectivity constraint defined in Section 2. If S3R is k-connected,
no further action is required in step 1. Conversely, if S3R is not k-connected
additional nodes are sequentially selected and added to S3R, until the k-node
connectivity constraint is met. The two substeps are described next.
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Substep 1.1: Vertex Covering : the objective of this step is to find a set
(S3R ⊆ N ), with minimum number of 3R-nodes, that is a solution for the fol-
lowing problem:

min
∑

i∈N
ri (6)

subject to: ∑

j,L(i,j) "=0

rj ≥ k, ∀i ∈ N ; (7)

where ri is a binary variable defined as:

ri =

{
1 if Ni ∈ S3R

0 otherwise.
(8)

Note that constraint (7) is more stringent than the k-dominating constraint
in (3). Constraint (7) requires all 3R-nodes ∈ S3R to have at least k 3R-node
neighbors themselves. Since the objective of the S-&-P algorithm is to find k-
CD3S, this additional requirement may increase the probability that the result-
ing S3R is k-connected.

The size of S3R computed so far represents a lower bound (LB) on the size
of k-CD3S. This claim is based on the following simple observation. S3R is by
definition an optimal solution under constraint (7), i.e., (a) defined in Section 2.
Then, the optimal solution under both constraints (a) and (b) defined in Section 2
must require the same number of 3R-nodes or more.

Substep 1.2: Connectivity Check : the objective of this step is to check the
connectivity degree of S3R and, if necessary, to select additional 3R-nodes for
S3R so that both constraints (a) and (b) defined in Section 2 are satisfied.

This step, first checks if set S3R generated by the vertex covering set is k-
connected. If S3R is k-connected the algorithm stops and set S3R is returned as
the optimal solution of the minimum k-CD3S problem.

If set S3R is not k-connected, a node is selected from (N\S3R) and added to
S3R) as follows. For each source destination pair in G′(N ,A′) a k node-disjoint
shortest path [16], with weights 0 (∀ Ni ∈ S3R), weight 2 · |N | (∀ Ni ∈ (N\S3R))
and weight 1 (∀ l(i,j) ∈ A′), is computed. This choice of weights forces the
shortest path algorithm to compute paths that make use of already selected
3R-nodes as much as possible. All nodes Ni ∈ (N\S3R) are then scored based
on the number of times they are chosen for a shortest path. The node with the
highest score — i.e., the node most used in connecting source destination pairs
— is added to S3R. This process is repeated until S3R is k-connected.

3.2 Step 2: Prune

In this final step, the algorithm attempts to remove as many nodes from S3R as
possible without violating both constraints (a) and (b). Nodes in S3R are first
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sorted randomly. In that order, an attempt to prune each node from S3R is made
as follows. If removing the node from S3R does not violate both constraints (a)
and (b) defined in Section 2, the node is removed permanently. Otherwise, the
node is labeled permanently to remain in S3R. Once the pruning is complete,
k-CD3S=S3R.

Table 1. Pseudo code of the Select-&-Prune algorithm

begin algorithm
if (G′(N , A′) k-connected) {

S3R = Vertex Covering()
LB = |S3R|
if (S3R k-connected) { \\ -> Connectivity Check()
return S3R

}
else {
while (S3R not k-connected) {

Run kNodeDisjointSP(Ni, Nj), ∀(i, j) ∈ N
Score(Ni) = number of SP’s traversing i, ∀i ∈ N
Nu :

[
Score(Nu)

]
≥

[
Score(Ni)

]
, ∀Ni ∈ (N\S3R)

S3R = S3R ∪ Nu

}
}
while(all Ni ∈ S3R have been checked) { \\ ->Pruning()
Pick randomly Ni

S3R = S3R\Ni

if(S3R not k-CD3S){
S3R = S3R ∪ Ni

}
}
return S3R

}
S3R = ∅
return S3R

end algorithm

4 Simulation Results

This section presents a collection of simulation results obtained for the Select-
&-Prune algorithm presented in Section 3. The results are compared against
both the lower bound (LB) given in Section 3.1, and the solution found using
the decentralized algorithm k-coverage proposed for mobile and ad hoc wireless
networks [15]. Results for the k-coverage algorithm are obtained by first selecting

Regenerator Placement with Guaranteed Connectivity in Optical Networks 443



S3R = N , and then pruning S3R as described in Section 3.2. The comparison
is carried out to assess whether there is a substantial advantage in devising
centralized solutions for the problem at hand. The ILP formulation, presented
in Section 3.1 is solved using LP Solve 5.5.0.10 [18].

A number of simulation experiments is performed using network topologies
that have the same minimum and average nodal degree (2, 3 respectively) and
varying number of nodes. Each network topology is randomly generated using the
Doer and Leslie’s formula [19]. The total number of experiments is chosen so that
the presented average values have a confidence interval of 12% or better at 90%
confidence level. The TI of each node is chosen based on the following simplistic
assumption: any lightpath without regeneration can span at most TI = 1, 2, 3,
and 4 physical links. The value of TI is varied to analyze its effect on the
algorithms’ efficiency. The algorithms’ performance is assessed in terms of the
total number of 3R-nodes that are necessary to obtain a k-connected and k-
dominating 3R-backbone. This value is normalized to the total number of nodes,
i.e., the 3R-percentage is defined as %3R = |S3R|/|N |.
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(a) k = 2
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Fig. 1. Percentage of 3R-nodes (%3R) vs. the network size (|N |), TI = 3.

Fig. 1 shows the value of %3R as a function of the number of nodes in
the network, when TI = 3. Two degrees of connectivity are considered: k = 2
(Fig.1(a)) and k = 3 (Fig. 1(b)). In both of the cases, the centralized S-&-P
algorithm yields better results, when compared to the decentralized k-coverage
algorithm. In Fig. 1(a) the difference between the lower bound and the S-&-
P algorithm is around 1%, while the k-coverage algorithm percentage averages
almost 7% higher. Similar results are found when the required degree of con-
nectivity increases to k = 3 (Fig. 1(b)). In general, the two figures confirm that
the number of 3R nodes selected by the decentralized k-coverage algorithm is
at least 40% higher when compared to the centralized S-&-P algorithm. This
result suggests that a careful selection of the initial solution for k-CD3S may
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lead to a substantial cost reduction in terms of number of 3R-nodes required in
the 3R-backbone.
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(a) k = 1 and k = 2
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Fig. 2. Total number of 3R-nodes (%3R) vs. the average nodal degree in G′.

Fig. 2 shows the value of %3R as a function of the average logical nodal
degree in G′. The nodal degree is a function of the TI size, which is reported
on the plots. Four degrees of connectivity are presented: k = 1 and k = 2 in
Fig. 2(a), k = 3 and k = 4 in Fig. 2(b). Note that when TI = 1, G′ = G. Then
the average nodal degree for the two graphs is 3, making it impossible4 to provide
a guaranteed degree of connectivity k=4 in G′. As intuition suggests, the higher
the value of the nodal degree the smaller is the number of required 3R-nodes. The
centralized algorithm is consistently more efficient than the decentralized one.
The figures also show that with approximately the same number of 3R-nodes the
centralized algorithm guarantees a connectivity that is one degree higher than
the one provided by the decentralized algorithm.

5 Conclusion

Based on the preliminary study presented in this paper, it appears that cen-
tralized algorithms may offer a substantial efficiency improvement (up to 40%
in topologies with up to 250 nodes) over the already existing decentralized al-
gorithms, when it comes to finding a sub-optimal solution to the problem of
minimizing the k-connected, k-dominating node set. This result suggests that
it may be worth investigating centralized algorithms in more details, as their
improved efficiency translates directly into a reduction of the number of nodes
with signal regeneration capability that are required in the all-optical transport
network to guarantee a desired degree of end-to-end connectivity.
4 All generated networks had at least one node with nodal degree = 2, making it

impossible to provide also a guaranteed degree of connectivity k=3.
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