
Master thesis performed at
Research Department

Ericsson Eurolab Deutschland GmbH
Herzogenrath, Germany

August 4, 1999

 TCP Reaction to Rapid Changes of
 the Link Characteristics due to Handover

in a Mobile Environment

Mattias Ronquist
School of Electrical Engineering and Information Technology

Royal Institute of Technology (KTH)
Stockholm, Sweden

Supervisor: Dipl. Inform. Stephan Baucke
Examiner: Prof. Gerald Q. Maguire Jr.

Abstract

The Transmission Control Protocol (TCP), used in the Internet, was not developed for a mobile,
wireless environment. One reason why TCP might encounter problems in such an environment is
rapid changes of the link characteristics. These rapid changes can occur due to handover between
two subnetworks (macro handover), e.g., when a mobile node switches between different access
networks. A possible and realistic handover scenario could be when a mobile node is roaming
between a high bandwidth local area network (LAN) with limited coverage and a low bandwidth
radio link with wide area coverage.

The goals of this thesis were to set up a realistic environment for measurements of the handover
performance of TCP, and to observe TCP behavior when the link characteristics suddenly change.
Further objectives were to analyze the results and propose solutions for improving the
performance.

The mobility management in the measurement setup is handled by Mobile IP. Handovers are
performed between a wireless LAN (WaveLAN) and a PPP link over a GSM circuit switched
data connection. Our investigation shows that several spurious TCP timeouts occur after handover
from the fast link to the slow link, triggering unnecessary retransmissions and hence resulting in
TCP performance degradation. To avoid unnecessary retransmissions, we suggest a resetting of
the retransmission timeout value (RTO) at the moment of handover.

In the case of handover from the low bandwidth link (PPP) to the high bandwidth link
(WaveLAN), our measurements show that queued packets in the link layer buffer continue to
flow over the PPP link even after the handover. The high bandwidth available after the switch is
thus poorly utilized before the buffer of the low bandwidth link has been emptied. The IP sending
process should delay putting packets in the queue of a slow link, thus avoiding large link layer
queues and enabling utilization of the high bandwidth link faster. This could be achieved by flow
control between the IP layer and the link layer. After the packets have started flowing over the
WaveLAN, the RTO value is unnecessarily high, which could result in extensive delays in the
case of packet losses. To alleviate the problems we recommend resetting the RTO value or
modifying the algorithm for calculating the RTO value to faster adapt to sudden and significant
decrease of the round-trip time (RTT) in the case of handover.

In both handover scenarios mentioned above we have found that a small window size is favorable
to mitigate the negative effects due to the rapid changes of the link characteristics. The use of
Active Queue Management to avoid large window sizes would be an interesting approach for
future investigations. Another interesting approach could be to have flow control between the IP
layer and the link layer to avoid a large link layer queue when the handover from

Table of Contents

1 INTRODUCTION ...1

2 IETF M OBILE IP..3

2.1 Overview...3
2.2 Tunneling with IP-in-IP Encapsulation...5
2.3 Agent Discovery ...5

2.3.1 Agent Advertisement...6
2.3.2 Agent Solicitation..7

2.4 Registration...7
2.4.1 Registration Request ...7
2.4.2 Registration Reply...8

2.5 Reverse Tunneling ..9

3 TCP  TRANSMISSION CONTROL PROTOCOL ...11

3.1 TCP Encapsulation ...11
3.2 Connection Establishment and Termination ...13
3.3 Acknowledgement Scheme...14
3.4 Slow Start ...15
3.5 Recognition of Packet Losses ...15

3.5.1 Retransmission Timeout..15
3.6 Reaction to Packet Losses...16

3.6.1 Slow Start and the Congestion Avoidance Algorithm...16
3.6.2 Fast Retransmit and Fast Recovery Algorithms..18

4 REASONS FOR TCP PROBLEMS IN A WIRELESS M OBILE ENVIRONMENT ...19

4.1 Unreliable Characteristics of Wireless Links..19
4.1.1 Split Connection Approach ...19
4.1.2 Snoop ..20
4.1.3 Explicit Feedback..20

4.2 Handover Delay ..22
4.3 Rapid Changes to the Link Characteristics ...22

5 MOSQUITONET M OBILE IPV4 IMPLEMENTATION ...25

5.1 Design Overview ..25
5.2 Supporting Multiple Delivery Methods ..26
5.3 How it Works..26

5.3.1 The Routing Lookup ...26
5.3.2 The Virtual Interface (vif) ...27

5.4 Other Mobile IP Implementations ..28
5.4.1 Solaris Mobile IP...28
5.4.2 CMU Monarc Implementation ..28
5.4.3 Binghamton...28
5.4.4 NUS Mobile IP Implementation..28

6 MEASUREMENT ENVIRONMENT ..29

6.1 Description of the Setup ...29
6.2 Link Characteristics ..31

6.3 Limitations of the Setup..32
6.4 Measurement Scenarios ..33

6.4.1 Other Possible Scenarios...33

7 RESULTS ...35

7.1 Scenario 1: “Short Fat Pipe” → “Long Thin Pipe”...35
7.1.1 Expected Results ...35
7.1.2 Measurements and Results ..35
7.1.3 Varying the Advertised Window and the MSS ...38
7.1.4 Upload ...40
7.1.5 Possible Ways to Improve Performance..42

7.2 Scenario 2: “Long Thin Pipe” → “Short Fat Pipe”...43
7.2.1 Expected Results ...43
7.2.2 Measurements and Results ..44
7.2.2 Possible Ways to Improve Performance..47

8 CONCLUSIONS AND FUTURE WORK...49

8.1 Conclusions...49
8.2 Future Work..50

LIST OF ABBREVIATIONS ...51

REFERENCES ..53

CHAPTER 1

Introduction

he number of users of the Internet has been growing enormously the last decade. An
increasing number of people are using the Internet on a daily basis, browsing the World Wide

Web, sending and receiving email, downloading files, etc. The users only have access to the
Internet at some fixed points such as in their office, at home or at the university. However,
nowadays light weight portable laptops are no longer a rarity, which has created a demand for
mobile computing and networking. It has become desirable to have access to the same services
with the same functionality and quality, regardless of if the users are at their fixed access point or
away from it, and maybe even while on the move.

The set of rules for communication over the Internet, the TCP/IP protocol suit [4] was not created
and developed for mobile, wireless communication. To achieve mobility for computers, i.e. to
make it possible for computers to maintain connection to the Internet even when moving around,
Mobile IP [1, 2, 28] was developed, a standard proposed by the Internet Engineering Task Force.
Although Mobile IP enables mobile communication, there are many problems to solve and
improvements to make before mobile wireless communication can function as smoothly with the
TCP/IP protocol suit as the conventional wired communication with a fixed network topology
does.

For a future IP based mobile network, handover1 performance of Mobile IP is considered a
critical factor. Improving the handover performance on the network layer is the focus of ongoing
work at Ericsson Research. Part of these activities is to study the effects of IP mobility on the
Transmission Control Protocol (TCP) [26]. The performance of TCP is very important since TCP
is used by many popular applications on the Internet, such as World Wide Web access, electronic
mail, file transfer, telnet, etc.

There are three main reasons why problems for TCP might occur in a wireless mobile
environment:

� The unreliable characteristics of wireless links

� The handover delay

� Rapid changes of the link characteristics

This thesis is limited to the third reason. It is already known that the unreliable characteristic of
wireless links and the handover delay have a negative impact on TCP performance regarding the
throughput and link utilization (see Chapter 4). While approaches exist to alleviate the effects of
packet losses and delays not much is known about effective ways to make TCP quickly adapt to
rapidly changing link characteristics.

A possible and realistic handover scenario is when a mobile node is roaming between a high
bandwidth local area network (LAN) with limited coverage and a low bandwidth radio link with
wide area coverage. One conceivable future trend is that wireless network access will be available
everywhere. Several providers offering different types of access networks will result in more
heterogeneous wireless communications systems. This makes it interesting to study the TCP

1 A handover is a necessary information exchange to redirect the data flow to the mobile node’s new
location. In Mobile IP this redirection is achieved by the registration procedure (see Section 2.4)

T

1 Introduction2

behavior and identifying the problems when roaming between different access networks with
different characteristics.

To observe the TCP behavior, measurements will be made. The measurement environment used
will comprise a mobility server and a mobile client. The server will be equipped with a wireless
LAN (WaveLAN) and a GSM circuit switched data connection for access by the mobile client.
The reason for choosing a WaveLAN and a GSM connection is the different characteristics of the
two access media regarding bandwidth and round-trip time. GSM provides a reliable wireless link
when it uses a reliable link protocol, the Radio Link Protocol (RLP). In WaveLAN errors and
packet losses are rare provided a relatively small distance between the sender and receiver (see
[29] pp.20-22). Mobility management on the server and client will be handled by Mobile IP.

The goals of this thesis are to:

� Set up a suitable and realistic measurement environment for measurements of the handover
performance of TCP.

� Perform measurements monitoring the behavior of TCP when rapid changes to the link
characteristics occur due to handover between two different access media.

� Evaluate the results and identify the problems.

� Suggest possible solutions to the problems.

CHAPTER 2

IETF Mobile IP

he Internet Protocol (IP) [19] is the protocol that determines how packets are routed through
today’s Internet to their destinations according to their IP addresses. An IP address is divided

into two parts; the network ID and the host ID. The network ID informs the routers in the Internet
of which network a node (a host or a router) is attached to. If a node is not located on the network
indicated by its IP address, datagrams destined to the node, will be undeliverable. Hence, if a
node changes its point of attachment to another network, the node has to change its IP address.
However, changing the IP address makes it impossible to maintain transport and higher-layer
connections (as mentioned in Section 3.1, a TCP connection is uniquely identified by the port
numbers and the IP addresses of the two connection endpoints).

Mobile IP [1] is a protocol proposed by the Internet Engineering Task Force (IETF). Mobile IP
allows a node to keep the same IP address wherever it is connected to the network, making it
possible to maintain transport and higher-layer connections while moving around.

This section intends to give an introduction to the IETF Mobile IP protocol by explaining the
main features of the protocol. [1, 2, 28] provides further information and details about the
protocol.

2.1 Overview

Mobile IP requires special mobility functionality only in the three entities listed below. The
definitions of the entities are taken from [2].

� Mobile node – A mobile node is a host or a router that changes its point of attachment from
one network or subnetwork to another. A mobile host may change its location without
changing its IP address. It may continue to communicate with other Internet nodes at any
location using its (constant) IP address, assuming link-layer connectivity to a point of
attachment is available.

� Home agent – A home agent is a router on a mobile node’s home network that tunnels
datagrams for delivery to the mobile node when it is away from home and maintains current
location information for the mobile node.

� Foreign agent – A foreign agent is a router on a mobile node’s visited network that provides
routing services to the mobile node while registered. The foreign agent detunnels and delivers
datagrams to the mobile node that were tunneled by the mobile node’s home agent. The
foreign agent may always be selected as a default router by the registered mobile nodes.

Each mobile node has a static IP address, called the home address which remains unchanged
regardless of where the node is attached to the Internet. The network ID of the home address
indicates its home network. The packets destined to the mobile node are always routed to its home
network. When the mobile node is attached to a foreign network, i.e. any network other than the
mobile node’s home network, the home agent intercepts all the packets destined to the mobile
host and arranges to deliver them to the mobile node’s care-of address. The care-of address
changes at each new point of attachment and is associated with the current foreign network where
the mobile node can be reached.

T

2 IETF Mobile IP4

To be able to forward packets to the mobile node, the home agent needs to know the location of
the mobile node, i.e., the care-of address, so whenever the mobile node moves, it registers its new
care-of address with the home agent. The forwarding of a packet from the home agent to the
mobile host requires modification to the packet so that it can be delivered at the care-of address.
The home agent constructs a new IP header with the care-of address as the destination IP address,
encapsulates the original packet with the new IP header and forwards the packet to the mobile
node. When the encapsulated packet arrives at the care-of address it is decapsulated and delivered
to the mobile node. This use of encapsulation and decapsulation is often called tunneling, with the
home agent and the care-of address as the to endpoints of the tunnel.

The mobile host can acquire the care-of address in two ways. One way is to receive the care-of
address from a foreign agent advertisement message. In this case the care-of address is an IP
address of the foreign agent, and thus called foreign agent care-of address. The other way is to
receive the care-of address from an external assignment mechanism such as DHCP [17]. The
care-of address is then called colocated care-of address. Note that the care-of address is the
endpoint of the tunnel in both cases. The use of a foreign agent care-of address has the advantage
that several mobile nodes can share the same care-of address and therefore save some of the
limited address space in IP version 4. The use of a colocated care-of address has the advantage
that the mobile node can in some cases act like any other node on the foreign network, e.g., in the
case of short lived connections when it can use the care-of address.

Figure 2-1 illustrates the routing of datagrams with mobile IP in an example scenario (the
scenario is taken from [2], Section 2.3). The mobile node is away from home and has registered
with its home agent. Datagrams are routed to and from the mobile host as described below.

Correspondent Node

The Internet

Home Agent Foreign Agent

Mobile Node

Figure 2-1: Routing of datagrams with Mobile IP to and from the mobile node

1

3

4

2

1. The correspondent node sends datagrams to the mobile node. The datagrams are routed via
standard IP routing to the home network, were the home agent intercepts them.

2 IETF Mobile IP 5

2. The home agent encapsulates the datagrams and tunnels them to the care-of address, which in
this case is a foreign agent care-of address.

3. The foreign agent decapsulates the datagrams and delivers them to the mobile node. The
mobile node sends its datagrams to the default router. In Figure 2-1 the foreign agent is the
mobile node’s default router.

4. The foreign agent sends the datagrams from the mobile node to the correspondent host. The
datagrams are routed through the Internet to the correspondent host via standard IP routing.

If a colocated care-of address is used the mobile node will act as its own foreign agent,
decapsulating the datagrams by itself. The routing scenario in Figure 2-1 is often called triangle
routing.

2.2 Tunneling with IP-in-IP Encapsulation

Mobile IP requires each home agent and foreign agent to support tunneling datagrams using IP-
in-IP encapsulation [18]. Also mobile nodes that uses a colocated care-of address are required to
support receiving datagrams tunneled using IP-in-IP encapsulation, i.e., the mobile nodes have to
be able to decapsulate the datagrams. Minimal Encapsulation and Generic Record Encapsulation
(GRE) are alternative methods that may optionally be supported by the mobility agents and the
mobile nodes (see [2] pp 99-108 for further details).

Encapsulation of an IP datagram, using IP-in-IP encapsulation, is done by inserting an outer IP
header [19] in front of the original IP header. The IP-in-IP encapsulation procedure is shown in
Figure 2-2.The source and destination IP address of the outer header identify the endpoints of the
tunnel, i.e., the home agent’s IP address and the care-of address. The original IP header is not
changed except for the time-to-live field (TTL), which is decremented by one.

New encapsulated IP datagram

Figure 2-2: IP-in-IP encapsulation

Original IP HeaderOuter IP Header

Original IP datagram

Original IP Payload

2.3 Agent Discovery

Agent Discovery is an important process in Mobile IP. A mobile node makes use of Agent
Discovery to detect if it is connected to its home network or to a foreign network. Movement
between different networks is also detected by Agent Discovery, and if the mobile node is
connected to a foreign network, Agent Discovery makes it possible for the mobile node to
determine the foreign agent care-of address offered by each foreign agent on the network.

Agent Discovery is based upon an existing standard protocol, ICMP Router Discovery [20], and
uses two additional messages: Agent Advertisement and Agent Solicitation.

2 IETF Mobile IP6

2.3.1 Agent Advertisement

Agent advertisement messages are sent as periodic multicasts or broadcasts by mobility agents2

on each link the mobility agents are configured for. Mobile nodes listen for these advertisements
to locate themselves and register if necessary.

An agent advertisement is basically an ICMP Router Advertisement message with a Mobility
Agent Advertisement Extension. The structure of this extension is depicted in Figure 2-3. In
addition a Prefix-Length Extension and a One-Byte Padding extension can optionally be added.
However, these two extra extensions are not important for the basic understanding of Mobile
IPv4, and thus not discussed in this paper.

Type (8 bits) 16-bit sequence number

Registration Lifetime (16 bits)

zero or more Care-of Addresses

0 15 31

Figure 2-3: Mobility Agent Advertisement Extension

Length (8 bits)

...
reserved (9 bits)R B H F M G V

The type field is 16 indicating that the message is an agent advertisement. A length field is
required since the field with the care-of address(es) can vary in size depending on the number of
addresses it contains. The registration lifetime states the longest lifetime in seconds that the agent
is willing to accept in any registration request (see Section 2.2.1). When all bits in this field are
set, a registration lifetime of infinity is indicated. If the R bit is set registration with this foreign
agent is required, and a colocated care-of address is not allowed to be used.

The agent advertisement can be sent by either a home agent or a foreign agent, which is indicated
by the H bit and the F bit respectively. Either the H bit or the F bit has to be set in an agent
advertisement message. If the mobility agent is a foreign agent, the B bit can be set, to inform the
mobile node that it is busy and cannot accept registrations from mobile nodes at the moment. A
foreign agent has to continue sending agent advertisements, even when it is busy, to inform the
already registered mobile nodes that they are still in the range of the foreign agent and that the
foreign agent has not crashed. A home agent must always be prepared to serve its own mobile
nodes and never claim to be too busy by setting the B bit.

The M and the G bit indicate that the mobility agent supports minimal encapsulation and generic
record encapsulation (GRE) respectively. These encapsulation methods are optional since Mobile
IPv4 only requires that IP-in-IP encapsulation is supported. If the V bit is set the mobility agent
supports use of Van Jacobson header compression [21].

If the mobility agent is a foreign agent at least one care-of address must be included in the agent
advertisement message. However if the H bit is set, indicating a home agent the care-of address
field can be empty.

2 A mobility agent is either a home agent or a foreign agent.

2 IETF Mobile IP 7

2.3.2 Agent Solicitation

If the mobile node is searching for a mobility agent but does not receive any agent
advertisements, it can send an agent solicitation. When a mobility agent receives an agent
solicitation it should respond with sending an agent advertisement.

An agent solicitation message is identical to a ICMP Router Solicitation message, with the
exception that the TTL field of the IP header must be set to one. This limits the agent solicitation
messages to reach outside the originating network. The rate of which both agent advertisements
and agent solicitations are sent, have to be limited to a certain maximum rate.

2.4 Registration

When the mobile node has received a care-of address, the home agent has to be notified of where
the mobile node currently is. The home agent needs to know the mobile node’s care-of address to
be able to tunnel datagrams to the mobile node. This is accomplished by exchanging Registration
Request and Registration Reply messages. The registration procedure results in a mobility binding
for the mobile node being created (or modified if one already existed) by the home agent. A
mobility binding contains the mobile node’s home address, the corresponding care-of address and
the lifetime of the registration. The home agent has a mobility binding table with an entry for
each registered mobile node, to be able to map between the mobile node’s home address and its
current care-of address. The mobile node also makes use of the registration procedure to renew a
binding that is due to expire and to deregister when returning to its home network.

There are two variations in the registration procedure in Mobile IP, depending on if the mobile
node wants to register a foreign agent care-of address or a colocated care-of address. In the case
of registering a foreign agent care-of address the exchange of the registration messages is as
follows: The mobile node sends a registration request to the prospective foreign agent. The
foreign agent processes the registration request and then relays it to the home agent, who sends a
registration reply to the foreign agent to grant or deny the request. After the foreign agent has
processed the registration reply it relays the reply to the mobile node.

If the mobile node wants to register a colocated care-of address the mobile node sends the
registration request directly to the home agent, who grants or denies the request by sending a
registration reply. Also if the mobile node has returned to its home network and is deregistering,
the mobile node naturally exchanges the registration messages directly with the home agent.

2.4.1 Registration Request

A mobile node should initiate registration by sending a registration request whenever it detects a
change in its network connectivity. If the mobile node is on a foreign network, the registration
request makes it possible for the home agent to create or modify a mobility binding for the mobile
node. When the mobile node returns home and deregisters, the home agent deletes all mobility
bindings for that mobile node and the mobile node acts as a normal node without any mobility
functions. A registration request should also be sent when the mobile host needs to reregister, for
example when the current registration is about to expire or if the foreign agent has rebooted.

Figure 2-4 shows the format of the registration request message. The type field is set to one,
indicating a registration request. S stands for simultaneous bindings and by setting this bit the
mobile node is requesting that the home agent retain its prior mobility binding. The mobile node
will in this case receive one copy of every datagram for each mobility binding. If this bit is not
set, the home agent will delete the previous bindings. By setting the B bit, the mobile node
requests broadcast datagrams sent on the home network to be tunneled to it. If the D bit is set, it
means that the mobile node will decapsulate the datagrams itself, i.e., the mobile node is using a

2 IETF Mobile IP8

colocated care-of address. The M, G and V bits are the same as in the mobility agent
advertisement extension (see Section 2.3.1) and the rsv bits are reserved bits sent as 0.

Type (8 bits) Lifetime (16 bits)

Home IP Address (32 bits)

Extensions...

0 15 31

Figure 2-4: Registration Request

S B D M G V rsv

Home Agent IP Address (32 bits)

Care-of Address (32 bits)

Identification (64 bits)

The lifetime field contains the number of seconds the registration is considered valid. The
identification field contains a 64-bit number chosen by the mobile node to be unique for each
attempted registration. The identification number allows the mobile node to match the received
registration reply with the corresponding registration request. It also protects against nodes that
might have saved a copy of the registration request and try to send it to the home agent at a later
occasion. The extensions field can contain different extensions. Every registration must be
authenticated to prevent potential attacks from malicious nodes, hence every registration request
and reply must contain one mobile-home authentication extension (see [2] Section 4.9 for details).

2.4.2 Registration Reply

Before a registration reply can be sent both the foreign agent and the home agent performs certain
validity checks of the registration request. The registration request is hopefully accepted, but it
can also be denied by either the foreign agent or the home agent if the request for some reason
fails the validity checks. In all cases a registration reply is generated and sent to the mobile node.
The format of the registration reply message is shown in Figure 2-5.

The type field is set to 3 to indicate a registration reply. The registration reply contains a code
field, indicating if the registration is accepted or denied. If the registration is denied the code
specifies the reason for denial. The rest of the fields where explained in the previous section. A
mobility agent can however decrease the lifetime if it is not willing to accept the lifetime
requested by the mobile node.

If the registration request is accepted the home agent updates its mobility binding table, sends a
registration reply to the mobile node via the foreign agent (provided one is used) to indicate that
the registration was successful, and then starts to tunnel datagrams to the mobile node’s care-of
address. The foreign agent keeps a list of visiting mobile nodes. When it receives the registration
reply from the home agent it updates this list and forwards the reply to the mobile node.

2 IETF Mobile IP 9

Type (8 bits) Lifetime (16 bits)

Home IP Address (32 bits)

0 15 31

Figure 2-5: Registration Reply

Code (8 bits)

Home Agent IP Address (32 bits)

Extensions...

Identification (64 bits)

2.5 Reverse Tunneling

Some routers at the border of an administrative domain, called border routers, perform filtering
based on the source IP address. If a border router receives an IP datagram from inside of its
domain with a source IP address indicating that the datagram originated from outside of the
domain, the router can discard the datagram. This is called ingress filtering, shown in Figure
2-6a, and is used to prevent malicious Internet users from using fictitious source IP addresses in
“attack datagrams”.

Figure 2-6a: Ingress filtering

Home Agent
Correspondent Node

Foreign Domain

Mobile Node

The Internet

Figure 2-6b: Reverse tunneling

Mobile Node

The Internet

Home Agent
Correspondent Node

Foreign Domain

Ingress filtering, however makes it impossible for a mobile node to use its own IP address as the
source IP address, when sending datagrams to a correspondent node from a foreign network. To

2 IETF Mobile IP10

solve this problem reverse tunneling also called bi-directional tunneling has been proposed.
Reverse tunneling means that the datagrams sent from a mobile node to a correspondent node are
encapsulated and tunneled to the home agent, who decapsulates the datagrams and forwards them
to the correspondent node. This is illustrated in Figure 2-6b. The encapsulation can be performed
by either the foreign agent or the mobile node. This solution is very simple, but it has an obvious
drawback. Since the datagrams sent from the mobile node are tunneled to the home agent and not
directly sent to the correspondent node, the routing path length for the datagrams will increase.

CHAPTER 3

TCP  Transmission Control Protocol

he Transmission control protocol (TCP) [26] is a transport layer protocol, used by many
popular applications. TCP provides a reliable, connection-oriented, byte stream service, and

usually runs on top of the Internet Protocol (IP). IP provides an unreliable datagram service,
which means that IP datagrams can be received out of order, be duplicated or even fail to reach
the receiver. IP leaves the end to end reliability issues to the upper layer protocols like TCP. TCP
provides a reliable connection oriented service.

This section intends to be a short introduction to TCP and an explanation of the main features.
For further information and details of TCP we recommend [4], from where most of the
information below is taken.

Section 3.1 describes the TCP encapsulation. The connection establishment and termination are
described in Section 3.2. Section 3.3 explains the acknowledgement scheme. Section 3.4 explains
slow start. Section 3.5 describes the two ways TCP detects packet losses and Section 3.6
describes how TCP reacts to packet losses.

3.1 TCP Encapsulation

TCP receives data from an application, breaks the data into what TCP considers to be best size
chunks and encapsulates the data with a TCP header. The unit of information passed by TCP to
the underlying IP layer is called a segment. IP encapsulates the TCP segment with an IP header,
resulting in an IP datagram. This is visualized in Figure 3-1.

IP header TCP header TCP data

TCP segment

IP datagram

20 bytes

Figure 3-1: Encapsulation of TCP data in an IP datagram

20 bytes

TCP must be able to recover from data that is damaged, lost, duplicated, or delivered out of order.
To provide this reliability, each transmitted octet of data (byte) is assigned a sequence number.
The sequence number of the first byte in a segment is the sequence number of that segment,
which is included in the TCP header, illustrated in Figure 3-2. The TCP header also contains an
acknowledgement number, which is the sequence number of the next expected data byte. To make
sure that the other end has received the data correctly, the sending TCP requires a positive
acknowledgement (ACK) from the receiving TCP. When a segment containing data is sent, TCP
puts a copy on a retransmission queue and starts a timer. When the ACK for the data in that
segment is received, the copy is deleted from the queue. If the ACK is not received before the
timer expires, the segment is retransmitted.

The sequence numbers make it possible for the receiver to order the segments that are received
out of order and to discard any duplicate segments.

T

3 TCP – Transmission Control Protocol12

To be able to detect if the received segments have been damaged during the transmission over the
network, TCP utilizes a checksum, which covers both its header and data. If a received segment
has an invalid checksum, TCP discards it without sending any acknowledgement to the sender.

The TCP header also contains the source port number and the destination port number to identify
the sending and receiving application. The two port numbers together with the source and
destination IP addresses in the IP header, uniquely identify a TCP connection.

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgement number

header
length

0 15 31

16-bit TCP checksum 16-bit urgent pointer

16-bit window size
reserved
(6 bits)

flags
(6 bits)

Figure 3-2: TCP header

In addition to the fields in the TCP header shown in Figure 3-2, the header can also contain some
options. A header length field is included since the length of the header can vary depending on the
options field. The normal size of a TCP header is 20 bytes, but with options the header can be up
to 60 bytes.

There are six different flags in the TCP header, consuming one bit each. One or more of them can
be turned on at the same time. Below follows a short description of the flags.

URG The urgent pointer is valid. The urgent pointer is however not discussed in this
paper. [4, 5] provides more detailed information.

ACK The acknowledgment number is valid. This flag is normally always set, since
there is no extra cost for including an ACK.

PSH The receiver should pass the data in the segment as soon as possible to the
application.

RST Reset the connection.

SYN Synchronize the sequence numbers to initiate a connection. See Section 3.2.

FIN The sender is finished sending data. See Section 3.2

TCP also provides flow control using a sliding window mechanism. Each end of a TCP connection
has a finite amount of buffer space. A receiving TCP only allows a sender TCP to send no more
than the receiver has room for in its buffer. This is to prevent a fast sender from overwhelming a
slow host with data. The TCP buffer size is indicated in the window size field in the TCP header.
The window size informs the sender of how many bytes the receiver is willing to accept.

3 TCP – Transmission Control Protocol 13

3.2 Connection Establishment and Termination

TCP offers a connection oriented service, which means that before two hosts can start
communicating with each other, using TCP, a connection must be established between them.
When the two hosts have exchanged the data they wanted to, the connection must be terminated.
Figure 3-3 illustrates the connection establishment and the connection termination with a time line
diagram. Time increases down the page.

The connection establishment, often called the three-way handshake, consists of three segments
that have to be sent between the two hosts (usually referred to as the client and the server). The
connection establishment is necessary to make sure that the other end is present and ready to
receive data. To be certain that no packets are lost in the beginning of a data transfer, the two end
hosts have to synchronize their sequence numbers. The three-way handshake is explained below.

1. To initiate a connection establishment and synchronize the sequence numbers the client sends
a segment header (segment 1 in the figure) with the SYN flag set in the TCP header. The
segment specifies the initial sequence number (ISN) and the port number of the server that the
client wants to connect to. RFC 793 [26] recommends a change of the ISN over time, to ensure
different ISN for each connection. The purpose is to prevent delayed segments from an old
connection to be misinterpreted as part of an existing connection.

2. In response to the client’s connection request the server sends its own SYN segment
specifying its own ISN (segment 2 in the figure). In this segment, the server also ACKs the
client’s SYN segment.

3. To complete the connection establishment the client has to ACK the SYN segment from the
server (segment 3 in the figure).

SYN with ISN

ACK of SYN

SYN with ISN+ACK of SYN

<mss 1460>

<mss 1460>

establishment

termination

data exchange

Segment 1

Segment 3

client server

FIN

ACK of FIN

ACK of FIN

FIN

data

Segment 4

Segment 5

Segment 6

Segment 7

Figure 3-3: Connection establishment and termination

ACK of data

Segment 2

3 TCP – Transmission Control Protocol14

The additional information under the arrows representing the two first segments in Figure 3-3
shows the maximum segment size (MSS), which is an option that can be set in the TCP header of
the SYN segments and is normally used to avoid fragmentation. An MSS value of 1460 states that
the sender does not want to receive any segments larger than 1460 bytes. The MSS value must not
be larger than the maximum transmission unit3 (MTU) of the outgoing interface, minus the TCP
and IP headers. In general it is good to have an MSS as large as possible since it will reduce the
overhead relative to the data. If the destination IP address indicates a different subnet than the
sender’s, a default MSS value of 536 bytes is normally used.

TCP allows one end of a connection to terminate its output, but still be able to receive data from
the other end. This is called a half-close. To be able to support the half-close, TCP requires four
messages to terminate a connection.

When an application does not have any more data to send, it issues a close which causes TCP to
send a segment with the FIN flag set to inform the other end that there will be no more data
flowing in that direction. The receiving TCP end of the FIN segment must notify the application
that the other end has initiated connection termination. When the FIN segment has been
acknowledged the connection is terminated in one direction, but data can still flow in the other
direction.

The exchange of the four different segments in the connection termination procedure, and the
possible data transfer during the half-close, are shown in Figure 3-3 and explained below.

1. When one side has finished sending data, in this case the client, the application sends a FIN
segment to the other end (segment 4 in the figure). The other end of the TCP connection, the
server, notifies the application upon receiving this FIN segment.

2. The server then sends an acknowledgement of the FIN to the client (segment 5 in the figure).
The TCP connection is now terminated in one direction, i.e. the data flow from the client to the
server is terminated, but data can still flow from the server to the client.

3. When the server has no more data to send, it closes the application and sends a FIN segment to
the client (segment 6 in the figure). The client notifies the application of this.

4. To finish the connection termination, the client sends an acknowledgement of the FIN
(segment 7 in the figure). The TCP connection is now terminated.

3.3 Acknowledgement Scheme

TCP uses a cumulative acknowledgement scheme, which means that an acknowledgement
specifies the sequence number of the next byte that the receiver expects, thus confirming reception
of all previous bytes. If for example two segments with data bytes 1460-2919 and 2920-4379
respectively arrive at the receiver, it is sufficient for the receiver to send one ACK, confirming
reception of both segments. This means that there normally is not a one-to-one correspondence
between data segments and acknowledgements. However, RFC 1122 recommends an
acknowledgement for at least every second segment.

An ACK can be carried by a data segment or a segment that has been created only for the purpose
of acknowledging received data. Since the TCP header contains the acknowledgement number
field, there is no extra cost for sending an ACK with a data segment.

3 Most types of networks have an upper limit of the packet size (including the TCP and IP headers) in bytes
the link layer can accept from the network layer. If IP datagrams are larger than the MTU, IP will perform
fragmentation. This limit is called the maximum transmission unit (MTU) of the link.

3 TCP – Transmission Control Protocol 15

In order to reduce the number of “pure” acknowledgements, TCP normally does not send an ACK
the instant it receives data. Instead TCP delays the ACK, hoping to have data going in the same
direction as the ACK, so the ACK can be sent along with the data. Most implementations delay an
ACK up to 200 ms. However, if a segment is received out of order, TCP does not use the delayed-
ACK scheme, since generating an ACK instantly enables a packet loss to be detected faster (see
Section 3.5).

3.4 Slow Start

Older TCP implementations started a connection with the sender injecting multiple segments into
the network, up to the window size advertised by the receiver. This works well when the two
communicating hosts are on the same local area network (LAN), but if there are routers and slower
links between the to hosts, packets might be lost. If some intermediate router has to queue packets,
but does not have enough buffer space, packets will be dropped. This naïve approach can cause
congestion and reduce the throughput significantly and ultimately lead to congestion collapse as
shown in [15].

To avoid the drastic reduction of throughput TCP uses an algorithm called slow start. It operates
by injecting new packets into the network at the same rate as it receives acknowledgements. Slow
start adds a new window to the sender’s TCP, so called congestion window or cwnd. When a new
connection is established with a host, the congestion window is initialized to one segment. Each
time a segment is acknowledged, TCP increases the congestion window by one segment. The
sender is allowed to transmit up to the minimum of the congestion window and the window
advertised by the receiver. The congestion window is flow control imposed by the sender and the
advertised window is flow control imposed by the receiver.

After a connection is setup, the sender starts by transmitting one segment. When the
acknowledgement of that segment arrives, the congestion window is increased to two segments,
allowing the sender to transmit two segments. Receiving ACKs for both of those segments will
increase the congestion window to four segments and so on. This provides an exponential increase,
which continues until the rate of ACKs does not increase.

3.5 Recognition of Packet Losses

TCP recognizes packet losses by two different methods. The first method makes use of the
retransmission timer. If an acknowledgment is not received before the timer expires, TCP assumes
that the segment has been lost, and retransmits the segment. The second method is the reception of
duplicate acknowledgments. Whenever a segment gets lost or delayed, the next arriving segment
will be out of sequence. This causes receiving TCP to immediately generate and send an ACK,
telling the sender which segment the receiver expects to get. Upon reception of further out-of-
sequence segments, the receiver repeats the procedure, i.e., one duplicate ACK will be generated
for each segment that arrives out of sequence. Since packets can be delayed and reordered in the
Internet, TCP waits for a small number of duplicate ACKs (often three) before it assumes that a
segment has been lost, and immediately retransmits the segment.

3.5.1 Retransmission Timeout

The second method mentioned only requires the decision of how many duplicate ACKs should be
received before a packet loss is assumed. The first method (retransmission timeout) is more
complicated since packets can take different routes through the internet and round-trip times can
vary, making it difficult to anticipate the delay characteristics of the networks. It is however very
important to have a reasonable value of the retransmission timeout (RTO). If the timer expires too
quickly, unnecessary retransmissions will be triggered if the packet only is delayed, thus

3 TCP – Transmission Control Protocol16

increasing the network load and reducing the TCP throughput (see Section 3.6). If the timer value
on the other hand is too large, the sender will wait too long before it starts to retransmit packets,
hence wasting network resources.

Fundamental to TCP’s timeout and retransmission is the measurement of the round-trip time
(RTT) experienced on a given connection. Since the RTT can change over time, TCP should
notice these changes and modify its timeout accordingly. First TCP must measure the time
between sending a byte with a particular sequence number and receiving an acknowledgement that
covers that sequence number. Recall from Section 1.3 that normally there is not a one-to-one
correspondence between data segments and ACKs. The original algorithm for calculating the RTO
was based on a smoothed RTT estimator updated by TCP. Van Jacobson and Karels show in [15]
that this approach can not keep up with wide fluctuations in the RTT, causing unnecessary
retransmissions. They suggest a new approach, which calculates the RTO based on both the mean
and the variance in the RTT measurements. Further they show that the new approach provides
much better response to wide fluctuations in the round-trip times. The following equations are
applied to each RTT measurement M (see [4] page 300).

Err = M - A

A ← A + g • Err

D ← D + h(|Err| - D)

RTO = A + 4D

A is the smoothed RTT (an estimator of the average) and D is the smoothed mean deviation. Err is
the difference between the measured value just obtained and the current RTT estimator. Both A
and D are used to calculate the next retransmission timeout. The gain g is for the average and is set
to 1/8. The gain h is for the deviation and is set to 1/4. The larger gain for the deviation makes the
RTO go up faster when the RTT changes.

The granularity of the timer, which varies with different operating systems, should also be
considered. The timer granularity for BSD is 500 ms, while it is only 10 ms for Linux. This makes
the RTO value much more precise for Linux implementations of TCP compared to BSD
implementations. However, a finer granularity of the timer could cause more timeouts in the case
of a sudden increase to the RTT.

3.6 Reaction to Packet Losses

In the previous section the two methods that TCP uses to detect packet losses were described. TCP
reacts differently to a packet loss depending on how the packet loss was detected. If the
retransmission timer expires, TCP will go into slow start and congestion avoidance mode and use
an exponential backoff scheme. What the exponential backoff scheme basically does is double the
RTO value every time the retransmission timer expires, but only after the lost segment has been
retransmitted. If TCP detects a packet loss by receiving duplicate ACKs, the fast retransmit and
fast recovery algorithms will be used.

3.6.1 Slow Start and the Congestion Avoidance Algorithm

The assumption of the congestion avoidance algorithm is that packet loss caused by damaged data
is very rare. Therefore the loss of a packet indicates congestion somewhere in the network between
the sender and receiver. When congestion occurs it is desirable to slow down the transmission rate
of packets into the network, and then invoke slow start to get things running again. Slow start and
congestion avoidance are two independent algorithms, but they are implemented together when
congestion is indicated by a timeout.

3 TCP – Transmission Control Protocol 17

Congestion avoidance and slow start require that two variables be maintained for each connection:
a congestion window, cwnd, and a slow start threshold size, ssthresh. The combined algorithm is
illustrated in Figure 3-4 and operates as follows (see [4, 5]):

1. Initialization for a given connection sets cwnd to one segment and ssthresh to 65535 bytes (the
maximum window size since the window size field in the TCP header is limited to a
representation of 16 bits)

2. The TCP output routine never sends more than the minimum of cwnd and the receiver’s
advertised window (unless a Push occurs, at which time it sends what it has).

3. When congestion occurs (indicated by a timeout or the reception of duplicate ACKs), one-half
of the current window size (the minimum of cwnd and the receiver’s advertised window, but at
least two segments) is saved in ssthresh. Additionally, if the congestion is indicated by a
timeout, cwnd is set to one segment (i.e., slow start).

4. When new data is acknowledged by the other end, increase cwnd, but the way it increases
depends on whether TCP is performing slow start or congestion avoidance.

If cwnd is less than or equal to ssthresh, TCP is in slow start; otherwise TCP is performing
congestion avoidance. Slow start continues until TCP is half way to where it was when
congestion occurred and then congestion avoidance takes over.

Slow start begins with cwnd set to one segment, and is incremented by one segment every
time an ACK is received. Hence it opens up the window exponentially: send one segment,
then two, then four and so on. Congestion avoidance dictates that cwnd be incremented by
1/cwnd each time an ACK is received. This is a linear growth of cwnd, compared to slow
start’s exponential growth. The increase in cwnd should be at most one segment each round-
trip time (regardless how many ACKs are received in that RTT), whereas slow start
increments cwnd by the number of ACKs received in a round-trip time.

Figure 3-4: Slow start and congestion avoidance after timeout

0

1024

2048

3072

4096

5120

6144

7168

8192

9216

0 1 2 3 4 5 6 7 8 9

round-trip times

cw
nd

 (
by

te
s)

ssthresh

slow start congestion avoidance

3 TCP – Transmission Control Protocol18

In Figure 3-4 it is assumed that congestion occurred, detected by timeout when cwnd had a value
of 16384 bytes. TCP sets the ssthresh to 8192 bytes and the cwnd to the size of one segment (512
bytes), entering slow start. cwnd increases exponentially until cwnd reaches the value of 8192
bytes and equals ssthresh, which happens after four round-trip times. After this TCP enters
congestion avoidance state with a linear increase of cwnd.

3.6.2 Fast Retransmit and Fast Recovery Algorithms

The fast retransmission and the fast recovery algorithms are modifications to the congestion
avoidance algorithm. If three or more duplicate ACKs are received in a row, it is a strong
indication that a segment has been lost and that there is no congestion. Then TCP retransmits the
segment that seems to be missing at the receiver, without waiting for the retransmission timer to
expire. This is the fast retransmit algorithm.

Since duplicate ACKs can only be generated upon reception of out-of-order segments, the sender
knows that packets are still reaching the receiver. This indicates that a minor reduction of the flow
can be enough. Thus congestion avoidance is invoked instead of slow start to avoid reducing the
flow abruptly. This is the fast recovery algorithm. The two algorithms are usually implemented
together as follows (see [4, 5]):

1. When the third duplicate ACK is received, set ssthresh to one-half of the minimum of the
current congestion window and the receiver’s advertised window. Retransmit the missing
segment. Set cwnd to ssthresh plus three times the segment size.

2. Each time another duplicate ACK arrives, increment cwnd by the segment size and transmit a
packet (if allowed by the new value of cwnd).

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set in
step 1). This should be the ACK of the retransmission from step 1, one round-trip time after
the retransmission. Additionally, this ACK should acknowledge all the intermediate segments
sent between the lost packet and the receipt of the third duplicate ACK. This step is congestion
avoidance, since TCP is down to one-half the rate it was when the packet was lost.

CHAPTER 4

Reasons for TCP Problems in a Wireless Mobile Environment

he Transmission Control Protocol (TCP) was developed for traditional networks with wired
links and stationary hosts. Packets on the Internet get lost either because of network

congestion or corruption by the underlying physical link. Wired links are often characterized by
low bit-error rates, and are thus considered quite reliable. TCP assumes that packet losses are due
to congestion, which in most cases is correct in these kinds of networks. Losses are detected either
by timeouts or multiple duplicate acknowledgements (the fast retransmit algorithm described in
Section 3.6.2). By invoking congestion control and slow start (Section 3.6.1) in the case of packet
losses or large delays, TCP performs very well in wired networks.

4.1 Unreliable Characteristics of Wireless Links

Communication over wireless links is characterized by high bit-error rates due to channel fading,
noise, or interference, and temporary disconnections due to handovers, which is something that has
to be considered by network protocols and applications. However, TCP reacts no differently to
packet losses in a wireless environment even though they may not be due to congestion. Since
packet losses in a wireless network often occur because of the unreliability of the link and not
because of congestion, there is an unnecessary reduction of the link utilization, when TCP makes
the transmission window size smaller, initiates congestion control and slow start, and resets its
retransmission timer. This of course results in significant performance degradation in the form of
poor throughput and increased delay. The negative effects of unnecessary slow starts are extensive
in Long Thin Networks [6], i.e., networks containing links with high round-trip times (RTT) and
low bandwidth. If the RTT is high, it will take a long time for the link to recover, i.e. to be fully
used after an unnecessary slow start.

There are several different approaches to solve the problems with TCP performance in wireless
networks. One way would be to modify TCP to make it mobile aware, but because of the sheer
number of hosts using TCP, it would be unfeasible to modify all hosts. Another possibility would
be to build a separate transport layer protocol for mobile hosts. However, this solution causes
interoperability problems with the stationary hosts using TCP.

The optimal solution would hence be to improve TCP performance without requiring any
modifications to the stationary hosts or causing any interoperability problems between the mobile
and stationary hosts. We summarize some different approaches below and try to point out some
advantages and disadvantages of each method.

4.1.1 Split Connection Approach

As the name implies the split connection approach tries to alleviate the problems associated with
TCP performance over wireless links by dividing a TCP connection into two separate connections;
one connection over the wired link and one connection over the wireless link. A regular TCP
connection is set up between the stationary host and the base station. For the connection between
the base station and the mobile host some mobile aware transport protocol is used, e.g., a modified
TCP such as the Indirect TCP (I-TCP) protocol [9]. Another split-connection approach is the
Wireless Socket Protocol (WSP), developed at EED/R4.

4 Research Department, Ericsson Eurolab Deutschland GmbH

T

4 Reasons for TCP Problems in a Wireless Mobile Environment20

The advantage of the split connection approach is that it separates the flow and congestion control
of the wireless link from that of the fixed network. If a well suited transport protocol is used over
the wireless link, the performance could improve significantly. A. Bakre and B. R. Badrinath show
in [10] that I-TCP performs up to four times better than regular TCP regarding the end to end
throughput.

However, there are some weaknesses in this approach. Since the TCP connection is split in two
distinct connections, segments are not acknowledged end-to-end. An acknowledgement of a TCP
packet could in fact reach the sender before the packet reaches the receiver.

4.1.2 Snoop

In [11] the authors describe a method to improve end-to-end throughput in a TCP connection
between a fixed host and a mobile host. The authors address both the problem with the high bit-
error rate on the wireless link and the handover problem. Protocol changes are made to the
network layer software at the base stations5 and the mobile hosts. Measurement results of
throughput speedups of up to 20 times compared to regular TCP are presented in [11].

The base station routing code is modified by adding a module, called snoop, that monitors every
packet that passes through the connection in either direction. The snoop module keeps track of all
the packets sent by the fixed host and all the acknowledgments from the mobile host. When a
packet loss on the wireless link is detected by the base station (duplicate acknowledgements or
timeout), the base station retransmits the lost packet to the mobile host. This local retransmission
is possible since the base station has the packet cached. The packet loss is hence invisible to the
fixed host and unnecessary slow starts can be avoided.

Packets sent by the mobile host can of course also be dropped on the wireless link. There is no
way for the mobile sender to know if the packet loss occurred on the wireless link or elsewhere in
the network due to congestion. Since TCP retransmission timeout is based on round trip time
estimates for the connection, sender timeouts for lost packets on the wireless link will happen
much later than they should. To avoid this, the snoop module generates negative acknowledgments
for packets that have been lost on the wireless link.

4.1.3 Explicit Feedback

As shown in the Snoop solution, local retransmissions from the base station to the mobile host
improve the performance of TCP. However, timeouts can still occur at the source while the base
station is performing local retransmissions. Bakshi, et al. propose a solution in [12] using local
retransmissions combined with an explicit feedback mechanism to eliminate timeouts at the source
during local retransmissions. The results in [12] show an improvement of up to 100% of the TCP
throughput compared to basic TCP.

To simulate the characteristics of the wireless link with some deep fades, a two-state Markov
model was used. The simulations started with the wireless link in the good state. After ten seconds
the wireless link entered the bad state, remaining there for four seconds, and then reentered the
good state. This cycle continued for the duration of the connection. During the good state no
packets were lost and during the bad state all packets were lost.

Since all packets are lost during the bad state, the base station cannot get the buffered packets
through to the mobile host. To prevent the TCP sender from invoking congestion control

5 A wireless network is connected to the wired Internet via a router, which must have at least one interface to
support the wireless communication and one interface to support the wired communication. Such a router is
often referred to as a Mobile Support Router (MSR) or a Base Station (BS). In this survey we will call such
routers Base Stations.

4 Reasons for TCP Problems in a Wireless Mobile Environment 21

mechanism during the bad state, the base station sends an Explicit Bad State Notification (EBSN)
to the sender. The EBSN message causes the sender to reset its retransmission timer. The base
station keeps sending EBSN messages to the sender, while trying to retransmit unacknowledged
packets to the mobile host, until the first acknowledgement sent by the mobile host after the bad
state is detected. The scenario is illustrated in Figure 4-1.

Sender
Host

Base
Station

Mobile
Host

Wired link Wireless link

ACKs ACKs

packets packets

1 : Wireless link in Good State

Sender
host

Base
Station

Mobile
Host

(No more ACKs coming in)

packets (No/little data gets through)

2 : Wireless link going into Bad State

Queuing

ACK

Sender
host

Base
Station

Mobile
Host

EBSN generated by the BS

3 : Wireless link in Bad State

Timeout prevented!

(No data gets through)Queuing

Figure 4-1: Illustration of how the explicit feedback works with EBSN when a link enters
bad state. Timeout of the retransmission timer is prevented by the EBSN sent by the BS.

Bakshi, et al. show that their solution improves the throughput of TCP traffic compared to basic
TCP. However, to be able to prevent timeouts during local retransmissions the TCP sender needs
to understand the EBSN messages, which requires modification to the TCP code at the sender. To
make it possible for the mobile host to communicate with any host on the Internet this approach
would hence require modification to TCP at all existing hosts. As mentioned earlier this is not
feasible.

4 Reasons for TCP Problems in a Wireless Mobile Environment22

4.2 Handover Delay

Packet losses can occur due to the handover delay, causing TCP to invoke its congestion control
mechanisms. As mentioned before, packet losses result in performance degradation. Hence it is
desirable to minimize the handover latency.

When a mobile node is moving within a subnet, it can keep its care-of address. Thus the handover
in this case does not have to involve registration with the home agent. Instead the handover should
be performed locally between the base stations as suggested in [22]. For handover between
different subnets, but within the same administrative domain the authors of [22] suggest a
hierarchical foreign agent strategy. The mobile node is registered at the home agent with a domain
foreign agent care-of address, which remains the same as long as the mobile node stays within that
domain. The subnet foreign agents include the domain foreign agent care-of address in their agent
advertisement messages to make it known to the mobile nodes. The domain foreign agent
maintains per-mobile node routing entries, which it updates when a mobile node moves across
subnets.

In [11] a solution to achieve low-latency handovers without any data loss by using multicast and
intelligent buffering in the nearby base stations, is presented. The home agent multicasts the
packets destined to the mobile host to the base stations that is close to the mobile host. When the
mobile host changes cell, the new base station has the most recent packets cached and also
receives all new packets by multicast, the handover can be fast and no in flight packets6 will get
lost.

The disadvantage of this scheme is the increase of the traffic load in the backbone and the increase
of the processing load in the routers. Another possible problem could be that retransmission
timeouts still occur at the TCP sender during local retransmissions, causing unnecessary
invocation of the congestion avoidance algorithm.

[23] investigates the effects of using a colocated care-of address on macro handover7 latency with
Mobile IP. The focus is on the retrieval of a colocated care-of address using the Dynamic Host
Configuration Protocol (DHCP) [17]. The authors suggest that the address conflict checking
mechanism recommended for DHCP should be left out of the care-of address retrieval process and
performed as a background process instead. They show that by doing so, the address retrieval
delay is reduced by 96 %.

4.3 Rapid Changes to the Link Characteristics

Rapid changes of the link characteristics in the case of roaming across different access networks,
will probably also cause performance degradation. The sudden changes could cause spurious

6 Packets sent to the old care-of address, that do not arrive before the mobile node has changed its care-of
address are called in flight packets.
7 Macro handover is a commonly used term for the handover necessary when a mobile node switches from
one subnetwork to another. When the mobile node roams between two cells within the same subnetwork the
handover required is called micro handover.

4 Reasons for TCP Problems in a Wireless Mobile Environment 23

timeouts in the case of handover from the faster link to the slower link due to differences of the
round-trip times. In the case of switching from a slower link to a faster link it could a take long
time for TCP to adapt to the changes, leaving available bandwidth on the faster link unutilized for
an unnecessarily long time. However, not much is known about the TCP reaction to sudden
changes of the link characteristics. As mentioned in the introduction the goal of this thesis is to
find out the possible TCP problems.

CHAPTER 5

MosquitoNet Mobile IPv4 Implementation

he Mobile IP implementation we have chosen to use is the MosquitoNet Mobile IPv4
implementation [7], which is an implementation under Linux developed at the Computer

Science Department of Stanford University. It was chosen because the required software with
installation information and other relevant documentation could easily be retrieved from the
Internet. Also, a reduction of hardware is possible since this implementation does not provide any
foreign agents. Further, some people at Ericsson had previous experience with it.

5.1 Design Overview

The MosquitoNet Mobile IP is an implementation based on the IETF Mobile IP proposed
standard (RFC 2002) and developed for Linux kernel 2.0.33 or 2.0.36. The MosquitoNet Mobile
IP implementation provides all the required capabilities of both the mobile host and the home
agent. The encapsulation used is IP-in-IP encapsulation which is a Mobile IP requirement, but
minimal encapsulation and GRE are not supported. A foreign agent is not provided by the
implementation. However, the MoquitoNet mobile node can interoperate with a foreign agent if
desirable, when there is one available at the foreign network. Since a foreign agent is not
provided, this implementation focus on having a mobile host with a colocated care-of address,
and tries to take advantage of the extra flexibility made possible by this running mode.

The main advantage of excluding foreign agents is of course that the foreign networks do not
need to provide a foreign agent. If we would like to include more foreign networks in our
measurement environment, see Chapter 6, we do not need to set up a foreign agent for each new
foreign network. Another advantage is that standard IP routing can be used for short lived
connections where mobile support might not be needed. The mobile mode, using its colocated
care-of adderss can act as any other node on the subnet.

One disadvantage of leaving out the foreign agents is the additional packet losses that can occur
during handovers. Packets sent by the home agent to the mobile host, when the mobile host is
changing network, will be lost in the case of having a colocated care-of address. If instead foreign
agents are being used the old foreign agent can forward these packets to the new foreign agent to
avoid packet losses. This disadvantage is mitigated in this implementation by allowing multiple
active interfaces simultaneously. Before the handover is completed, i.e., before the mobile node
has registered successfully with its home agent the mobile node can still receive packets over the
interface associated with the old care-of address and hence no packets are lost. Such a handover
when no packets are lost is often referred to as a soft handover and requires that the cells8 overlap
sufficiently with respect to the handover latency and the mobile node’s velocity [23].

In the MosquitoNet Mobile IP implementation some core functions in Mobile IP such as packet
encapsulation and forwarding are implemented in the kernel. Other functions such as the
transmission and reception of registration messages are implemented in user space daemons.

8 The limited area surrounding a base station, within which mobile nodes can establish connectivity with
the base station is called a cell.

T

5 MosquitoNet Mobile IPv4 Implementation26

5.2 Supporting Multiple Delivery Methods

The MosquitoNet Mobile IP supports different delivery methods for different flows of traffic,
resulting in significantly improved throughput for some traffic flows. This is an enhancement of
the IETF Mobile IP RFC 2002. The three different delivery methods are:

� Regular IP  Routing is performed as usual, i.e., without mobile IP support.

� Mobile IP with triangle routing  Packets sent from the correspondent host (the host which
is communicating with the mobile host) to the mobile host, are routed via the home agent
which tunnels the packets to the mobile host’s care-of address. Packets from the mobile host
are routed with regular IP.

� Mobile IP with reverse tunneling  Packets sent to and from the mobile host are sent via the
home agent. The tunnel with the home agent and the mobile host’s care-of address as
endpoints is used in both directions.

Some Internet traffic has no need for Mobile IP features. For instance, when downloading a Web
page, it usually makes no difference what IP address you have. The mobile host will get the
correct Web page regardless of whether it is using its care-of address or its home address,
provided that the mobile host does not move to another foreign network during this download. In
this case, the normal IP routing mechanism could be used to avoid unnecessary Mobile IP
overhead, improving the performance significantly if the mobile host is far from its home
network but near the correspondent host.

Some domains require tunneling of the datagrams not only from the home agent to the mobile
host but also from the mobile host to the correspondent host, provided that the mobile node is
located within such a domain and the correspondent host outside the domain. This tunneling in
both directions is called reverse or bi-directional tunneling and is required when border routers do
filtering based on packet source address, so called ingress filtering (Section 2.5).

Some flows of traffic can use triangle routing. The round trip times could be reduced significantly
by using triangle routing compared to reverse tunneling, when the correspondent host and the
mobile host are “close” to each other and “far away” from the home agent.

5.3 How it Works 9

To be able to support different delivery methods for different flows of traffic based on the
characteristics of the traffic, the MosquitoNet Mobile IP implementation uses a Mobile Policy
Table (MPT). The Mobile Policy Table determines which policy to use based on the destination
IP address and the destination port number. The IP address is useful to be able to treat flows to
different destinations differently. The port number is used as a hint of the application, since the
port number in many cases indicates the nature of the traffic, such as port 23 for telnet or port 80
for HTTP traffic.

Figure 5.1 (Figure 4 in [27]) illustrates where the Mobile Policy Table together with the routing
table fit in the protocol stack within the Linux kernel. To determine how to send the packets, the
routing lookup function is modified to consult both the original routing table and the MPT.

5.3.1 The Routing Lookup

The source IP address in use for a particular packet is passed as an extra argument to the modified
route lookup function, which uses the source IP address to determine if the packet is subject to

9 The information in this section is taken from [27].

5 MosquitoNet Mobile IPv4 Implementation 27

policy decisions in the Mobile Policy Table. No mobility decision should be made for a packet
which already has the source IP address set to an IP address associated with one of the physical
network interfaces. There are two possible cases when the source IP address is set for a packet.
One case is if the packet has been looped back by the virtual interface, vif (see Section 5.3.2). The
other case is when the source IP address has been set by a certain application. The mobile host
daemon is one example of such an application. When the mobile host daemon sends registration
messages to the home agent, it needs to send them over a real interface. The IP address associated
with the particular real interface is the address that the mobile node wishes to register as a
colocated care-of address with the home agent.

For packets that do not have the source IP address set, the route lookup function must consult the
mobile policy table to decide the appropriate delivery method.

vifradioetherloopback

TCP UDP IPIP

Network Layer (IP)

 MPT

IP route lookup
 Routing
 Table

Figure 5-1: The MPT is placed in the network layer and is
consulted together with the routing table.

Link Layer

Transport Layer

5.3.2 The Virtual Interface (vif)

Packets that need to be encapsulated are handled by the virtual interface (vif). At the mobile node,
packets are only sent to the vif if reverse tunneling is required. Packets sent to the vif are
encapsulated and then looped back to the IP layer, for delivery to the home agent. In this case the
packets have already gone through the route lookup function once when the decision of reverse
tunneling was taken and the source IP address set. So this time when the packets are passed to the
route lookup function, they will be sent through one of the physical interfaces.

Packets that have been tunneled by the home agent and arrive at the mobile node are looped to the
vif by the IPIP module after decapsulation. The vif is configured with the mobile node’s home IP
address. Hence the packets appear to have arrived from an interface connected to the mobile
node’s home network.

5 MosquitoNet Mobile IPv4 Implementation28

5.4 Other Mobile IP Implementations

There are several Mobile IP implementations available. This section lists a few of them. All of the
different Mobile IP implementations mentioned below have divided the software into two parts –
kernel-level code and user-level code. To maximize performance, functions that are performed on
every packet, such as encapsulation, decapsulation, and forwarding are implemented in the
kernel. Functions such as handling registration messages and agent advertisements are
implemented in user-space.

5.4.1 Solaris Mobile IP

The Solaris Mobile IP implementation [13] was developed at SUN Microsystems Inc., Palo Alto.
The current release10 is an experimental prototype which requires a SPARC or x86 platform with
at least 16 MB of RAM running Solaris 2.5.1 or later. The implementation supports both the
foreign agent solution and the colocated care-of address solution.

5.4.2 CMU Monarc Implementation

This implementation [14] is a part of the CMU Monarc project at the Computer Science
Department at Carnegie Mellon University. Version 1.1.011 is fully compliant with RFC 2002, but
does not support reverse tunneling or route optimization. It has been tested with the NetBSD
platform, releases 1.1 and 1.0A, and the FreeBSD platform, releases 2.2.2 and 2.2 GAMMA.

5.4.3 Binghamton

A Mobile IP implementation for Linux was developed at the State University of New York,
Binghamton. Version 1.0012 of Linux Mobile IP complies with revision 16 of the IETF Mobile IP
draft and can be implemented using foreign agents or colocated care-of addresses. The software
requires that IPIP tunneling is supported in the kernel, which is the case for Linux kernel versions
after version 1.3.

5.4.4 NUS Mobile IP Implementation

The latest version of National University of Singapore Mobile IP implementation, version
3.0beta13 was released in the end of February, 1999 and works under the Linux 2.0.34 kernel.

10 The current release of SUN’s Mobile IP is available at http://playground.sun.com/pub/mobile-ip/
11 Release 1.1.0 of the CMU Monarc Mobile IPv4 is available at http://www.monarch.cs.cmu.edu.
12 Version 1.00 of Linux Mobile IP is available at http://anchor.cs.binghamton.edu/~mobileip
13 Version 3.0beta of the NUS Mobile IP implementation is available at http://mip.ee.nus.edu.sg.

CHAPTER 6

Measurement Environment

he goal is to be able to switch seamlessly between different networks and make use of
whatever connectivity available. As mentioned in [16], one example when we may need to

switch from an Ethernet or a WaveLAN connection to a radio modem is when we leave our
offices, taking our computers with us. If we arrive at a location with a higher speed connection
available, we would of course like to switch once again to take advantage of the faster connection.
The user will of course notice some obvious changes in throughput if the different networks have
widely different characteristics.

In our measurements we have used a Lucent Technologies’ WaveLAN connection and a PPP
connection over GSM. The mobile host performs soft handover with no packet losses. Soft
handover is desirable in out setup since this thesis focuses on TCP reaction to the rapid changes of
the link characteristics. In the MosquitoNet Mobile IP implementation (see Section 5) this is
achieved by having multiple interfaces active simultaneously. A handover is initiated, when the
mobile host sends a registration request to its home agent, with the new co-located COA using the
“new” interface. From this point in time the mobile host will use the new interface for all outgoing
packets. Incoming packets will still be received over the “old” interface until the new co-located
address is registered with the home agent. This handover procedure will create completely
different results depending on if the file transfer is made from or to the mobile host. To avoid this
we modified the Mobile IP implementation, making the mobile host not to use the “new” interface
until the registration is completed.

For our measurements to observe the TCP behavior we had to build a measurement environment,
which we have tried to make as realistic as possible with the hardware available. The measurement
setup is illustrated in Figure 6-1 and described in Section 6.1. In Section 6.2 the link characteristics
of the two different wireless links are described. Section 6.3 discusses the limitations of our
measurement setup. Finally, the different scenarios that we found interesting are described in
Section 6.4.

6.1 Description of the Setup

The mobile IP implementation used in our measurement environment is the MosquitoNet Mobile
IP implementation release 1.0.5, which requires Linux kernel 2.0.33 or 2.0.36. We have chosen to
use the Linux kernel version 2.0.36. The MosquitoNet implementation does not provide any
foreign agents. Instead the mobile hosts are supposed to use co-located care-of addresses whenever
they are attached to a foreign network.

Figure 6-1 illustrates the measurement setup. The home network, 192.168.194.128 with the
netmask 255.255.255.128, is an Ethernet. The home agent serving this network is located on the
computer Saturn, which has three different interfaces. The Home Agent’s IP address, i.e., the IP
address associated with its Ethernet interface, is 192.168.194.160. In addition to the Ethernet
interface, Saturn has two other interfaces which will appear to be the foreign networks: one PPP
interface using the IP address 10.0.0.1 and a WaveLAN interface with the IP address
194.231.118.195.

T

6 Measurement Environment30

P S T NP S T N

W a v e L A NW a v e L A N

G S MG S M

Home Network (Ethernet)
192.168.194.128

Home Agent
192.168.194.160

Mobile Host. lablt3
192.168.194.161

Modem/PPP
10.0.0.1

Mobile Host, lablt3
Co-located COA:

10.0.0.2

Mobile Host, lablt3
Co-located COA:
194.231.118.195

WaveLAN PC-card

WaveLAN PC-card
194.231.118.194

Correspondent Host
respc15

192.168.194.155

Saturn

Figure 6-1: The measurement setup

HANDOVER

The mobile host is a laptop, lablt3, which can be connected to an Ethernet, a WaveLAN, or a PPP
link. When the mobile host is at its home network connected via a Fast Ethernet 16-Bit PC card, it
uses its home address 192.168.194.161. When away from home the mobile host is connected to
Saturn either via a Point-to-Point GSM link (9.6 kbps) using a GSM modem card or via the
WaveLAN (1-2 Mbps) using a PCMCIA WaveLAN card. Non transparent and asynchronous
mode is used over the GSM link. Non transparent mode means that the Radio Link Protocol (RLP)
is used and the link is considered reliable. In asynchronous mode, a start bit and a stop bit are
added to every byte. The mobile host has been assigned static care-of addresses. The mobile host’s
co-located care-of address over the PPP link is 10.0.0.2, which is assigned by the PPP server
(Saturn). When the mobile host is connected to the “WaveLAN foreign network”, it will have the
co-located care-of address 194.231.118.195. The correspondent host, respc15, is connected to the
home network and has the IP address 192.168.194.155.

The measurements will focus on the TCP performance when the mobile host is roaming from the
WaveLAN wireless LAN to the GSM link and vice versa. What we mainly are interested in, is the
TCP behavior when there are rapid changes in the link characteristics.

6 Measurement Environment 31

6.2 Link Characteristics

The two parameters we consider are the bandwidth and the round-trip time.

Bandwidth: The WaveLAN has a bandwidth of 1-2 Mbits/sec. However the bandwidth of the PPP
link is much lower. The specified bandwidth for GSM is 9.6 kbits/sec. The link between the home
agent and the correspondent host is an Ethernet with a bandwidth of 10 Mbits/sec. Regardless of
whether the mobile host is connected to the WaveLAN or the PPP/GSM link it is obvious that the
wireless link will be the bottleneck.

Round-trip time (RTT): The round-trip time was measured from the mobile host to the
correspondent host (Respc15). When connected via the WaveLAN, an RTT of ~3.5ms was
measured, using the ping program. For the PPP link using GSM, an RTT of ~700ms was
measured.

The WaveLAN link is thus quite fat and short, i.e., it has a high bandwidth and a low round-trip
time, while the PPP link is thin and long, i.e., it has a low bandwidth and a high round-trip time.

The capacity of a link, normally called the bandwidth-delay product is the number of bits that the
link can be filled with. The capacity of a link is calculated as follows:

Capacity [bits] = bandwidth [bits/sec] × round-trip time [sec]

The theoretical capacity of the WaveLAN link, provided that the maximum bandwidth is assumed
(2 Mbits/sec), is about 7000 bits or 875 bytes. The corresponding value for the PPP link is 6720
bits or 840 bytes, i.e., the difference in capacity for the two links is not very big. The Ethernet has
a round-trip time of only 0.5 ms and a bandwidth of 10 Mbits/sec resulting in a capacity of 5000
bits or 625 bytes.

The characteristics of the different links in the two cases are illustrated in Figure 6-2 and Figure 6-
3, but note that the scales are not accurate. The cylinders represent the different pipes. The circle
area of the cylinders corresponds to the bandwidth and the length of the cylinders corresponds to
the round-trip times. Figure 6-2 shows the case when the mobile host is connected to the
WaveLAN and Figure 6-3 shows the case when PPP/GSM is the wireless link.

Correspondent
Host

Mobile Host

Ethernet

Home Agent

WaveLAN

Figure 6-2: Illustration of the different link characteristics of the connection over WaveLAN

6 Measurement Environment32

Correspondent
Host

Mobile Host

Ethernet

Home Agent

PPP/GSM

Figure 6-3: Illustration of the different link characteristics of the connection over PPP/GSM

6.3 Limitations of the Setup

Our measurement setup is very simple. We have limited the different access networks to a
WaveLAN connection and a PPP connection over GSM. The focus however is not on how TCP
reacts to handover between these two specific networks, but rather how TCP is affected by the
drastic changes of the link characteristics. Other access networks could as well be used for this
purpose.

The mobile host is only one hop away from the home network. The home agent is always
connected to the same network as the mobile host, regardless of if the mobile host is at home or at
one of the two foreign networks. When the mobile host is connected to the PPP link, it would be
more realistic if the PPP link was between the mobile host and an Internet Service Provider (ISP)
and if the correspondent host was located somewhere on the Internet. Also when the mobile host is
connected to the WaveLAN it would be more realistic to be several hops away from the home
network and the correspondent host. However, using the Internet as a testbed would make the
measurements hard to reproduce, since the conditions of the Internet change constantly.

Soft handover could be difficult to achieve in reality. The two cells involved in the handover have
to be overlapping. To avoid data loss the cells overlap should be large enough with respect to the
handover delay and the velocity of the mobile host [23]. In addition it is difficult for the mobile
host to detect when it is about to lose connectivity with its current access point. This could
however be achieved by measuring the signal-to-noise ratio (SNR), and initiate handover when the
SNR drops below some predefined threshold.

In our measurements the mobile host does not get the colocated care-of address via a DHCP [17]
server or a BOOTP [25] server, which maybe would be the most natural way. The colocated care-
of address for the WaveLAN interface is configured statically on the mobile host and the colocated
care-of address for the PPP link is received from the PPP server (Saturn in our measurement
setup). The use of a DHCP or a BOOTP server would increase the handover delay (see [23]) and
possibly have a negative impact on the TCP performance. However, this would not have any
impact on our measurements since the mobile IP implementation supports soft handover.

6 Measurement Environment 33

For the purpose of studying the impact of sudden changes to the link characteristics on TCP
performance, we consider this setup sufficient.

6.4 Measurement Scenarios

We have tried to realize two important and interesting scenarios, which are listed below.

� Scenario 1: “short fat pipe → long thin pipe”

As we noticed in Section 6.2, the capacities of the two links do not differ very much. It is
however interesting how well TCP can handle the change from a short fat pipe to a long thin
pipe, even if the capacity stays roughly the same. The significant difference in the round-trip
times of the two links will probably cause problems for TCP. This scenario can be studied by
initially having the mobile host connected to the WaveLAN, and then perform a handover to
the PPP/GSM link.

� Scenario 2: “long thin pipe → short fat pipe”

The only difference in this scenario from scenario 1 is that the mobile host starts by being
connected to the PPP/GSM link, and then switches to the WaveLAN.

6.4.1 Other Possible Scenarios

Two additional scenarios are described below. They are however beyond the scope of this thesis
and no measurements will be made according to them.

� Scenario 3: high capacity → low capacity”

The fact that the capacities of the two links are nearly the same, forces us to make some
changes to create a distinct difference between the two link capacities. One possible
modification to the setup would be to make the path between the correspondent host and the
home agent longer, i.e., increase the number of hops. If the round-trip time between the
correspondent host and the home agent could be increased to 100 ms (which is not unrealistic
over the Internet), the RTT between the mobile host and the correspondent host would be
about 100 ms when the WaveLAN is used and about 800 ms when PPP/GSM is used. This
would result in widely different capacities for the two different access networks. The
connection including the WaveLAN would be the high capacity link and the connection via
PPP/GSM would be the low capacity link. Hence the handover in this scenario would be from
WaveLAN to the PPP/GSM link.

� Scenario 4: “low capacity → high capacity”

This scenario is the same as scenario 3 except that the mobile host initially is connected to the
PPP/GSM link, and then does a handover to the WaveLAN.

CHAPTER 7

Results

The measurement results from the scenarios described in Section 6.4 are presented in this chapter.
A program called Netperf14 is used for the bulk data transfer between the mobile host and the
correspondent host. The mobile host will use its home IP address 192.168.194.161 as the source IP
address regardless of connection to the home network or a foreign network (triangle routing). If
nothing else is mentioned, the advertised window size by the receiver is 16 kbytes, and the
maximum transfer unit (MTU) is 1500 bytes for all links (Ethernet, WaveLAN and PPP). The
advertised window size is set by default by Netperf to 16 kbytes. An MTU of 1500 bytes might be
considered high for a PPP link. The reason for choosing this value is that Microsoft Windows uses
it as default setting for PPP links. Measurements with other window sizes and MTU values were
also made.

7.1 Scenario 1: “Short Fat Pipe” → “Long Thin Pipe”

In this scenario the mobile host is first connected to the WaveLAN. During a bulk data transfer,
with the correspondent host as the sender and the mobile host as the receiver (download), a
handover from the WaveLAN to the PPP connection is performed. The most interesting part in this
scenario is how TCP reacts after the handover.

7.1.1 Expected Results

In this scenario there are only minor changes to the capacity of the link before and after the
handover, but there is a significant difference in the round-trip time. The RTT increases roughly
by a factor 200, which will probably cause spurious timeouts, since the RTO will have a relatively
small value before the handover. Recall from Section 2-5 that Linux has a timer precision of 10
ms, which makes it possible to maintain small values of the RTO. The spurious timeouts due to the
large and rapid increase of the RTT after the handover will trigger unnecessary retransmissions.

7.1.2 Measurements and Results

Figure 7-1 shows the TCP data segments sent by the correspondent host (respc15). The data
segments are transmitted via the home agent over the WaveLAN the first 12 seconds. Then a
handover from the WaveLAN connection to the PPP connection occurs. As can be seen in the
figure, the throughput of the PPP link over GSM is substantially lower than the throughput of the
WaveLAN.

The TCP segments sent and the ACKs received by the correspondent host after the handover are
shown in Figure 7-2. The x-coordinate of a data segment mark represents the time in seconds the
data was sent and the y-coordinate is the sequence number of the first byte in the segment. Hence
data bytes 974121-975540 have the y-position 974121 in the figure. The y-coordinate of an ACK
mark indicates the sequence number of the segment expected by the receiver. The figure also

14 Netperf is a benchmark for measuring network performance, developed at Hewlett-Packard. Its primary
focus is on bulk data transfer and request/response performance using either TCP or UDP and Berkeley
Sockets interface. The sender creates arbitrary data that it sends to the receiver, who in turn returns
acknowledgements if TCP is used and then discards the packets. Netperf is available at
http://www.cup.hp.com/netperf/NetperfPage.html.

7 Results36

shows how the RTO value changes over time. The RTO values, obtained from the kernel, can be
read from the y-axis on the right side.

Figure 7-2 shows that a window of 11 segments is sent by the correspondent host. Since the
wireless link now consists of the PPP link, which is much slower than the WaveLAN, the
segments will be queued at the home agent. In addition to the actual increase of the round-trip
time, the queuing of segments at the home agent will also increase the round-trip time. This results
in artificially high round-trip times, higher than 25 seconds for some segments.

Figure 7-1: TCP data segments in a handover from WaveLAN to PPP/GSM

TCP Segment

Bytes · 106

Seconds
0 20 40 60 80 100

-0.05

0.10

0.05

0.15

0.00

0.35
0.30

0.25

0.20

0.70
0.65

0.60
0.55

0.45
0.50

0.40

1.00
0.95

0.90

0.85
0.80

0.75

1.10

1.05

The RTO value is 200 ms when the handover occurs. As expected the RTO is far too small for the
PPP connection, causing spurious timeouts. After the first window has been sent, a timeout of the
first segment occurs three times, triggering retransmissions, exponential backoff and slow start.
However, the first 11 segments are received and acknowledged by the mobile host, but due to the
sudden increase of the round-trip time, the ACKs are not received before the retransmission timer
expires at the sender. This causes the sender to retransmit those segments in the interval 6-22
seconds. Since the mobile host already has received the first 11 segments, it creates one duplicate
ACK for each received retransmitted and already acknowledged segment. The RTO value is not
recalculated when ACKs for the retransmitted segments are received (Karn’s Algorithm [4] p.
301). The sender has no possibility to know if an ACK is created in response to the original or

7 Results 37

retransmitted segment. This is called the retransmission ambiguity problem. The updates of the
RTO during the retransmissions are caused by timeouts as can be seen in figure 7-2.

Between when segment 991161 was sent (after 24 seconds) and the ACK for that segment was
received, approximately 26 seconds elapsed. In this time interval, which is marked in Figure 7-2,
the correspondent host only receives duplicate ACKs and makes a few retransmissions, i.e., no
new segments are received by the mobile host and no new segments are sent by the correspondent
host. TCP does not use the fast retransmit and fast recovery algorithms, although more than three
duplicate ACKs are received. After the 15 duplicate ACKs the packet exchange seems to stabilize,
except for three more duplicate ACKs, which correspond to the retransmissions during the marked
time interval in the figure.

970000

975000

980000

985000

990000

995000

1000000

0 10 20 30 40 50 60

Seco nds

B
y

te
s

0

5

10

15

20

25

30

R
T

O
 i

n
 S

e
c

o
n

d
s

T CP dat a segm ent

T CP A CK

RT O value (right y-axis)

Figure 7-2: TCP data segments sent and ACKs received by the correspondent host after the
handover to PPP, and the current RTO value

26 seconds

Figure 7-3 visualizes the entire packet exchange after the handover. A line is included in the figure
to show the maximum theoretical throughput of the PPP link. As shown in the figure, the
transmission over the PPP link continues almost 40 seconds longer than it would have had if the
link achieved its theoretical throughput. However, the dotted line (theoretical throughput) and the
line consisting of the ACKs (real throughput) look fairly parallel. The calculated value of the mean
throughput is 900 bytes/s in the time interval 58-116 seconds, compared to the theoretical
throughput of 960 bytes/s. The mean throughput of the entire data transfer after handover is 680
bytes/s. This indicates that the 26 seconds interval when no new data is transferred is the main
reason for the poor throughput. Worth noting is that the mean throughput strongly depends on the
total length of the transfer.

Worth noting are the increasing round-times for the segments, which can be seen by the increasing
distance between the TCP data segments and the correspondent ACKs in Figure 7-3. After the
many duplicate ACKs the round-trip time is approximately 1.5 seconds, but at the end of the
connection the round-trip time has increased to almost 11 seconds. This indicates queuing at the
home agent's outgoing PPP interface, which is the bottleneck due to the slow PPP link. The figure
also shows an increase of the RTO value even after the packet exchange has stabilized. The RTO

7 Results38

has a value of about 20 seconds at the end of the transfer. Quite remarkable is that it takes more
than 30 seconds for TCP to recover after the handover.

Figure 7-3: TCP segments and ACKs collected at the correspondent host after the handover. The RTO
values and the theoretical throughput of the PPP link are also included.

960000

970000

980000

990000

1000000

1010000

1020000

1030000

1040000

1050000

0 20 40 60 80 100 120

Seconds

B
yt

e
s

0

5

10

15

20

25

30

R
T

O
 in

 S
e

co
nd

s

TCP data segment

TCP ACK

Theoretical throughput

RTO value (right y-axis)

7.1.3 Varying the Advertised Window and the MSS

The measurements in the previous section showed the occurrence of a retransmission of an entire
window, directly after handover. If the advertised window is smaller the number of retransmitted
packets will decrease. As noted from the previous measurement a large window size also results in
filling the buffer at the home agent, which increases the round-trip time. The maximum segment
size in these measurements was 1024 bytes, making it easier to maintain the window size in
kbytes.

The appropriate window size varies, depending on the capacity of the link and the segment size.
Theoretically, it would be sufficient to have a window size equal to the capacity of the link plus
one segment. The extra segment is needed since the receiver cannot acknowledge a segment until
it is completely received and hence removed from the pipe, leaving a space of one segment size in
the pipe. We made measurements with window sizes of 2, 4, 8 and 16 kbytes. In Section 6.2 the
capacities of the different media were calculated. Including the Ethernet the pipe between the
mobile host and the correspondent host should have a capacity of approximately 1500 bytes. One
segment of 1024 bytes is not enough to fill the pipe. Since an extra segment also is needed the
window size 4 kbytes is the smallest window (of the above listed sizes), that will keep the pipe
filled.

Figure 7-4 illustrates the packet TCP data segments and ACKs at the correspondent host. The
advertised window by the receiver is 4 kbytes. Since only four segments is enough to fill up the
window, the retransmissions directly after the handover will only concern four segments. The
figure shows a significant improvement of the throughput and a much lower stable value of the
RTO. The stable RTO value and the constant interval between data segments and ACKs, indicate
that segments are not being queued up by a bottleneck. The calculated throughput for the same

7 Results 39

number of bytes as in the previous measurement is 790 bytes/s, which is an improvement of 16%
compared to the measurements with a window size of 16 kbytes and an MSS of 1420 bytes.
Observations of the other window sizes were also made, but the throughput decreased.

1400000

1420000

1440000

1460000

1480000

1500000

0 20 40 60 80 100 120 140

Seconds

B
yt

e
s

0

2

4

6

8

10

12

14

R
T

O
 in

 S
e

co
nd

s

TCP data segment

TCP ACK

Theoretical throughput

RTO value (right y-axis)

Figure 7-4: The packet exchange after the handover with a advertised window of 4096 bytes and
an MSS of 1024 bytes

The problem with a too small RTO value after the handover remains, resulting in three
retransmissions of the first segment. If the segment size is reduced, the transmission delay15 for the
segment will decrease. This decrease is notable over the GSM link since the data rate is 960 bytes
resulting in a transmission delay of about one millisecond per byte. A smaller RTT could possibly
reduce the number of retransmissions of the first segment after the handover.

TCP uses a maximum segment size of 536 bytes as a default value when the correspondent host
belongs to another subnet, or when the MSS option is not used in the connection establishment,
which makes it interesting to investigate if any differences exist in comparison with a large MSS
value.

A window of four segments of 536 bytes should be enough to fully use the available bandwidth of
the pipe. Figure 7-5 illustrates the packet exchange after the handover using an MSS of 536 bytes
and a window size of 2144 bytes. The problem with several retransmissions of the first segment
sent after the handover remains, as shown in the figure. The calculated throughput is 700 bytes/s.

15 The time to send a packet depends mainly on the propagation delay and the transmission delay The
propagation delay is caused by the finite speed of the signal in the media and latencies in the transmission
equipment, while the transmission delay depends on the data rate of the media. The transmission delay,
which increases with the packet size, is dominant for slow links (see [4] p. 289).

7 Results40

Figure 7-5: The packet exchange after the handover with an advertised window of 2144 bytes
and a MSS of 536 bytes

1425000

1427000

1429000

1431000

1433000

1435000

1437000

1439000

10 12 14 16 18 20 22 24 26 28 30

Secon ds

B
y

te
s

0

1

2

3

4

5

6

7

8

9

10

R
T

O
 i

n
 S

e
c

o
n

d
s

T CP data segm ent

T CP ACK

RT O value (right y-axis)

7.1.4 Upload

As mentioned in Chapter 6, we modified the handover procedure in the MosquitoNet Mobile IP
implementation to avoid differences between a download and an upload. To verify this upload
measurements with the mobile node as the sender and the correspondent host as the receiver were
also made.

Figure 7-6 illustrates the packet exchange right after the handover with a time line diagram,
created from the tcpdump output. The sequence number for the first TCP segment sent after the
handover has been set to ‘0’ as well as the time when it was sent. The labels on the far left of the
figure represents the time in seconds when segments are sent and received by the mobile host. The
numbers within the brackets are the time interval between two events. The labels at the top include
the IP addresses and the port number of the two communicating hosts. Transmitted TCP data is
shown by thicker lines.

As can be seen from Figure 7-6, the first 1460 data bytes are retransmitted three times before the
first ACK arrives at the mobile host. It is also obvious that all four segments are received correctly
by the correspondent host. The data bytes 1460-2919 are sent three times. Also in this case all
three segments containing data bytes 1460-2919 arrive at the receiver. After this, the packet
exchange seems to be quite normal.

7 Results 41

Mobile Host
192.168.194.161.2401

Correspondent Host
192.168.194.155.1029

0:1460 (1460) ack1
0:1460 (1460) ack10:1460 (1460) ack10:1460 (1460) ack1
1460:2920 (1460) ack11460:2920 (1460) ack1

1460:2920 (1460) ack1
2920:4380 (1460) ack1

 ack1460

 ack1460

 ack1460

 ack1460

 ack2920

 ack2920

 ack2920

 ack4380

0
0.419967 (0.419967)
1.159974 (0840007)

2.939962 (1.679988)

4.369954 (1.429992)
4.370071 (0.000117)

7.009954 (2.639883)
7.729964 (0.720010)

10.099959 (2.369995)

13.169953 (3.069994)

14.449965 (1.280012)

16.789960 (2.339995)
16.790077 (0.000117)

19.339960 (2.549883)

22.449980 (3.110020)

26.029960 (3.579980)
26.030080 (0.000120)
26.031023 (0.000943)

Figure 7-6: Time line of the packet exchange after the handover from the WaveLAN connection
to the PPP connection

4380:5840 (1460) ack15840:7300 (1460) ack1
 ack5840

The TCP data segments sent and the ACKs received by the mobile host after the handover are
illustrated by Figure 7-7. The figure also shows a dotted line, which represents the maximum
theoretical throughput of the PPP link.

7 Results42

Figure 7-7 indicates a usable window of only one segment at the mobile host, since only one
segment is sent directly after handover. The distance between the ACKs and the TCP data
segments is growing steadily. The RTT reaches a value of almost twenty seconds at the end of the
data transfer. Comparing the number of bytes sent and acknowledged with the theoretical
throughput line, shows there is a poor throughput. The calculated value of the actual throughput
obtained over the PPP link is less than 390 bytes. More measurements of bulk data transfer from
the mobile host to the correspondent host showed a constant low throughput of less than half the
theoretical value.

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120 140 160

Seconds

B
yt

e
s

TCP ACK

TCP data segments

Theoretical throughput

Figure 7-7: TCP segments sent and ACKs received by the mobile host after the handover.

After double checking the modem parameters and flow control settings between the computer and
the modem, we still do not have a clear indication of the reason for the poor throughput. In
meaurements using File Transfer Protocol (FTP) [31] for the bulk data transfer instead of Netperf
normal throughput was obtained, possibly indicating a problem with Netperf. Since we have
modified the handover procedure of the MosquitoNet Mobile IP implementation, similar results in
upload and download measurements were expected. Due to the inability to locate the source of our
problem, the remaining measurements will be made only in download direction.

7.1.5 Possible Ways to Improve Performance

The problems TCP has encountered when the link characteristics suddenly change are spurious
timeouts due to the minimal value of the RTO compared to the RTT of the new link, unnecessary
retransmissions as a consequence of the spurious timeouts and artificially high round-trip times.

One way to avoid the spurious timeouts after the handover could be to decrease the maximum
segment size (MSS) over the PPP link. The results in Section 7.1.3 show that this approach does
not reduce the number of timeouts.

As seen from the measurement results a large advertised window causes extensive queuing at the
home agent in the case of a download in our setup. In the case of an upload the mobile host TCP
sends the packets to the link layer buffer where they are buffered if the link is slow. However, TCP
considers the packets sent even if they are stored in the buffer for a while, and hence the RTT

7 Results 43

takes on an artificially high value. The artificially high RTT leads to an exaggerated high value of
the RTO, causing timeouts and retransmissions to occur much later than they could have.

To keep the round-trip times as small as possible, we used a small window size. By having a small
window size the throughput increased as shown in Section 7.1.3. The performance improvements
are expected to be even more notable if packet losses occur over the link.

Since redundant retransmissions occur of an entire window after a handover, adding unnecessary
load to the network and resulting in poor utilization of the slow wireless link, a small window
would limit the number of retransmissions and mitigate the problem. However, the approach of
setting the window size to an appropriate static value is quite simplistic, since a suitable window
size depends on the link characteristics and the segment size which are dynamic variables over the
Internet and thus unpredictable in the general case.

A better approach to avoid excessive window sizes and prevent the buffer at the bottleneck from
getting filled up would be to use Active Queue Management [30], which basically is a congestion
avoidance mechanism at routers preventing the buffers from filling up. Random Early Detection
(RED) is a recommended active queue management mechanism. To maintain a reasonable size of
the queues, RED drops packets before the queues are filled up. The authors of [30] expect that the
RED algorithm will provide significant performance improvement. It would be interesting to
implement an active queue management mechanism such as RED at both endpoints of the wireless
link, which often is the bottleneck.

TCP is unaware of the handover, which caused rapid changes in link characteristics. If TCP could
recognize that a switch from a link with low round-trip delay to a link with high round-trip delay is
about to occur, TCP could set the RTO value to a higher value. This would prevent the
retransmission timer at the TCP sender from expiring after the handover. Another parameter that
could be set to a more appropriate value is the congestion window (cwnd). For example setting
cwnd to one segment and entering slow start to explore the characteristics of the new link would
probably be better from a performance point of view, than keeping the values of these parameters
from the old link. This solution could be implemented on the mobile host, but would require some
communication between TCP and the link layer. However, if the TCP sender is the correspondent
host there is no way for it to know when the mobile host performs a handover. Thus, the effect of
this solution would only be noticed for upload traffic, when the mobile host acts as the TCP
sender. One way to change the values of the RTO and the cwnd if the sender is the correspondent
host could be to insert these values as TCP options in the header.

7.2 Scenario 2: “Long Thin Pipe” → “Short Fat Pipe”

In this scenario the mobile host is first connected to the PPP link. During a bulk data transfer, with
the correspondent host as the sender and the mobile host as the receiver (download), a handover
from the PPP to the WaveLAN connection is performed.

7.2.1 Expected Results

The round-trip time decreases by a factor 200, but the capacity of the link stays nearly constant.
No timeouts and retransmissions are expected as a consequence of the handover. However, TCP
could perform very poorly if packets were lost during or directly after the handover, since the
RTO value at that moment probably would be much larger than the round-trip time of the new
link. In this case it would take a substantial amount of time before the retransmission timer at the
TCP sender expired and triggered retransmissions. The result would be very low utilization of the
available bandwidth. Since no timeouts and retransmissions are expected, the interesting part in

7 Results44

this scenario is to observe the RTO value before the handover and also how quickly it adapts to the
new round-trip time after the handover.

As noted in Scenario 1, the home agent is the bottleneck in the case of a download resulting in
queued packets in the buffer. The packets in the send buffer of the PPP interface at the home agent
will not be redirected since they have already been sent to the link layer buffer. Thus, the packets
in the buffer will be sent over the PPP link even though the handover is completed. Since the PPP
link is much slower, the receiver (the mobile host) will probably receive some packets over the
WaveLAN before the old packets from the home agent’s PPP buffer arrive. This will probably
result in packets being delivered out-of-order, causing duplicate ACKs to be sent by the mobile
host. If the usable window at the TCP sender is larger than the size of three segments, there is a
possibility that fast retransmission will occur. However, the retransmitted packets will be sent
across the WaveLAN interface and the packets arriving later via the PPP link will simply be
discarded.

7.2.2 Measurements and Results

In Figure 7-8 the TCP data segments sent from the correspondent host are shown. The figure gives
an illusion of the handover from PPP to WaveLAN being performed after 85 seconds without any
timeouts or retransmissions. However, according to the tcpdump output, the handover occurs
already after 70 seconds. The segments queued up in the PPP send buffer at the home agent are the
reason why the bandwidth is so poorly utilized the first 15 seconds after handover.

Figure 7-8: TCP data segments sent by the correspondent host before, during and after
a handover from PPP/GSM to WaveLAN

TCP Segment

Bytes · 106

Seconds
0 20 40 60 80

-0.05

0.10
0.05

0.15

0.00

0.35
0.30
0.25
0.20

0.70
0.65
0.60
0.55

0.45
0.50

0.40

1.00
0.95
0.90
0.85
0.80
0.75

1.10
1.05

Handover

15 sec

7 Results 45

Figure 7-9 shows the exchange of TCP segments between the home agent and the mobile host
directly after the handover. Both the PPP interface and the WaveLAN interface of the two nodes
are included in the figure. Note that the sender is the correspondent host, respc15, and not the
home agent.

Segments are still queued up at the home agent’s outgoing PPP buffer after handover has been
completed. Figure 7-9 indicates that 11 segments (Segment 1 in the figure and the ten buffered
segments) arrive at the PPP interface of the mobile host after the handover.

Segment 3

Segment 5

Figure 7-9: Time line diagram of the TCP segment exchange between the home agent (HA)
and the mobile host (MH) after the handover from PPP to WaveLAN

HA PPP HA WaveLAN MH WaveLAN MH PPP

reg. request

Segment 2

reg. reply

Seg 12
ACK2

R
eg

is
tr

at
io

n

10
 b

uf
fe

re
d

se
g

m
e

nt
s

ACK4
Seg 13
ACK4

ACK5

ACK6

ACK3

Segment 4

ACK2
Handover completed

Segment 6

Segment 1

An entire TCP window is unacknowledged, since the segments are queued up at the home agent,
resulting in a closed usable window at the TCP sender (respc15), i.e., no segments can be sent
until new ACKs arrive at the sender. When the acknowledgement for Segment 1 arrives at the
sender (ACK2) the next segment (Segment 12) can be sent. This is the first TCP data segment sent
over the WaveLAN after the handover. Since the WaveLAN has a much higher bandwidth and
shorter RTT than the PPP link, Segment 12 is received by the mobile host before Segment2, which
causes a duplicate ACK to be sent by the mobile host. This pattern continues until the PPP buffer
has been emptied, and the segments have been acknowledged, resulting in a poor utilization of the
high available bandwidth over the WaveLAN for the first 15 seconds after handover.

Figure 7-10 shows the packet exchange over the PPP link. What is interesting in this figure are the
RTO values. The segments start to go over the WaveLAN after approximately 86 seconds and the
round-trip time decreases significantly. However, the RTO value increases from 20 seconds to

7 Results46

more than 50 seconds, as shown in the figure. The reason for the increase of the RTO value despite
the decrease of the round-trip time, is that the algorithm for calculating the RTO adds the variance
of the measured RTTs even when the RTT is decreasing (see [15]). The algorithm for the RTO
value works well when the probability of an increase of the RTT is equal to the probability of a
decrease. However, if the RTT suddenly decreases significantly and several RTT measurements
show the same value, the RTO should be decreased to a value close to the new RTT, instead of
adding the variance.

Figure 7-10: Packet exchange over PPP and RTO values

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 10 20 30 40 50 60 70 80 90

Se cond s

B
y

te
s

0

10

20

30

40

50

60

R
T

O
 i

n
 S

e
c

o
n

d
s

T CP dat a segm ent

T CP A CK

RT O value (right y-axis)

Figure 7-11 illustrates the first part of the packet exchange over the WaveLAN. The figure shows
that it takes a large amount of updates of the RTO value until it stabilizes to a value of
approximately 200 ms.

7 Results 47

80000

100000

120000

140000

160000

180000

200000

220000

240000

85.5 85.6 85.7 85.8 85.9 86 86.1 86.2 86.3 86.4 86.5

Se cond s

B
y

te
s

0

10

20

30

40

50

R
T

O
 i

n
 S

e
c

o
n

d
s

T CP dat a segm en t

T CP A CK

RT O v alue (right y-axis)

Figure 7-11: Packet exchange over the WaveLAN and RTO values

If a segment would be lost or corrupted just after the segments have started being sent over the
WaveLAN, it would take a large amount of time until the segment is retransmitted. Since the RTO
value is much higher than the round-trip time (more than 250 times higher RTO in the worst case)
the sender would wait much a longer time than necessary to retransmit the lost segment.

7.2.3 Possible Ways to Improve Performance

An entire window is queued at the home agent’s PPP buffer. If the window size is large, the time
before the data packets can be exchanged completely over the WaveLAN is substantial. In our
measurements we had a period of 15 seconds after the handover, when segments still were sent
over the PPP link. As mentioned in Section 7.1.5 an interesting approach to avoid such problems
with large window sizes would be to use Active Queue Management.

It is desirable to reroute packets to the higher bandwidth interface after the handover. However,
the packets already sent to the link layer queue, cannot possibly be rerouted to another interface.
To reduce the number of packets queued in the link layer buffer, the IP sending process should
delay putting packets in the queue of a slow link. This would enable utilization of the high
bandwidth link faster and could be achieved by flow control between the IP layer and the link
layer.

Another solution could be that the sender discards the queued packets in its buffer, in the case of a
handover from the slower PPP link to WaveLAN. This would cause the sender to timeout and
retransmit the packets. However, as confirmed by the measurement carried out the RTO value at
the sender will be quite high, i.e., the retransmission timer will expire after several tens of seconds
in some cases. Together with the solution proposed in Section 7-5, that would set the RTO to a
new value when handover is performed this approach could improve handover performance
significantly. However as mentioned in Section 7-5, these kinds of solutions are only possible at
the mobile host or in a local environment. If the sender is a host somewhere in the Internet, not
much can be done to inform the sender of the handover.

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

Many studies have been made on IP mobility impact on TCP performance. This study has
investigated the TCP problems caused by rapid changes of the link characteristics due to handover
in a wireless mobile environment.

One goal of the thesis was to create a realistic measurement environment, which has been
accomplished. The testbed works well except for the poor throughput for upload data transfer
(from the mobile host to the correspondent host), as measured when using Netperf. Exact
monitoring of packet flow and TCP behavior is possible with the testbed, making it a useful
environment for future investigations.

Our measurements show that TCP encounters problems when significant and rapid changes of the
link characteristics occur. Handover from a high bandwidth link with low round-trip delay to a low
bandwidth link with high round-trip delay (WaveLAN to PPP over GSM in our measurements),
causes spurious timeouts triggering unnecessary retransmissions of an entire window. The reason
for the spurious timeouts is the sudden increase of the RTT. In some cases it takes TCP more than
40 seconds to recover after the handover. To mitigate the problems with the unnecessary
retransmissions we recommend the use of a window size as small as possible without undermining
the use of the available link capacity. A smaller window size will also reduce the artificially high
round-trip time.

In the case of a handover from a low bandwidth link with high round-trip delay to a high
bandwidth link with low round-trip delay, we discovered a poor utilization of the high bandwidth
available after handover. The reason is queued packets in the buffer associated with the low
bandwidth link. These packets will be sent over the slow link even after handover has occurred.
Thus, the high bandwidth link will not be used for sending data segments until the queued packets
at the low bandwidth link have been sent. To reduce the number of packets queued in the buffer, a
small window size should be used. The IP sending process should delay putting packets in the
queue of a slow link to be able to reroute packets when a faster interface is available after
handover. Another problem in this scenario was the unnecessarily high RTO value. The algorithm
for the RTO value works well when the probability of an increase of the RTT is equal to the
probability of a decrease. However, if the RTT suddenly decreases significantly and several RTT
measurements show the same value, the RTO should be decreased to a value close to the new
RTT, instead of adding the variance.

In both handover scenarios investigated, it is desirable to use a window size as small as possible.
Using Active Queue Management at both ends of the wireless link will probably prevent the use of
large window sizes. Investigation of the impact of using Active Queue Management should be
made in future work.

Another possible solution is to reset the RTO value after a handover to an initial value. This would
prevent the retransmission timer from expiring when the RTT increases after the handover. In a
handover from a slow link to a fast link, discarding the packets queued in the sender buffer at the
moment of handover would probably improve TCP performance. These approaches require some
communication between the link layer and the transport layer. It is however impossible for the
correspondent host to know when the mobile host will perform a handover. Local modifications,

8 Conclusions and Future Work50

e.g., changes at the mobile host can be made, but will only improve the performance when the
mobile node is the sender. If the correspondent host is the TCP sender, a notification of a more
appropriate RTO value after handover could be included in the TCP flow as an option in the
header.

8.2 Future Work

For future work, measurements according to the two additional scenarios described in Section
6.4.1 would be interesting to study.

The problem with the poor throughput when uploading data from the mobile host to the
correspondent host should be solved.

An Active Queue Management mechanism such as Random Early Detection should be integrated
into the testbed at both endpoints of the wireless link in order to investigate if the performance
improves using this method.

The proposed solutions to reset the RTO value and possibly enter slow start at the moment of a
handover, should be implemented at the mobile host. Flow control between the IP layer and the
link layer could improve performance significantly in the case of handover from a high bandwidth
link to a low bandwidth link. Measurements should be made to evaluate the positive impact of
these changes on TCP performance.

The problems with high RTO values when switching from a slow link to a fast link could cause
major delays in the case of packet losses. Handover with packet losses should be studied to
investigate the behavior of TCP in case of handover between non-overlapping cells. To have a
more accurate RTO value, the algorithm should be modified to achieve a fast adaptation of the
RTO value in the case of rapid and significant decrease of the RTT, due to handover from a slow
link to a fast link.

List of Abbreviations

ACK Acknowledgement RTO Retransmission Timeout

BOOTP Bootstrap Protocol RTT Round-Trip Time

BS Base Station SNR Signal-to-Noise Ratio

CH Correspondent Host TCP Transmission Control Protocol

CN Correspondent Node TTL Time-To-Live

COA Care-Of Address UDP User Datagram Protocol

cwnd Congestion window vif Virtual Interface

DHCP Dynamic Host Configuration WSP Wireless Socket Protocol
Protocol

ESBN Explicit Bad State Notification

FA Foreign Agent

FTP File Transfer Protocol

GRE Generic Record Encapsulation

GSM Global System for Mobile
Communication

HA Home Agent

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol version 4

ISP Internet Service Provider

I-TCP Indirect Transmission Control
Protocol

LAN Local Area Network

MH Mobile Host

MN Mobile Node

MPT Mobile Policy Table

MSS Maximum Segment Size

MTU Maximum Transmission Unit

PPP Point-to-Point Protocol

RFC Request for Comments

RED Random Early Detection

References

[1] Charles E. Perkins, IP mobility support, Request for Comments: 2002,
http://www.stacken.kth.se/doc/rfc/rfc2002.txt, Network Working Group, October 1996

[2] Charles E. Perkins, Mobile IP: Design Principals and Practice, Addison-Wesley
Longman, Reading, Massachusetts, 1997

[3] Charles E. Perkins, Mobile Networking Through Mobile IP, http://computer.org/internet/
v2n1/perkins.htM

[4] W. Richard Stevens, TCP/IP Illustrated, Volume 1, The Protocols, Addison-Wesley
Longman, Reading, Massachusetts, 1994

[5] W. Richard Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms, Request for Comments: 2001, http://www.cis.ohio-
state.edu/htbin/rfc/rfc2001.html, Network Working Group, January 1997

[6] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, Long Thin Networks, Internet draft,
ftp://ftp.ietf.org/internet-drafts/draft-montenegro-pilc-ltn-00.txt, November 1998

[7] Stanford MosquitoNet Project MobileIPv4 Distribution, Users Manual, Release 1.0.5,
http://mosquitonet.stanford.edu/software/mip.html, Stanford University, April 1999

[8] Xinhua Zhao, Mary Baker, Flexible Connectivity Management for Mobile Hosts,
Technical Report: CSL-TR-97-735, http://mosquitonet.stanford.edu/software/mip.html,
Stanford University, September 1997

[9] Ajay Bakre, B.R. Badrinath, I-TCP: Indirect TCP for Mobile Hosts, Rutgers,
ftp://paul.rutgers.edu/pub/badri/itcp-tr314.ps.Z, University, Piscataway, October 1994

[10] Ajay Bakre, B.R. Badrinath, Handoff and System Support for Indirect TCP/IP, Rutgers
University, Piscataway, in Proc. Second Symposium on Mobile and Location-
Independent Computing, pages 11-24, USENIX, April 1995

[11] Hari Balakrishnan, Srinivasan Seshan, Randy H. Katz, Improving Reeliable Transport
and Handoff Performance in Cellular Wireless Networks, in ACM Wireless Networks,
December 1995

[12] Bikram S. Bakshi, P. krishna, N. H. Vaidya, D. K. Pradhan, Improving Performance of
TCP over Wireless Networks, Techical Report TR-96-014, Texas A&M University, May
1996

[13] Viptul Gupta, Solaris Mobile IP: Design and Implementation, SUN Microsystems Inc.,
Palo Alto, California, February 1998

[14] David A. Maltz, David B. Johnson, The CMU Monarch Project IETF Mobile IPv4
Implementation User’s Guide, Carnegie Mellon University, June 1997

[15] Van Jacobson, Michael J. Karels, Congesion Avoidance and Control, in Proceedings of
SIGCOMM ’88, Stanford, California, August 1988, ACM

[16] Mary G. Baker, Xinhua Zhao, Stuart Cheshire, Jonathan Stone, Supporting Mobility in
MosquitoNet, in the Proceedings of the 1996 USENIX Technical Conference, San Diego,
CA, January 1996

[17] Ralph Droms, Dynamic Host Configuration Protocol, Request for Comments: 2131,
http://sunsite.hr/cgi-bin/rfc/rfc2131.txt, Network Working Group, March 1997

[18] C. Perkins, IP encapsulation within IP, Request for Comments: 2003,
http://www.sunsite.auc.dk/RFC/rfc/rfc2003.html, Network Working Group, October
1996

[19] Jon Postel, Editor, Internet Protocol, Request for Comments: 791,
http://www.sunsite.auc.dk/RFC/rfc/rfc791.html, September 1981

[20] S. Deering, ICMP Router Discovery Messages, Request for Comments: 1256,
http://www2.hunter.com/docs/rfc/rfc1256.html, Network working Group, September
1991

[21] Van Jacobson, Compressing TCP/IP headers for Low-Speed Serial Links, Request for
Comments: 1144, http://www2.hunter.com/docs/rfc/rfc1144.html, Network Working
Group, February 1990

[22] Ramon Caceres, Venkata N. Padmanabhan, Fast and Scalable Handoffs for Wireless
Internetworks, in Proceedingsof ACM MobiCom ’96, November 1996

[23] Jon-Olov Vatn, Gerald Q. Maguire Jr., The effect of using co-located care-of addresses
on macro handover latency, http://www.it.kth.se/~vatn

[24] Stephan Baucke, Yuri Ismailov, Mikael Latvala, Reiner Ludwig, Michael Meyer,
Wireless TCP – Problems and Recommendations, Technical Report EED/R-98:595

[25] Bill Croft, John Gilmore, Bootstrap Protocol (BOOTP), Request for Comments: 951,
http://www.sunsite.auc.dk/RFC/rfc/rfc951.html, September 1985

[26] Jon Postel, Transmission Control Protocol (TCP), Request for Comments: 793,
http://www.sunsite.auc.dk/RFC/rfc/rfc793.html, September 1981

[27] Xinhua Zhao, Claude Castelluccia, Mary Baker, Flexible Network Support for Mobility,
in the Proceedings of ACM/IEEE MobiCom ’98

[28] James D. Solomon, Mobile IP: The Internet Unplugged, Prentice Hall, 1997

[29] WaveLAN Wireless LAN Technology and Market Backgrounder, Lucent Technologies,
Bell Labs Innovations, http://wavelan.wavelan.com/about/wavelan.html

[30] B. Braden, et al., Recommendations on Queue Management and Congestion Avoidance in
the Internet, Request for Comments: 2309, http://www.sunsite.auc.dk/RFC/rfc/
rfc793.html Network Working Group, April 1998

[31] Jon Postel, K. Reynolds, File Transfer Protocol (FTP), Request for Comments: 959,
http://www.sunsite.auc.dk/RFC/rfc/rfc793.html, Network Working Group, October 1985

