
Push-based low-latency solution
for Tracked Resource Set protocol
An extension of Open Services
for Lifecycle Collaboration specification

XUFEI NING

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE
STOCKHOLM, SWEDEN 2017

Push-based low-latency solution
for Tracked Resource Set protocol
An extension of Open Services
for Lifecycle Collaboration
specification

Xufei Ning

2017-08-28

Master’s Thesis

Examiner
Gerald Q. Maguire Jr.

Academic adviser
Jad El-Khoury

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

 Abstract | i

Abstract

Currently, the development of embedded system requires a variety of software and
tools. Moreover, most of this software and tools are standalone applications, thus
they are unconnected and their data can be inconsistent and duplicated. This
increase both heterogeneity and the complexity of the development environment.

To address this situation, tool integration solutions based on Linked Data are
used, as they provide scalable and sustainable integration across different
engineering tools. Different systems can access and share data by following the
Linked-Data-based Open Service for Lifecycle Collaboration (OSLC) specification.
OSLC uses the Tracked Resource Set (TRS) protocol to enable a server to expose a
resource set and to enable a client to discover a resource in the resource set.

Currently, the TRS protocol uses a client pull for the client to update its data
and to synchronize with the server. However, this method is inefficient and time
consuming. Moreover, high-frequency pulling may introduce an extra burden on
the network and server, while low-frequency pulling increases the system’s latency
(as seen by the client).

A push-based low-latency solution for the TRS protocol was implemented using
Message Queue Telemetry Transport (MQTT) technology. The TRS server uses
MQTT to push the update patch (called a ChangeEvent) to the TRS client, then the
client updates its content according to this ChangeEvent. As a result, the TRS client
synchronizes with the TRS server in real-time.

Furthermore, a TRS adaptor was developed for Atlassian’s JIRA, a widely-used
project and issue management tool. This JIRA-TRS adaptor provides a TRS
provider with the ability to share data via JIRA with other software or tools which
utilize the TRS protocol.

In addition, a simulator was developed to simulate the operations in JIRA for a
period of time (specifically the create, modify, and delete actions regarding issues)
and acts as a validator to check if the data in TRS client matches the data in JIRA.

An evaluation of the push-based TRS system shows an average synchronization
delay of around 30 milliseconds. This is a huge change compared with original TRS
system that synchronized every 60 seconds.

Keywords

Linked Data, Open Services for Lifecycle Collaboration, Tracked Resource Set,
JIRA, Message Queue Telemetry Transport, Push Technology

 Sammanfattning | iii

Sammanfattning

Nuvarande inbyggda system kräver en mängd olika program och verktyg för att
stödja dess utveckling. Dessutom är de flesta av dessa programvara och verktyg
fristående applikationer. De är oanslutna och deras data kan vara inkonsistent och
duplicerad. Detta medför ökad heterogenitet och ökar komplexiteten i
utvecklingsmiljön.

För att hantera denna situation används verktygsintegrationslösningar baserade
på Länkad Data, eftersom de ger en skalbar och hållbar integrationslösning för
olika tekniska verktyg. Olika system kan komma åt och dela data genom att följa
den Länkad Data-baserade tjänsten Open Service for Lifecycle Collaboration
(OSLC). OSLC använder TRS-protokollet (Tracked Resource Set) så att en server
kan exponera en resursuppsättning och för att möjliggöra för en klient att upptäcka
en resurs i resursuppsättningen.

TRS-protokollet använder för tillfället pull-metoden så att klienten kan
uppdatera sin data och synkronisera med servern. Denna metod är emellertid
ineffektiv och tidskrävande. Vidare kan en högfrekvensdriven pull-metod införa en
extra börda på nätverket och servern, medan lågfrekvensdriven ökar systemets
latens (som ses av klienten).

I det här examensprojektet implementerar vi en pushbaserad låg latenslösning
för TRS-protokollet. Den teknik som används är Message Queue Telemetry
Transport (MQTT). TRS-servern använder MQTT för att pusha
uppdateringspatchen (som kallas ChangeEvent) till TRS-klienten. Därefter
uppdaterar klienten dess innehåll enligt denna ChangeEvent. Vilket resulterar i att
TRS-klienten synkroniseras med TRS-servern i realtid.

Dessutom utvecklas en TRS-adapter för Atlassians JIRA som är ett välanvänt
projekt och problemhanteringsverktyg. JIRA-TRS-adaptern tillhandahåller en
TRS-leverantör med möjlighet att dela data via JIRA med annan programvara eller
verktyg som använder TRS-protokollet.

Dessutom utvecklade vi en simulator för att simulera verksamheten i JIRA
under en tidsperiod (specifikt skapa, ändra och ta bort åtgärder rörande problem)
och en validator för att kontrollera om data i TRS-klienten matchar data i JIRA.

En utvärdering av det pushbaserade TRS-systemet visar en genomsnittlig
synkroniseringsfördröjning på cirka 30 millisekunder. Detta är en stor förändring
jämfört med det ursprungliga TRS-systemet som synkroniseras var 60:e sekund.

Nyckelord

Länkade Data, Open Services for Lifecycle Collaboration, Tracked Resource Set,
JIRA, Message Queue Telemetry Transport, Push-teknologi

 Acknowledgments | v

Acknowledgments

I would like to thank my supervisor, Jad El-Khoury, for the technique support
throughout my thesis project. And I would like to express my gratitude to my KTH
examiner, Gerald Q. Maguire Jr., for his academic guidance. Additionally, I would
thank my colleagues in Scania, Andrii Berezovskyi, Daniel Echegaray, Shuang
Zheng, Yash Khatri for their help and advice.

Special thanks to my family and girlfriend, who always support me for all these
years.

Stockholm, August 2017
Xufei Ning

 Table of contents | vii

Table of contents

Abstract ... i
Keywords ... i

Sammanfattning ... iii
Nyckelord ... iii

Acknowledgments ... v
Table of contents ... vii
List of Figures ... ix
List of Tables .. xi
List of acronyms and abbreviations xiii
1 Introduction .. 1

1.1 Background .. 1
1.2 Problem Statement .. 2
1.3 Purpose .. 3
1.4 Goals .. 3
1.5 Research Methodology ... 4
1.6 Delimitations .. 4
1.7 Structure of the thesis .. 4

2 Background .. 5
2.1 Linked Data .. 5

2.1.1 Resource Description Framework 5
2.1.2 Uniform Resource Identifier .. 6
2.1.3 Resource set ... 6
2.1.4 Triple Store ... 6

2.2 Open Services for Lifecycle Collaboration 6
2.2.1 OSLC Adaptor .. 6

2.3 Tracked Resource Set ... 6
2.3.1 Base .. 7
2.3.2 ChangeLog ... 7

2.4 JIRA .. 8
2.4.1 JIRA REST API ... 8
2.4.2 JIRA Query Language .. 8
2.4.3 WebHook .. 9

2.5 Related work .. 9
2.5.1 JIRA Adaptor .. 9
2.5.2 TRS Client .. 9
2.5.3 Jena Model Helper .. 9

2.6 Summary .. 10
3 A TRS provider for JIRA .. 11

3.1 Installing and configuring JIRA .. 11
3.2 TRS server.. 11

3.2.1 Base .. 11
3.2.2 ChangeEvent and ChangeLog .. 13

viii | Table of contents

3.3 Configure WebHooks .. 15
3.4 Run TRS Client .. 15

3.4.1 Install Fuseki ... 15
3.4.2 Configure and Run TRS Client 16

3.5 Summary .. 17
4 Proposal and comparison of potential solutions 19

4.1 Java Remote Method Invocation (RMI) 19
4.2 Java Message Service (JMS) .. 19
4.3 Message Queue Telemetry Transport (MQTT) 21
4.4 Apache Kafka ... 21
4.5 Conclusion ... 22

5 A push-based TRS system .. 25
5.1 System Architecture .. 25
5.2 ChangeEvent serialization and deserialization 25

5.2.1 Serialization .. 26
5.2.2 Deserialization .. 26

5.3 MQTT configuration .. 26
5.3.1 MQTT Broker .. 27
5.3.2 MQTT Publisher .. 27
5.3.3 MQTT Subscriber .. 28

5.4 Summary .. 28
6 Results and Analysis ... 29

6.1 Simulation .. 29
6.2 Validation ... 31
6.3 Discussion ... 31

7 Conclusions and Future work .. 33
7.1 Conclusions ... 33
7.2 Limitations ... 33
7.3 Future work .. 34
7.4 Required Reflections ... 34

References ... 37
Appendix A: Experimental Results .. 41

 List of Figures | ix

List of Figures

Figure 1-1: TRS Architecture .. 2
Figure 2-1: RDF Structure .. 5
Figure 2-2: TRS Base .. 7
Figure 2-3: TRS ChangeLog ... 8
Figure 2-4: JIRA-TRS Architecture .. 10
Figure 3-1: JIRA-TRS Base .. 12
Figure 3-2: Multiple Base ... 13
Figure 3-3: JIRA-TRS ChangeLog .. 14
Figure 3-4: Multiple ChangeLog ... 14
Figure 3-5: Create DataSet in Fuseki ... 16
Figure 3-6: TRS Query result .. 17
Figure 4-1: JMS Point-to-Point Model [28] .. 20
Figure 4-2: JMS Publish-and-Subscribe Model [28] 20
Figure 4-3: Apache Kafka Log .. 22
Figure 5-1: Push-based TRS Architecture .. 25
Figure 5-2: ChangeEvent in payload .. 26
Figure 6-1: Experiment Results ... 30
Figure 6-2: Distribution of Delays ... 30

 List of Tables | xi

List of Tables

Table 2-1 JIRA REST API .. 9
Table 3-1 WebHooks Configuration .. 15
Table 4-1 MQTT QoS level ... 21
Table 6-1 Port Setting .. 29

 Introduction | xiii

List of acronyms and abbreviations

API Application Program Interface
ASSUME Affordable Safe And Secure Mobility Evolution
GUI Graphical User Interface
HTTP Hyper Text Transfer Protocol
JAX-RS Java API for RESTful Web Services
JQL JIRA Query Language
JSON Java Script Object Notation
JSON-LD Java Script Object Notation for Linked Data
LDP Linked Data Platform
LQE Lifecycle Query Engine
MQTT Message Queue Telemetry Transport
OSLC Open Services for Lifecycle Collaboration
QoS Quality of Service
RDF Resource Description Framework
REST Representational State Transfer
SDK Software Development Kit
TCP/IP Transmission Control Protocol/Internet Protocol
TRS Tracked Resource Set
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
XML Extensible Markup Language

 Introduction | 1

1 Introduction

This Master’s thesis project took place at Scania Tekniskt Centrum in Södertälje,
Sweden. It is a part of the ongoing ASSUME [1] research project, which aims to
provide affordable, safe, and reliable transport solutions. This chapter introduces
the general background needed by the reader of this thesis project, presents the
challenges and the problem, and then proposes a practical solution.

1.1 Background

Currently, embedded system development requires a variety of software and tools.
Moreover, most of this software and tools are standalone applications, thus they
are unconnected and their data can be inconsistent and duplicated. This brings
increased heterogeneity and increases the complexity of the development
environment.

To address this situation, tool integration solutions based on Linked Data [2]
are used, as they provide scalable and sustainable integration across different
engineering tools. Different systems can access and share data by following the
Linked-Data-based Open Service for Lifecycle Collaboration (OSLC)
specification [3]. OSLC use the Tracked Resource Set (TRS) protocol [4] to enable a
server to expose a resource set and to enable a client to discover a resource in the
resource set.

The TRS protocol is HTTP-based and follows RESTful principles. An example of
the TRS architecture is shown in Figure 1-1. JIRA is a project management tool,
which can create records for issues with properties such as name, id, creator, time,
Uniform Resource Identifier (URI), etc. JIRA’s main competitor is Bugzilla [5],
OSLC has implemented a TRS provider for Bugzilla, which can be found in [6].

Figure 1-1 shows three issues saved in JIRA together with their different
properties: name, id, creator, created time, description, and JIRA URI. An OSLC
adaptor is connected to JIRA and configured to share only three properties: name,
id, description. In addition, the “OSLC URI” property is added to refer to each of
the issues saved by the OSLC adaptor.

A TRS server holds a resource set. The resource set lists members in an OSLC
adaptor as a catalog, where these members are identified by OSLC URIs. A TRS
client maintains a local copy of the resource set, then accesses each OSLC URI to
create an initial copy of each issue and saves the results in a local database (in this
case in a Triple Store). Both TRS servers and TRS client do not store any data from
the resources, but rather request this data as they need it.

2

1

C
sy
e
sh
A
e

m
fr
th
o
s

| Introduction

.2 Prob

Currently, t
ynchronize

every 60 se
hortcomin

Additionall
exchange.

The curr
making it h
requent po
he network

of synchron
econds del

blem Statem

the TRS pr
e with the
econds - w

ng as a clie
ly, this inev

rent pull-b
hard to ach
olling could
k and serve
nization. I
lay may res

ment

rotocol clie
server. A

whether th
ent may tak
vitable lea

based TRS
hieve low-l
d waste sy
er. In cont
n some sc
sult in a sy

Figur

ent perform
TRS clien

here is any
ke more th
ds to “emp

architectu
latency wit

ystem reso
trast, low-f
cenarios, s
ystem failu

re 1-1: TR

ms periodi
nt sends a
y update or
han 60 sec
pty pulls” w

ure is ineffi
thout a hig
urces and

frequency p
uch as in
re.

RS Archite

c pulls to u
pull reque

r not. This
onds to pr
where ther

cient and t
gh polling
add an un

polling ma
a safety cr

ecture

update its
est to the
s leads to
rocess all u
re is no act

time consu
overhead.

nnecessary
ay increase
critical syst

data and t
TRS serve
an obviou

updates [4]
tual data t

uming, thu
. Moreover

y burden on
the latenc

tem, a few

to
er
us
].
to

us
r,
n

cy
w-

Introduction | 3

A push-based solution that could provide low-latency for TRS is highly desirable
for many applications [7].

According to Scania’s case study, a push-based TRS architecture was proposed
while developing Linked-Data-based information integration [8]. During the
Organization for the Advancement of Structured Information Standards (OASIS)
Telecon meeting on 2016.06.09 [9], a new approach was proposed where the TRS
system could send push-based notifications using the Message Queue Telemetry
Transport (MQTT) protocol.

However, this push-based notification is imperfect in real situations. When the
information in a notification is limited, the TRS client still needs to send HTTP
GET requests to the TRS server to synchronize with server. A better solution is
needed [10].

Moreover, for Scania’s case study, the TRS system is expected to use JIRA as the
data source. However, this case study did not suggest how to develop a TRS
provider for JIRA, hence this development needed to be investigated.

1.3 Purpose

This project investigates the architecture of a TRS system, builds a TRS provider
for JIRA, proposes and compares possible solutions for push-based TRS
architecture, and implements and evaluates a push-based TRS system using
practical technology.

Using this push-based TRS architecture, a TRS client will update its content
(almost) immediately when changes are made at the TRS server, while reducing the
load on the server and reducing network traffic. This is a major optimization
compared with the default TRS architecture, which calls the pull method every 60
seconds, whether there is any updated data or not.

Given a JIRA-TRS provider, JIRA’s TRS adaptor can share data with other tools
or software which also follow the TRS standard.

1.4 Goals

This thesis project entails the design, development, prototyping, and evaluation of
a push-based TRS architecture and a TRS provider for JIRA. This goal can be
divided into the following four sub-goals:

1) A case study of the TRS protocol and development of a TRS provider for
JIRA.

2) A case study of real-time message protocols, leading to a proposal and
comparison of practical solutions relevant for this project.

3) Developing and prototyping of a push-based TRS architecture.

4 | Introduction

4) Development of a JIRA simulator to simulate the operation of the proposed
solution for a period of time. This simulation will serve as a validator and
enables an evaluation of the performance of the proposed push-based TRS
system.

1.5 Research Methodology

To realize the goals two research methods are used in this project:

• The system design part follows design science for the development of the TRS
provider and TRS consumer. This project also needed to analysis the TRS
protocol and TRS architecture, to design a TRS server algorithm for JIRA, and
provides service for both a human operated web browser and computer request.

• The research follows a qualitative research method, with a focus on finding a
suitable solution for a push-based TRS architecture. There are several possible
technologies that could be used to realize a push-based system, this project
selects and compares only the most commonly used ones.

1.6 Delimitations

In this project, there were several choices made to bound the scope of the project:

1) For this prototype of a push-based TRS architecture only one TRS server and
client pair are used. We explicitly chose not to implement a large-scale use
case.

2) We assume all data are transmitted correctly, i.e., without network errors or
data loss. As a result, we have not performed any experiments or otherwise
investigated how network quality of service (QoS) and network status affect
the entire system.

1.7 Structure of the thesis

Chapter 2 presents the theoretical background and related works to help readers to
better understand this thesis. Chapter 3 introduces the design and implementation
of a TRS provider for JIRA, together with details of the development of a TRS
server. Chapter 4 compares several possible technologies that might be used to
solve the problem stated in Section 1.2. The most practical of was selected for
prototyping. Chapter 5 introduces the design and implementation of a push-based
TRS system, including modifications of both the TRS server and client along with
serialization and deserialization of updates. Chapter 6 evaluates the performance of
the prototype JIRA-TRS provider and push-based TRS architecture, using both a
simulator and validator. Chapter 7 presents the conclusion and suggests future
work.

2

T
T
a

2

L
p
e

2

L
re
re

a

“T

2 Backg

This chapte
TRS, and J
adaptors an

2.1 Link

Linked Dat
purpose of
explore dat

.1.1 Res

Linked dat
elationship
elationship

For exam
as:

S

P

O

A relati
Triple”:

S

P

O

ground

er provide
JIRA. Addi
nd TRS clie

ked Data

ta is a tec
using linke

ta with othe

source Descr

ta uses the
ps. RDF is
p described

mple, “Alic

Subject: Alice

Predicate: fri

Object: Bob

ionship “I

Subject: Issue

Predicate: cr

Object: Adm

es basic ba
tionally, th
ents.

chnology t
ed data is t
er tools [2]

ription Frame

e Resourc
a World W

d by RDF i

ce is a frie

e

iend

Issue No.0

e No.07

reator

in

Figu

ackground
his chapter

to connect
to provide
].

ework

ce Descript
Wide Web C
is called “T

end of Bob”

07 created

ure 2-1: R

d informati
r describes

t relevant
 a way for

tion Fram
Consortium

Triple”, as i

” can also

d by Adm

RDF Struc

ion about
s related w

or related
tools and s

ework (RD
m (W3C) sp
it shown in

be describ

min” conve

ture

Linked D
work conce

d data tog
software to

DF) to de
pecificatio

n Figure 2-

bed in “Tri

erts to the

Background |

Data, OSLC
erning JIRA

gether. Th
o share an

scribe dat
on. The dat
1 [11].

ple” forma

e followin

5

C,
A

he
d

ta
ta

at

ng

6 | Background

2.1.2 Uniform Resource Identifier

A URI is used to identify a resource. In this project, all of the members in a
resource set are describe by unique URIs. For example,
“https://example.com/demo_data/HelloWorld.doc_V1.02” identifies a specific
version of the document HelloWorld.doc.

2.1.3 Resource set

A resource set contains a collection of resources, and each resource is identified by
a URI. For example, a resource set may have members such as the following:

Member 1: https://example.com/demo_data/HelloWorld.doc_V1.02

Member 2: https://example.com/demo_data/guide.mkv

Member 3: https://example.com/requirements/customer.xml_V1.0

The resource set only contains the URI of each resource and does not contain
the content of each resource.

2.1.4 Triple Store

A Triple Store is a graph database that stores data in a subject-predicate-object
(Triple) format. The Triple Store used in this project is Apache Fuseki [12].
Additionally, this database provides a graphical user interface (GUI) for the user to
query for data. The RDF query language is called SPARQL [13].

2.2 Open Services for Lifecycle Collaboration

OSLC is based on linked data. OSLC is an open community that defines practical
specifications for integrating software. OSLC aims to provide a free, high-efficiency
solution for tool integration [3].

2.2.1 OSLC Adaptor

An OSLC adaptor is used to share data based upon the OSLC specification. An
OSLC adaptor can select which data to share when assessed via an OSLC URI.

2.3 Tracked Resource Set

While using the OSLC specification to share data, the data provider may change
existing resource relationships or properties. In this case, TRS allows the data
provider (i.e., a TRS server) to expose a set of resources and to allow a data
consumer (in this case a TRS client) to track all changes (such as data creation,

m
a
v

2

B
re
a
re
p
la

p
th
is

2

T
ch
C
C
s
n
p

C
“t

modificatio
adaptor) [4
via the Base

.3.1 Bas

Base [4] is
esource se

an enormou
egenerate

periodically
ater chang

A Base m
page is requ
he last pag
s shown in F

.3.2 Cha

The Chang
change is c
Creation, M
ChangeEve
equence n

not need to
previous on

A Chan
ChangeEve
trs:previou

on, and d
4]. A simpl
e and Chan

se

a Linked
et. Each m
us number
the Base a

y regenera
es are liste

may be spl
uired to ha
ge, then its
Figure 2-2

angeLog

eLog [4] c
called a “C

Modificatio
nts saved

numbers (f
o be consec
ne.

ngeLog ma
nts are in

us” referen

deletion) t
e TRS arch
ngeLog as d

Data Platf
ember is r

r of membe
after each c
ated. A Cut
ed in the Ch

lit into mu
ave a refere
s next page
[3].

contains al
ChangeEve

on, or Dele
in Chang

forming a
cutive, but

ay be spl
n the first
nce to an e

Fi

that occur
hitecture w
described b

form (LDP
referenced
ers; hence
change hap
toffEvent p
hangeLog.

ultiple page
ence to ind
e reference

ll the chan
ent”. A Ch

etion. Each
geLog are
so-called
a newer c

lit into m
t few page
earlier Cha

igure 2-2:

r at the d
was shown
below.

P) Contain
by an UR

it would b
ppens. Ins
points to t

es to provi
dicate the n
e is to “rdf

nges as se
hangeEven

h ChangeEv
 sorted b
“change o

change mus

multiple pa
es. Each C

angeLog pa

TRS Bas

data prov
in Figure

ner, which
RI. A TRS p

e a waste o
tead, the B
the last up

ide faster s
next Base p
f:nil”. An ex

en by the
nt may be
vent must
y time an
rder”). Th
st have a g

ages. In t
ChangeLog
age. If a Ch

se

vider (via
1-1. TRS is

lists mem
provider m
of system r
Base is des
pdate of th

server resp
page. If a B

example of

OSLC ada
e one of th

have an U
nd then ta

his change
greater ord

this case
g page m
hangeLog

Background |

the OSLC
s expresse

mbers in th
may contai
resources t
signed to b
he Base. Al

ponse. Each
Base page i
f a TRS Bas

aptor. Each
hree types

URI. All th
agged with
order doe

der than th

the newe
ust have
page is th

| 7

C
d

he
n

to
be
All

h
is
se

h
s:

he
h

es
he

er
a

he

8

la
C

2

In
w
th
d

2

J
H
re
R
c

2

T
T
2

| Background

ast page, it
ChangeLog

2.4 JIRA

n this proj
with proper
hese issues

developmen

.4.1 JIR

JIRA provi
HTTP verb
espond to

RESTful AP
can use “lat

.4.2 JIR

The JIRA Q
The default
2-1 lists sev

t also need
g is shown i

A

ect, JIRA i
rties such
s with the
nt tool, ma

RA REST AP

ides an RE
bs GET, P
o a HTTP
PI version
test” instea

RA Query Lan

Query Lang
t query res
veral JQL e

ds a “trs:pr
in Figure 2

is used as a
as id, proj
properties

ainly used b

PI

EST API t
POST, PUT

request w
is “2”. Alt

ad.

nguage

guage (JQ
sult is limi
examples c

Figur

revious” re
2-3 [3].

a resource
ect, creato

s are saved
by Agile te

to access r
T, and DE
with a resp
ternatively

L) is used
ited to nor

combined w

re 2-3: TR

eference to

provider, a
or, created
d in JSON
eams [15].

resources v
ELETE to
ponse in J
, where re

to search
r more tha
with REST

RS Chang

o “rdf:nil”.

as it can cr
time, desc
format [14

via URLs.
interact w

JSON form
questing th

for specifi
an 1000 re
.

eLog

An examp

reate recor
cription, an
4]. JIRA is

A user m
with JIRA.
mat [16]. T
his latest v

ic issues in
esults per p

ple of a TR

rds of issue
nd URI. Al
s a softwar

may use th
. JIRA wil

The curren
version on

n JIRA [17]
page. Tabl

RS

es
All
re

he
ll

nt
ne

].
le

Background | 9

Table 2-1 JIRA REST API

Search all issues http://localhost:2990/jira/rest/api/latest/search?

Search total number http://localhost:2990/jira/rest/api/latest/search?maxResults=0

Set start point http://localhost:2990/jira/rest/api/latest/search?startAt=0&maxResults=50

Search issue with ID http://localhost:2990/jira/rest/api/latest/issue=<issue id>

2.4.3 WebHook

WebHook is a callback over HTTP. When using WebHook, a web application sends
a HTTP POST when an event happens [18]. JIRA’s WebHook is used to send
notifications to add-ons or web application when changes made in JIRA [19]. This
project used JIRA WebHooks to notify a TRS provider about issue creation,
modification, and deletion.

2.5 Related work

There are some previous works relevant to this project. These are primarily
contributions are made by KTH Royal Institute of Technology and Scania Group.

2.5.1 JIRA Adaptor

Scania developed an OSLC adaptor for JIRA, which implements the OSLC Change
Management specification [20]. This JIRA Adaptor converts JIRA’s JSON-format
issues into RDF triple format and tags these RDF-triple-format issues with OSLC
URIs. Thus, a user may access OSLC URIs to browse JIRA issues in RDF triple
format.

2.5.2 TRS Client

A TRS client can synchronize data with a TRS server and save OSLC data in a Triple
Store. A well-known and fully developed TRS client is IBM Lifecycle Query Engine
(LQE) [21].

Additionally, KTH Royal Institute of Technology has developed a TRS client for
research and academic use, which was used in this project. Other researchers or
academics who are interested in TRS client development should contact with Jad
El-Khoury [22] or Andrii Berezovskyi [23].

2.5.3 Jena Model Helper

To create RDF graphs [24], the Jena Model Helper (a part of project Eclipse
Lyo [25]) was used. Eclipse Lyo aims to adopt OSLC specifications and build OSLC-
compliant tools. This project uses Jena Model Helper to serialize OSLC resources.

10

2

A
F

0 | Background

2.6 Sum

An example
Figure 2-4.

• JI
on

• Th
wi

• A
co

• A
up

• Th
ex
a c

mary

e showing
In this figu

IRA is the r
ne issue is re
he JIRA ad
ith each RD
TRS serve

orrespondin
TRS client

pdates, then
he TRS clien
xisting data
copy of ever

the relatio
ure:

resource pr
egarded as

daptor conv
DF triple for
er lists all t
ng URIs. JIR

periodicall
n synchroniz
nt sends req
and saves t

rything rece

Figure 2

onships of t

rovider, wh
one resourc

verts the JS
rmatted issu
the resourc

RA uses We
ly sends a H
zes with the
quests with
the respons
eived via the

2-4: JIRA-

the concep

hich saves i
ce.
SON format
ue tagged wi
ces availabl

ebHook to n
HTTP requ
e TRS serve

h each URI
e in the RD
e JIRA adap

-TRS Arch

pts present

ssues in JS

t data to R
ith an URI.
le via a JI

notify TRS s
est to the T

er.
to obtain an

DF triple form
ptor).

hitecture

ted earlier

SON format

RDF triple f

RA adapto
erver about

TRS server

n initial cop
mat data in

is shown i

t. Moreover

format data

r with thei
t changes.
to check fo

py or updat
n Fuseki (i.e

n

r,

a,

ir

or

te
e.,

 A TRS provider for JIRA | 11

3 A TRS provider for JIRA

This chapter introduces as an example application a TRS provider designed and
developed using JIRA. The chapter starts with a description of the installation of
JIRA. This is followed by a description of the design and development of a TRS
server, Base, and ChangeLog. Finally, the chapter ends with a description of the
WebHooks configuration and functional testing of the TRS server and a previously
developed client (see Section 2.5.2).

3.1 Installing and configuring JIRA

JIRA can be installed as an application [26] or run via a software development kit
(SDK) [27]. This project ran JIRA via the SDK with the JIRA Dashboard accessed
via the URI: localhost:2990/jira.

Projects and Issues can be created via the JIRA Dashboard. This process began
by creating a sample project and naming it “TRS”. After JIRA was configured, the
JIRA Adaptor was run.

3.2 TRS server

This project used the Java API for RESTful Web Services (JAX-RS) [28] to create
the TRS web service. TRS server has a root path “/trs”. When a HTTP request is
sent to this root path, the TRS server responses with two kinds of replies:

1. The first response type is {“text/plain", "text/html"} and normally returns a String
"Hello TRS service." when using a web browser to access this root path.

2. The second response type is “OslcMediaType” [29], which includes Turtle,
RDF_XML, XML, JSON, etc. This response type is used to reply to requests from a
TRS client. In this response, a TrackedResourceSet object[30] will be sent to the TRS
client containing the Base and ChangeLog.

The server knows whether a client or web browser is making a request based
upon the request’s header which identified the source of the request.

3.2.1 Base

The first step to create the Base is to use a HTTP GET of issue information from
JIRA using the JIRA REST API. The type of the response is JSON. The API is:

http://localhost:2990/jira/rest/api/latest/search

One JQL query result is limited to at most 1000 results per page. There are two
simple ways to retrieve more query results:

12

1.

2

L

fo
s

la
p

th

2 | A TRS provide

. The first

http:

This
each

2. The se
[17], bu

The nex
List.

A Base s

1. Cu
2. LD
3. Lis
4. Cu
5. Ne

An exam

Accordin
or exampl
aves them

All Base
ast page, it

page is show

* Note th

his functio

r for JIRA

way is to u

//localhost

will set the
query.

econd way is
ut this meth

xt step is to

should hav

urrent Base p
DP container
st of membe

utoffEvent
ext Base pag

mple JIRA-

ng to the T
e, 30 mem
in a HashM

e pages are
t uses “rdf:
wn in Figu

hat we cou

onality.

se a loop wi

t:2990/jira/

starting po

s to modify
hod is not re

o extract th

ve following

page URI
r URI
ers

ge URI

-TRS Base

TRS proto
mbers per
Map, then

e required t
:nil” as the

ure 3-2.

uld not utili

Figu

ith JQL*:

/rest/api/la

oint of the se

the backen
ecommend

he URI of

g five prop

is shown i

ocol [4], a B
page. In
uses the p

to have a “
e next page

ize a next l

ure 3-1: J

atest/search

earch and th

d configura
ed with this

each issue

perties [31]

in Figure 3

Base may
this case,

page numb

“next page
e reference

link in the

IRA-TRS B

h?startAt=0

he number

ation file JIR
s project.

e and then

:

-1.

be broken
one creat

er as the ke

reference”
. An examp

response,

Base

0&maxResul

of results re

RA-config.p

n save thes

n into mult
tes several
key.

”. If a Base
ple of a mu

as JQL do

lts=50

eturned by

properties

e URIs in

tiple pages
Bases an

e page is th
ultiple Bas

oes not hav

a

s;
d

he
se

ve

h
p
m
a

is
in

3

E
C

p
a
is
d

h

Figure 3
has a next p
page refere
members a
and Page 1

The Bas
s no necess
nterval.

.2.2 Cha

Each chang
ChangeLog

Using W
provider wh
about the i
ssue is de

deletion tim

The Cha
has the follo

1. Chan
2. Chan
3. Chan
4. Chan

A Chang

1. Curre
2. List o
3. Previ

An exam

3-2 shows
page refere
nce is “nil”

are saved in
has a Cuto

se should r
sary to reg

angeEvent an

ge that hap
g is a list of

WebHook,
hen an issu
issue such
eleted in J
me, hence t

angeEvent
owing four

ngeEvent typ
ngeEvent UR
ngeEvent or
nged issue U

geLog entr

ent Change
of ChangeEv
ious Change

mple of a JI

a Base wit
ence that p
”. There ar
n Page 1 an

offEvent wh

regenerate
generate Ba

nd ChangeLo

ppens in th
f all Change

 JIRA se
ue has chan

h as id, pro
JIRA, then
the TRS pr

is generat
r propertie

pe: creation
RI
rder
URI

y should h

Log page U
vents
eLog Page U

IRA-TRS C

Figu

th two page
points to P
re totally 5
nd the rem
hich is the

after a cer
ase if there

og

he TRS pro
eEvents.

ends a JS
nged in JIR
oject, crea
n the We

rovider sho

ted based
es [32]:

n, modificat

have the fol

URI

URI

ChangeLog

ure 3-2: M

es: Base_U
Page 2. Pag
0 member

maining 20
URI of the

rtain time,
e is no new

ovider corr

SON-forma
RA. This n
ator, create
bhook not

ould use its

upon the n

tion, or dele

llowing thr

g is shown

Multiple B

URI_1 and
ge 2 is the
rs saved in
0 members
e 50th mem

, for examp
w ChangeE

esponds to

atted notif
otification
ed time, a
tification w

s local time

notification

etion

ree propert

in Figure 3

ase

A TRS pr

d Base_UR
last page,
 the Base:
s are saved

mber.

ple, once p
Event durin

o a Change

fication to
n includes i
and descrip

will not c
e.

n. Each Ch

ties:

3-3.

rovider for JIRA | 1

RI_2. Page
so the nex
the first 30

d in Page 2

per week. I
ng this tim

eEvent. Th

o the TR
informatio
ption. If a
contain th

hangeEven

13

1
xt
0
2,

It
me

he

RS
n
n

he

nt

14

C
C

C
re

C
th
a
th

4 | A TRS provide

The Ch
ChangeLog
ChangeLog

All Cha
ChangeLog
eference.

Figure
ChangeLog
he newest

are saved in
he last pag

r for JIRA

hangeLog
g into sev
gs and save

ngeLog pa
g page is th

3-4 show
g_URI_2. T

30 Change
n Page 2. P
ge, so the p

can be ve
veral sub-C
es them in a

ages are r
he last pag

ws a Chan
There are i
eEvents ar

Page 1 has a
previous pa

Figure 3

Figure

ery large,
ChangeLog
a HashMap

required to
ge, it uses

ngeLog wi
in total 50
re saved in
a previous

age referen

3-3: JIRA

3-4: Mult

hence it
gs. In thi
p, then use

o have a “
s “rdf:nil”

ith two p
0 ChangeEv
n Page 1 an

 page refer
nce is “nil”.

A-TRS Cha

tiple Chan

is necess
is case, o
es the page

“previous p
as the ear

pages: Cha
vents save

nd the earli
rence point

angeLog

ngeLog

sary to se
one create
e number a

page refer
rlier Chang

angeLog_U
ed in the C
iest 20 Ch

nts to Page

egment th
es multipl
as the key.

rence”. If
geLog pag

URI_1 an
hangeLogs
angeEvent
2, Page 2 i

he
le

a
ge

d
s:
ts
is

A TRS provider for JIRA | 15

3.3 Configure WebHooks

Due to a JIRA WebHook limitation, issue modification and issue deletion may send
a similar notification to WebHook, making it hard to distinguish a modification
WebHook from a deletion WebHook. Therefore, we use three WebHooks instead:
creation, modification, and deletion. Table 3-1 shows these WebHooks
configurations.

Table 3-1 WebHooks Configuration

creation http://localhost:8080/jira-trs/services/trs/issues/create

modification http://localhost:8080/jira-trs/services/trs/issues/modify

deletion http://localhost:8080/jirs-trs/services/trs/issues/delete

3.4 Run TRS Client

The TRS client will synchronize with TRS server, then access each resource URI to
obtain an initial copy and save the copy in Triple Store, or otherwise update the
resource according to the ChangeEvent.

3.4.1 Install Fuseki

As described in Section 2.1.4, we have used Apache Fuseki as our triple store. The
process of installing this software begins with downloading and extracting Apache
Jena Fuseki [33] into a local folder.

After installation, we can start this software by starting a command terminal,
going to the Fuseki folder and starting Fuseki with the command “fuseki-server”.
The default URI for Fuseki is localhost:3030. We begin by creating a Persistent
dataset and naming it “TRS”, as shown in Figure 3-5.

16

3

T
c
o
n

6 | A TRS provide

.4.2 Con

The next s
configuratio
of TRS clie
newest vers

The follo

S
W

}

r for JIRA

nfigure and R

step is to
on, and th
ent is not
sion TRS cl

owing SPA

SELECT ?sub
WHERE {

GRAPH ?g
 ?

}
}

F

Run TRS Cli

setup the
en running
attached

lient.

ARQL quer

bject ?predicat

g {
subject ?pred

Figure 3-5:

ient

TRS serv
g the TRS
in this th

ry can be us

te ?object

icate ?object

: Create D

ver and Tr
client. Th
esis, pleas

sed to sear

DataSet in

riple Store
e installati
se check L

rch for data

n Fuseki

e in the T
ion and co

Lyo/TRS [3

a in Fuseki

TRS client’
onfiguratio
34] for th

i:

’s
n

he

3
th

d

3

T
p
B

An exam

“An issu
3-6. The pr
he corresp

Alternat
data in Turt

.5 Sum

This chapte
providers c
Base, Chang

mple query

ue with id
redicates a
onding pro

tively, we c
tle format.

mary

er showed
could follow
geEvent, a

y result is sh

10201” is
are the UR
operty.

can access
. Details ab

an exampl
w a similar

and Change

Figur

hown in Fi

the subjec
RIs of each

the URI h
bout Turtle

le of develo
r architect
eLog.

re 3-6: TR

igure 3-6.

ct for each
h property,

http://local
e format ca

oping a TR
ture and w

RS Query r

h of the res
while the

lhost:3030
an be found

RS provider
workflow to

result

A TRS pr

sults show
 objects ar

0/TRS/dat
d in [35].

r for JIRA.
o build a w

rovider for JIRA | 1

wn in Figur
re values o

a to brows

. Other TR
web service

17

re
of

se

RS
e,

 Proposal and comparison of potential solutions | 19

4 Proposal and comparison of potential solutions

This chapter proposes and compares several potential solutions for this project,
and then selects the most practical one.

Several metrics were considered while comparing and evaluating the potential
solutions:

1. The most significant feature is delay, for the main goal in this project is to
reduce delay of the TRS system. Current TRS systems synchronize every 60
seconds, hence it is necessary to decrease the delay to an acceptable value.
All of technologies discussed in this chapter can realize a real-time
notification system.

2. Another important feature is how the message system is implemented, as
some real-time message systems are pull-based. A pull-based message
system is incompatible with the design of this project, as we expected to use
a push-based architecture.

3. The least important feature, but still interesting feature is extensibility, as in
some scenarios it will be necessary to consider QoS or add authentication
functions.

4.1 Java Remote Method Invocation (RMI)

Java Remote Method Invocation (RMI) would be a straightforward way to
implement a notification function for this project: Using RMI, the TRS server could
directly invoke a method in the TRS client and then the TRS client can send a
request to the TRS server. However, RMI is not an option in this for project for two
reasons:

1) RMI is not really a push technology as the client still needs to send a request
to the TRS server.

2) RMI is not-interoperable across containers as transactions are only
supported among beans in the same container [36].

4.2 Java Message Service (JMS)

The Java Message Service (JMS) is a Java API which allows applications to send
and receive messages. JMS has two message models:

1) Point-to-Point (one to one)

The JMS P2P model is a traditional PULL-based message model whose
structure is shown in Figure 4-1.

20

0 | Proposal and c

A m
deliv
ackn
queu
mess

2) Publ

JMS
show

comparison of pote

message wit
vered to th
nowledgem
ue holds t
sage is rem

lish and Su

S Pub-Sub
wn in Figur

F

Figu

ential solutions

th a destin
he destinat

ment messa
the messa

moved from

ubscribe (P

model is
re 4-2.

Figure 4-1

ure 4-2: J

nation is s
tion. The
age when
age until

m the queue

Pub-Sub) (o

a push-b

1: JMS Po

JMS Publi

sent to a q
destination
it receive

the messa
e.

one to man

ased mess

oint-to-Po

sh-and-Su

queue and
n replies t
es the me
age is con

ny)

sage mode

oint Model

ubscribe M

d then the
to the que

essage; oth
nsumed. F

el whose s

 [28]

Model [28]

message i
eue with a
herwise th
Finally, th

structure i

]

is
n

he
he

is

Proposal and comparison of potential solutions | 21

A message is published to a topic and then all message consumers who have
previously subscribed to this topic will receive a copy of the message. In the
Pub-Sub model, messages are automatically distributed without pulls or
polling.

The JMS Pub-Sub model is a candidate technology for a push-based message
architecture. In this project, using this model enables a TRS server to directly push
serialized ChangeEvents to TRS clients without requiring either a pull or a polling
request from each TRS client.

4.3 Message Queue Telemetry Transport (MQTT)

Message Queue Telemetry Transport (MQTT) is a lightweight Pub-Sub messaging
transport [37]. It has a similar structure to the JMS Pub-Sub model. In an MQTT
message system, a MQTT broker is responsible for a given topic. A publisher sends
a message on this topic to the broker, and then the broker pushes this message to
all the subscribers to this topic. MQTT was specifically designed for machine-to-
machine (M2M) and Internet of Things (IoT) communication.

MQTT has three levels of QoS. Moreover, it offers guaranteed delivery with QoS
levels 1 or 2, which is shown in Table 4-1.

Table 4-1 MQTT QoS level

QoS 0 at most once (unreliable)
QoS 1 at least once
QoS 2 exactly once

The maximum payload size of MQTT is 268,435,455 bytes (i.e., 256 MB) [37],
but MQTT has no long-lived storage function nor does it support message
fragmentation [38]. According to the requirements for this project (stated in
Section 1.4) and the ChangeEvent structure (stated in Section 3.2.2), a MQTT
message is sufficient to encapsulate a ChangeEvent.

4.4 Apache Kafka

Apache Kafka is a distributed streaming platform, which provides good
scalability [39]. Apache Kafka has a similar structure to a Pub-Sub messaging
system, but it is pull-based. Moreover, Apache Kafka provides a log function. A
simple example of this logging is shown in Figure 4-3 [39].

22

d
C
si
w
th
K

4

A
fo

2 | Proposal and c

All mess
data startin
ChangeEve
imply read

would main
he load on

Kafka broke

4.5 Conc

After caref
ollowing re

1) MQT
desig

2) Com
proto

3) One
3.2.2
brok

4) Whe
Altho
pote
keep
paylo

5) MQT
brok
is ne
topic

comparison of pote

sages sent
ng from an
nts in a log
d the Chan
ntain a loc
n the TRS
er.

clusion

ful conside
easons:

TT is push
gn.

mpared with
ocol overh

ChangeEv
2) and it is
ker (as wou

en specifyi
ough this
ntial exten

p a copy of
oad.

TT provid
ker is publi
ecessary to
c.

ential solutions

to a topic
offset. For
g like man
ngEvents s
cal Change

server. Ho

eration, w

h-based, wh

h other can
ead [37], h

vent is a sm
s unnecess
uld be the c

ing QoS l
project ha
nsion for
the payloa

es simple
ic, the anon

o only allow

Figure

c are recor
r this proje

nner (such
saved by A
eLog. This
owever, th

we decided

hich fulfils

ndidates, M
hence the p

mall patch
sary to save
case for Ap

level 1 or
as not impl
future wo

ad until eve

e usernam
nymous us
w the auth

e 4-3: Ap

ded. A me
ect, Apache
as Change

Apache Kaf
local copy

he ChangeL

d to use M

s the desire

MQTT is l
payload-to-

h with only
e a duplica

pache Kafk

r 2, MQT
lemented Q
rk. Theore
ery client h

me/passwor
sers may p
enticated c

pache Kafk

essage cons
e Kafka cou
eLog) and t
fka. In thi
y of the Ch
Log may b

MQTT in

e for a pus

ightweight
-overhead

y has four
ated copy o
a).

TT offers
QoS functi
etically, th
has acknow

rd-based s
publish spa
client to pu

ka Log

sumer can
uld be used
then a TRS
s case, Ap

hangeLog m
be duplica

this proje

sh-based a

t. MQTT h
ratio is go

componen
of the mes

guarantee
ionality, it

he MQTT
wledged re

security. T
am to the b
ublish mes

n read thes
d to save al
S client ca

pache Kafk
may reduc
ted at each

ect, for th

architectur

has a 2-byt
od.

nts (Sectio
ssage in th

ed delivery
t provides
broker wil

eceipt of th

The MQTT
broker, so i
ssage to th

se
ll
n

ka
ce
h

he

re

te

n
he

y.
a
ll

he

T
it

he

Proposal and comparison of potential solutions | 23

6) Most MQTT implementations are open source. Eclipse Moqsuitto is an open
source message broker and Eclipse Paho is an open source MQTT client,
hence is easy to modify this code or to embed MQTT into other projects.

Apache Kafka is designed to support large-scale systems, rather than a single
customer. Because the broker only needs to forward and push ChangeEvents, it is
unnecessary to save any data duplicated in broker. Therefore, Apache Kafka is
overkill for this project.

In other situations or with other TRS providers, other message protocols such
as Advanced Message Queuing Protocol (AMQP) [40], Streaming Text Oriented
Messaging Protocol (STOMP) [41], or even Simple Mail Transfer Protocol (SMTP)
[42] might be considered as replacements for MQTT.

In any case, the proposed push functionality should be designed to be a
replaceable module, thus using MQTT is simply one possible implementation.

5

T
T
C
in

5

G
th
b
s

s
su
m
lo

5

T
T

5 A pus

This chapte
This chapt
ChangeEve
nstallation

5.1 Syste

Given the p
he TRS cli

based upon
erver. The

After a
erialized a
ubscribed

message, th
ocal Chang

5.2 Chan

The Change
The tool use

sh-based

er describe
ter starts
nt serializ

n and config

em Archite

problem sta
ient. After

n the Chan
system’s a

ChangeEv
and sent to

to this top
he client w
geEvent. Th

ngeEvent s

eEvent is
ed to seria

Fig

d TRS sys

es the desig
s by desc
zation and
guration o

ecture

atement in
receiving

geEvent w
architectur

vent is cre
o a specific
pic will rec

will deserial
his Change

erialization

a Java obj
lize each C

gure 5-1:

stem

gn and imp
cribing th

d deserializ
of the MQT

n Section 1.
this Chan

without any
re is shown

eated in th
topic in th

ceive this
lize the M
eEvent will

n and deser

ject, so it
ChangeEve

Push-bas

plementatio
he system
zation, an

TT broker, p

.2, we decid
ngeEvent, t
y extra dat
n in Figure

he TRS se
he MQTT b
serialized
QTT mess
l update th

rialization

must be s
ent is JenaM

sed TRS A

on of a pus
m’s archite

d ends wi
publisher,

ded to pus
the TRS cl
a needing
5-1.

erver, the
broker. An
ChangeEv
age and m

he TRS clie

erialized p
ModelHelp

Architectu

A push-base

sh-based T
ecture, fo
ith details
and subsc

sh the Chan
lient upda
to be sent

ChangeEv
ny TRS clie
vent. After
map the con
ent.

prior to tra
per.

ure

ed TRS system | 2

TRS system
ollowed b
s about th
riber.

ngeEvent t
ates its dat
 to the TR

vent will b
ent who ha

receiving
ntent into

ansmission

25

m.
by
he

to
ta

RS

be
as
a
a

n.

26

5

A
S
sh

w

5

O
th
p
C

u

5

T
th

a
a

6 | A push-based T

.2.1 Ser

As describ
Specifically
hown belo

M
J

This Jen
within a MQ

.2.2 Des

Once the TR
he payloa

properties:
ChangeEve

The TR
updates its

5.3 MQT

This projec
he MQTT p

Paho is
and integra
address and

TRS system

rialization

ed above,
y, we use th
ow:

Model chang
JenaModelH

na-model
QTT messa

serialization

RS client r
ad (i.e., th

“@trs:ord
nt is shown

RS client cr
local conte

TT configu

ct use Mosq
publisher a

used in bo
ated into a
d which top

, ChangeE
he method

geEventJena
elper.create

ChangeEve
age, and th

eceives the
he serializ
der”, “@trs
n in Figure

reates a lo
ent accordi

uration

quitto as th
and MQTT

oth the pub
a Java pro
pic to publ

Figure 5-2

Event seria
d createJen

Model =
eJenaModel(

vent can be
hen sent to

e message
zed Chang
s:changed”
e 5-2.

ocal Chang
ing to this

he MQTT b
T subscribe

blisher and
oject. The u
lish or subs

2: Chang

alization i
naModel to

new Object[

e converte
the MQTT

from the b
geEvent).
”, “@rdf:ty

geEvent w
ChangeEv

broker [43
er. The topi

d subscribe
user only
scribe.

geEvent in

is done b
o serialize

] { changeEv

d to a Stri
T broker.

broker, the
Each Cha

ype”. An ex

with these
vent.

3] and uses
ic is named

er. Paho can
needs to s

n payload

by JenaMo
 the Chang

vent });

ing and en

e first step i
angeEvent
xample of

three prop

s Eclipse P
d “TRS”.

an easily be
set the MQ

odelHelper
geEvent, a

ncapsulate

is to extrac
has thre

a serialize

perties an

Paho [44] a

e embedde
QTT broke

r.
as

d

ct
ee
d

d

as

d
er

A push-based TRS system | 27

This project uses Maven to manage a local repository. Paho can be imported to
the repository with:

<dependencies>
 <dependency>
 <groupId>org.eclipse.paho</groupId>
 <artifactId>org.eclipse.paho.client.mqttv3</artifactId>
 <version>%VERSION%</version>
 </dependency>
</dependencies>

5.3.1 MQTT Broker

Mosquitto is pre-installed in Linux systems. For a Microsoft Windows user, extra
libraries need to be included after installation of Mosquitto. The installation of
these libraries is described in the file readme-windows.txt that is available after
Mosquitto is installed.

5.3.2 MQTT Publisher

The following steps are needed in a program to send a serialized ChangeEvent:

1) Create a MQTT client and connect to TCP port 1883 (this port is reserved for
MQTT). This is done with the following code:

MqttClient client = new MqttClient("tcp://localhost:1883", "TRSServer");

client.connect();

2) Create a MQTT message and set the Jena-model ChangeEvent as the
payload with the following code:

MqttMessage message = new MqttMessage();

message.setPayload(changeEventJenaModel.toString().getBytes());

3) Finally, the application can publish the MQTT message to MQTT broker and
disconnects MQTT client with the following code:

client.publish(“TRS”, message);

client.disconnect();

28 | A push-based TRS system

5.3.3 MQTT Subscriber

For a client to subscribe to and receive published messages from the TRS server, it
needs to integrate the following code:

1) Create a MQTT client and set the MqttCallback.

MqttClient mqttClient = new MqttClient("tcp://localhost:1883",
"TRSClient");

mqttClient.setCallback(new Listener());

2) Connect to the MQTT broker and subscribe the topic.

mqttClient.connect();

mqttClient.subscribe("TRS");

3) Set MqttCallback

MqttCallback is an interface, the messageArrived method is called when a
message arrives [45]. Next, the message is deserialized and mapped into a
local ChangeEvent. This local ChangeEvent must be the same as the original
one in the TRS server.

A method processChangeEvent will be called to process this local
ChangeEvent and update the TRS client. In this case, the TRS client is
synchronized with TRS server.

5.4 Summary

This chapter presented the design and implementation of a prototype of a push-
based TRS architecture where the TRS server pushes a ChangeEvent to the TRS
client. The evaluation details on are given in the next chapter.

Normally, the ChangeEvent order should be designed to use continuously
increasing sequence numbers. In this case, the TRS client should always check the
ChangeEvent to ensure the sequence order of changes are continuous, i.e. without
any loss; otherwise, the TRS client should send a normal request to the TRS server
to synchronize.

 Results and Analysis | 29

6 Results and Analysis

This chapter evaluates the performance of a JIRA-TRS provider and push-based
TRS architecture. We developed a simulator to simulate the operations in JIRA,
specifically: issue creation, modification, and deletion. Then we run this simulator
while the TRS system is running. In this way, we can monitor the synchronization
between TRS Server and TRS client, and calculate cumulative average delay of the
synchronization. Additionally, we developed a validator to check if the data in TRS
client matches the data in JIRA.

The simulation is run on a PC with the following configuration:

CPU: Intel (R) Core i5-4590 CPU@3.30GHz

Memory (RAM): 8.00GB

Operating System: Windows 7 Enterprise 64-bit

JIRA, OSLC adaptor, TRS server, TRS client, Fuseki, and Mosquitto are running
on the same PC. The port settings are shown in Table 6-1.

Table 6-1 Port Setting

Server Port

JIRA 2990

OSLC adaptor 8082

TRS server 8080

Fuseki 3030

Mosquitto 1883

6.1 Simulation

The simulator can create, modify, and delete issues by sending HTTP requests via
the JIRA REST API. The time interval between two operations is randomly selected
within a uniform range.

While the push-based TRS system is running, we run the simulator to create
1000 issues in JIRA and the time intervals are uniformly distributed within the
range from 1 seconds to 360 seconds * . Then we measure the delay of the
synchronization and calculate cumulative moving average delay. The delays of each
experiment are shown in Appendix A, while the cumulative moving average delay is
shown in Figure 6-1.

* This distribution and range have been selected to purposely vary the system usage and does not
reflect the expected usage.

30 | Results and Analysis

Figure 6-1 shows that after a short period of fluctuation, the cumulative average
delay is approaching stable, then it increases with the increasing numbers of issues.
The greater memory usage reduces the server’s speed. The average delay is stable at
around 30 milliseconds. This is a huge improvement compared with the default
TRS system that synchronizes only every 60 seconds.

According to the experiment results, the maximum delay is 127 ms and the
minimal delay is less than 1 ms. The distribution of delays is plotted in Figure 6-2.

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

Cu
m

ul
at

iv
e

M
ov

in
g A

ve
ra

ge
 D

el
ay

 (m
s)

Issue Amount

Figure 6-1: Experiment Results

0

0.002

0.004

0.006

0.008

0.01

0 20 40 60 80 100 120 140

Pr
ob

ab
ili

ty

Delay (ms)

Figure 6-2: Distribution of Delays

Results and Analysis | 31

6.2 Validation

The validation consists of three steps:

1) Read issues from JIRA in JSON format, then save these issues in HashMap
1.

2) Read issues from Fuseki and convert them to JSON format and save them in
HashMap 2.

3) Compare data with the same id between the two HashMaps. Given that all
issues in each HashMap use the issue id as their key we can simply iterate
through the range of sequence numbers and use them as an id and then
compare the JSON objects retrieved from the two HashMaps. If the JSON
objects have the same values, then the data matches.

The simulator was run for 40 hours and the time intervals were selected from 1
seconds to 120 seconds, which supposed to execute one operation per minute. The
JIRA operations are randomly selected from creation, modification, and deletion.
There was a total of 410 issues processed during the simulation.

We validated these 410 issues after the completion of the simulation. We found
that all of the data in Fuseki matched the data in JIRA. Thus, there is no data loss
during the TRS system synchronization and data transmission.

6.3 Discussion

Based on the simulation and validation, this prototype of push-based TRS
architecture fulfils the requirements stated in Section 1.4 on page 3. JIRA-TRS
provides JIRA data in RDF format and the TRS client synchronizes with the TRS
Server in real-time with the help of MQTT with an average delay of roughly
30 milliseconds.

This project used MQTT as a message system to push serialized ChangeEvents
to the TRS client. The TRS client updates its content without requiring any pull
requests being sent to the TRS server.

The TRS system no longer uses the pull method for synchronization, the TRS
client catches up with TRS server after each change is made in data source. The
system delay depends only on server load and network state (hence the delay will
increase with network congestion).

This project uses JIRA as the data source. JIRA provides a REST API and
WebHook function, which is convenient to implement an OSLC adaptor and push
function. When the data source does not provide a REST API or WebHook, the TRS
server could use a database listener to monitor changes in the database and
generate TRS data.

ChangeEvent serialization is done automatically by JenaModelHelper. While
deserializing the MQTT payload and mapping to a local ChangeEvent, the user

32 | Results and Analysis

needs to modify the deserializer to read correct data format according to the
ChangeEvent content (which is shown in Chapter 5.2.2), especially the time format,
for the data resource, TRS server, and TRS client may be located in different time
zones and may use different time formats, and the TRS client read the time as a
String input, therefore it is necessary to convert all timestamps to a common time
format and time base, for example, yyyy-mm-dd’T’hh:mm:ss.SSS’Z’ [46].

 Conclusions and Future work | 33

7 Conclusions and Future work

This chapter includes the conclusion of the project and propose the future works.

7.1 Conclusions

This thesis project designed, implemented, and evaluated a prototype push-based
TRS architecture and developed a TRS provider for JIRA, which meets the purpose
and goals discussed in Chapter 1.

By using a push-based TRS architecture, a TRS client updates its content
immediately when changes are made and received via the OSLC adaptor. Thus,
reducing server load and reducing network traffic, for there are no synchronization
request sent to the server and only the ChangEvent are transmitted via the
network.

With the development of JIRA-TRS provider, JIRA may have a TRS adaptor to
share data with other tools or software which also follow TRS standard*. For
example, JIRA may share data with Bugzilla with the help of TRS.

7.2 Limitations

This project encountered several limitations during the development of the
prototype:

1) This push-based TRS architecture is designed for JIRA based upon a case
study at Scania, hence it may not support other specific scenarios.

2) The amount of data and experimentation in this project is limited. This
push-based TRS architecture needs to be tested with other tools and TRS
providers as described in [47].

3) According to the TRS standard [4], the ChangeEvent order may not be a
continuous positive integer. As a result, the TRS client cannot know if a
ChangeEvent was lost simply by considering the order of ChangeEvents.

4) There was no experiment or investigation of how QoS and network
conditions would affect such a push-based TRS system. For actual
production use it would be necessary to implement guaranteed MQTT
message delivery.

* There are already many tools used within Scania that use TRS. However, information about these
tools is not relevant to this thesis.

34 | Conclusions and Future work

7.3 Future work

Due to the limited scope of this project and the limitations described above, several
things could be (and should be) done in future work, specifically:

1) Consider a specific situation such as a burst of changes happen in JIRA. Due
to the network’s state, it might be difficult to guarantee that the
ChangeEvents arrive at the TRS client in order.

One possible solution is to check the order of ChangeEvents. If the order of
ChangeEvents are not continuous and monotonically increasing, then the
TRS client would need to send a normal request to the TRS server. However,
as noted earlier this is not in keeping with the TRS protocol, as the order of
changes are not required to be continuous.

Another possible solution is to implement a buffer or waiting time for the
TRS server. For example, when a change is made in JIRA, the TRS server
might wait 2 seconds and then send the ChangeEvent to TRS client. If
another change happens, then the TRS server would refresh this 2 second
wait timer, and then send two ChangeEvents in one message. Encapsulating
several continuous ChangeEvents in one MQTT message would guarantee
ordered ChangeEvents.

2) Add an authentication function to MQTT, as the current implementation is
insecure. Currently, everyone can publish messages to MQTT broker, thus
may cause an error in the TRS client.

3) Implement MQTT’s reconnection or payload retransmission function in the
TRS client. Given this implementation, test how QoS and network
conditions affect the entire system.

4) The ChangEvent order may be not continuous. Therefore, although a given
choice of QoS level may provide guaranteed message delivery, the TRS client
still does not know if the ChangeEvents are the correct ones. Therefore, it is
necessary to investigate how to valid ChangeEvents.

5) Add Java Synchronization or Locks in the TRS server. The current project
only considers a single TRS server and client pair. While in other scenarios it
would be necessary or desirable to implement a multithreaded and
multiuser system. In such a case, it would be necessary to use
synchronization mechanisms and locks.

7.4 Required Reflections

This project’s prototype push-based TRS architecture realized a greatly reduced
delay in comparison with original TRS architecture. This should have an economic
and social impact as is speeds up the process or addresses issues that have been
found. As the issues being tracking in this industrial setting concern vehicles, some

Conclusions and Future work | 35

of these issues can be safety critical, hence facilitating these issues being addressed
can have a major impact on society.

Any company, researcher, or academic who wants to share data or integrate
software via a protocol, Linked-Data based OSLC specification could be a potential
user of the results of this project. Additionally, as an open source project, OSLC
needs continuous work and contributions to maintain and promote it. To expand
the implementation of Linked Data and OSLC, additional OSLC adaptors and TRS
providers for other tools need to be developed.

The implementation of TRS server for JIRA is an example of developing TRS
provider and an extension of the OSLC specification. This design and
implementation should encourage others to create TRS providers.

As a research project concerning OSLC [25], this project improves the
performance of OSLC tool-chain integration and data sharing. Moreover, such a
push-based TRS architecture could be part of the next-version TRS protocol.

 References | 37

References

[1] F. Loiret, “ASSUME: Affordable Safe & Secure Mobility Evolution,” KTH |
ASSUME, 17-Jun-2016. [Online]. Available:
https://www.kth.se/en/itm/inst/mmk/forskning/forskningsenheter/mekatro
nik/modellbaserad-metodik/assume-1.596730.

[2] T. Berners-Lee, “Linked Data - Design Issues,” 18-Jun-2009. [Online].
Available: https://www.w3.org/DesignIssues/LinkedData.html.

[3] OSLC, “What is OSLC?,” OSLC. [Online]. Available: http://open-
services.net/resources/tutorials/oslc-primer/what-is-oslc/.

[4] S. Speicher, F. Budinsky, and V. Garg, “TrackedResourceSet 2.0,” OSLC, 28-
Jan-2015. [Online]. Available: http://open-
services.net/wiki/core/TrackedResourceSet-2.0/.

[5] bugzilla.org contributors, “What is Bugzilla?,” Bugzilla, 27-Feb-2015.
[Online]. Available: https://www.bugzilla.org/about/.

[6] OSLC, “Running the example applications - Integrating products with OSLC -
Open Services for Lifecycle Collaboration,” OSLC. [Online]. Available:
http://open-services.net/resources/tutorials/integrating-products-with-
oslc/running-the-examples/.

[7] OASIS, “[OSLCCORE-72] TRS should support push-based notification,”
OASIS Technical Committees Issue Tracker, 04/Aug/16 2:55 PM. [Online].
Available: https://issues.oasis-open.org/browse/OSLCCORE-
72?jql=project%20%3D%20OSLCCORE%20AND%20resolution%20%3D%2
0Unresolved%20AND%20issuetype%20%3D%20Improvement%20ORDER%
20BY%20priority%20DESC.

[8] J. Munir, “Information Integration Using a Linked Data Approach,” Master's
thesis, KTH, School of Information and Communication Technology (ICT),
TRITA-ICT-EX/2015:243, 2015.

[9] OASIS, “Meetings/Telecon2016.06.09,” OASIS, 09-Jun-2016. [Online].
Available: https://wiki.oasis-open.org/oslc-
core/Meetings/Telecon2016.06.09.

[10] OASIS, “[OSLCCORE-86] Provide TRS consumers with an efficient means of
accessing tracked resources,” OASIS Technical Committees Issue Tracker,
02/Feb/17 6:44 PM. [Online]. Available: https://issues.oasis-
open.org/browse/OSLCCORE-86.

[11] B. McBride, G. Klyne, and J. J. Carroll, “Resource Description Framework
(RDF): Concepts and Abstract Syntax,” W3C, 10-Feb-2004. [Online].
Available: https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

[12] Apache Software Foundation, “Fuseki: serving RDF data over HTTP,” Apache
Jena. [Online]. Available:
https://jena.apache.org/documentation/serving_data/.

[13] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language for RDF,”
W3C, 15-Jan-2008. [Online]. Available: https://www.w3.org/TR/rdf-sparql-
query/.

[14] ECMA, “JSON,” Ecma International, Oct-2013. [Online]. Available:
http://www.json.org/.

[15] Atlassian, “JIRA Software - Features,” Atlassian Software. [Online].
Available: https://www.atlassian.com/software/jira/features.

38 | References

[16] Atlassian, “JIRA REST API Version 2 Tutorial,” Atlassian Developers.
[Online]. Available: https://developer.atlassian.com/jiradev/jira-apis/jira-
rest-apis/jira-rest-api-tutorials/jira-rest-api-version-2-tutorial.

[17] Atlassian, “Search JIRA like a boss with JQL,” Atlassian Documentation.
[Online]. Available:
https://confluence.atlassian.com/jiracore/blog/2015/07/search-jira-like-a-
boss-with-jql.

[18] T. Davis, “What is a WebHook?,” Web Hooks. [Online]. Available:
https://webhooks.pbworks.com/w/page/13385124/FrontPage.

[19] Atlassian, “Webhooks,” Atlassian Developers. [Online]. Available:
https://developer.atlassian.com/jiradev/jira-apis/webhooks.

[20] S. Speicher, “Open Services for Lifecycle Collaboration Change Management
Specification Version 2.0,” OSLC, 03-Oct-2013. [Online]. Available:
http://open-services.net/bin/view/Main/CmSpecificationV2.

[21] IBM, “Indexing your data with the Lifecycle Query Engine (LQE),” IBM
Knowledge Center. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/SS2L6K_4.0.5/com.ib
m.team.jis.lqe.doc/topics/c_lqe.html.

[22] “Jad El-Khoury,” KTH. [Online]. Available:
https://www.kth.se/en/itm/inst/mmk/medarbetare/medarbetare-mda/jad-
el-khoury-1.57926. [Accessed: 06-Aug-2017].

[23] “Andrii Berezovskyi,” KTH. [Online]. Available:
https://www.kth.se/en/itm/inst/mmk/medarbetare/medarbetare-
mda/andrii-berezovskyi-1.639290.

[24] OSLC, “JenaModelHelper (oslc4j-core-build 1.0 API),” Eclipse. [Online].
Available:
http://download.eclipse.org/lyo/docs/1.0/apidocs/org/eclipse/lyo/oslc4j/pr
ovider/jena/JenaModelHelper.html.

[25] OSLC, “Eclipse Lyo - Enabling Tool Integration with OSLC,” Eclipse Lyo.
[Online]. Available: http://www.eclipse.org/lyo/.

[26] Atlassian, “Installing JIRA applications on Windows - Atlassian
Documentation,” Atlassian Documentation. [Online]. Available:
https://confluence.atlassian.com/adminjiraserver073/installing-jira-
applications-on-windows-861253024.html.

[27] Atlassian, “Getting Started,” Atlassian Developers, 04-Dec-2015. [Online].
Available: https://developer.atlassian.com/docs/getting-started.

[28] O. Oracle, “What Are RESTful Web Services?,” Java Platform, Enterprise
Edition: The Java EE Tutorial. [Online]. Available:
https://docs.oracle.com/javaee/7/tutorial/jaxrs001.htm#GIJQY.

[29] OSLC, “OslcMediaType (OSLC4J Build 2.1.2 API),” Eclipse. [Online].
Available:
http://download.eclipse.org/lyo/docs/core/2.1.2/org/eclipse/lyo/oslc4j/core
/model/OslcMediaType.html.

[30] IBM, “TrackedResourceSet (OSLC4J Build 2.1.2 API),” Eclipse. [Online].
Available:
http://download.eclipse.org/lyo/docs/core/2.1.2/org/eclipse/lyo/core/trs/Tr
ackedResourceSet.html.

References | 39

[31] IBM, “Base (OSLC4J Build 2.1.2 API),” Eclipse. [Online]. Available:
http://download.eclipse.org/lyo/docs/core/2.1.2/org/eclipse/lyo/core/trs/Ba
se.html.

[32] IBM, “ChangeLog (OSLC4J Build 2.1.2 API),” Eclipse. [Online]. Available:
http://download.eclipse.org/lyo/docs/core/2.1.2/org/eclipse/lyo/core/trs/C
hangeLog.html.

[33] Apache Software Foundation, “Apache Jena Fuseki,” Apache Jena. [Online].
Available: https://jena.apache.org/documentation/fuseki2/.

[34] Eclipse Foundation, “Lyo/TRSReferenceApplication.” [Online]. Available:
https://wiki.eclipse.org/Lyo/TRSReferenceApplication.

[35] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers, “RDF 1.1
Turtle,” W3C, 25-Feb-2014. [Online]. Available:
https://www.w3.org/TR/turtle/.

[36] Oracle, “J2EE Interoperability,” Oracle. [Online]. Available:
https://docs.oracle.com/cd/B14099_19/web.1012/b14012/interop.htm.

[37] OASIS, “MQTT Version 3.1.1,” OASIS, 29-Oct-2014. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[38] C. Fernando, “Comparison of asynchronous messaging technologies with
JMS, AMQP and MQTT,” Medium, 12-Mar-2016. [Online]. Available:
https://medium.com/@chanakaudaya/comparison-of-asynchronous-
messaging-technologies-with-jms-amqp-and-mqtt-4f1bc21c26c5.

[39] Apache Software Foundation, “Apache Kafka: A Distributed Streaming
Platform.,” Apache Kafka. [Online]. Available:
https://kafka.apache.org/intro.html.

[40] OASIS, “AMQP: Advanced Message Queuing Protocol.” [Online]. Available:
https://www.amqp.org/.

[41] “STOMP: The Simple Text Oriented Messaging Protocol,” STOMP. [Online].
Available: https://stomp.github.io/.

[42] P. Hoffman, “SMTP Service Extension for Secure SMTP over Transport Layer
Security,” Feb-2002. [Online]. Available: https://tools.ietf.org/html/rfc3207.

[43] R. A. Light, “Mosquitto: server and client implementation of the MQTT
protocol,” J. Open Source Softw., vol. 2, no. 13, May 2017.

[44] Eclipse Foundation, “Eclipse Paho Java Client,” Eclipse Paho. [Online].
Available: https://eclipse.org/paho/clients/java/#.

[45] Eclipse Foundation, “MqttCallback,” Eclipse. [Online]. Available:
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3
/MqttCallback.html.

[46] Oracle, “DateTimeFormatter,” Oracle. [Online]. Available:
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFor
matter.html.

[47] OSLC, “Integrating products with OSLC - Open Services for Lifecycle
Collaboration,” OSLC. [Online]. Available: http://open-
services.net/resources/tutorials/integrating-products-with-oslc/.

 Appendix A: Experimental Results | 41

Appendix A: Experimental Results

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

1 31 31.000 46 80 25.586 91 1 25.208
2 1 16.000 47 16 25.382 92 75 25.750
3 1 11.000 48 91 26.750 93 1 25.483
4 0 8.250 49 1 26.224 94 1 25.223
5 1 6.800 50 1 25.720 95 1 24.968
6 1 5.833 51 1 25.235 96 49 25.218
7 1 5.142 52 1 24.769 97 1 24.969
8 0 4.500 53 0 24.301 98 16 24.877
9 1 4.111 54 1 23.870 99 0 24.626

10 63 10.000 55 111 25.454 100 90 25.280
11 1 9.181 56 1 25.017 101 80 25.821
12 0 8.416 57 1 24.596 102 1 25.578
13 16 9.000 58 64 25.275 103 0 25.330
14 1 8.428 59 1 24.864 104 1 25.096
15 0 7.866 60 95 26.033 105 1 24.866
16 96 13.375 61 0 25.606 106 1 24.641
17 1 12.647 62 79 26.467 107 0 24.411
18 1 12.000 63 96 27.571 108 95 25.064
19 1 11.421 64 79 28.375 109 0 24.834
20 1 10.900 65 1 27.953 110 0 24.609
21 95 14.904 66 95 28.969 111 82 25.126
22 0 14.227 67 0 28.537 112 0 24.901
23 80 17.086 68 1 28.132 113 1 24.690
24 79 19.666 69 1 27.739 114 81 25.184
25 0 18.880 70 103 28.814 115 1 24.973
26 1 18.192 71 1 28.422 116 1 24.767
27 0 17.518 72 1 28.041 117 0 24.555
28 126 21.392 73 0 27.657 118 1 24.355
29 0 20.655 74 95 28.567 119 1 24.159
30 1 20.000 75 1 28.200 120 0 23.958
31 65 21.451 76 15 28.026 121 1 23.768
32 1 20.812 77 1 27.675 122 1 23.581
33 79 22.575 78 80 28.346 123 0 23.390
34 1 21.941 79 0 27.987 124 112 24.104
35 0 21.314 80 1 27.650 125 1 23.920
36 1 20.750 81 75 28.234 126 0 23.730
37 127 23.621 82 0 27.890 127 80 24.173
38 1 23.026 83 1 27.566 128 0 23.984
39 106 25.153 84 0 27.238 129 1 23.806
40 0 24.525 85 1 26.929 130 63 24.107
41 1 23.951 86 1 26.627 131 15 24.038
42 1 23.404 87 1 26.333 132 1 23.863
43 1 22.883 88 1 26.045 133 15 23.796
44 112 24.909 89 0 25.752 134 1 23.626
45 1 24.377 90 1 25.477 135 1 23.459

42 | Appendix A: Experimental Results

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

136 65 23.764 183 1 26.420 230 1 26.791
137 1 23.598 184 79 26.706 231 96 27.090
138 1 23.434 185 112 27.167 232 94 27.379
139 48 23.611 186 1 27.026 233 0 27.261
140 79 24.007 187 1 26.887 234 111 27.619
141 0 23.836 188 16 26.829 235 1 27.506
142 1 23.676 189 118 27.312 236 1 27.394
143 80 24.069 190 1 27.173 237 0 27.278
144 80 24.458 191 0 27.031 238 0 27.163
145 96 24.951 192 1 26.895 239 1 27.054
146 1 24.787 193 0 26.756 240 15 27.004
147 0 24.619 194 96 27.113 241 1 26.896
148 1 24.459 195 64 27.302 242 1 26.789
149 96 24.939 196 0 27.163 243 79 27.004
150 81 25.313 197 6 27.055 244 17 26.963
151 1 25.152 198 1 26.924 245 80 27.179
152 79 25.506 199 11 26.844 246 1 27.073
153 1 25.346 200 48 26.950 247 1 26.967
154 64 25.597 201 8 26.855 248 1 26.862
155 75 25.916 202 111 27.272 249 86 27.100
156 80 26.262 203 6 27.167 250 1 26.996
157 96 26.707 204 1 27.039 251 74 27.183
158 64 26.943 205 80 27.297 252 1 27.079
159 1 26.779 206 80 27.553 253 0 26.972
160 1 26.618 207 1 27.425 254 95 27.240
161 1 26.459 208 127 27.903 255 0 27.133
162 1 26.302 209 1 27.775 256 80 27.339
163 79 26.625 210 1 27.647 257 0 27.233
164 0 26.463 211 1 27.521 258 1 27.131
165 80 26.787 212 1 27.396 259 1 27.030
166 5 26.656 213 1 27.272 260 86 27.257
167 0 26.497 214 0 27.144 261 1 27.157
168 101 26.940 215 13 27.079 262 1 27.057
169 9 26.834 216 1 26.958 263 111 27.376
170 96 27.241 217 1 26.838 264 70 27.537
171 0 27.081 218 72 27.045 265 95 27.792
172 1 26.930 219 1 26.926 266 1 27.691
173 95 27.323 220 1 26.809 267 1 27.591
174 64 27.534 221 110 27.185 268 7 27.514
175 8 27.422 222 1 27.067 269 1 27.416
176 7 27.306 223 1 26.950 270 1 27.318
177 1 27.158 224 1 26.834 271 0 27.217
178 1 27.011 225 1 26.720 272 1 27.121
179 1 26.865 226 111 27.092 273 1 27.025
180 0 26.716 227 1 26.977 274 1 26.930
181 24 26.701 228 36 27.017 275 1 26.836
182 1 26.560 229 1 26.903 276 1 26.742

Appendix A: Experimental Results | 43

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

277 1 26.649 324 0 27.925 371 1 27.978
278 0 26.553 325 1 27.843 372 1 27.905
279 11 26.498 326 80 28.003 373 1 27.833
280 80 26.689 327 1 27.920 374 1 27.762
281 0 26.594 328 0 27.835 375 1 27.690
282 16 26.556 329 64 27.945 376 80 27.829
283 1 26.466 330 85 28.118 377 94 28.005
284 95 26.707 331 1 28.036 378 1 27.933
285 80 26.894 332 1 27.954 379 1 27.862
286 96 27.136 333 1 27.873 380 0 27.789
287 1 27.045 334 1 27.793 381 1 27.719
288 2 26.958 335 1 27.713 382 1 27.649
289 9 26.896 336 0 27.630 383 1 27.579
290 110 27.182 337 92 27.821 384 1 27.510
291 8 27.116 338 95 28.020 385 0 27.438
292 1 27.027 339 95 28.218 386 1 27.370
293 1 26.938 340 0 28.135 387 95 27.545
294 3 26.857 341 1 28.055 388 90 27.706
295 27 26.857 342 16 28.020 389 1 27.637
296 65 26.986 343 0 27.938 390 1 27.569
297 1 26.898 344 1 27.860 391 94 27.739
298 22 26.882 345 1 27.782 392 1 27.670
299 111 27.163 346 0 27.702 393 1 27.603
300 1 27.076 347 1 27.625 394 1 27.535
301 1 26.990 348 1 27.548 395 1 27.468
302 90 27.198 349 0 27.469 396 1 27.401
303 112 27.478 350 0 27.391 397 1 27.335
304 104 27.730 351 1 27.316 398 80 27.467
305 1 27.642 352 90 27.494 399 1 27.401
306 3 27.562 353 104 27.711 400 96 27.572
307 5 27.488 354 1 27.635 401 1 27.506
308 6 27.418 355 1 27.560 402 0 27.437
309 1 27.333 356 1 27.485 403 1 27.372
310 1 27.248 357 0 27.408 404 80 27.502
311 111 27.517 358 96 27.600 405 1 27.437
312 96 27.737 359 1 27.526 406 95 27.603
313 95 27.952 360 0 27.450 407 1 27.538
314 1 27.866 361 65 27.554 408 96 27.705
315 1 27.780 362 95 27.740 409 1 27.640
316 95 27.993 363 1 27.666 410 90 27.792
317 0 27.905 364 0 27.590 411 1 27.727
318 1 27.820 365 111 27.819 412 33 27.740
319 111 28.081 366 0 27.743 413 1 27.675
320 1 27.996 367 95 27.926 414 17 27.649
321 0 27.909 368 1 27.853 415 0 27.583
322 88 28.096 369 33 27.867 416 1 27.519
323 1 28.012 370 96 28.051 417 1 27.455

44 | Appendix A: Experimental Results

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

418 1 27.392 465 1 27.578 512 1 28.138
419 75 27.505 466 15 27.551 513 1 28.085
420 105 27.690 467 0 27.492 514 0 28.031
421 10 27.648 468 111 27.670 515 80 28.132
422 1 27.585 469 0 27.611 516 95 28.261
423 1 27.522 470 80 27.723 517 1 28.208
424 1 27.459 471 90 27.855 518 95 28.337
425 1 27.397 472 1 27.798 519 127 28.527
426 94 27.553 473 111 27.974 520 1 28.475
427 91 27.702 474 1 27.917 521 1 28.422
428 0 27.637 475 74 28.014 522 80 28.521
429 1 27.575 476 0 27.955 523 0 28.466
430 1 27.513 477 1 27.899 524 1 28.414
431 0 27.450 478 106 28.062 525 0 28.360
432 105 27.629 479 1 28.006 526 1 28.307
433 89 27.771 480 75 28.104 527 0 28.254
434 1 27.709 481 1 28.047 528 96 28.382
435 80 27.829 482 1 27.991 529 1 28.330
436 1 27.768 483 0 27.933 530 1 28.279
437 1 27.707 484 1 27.878 531 49 28.318
438 1 27.646 485 1 27.822 532 0 28.265
439 1 27.585 486 1 27.767 533 95 28.390
440 0 27.522 487 1 27.712 534 0 28.337
441 15 27.494 488 1 27.657 535 96 28.463
442 0 27.432 489 0 27.601 536 0 28.410
443 1 27.372 490 1 27.546 537 0 28.357
444 95 27.524 491 95 27.684 538 1 28.306
445 1 27.465 492 1 27.630 539 0 28.254
446 0 27.403 493 1 27.576 540 0 28.201
447 0 27.342 494 0 27.520 541 15 28.177
448 80 27.459 495 80 27.626 542 1 28.127
449 1 27.400 496 97 27.766 543 1 28.077
450 0 27.340 497 75 27.861 544 6 28.036
451 49 27.388 498 95 27.995 545 1 27.987
452 1 27.329 499 89 28.118 546 80 28.082
453 80 27.445 500 94 28.250 547 0 28.031
454 79 27.559 501 1 28.195 548 1 27.981
455 1 27.501 502 1 28.141 549 1 27.932
456 65 27.583 503 1 28.087 550 1 27.883
457 66 27.667 504 90 28.210 551 1 27.834
458 96 27.816 505 1 28.156 552 1 27.786
459 80 27.930 506 0 28.100 553 66 27.855
460 1 27.871 507 1 28.047 554 0 27.805
461 1 27.813 508 89 28.167 555 64 27.870
462 0 27.753 509 80 28.269 556 1 27.821
463 1 27.695 510 1 28.215 557 65 27.888
464 0 27.635 511 16 28.191 558 64 27.953

Appendix A: Experimental Results | 45

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

559 1 27.905 606 0 28.389 653 95 28.719
560 1 27.857 607 80 28.474 654 6 28.685
561 111 28.005 608 80 28.559 655 15 28.664
562 0 27.955 609 1 28.513 656 1 28.621
563 45 27.985 610 79 28.596 657 0 28.578
564 1 27.937 611 111 28.731 658 49 28.609
565 80 28.030 612 0 28.684 659 1 28.567
566 92 28.143 613 1 28.639 660 1 28.525
567 0 28.093 614 1 28.594 661 0 28.482
568 1 28.045 615 96 28.704 662 1 28.441
569 1 27.998 616 82 28.790 663 96 28.542
570 1 27.950 617 1 28.745 664 0 28.500
571 111 28.096 618 80 28.828 665 1 28.458
572 96 28.215 619 0 28.781 666 0 28.415
573 95 28.331 620 96 28.890 667 1 28.374
574 118 28.487 621 1 28.845 668 1 28.333
575 80 28.577 622 1 28.800 669 1 28.292
576 1 28.529 623 0 28.754 670 96 28.394
577 1 28.481 624 0 28.708 671 110 28.515
578 80 28.570 625 16 28.688 672 49 28.546
579 125 28.737 626 110 28.817 673 1 28.505
580 1 28.689 627 95 28.923 674 1 28.464
581 79 28.776 628 1 28.878 675 0 28.422
582 112 28.919 629 1 28.834 676 1 28.381
583 1 28.871 630 1 28.790 677 80 28.457
584 0 28.821 631 1 28.746 678 0 28.415
585 1 28.774 632 4 28.707 679 110 28.536
586 1 28.726 633 1 28.663 680 80 28.611
587 16 28.705 634 1 28.619 681 1 28.571
588 0 28.656 635 0 28.574 682 80 28.646
589 80 28.743 636 0 28.529 683 0 28.604
590 0 28.694 637 1 28.486 684 1 28.564
591 1 28.648 638 1 28.443 685 1 28.524
592 1 28.601 639 110 28.571 686 80 28.599
593 0 28.553 640 1 28.528 687 96 28.697
594 1 28.506 641 96 28.633 688 0 28.655
595 80 28.593 642 110 28.760 689 1 28.615
596 1 28.546 643 1 28.716 690 111 28.734
597 74 28.623 644 0 28.672 691 1 28.694
598 1 28.576 645 1 28.629 692 1 28.654
599 0 28.529 646 80 28.708 693 86 28.737
600 1 28.483 647 100 28.819 694 1 28.697
601 1 28.437 648 1 28.776 695 95 28.792
602 1 28.392 649 0 28.731 696 0 28.751
603 0 28.344 650 11 28.704 697 1 28.711
604 0 28.298 651 0 28.660 698 80 28.785
605 112 28.436 652 1 28.618 699 1 28.745

46 | Appendix A: Experimental Results

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

700 80 28.818 747 1 29.186 794 80 29.727
701 0 28.777 748 1 29.148 795 0 29.690
702 95 28.871 749 90 29.229 796 81 29.755
703 0 28.830 750 110 29.337 797 4 29.722
704 127 28.970 751 1 29.299 798 0 29.685
705 80 29.042 752 1 29.261 799 0 29.648
706 111 29.158 753 74 29.321 800 0 29.611
707 88 29.241 754 1 29.283 801 89 29.685
708 1 29.201 755 105 29.384 802 1 29.649
709 1 29.162 756 1 29.346 803 96 29.732
710 1 29.122 757 104 29.445 804 104 29.824
711 1 29.082 758 0 29.406 805 80 29.886
712 1 29.043 759 16 29.388 806 75 29.942
713 4 29.008 760 1 29.351 807 6 29.913
714 1 28.969 761 64 29.396 808 1 29.877
715 2 28.931 762 49 29.422 809 1 29.841
716 1 28.892 763 7 29.393 810 0 29.804
717 48 28.919 764 95 29.479 811 1 29.769
718 0 28.878 765 0 29.440 812 110 29.868
719 1 28.840 766 1 29.403 813 1 29.832
720 1 28.801 767 13 29.382 814 95 29.912
721 96 28.894 768 1 29.345 815 1 29.877
722 96 28.987 769 1 29.308 816 1 29.841
723 110 29.099 770 80 29.374 817 0 29.805
724 81 29.171 771 1 29.337 818 0 29.768
725 96 29.263 772 1 29.300 819 1 29.733
726 1 29.224 773 64 29.345 820 95 29.813
727 1 29.185 774 96 29.431 821 1 29.778
728 74 29.247 775 1 29.394 822 97 29.860
729 1 29.208 776 1 29.358 823 1 29.825
730 1 29.169 777 95 29.442 824 1 29.790
731 1 29.131 778 1 29.406 825 0 29.753
732 104 29.233 779 1 29.369 826 0 29.717
733 1 29.195 780 4 29.337 827 89 29.789
734 95 29.284 781 106 29.435 828 0 29.753
735 75 29.346 782 1 29.398 829 15 29.735
736 49 29.373 783 95 29.482 830 105 29.826
737 1 29.335 784 4 29.450 831 1 29.791
738 1 29.296 785 90 29.527 832 88 29.861
739 1 29.258 786 0 29.489 833 1 29.827
740 1 29.220 787 80 29.554 834 90 29.899
741 1 29.182 788 1 29.517 835 95 29.977
742 1 29.144 789 96 29.602 836 1 29.942
743 80 29.212 790 0 29.564 837 0 29.906
744 0 29.173 791 89 29.639 838 74 29.959
745 1 29.135 792 0 29.602 839 0 29.923
746 95 29.223 793 79 29.664 840 105 30.013

Appendix A: Experimental Results | 47

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

841 95 30.090 888 0 29.891 935 111 29.695
842 1 30.055 889 80 29.948 936 95 29.764
843 75 30.109 890 1 29.915 937 0 29.733
844 110 30.203 891 1 29.883 938 89 29.796
845 94 30.279 892 1 29.850 939 1 29.765
846 1 30.244 893 1 29.818 940 80 29.819
847 1 30.210 894 0 29.785 941 64 29.855
848 75 30.262 895 1 29.753 942 111 29.941
849 80 30.321 896 89 29.819 943 90 30.005
850 15 30.303 897 1 29.787 944 111 30.091
851 1 30.269 898 1 29.755 945 1 30.060
852 1 30.234 899 80 29.810 946 0 30.028
853 0 30.199 900 74 29.860 947 9 30.006
854 1 30.165 901 1 29.827 948 96 30.075
855 85 30.229 902 0 29.794 949 96 30.145
856 1 30.195 903 1 29.763 950 1 30.114
857 0 30.159 904 0 29.730 951 0 30.083
858 80 30.217 905 16 29.714 952 95 30.151
859 74 30.268 906 1 29.683 953 1 30.120
860 1 30.234 907 1 29.651 954 0 30.089
861 1 30.200 908 0 29.618 955 1 30.058
862 5 30.171 909 95 29.690 956 75 30.105
863 1 30.137 910 1 29.659 957 1 30.075
864 1 30.104 911 94 29.729 958 64 30.110
865 0 30.069 912 1 29.698 959 1 30.080
866 1 30.035 913 1 29.667 960 79 30.131
867 80 30.093 914 1 29.635 961 1 30.100
868 1 30.059 915 1 29.604 962 16 30.086
869 15 30.042 916 1 29.573 963 64 30.121
870 1 30.009 917 1 29.541 964 66 30.158
871 1 29.975 918 15 29.526 965 1 30.128
872 63 30.013 919 1 29.495 966 1 30.098
873 1 29.980 920 1 29.464 967 1 30.068
874 1 29.947 921 1 29.433 968 1 30.038
875 0 29.913 922 80 29.488 969 0 30.007
876 80 29.970 923 95 29.559 970 1 29.977
877 3 29.939 924 90 29.624 971 1 29.947
878 1 29.906 925 0 29.592 972 1 29.917
879 89 29.973 926 1 29.561 973 127 30.017
880 1 29.940 927 15 29.545 974 16 30.003
881 0 29.906 928 106 29.628 975 1 29.973
882 2 29.875 929 90 29.693 976 0 29.942
883 111 29.967 930 1 29.662 977 96 30.010
884 1 29.934 931 0 29.630 978 4 29.983
885 1 29.901 932 67 29.670 979 0 29.953
886 1 29.869 933 0 29.638 980 0 29.922
887 80 29.925 934 1 29.608 981 94 29.987

48 | Appendix A: Experimental Results

Issue
Amount Delay (ms)

Cumulative
Moving
Average

Delay (ms)

982 0 29.957
983 111 30.039
984 80 30.090
985 10 30.070
986 1 30.040
987 74 30.085
988 1 30.055
989 0 30.025
990 1 29.995
991 79 30.045
992 90 30.105
993 1 30.076
994 1 30.047
995 95 30.112
996 1 30.083
997 1 30.054
998 0 30.024
999 15 30.009

1000 96 30.075

TRITA-ICT-EX-2017:138

www.kth.se

