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Abstract 

Apache Hadoop is an open source framework that delivers reliable, scalable, and distributed 
computing. Hadoop services are provided for distributed data storage, data processing, data access, 
and security. MapReduce is the heart of the Hadoop framework and was designed to process vast 
amounts of data distributed over a large number of nodes. MapReduce has been used extensively to 
process structured and unstructured data in diverse fields such as e-commerce, web search, social 
networks, and scientific computation. Understanding the characteristics of Hadoop MapReduce 
workloads is the key to achieving improved configurations and refining system throughput. Thus 
far, MapReduce workload characterization in a large-scale production environment has not been 
well studied. 

In this thesis project, the focus is mainly on composing a Hadoop cluster (as an execution 
environment for data processing) to analyze two types of Hadoop MapReduce (MR) jobs via a 
proposed coordination framework. This coordination framework is referred to as a workload 
translator. The outcome of this work includes: (1) a parametric workload model for the target MR 
jobs, (2) a cluster specification to develop an improved cluster deployment strategy using the model 
and coordination framework, and (3) better scheduling and hence better performance of jobs (i.e. 
shorter job completion time). We implemented a prototype of our solution using Apache Tomcat on 
(OpenStack) Ubuntu Trusty Tahr, which uses RESTful APIs to (1) create a Hadoop cluster version 
2.7.2 and (2) to scale up and scale down the number of workers in the cluster.  

The experimental results showed that with well tuned parameters, MR jobs can achieve a 
reduction in the job completion time and improved utilization of the hardware resources. The target 
audience for this thesis are developers. As future work, we suggest adding additional parameters to 
develop a more refined workload model for MR and similar jobs. 

Keywords 

Hadoop, Workload Characterization, Parametric Modeling, Coordination framework, 
OpenStack, Workload deployment 

 





 Sammanfattning | iii 

 
 

Sammanfattning 

Apache Hadoop är ett öppen källkods system som levererar pålitlig, skalbar och distribuerad 
användning. Hadoop tjänster hjälper med distribuerad data förvaring, bearbetning, åtkomst och 
trygghet. MapReduce är en viktig del av Hadoop system och är designad att bearbeta stora data 
mängder och även distribuerad i flera leder. MapReduce är använt extensivt inom bearbetning av 
strukturerad och ostrukturerad data i olika branscher bl. a e-handel, webbsökning, sociala medier 
och även vetenskapliga beräkningar. Förståelse av MapReduces arbetsbelastningar är viktiga att få 
förbättrad konfigurationer och resultat. Men, arbetsbelastningar av MapReduce inom 
massproduktions miljö var inte djup-forskat hittills. 

I detta examensarbete, är en hel del fokus satt på ”Hadoop cluster” (som en utförande miljö i 
data bearbetning) att analysera två typer av Hadoop MapReduce (MR) arbeten genom ett tilltänkt 
system. Detta system är refererad som arbetsbelastnings översättare. Resultaten från denna arbete 
innehåller: (1) en parametrisk arbetsbelastningsmodell till inriktad MR arbeten, (2) en specifikation 
att utveckla förbättrad kluster strategier med båda modellen och koordinations system, och (3) 
förbättrad planering och arbetsprestationer, d.v.s kortare tid att utföra arbetet. Vi har realiserat en 
prototyp med Apache Tomcat på (OpenStack) Ubuntu Trusty Tahr som använder RESTful API (1) 
att skapa ”Hadoop cluster” version 2.7.2 och (2) att båda skala upp och ner antal medarbetare i 
kluster.  

Forskningens resultat har visat att med vältrimmad parametrar, kan MR arbete nå förbättringar 
dvs. sparad tid vid slutfört arbete och förbättrad användning av hårdvara resurser. Målgruppen för 
denna avhandling är utvecklare. I framtiden, föreslår vi tilläggning av olika parametrar att utveckla 
en allmän modell för MR och liknande arbeten.    

Nyckelord 

Hadoop, Arbetsbelastning Karakterisering, Parametrisk Utformning, Koordinations system, 
OpenStack, Arbetsbelastnings Utplacering 
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1.2 Problem definition 

This thesis addresses three problems: 

1. How to develop a parametric model to describe a Hadoop MR job? 
2. How to develop a deployment strategy? 
3. How to develop a coordination framework to compose a logical cluster and deploy the MR 

workload? 

1.3 Purpose 

The purpose of this thesis project is to develop a parametric model and a prototype coordination 
framework to realize the developed model in order to dynamically compose a logical cluster for the 
incoming MR WL. 

1.4 Goals 

The goal of this project has been divided into the following four sub-goals: 

1. Characterize WLs and then refine the WL specifications to facilitate deployment; 
2. Develop WL deployment strategies; 
3. Find a light-weight means to perform logical server/cluster composition (this provides the 

coordination framework); and 
4. Demonstrate the achievement of the three earlier goals through a prototype implementation of 

a coordination framework. 

1.5 Research Questions 

The main research question for this thesis is: “How to deploy diverse Hadoop MR workloads 
on a data center?” 

This question leads to the following sub-questions: 

Q1 What are the characteristics of WLs? 

Q2 What is a suitable parametric model for these WLs? 

Q3 What deployment strategy performs best in handling Hadoop MR WLs within a data 
center? 

1.6 Research Methodology 

We use quantitative methods in this research to understand a Hadoop job. We also use qualitative 
methods to understand deployment strategies and optimization techniques when setting up a logical 
cluster. 

1.7 Delimitations 

We concentrate on Hadoop MR jobs for our WL analysis. Other types of WLs are not analyzed in 
this research. For simplification, we assume the WL information is provided either by users or 
available as prior knowledge before modeling. Although we will do some extra work to represent 
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WLs at the level of resource demands at the task level, we sought to minimize the number of 
parameters. Also, we focus only on dimensioning the logical cluster’s size (in number of nodes) in 
order to limit the scope of this thesis project. 

1.8 Structure of the thesis 

The layout of the rest of this thesis is as follows: The next chapter presents relevant background 
information about a distributed cloud data center and its problem areas. Chapter 3 describes the 
methodology used to solve the problem. Chapter 4 discusses and evaluates the results, while 
Chapter 5 analyzes these results. The final chapter provides the conclusion of this thesis and 
suggests potential future work. 
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2 Background 

This chapter provides basic background information about cloud computing. Additionally, this 
chapter describes existing workload modeling techniques used in cloud computing. 

Cloud computing enables large-scale services without requiring a large up-front investment. In 
contrast, the traditional computing model has two common problems: under provisioning and over 
provisioning of resources. An infrastructure for cloud computing is called a "cloud". In cloud 
computing under/over provisioning is avoided by dynamically provisioning resources. 

There are three categories of cloud services: infrastructure as a service, platform as a Service, 
and software as a service. Additionally, there are four cloud deployment models: public cloud, 
private cloud, community cloud, and hybrid cloud. Public clouds are owned by cloud service 
providers who charge on the basis of resource usage. These clouds are characterized by providing a 
homogeneous infrastructure, common policies, shared resources and multi-tenancy, and leased or 
rental infrastructure. Examples of public clouds are Amazon’s AWS/EC2 [4], Microsoft’s Azure [5], 
Google’s compute Engine [6], and Rackspace [7]. In contrast, private clouds are owned and 
operated by a single organization. Their basic characteristics include heterogeneous infrastructure, 
customized policies, dedicated resources, and in-house infrastructure. Examples of software for 
realizing private clouds include Eucalyptus Systems [8], OpenNebula [9], and OpenStack. 

The cloud computing paradigm has spread widely in the market and become successful in the 
past few years. Although the adoption of cloud computing and its success has been rapid, 
characterizing cloud WLs is still not (yet) completely clear. Understanding WLs has become an 
important research area for those seeking to improve the performance of cloud systems. Improving 
the performance of cloud systems is necessary since the cloud computing paradigm is becoming a 
major environmental polluter due to consuming enormous amounts of energy (especially electrical 
power) [10] Additional reasons for optimization are that demand has continued to grow 
exponentially, while performance (of the computing, network, and storage) has not grown at such a 
rate, and because cloud infrastructures have portions of the infrastructure that are underutilized. 

Cloud WLs frequently and repeatedly originate from web services, such as search and retrieval 
queries, online documentation, data mining (such as MapReduce jobs), etc. In practice, many WLs 
have short duration and are submitted at very frequent intervals. These WLs are frequently latency-
sensitive WLs, hence their scheduling has to be carefully addressed. In contrast, batch WLs, some of 
which are computation intensive (i.e., with greater processing requirements - but smaller storage 
requirements), memory intensive (larger storage requirements - but lesser processing 
requirements), or require both greater processing and larger storage. A mix of batch WLs and 
latency-sensitive workloads lead to mixed WLs. These mixes arise from most online services as 
these service involve interactive servicing of user requests and processing (often a large amount of) 
data in the background. Deploying such mixed workloads on a data center requires a good 
understanding of the diverse WLs and a suitable deployment strategy. 

Apache Hadoop [11] is open source software that provides reliable, scalable, and distributed 
computing. It is a framework that permits distributed storage and distributed processing of huge 
data sets across computer clusters using a simple programming model. The basic Hadoop 
components are Hadoop Distributed File System (HDFS), where the data is stored, and MapReduce, 
which processes the data stored in HDFS. HDFS is a distributed file system that provides built in 
redundancy, scalability, and reliability. HDFS is the foundation of the Hadoop stack. On top of this 
is the MapReduce processing framework. This framework is responsible for resource management 
and data processing in the cluster. On top of MapReduce, all kinds of applications are used, such as 
Pig [12] (a platform for analyzing large data sets and parallel processing), Hive [13] (a data 
warehouse platform that provides large dataset management using SQL), and Spark [14] (a fast and 
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general engine for processing large scale data). These applications manipulate the data through the 
MapReduce process on top of the distributed file system. 

The Hadoop cluster building blocks are as follows: 

NameNode The NameNode is the centerpiece of HDFS as it stores file system 
metadata and is responsible for all client operations. 

Secondary NameNode The Secondary NameNode synchronizes its state with the active 
NameNode in order to provide fast failover if the active NameNode 
goes down. 

ResourceManager The global ResourceManager is a scheduler that directs the slave 
NodeManager daemons to perform the low-level I/O tasks. 

DataNodes The DataNodes (also known as slaves) store data in the HDFS. These 
nodes host a NodeManager process (i.e., acts as a slave NodeManager 
daemon) which performs the actual processing of the data stored in 
the nodes. Each NodeManager process communicates with the 
ResourceManager to get instructions about how to process the local 
data. 

History Server The History Server provides REST APIs for the end users to get a job’s 
status and other job information. 

Hadoop is a black box which can accept various types of jobs. The Hadoop framework contains 
over 190 parameters [15]–[18] that can be configured. Some of these parameters play a significant 
role in the performance of a Hadoop job. However, it is a challenging and time consuming task to 
manually identify and configure each of these performance tuning parameters for each incoming 
job. By developing a parametric model, it is possible to find the optimum values for these 
parameters (or at least a subset of them). Unfortunately, creating a mathematical model that 
represents the correlation among these parameters is extremely difficult. 

This thesis project focuses on Hadoop. The main goal is to understand different WLs behaviors 
in order to develop a parametric model to describe Hadoop MR jobs. The first step was to propose a 
parametric model for Hadoop MR jobs and then to develop a deployment strategy in order to set up 
the Hadoop cluster based on the refined specifications of the incoming WLs. 

Section  describes what a Hadoop MR job is. Section  describes the organization of a 
disaggregated data center. Section 2.3 describes the concept of logical server platforms. Section 2.4 
concerns characterization of WLs. Finally, Section 2.5 contains some additional background 
information and summarized related work. 

2.1 A Hadoop MR job 

A MR job consists of a map function, a reduce function, and input data*. First, the input data is split 
into multiple splits. Then, for each map split, a “map task” runs which applies the map function to 
the map split. The resulting output of each map task is a collection of key-value pairs. The output of 
all map tasks are shuffled, that is, for each distinct key in the map output, a collection is created 
containing all corresponding values from the map output. For each key-collection resulting from the 
shuffle phase, a “reduce task” runs which applies the reduce function to the collection of values. The 
resulting output is a single key-value pair. The aggregation of all key-value pairs resulting from the 
reduce phase is the output of the MR job. 

                                                            
* The data is typically stored in a Hadoop Distributed File System (HDFS). 
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2.2 Disaggregated data center 

Traditional data centers have a relatively fixed computing infrastructure that is used for the data 
center’s operation. Having all of the resources in one place enables high utilization during both peak 
and non-peak demand conditions (as during the later period portions of the resources can be 
powered off). Data center operators invest in servers which are kept in an active pool to ensure that 
their customers have sufficient resources even during high demand conditions. A disaggregated data 
center separates the resource components, such as CPU, Memory, and I/O, into logical pools of 
these resources. The aim of this separation by resource type is to offer greater flexibility while 
ensuring more optimal resource utilization (as resources are less likely to be stranded in a discrete 
physical server that is allocated for computing, but has limited memory needs – while another 
physical server could utilize this memory). Table 2-1 summarizes the characteristics that distinguish 
a disaggregated data center from a traditional data center. 

Table 2-1: Disaggregated data center characteristics 

 

2.3 Logical server platforms 

In a disaggregated data center, there are multiple resource pools, containing resources provided by 
the different server blades that are are mounted in racks. This environment allows more 
fine-grained allocation of resources than a traditional blade-oriented architecture. From these 
resources we compose a logical server based upon storage/computing/networking from one or more 
physical server blades. Ideally we should select memory resources from those server blades that 
have the lowest I/O delay to the other server blades which provide the logical cluster with CPU and 
networking resources. 

2.4 Workload characterization 

WL characterization is one of the primary goals of this thesis project. We extracted some of the WL 
parameters to develop a parametric model that best describes a Hadoop MR job. This 
characterization serves as a basis to understand what a Hadoop MR jobs look like before actually 
deploying it in the data center. Also, it is a time consuming process to identify the best performance 
tuning parameters from Hadoop, as it has over 190 configuration parameters. We identified a few 
tuning parameters for our parametric model (as described in detail in Section 3.2). 

Characteristic Description 
Disaggregated resources CPU, Memory, and I/O resources are separated into pools of a 

single type of resource. 

Composing systems Using these disaggregated resources, the data center operator 
can compose different sized and configured logical clusters 
(systems). 

On-demand resource creation Depending on a WL’s demand a suitable logical cluster can be 
composed from the disaggregated resources. 

Interconnection Unfortunately, the physical distance between disaggregated 
resources are usually several meters, hence communication 
between these components is much slower than in a traditional 
data center. High speed interconnection fabrics are used for 
communication among the components. 
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2.5 Background and Related work 

Some research has already been done on characterizing cloud WLs [19]–[22]. However, these 
studies have focused on statistically understanding and recreating computing tasks (e.g., MR tasks) 
that are scheduled on a cloud. 

2.5.1 HCloud 

Christina Delimitrou and Christos Kozyrakis proposed HCloud [23], a hybrid provisioning system 
that determines whether the jobs should be mapped to reserved or on-demand resources based on 
overall load and resource unpredictability. They showed that HCloud increases performance by 2.1 
times that of fully on-demand resources and increases cost efficiency by decreasing cost by 46% 
compared to fully reserved resources. 

2.5.2 HUAWEI HTC-DC 

HUAWEI [24] proposed a high throughput data center architecture called HTC-DC which is 
designed to meet the high throughput demands of big data. HTC-DC supports Petabytes (PB)-level 
data processing capability, intelligent manageability, high scalability, and high energy efficiency. 
However, it is still being developed, but it could be a promising candidate in the future. 

2.5.3 Energy efficiency for MR WLs 

Feng et al. [25] conducted an in depth study of the energy efficiency of MR WLs and identified four 
factors that affect the energy efficiency of MR. They found that with well tuned system parameters 
and adaptive resource configurations, MR cluster can achieve both performance improvement and 
energy efficiency in some instances. However, their solution has to be verified with large cluster 
sizes. 

2.5.4 Actual cloud WLs 

Panneerselvam et al. [10] researched actual cloud WLs. They categorized and characterized WLs to 
help predict user demand using a parametric modeling technique. Using their model, CPU intensive 
WLs show a higher percentage of prediction errors than memory intensive WLs in experiments 
conducted by evaluating the performances of two prediction techniques (Markov modelling and 
Bayesian modelling). 

2.5.5 Characterizing and predicting WL in a Cloud with incomplete knowledge of 
application configuration 

Khan et al. [16] introduced a new way to characterize and predict WL in a cloud system when 
complete application configurations of customers’ VMs are unavailable to the cloud providers. They 
identified repeatable WL patterns within groups of VMs that belong to a cloud customer. They 
employed a Hidden Markov Model (HMM) to capture the temporal correlations and to predict 
changes in WL pattern based on co-clusters discovered using clustering. This method showed higher 
prediction accuracy than traditional methods. However, these studies only examined repeatable WL 
patterns and did not examine periodic daily patterns. 
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2.5.6 Statistical analysis of relationships between WLs 

Yang et al. [19] proposed a statistical analysis approach to identify relationships among WL 
characteristics, Hadoop configurations, and WL performance. They applied principal component 
analysis and cluster analysis to 45 different metrics and revealed that they could accurately predict 
the performance of MR WLs under different Hadoop configurations. However, these studies show 
that their proposed predictive model can be difficult to apply when there is dynamic profiling of 
Hadoop configurations for optimizing workloads. 

2.5.7 Analysis of virtualization impact on resource demand 

Wang et al. [26] conducted an in depth analysis of WL behavior from web applications, specifically 
the Rice University Bidding System (RUBiS) benchmark application. They also analyzed the impact 
of virtualization on the resource demands of cloud applications by profiling WL dynamics on both 
virtualized and non-virtualized servers. Their experimental comparison results help in predicting 
Service Level Agreement (SLA) compliance, evaluating the application’s performance, and deciding 
upon the right hardware to support applications. In the future, they plan to characterize other cloud 
application’s WL, such as big data using the MapReduce framework. 

2.5.8 Methodology to construct a WL classification 

Mishra et al. [20] developed a methodology to classify WLs and applied it to the Google Cloud 
Backend. They used the concept of qualitative coordinates to gain several insights into the Google 
Cloud Backend. Their results can guide system designers to improve task scheduling and capacity 
planning. In the future, they plan to extend their study to consider job constraints and to address 
task arrival process characterization. 

2.5.9 Matching diverse WL categories to available cloud resources 

Mulia et al. [27] developed a common set of definitions of WLs to reduce the difficulties in matching 
customers’ requirements with available resources. They proposed diverse cloud WL categorizations 
from different customers and then matched these categories with the available resource. 

2.6 Summary 

Although the adoption of cloud computing and its success has been rapid, characterizing cloud WLs 
is still not (yet) completely clear. This thesis will focus on characterizing one type of WL, specifically 
MR WLs, and will define a parametric model which will describe such a WL. The results of this 
model are used to develop an improved deployment strategy. 
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3 Methodology 

The purpose of this chapter is to provide an overview of the research method used. Section 3.1 
describes WL characterization and representation. Section 3.2 describes WL modeling. Section 3.3 
explains the deployment strategy using the parametric model. Section 3.4 describes the research 
process. Section 3.5 describes the experimental design. Section 3.6 explains the techniques used to 
evaluate the reliability and validity of the data collected. 

3.1 WL Characterization and Representation 

Understanding WL characteristics is one of the primary research areas needed to improve the 
performance of cloud systems. If we possess some prior knowledge about the characteristics of the 
WLs, then we can set up the underlying platforms appropriately. It is too late to characterize WLs 
when the WL actually arrives at the data center. Understanding WLs by identifying some extra 
requirements using implicit constraints plays an important role in our research, as we need to 
understand each WL’s characteristics before we can proceed toward our next goal. In order to 
characterize WLs, we categorize WLs into periodic, aperiodic, and sporadic WLs based on their job 
arrival rate, frequency of jobs submitted, and nature of the jobs. As noted earlier some WLs are 
computationally intensive, some memory intensive, and some WLs require both [25]. An in depth 
analysis of WLs and each WL’s properties (including job duration, frequency of jobs submitted, 
resource utilization, etc.) are important in WL characterization. In [28], WL characteristics were 
observed by conducting a comprehensive WL trace analysis at job and task level granularity. 

A WL may have consistent behavior in one context, but not in another. For example, if the WL 
consists of a sequence of web requests and the system is a web server with a single disk that serves 
requests in their arrival order, then the distribution of response times might be the relevant 
performance metric. However, this characterization does not apply when the server stores data on 
an array of disks and requests are served based on the requested page’s size. Restricting the WL to a 
specific context can improve our WL model. In our model, we consider only MapReduce (MR) WLs 
as input. The basic details of how MapReduce works were given in Section 2.1 on page 6. 

3.2 WL Modeling 

We suggest a parametric model for MR WLs to find the implicit characteristics of the WLs that 
should be identified in order to make deployment decisions. Using this model, we seek to identify a 
deployment strategy in order to deploy these WLs on logical server platforms using disaggregated 
resources. 

When a developer submits a Hadoop MR job to the YARN cluster we utilize the names of the 
input and output directories and the given java file in our analysis. The number of map tasks 
(corresponds to the number of splits) and the number of reduce tasks might be suggested by our 
deployment strategy using prior knowledge. For example, when submitting a MR job in YARN, 
users (e.g. a developer) provide (at least) the following: 

• A configuration file (often in its default setting) – which can be used to select our 
deployment strategy, as the configuration file contains the values and intervals of 
parameters of the YARN components (e.g., parameters for the YARN schedulers and 
node monitors) with respect to amount of memory and number of virtual cores (vCores). 
 

• A jar file containing the implementation of an MR model including a combiner. 
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On the task level, our parametric WL model contains both basic and optional parameters. The 
basic parameters are: 

• A(pplication) and Tenant identifier (U), 
• S(cheduler), 
• C(PU), 
• Mem(ory) (MemM and MemR are two more detailed parameters decomposed from 

Mem), 
• DFS B(lock size), or Input Splits (࢙ࡵ)  mapper instances, 
• Nr Reduce instances, 
• R(eplica), 
• Period (T), and  
• Data locality (L) - the data locality of a task is more about IO waiting time of reading the 

source, and HDFS/S3 data and writing the output HDFS/S3 data: Lr and Lw. 

The Application ID is the global unique identifier of each submitted application. The Tenant 
identifier is a unique identifier for each tenant that describes all account information and user 
privileges in the system. The scheduler allocates the resources to run applications and monitors the 
status of the applications. This scheduler consists of two types of pluggable schedulers: 
CapacityScheduler and FairScheduler. By default Hadoop YARN is configured to use the 
CapacityScheduler as it allows multi tenancy* and sharing a large cluster by maximizing the 
throughput and cluster utilization. The FairScheduler allows YARN applications to share resources 
fairly in a large cluster (all applications get an equal share of resources on average over time). 
However, choosing the best scheduler for our parametric model is not yet finalized. The CPU 
parameter is the total processing time of a particular job in the Hadoop cluster. Memory is the total 
memory required by the Hadoop MR job. This memory parameter is further decomposed into 
MemM and MemR. MemM is the total memory needed to perform one map task of a job, whereas 
MemR is the total memory needed to perform one reduce task of a job. The DFS Block size refers to 
the block size in bytes of new files that will be created. This parameter plays a key role in calculating 
the number of mapper instances or input splits. The number of Reduce instances refers to 
Mapred.Reduce.Tasks parameter in Hadoop. The default value is 1. Increasing this value improves 
the utilization of hard disk I/O on a large input dataset, whereas with a small input dataset keeping 
this value small decreases the overhead in setting up tasks. The optimum value of reduce instances 
is not yet investigated, but is expected to be based on the input dataset size. The Replica parameter 
is the replication factor in the Hadoop cluster. The default value is 3. This is an important parameter 
to set in Hadoop in order to avoid data loss due to a failure. The Period parameter is the periodicity 
of the task in a job and has the values: periodic, sporadic, or aperiodic. The Data locality (L) 
parameter of a task is related to its replication factor. 

The optional parameters are: 
• The minimum N(etwork bandwidth) (between nodes), 
• D(eadline) can be given either explicitly or implicitly, 
• RW(Read/write ratio of data files), 
• The size of requests (Rs), 
• The size of the input data (Id), and 
• The size of the output data (Od). 

There is a correlation (r) between some parameters, for example: r (L, N) = -1†, e.g. a better L 
reduces the value of N. 

                                                            
* Multi tenancy refers to a single instance of software servers’ multiple tenants. 
† A correlation -1 refers here is that for every positive increase of 1 in data locality, there is a negative decrease of 1 in the 
Network bandwidth. 
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The configured block size and replication factor in HDFS play a major part in WL modelling. 
Blocks are replicated several times to ensure high data availability, as HDFS was intended to be 
fault-tolerant, while running on commodity hardware. A typical HDFS block size is 64MB. All 
blocks are of same size, except the last block in a file. When a user stores a file in HDFS, the Hadoop 
system decomposes it into set of blocks and store these in various worker nodes in the Hadoop 
cluster. The number of individual blocks is based on the block size set in a given Hadoop cluster. We 
can modify this block size within the Hadoop Cluster. If a user wants to change the block size for the 
entire cluster, he or she needs to add a property called dfs.block.size in the hdfs-site.xml file. 
Changing the block size affects only new files that are created and does not affect existing files in 
HDFS. 

File blocks are replicated for fault-tolerance. The replication factor is also configurable in a 
Hadoop Cluster. An application can specify the replication factor of each file. This value can be set at 
the time of creation, but can also be modified later. All of the files in HDFS are write once and 
strictly limited to one writer at a time. We can adjust the global replication factor for the whole 
cluster or change the replication factor for each file that is created. There will be n-1 duplicate blocks 
distributed across the cluster for each block stored in HDFS. The property dfs.replication is set in 
hdfs-site.xml to adjust the replication factor for the whole cluster. To change the replication per file, 
we need to first create the file in HDFS, then set the replication by setting hdfs dfs –setrep –w X 
<file-path> where X is the replication factor*. In this thesis, we set the block size to 64 MB and 
replication factor to 2 for the default configuration of a Hadoop cluster. However, our analysis 
shows that increasing the block size to 512 MB and replication factor 3 improves the resource 
utilization and decreases the job completion time. We developed a deployment strategy based on 
both the default configuration and an extended configuration as explained in detail in Section 3.3. 

3.3 Deployment Strategy 

Our proposed parametric model helps to analyze the importance of each of the parameters. This 
analysis helps identify a good deployment strategy that can deploy diverse WLs. The basic 
deployment strategy is based upon two dedicated resource pools: (1) one that handles long running 
services and (2) another that handles latency-critical services. If we use a single powerful server, 
then new jobs will experience increased waiting times (as each job will need to wait for earlier jobs 
to terminate). In contrast, if we use multiple less powerful servers rather than one powerful 
machine, then the instantiation overhead will be greater because of more frequent setting up of the 
platforms. This suggests that we want to define a combined deployment strategy. However, in this 
thesis project we focus on dimensioning the size of a cluster when using similar configurations for 
all of the nodes in the cluster. This means that we assume that we do not have heterogeneous 
servers in the resource pools. As a result, each resource pool is assumed to be composed of servers 
that are homogenous (i.e., they have identical hardware configurations). Homogenous servers are 
used for demonstration purpose only. Ideally, deployment should work for heterogeneous servers in 
which the cluster will be composed based on the resource required (calculated from the deployment 
strategy). We tried to collect datasets of various real-time workloads for heterogeneous servers 
within the Ericsson environment. However, they were inaccessible due to political and security 
reasons; hence, we were constrained to perform experiments and collect the data using sample 
workloads. If we had been given access to real workloads and datasets, then the deployment strategy 
would cover many of the parameters needed for a more refined solution. 

As a result of the above limitations, we define a deployment strategy for Hadoop MR jobs using 
the parametric model we propose, while assuming the size of the underlying physical servers is fixed 

                                                            
* Note: Replication of individual files takes time and it varies depending on the number of replicas, file size, and DataNode 
hardware. Hence you should only change the replication factor per file if you really need to. 
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(i.e., unvaried over time). Our deployment strategy includes only few of the performance tuning 
parameters from the basic parametric model (described in Section 3.2). We require a jar file as 
input, a directory path where the input data resides, and a directory path where the output of the job 
should be stored. Using the specified input directory, the size of the input data is calculated. The 
input data size and HDFS block size are used to calculate the number of map splits needed. Based 
on the number of splits, the maximum memory required for the WL can be estimated as described 
in the following sections, given: 

௦ܦ   ⟶  Data size of input in GB  ݉݁ܯே ⟶ Total RAM per server/node ܤ ⟶ Block Size  ݉݁ܯ஼ ⟶ Total Memory per container ܴ ⟶ Replication  ܯ௣ = ௦ܫ ⋆ ஼݉݁ܯ ⟶ Physical memory ܫ௦  ⟶ No of input splits  ܯ௩ ⟶ Virtual Memory 

௦ܰ ⟶ No of servers/Data nodes  ܧ௦ ⟶ Execution time of job in seconds 

3.3.1 Default Configuration 

With the following default configuration: ܤ = = ܴ ܤܯ 64 ௦ܰ ݉݁ܯே  = ஼݉݁ܯ ݐ݁ݏ ܤܩ 2 =  ܤܯ 180

 

This shows that to process 1 GB input data requires two servers that collectively provide 4 GB of 
memory capacity to execute the job in a better execution time (ܧ௦). This could also be achieved by 
one server with 4GB of memory. However, since all our servers have a fixed 2GB memory 
configuration, this job requires two servers. 

3.3.2 Extended Configuration 

With the following Extended Configuration: ܤ = = ܴ ܤܯ 512 ௦ܰ ݉݁ܯே  =  ܤܩ 2

⇒ ௣ܯ  ⋍  ܤܩ 3

⇒ ௦ܰ = 2 

Given Ds = 1 GB,

Assign Is = 16, then  ܯ௣ = 16 ⋆ ஼݉݁ܯ  

We know ݉݁ܯே  = 2 GB. 
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஼݉݁ܯ ݐ݁ݏ =  ܤܯ 180

 

This shows that 1 GB data input needs just one server which provides 2 GB of memory capacity 
to execute the job in a better execution time (ܧ௦). Our deployment strategy gives the maximum 
resources required for a particular WL and assumes that the actual resource usage will not exceed 
this value. 

Setting up of a cluster with the servers required to handle the WL occurs after this stage. 

3.4 Research Process 

The overall research process (shown in Figure 3-2) consists of: 

• Understand the different types of WLs in Hadoop MR applications, 

• Define a parametric model that describes the Hadoop MR jobs, 

• Create Hadoop multi node cluster to setup test execution environment, 

• Experiment with executing famous examples of Hadoop MR jobs, such as wordcount and 
grep search with varying input data size, block size, number of nodes in the cluster to 
observe the different behaviors and patterns, 

• Collect data from the experimental evaluation, 

• Analyze the collected data to find the deployment strategy in order to set up the logical 
platform (i.e., choosing the number of slave nodes), and 

• Implement a deployment manager to find and use the deployment strategy based on 
incoming WLs to the datacenter. 

⇒ ௣ܯ  ⋍  ܤܩ 1

⇒ ௦ܰ = 1 

Given Ds = 1 GB, 

Assign Is = 2, then  ܯ௣ = 2 ⋆ ஼݉݁ܯ  

We know ݉݁ܯே  = 2 GB. 
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Hadoop-2.7.2 was used with a single VM configured as the NameNode and the remaining four VMs 
as DataNodes. The NameNode was not used as a DataNode. The replication level of each data block 
was set to 3. Two typical Hadoop MapReduce applications (i.e., wordcount [29] and grep [30]) were 
run as Hadoop YARN jobs. The TeraGen application [31] available as part of the Hadoop 
distribution was used to generate different sizes of input data. 

Table 3-2: Software and Hardware configuration of each VM. 

Software 

Operating System  Ubuntu 14.04.3 LTS 

JDK OpenJdk 1.7 

Hadoop  2.7.2 

OpenStack Nova 

Hardware 

CPU  1 vCPUs 

Processor Intel Xeon 

Hard disk 20 GB 

Memory 2 GB 

 

3.6 Assessing reliability and validity of the data collected 

This section describes the reliability and validity of the data collected. Section 3.6.1 describes the 
reliability of the data and Section 3.6.2 describes the validity of the data. 

3.6.1 Reliability 

The experiments will be tested within Ericsson’s lab infrastructure. The results need to be consistent 
over multiple iterations. The OpenStack engine used to set up the VMs ensures that the shared 
resources availability is guaranteed according to the configuration. So if the results are consistent 
over multiple iterations, this ensures their reliability.  

3.6.2 Validity 

The experiments are done in a cluster of VMs in a private cloud using OpenStack. The validity of the 
collected data is assessed by comparing the results obtained from the experiment with that of 
measurements obtained from real clusters in a data center. The measurements obtained in the 
experiments are explained in Section 5.1. 
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4 Evaluation 

The deployment strategy was evaluated based on experimental results from a Hadoop cluster using 
OpenStack VMs. The following steps were followed to identify a deployment strategy: 

• Created a Hadoop multi node cluster as the test execution environment. 

• Executed well-known examples of Hadoop MR jobs wordcount and grep search with 
different combinations of input data size and block size by scaling up and scaling down 
nodes in the cluster to observe the different behaviors and patterns. 

• Collected data from the experimental evaluation. 

• Analyzed the experimental results to find a deployment strategy to set up the logical 
platform (size and configuration of the servers). 

4.1 Expected Results 

The final outcome of this research is a characterization of a small number of cloud WLs and a 
refined WL specification. This characterization was used to configure a better logical server for 
deployment. The outcome of this thesis will be: 

1. A parametric model that best describes the Hadoop MR jobs, 
2. A deployment strategy to deploy the refined WLs on logical platforms, and 
3. A prototype co-ordination framework which refines the incoming WL based on the parametric 

model. 

4.2 Experimental Test Description 

A cluster with the configuration specified in Section 3.5 was setup in the OpenStack Virtualization 
environment. The job configurations listed in Table 4-1 were tested with different block sizes: 64, 
128, 256, and 512 MB. 

Table 4-1: Job configurations tested 

Job ID Description 
1 Simple test with single node cluster 
2 Test with multi node cluster  
3 Test MR job(wordcount) with 1 GB input and default configuration 
4 Test MR job(wordcount)  with 1 GB input and 64MB block size 
5 Test MR job(wordcount)  with 1 GB input and 512MB block size 
6 Test MR job (wordcount) with 2 GB input and default configuration 
7 Test MR job(wordcount)  with 2 GB input and 64MB block size 
8 Test MR job(wordcount)  with 2 GB input and 512MB block size 
9 Test MR job(grep) with 1 GB input and default configuration 
10 Test MR job(grep) with 1 GB input and 64MB block size 
11 Test MR job(grep)with 1 GB input and 512MB block size 
12 Test MR job(grep) with 2 GB input and default configuration 
13 Test MR job(grep)with 2 GB input and 64MB block size 
14 Test MR job(grep) with 2 GB input and 512MB block size 
15 Test MR job(wordcount) with 3 GB input and default configuration 
16 Test MR job(wordcount) with 3 GB input and 64MB block size 
17 Test MR job(wordcount) with 3 GB input and 512MB block size 



20 | Evaluation 

 
 

4.3 Implementation 

This section describes an implementation of a prototype coordination framework/WL translator 
that accepts user input and dimensions the cluster according to the deployment strategy selected by 
the framework. 

The WL translator is implemented as REST web services using a REST API similar to the 
Hadoop Resource Manager REST web services. This translator is a separate component located in 
between the user and the Hadoop cluster. The user provides input to the WL translator as an XML 
file specifying the MapReduce implementation jar file location, a directory path where the input 
data is located, and a directory path where the output should be stored. See Appendix A for a sample 
WL. To setup the translator, configure SSH access from the translator node to the running Hadoop 
cluster (see Appendix C for instructions to set up Hadoop cluster). To submit a WL to the translator, 
a running Hadoop cluster and the URL link to communicate the cluster using REST API are 
required. A sample POST request to a Hadoop cluster running in local machine will look like 

curl -X POST -H 'Accept: application/xml' -H 'Content-Type: application/xml' 
http://localhost:8080/rest/translate/apps -d @workload.xml  

When the user submits a WL in the specified format, the translator calculates the input data 
size. After this calculation, the deployment manager is called to identify the size of the servers. The 
deployment manager uses the parametric model defined in Section 3.3 to return the amount of 
memory required to process the job with a minimal job completion time. Based on the amount of 
memory required, the translator calls the OpenStack REST services to create the number of 
instances needed to satisfy the specified resource requirements. Hadoop has to be installed and 
configured on each of these instances to setup the cluster. To avoid unnecessary installation of 
Hadoop at every call, we created a template VM image in OpenStack with Hadoop installed and use 
this template to launch an instance whenever required. 

The submission of a Hadoop MR job involves two steps. The first step is to get the application 
ID. This is followed by the actual job submission. The translator removes this multi-step overhead 
as the translator automatically scales up or down the instances in the Hadoop cluster based on the 
WL resource demands as estimated by the translator. When scaling up the Hadoop cluster, no 
additional configuration is required. For scaling down the Hadoop cluster, we need to gracefully 
remove the data nodes from the cluster to avoid the risk of data loss. As a result, we decided that the 
minimum cluster size was one master and two slave nodes as core instance groups (each with a 
DataNode daemon running on it). Any slave nodes added to this core cluster are referred as spot 
instances (and operate without a DataNode daemon). These nodes will not store any HDFS data for 
the job, but are used as computing resources to execute the MR job. As a result, we can add and 
delete spot instances to and from the cluster without affecting the HDFS data. Each spot instance 
has to be configured in the dfs.exclude file under the Hadoop configuration directory to exclude it 
from storing data. The core instance groups have to be configured in the dfs.include file and the 
nodes have to be refreshed by using the command “hdfs dfsadmin -refreshNodes”. There is an 
alternative method of performing scaling down without maintaining a minimum cluster size. In this 
method, the cluster can scale up as per resource demands and if the resource demand is less than 
the available cluster’s resources, then the extra nodes/resources can be gracefully decommissioned 
(as explained in previous method). By doing this, the data that were present in the decommissioned 
nodes will be recreated within the active cluster’s resources. Ideally, this method is only used when 
there is a node failure in the cluster. 

Since the translator needs to perform lots of computation (such as finding the input data size, 
applying a deployment strategy, identifying the required resources to execute the particular job, and 
finally composing a cluster and deploying the job) from the initial job submission to generating a 
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5 Analysis 

This chapter presents an analysis of the evaluation described in the previous chapter. This analysis 
serves as the basis to find a deployment strategy – specifically dimensioning the cluster. The metrics 
used in our analysis are memory usage (further split into physical memory and virtual memory), 
CPU processing time, and execution time. All of these metrics are analyzed on a per job basis. 

5.1 Major results 

The results of the experiments are shown in Table 5-1, Table 5-2, and Table 5-3. With 1 GB input 
data and 64 MB block size, the amount of memory required to process the WL is 3 GB. This is clear 
from the measurement data. However, the memory required is the same irrespective of the number 
of slave nodes in the Hadoop cluster. However, we evaluate the best deployment strategy based 
upon a combination of memory required, job completion time, and number of slave nodes. 
Providing the slave nodes with 3 GB RAM gives the best job completion time. Since each slave node 
in our cluster has the same memory capacity, i.e., 2 GB RAM, it is always better to provide two slave 
nodes (giving a total capacity of 4 GB) which is more than the required 3 GB memory. 

The job completion time for 1 GB data is not reduced by much when varying the number of slave 
nodes. In the case of 2 GB data, the job completion time is improved with three slave nodes rather 
than when only one or two slave nodes are in the cluster. In the case of 3 GB of data, the job 
completion time is improved with four slave nodes rather than one, two, or three slave nodes are 
utilized. 

The same WL works better with an extended configuration, such as a 512 MB block size. From 
Table 5-1, we can see that with a 512 MB block size, the amount of memory required is reduced to 
1/6th of the memory required with a 64 MB block size and in turn reduces the number of nodes 
needed in the cluster to execute the job in a shorter job completion time. This is because the number 
of input splits are reduced when the block size is higher. The extended configuration not only 
decreased the amount of memory required, but also decreased the job execution time as is evident 
from Table 5-2 and Table 5-3. These experimental results confirmed the deployment strategy we 
defined in the Section 3.3. From our analysis, we observe that the DFS block size, replica, number of 
mappers, and number of reducers plays an important role in modeling the WL. However, we 
defined a simple model and limited the parameters in the deployment strategy. However, the WL 
model can be further refined in future by adding additional parameters. Figure 5-1, Figure 5-2, 
Figure 5-4, Figure 5-5, and Figure 5-6, presents the experimental results of Table 5-1, Table 5-2, and 
Table 5-3. 
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Table 5-5 Translator measurement for 2 GB Data 
WL 
Type 

Block 
Size 
(MB) 

Number 
of Slave 
Nodes 

Average  
Completion 
Time  
including  
cluster  
setup (sec) 

Standard 
Deviation 

Wordcount 

64 4 266 2.6327
64 3 270 1.5082
64 2 319 2.8570

512 1 264 2.1839
512 2 267 1.8328

 

Table 5-6 Translator measurement for 3 GB Data 
WL 
Type 

Block 
Size 
(MB) 

Number 
of Slave 
Nodes 

Average  
Completion 
Time  
including  
cluster  
setup (sec) 

Standard 
Deviation 

Wordcount 64 4 340 2.4782
64 3 387 2.9381
64 2 460 2.0062

512 1 394 3.2701
512 2 383 2.7192
512 3 417 2.6910

5.2 Reliability Analysis 

The data collected is reliable since it was gathered from experimental tests (conducted in Ericsson’s 
lab infrastructure) rather than via simulation tool. Also, each test was executed a minimum of ten 
times to check whether we receive consistent performance metrics. The metrics are shown in 
Section 5.1. The standard deviation is very small for the sample workloads executed a minimum of 
ten times with different Block Size and input data size. 

The possibility of skew in the measurements due to usage of virtual machines for the experimental 
setup is ignored because of the consistent results obtained. If the shared resources were not 
guaranteed to the VMs, the job completion time would have changed a lot. The consistent results 
confirm that the shared resources were guaranteed to the VMs by the OpenStack engine. 

5.3 Validity Analysis 

The experiments were done on a cluster of VMs set up in a private cloud (OpenStack) and 
automated using the implemented WL translator. The validity of the results could not be checked 
since Ericsson could not provide real workloads and physical machines to redo the experiments in a 
real environment.  
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6 Conclusions and Future work 

In this chapter, we present the conclusions of our work, limitations of the results obtained, and 
suggest future work to help others to follow up this work. 

6.1 Conclusions 

In this thesis, we conducted an in depth investigation of MapReduce WLs in an open source 
implementation of Hadoop. In order to describe what Hadoop MR jobs look like, we identified some 
implicit parameters and defined a parametric model for Hadoop MR jobs. Next we chose a small 
number of performance tuning parameters and then we attempted to identify the best deployment 
strategy in terms of dimensioning the Hadoop cluster. The experimental results showed that with 
well tuned parameters, MR jobs can achieve an improvement (i.e., a reduction) in the job 
completion time and the utilization of the resources are improved. This research satisfies all the 
elements described in the problem statement. However, this research has alternate approach in the 
beginning which is described more in Appendix D. 

6.2 Limitations 

Though we improved the job completion time and resource usage, we only used a small number of 
parameters due to the need for extensive testing of various configurations on different cluster sizes. 
The cluster consisted of a set of VMs which shared the same underlying hardware. Also the WLs 
tested were only those sample WLs available as part of Hadoop distribution, i.e., there were no real 
WLs available for testing. Conducting the thesis at Ericsson and with limited time and resources 
forced the above two limitations of hardware and real workloads. 

6.3 Future work 

The parametric model we proposed is a simple model. However, it could be further refined to 
optimize the usage of disaggregated resources. The results of this thesis should be verified in larger 
sized clusters. Furthermore, more types of WLs should be introduced in the experiments to refine 
the model, rather than being specific to the few types of WLs available in the Hadoop distribution. 
In addition, the effects of changing other parameters, such as data locality, number of mappers and 
reducer slots in Hadoop cluster, and file buffer size should be studied. Choosing the best scheduler 
for our parametric model will be investigated. The optimum value of reduce instances will be 
investigated in future, but is expected to be based on the input dataset size. 

6.4 Reflections 

This research proposes new solutions to workload characterization aimed at performance 
optimization. The optimization potentially has some environmental implications as increased 
performance reduces the time that these jobs need to execute, hence reducing power consumption 
and makes the underlying resources available to execute other task. However, during the course of 
this project we have not encountered any major issues that have new ethical or social implications. 
The research implications are essentially the same as for all the existing work in each of the areas. 
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Appendix A: Workload Samples 

Workload sample 1: 

<? xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<workload> 

 <application-name>test</application-name> 

 <jar-path>{{HADOOP_COMMON_HOME}}/share/hadoop/mapreduce/hadoop-mapreduce-
examples-2.7.2.jar</jar-path> 

 <args> 

  <arg>wordcount</arg> 

  <arg>/user/hduser/input</arg> 

  <arg>/output/output5</arg> 

 </args> 

</workload> 

 

Workload sample 2: 

<? xml version="1.0" encoding="UTF-8" standalone="yes"?> 

<workload> 

        <application-name>test</application-name> 

        <jar-path>{{HADOOP_COMMON_HOME}}/share/hadoop/mapreduce/hadoop-mapreduce-
examples-2.7.2.jar</jar-path> 

        <args> 

                <arg>grep</arg> 

                <arg>/user/hduser/input</arg> 

                <arg>/output/grep6</arg> 

  <arg>'dfs[a-z.]'</arg> 

        </args> 

</workload> 
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Appendix B: Submit Application Example 

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<application-submission-context> 
    <application-id>application_1421661392788_0040</application-id> 
    <application-name>test</application-name> 
    <queue>default</queue> 
    <priority>3</priority> 
    <am-container-spec> 
        <environment> 
            <entry> 
                <key>CLASSPATH</key> 
                <value>{{CLASSPATH}}&lt;CPS&gt;./*&lt;CPS&gt;{{HADOOP_CONF_DIR}}&lt;CPS&gt;{{
HADOOP_COMMON_HOME}}/share/hadoop/common/*&lt;CPS&gt;{{HADOOP_COMMON_HOM
E}}/share/hadoop/common/lib/*&lt;CPS&gt;{{HADOOP_HDFS_HOME}}/share/hadoop/hdfs/*&lt;
CPS&gt;{{HADOOP_HDFS_HOME}}/share/hadoop/hdfs/lib/*&lt;CPS&gt;{{HADOOP_YARN_HO
ME}}/share/hadoop/yarn/*&lt;CPS&gt;{{HADOOP_YARN_HOME}}/share/hadoop/yarn/lib/*&lt;C
PS&gt;./log4j.properties</value> 
            </entry> 
        </environment> 
        <commands> 
            <command>{{HADOOP_COMMON_HOME}}/bin/hadoop jar 
{{HADOOP_COMMON_HOME}}/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar 
wordcount /user/hadoop/input /output/output</command> 
        </commands> 
    </am-container-spec> 
    <unmanaged-AM>false</unmanaged-AM> 
    <max-app-attempts>2</max-app-attempts> 
    <application-type>MAPREDUCE</application-type> 
    <keep-containers-across-application-attempts>false</keep-containers-across-application-
attempts> 
    <application-tags/> 
</application-submission-context> 
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Appendix C: Steps to setup Running Cluster 

• Launch instances from OpenStack required for configuring multi-node cluster. 

• Hadoop requires a working java 1.5+. However, java 1.6 or higher is recommended for running 
Hadoop. 

• Install java on all the nodes. 

• Add a dedicated user for Hadoop system, for example: hduser. 

• Configure password-less SSH as Hadoop requires SSH access to manage nodes.  

 hduser@ubuntu:~$ ssh-keygen -t rsa -P "" 

 Generating public/private rsa key pair.  

 Enter file in which to save the key (/home/hduser/.ssh/id_rsa):  

 Created directory '/home/hduser/.ssh'.  

 Your identification has been saved in /home/hduser/.ssh/id_rsa. 

 Your public key has been saved in /home/hduser/.ssh/id_rsa.pub.  

 The key fingerprint is: 9b:82:ea:58:b4:e0:35:d7:ff:19:66:a6:ef:ae:0e:d2 

 hduser@ubuntu The key's random art image is: [...snipp...] 

• Keep one node as master and rest of the nodes as slaves. 

• Make sure all the machines are able to reach each other over the network. (i.e hduser user on 
the master must be able to connect to its own host and also to hduser user on the slave node 
via a password-less SSH login) 

• Download Hadoop from the Apache Download Mirrors and extract the contents of the Hadoop 
package to a location of your choice. I used/usr/local/hadoop. Make sure to change the owner 
of all the files to the hduser user and hadoop group, for example: 

 $ cd /usr/local  

 $ sudo tar xzf hadoop-2.7.2.tar.gz  

 $ sudo mv hadoop-2.7.2 hadoop 

 $ sudo chown -R hduser:hadoop hadoop 

• Update ~/.bashrc with path set to Hadoop installation directory. 

• Configured hadoop-env.sh, core-site.xml, hdfs-site.xml, yarn-site.xml and mapred-site.xml on 
all the nodes. See Appendix A for configuring these files. 

• Additionally, configured master and slave file only on master node. On master file, master’s 
hostname should be added. On slave file, slave nodes’ hostname should be added. If master 
node has to be used as slave node, then master’s hostname should also be added in slave file. 

hduser@anitha-1:/usr/local/hadoop$ vi /etc/hadoop/master 

master 

hduser@anitha-1:/usr/local/hadoop$ vi /etc/hadoop/slave 

master 

slave1 
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slave2 

• Before starting the cluster, format the HDFS file system via NameNode. Run the below 
command to format the NameNode. (Note: Do not format the NameNode when the cluster is 
running as you will lose all the data in HDFS that are available at present). 
    hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode -format 

• Run  $HADOOP_INSTALL/sbin/start-dfs.sh and $HADOOP_INSTALL/sbin/start-
yarn.sh on the master node. 

• If everything is configured correctly, you can see a list of processes running on all the nodes by 
issuing jps command. 

The following java processes should run on master. 

hduser@anitha-1:/usr/local/hadoop$ jps 
4065 Jps 
820 NameNode 
1390 ResourceManager 
1545 NodeManager 
1235 SecondaryNameNode 
992 DataNode 

The following java processes should run on slaves. 

hduser@anitha-2:/usr/local/hadoop$ jps 
14897 DataNode 
15053 NodeManager 
16298 Jps 

• Like starting the cluster, stopping the cluster also done by stop-dfs.sh and stop-yarn.sh 
script inside $HADOOP_HOME/sbin. 
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Appendix D: Other Approaches 

In this master thesis project, initially our main focus was to develop a coordination framework (as 
local-level resource coordinators) for server creation based upon disaggregated resources available in 
various resource pools, e.g. CPU, memory, storage, network bandwidth and data locality-aware 
consideration. Some tasks considered in specific were:  

1) a holistic means to server creation based upon requests derived from different application demands 
(e.g. CPU-, memory-, IO-intensive applications). We researched and investigated to get real dataset to 
analyze different application workloads. We collected data from Google Data set [32]. Though the data 
set contains has lots of parameters including job level and task level data, we could not derive some 
specific workloads such as Hadoop MR workloads from the data set. Hence, we used the sample 
workloads that were available as part of the Hadoop distribution and limited the scope of the thesis to 
these MR workloads. To analyze the MR workloads, we planned to create a Hadoop Cluster. Initially 
were playing around with the Yarn cluster for quite some time, in order to get a basic understanding of 
launching Docker Container Executors(DCE) [33] at Yarn node managers. The purpose of this practice 
is not to set up a testing environment in Yarn, but to see if there will be some extra parameters and 
resources required by launching the DCE on a Yarn cluster. However, The machine was not powerful 
enough to host the cluster. So we created an experimental setup using OpenStack. Due to the time 
consumption in setting up the Hadoop cluster, the experimental core parameters were reduced to 3. 
They are HDFS block size, Input Splits and Input data size. They are the significant parameters in 
improving the performance of the job in terms of Job completion time and Memory utilization. Out of 
these three parameters, HDFS block size is the most significant parameter as increasing the block size 
to 512MB almost reduced the Job completion time and memory utilization by 1/8th comparing to 64 
MB default block size. This was also because the time constraint was critical for implementing the 
Translator part using RESTFUL APIs.  

2) An algorithm for matching requests and available disaggregated resources on hosts to be adopted by 
our per-request, shared-state coordinators. Although this was the initial plan, since there were no 
actual disaggregated resources, we created a co ordination framework to compose the server and 
dimension it (choosing the number of slave nodes in cluster) according to incoming WL resource 
requirement. 

3) Evaluation and performance analysis of the proposed solution. Initially we planned to evaluate the 
workloads using a tool called CloudSim [34], which is used to model and simulate customized cloud 
infrastructure and services. Due to the difficulty in using the tool, OpenStack was used for the purpose. 
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