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Abstract

Apache Hadoop is an open source framework that delivers reliable, scalable, and distributed
computing. Hadoop services are provided for distributed data storage, data processing, data access,
and security. MapReduce is the heart of the Hadoop framework and was designed to process vast
amounts of data distributed over a large number of nodes. MapReduce has been used extensively to
process structured and unstructured data in diverse fields such as e-commerce, web search, social
networks, and scientific computation. Understanding the characteristics of Hadoop MapReduce
workloads is the key to achieving improved configurations and refining system throughput. Thus
far, MapReduce workload characterization in a large-scale production environment has not been
well studied.

In this thesis project, the focus is mainly on composing a Hadoop cluster (as an execution
environment for data processing) to analyze two types of Hadoop MapReduce (MR) jobs via a
proposed coordination framework. This coordination framework is referred to as a workload
translator. The outcome of this work includes: (1) a parametric workload model for the target MR
jobs, (2) a cluster specification to develop an improved cluster deployment strategy using the model
and coordination framework, and (3) better scheduling and hence better performance of jobs (i.e.
shorter job completion time). We implemented a prototype of our solution using Apache Tomcat on
(OpenStack) Ubuntu Trusty Tahr, which uses RESTful APIs to (1) create a Hadoop cluster version
2.7.2 and (2) to scale up and scale down the number of workers in the cluster.

The experimental results showed that with well tuned parameters, MR jobs can achieve a
reduction in the job completion time and improved utilization of the hardware resources. The target
audience for this thesis are developers. As future work, we suggest adding additional parameters to
develop a more refined workload model for MR and similar jobs.

Keywords

Hadoop, Workload Characterization, Parametric Modeling, Coordination framework,
OpenStack, Workload deployment
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Sammanfattning

Apache Hadoop ar ett 6ppen kallkods system som levererar palitlig, skalbar och distribuerad
anvandning. Hadoop tjanster hjalper med distribuerad data forvaring, bearbetning, atkomst och
trygghet. MapReduce &r en viktig del av Hadoop system och ar designad att bearbeta stora data
mangder och &ven distribuerad i flera leder. MapReduce &r anvant extensivt inom bearbetning av
strukturerad och ostrukturerad data i olika branscher bl. a e-handel, webbsdkning, sociala medier
och aven vetenskapliga berdkningar. Forstaelse av MapReduces arbetsbelastningar ar viktiga att fa
forbattrad konfigurationer och resultat. Men, arbetsbelastningar av MapReduce inom
massproduktions miljé var inte djup-forskat hittills.

I detta examensarbete, &r en hel del fokus satt pa "Hadoop cluster” (som en utférande miljo i
data bearbetning) att analysera tva typer av Hadoop MapReduce (MR) arbeten genom ett tilltankt
system. Detta system ar refererad som arbetsbelastnings Oversattare. Resultaten fran denna arbete
innehaller: (1) en parametrisk arbetsbelastningsmodell till inriktad MR arbeten, (2) en specifikation
att utveckla forbattrad kluster strategier med bada modellen och koordinations system, och (3)
forbattrad planering och arbetsprestationer, d.v.s kortare tid att utfora arbetet. Vi har realiserat en
prototyp med Apache Tomcat pa (OpenStack) Ubuntu Trusty Tahr som anvander RESTful API (1)
att skapa "Hadoop cluster” version 2.7.2 och (2) att bada skala upp och ner antal medarbetare i
kluster.

Forskningens resultat har visat att med valtrimmad parametrar, kan MR arbete na forbattringar
dvs. sparad tid vid slutfort arbete och forbattrad anvandning av hardvara resurser. Malgruppen for
denna avhandling ar utvecklare. | framtiden, foreslar vi tillaggning av olika parametrar att utveckla
en allméan modell fér MR och liknande arbeten.

Nyckelord

Hadoop, Arbetsbelastning Karakterisering, Parametrisk Utformning, Koordinations system,
OpenStack, Arbetsbelastnings Utplacering
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1 Introduction

This chapter describes the specific problem this thesis addresses, the context of the problem, the
goals of this thesis project, and outlines the structure of this report.

The cloud computing concept has been researched over many years with different dimensions,
especially with regard to its pay per use and flexible business models. Many cloud service providers
need to process huge amounts of data. At present, the amount of data that is processed by a single
user has increased from Terabytes to Petabytes and the expected future demand is for much larger
amounts of data (this is often referred to as “Big Data”). One solution for data mining with such
huge amounts of data is MapReduce systems. MapReduce systems are the main framework used
today for processing big data. This framework minimizes communication and data movement by
performing computation local to the data. There are two major steps in MapReduce: map and
reduce. The map step divides the workload into smaller tasks and distributes them to worker nodes
as a map task. The reduce step gathers output data from each worker node and creates the final job
output. Additionally, it is highly desirable to predict workloads in advance, so that a series of
processing steps (with dependencies) can be scheduled and executed in the appropriate order to
deliver refined data by the required time.

In this thesis project we focus on workload modeling to provide an interpretation layer to
translate input user workloads (WLs) into a specification for deployment (of these WLs). Given this
specification we develop a deployment strategy on top of a logical server. We want to identify
implicit characteristics of the WLs that will assist us in finding a good deployment strategy. We
evaluate the resulting strategy using OpenStack [1], an open source cloud computing software that
controls large pools of compute, storage, and networking resources. OpenStack is used to realize a
logical cluster for a given WL.

Figure 1-1 is a system diagram of a cloud system. The input to the data center are WLs. In this
thesis project, these WLs are translated into a more refined WL specification with extra parameters
in order to deploy the WLs in an optimized manner.

-

E Workloads

Data Translator Application Data Base
1 Servers Servers

@ Service '
Refined
WL Spec .

&

| G
ICT Web Servers

|IP enabled Devices

Data Center

Figure 1-1: System Overview
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1.1 Background

Hadoop MapReduce (MR) [2] is a programming framework for parallel processing which can be
used to write applications that will process huge amounts of data. The MapReduce Next generation
architecture called YARN Cluster [3] has separated the two main functions of a Job Tracker
(resource management and job scheduling) into two separate components (shown in Figure 1-2).
This is done by having a global Resource Manager (RM) and a per-application Application Master
(App Mstr). The RM arbitrates requests for resource allocations by the applications running in the
system. RM has two components: (1) a scheduler that allocates resources among the running
applications and (2) an App Mstr that accepts job submissions, negotiates an initial container* for
application execution, and provides services to restart the App Mstr container if it fails. The RM
communicates with a Node Manager (NM) to track the allocation of containers. A NM is a per
machine slave that launches applications and their containers and monitors resource usage and
availability of resources. The App Mstr is responsible for negotiation and tracking of the resource
containers allocated by the scheduler.

Resource

___--1-%" Manager

MapReduce Status ———»
Job Submission ------ >
Node Status | >
Resource Request ---------- >
| -/
Figure 1-2: Hadoop architecture

When a developer submits a MapReduce job in YARN, the WL consists of the following: a
configuration file, a jar file with the implementation of MapReduce, the input directory path where
the files to be processed are stored, and the output directory path where the results will be stored.

In this thesis project we will derive a more refined specification from each WL in order to better
describe each Hadoop MR job. This improved description will facilitate our development of a
deployment strategy to efficiently deploy the WLs on logical platforms (specifically a logical cluster).

* A container is a unit of allocation to execute an application specific task.
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1.2 Problem definition

This thesis addresses three problems:

1. How to develop a parametric model to describe a Hadoop MR job?

2. How to develop a deployment strategy?

3. How to develop a coordination framework to compose a logical cluster and deploy the MR
workload?

1.3 Purpose

The purpose of this thesis project is to develop a parametric model and a prototype coordination
framework to realize the developed model in order to dynamically compose a logical cluster for the
incoming MR WL.

1.4 Goals

The goal of this project has been divided into the following four sub-goals:

1. Characterize WLs and then refine the WL specifications to facilitate deployment;

2. Develop WL deployment strategies;

3. Find a light-weight means to perform logical server/cluster composition (this provides the
coordination framework); and

4. Demonstrate the achievement of the three earlier goals through a prototype implementation of
a coordination framework.

1.5 Research Questions

The main research question for this thesis is: “How to deploy diverse Hadoop MR workloads
on a data center?”

This question leads to the following sub-questions:
Q1 What are the characteristics of WLs?
Q2 What is a suitable parametric model for these WLs?

Q3 What deployment strategy performs best in handling Hadoop MR WLs within a data
center?

1.6 Research Methodology

We use quantitative methods in this research to understand a Hadoop job. We also use qualitative
methods to understand deployment strategies and optimization techniques when setting up a logical
cluster.

1.7 Delimitations

We concentrate on Hadoop MR jobs for our WL analysis. Other types of WLs are not analyzed in
this research. For simplification, we assume the WL information is provided either by users or
available as prior knowledge before modeling. Although we will do some extra work to represent
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WLs at the level of resource demands at the task level, we sought to minimize the number of
parameters. Also, we focus only on dimensioning the logical cluster’s size (in number of nodes) in
order to limit the scope of this thesis project.

1.8 Structure of the thesis

The layout of the rest of this thesis is as follows: The next chapter presents relevant background
information about a distributed cloud data center and its problem areas. Chapter 3 describes the
methodology used to solve the problem. Chapter 4 discusses and evaluates the results, while
Chapter 5 analyzes these results. The final chapter provides the conclusion of this thesis and
suggests potential future work.
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2 Background

This chapter provides basic background information about cloud computing. Additionally, this
chapter describes existing workload modeling techniques used in cloud computing.

Cloud computing enables large-scale services without requiring a large up-front investment. In
contrast, the traditional computing model has two common problems: under provisioning and over
provisioning of resources. An infrastructure for cloud computing is called a “cloud”. In cloud
computing under/over provisioning is avoided by dynamically provisioning resources.

There are three categories of cloud services: infrastructure as a service, platform as a Service,
and software as a service. Additionally, there are four cloud deployment models: public cloud,
private cloud, community cloud, and hybrid cloud. Public clouds are owned by cloud service
providers who charge on the basis of resource usage. These clouds are characterized by providing a
homogeneous infrastructure, common policies, shared resources and multi-tenancy, and leased or
rental infrastructure. Examples of public clouds are Amazon’'s AWS/EC2 [4], Microsoft's Azure [5],
Google’'s compute Engine [6], and Rackspace [7]. In contrast, private clouds are owned and
operated by a single organization. Their basic characteristics include heterogeneous infrastructure,
customized policies, dedicated resources, and in-house infrastructure. Examples of software for
realizing private clouds include Eucalyptus Systems [8], OpenNebula [9], and OpenStack.

The cloud computing paradigm has spread widely in the market and become successful in the
past few years. Although the adoption of cloud computing and its success has been rapid,
characterizing cloud WLs is still not (yet) completely clear. Understanding WLs has become an
important research area for those seeking to improve the performance of cloud systems. Improving
the performance of cloud systems is necessary since the cloud computing paradigm is becoming a
major environmental polluter due to consuming enormous amounts of energy (especially electrical
power) [10] Additional reasons for optimization are that demand has continued to grow
exponentially, while performance (of the computing, network, and storage) has not grown at such a
rate, and because cloud infrastructures have portions of the infrastructure that are underutilized.

Cloud WLs frequently and repeatedly originate from web services, such as search and retrieval
queries, online documentation, data mining (such as MapReduce jobs), etc. In practice, many WLs
have short duration and are submitted at very frequent intervals. These WLs are frequently latency-
sensitive WLs, hence their scheduling has to be carefully addressed. In contrast, batch WLs, some of
which are computation intensive (i.e., with greater processing requirements - but smaller storage
requirements), memory intensive (larger storage requirements - but lesser processing
requirements), or require both greater processing and larger storage. A mix of batch WLs and
latency-sensitive workloads lead to mixed WLs. These mixes arise from most online services as
these service involve interactive servicing of user requests and processing (often a large amount of)
data in the background. Deploying such mixed workloads on a data center requires a good
understanding of the diverse WLs and a suitable deployment strategy.

Apache Hadoop [11] is open source software that provides reliable, scalable, and distributed
computing. It is a framework that permits distributed storage and distributed processing of huge
data sets across computer clusters using a simple programming model. The basic Hadoop
components are Hadoop Distributed File System (HDFS), where the data is stored, and MapReduce,
which processes the data stored in HDFS. HDFS is a distributed file system that provides built in
redundancy, scalability, and reliability. HDFS is the foundation of the Hadoop stack. On top of this
is the MapReduce processing framework. This framework is responsible for resource management
and data processing in the cluster. On top of MapReduce, all kinds of applications are used, such as
Pig [12] (a platform for analyzing large data sets and parallel processing), Hive [13] (a data
warehouse platform that provides large dataset management using SQL), and Spark [14] (a fast and
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general engine for processing large scale data). These applications manipulate the data through the
MapReduce process on top of the distributed file system.

The Hadoop cluster building blocks are as follows:

NameNode The NameNode is the centerpiece of HDFS as it stores file system
metadata and is responsible for all client operations.

Secondary NameNode The Secondary NameNode synchronizes its state with the active
NameNode in order to provide fast failover if the active NameNode
goes down.

ResourceManager The global ResourceManager is a scheduler that directs the slave
NodeManager daemons to perform the low-level 1/0 tasks.

DataNodes The DataNodes (also known as slaves) store data in the HDFS. These

nodes host a NodeManager process (i.e., acts as a slave NodeManager
daemon) which performs the actual processing of the data stored in
the nodes. Each NodeManager process communicates with the
ResourceManager to get instructions about how to process the local
data.

History Server The History Server provides REST APIs for the end users to get a job’s
status and other job information.

Hadoop is a black box which can accept various types of jobs. The Hadoop framework contains
over 190 parameters [15]—[18] that can be configured. Some of these parameters play a significant
role in the performance of a Hadoop job. However, it is a challenging and time consuming task to
manually identify and configure each of these performance tuning parameters for each incoming
job. By developing a parametric model, it is possible to find the optimum values for these
parameters (or at least a subset of them). Unfortunately, creating a mathematical model that
represents the correlation among these parameters is extremely difficult.

This thesis project focuses on Hadoop. The main goal is to understand different WLs behaviors
in order to develop a parametric model to describe Hadoop MR jobs. The first step was to propose a
parametric model for Hadoop MR jobs and then to develop a deployment strategy in order to set up
the Hadoop cluster based on the refined specifications of the incoming WLs.

Section describes what a Hadoop MR job is. Section describes the organization of a
disaggregated data center. Section 2.3 describes the concept of logical server platforms. Section 2.4
concerns characterization of WLs. Finally, Section 2.5 contains some additional background
information and summarized related work.

21 A Hadoop MR job

A MR job consists of a map function, a reduce function, and input data™. First, the input data is split
into multiple splits. Then, for each map split, a “map task” runs which applies the map function to
the map split. The resulting output of each map task is a collection of key-value pairs. The output of
all map tasks are shuffled, that is, for each distinct key in the map output, a collection is created
containing all corresponding values from the map output. For each key-collection resulting from the
shuffle phase, a “reduce task” runs which applies the reduce function to the collection of values. The
resulting output is a single key-value pair. The aggregation of all key-value pairs resulting from the
reduce phase is the output of the MR job.

* The data is typically stored in a Hadoop Distributed File System (HDFS).
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2.2 Disaggregated data center

Traditional data centers have a relatively fixed computing infrastructure that is used for the data
center’s operation. Having all of the resources in one place enables high utilization during both peak
and non-peak demand conditions (as during the later period portions of the resources can be
powered off). Data center operators invest in servers which are kept in an active pool to ensure that
their customers have sufficient resources even during high demand conditions. A disaggregated data
center separates the resource components, such as CPU, Memory, and 1/0, into logical pools of
these resources. The aim of this separation by resource type is to offer greater flexibility while
ensuring more optimal resource utilization (as resources are less likely to be stranded in a discrete
physical server that is allocated for computing, but has limited memory needs — while another
physical server could utilize this memory). Table 2-1 summarizes the characteristics that distinguish
a disaggregated data center from a traditional data center.

Table 2-1: Disaggregated data center characteristics
Characteristic Description
Disaggregated resources CPU, Memory, and 1/0 resources are separated into pools of a
single type of resource.
Composing systems Using these disaggregated resources, the data center operator
can compose different sized and configured logical clusters
(systems).

On-demand resource creation Depending on a WL'’s demand a suitable logical cluster can be
composed from the disaggregated resources.

Interconnection Unfortunately, the physical distance between disaggregated
resources are usually several meters, hence communication
between these components is much slower than in a traditional
data center. High speed interconnection fabrics are used for
communication among the components.

2.3 Logical server platforms

In a disaggregated data center, there are multiple resource pools, containing resources provided by
the different server blades that are are mounted in racks. This environment allows more
fine-grained allocation of resources than a traditional blade-oriented architecture. From these
resources we compose a logical server based upon storage/computing/networking from one or more
physical server blades. Ideally we should select memory resources from those server blades that
have the lowest 170 delay to the other server blades which provide the logical cluster with CPU and
networking resources.

2.4 Workload characterization

WL characterization is one of the primary goals of this thesis project. We extracted some of the WL
parameters to develop a parametric model that best describes a Hadoop MR job. This
characterization serves as a basis to understand what a Hadoop MR jobs look like before actually
deploying it in the data center. Also, it is a time consuming process to identify the best performance
tuning parameters from Hadoop, as it has over 190 configuration parameters. We identified a few
tuning parameters for our parametric model (as described in detail in Section 3.2).
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2.5 Background and Related work

Some research has already been done on characterizing cloud WLs [19]-[22]. However, these
studies have focused on statistically understanding and recreating computing tasks (e.g., MR tasks)
that are scheduled on a cloud.

2.5.1 HCloud

Christina Delimitrou and Christos Kozyrakis proposed HCloud [23], a hybrid provisioning system
that determines whether the jobs should be mapped to reserved or on-demand resources based on
overall load and resource unpredictability. They showed that HCloud increases performance by 2.1
times that of fully on-demand resources and increases cost efficiency by decreasing cost by 46%
compared to fully reserved resources.

2.5.2 HUAWEIHTC-DC

HUAWEI [24] proposed a high throughput data center architecture called HTC-DC which is
designed to meet the high throughput demands of big data. HTC-DC supports Petabytes (PB)-level
data processing capability, intelligent manageability, high scalability, and high energy efficiency.
However, it is still being developed, but it could be a promising candidate in the future.

2.5.3 Energy efficiency for MR WLs

Feng et al. [25] conducted an in depth study of the energy efficiency of MR WLs and identified four
factors that affect the energy efficiency of MR. They found that with well tuned system parameters
and adaptive resource configurations, MR cluster can achieve both performance improvement and
energy efficiency in some instances. However, their solution has to be verified with large cluster
sizes.

2.5.4 Actual cloud WLs

Panneerselvam et al. [10] researched actual cloud WLs. They categorized and characterized WLs to
help predict user demand using a parametric modeling technique. Using their model, CPU intensive
WLs show a higher percentage of prediction errors than memory intensive WLs in experiments
conducted by evaluating the performances of two prediction techniques (Markov modelling and
Bayesian modelling).

2.5.5 Characterizing and predicting WL in a Cloud with incomplete knowledge of
application configuration

Khan et al. [16] introduced a new way to characterize and predict WL in a cloud system when
complete application configurations of customers’ VMs are unavailable to the cloud providers. They
identified repeatable WL patterns within groups of VMs that belong to a cloud customer. They
employed a Hidden Markov Model (HMM) to capture the temporal correlations and to predict
changes in WL pattern based on co-clusters discovered using clustering. This method showed higher
prediction accuracy than traditional methods. However, these studies only examined repeatable WL
patterns and did not examine periodic daily patterns.
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2.5.6 Statistical analysis of relationships between WLs

Yang et al.[19] proposed a statistical analysis approach to identify relationships among WL
characteristics, Hadoop configurations, and WL performance. They applied principal component
analysis and cluster analysis to 45 different metrics and revealed that they could accurately predict
the performance of MR WLs under different Hadoop configurations. However, these studies show
that their proposed predictive model can be difficult to apply when there is dynamic profiling of
Hadoop configurations for optimizing workloads.

2.5.7 Analysis of virtualization impact on resource demand

Wang et al. [26] conducted an in depth analysis of WL behavior from web applications, specifically
the Rice University Bidding System (RUBIS) benchmark application. They also analyzed the impact
of virtualization on the resource demands of cloud applications by profiling WL dynamics on both
virtualized and non-virtualized servers. Their experimental comparison results help in predicting
Service Level Agreement (SLA) compliance, evaluating the application’s performance, and deciding
upon the right hardware to support applications. In the future, they plan to characterize other cloud
application’s WL, such as big data using the MapReduce framework.

2.5.8 Methodology to construct a WL classification

Mishra et al. [20] developed a methodology to classify WLs and applied it to the Google Cloud
Backend. They used the concept of qualitative coordinates to gain several insights into the Google
Cloud Backend. Their results can guide system designers to improve task scheduling and capacity
planning. In the future, they plan to extend their study to consider job constraints and to address
task arrival process characterization.

2.5.9 Matching diverse WL categories to available cloud resources

Mulia et al. [27] developed a common set of definitions of WLs to reduce the difficulties in matching
customers’ requirements with available resources. They proposed diverse cloud WL categorizations
from different customers and then matched these categories with the available resource.

2.6 Summary

Although the adoption of cloud computing and its success has been rapid, characterizing cloud WLs
is still not (yet) completely clear. This thesis will focus on characterizing one type of WL, specifically
MR WLs, and will define a parametric model which will describe such a WL. The results of this
model are used to develop an improved deployment strategy.
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3 Methodology

The purpose of this chapter is to provide an overview of the research method used. Section 3.1
describes WL characterization and representation. Section 3.2 describes WL modeling. Section 3.3
explains the deployment strategy using the parametric model. Section 3.4 describes the research
process. Section 3.5 describes the experimental design. Section 3.6 explains the techniques used to
evaluate the reliability and validity of the data collected.

3.1 WL Characterization and Representation

Understanding WL characteristics is one of the primary research areas needed to improve the
performance of cloud systems. If we possess some prior knowledge about the characteristics of the
WLs, then we can set up the underlying platforms appropriately. It is too late to characterize WLs
when the WL actually arrives at the data center. Understanding WLs by identifying some extra
requirements using implicit constraints plays an important role in our research, as we need to
understand each WL’s characteristics before we can proceed toward our next goal. In order to
characterize WLs, we categorize WLs into periodic, aperiodic, and sporadic WLs based on their job
arrival rate, frequency of jobs submitted, and nature of the jobs. As noted earlier some WLs are
computationally intensive, some memory intensive, and some WLs require both [25]. An in depth
analysis of WLs and each WL’s properties (including job duration, frequency of jobs submitted,
resource utilization, etc.) are important in WL characterization. In [28], WL characteristics were
observed by conducting a comprehensive WL trace analysis at job and task level granularity.

A WL may have consistent behavior in one context, but not in another. For example, if the WL
consists of a sequence of web requests and the system is a web server with a single disk that serves
requests in their arrival order, then the distribution of response times might be the relevant
performance metric. However, this characterization does not apply when the server stores data on
an array of disks and requests are served based on the requested page’s size. Restricting the WL to a
specific context can improve our WL model. In our model, we consider only MapReduce (MR) WLs
as input. The basic details of how MapReduce works were given in Section 2.1 on page 6.

3.2 WL Modeling

We suggest a parametric model for MR WLs to find the implicit characteristics of the WLs that
should be identified in order to make deployment decisions. Using this model, we seek to identify a
deployment strategy in order to deploy these WLs on logical server platforms using disaggregated
resources.

When a developer submits a Hadoop MR job to the YARN cluster we utilize the names of the
input and output directories and the given java file in our analysis. The number of map tasks
(corresponds to the number of splits) and the number of reduce tasks might be suggested by our
deployment strategy using prior knowledge. For example, when submitting a MR job in YARN,
users (e.g. a developer) provide (at least) the following:

e A configuration file (often in its default setting) — which can be used to select our
deployment strategy, as the configuration file contains the values and intervals of
parameters of the YARN components (e.g., parameters for the YARN schedulers and
node monitors) with respect to amount of memory and number of virtual cores (vCores).

e Ajar file containing the implementation of an MR model including a combiner.
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e Input directory specifying the path in HDFS to the input files. The number of files
stored in HDFS or Amazon Simple Storage Service (S3) determine the number of Map
tasks (as an optional parameter).

e Output directory specifying the path in HDFS where output files should be written;
the number of output file(s) in HDFS may determine the number of reduce tasks

Given these WLs we will augment them with a higher-level description in order to represent the
WLs at the level of resource requests. This leads to the creation of an interpretation layer
(translator) to translate a given user WL to the more elaborated WL description subsequently used
for deployment. This elaborated WL description makes some of the implicit characteristics of the
WLs that should be identified to facilitate the deployment explicit, and more precisely, these
characteristics can be used to define a logical server (composed on top of the disaggregated
resources). For instance, a MR job requires reading and writing data in both of its stages, knowing
this facilitates optimization with respect to these operations in their own stage. A result of WL
modeling is a new specification/representation of the input WLs. These steps are shown in Figure
3-1. Our parametric WL model for Hadoop MR jobs makes some assumptions. The underlying
assumptions are: (1) all the tasks in a single job require the same amount of the different resources
and (2) all the tasks are indivisible, i.e. each task is considered as one individual task and cannot be
combined with another.
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t input and output directones
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ication Framework Deployment M

Deployment Strategy Manager

Yet Another Resource Pool Manager

Platform
(ceparating recerved and on-demand recourcec)

Layer

A Recommender System for Couﬁgm:ltiou

Setup of Application Frameworks

I
I
I
I
I
—
|
I
|
I
Servers }4— Infrastructure OaM

Figure 3-1: Parametric framework architecture Overview
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On the task level, our parametric WL model contains both basic and optional parameters. The
basic parameters are:

o A(pplication) and Tenant identifier (U),

e S(chedulen),

e C(PU),

e Mem(ory) (Memy and Memg are two more detailed parameters decomposed from
Mem),

e DFS B(lock size), or Input Splits (I;) - mapper instances,

e N, >Reduce instances,

e R(eplica),

e Period (T), and

e Data locality (L) - the data locality of a task is more about 10 waiting time of reading the

source, and HDFS/S3 data and writing the output HDFS/S3 data: L, and L.

The Application ID is the global unique identifier of each submitted application. The Tenant
identifier is a unique identifier for each tenant that describes all account information and user
privileges in the system. The scheduler allocates the resources to run applications and monitors the
status of the applications. This scheduler consists of two types of pluggable schedulers:
CapacityScheduler and FairScheduler. By default Hadoop YARN is configured to use the
CapacityScheduler as it allows multi tenancy* and sharing a large cluster by maximizing the
throughput and cluster utilization. The FairScheduler allows YARN applications to share resources
fairly in a large cluster (all applications get an equal share of resources on average over time).
However, choosing the best scheduler for our parametric model is not yet finalized. The CPU
parameter is the total processing time of a particular job in the Hadoop cluster. Memory is the total
memory required by the Hadoop MR job. This memory parameter is further decomposed into
Memy and Memg. Memy is the total memory needed to perform one map task of a job, whereas
Memg is the total memory needed to perform one reduce task of a job. The DFS Block size refers to
the block size in bytes of new files that will be created. This parameter plays a key role in calculating
the number of mapper instances or input splits. The number of Reduce instances refers to
Mapred.Reduce.Tasks parameter in Hadoop. The default value is 1. Increasing this value improves
the utilization of hard disk 1/0 on a large input dataset, whereas with a small input dataset keeping
this value small decreases the overhead in setting up tasks. The optimum value of reduce instances
is not yet investigated, but is expected to be based on the input dataset size. The Replica parameter
is the replication factor in the Hadoop cluster. The default value is 3. This is an important parameter
to set in Hadoop in order to avoid data loss due to a failure. The Period parameter is the periodicity
of the task in a job and has the values: periodic, sporadic, or aperiodic. The Data locality (L)
parameter of a task is related to its replication factor.

The optional parameters are:

The minimum N(etwork bandwidth) (between nodes),
D(eadline) can be given either explicitly or implicitly,
RW/(Read/write ratio of data files),

The size of requests (Rs),

The size of the input data (l14), and

The size of the output data (Oq).

There is a correlation (r) between some parameters, for example: r (L, N) = -1f, e.g. a better L
reduces the value of N.

* Multi tenancy refers to a single instance of software servers’ multiple tenants.
t A correlation -1 refers here is that for every positive increase of 1 in data locality, there is a negative decrease of 1 in the
Network bandwidth.
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The configured block size and replication factor in HDFS play a major part in WL modelling.
Blocks are replicated several times to ensure high data availability, as HDFS was intended to be
fault-tolerant, while running on commodity hardware. A typical HDFS block size is 64MB. All
blocks are of same size, except the last block in a file. When a user stores a file in HDFS, the Hadoop
system decomposes it into set of blocks and store these in various worker nodes in the Hadoop
cluster. The number of individual blocks is based on the block size set in a given Hadoop cluster. We
can modify this block size within the Hadoop Cluster. If a user wants to change the block size for the
entire cluster, he or she needs to add a property called dfs.block.size in the hdfs-site.xml file.
Changing the block size affects only new files that are created and does not affect existing files in
HDFS.

File blocks are replicated for fault-tolerance. The replication factor is also configurable in a
Hadoop Cluster. An application can specify the replication factor of each file. This value can be set at
the time of creation, but can also be modified later. All of the files in HDFS are write once and
strictly limited to one writer at a time. We can adjust the global replication factor for the whole
cluster or change the replication factor for each file that is created. There will be n-1 duplicate blocks
distributed across the cluster for each block stored in HDFS. The property dfs.replication is setin
hdfs-site.xml to adjust the replication factor for the whole cluster. To change the replication per file,
we need to first create the file in HDFS, then set the replication by setting hdfs dfs —setrep —w X
<file-path> where X is the replication factor. In this thesis, we set the block size to 64 MB and
replication factor to 2 for the default configuration of a Hadoop cluster. However, our analysis
shows that increasing the block size to 512 MB and replication factor 3 improves the resource
utilization and decreases the job completion time. We developed a deployment strategy based on
both the default configuration and an extended configuration as explained in detail in Section 3.3.

3.3 Deployment Strategy

Our proposed parametric model helps to analyze the importance of each of the parameters. This
analysis helps identify a good deployment strategy that can deploy diverse WLs. The basic
deployment strategy is based upon two dedicated resource pools: (1) one that handles long running
services and (2) another that handles latency-critical services. If we use a single powerful server,
then new jobs will experience increased waiting times (as each job will need to wait for earlier jobs
to terminate). In contrast, if we use multiple less powerful servers rather than one powerful
machine, then the instantiation overhead will be greater because of more frequent setting up of the
platforms. This suggests that we want to define a combined deployment strategy. However, in this
thesis project we focus on dimensioning the size of a cluster when using similar configurations for
all of the nodes in the cluster. This means that we assume that we do not have heterogeneous
servers in the resource pools. As a result, each resource pool is assumed to be composed of servers
that are homogenous (i.e., they have identical hardware configurations). Homogenous servers are
used for demonstration purpose only. Ideally, deployment should work for heterogeneous servers in
which the cluster will be composed based on the resource required (calculated from the deployment
strategy). We tried to collect datasets of various real-time workloads for heterogeneous servers
within the Ericsson environment. However, they were inaccessible due to political and security
reasons; hence, we were constrained to perform experiments and collect the data using sample
workloads. If we had been given access to real workloads and datasets, then the deployment strategy
would cover many of the parameters needed for a more refined solution.

As a result of the above limitations, we define a deployment strategy for Hadoop MR jobs using
the parametric model we propose, while assuming the size of the underlying physical servers is fixed

* Note: Replication of individual files takes time and it varies depending on the number of replicas, file size, and DataNode
hardware. Hence you should only change the replication factor per file if you really need to.
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(i.e., unvaried over time). Our deployment strategy includes only few of the performance tuning
parameters from the basic parametric model (described in Section 3.2). We require a jar file as
input, a directory path where the input data resides, and a directory path where the output of the job
should be stored. Using the specified input directory, the size of the input data is calculated. The
input data size and HDFS block size are used to calculate the number of map splits needed. Based
on the number of splits, the maximum memory required for the WL can be estimated as described
in the following sections, given:

D, — Data size of input in GB Mem, — Total RAM per server/node
B — Block Size Mem, — Total Memory per container
R — Replication M, = I, x Mem, — Physical memory
I, — No of input splits M, — Virtual Memory

N, — No of servers/Data nodes E;, — Execution time of job in seconds

3.3.1 Default Configuration

With the following default configuration:

B =64 MB
R = N;
Memy =2GB

set Mem, = 180 MB

Given Ds =1 GB,

Assign Is = 16, then M, = 16 * Mem,

We know Mem, =2 GB.

This shows that to process 1 GB input data requires two servers that collectively provide 4 GB of
memory capacity to execute the job in a better execution time (E,). This could also be achieved by
one server with 4GB of memory. However, since all our servers have a fixed 2GB memory
configuration, this job requires two servers.

3.3.2 Extended Configuration
With the following Extended Configuration:
B =512 MB
R = N,

Memy =2 GB
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set Mem, = 180 MB

Given Ds =1 GB,

Assign Is = 2, then M, =2 x Memg

= M, =1GB

We know Mem, =2 GB.

>N, =1

This shows that 1 GB data input needs just one server which provides 2 GB of memory capacity
to execute the job in a better execution time (E;). Our deployment strategy gives the maximum
resources required for a particular WL and assumes that the actual resource usage will not exceed
this value.

Setting up of a cluster with the servers required to handle the WL occurs after this stage.

3.4 Research Process

The overall research process (shown in Figure 3-2) consists of:

Understand the different types of WLs in Hadoop MR applications,
Define a parametric model that describes the Hadoop MR jobs,
Create Hadoop multi node cluster to setup test execution environment,

Experiment with executing famous examples of Hadoop MR jobs, such as wordcount and
grep search with varying input data size, block size, number of nodes in the cluster to
observe the different behaviors and patterns,

Collect data from the experimental evaluation,

Analyze the collected data to find the deployment strategy in order to set up the logical
platform (i.e., choosing the number of slave nodes), and

Implement a deployment manager to find and use the deployment strategy based on
incoming WLs to the datacenter.
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This section describes the experimental test environment and the software/hardware configurations

used.

3.5.1 Test environment: Hardware/Software to be used

A Hadoop cluster was setup using OpenStack on an underlying server whose specification is shown
in Table 3-1. Five virtual machines (VMs) were configured on the server. The hardware and software
configuration for each of the VM is shown in Table 3-2. Each VM is assigned 1 vCPU core, 2 GB
RAM, and 20 GB of hard disk storage.

Table 3-1: Hardware configuration of the server.
CPU Model Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz
Hardware Number of Cores 40
Hard disk 4TB
Memory 158 GB
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Hadoop-2.7.2 was used with a single VM configured as the NameNode and the remaining four VMs
as DataNodes. The NameNode was not used as a DataNode. The replication level of each data block
was set to 3. Two typical Hadoop MapReduce applications (i.e., wordcount [29] and grep [30]) were
run as Hadoop YARN jobs. The TeraGen application [31] available as part of the Hadoop
distribution was used to generate different sizes of input data.

Table 3-2: Software and Hardware configuration of each VM.
Operating System Ubuntu 14.04.3 LTS
JDK OpenJddk 1.7
Software
Hadoop 2.7.2
OpenStack Nova
CPU 1vCPUs
Processor Intel Xeon
Hardware
Hard disk 20GB
Memory 2GB

3.6 Assessing reliability and validity of the data collected

This section describes the reliability and validity of the data collected. Section 3.6.1 describes the
reliability of the data and Section 3.6.2 describes the validity of the data.

3.6.1 Reliability

The experiments will be tested within Ericsson’s lab infrastructure. The results need to be consistent
over multiple iterations. The OpenStack engine used to set up the VMs ensures that the shared
resources availability is guaranteed according to the configuration. So if the results are consistent
over multiple iterations, this ensures their reliability.

3.6.2 Validity

The experiments are done in a cluster of VMs in a private cloud using OpenStack. The validity of the
collected data is assessed by comparing the results obtained from the experiment with that of
measurements obtained from real clusters in a data center. The measurements obtained in the
experiments are explained in Section 5.1.
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The deployment strategy was evaluated based on experimental results from a Hadoop cluster using
OpensStack VMs. The following steps were followed to identify a deployment strategy:

Created a Hadoop multi node cluster as the test execution environment.

Collected data from the experimental evaluation.

4.1 Expected Results

Executed well-known examples of Hadoop MR jobs wordcount and grep search with
different combinations of input data size and block size by scaling up and scaling down
nodes in the cluster to observe the different behaviors and patterns.

Analyzed the experimental results to find a deployment strategy to set up the logical
platform (size and configuration of the servers).

The final outcome of this research is a characterization of a small number of cloud WLs and a
refined WL specification. This characterization was used to configure a better logical server for
deployment. The outcome of this thesis will be:

1. A parametric model that best describes the Hadoop MR jobs,
2. Adeployment strategy to deploy the refined WLs on logical platforms, and
3. A prototype co-ordination framework which refines the incoming WL based on the parametric

model.

4.2 Experimental Test Description

A cluster with the configuration specified in Section 3.5 was setup in the OpenStack Virtualization
environment. The job configurations listed in Table 4-1 were tested with different block sizes: 64,
128, 256, and 512 MB.

Table 4-1:

Job ID

© 0o ~NOOA~AWNEE

Job configurations tested

Description

Simple test with single node cluster

Test with multi node cluster

Test MR job(wordcount) with 1 GB input and default configuration
Test MR job(wordcount) with 1 GB input and 64MB block size
Test MR job(wordcount) with 1 GB input and 512MB block size
Test MR job (wordcount) with 2 GB input and default configuration
Test MR job(wordcount) with 2 GB input and 64MB block size
Test MR job(wordcount) with 2 GB input and 512MB block size
Test MR job(grep) with 1 GB input and default configuration

Test MR job(grep) with 1 GB input and 64MB block size

Test MR job(grep)with 1 GB input and 512MB block size

Test MR job(grep) with 2 GB input and default configuration

Test MR job(grep)with 2 GB input and 64MB block size

Test MR job(grep) with 2 GB input and 512MB block size

Test MR job(wordcount) with 3 GB input and default configuration
Test MR job(wordcount) with 3 GB input and 64MB block size
Test MR job(wordcount) with 3 GB input and 512MB block size
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4.3 Implementation

This section describes an implementation of a prototype coordination framework/WL translator
that accepts user input and dimensions the cluster according to the deployment strategy selected by
the framework.

The WL translator is implemented as REST web services using a REST API similar to the
Hadoop Resource Manager REST web services. This translator is a separate component located in
between the user and the Hadoop cluster. The user provides input to the WL translator as an XML
file specifying the MapReduce implementation jar file location, a directory path where the input
data is located, and a directory path where the output should be stored. See Appendix A for a sample
WL. To setup the translator, configure SSH access from the translator node to the running Hadoop
cluster (see Appendix C for instructions to set up Hadoop cluster). To submit a WL to the translator,
a running Hadoop cluster and the URL link to communicate the cluster using REST API are
required. A sample POST request to a Hadoop cluster running in local machine will look like

curl -X POST -H ‘Accept: application/xml' -H ‘'Content-Type: application/xml’
http://localhost:8080/rest/translate/apps -d @workload.xml

When the user submits a WL in the specified format, the translator calculates the input data
size. After this calculation, the deployment manager is called to identify the size of the servers. The
deployment manager uses the parametric model defined in Section 3.3 to return the amount of
memory required to process the job with a minimal job completion time. Based on the amount of
memory required, the translator calls the OpenStack REST services to create the number of
instances needed to satisfy the specified resource requirements. Hadoop has to be installed and
configured on each of these instances to setup the cluster. To avoid unnecessary installation of
Hadoop at every call, we created a template VM image in OpenStack with Hadoop installed and use
this template to launch an instance whenever required.

The submission of a Hadoop MR job involves two steps. The first step is to get the application
ID. This is followed by the actual job submission. The translator removes this multi-step overhead
as the translator automatically scales up or down the instances in the Hadoop cluster based on the
WL resource demands as estimated by the translator. When scaling up the Hadoop cluster, no
additional configuration is required. For scaling down the Hadoop cluster, we need to gracefully
remove the data nodes from the cluster to avoid the risk of data loss. As a result, we decided that the
minimum cluster size was one master and two slave nodes as core instance groups (each with a
DataNode daemon running on it). Any slave nodes added to this core cluster are referred as spot
instances (and operate without a DataNode daemon). These nodes will not store any HDFS data for
the job, but are used as computing resources to execute the MR job. As a result, we can add and
delete spot instances to and from the cluster without affecting the HDFS data. Each spot instance
has to be configured in the dfs.exclude file under the Hadoop configuration directory to exclude it
from storing data. The core instance groups have to be configured in the dfs.include file and the
nodes have to be refreshed by using the command “hdfs dfsadmin -refreshNodes”. There is an
alternative method of performing scaling down without maintaining a minimum cluster size. In this
method, the cluster can scale up as per resource demands and if the resource demand is less than
the available cluster’s resources, then the extra nodes/resources can be gracefully decommissioned
(as explained in previous method). By doing this, the data that were present in the decommissioned
nodes will be recreated within the active cluster’s resources. ldeally, this method is only used when
there is a node failure in the cluster.

Since the translator needs to perform lots of computation (such as finding the input data size,
applying a deployment strategy, identifying the required resources to execute the particular job, and
finally composing a cluster and deploying the job) from the initial job submission to generating a
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response, there was a time out error thrown after exceeding 1 minute from the the POST request.
The time taken by the translator for different jobs with different input size and block size are
available in Table 5-4, Table 5-5, and Table 5-6. An asynchronous web service was implemented to
overcome this timeout issue. In such a service the first step is to first send an acknowledgement of
the request and then to process the request. This enables the client application to continue its work
and later handle the response.

Figure 4-1 illustrates the data flow in the translator according to the following steps:

1. The user submits the Hadoop MR job using the REST API.

2. The translator receives the request and stores it in the request.

3. The translator returns an acknowledgement to the user.

4. The Message driven bean (MDB) listener on the request queue receives the message and
initiates processing of the request. In this scenario, a single MDB is associated with the
request queue which handles both (request and response) processing.

5. The Request MDB calls the required method in the translator.

6. The translator calls the deployment manager to dimension the cluster according to the
parametric model for the given WL.

7. The translator calls the running cluster and configures the resources for the request.

8. The Hadoop cluster returns a response.

9. The translator deploys the WL to the Hadoop cluster using the REST API

10. The translator returns a response to request MDB.

11. The request MDB, acting as a callback client, returns a response to the callback service.

12. The callback service returns a receipt confirmation message.

13. The request MDB returns a confirmation message to the request queue to terminate the
process.

Asynchronous
1 Submit Workload Web Services :
User
Translator
3 Confirmation (202) y
—
7 Return Response Request
8 Queue
Call Method || 5 '
v 4 onMessage
Request MDB
(Call Back Client)
Confirmation
Configure Cluster 9
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&
Depoy Wornows Running Hadoop Cluster

Master Node: 1

— Slave Node: 2

Figure 4-1: Data flow diagram of translator






Analysis | 23

5 Analysis

This chapter presents an analysis of the evaluation described in the previous chapter. This analysis
serves as the basis to find a deployment strategy — specifically dimensioning the cluster. The metrics
used in our analysis are memory usage (further split into physical memory and virtual memory),
CPU processing time, and execution time. All of these metrics are analyzed on a per job basis.

5.1 Major results

The results of the experiments are shown in Table 5-1, Table 5-2, and Table 5-3. With 1 GB input
data and 64 MB block size, the amount of memory required to process the WL is 3 GB. This is clear
from the measurement data. However, the memory required is the same irrespective of the number
of slave nodes in the Hadoop cluster. However, we evaluate the best deployment strategy based
upon a combination of memory required, job completion time, and number of slave nodes.
Providing the slave nodes with 3 GB RAM gives the best job completion time. Since each slave node
in our cluster has the same memory capacity, i.e., 2 GB RAM, it is always better to provide two slave
nodes (giving a total capacity of 4 GB) which is more than the required 3 GB memory.

The job completion time for 1 GB data is not reduced by much when varying the number of slave
nodes. In the case of 2 GB data, the job completion time is improved with three slave nodes rather
than when only one or two slave nodes are in the cluster. In the case of 3 GB of data, the job
completion time is improved with four slave nodes rather than one, two, or three slave nodes are
utilized.

The same WL works better with an extended configuration, such as a 512 MB block size. From
Table 5-1, we can see that with a 512 MB block size, the amount of memory required is reduced to
1/6th of the memory required with a 64 MB block size and in turn reduces the number of nodes
needed in the cluster to execute the job in a shorter job completion time. This is because the number
of input splits are reduced when the block size is higher. The extended configuration not only
decreased the amount of memory required, but also decreased the job execution time as is evident
from Table 5-2 and Table 5-3. These experimental results confirmed the deployment strategy we
defined in the Section 3.3. From our analysis, we observe that the DFS block size, replica, number of
mappers, and number of reducers plays an important role in modeling the WL. However, we
defined a simple model and limited the parameters in the deployment strategy. However, the WL
model can be further refined in future by adding additional parameters. Figure 5-1, Figure 5-2,
Figure 5-4, Figure 5-5, and Figure 5-6, presents the experimental results of Table 5-1, Table 5-2, and
Table 5-3.
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Table 5-1 Results obtained from 10 iterations with 1 GB input size
WL Block |Input |Average |Average |Average Number | Average Job |Standard
Type Size  |Splits |Physical |Virtual CPU of Slave |Completion |Deviation
(MB) Memory |Memory |Processing |Nodes |Time (sec) [JCT
(GB) (GB) Time (sec)
64 16 3.0098| 12.50426 2.48 4 177 1.5837
64 16 2.967 | 12.50413 2.37 3 173 1.3672
64 16 | 2.97718| 12.50414 2.38 2 171 0.9756
Wordcount
64 16 | 3.03069| 12.50411 2.33 1 285 1.0132
512 2| 047316 2.21021 1.38 1 141 2.1134
512 2| 047694 2.21021 1.39 2 135 0.7384
64 16 | 3.00988| 12.50426 2.48 4 177 1.6593
64 16 3.169 | 12.46296 2.45 3 176 1.0039
Grep 64 16 | 2.97718| 12.50414 2.38 2 172 2.3901
64 16 | 3.09934| 12.46394 2.34 1 298 0.8495
512 2| 047316 2.21021 1.38 1 143 0.4291
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Table 5-2 Results obtained from 10 iterations with 2 GB input size
WL Block | Input | Average | Average | Average Number | Average Standard
Type Size | Splits | Physical | Virtual | CPU of Slave | Job Deviation
(MB) Memory | Memory | Processing | Nodes Completion | JCT
(GB) (GB) Time (sec) Time
(sec)
64 30 5.49 22.80 5.749 4 254 2.1248
64 30 5.48 22.80 4.81 3 262 1.9530
Wordcount 64 30 5.46 22.80 4.70 2 317 2.0485
512 4 0.834 3.68 2.73 1 263 1.4927
512 4 0.818 3.68 2.76 2 265 1.6642
64 30 5.46 22.80 4.71 2 320 1.5492
64 30 5.48 22.80 4.81 3 267 1.1094
Gre
P 64 30 5.49 22.80 5.75 4 260 1.8539
512 4 0.92 3.94 2.80 1 267 2.0159
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Table 5-3 Results obtained from 10 iterations with 3 GB input size
WL Block | Input | Average | Average | Average Number | Average Standard
Type Size | Splits | Physical | Virtual | CPU of Slave | Job Deviation
(MB) Memory | Memory | Processing | Nodes Completion | JCT
(GB) (GB) Time (sec) Time
(sec)
64 46 8.52 34.57 7.34 4 330 2.0193
64 46 8.39 34.57 7.28 3 382 0.9034
64 46 8.42 34.57 7.22 2 458 1.2823
Wordcount 64 46 8.38 34.57 7.28 1 471 1.4934
512 6 1.19 5.15 4.16 1 393 2.1167
512 6 1.18 5.15 4.31 2 381 0.9589
512 6 1.18 5.15 4.30 3 415 1.6635
64 46 8.52 34.60 7.35 4 330 2.0698
64 46 8.39 34.57 7.30 3 385 2.0432
Grep
64 46 8.43 34.60 7.23 2 462 1.7803
512 6 1.26 5.18 4.17 1 381 1.8580
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Table 5-1, Table 5-2, and Table 5-3 contains the data gathered from the Hadoop cluster
executing Word Count and Grep workloads with different input data size, block size, and different
size of the slave nodes. The workloads were executed ten times with each of the possible
combinations above and the average values were calculated for Physical Memory consumed, CPU
processing time, Virtual memory used, and Job Completion time. The standard deviation of the JCT
indicates that the cluster was consistent in using the hardware resources and job completion time is
normally distributed. As shown in the Figure 5-3, the Job Completion Time for 1 GB data with 64
MB Block Size and 4 server nodes configuration is normally distributed. The distribution is the
same for all the other combinations too.
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The above results were gathered by manually setting up the cluster with necessary slave nodes
and block size. The average execution time obtained in the above tables is the time to execute the job
after the cluster is setup according to the deployment strategy. The WL translator helps the user
remove the manual steps of calculating the necessary slave nodes needed and launching the new
instances and decommissioning the excess spot instances instantiated for the job after job
completion. Table 5-4, Table 5-5, and Table 5-6 prove that the overhead introduced by the
translator is negligible when compared to the manual intervention and time needed for executing

each job.
Table 5-4 Translator measurement for 1 GB Data
WL Block Number |Average Standard
Type Size (MB) |of Slave |Completion |Deviation
Nodes Time
including
cluster setup
(sec)
64 4 188 1.9375
64 3 179 2.1582
64 2 172 1.8529
Wordcount 64 1 287 1.7458
512 1 141 2.0834
512 2 135 1.8974
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Table 5-5 Translator measurement for 2 GB Data
WL Block Number | Average Standard
Type Size of Slave | Completion | Deviation
(MB) Nodes Time
including
cluster
setup (sec)
64 4 266 2.6327
64 3 270 1.5082
Wordcount 64 2 319 2.8570
512 1 264 2.1839
512 2 267 1.8328
Table 5-6 Translator measurement for 3 GB Data
WL Block Number | Average Standard
Type Size of Slave | Completion | Deviation
(MB) Nodes Time
including
cluster
setup (sec)
Wordcount 64 4 340 2.4782
64 3 387 2.9381
64 2 460 2.0062
512 1 394 3.2701
512 2 383 2.7192
512 3 417 2.6910

5.2 Reliability Analysis

The data collected is reliable since it was gathered from experimental tests (conducted in Ericsson’s
lab infrastructure) rather than via simulation tool. Also, each test was executed a minimum of ten
times to check whether we receive consistent performance metrics. The metrics are shown in
Section 5.1. The standard deviation is very small for the sample workloads executed a minimum of
ten times with different Block Size and input data size.

The possibility of skew in the measurements due to usage of virtual machines for the experimental
setup is ignored because of the consistent results obtained. If the shared resources were not
guaranteed to the VMs, the job completion time would have changed a lot. The consistent results
confirm that the shared resources were guaranteed to the VMs by the OpenStack engine.

5.3 Validity Analysis

The experiments were done on a cluster of VMs set up in a private cloud (OpenStack) and
automated using the implemented WL translator. The validity of the results could not be checked
since Ericsson could not provide real workloads and physical machines to redo the experiments in a
real environment.
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6 Conclusions and Future work

In this chapter, we present the conclusions of our work, limitations of the results obtained, and
suggest future work to help others to follow up this work.

6.1 Conclusions

In this thesis, we conducted an in depth investigation of MapReduce WLs in an open source
implementation of Hadoop. In order to describe what Hadoop MR jobs look like, we identified some
implicit parameters and defined a parametric model for Hadoop MR jobs. Next we chose a small
number of performance tuning parameters and then we attempted to identify the best deployment
strategy in terms of dimensioning the Hadoop cluster. The experimental results showed that with
well tuned parameters, MR jobs can achieve an improvement (i.e., a reduction) in the job
completion time and the utilization of the resources are improved. This research satisfies all the
elements described in the problem statement. However, this research has alternate approach in the
beginning which is described more in Appendix D.

6.2 Limitations

Though we improved the job completion time and resource usage, we only used a small number of
parameters due to the need for extensive testing of various configurations on different cluster sizes.
The cluster consisted of a set of VMs which shared the same underlying hardware. Also the WLs
tested were only those sample WLs available as part of Hadoop distribution, i.e., there were no real
WLs available for testing. Conducting the thesis at Ericsson and with limited time and resources
forced the above two limitations of hardware and real workloads.

6.3 Future work

The parametric model we proposed is a simple model. However, it could be further refined to
optimize the usage of disaggregated resources. The results of this thesis should be verified in larger
sized clusters. Furthermore, more types of WLs should be introduced in the experiments to refine
the model, rather than being specific to the few types of WLs available in the Hadoop distribution.
In addition, the effects of changing other parameters, such as data locality, number of mappers and
reducer slots in Hadoop cluster, and file buffer size should be studied. Choosing the best scheduler
for our parametric model will be investigated. The optimum value of reduce instances will be
investigated in future, but is expected to be based on the input dataset size.

6.4 Reflections

This research proposes new solutions to workload characterization aimed at performance
optimization. The optimization potentially has some environmental implications as increased
performance reduces the time that these jobs need to execute, hence reducing power consumption
and makes the underlying resources available to execute other task. However, during the course of
this project we have not encountered any major issues that have new ethical or social implications.
The research implications are essentially the same as for all the existing work in each of the areas.
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Appendix A: Workload Samples

Workload sample 1:
<? xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workload>
<application-name>test</application-name>

<jar-path>{{HADOOP_COMMON_HOME}}/share/hadoop/mapreduce/hadoop-mapreduce-
examples-2.7.2.jar</jar-path>

<args>
<arg>wordcount</arg>
<arg>/user/hduser/input</arg>
<arg>/output/outputs</arg>
</args>

</workload>

Workload sample 2:
<? xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workload>

<application-name>test</application-name>

<jar-path>{{HADOOP_COMMON_HOME}}/share/hadoop/mapreduce/hadoop-mapreduce-
examples-2.7.2.jar</jar-path>

<args>
<arg>grep</arg>
<arg>/user/hduser/input</arg>
<arg>/output/grep6</arg>
<arg>'dfs[a-z.]'</arg>
</args>

</workload>
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Appendix B: Submit Application Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application-submission-context>
<application-id>application_1421661392788 0040</application-id>
<application-name>test</application-name>
<queue>default</queue>
<priority>3</priority>
<am-container-spec>
<environment>
<entry>
<key>CLASSPATH</key>
<value>{{CLASSPATH}}&It;CPS&gt;./*&It;CPS&gt;{{HADOOP_CONF_DIR}}&It;CPS&gt;{{
HADOOP_COMMON_HOME}}/share/hadoop/common/*&It;CPS&gt;{{HADOOP_COMMON_HOM
E}}/share/hadoop/common/lib/*&It;CPS&gt;{{HADOOP_HDFS_ HOME}}/share/hadoop/hdfs/*&lt;
CPS&gt;{{HADOOP_HDFS_HOME}}/share/hadoop/hdfs/lib/*&It;CPS&gt;{{HADOOP_YARN_HO
ME}}/share/hadoop/yarn/*&It;CPS&gt;{{HADOOP_YARN__HOME}}/share/hadoop/yarn/lib/*&lt;C
PS&gt;./log4j.properties</value>
</entry>
</environment>
<commands>
<command>{{HADOOP_COMMON_HOME}}/bin/hadoop jar
{{HADOOP_COMMON_HOME}}/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar
wordcount /user/hadoop/input /output/output</command>
</commands>
</am-container-spec>
<unmanaged-AM>false</unmanaged-AM>
<max-app-attempts>2</max-app-attempts>
<application-type>MAPREDUCE</application-type>
<keep-containers-across-application-attempts>false</keep-containers-across-application-
attempts>
<application-tags/>
</application-submission-context>
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Appendix C: Steps to setup Running Cluster

e Launch instances from OpenStack required for configuring multi-node cluster.

e Hadoop requires a working java 1.5+. However, java 1.6 or higher is recommended for running
Hadoop.

e Install java on all the nodes.

e Add adedicated user for Hadoop system, for example: hduser.

e Configure password-less SSH as Hadoop requires SSH access to manage nodes.
hduser@ubuntu:~$ ssh-keygen -t rsa -P ""
Generating public/private rsa key pair.
Enter file in which to save the key (/home/hduser/.ssh/id_rsa):
Created directory '/home/hduser/.ssh’.
Your identification has been saved in /home/hduser/.ssh/id_rsa.
Your public key has been saved in /home/hduser/.ssh/id_rsa.pub.
The key fingerprint is: 9b:82:ea:58:b4:e0:35:d7:ff:19:66:a6:ef:ae:0e:d2
hduser@ubuntu The key's random art image is: [...snipp...]

o Keep one node as master and rest of the nodes as slaves.

e Make sure all the machines are able to reach each other over the network. (i.e hduser user on
the master must be able to connect to its own host and also to hduser user on the slave node
via a password-less SSH login)

e Download Hadoop from the Apache Download Mirrors and extract the contents of the Hadoop
package to a location of your choice. | used/usr/local/hadoop. Make sure to change the owner
of all the files to the hduser user and hadoop group, for example:

$ cd /usr/local

$ sudo tar xzf hadoop-2.7.2.tar.gz
$ sudo mv hadoop-2.7.2 hadoop
$ sudo chown -R hduser:hadoop hadoop
e Update ~/.bashrc with path set to Hadoop installation directory.

e Configured hadoop-env.sh, core-site.xml, hdfs-site.xml, yarn-site.xml and mapred-site.xml on
all the nodes. See Appendix A for configuring these files.

e Additionally, configured master and slave file only on master node. On master file, master’s
hostname should be added. On slave file, slave nodes’ hostname should be added. If master
node has to be used as slave node, then master’s hostname should also be added in slave file.

hduser@anitha-1:/usr/local/hadoop$ vi /etc/hadoop/master
master

hduser@anitha-1:/usr/local/hadoop$ vi /etc/hadoop/slave
master

slavel
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slave2

o Before starting the cluster, format the HDFS file system via NameNode. Run the below
command to format the NameNode. (Note: Do not format the NameNode when the cluster is
running as you will lose all the data in HDFS that are available at present).

hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop namenode -format

e Run $HADOOP_INSTALL/sbin/start-dfs.sh and  $HADOOP_INSTALL/sbin/start-
yarn.sh on the master node.

e If everything is configured correctly, you can see a list of processes running on all the nodes by
issuing jps command.

The following java processes should run on master.

hduser@anitha-1:/usr/local/hadoop$ jps
4065 IJps

820 NameNode

1390 ResourceManager

1545 NodeManager

1235 SecondaryNameNode

992 DataNode

The following java processes should run on slaves.

hduser@anitha-2:/usr/local/hadoop$ jps
14897 DataNode

15053 NodeManager

16298 Jps

o Like starting the cluster, stopping the cluster also done by stop-dfs.sh and stop-yarn.sh
script inside $HADOOP_HOME /sbin.
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Appendix D: Other Approaches

In this master thesis project, initially our main focus was to develop a coordination framework (as
local-level resource coordinators) for server creation based upon disaggregated resources available in
various resource pools, e.g. CPU, memory, storage, network bandwidth and data locality-aware
consideration. Some tasks considered in specific were:

1) a holistic means to server creation based upon requests derived from different application demands
(e.g. CPU-, memory-, 10-intensive applications). We researched and investigated to get real dataset to
analyze different application workloads. We collected data from Google Data set [32]. Though the data
set contains has lots of parameters including job level and task level data, we could not derive some
specific workloads such as Hadoop MR workloads from the data set. Hence, we used the sample
workloads that were available as part of the Hadoop distribution and limited the scope of the thesis to
these MR workloads. To analyze the MR workloads, we planned to create a Hadoop Cluster. Initially
were playing around with the Yarn cluster for quite some time, in order to get a basic understanding of
launching Docker Container Executors(DCE) [33] at Yarn node managers. The purpose of this practice
is not to set up a testing environment in Yarn, but to see if there will be some extra parameters and
resources required by launching the DCE on a Yarn cluster. However, The machine was not powerful
enough to host the cluster. So we created an experimental setup using OpenStack. Due to the time
consumption in setting up the Hadoop cluster, the experimental core parameters were reduced to 3.
They are HDFS block size, Input Splits and Input data size. They are the significant parameters in
improving the performance of the job in terms of Job completion time and Memory utilization. Out of
these three parameters, HDFS block size is the most significant parameter as increasing the block size
to 512MB almost reduced the Job completion time and memory utilization by 1/8th comparing to 64
MB default block size. This was also because the time constraint was critical for implementing the
Translator part using RESTFUL APls.

2) An algorithm for matching requests and available disaggregated resources on hosts to be adopted by
our per-request, shared-state coordinators. Although this was the initial plan, since there were no
actual disaggregated resources, we created a co ordination framework to compose the server and
dimension it (choosing the number of slave nodes in cluster) according to incoming WL resource
requirement.

3) Evaluation and performance analysis of the proposed solution. Initially we planned to evaluate the
workloads using a tool called CloudSim [34], which is used to model and simulate customized cloud
infrastructure and services. Due to the difficulty in using the tool, OpenStack was used for the purpose.



TRITA-ICT-EX-2016:172




