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Abstract 

Advanced automatic testing is very important in development and research within the vehicle 
industry. Hardware-in-the-loop (HIL) systems give the ability to validate Electronic Control Units 
(ECUs) based on software simulation without gathering all of the physical hardware. This enables 
testing by providing inputs and examining the corresponding outputs of the ECUs in a simpler and 
safer way than in traditional physical testing. HIL offers the advantage that we can verify and 
validate the functions of ECUs prior to full-scale hardware production.  

On the contrary, because HIL systems are normally released as general-purpose test beds, it 
takes time to embed them into the current system. Additionally, the question of how to fill the gap 
between the HIL and the test environment is even more critical when the test bed is expected to be 
used for a long period of time without modifications. Furthermore, HIL systems are precious. It is 
not practical and will be considered as a waste of resource if it is used exclusively by testers. Scania’s 
RESI group uses Client-Server architecture to make it more flexible. The HIL system is hosted at 
server side while the testers operate it at client side. This architecture enables different 
implementations of client and server as long as a same protocol is applied, but this still does not 
solve the problem that the HIL is not always accessible when the testers want to debug their scripts. 
The testers want to find a solution to achieve this goal offline (without servers).  

To solve the problem, we first investigated which programming languages are used in the 
industry. Without doubt, there is no dominant language that ideally suits all situations, so secondly, 
we developed a new test environment. The new environment including “Dummy Mode” and “Mat 
Mode” is able to provide script validation service on basic and logic levels without servers. The 
result shows the Dummy mode is able to reach a higher detection rate (99.3%) on simple errors 
comparing to the current environment (81.3%). By reproducing and reusing the result of HIL 
system, Mat mode is able to identify logic errors and provide better assistance when the logic errors 
are found. In general, the proposed environment is able to show a better way of using HIL which 
makes the whole system more efficient and productive. 
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Sammanfattning 

I fordonsindustrin ställs stora krav på avancerad automatiserad testning. För att utvärdera 
Electronic Control Units (ECUs) används så kallade Hardware-In-the-Loop-system (HIL) för att 
simulera den omkringliggande hårdvaran. Detta möjliggör enklare samt säkrare testning av ECU-
komponenterna än vid traditionell fysisk testning. Med hjälp av HIL kan ECUs testas innan en 
fullskalig produktion sätts igång. Då HIL-system vanligtvis utvecklas för ett brett 
användningsområde kan det ta tid att skräddarsy dem för ett specifikt system. Ett annat viktigt 
problem vi ställs inför är skillnaderna mellan HIL-systemet och testmiljön, då testfallen förväntas 
att användas en längre tid utan förändringar. Vidare är HIL-system kostsamma. Det anses vara 
varken praktiskt eller ekonomiskt att låta HIL-system enbart användas av testare.  

Scanias RESI-grupp använder en klient-server-arkitektur för att åstadkomma flexibilitet HIL-
systemet körs på serversidan medan testarna arbetar på klientsidan. Den här typen av arkitektur 
öppnar upp för olika implementationer på klient- samt serversida, förutsatt att samma 
kommunikationsprotokoll används. En nackdel med den nuvarande lösningen är att HIL-systemet 
inte alltid finns tillgängligt när testarna vill felsöka deras programskript. Testarna vill hitta en 
lösning där det går att utföra felsökningen lokalt, utan tillgång till servrar.  

För att kunna lösa problemet undersöktes först vilka programmeringsspråk som används inom 
industrin. Undersökningen visar på att det finns inget programmeringsspråk som är idealt för alla 
ändamål. Vidare utvecklades en ny testmiljö som tillhandahåller testlägena "Dummy Mode" samt 
"Mat Mode". Testmiljön kan användas för att validera programskript på grund- och logiknivå utan 
att kommunicera mot servrar. Resultatet visar att "Dummy Mode" detekterar upp till 99.3% av 
enklare typ av fel än motsvarande 81.3% i nuvarande testmiljön. Genom att reproducera och 
återanvända resultat av HIL-systemet kan “Mat Mode” identifiera logikfel samt ge en bättre 
indikation om vad felen innebär. Generellt sätt kan den föreslagna testmiljön visa på ett bättre 
användande av HIL, som gör hela systemet mer effektivt och produktivt. 
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1 Introduction 

Vehicles are expected to always be more reliable and intelligent due to advanced and complicated 
systems, and at the same time vehicle manufacturers require faster and more efficient production 
and delivery. In order to achieve these objectives, an optimized automatic test environment is of 
great importance to the whole development process. This thesis aims to explain Scania’s current 
automatic test environment and give a set of solutions that as a whole will improve the speed and 
efficiency of this testing. 

1.1 Background 

Scania uses MathWorks® MATLAB®/Simulink® [1] to model the advanced control system and 
Hardware-in-the-loop (HIL) to perform integration testing. HIL is a combination of software and 
hardware which helps to perform testing of embedded systems while achieving low cost, a 
repeatable test procedure, and high usability in a safer environment that traditional testing [2]. HIL 
is also used to perform tests that would be hard or very dangerous to test in a real vehicle. 
Furthermore, in Scania, HIL is used to complement real tests in vehicles in order to cover the large 
variation space due to many options that are available when configuring a specific instance of a 
vehicle. 

In the HIL environment, components under tested believe that they are placed into a real 
environment, but they are actually connected with various signal sources that send exactly the same 
signals as the corresponding real component. Computers, instead of a physical plant (engine, 
brakes, and vehicle dynamics), feeds the stimulated signals to the object(s) under test [3]. 

Many development procedures can benefit from this HIL pattern. Function tests can be done at 
an earlier stage, thus accelerating the maturity of the products; especially when the product depends 
upon other hardware or software that has not yet been brought into existence. Reactions taken by 
Electronic Control Units (ECUs) of failures or dangerous situations can also be easily done at a 
lower cost in terms of money and time than when using traditional testing. Most importantly, HIL 
has the ability to automate all of these test cases. With an appropriate test configuration, testing can 
run 24 hours a day without human interaction [4]. See the illustration in Figure 1-1 of HIL being 
used to test an ECU. 

ECU

Signal IO Signal IO

Physical 
Engine

ECU

Signal 
Simulation

Signal
Simulation

Engine 
Model

Real-time Simulation

                       Reality                                                 HIL-Simulation                 
 

Figure 1-1: Illustration of HIL Simulation 
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Obviously, HIL is a relatively independent general-purpose environment, but there is still a 
large gap to fill to make it work perfectly inside Scania’s continuous integration (CI) system. 

1.2 Problem definition 

In RESI department, HIL is not always accessible to all test script writers. To debug or validate their 
scripts, testers need to wait in queue. On the other hand, the scripts might contain very simple 
errors before they are tested against HIL, and debugging such kind of errors on HIL is considered a 
waste of time and resource. This reduces the efficiency of using HIL more seriously. Therefore, it is 
very important to find a new way to make the debug of the scripts easier and use the HIL more 
productive. 

1.3 Purpose 

The purpose of this degree project is to investigate a new testing environment to overcome the 
current problems and improve the using efficiency of HIL. The new testing environment should be 
able to do offline debugging in an easier way. Two debugging tools, Dummy and Mat are proposed 
and implemented in the project and evaluated. 

1.4 Goals 

The goal of this project is to investigate a new test script environment. The goal has been divided 
into the following three sub-goals: 

1. Background research: which language is used in industry and what is the trade-offs if we switch 
to the new language. 

2. Implementation of a new test script environment: use the chosen language to implement a new 
testing environment which is able to provide better offline debugging support and better user 
experience.  

3. Evaluation of the new testing environment: proof is required to illustrate the new environment is 
better than the old one in terms of running time, bug detection rate and user experience. 

1.5 Delimitations 

This thesis does not discuss how to practically compose a test “course” because this is outside the 
scope of this thesis. Although we do not have a pre-designed course at hand; fortunately, such a 
course is completely independent of our environment, hence when we implement related functions 
we will simply assume that we have a suitable course. More details about test courses can be found 
in Sections 2.4 and 2.5. 

The details of how to use HIL are also not part of this thesis because we use the well-known 
client-server architecture in our test environment. This enables us to focus on the client part, while 
ignoring the implementation of the server side (where the HIL is hosted). 

1.6 Structure of the thesis 

Chapter 2 presents relevant background information about test environment. Chapter 3 presents 
the methodology and method used to solve the problem. Chapter 4 presents a detailed 
implementation of the test environment in a systematic fashion. Chapter 5 compares the new and 
old environment and gives an evaluation of the new one. Finally, the thesis concludes with Chapter 
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6 that offers some conclusions, suggestions for future work, and some reflections on the relationship 
of this thesis project with society. 
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2 Background 

This chapter introduces the Python programming language (used in our test environment), the 
current test environment, and declarative scripts. Section 2.1 explains why Python is still used as the 
main language in the test environment. Section 2.2 describes the architecture of the test 
environment and Section 2.4 gives a brief introduction to test script. Section 2.5 introduces the 
concept of “independent guarded assertions”. This concept is very important because it is used to do 
matching between a script and the corresponding MATLAB (mat) files. This chapter also introduces 
some additional aspects relevant to the thesis. 

2.1 Evaluation of Language: Why is Python used as well? 

This section explains why Python is still used in the test environment from two different aspects: a 
comparison with other languages and the tradeoffs of moving to a new language. 

2.1.1 Language Evaluation Criteria 

It is very hard to evaluate any programming language in isolation because when we believe one 
language is better than another, we make this judgement based on our own understanding of and 
background in the two languages. Moreover, this conclusion might not hold for others in the same 
team. This means, we cannot simply give each programming language a score and choose the 
language with the highest score. Additionally, it is pointless to talk about the merits of a single 
language without considering its application environment. As a result, we need to fully understand 
the requirements and only then can we identify a language that would satisfy as these requirements. 
Requirements that cannot be met by the language itself will need to be addressed by tools, either 
available tools or our own tools. 

Ordinarily, before we do a detailed comparison, some languages can be easily removed from our 
list, such as low-level programming languages (machine languages and assembly languages) and 
web programming languages (Javascript, Hypertext Markup Language - HTML, and so on). 

Generally speaking, programming language evaluation criteria includes four aspects: 
readability, write-ability, reliability, and cost [5]. 

Readability is the capability required for a reader to understand the purpose of a text. It 
includes many aspects such as overall simplicity, data types, control statements, syntax 
considerations, and so on. Write-ability includes simplicity, support for abstraction, and 
expressivity [5]. These latter two factors determine if it is easy to implement a certain function in a 
shorter length of code and whether the result code can be easily and correctly understood by other 
readers within a shorter period. Reliability involves aspects such as type checking, exception 
handling, and aliasing (different presentation of the same memory block, for example by pointers, 
object names, and reference to the same object in C). Cost includes more general aspects, such as 
the time spent training programmers, writing programs, compiling time, execution time, 
maintainability, and so on [5]. 

By implementing a phone-code function, Lutz Prechelt [6, 7] provides a very good example 
describing programming languages in a context which is quite close to us. Lutz sent the 
requirements to programmers giving each of them the same requirements and input. The collected 
result shows that the length of script languages such as Python and Perl was only half the length of 
non-script languages such as C, C++, and Java, but the reliability of the program shows no 
observable difference. Within the script language group, Python and Perl were faster in terms of 
execution time than Rexx and Tcl. 
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Spinellis, et al. [8] found a similar result. Despite some particular inappropriate circumstances, 
script languages (Python, Perl, and Javascript) require only one third the number of lines-of-code to 
implement the same functions as non-script languages. These results suggest that a script language 
is more suitable for our test environment because expressivity is a valuable merit to our test script-
writers. Shorter source code means fewer chances to make mistakes. 

Another important factor is the built-in support for data structures and string processing 
because we need to deal with different data flows and gather test results. This functionality is 
supported quite well by script languages, such as Python and Perl. 

2.1.2 Current Testing Environment 

Currently, most of the testing code in RESI’s code base is written in Python. To give a more precise 
impression, we calculated the LoC (line of code) for these testing scripts and related code. Two main 
folders are taking into account, TC_NCG and main.R2014 while most scripts are in TC_NCG folder 
and main.R2014 is a test automation framework (TaFw) providing support functionalities such as 
hardware abstraction, hardware (signal) modeling, function interfaces, tools, communication 
protocol implementation to servers and so on.  

In general, the current project includes 3545 files and 3028 of them are Python files, accounting 
for 1191784 line of code (in Python). The TaFw project was started four years ago (2010) and 
delivered in 2014 after two years’ preparation. As we can see from this similar example, moving to a 
new language means a huge amount of work to do and will take years of preparation. Additionally, 
the testers will need a period of time to study the new features of another language, forcing them to 
focus on the details of this new language, rather than focusing on the company’s products. 

2.1.3 Conclusion 

Due to the nature of weak or dynamic type systems of scripting languages, many errors cannot be 
found during compile time[8]. However, we think with the help of offline debugging and other tools 
or mechanisms, such as unit testing, can solve this problem indirectly. We will discuss this later in 
Chapter 4. As a result of this chapter, the conclusion is that Python remains the best choice of 
language for the testing environment. 

2.2 Test Environment 

Figure 2-1 shows the workflow in our department, RESI (Vehicle Electrical Integration and Chassis 
System Software). The model is a combination of a general static model and a dynamic model. The 
dynamic model models all of the dynamic behavior, such as a combustion engine. The static I/O 
model describes how the I/O boards of the HIL are allocated – i.e., connected to specific hardware, 
and how the signals are transferred into other units, such as ECUs. The combination of a general 
and dynamic model is needed for executing tests against the many possible vehicle variants 
produced by Scania, avoiding the need for a per product model. 

Each input and output, also known as a signal, has a unique layered name (such as 
root/a/b/c/d) over the Scania naming scope, which constructs a tree structure from a larger 
picture complying with their physical subordinate relationship, and the ‘root’ element identifies a 
specific server. From the testing code’s perspective, each signal is represented as a subclass of 
“ModelVariable” including the mapped set and get paths, block type, I/O type, possible values, and 
so on. 
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Figure 2-1: Work flow in our Client-Server architecture 

Figure 2-2 illustrates the most basic level of communication between client and server, while 
ignoring the details of the architecture and workflow. 

ServersClient

Signal

Signal

Signal

Signal

Signal

Signal

Signal

Signal

Network  
Figure 2-2: Communication between Client and Servers 

A client-server architecture is a networking architecture where the client requests a service from 
the server, and the server processes the request and acts based upon the request [9]. An advantage 
of using a client-server architecture is that the client and the server can communicate with each 
other and are independent of their specific implementations – as long as they use a common 
protocol to communicate. As noted in Section 1.5, this enables us to focus on the client, while 
avoiding all of the implementation details of the server. 

The “ModelVariable” class, shown in Figure 2-1, provides general-purpose functions to 
implement the underlying mapping relationship to ensure that when a function is called, its 
corresponding server peer will return a result. This mechanism greatly facilitates the process of 
manipulating signals in a friendly and human-readable way. 

Apart from general-purpose functions, the test environment provides another set of interfaces 
to facilitate communication between the clients and the servers. These interface modules provide 
specific functions to the test scripts. In the test environment, some functions, such as setting 
neutral, starting the engine, or parking the vehicle, are used quite often in many scripts. 
Furthermore, these functions commonly consist of the same operations. For example, “parking the 
vehicle” consists of the operations “stop the vehicle based on the gear type”, “trigger the parking 
brake”, “set neutral”, “release pedal and steering wheel”, and “resume the key position”. To stop a 
truck, the test script simply calls the “parking the vehicle” function, instead of calling all of the 
underlying operations. This enhances readability and write-ability, while decreasing cost since the 
test author has to write fewer lines of code. 
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When a function, either a common function or specific function, is called from a script, the 
request is sent through the network to its destination server. There are many servers in the test 
environment and they each have different responsibilities. However, we will not go into the details 
of how these servers process these requests, because these details are irrelevant to our work. 
Logically our request is simply dispatched to a target server by a name mapping function based on 
the first name of the requested path (which is ‘root’ server if a path ‘root/a/b/c/d’ is given). 

Although the test environment architecture is a standard client-server model, it still has some 
bottlenecks, and all the problems result from one underlying cause: a tester has only limited access 
to these servers. In our department, we only have access to these servers 2 weeks out of every 4 
weeks. Furthermore, during this time all of our team’s members share these servers. It is a waste of 
time when a script is executed and then a simple run-time error occurs, as the tester now has to 
either waste resources correcting this run-time problem or yield the server to another tester. In the 
current client-server architecture not all of these run-time errors can be identified offline (for 
example, by using PyLint) as opposed to online (when the servers are available and online).  

To deal with these problems, composing and testing a new test script is split into three 
consecutive phases: Dummy mode, Mat mode, and Normal mode. Chapter 4 will introduce each of 
these phases. 

2.3 Symbolic execution 

Symbolic execution is mainly used to automatically analyze and generate test cases for statically 
typed languages [16]. Instead of actual inputs, the interpreter of the symbolic execution tool uses 
symbolic values to carry out the execution of programs, ending up with constraints on symbols of 
each conditional branch, and a formula containing symbols in each branch. By analyzing the 
constraints and formulas, symbolic execution tools are able to achieve high test coverage [13]. 

More specifically, consider the following program: 

1 x = readNumber() 
2 y = x / 5 
3 if (10 – y == 0) 
4     return(failure) 
5 return(success) 
 

When the program is executed with symbolic execution, the variable x will be given a symbol as 
the return value of function readNumber(), for example, ‘k’. The next line of code will assign 
variable y with value ‘k/5’. Because of the following ‘if’ statement, the program will terminate with 
two branches: failure (10 – k/5 == 0) and success (10 – k/5 != 0), and the failure branch is 
also marked as a constraint path. After the previous steps, if the targeted result of the program is 
failure, then the analyzer of the symbolic execution will use a constraint solver to determine that 
k == 50 will ensure the failure of the program, while other values of k will result in success. 

However, there are two common concerns with symbolic execution: 

1. As the size of the program increases, the paths generated by symbolic execution will 
also experience an exponential growth, even with a dead loop [14]. 

2. Multiple environmental factors, such as the operating system, user data and the 
network taking the same (input) path to the program will also pose a challenge to the 
symbolic execution [15]. 

Furthermore, symbolic execution will have more challenges when dealing with dynamic 
languages, for example Python or Perl, in terms of complicated semantics, difficult type inference, 
and so on [16]. 
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Besides the issues mentioned above, there are also other reasons that symbolic execution is not 
used in the implementation of Dummy mode. These reasons will be given in Section 4.1.4. 

2.4 Brief introduction to test scripts 

Each script in RESI (Research-Engine-System-Integration) represents a specific user function. All 
of these specific user functions are stored in Scania’s internal database and can be access through 
the Scania Electrical System Architecture for Modularization and Maintenance (SESAMM) 
management system. The scripts follow the same structure – shown in Figure 2-3. 

Pre

Act1

Act2

ActN...

Post

 
Figure 2-3: Structure of a test script in RESI 

The ‘pre’ function normally includes detection of the System under Test (SUT). For example, if a 
script is going to test the steering light function, it has to ensure that the key is inserted in the 
vehicle and that the vehicle is in the correct state. If these preconditions are met, then each of the 
following actions (Action1 to ActionN – abbreviated Act1 to ActN) will be executed with a stimuli 
and an associated assertion. Any violation of an assertion will be recorded and will trigger a specific 
reaction of the execution, such as aborting the script. The ‘post’ procedure is responsible for 
collecting the data, generating a final report, and restoring the SUT to a known default state. 

There are two issues when executing such test scripts that should not be ignored. The first one is 
the relationships between these steps, i.e., pre, actions, and post. Although the activities undertaken 
by each step are encapsulated within the step, these activities still have a strong correlation between 
each other. This means that the result of one step is strongly related to the activities of the previous 
step. Another problem is that the ‘pre’ step contains not only state checks, but may also include 
some unnecessary activities. These activities are undertaken even if the vehicle is already in the 
desired state.  

Although the two problems highlighted above look quite minor at this point, they greatly reduce 
the applicability of a script in the new system – unless they are handled properly. A detailed 
interpretation of these two problems and a proposed solution will be given in Section 4.2.2. 

2.5 Independent Guarded Assertions 

From the earlier discussion of Figure 2-2 we can see that all the inputs and outputs between client 
and servers are done through the same super class: ModelVariable. More specifically all of the 
operations are done by two functions in this class: setValue() and getValue(). Therefore, any script 
can be translated into another (equivalent) version of the script containing only calls to setValue() 
and getValue(). 
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It is very common that a script is structured according to the following pattern: “Do A”, “Check 
A done”, “Do B”, “Check B done”, … and verify “Assertions” in the last step. For example: 

Pre(State.idling(), setValue(), State.setGear(), State.setNeutral()) 
act1(self.toggle_worklight_function(), self.expected_response(assertions…)) 
Post(setValue(), Event.wait(), State.parked()) 

The above code was taken from an existing RESI script. Obviously, this code can also be 
transformed into an equivalent using only setValues() and getValues(). Based on the ‘Independent 
Guarded Assertions’ approach proposed by Gustafsson, et al. [10], setValue()s are classified into a 
stimuli group, while the remaining functions form another group (i.e., assertions guarded by 
conditions) as shown Table 2-1. 

Table 2-1: List of functions 

Do (stimuli) 
Check Done & assertions 

(guards & assertions) 

State.idling() guards for idling() 

setValue() guards 

State.setGear() guards for setGear() 

State.setNeutral() guards for setNeutral() 

self.toggle_worklight_function() guards 

 self.expected_response(assertions…) 

setValue() guards 

Event.wait()  

 

After this first transformation, the origin script is subsequently transformed into another 
“independent guarded assertion” script without any setValues(). This new script focuses on 
describing the goals of a script, rather than the steps that need to be taken [10]. At the same time, a 
set of stimuli (which form the course) is generated and used along with the new declarative script. 

Theoretically, the new script can be applied with any course because it will never change the 
state of SUT (as all of the setValue() operations have been removed). The new declarative script 
iteratively evaluates the condition of the SUT and decides whether to accept it (as meeting the 
desired state), or deny it and then repeat the current evaluation in the next iteration as a guard. 
Figure 2-4 gives a more direct description of this procedure. When an action is taken in a course, an 
action guard in the script will be used to identify if the action suits the action guard. In the course on 
the left hand, action A is first tested by the script but fails to satisfy its first guard, so the course 
moves to next action and the script remains its initial step (1). The next execution of the course is 
action B (2), which satisfies the first action B guard of test script, so the script will also move on to 
the second step (2) which corresponding to step (3) of the course. Therefore, after the first three 
executions (step 1-3) of the course, all guards in the script are satisfied which will trigger the 
assertion of the current system state. After any consecutive sequential execution of B and C, the 
assertion will be made. In this case, the assertion is used twice, hence the script is tested twice as 
well. It should be highlighted that at any time after B and C are matched, the assertion (3) must hold 
or the script will fail because B and C are sufficient and necessary conditions for the assertion in 
step 3. 
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1.Action A

2.Action B

3.Action C

4.Action B

5.Action D

6.Action E

7.Action F

8.Action B

9.Action C

10.Action A

1.Action B 
Guard

2.Action C 
Guard

3.Assertion

      
                       Course                                                       Script  

Figure 2-4: Matching of a course and a script 

The ‘Independent Guarded Assertions’ design has the following merits: 

1. Declarative scripts can be executed in parallel; thus saving a lot of time. 

2. Declarative scripts are applied iteratively as many times as possible. As long as a scenario 
matches the script, the assertions will be tested. This increases the applicability of a script.  

3. By performing statistical analysis of the (current) scripts, it is possible to derive an 
optimized and more meaningful course. This optimized course can be executed 
concurrently with multiple declarative scripts. For example, we can predefine a course 
containing a series of actions: starting the vehicle, ignition, speeding up, slow down, 
steering left or right, reversing, parking the vehicle, enable and disable the hazard warning 
lights, and leaving the vehicle. During this course, many scripts can be tested multiple times 
during one execution. For example, the following scripts could be evaluated: ‘hazard 
warning activation on and off’, ‘reverse light activation on and off’, and so on. 

As a result, the declarative scripts can evaluate the correct functioning of a subsystem (in the 
case above, the hazard warning and reverse lights) both multiple times and in many different test 
scenarios (see Figure 4 in [10], the assertions of the scripts can be triggered simultaneously in a long 
course). 

2.6 MAT-files 

MAT-files are binary files used to store data generated by MATLAB. By using MATLAB’s save() 
function the arrays of a running MATLAB function will be stored into a MAT-file as a continuous 
byte stream [6]. In general, there are two levels of MAT-files: level 4 (compatible up to MATLAB 
version 4) and level 5 (compatible with MATLAB 5 and up). MATLAB 8.2 is used in RESI, so the 
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level 5 MAT-file format is used throughout the project. A level 5 MAT-file consists of a Header and 
multiple Data Elements. Figure 2-5 shows the standard structure of a MATLAB level 5 MAT-file. 

                                                                                     Header (128 bytes)

                    Descriptive Text (126 bytes)+
                        subsys data offset (2 bytes)

                  other data elements...

                                                                       Data Element
                             Data type (2 bytes)+
                       number of bytes (2 bytes)+
                             Data or subelement 

                                                                       Data Element
                             Data type (2 bytes)+
                       number of bytes (2 bytes)+
                             Data or subelement 

 
Figure 2-5: MATLAB level 5 MAT-file format 

The Python Open Source Library of Scientific Tools (Scipy)* set of packages provides a set of 
interfaces to interact with MAT-files [16] without requiring that the programmer know the details of 
a MAT-file. After installing the Scipy package (version 0.16.0), the function loadmat(), found in the 
scipy.io package, can be called to return a standard Python dictionary consisting of Data Elements 
from a MAT-file as key-value pairs. 

2.7 HIL in Scania 

HIL has become the current de facto tool within the vehicle industries for testing ECUs [8]. Within 
Scania, ECUs and the buses connecting to these ECUs are the objects to be tested using the HIL 
environment. Automotive Simulation Models created with MATLAB are applied to simulate 
operations against the related hardware [9]. As a result, the ECU and one or more busses physically 
exist, while all of the rest of the system are realized by HIL. 

In RESI, the HIL is provided by dSPACE corporation. Today dSPACE is highly involved in the 
vehicular, specifically automotive and aircraft, industries and provides both software and hardware 
to accelerate the development and testing procedures for vehicles. 

In RESI, HIL is used in a more elaborate way than is typical in industry. HIL is deployed in a 
client/server fashion, where scripts are executed in the client machine and the HIL is connected to 
the servers. This client-server architecture isolates the technical specification of clients and servers, 
enabling them to be implemented with any suitable tools [10]. Moreover, this means that the client 
and server environments can use completely different choices of programming languages. 

                                                            
* http://www.scipy.org/  
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3 Method, methodology, and tools  

This chapter introduces the tools and methods used in this project. 

Unlike a problem-solving project with a list of functional requirements or performance 
indicators, this project was designed to be open to a variety of ideas (including use of a new 
programming language, a new Integrated Development Environment (IDE), or a new set of tools), 
as long as collectively they achieve the desired goals (as stated in Section 1.4). A good strategy when 
facing such an open-ended problem specification is to sort all of the requirements by priority, then 
eliminate alternatives that do not satisfy an essential requirement. Furthermore, it is also critical to 
restrict the research area due to limited duration of this project. That means that it is not practical 
to use a long time to solve any single problem. For this reason, weekly feedback was used to provide 
nearly continuous feedback keeping me focused and saving a lot of time. 

To understand the current testing environment’s advantages and disadvantages, a full case 
study and literature review of Scania’s internal resources was necessary. This helped me to 
understand the workflow from how a script is composed from scratch to how it is applied during 
testing. A literature review of research papers and articles was used to investigate what other 
solutions have been proposed by other researchers and industrial companies. 

3.1 Feedback meetings 

A weekly discussion was held with Thomas Gustafsson (my supervisor and the department leader at 
Scania RESI) to develop my understanding and guide my implementation of the new test 
environment. This discussion focused on the following topics: 

1. The summary of the previous week’s work; 

2. Feedback on the current design and implementation; 

3. Planning the coming week; 

4. Examining the anticipated result(s) and the gap remaining between this and the current 
work; 

5. Focusing on specific results from the above;  

6. Identifying problems and solutions. 

3.2 Priority checklist 

A checklist with priorities (see Table 3-1) was proposed during the initial phase of the project based 
upon the series of interviews (described above). 

Table 3-1: List of priorities (ordered by priority) 

‘Must have’ ‘Better to have’ 

Offline debugging GUI support with offline debugging 

Efficient static analysis tool Able to be integrated into Scania’s Continuous 
Integration (CI) environment 

Able to run automatically Management of scripts (layered by functionality) 
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On the left side, the V-model goes from the top down to design the whole system in steps and 
goes up on the right side to validate the design and implementation. As we can see from the figure, 
“system integration and testing” utilizes Hardware in the loop (in our group, RESI). On the bottom 
of this process, “Module Verification” uses Software-in-the-loop (SIL) to verify module design 
specifications.  

Ideally, SIL can help a lot with our test script debugging. Take the development of an ECU as an 
example. Before an ECU is physically implemented, a software prototype (or a simulation of part of 
it) can be carried out with the help of SIL to simulate its hardware [22]. This helps the ECU 
developers validate their design, while the simulation is a basic software version of the ECU. To 
validate our scripts, we can simply drive the software ECUs and execute the scripts to get the 
validated result. 

However, this is not easy as it looks like. For example, because the ECUs are developed by 
different suppliers, their “software version” is not accessible due to information security and patent 
protection rules. Additionally, the job of the RESI group is integration and testing. That means 
many ECUs from different suppliers will be involved in the testing. It is quite common that these 
ECUs come from various suppliers, which makes the problem even more complicated. For now, the 
RESI group tryies to solve this problem by modeling the ECUs, but this topic is outside the scope of 
this thesis. 

In contrast to the Client/Server architecture used in RESI, based upon those papers we read 
most of the Hardware-in-the-loop environments are built locally. For example, Cătălin Vasiliu and 
Nicolae Vasile [18] used AMESim and LabVIEW to model and simulate powertrains, with the HIL 
test bed directly connected to a PC. In [23], the simulation is also finished locally. In [20], the 
authors describe their system architecture and setup in detail. The HIL is used to connect the 
control board and control system to simulate the dynamics of a real vehicle. All of the hardware is 
connected to a CAN bus and then to a PC through a serial link. The simulated (fake) process 
executes on a standard Linux system locally.  

3.4 Architecture and algorithm design 

As mentioned before, the bottleneck of the existing test environment is the limited access to 
validation resources (i.e., limited access to the HIL hardware). As a result, the test script writers 
cannot get immediate feedback (by running their tests and getting results) on their latest scripts 
until every piece of the whole test chain is available ‘online’. 

From a general view of the whole process (referred to in the following discussion as a “cycle” or 
“module”), there are two ways to handle this limited access to resources and the resulting 
inefficiency when writing tests: 

1. Early error detection: Try to find more bugs before a new script goes online. This will 
greatly increase the productivity of the HIL when it is available for use. 

2. Reproduce and reuse the HIL results: Normally, when composing a new script, the 
stimuli (of a given script) will not be changed even if the script contains errors - because 
each script has a fixed corresponding use case. Instead, a script will be executed several 
times while debugging the script, but the stimuli frequently remains (almost) the same. This 
enables the test script writers to test a script many times - while only needing to utilize the 
HIL hardware once. 

On the other hand, there are other solutions, such as add more HIL servers and create a full 
emulation of the HIL servers. Honestly, buying more HIL servers can definitely solve the problem 
but our hands are tied in the department budget. Creating a software emulation of HIL, which is 
known as software in the loop (SIL) as we stated before, is technically available, but that requires 
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the modeling and implementation of the ECUs and all related IO and behaviors. This is considered a 
huge effort to put in. 

It is possible to build smaller autonomous test modules which do not rely on external inputs and 
are able to generate internal outputs. This enables the construction of drivers and stubs for a 
specific module, enabling this test module to execute and operate independently. Drivers feed 
inputs to the test module, while stubs collect the output data from the module [11]. 

Depending upon the resources required, the current environment can be divided into three 
modules which can be driven independently in three different modes: Dummy mode, Mat mode, 
and Normal mode. Figure 3-2 shows these modes and their associated purposes and context. 

Purely Online
Detect remaining errors

High level
                              Normal Mode

Offline+Online
Detect logic errors based on the 

simulation of HIL hardware
Reproduce and Reuse of HIL

Medium level
                              Mat Mode

Purely Offline
Detect run-time errors
Early Error Detection

Basic level
                              Dummy Mode

 
Figure 3-2: Three modes 

All inputs and outputs of a script are done with setValue() and getValue() through a subclass of 
‘ModelVariable’ which contains all possible values of a signal. An example is shown as follow, which 
a signal (also as a subclass of ModelVariable) and all its possible values (-1, 0 and 1) are listed. 

1 class DS_TurnSignal(ModelVariable): 
2     __api_get_path__     = "yellow3/Model Root/Yellow3/ControlPanel/ 
3     __api_set_paths__     = ("yellow3/Model Root/Yellow3/ControlPanel/Dr…  
4     __api_base_paths__    = ("yellow3/Model Root/Yellow3/ControlPanel/Dr… 
5     __api_text__          = "DriverSwitches.Visibility.DS_TurnSignal" 
6     __api_block_type__    = "dSPACESetTASignal" 
7     __api_io_type__       = "IO" 
8     __api_default_values__= None 
9     TURN_LEFT = -1 
10     OFF = 0 
11     TURN_RIGHT = 1  

 

So how should one activate the “Turning Left” and read the current state of the Turning signal? 
The function setValue() and getValue() is defined in ModelVariable, so the tester can simply call 
these two functions with DS_TurnSignal object to achieve this goal. 

Dummy mode is designed to identify run-time errors, such as ‘too many values to unpack’ or 
‘list index out of range’. For testing purposes when the system is running and it tries to get a value of 
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a signal, the first of the possible values of the signal will be returned. This happens until the end of 
the execution of a script and the chose values will be recorded as a “path”. The path will be 
remembered and removed from Dummy mode for the next execution, thus ensuring that there are 
no missing or duplicated paths. The reason we choose to test our script this way is because we are 
fully aware of the input of the program (script), and with the help of optimizations we introduced in 
Section 4.1.2, we can further reduce the size of the input set. For the sake of execution speed and 
complexity, a dynamic tree structure and an exception list are used to represent the execution paths. 
Section 4.1 presents the details of this implementation. 

In order to test a script with mat files, a transformation from the (original) imperative script to a 
declarative script is required. This transformation can be done in a few steps. After matching a 
script and a mat file, the GUI displays a report indicating conflict points (if any) to assist the test 
script writer. A conflict occurs when the value of a signal is expected to be X in the script, but is 
found in the Mat files to be value Y. Many signals are involved in the execution of a script, therefore 
in the report only ten signals plotted (this choice is based on the resolution of the user’s screen). In 
order to provide more precise information, these signals are sorted vertically based on their 
relevance to the conflict. A covariance matrix is used by the sorting algorithm, where the covariance 
value expresses the strength of the correlation of two or more sets of variables [8]. 

3.5 Software tools 

A number of different software tools have been used in this project. Each of these is briefly 
described in the following paragraphs. 

Python 2.7 was utilized because most of the current code, including the tool chain provided by 
dSpace is written in Python version 2.7. An appealing point (which is closely related to solving the 
problem to be addressed by this project) is that Python 3 introduces function annotations [12]. 
However, the pay back is expected to be low in comparison with the effort required to shifting from 
Python 2 to Python 3. For this reason, Python 2.7 will continue to be used. 

PyLint 0.28.0 is a very good static analysis tool for Python programs, hence it has been used 
in this project to facilitate the offline debugging of test scripts. 

Pycharm 4.5 was used to develop the project. Pycharm is a popular Python IDE with some 
helpful features such as intelligent coding assistance, smart code navigation, effective code 
refactoring, and so on. 

Matplotlib 1.4.3 was used to implement the GUI assistance module. Matplotlib is a 2-
dimensional plotting library implemented in Python. It can generate high quality figures and 
provides various means of implementing interactive operations. This version was the latest stable 
version (as of when the project is being conducted). 

SciPy 0.15.0 was used to load data from Mat files. 

NumPy 1.8.0 was used to calculate the covariance for the ordering of the signals. 

Jenkins is a tool for monitoring repeatedly executed tasks, for further details see 
https://wiki.jenkins-ci.org/. Jenkins is used to automate some of the testing (Section 5.3, and 
Section 6.3). 
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4 Implementation 

As we mentioned before, the 'Dummy' and 'Mat' mode operate on different levels. Dummy mode 
performs run-time checks on all paths of the script, while in Mat mode the scripts will be executed 
with Mat files. The following sections of this chapter will give details of the implementation of 
Dummy mode and Mat mode. 

4.1 Dummy Mode 

This chapter will introduce the design and implementation of Dummy mode. Dummy mode is the 
initial step of the test environment. Based on the variables a script used, Dummy will do exhaustion 
on the values of variables to investigate the errors of a script. The optimization of the algorithm will 
also be given in the following chapter. 

4.1.1 Algorithm and Implementation 

As stated before, the class ModelVariable is the superclass of classes used to communicate between 
client and server. Each subclass of ModelVariable contains all possible values of this signal, thus it is 
possible to take over the control of the client program locally by feeding it different values without 
any server. 

In Dummy mode, the script will be executed several times to test all possible paths. To 
implement this, Dummy mode has two programs running alternatively: an execution program and a 
trim program. The execution program runs first. Initially a list of objects (an execution list) will be 
generated, then the script is fed with the first possible value of each signal object. For example, the 
values returned from the Dummy mode of the execution program is [1,1,1,2] of signals A, B, C, and 
D, which is shown in Figure 4-1 in the middle of the list of signals. 

Dummy 
ProgramClient

Signal 
A

Values:
1,2,3

Signal 
B

Values:
1

Signal 
C 

Values:
1,2

Signal 
D 

Values:
2,3,4

Signal 
A

Values:
1,2,3

Signal 
B

Values:
1

Signal 
C

Values:
1,2

Signal 
D

Values:
2,3,4

1

1

1

2

Local

Execution List

 
Figure 4-1: First Run of execution program 

The execution list is a dynamic list where objects are removed or added in each execution. When 
this dynamic list is empty, then the execution program will be terminated. After the first run of the 
script, the history of the execution list is scanned and trimmed for next run. The trim algorithm 
works as follows: 
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(1) The first value of the last object in the list is removed (which is value 2 of signal D in Figure 
4-2). Because the execution program always uses the first possible value as a result, 
removing this value of the last object will remove the latest tested path, as shown in Figure 
4-2. Because the path [1,1,1,2] has been tested, the value “2” of signal D is removed after the 
first run of trim. Values [1,1,1,3] will be returned when the execution program is executed 
next time. 

Dummy 
ProgramClient

Signal 
A

Values:
1,2,3

Signal 
B

Values:
1

Signal 
C 

Values:
1,2

Signal 
D 

Values:
2,3,4

Signal 
A

Values:
1,2,3

Signal 
B

Values:
1

Signal 
C

Values:
1,2

Signal 
D

Values:
3,4

1

1

1

3

Local

Execution List

 
Figure 4-2: After the first trim program (second run of execution program) 

(2) If there is no remaining value for the last object, then the trim function will remove this 
object, and repeat step (1) on the next to the last object (which is now the last object in the 
list, signal C). This loop will stop until there are more than one values of the last object in 
the execution list, or there is no object left in the list (and the program exits). From an 
execution path perspective, removing an object from the list means a branch has been fully 
tested. Figure 4-3 shows that signal D has already been removed and the branch of signal 
“C” with the value “1” was fully tested and hence and the value “1” of signal C is also 
removed. 
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Execution List
 

Figure 4-3: Branch removed 
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The Dummy program can also add new objects into the execution list, which represents the case 
where a new branch is executed and created. Figure 4-4 shows signal E has been created and added 
to the execution list after the path for signal C with value“2” is being tested. 
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ProgramClient

Signal 
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B
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1

Signal 
C
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2

Signal 
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Values:
1

1

1

2

1

Local

Execution List

 
Figure 4-4: New Branch created 

After the execution program stops, information regarding errors and exceptions are collected in 
a global file in dictionary format of Python and is showed in command line in the end. This 
information will also be used as results for Jenkins. Figure 4-5 shows how the whole procedure 
works. 

Execution Program: Retrives value from signals in the execution 
list, creates a signal if it reaches the end of execution list

Gather running information and exceptions

Trim Program: remove the first value of last object in execution 
list, if no value is left, trace back the execution list

Exit, gather and post all information

count(execution list)
 > 0 

count(execution list) == 0

 
Figure 4-5: Gather information and exceptions from the running program 

4.1.2 Optimizations 

A common problem with this brute force exhaustive testing is performance. One of the solutions is 
to eliminate or restrict the exploration of some unnecessary paths. In our case, an exception list of 
signals is generated in advance of Dummy mode testing. Any signal that belongs to this exception 
list is given one or a set of default value(s) to avoid exploration for all its actual internal values. The 
signals are classified as follows:  
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1. Hardware environmental signal exception list 

Since the Dummy program runs purely in software, it is necessary to avoid exhaustive 
testing on hardware-related signals when the script is running in Dummy mode. These 
hardware signals, such as “connect the battery” and “turn on battery switch”, are normally 
guaranteed for the hardware to work properly and have no influences on the logic or result 
of the execution. As a result, all of these types of hardware signals are pre-registered in the 
exception list and given a default value. 

2. Script related signal exception list 

In RESI, each action in a script ends with a set of assertions to test if the SUT is functioning 
as expected, but in Dummy mode, the result of these assertions is not our concern because 
we are only interested in testing all possible execution paths of a script, rather than the 
success or failure of an assertion. From another perspective, the execution path will not 
change due to different results of the assertions. 
As Figure 2-3 showed, a “post” procedure is executed at the end of each script to clean up 
the environment for the following executions, but in Dummy mode, this is unnecessary 
because the Dummy program is stateless in terms of hardware. As a result, the post 
procedure is not executed in Dummy mode. 

3. Functional signal exception list 

Event.wait() is used in the script to trigger a synchronized suspension of the program (for a 
certain period of time) in order to wait for the occurrence of a given event; such as, waiting 
for a corresponding event (ClutchPedal <= 5) after releasing the clutch pedal (set 
ClutchPedal == 0). But since Dummy is running on purely software level, the pending 
operation should be removed to save time. Besides, there are only two consequences of 
Event.wait(): abortion or continuation. In either case, the consequence of this wait 
operation will not change the execution path. 

4. Specific signal classes 

There are some special signals used to communicate between client and server which only 
have ranges of values instead of possible values, such as EngineSpeed. Doing exhaustive 
testing for each possible values of a variable like this will be a waste of time. For example, if 
the range of EngineSpeed is from 0 to 10000 rpm, rather than doing exhaustive testing of 
all ten thousand cases (numbers), it is more productive to focus on some specific values, 
such as 0 (shut down), 3000 (stand by), and 10000 (running) representing different status 
of the engine. For such variable values, it is a good idea to put these variables into the 
exception list with a sufficient number of representative values. 

As can be observed from the above, adding any of these types of signals to the execution list will 
increase the execution time, but will not change the execution path, hence these signals will be 
added to the exception list to save time and improve performance. 

At the beginning, Dummy is designed to test all paths and return the aggregated error message 
to users, but we realize this is not a good strategy. Dummy as a debugger aims to find bugs, and the 
bugs should be found as early as possible to save the waiting time of users. Besides, it is quite 
possible that a bug triggers a series of error message. Investigating all error messages is also a waste 
of time for users. As a result, we setup a configuration to determine if Dummy will stop when a bug 
is found, this switch is ON if Dummy is executed by normal users and it is OFF when executed on 
Jenkins. 
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4.1.3 Analysis and Validation 

In this section we will demonstrate a code snippet and its generated Dummy paths to analyze and 
validate the Dummy mode and its optimizations. 

The following code is used to ignite a vehicle. It will basically be used in all scripts. The expected 
vehicle status should be “parked” and “ignition on” after the function is called. 

1 def ignition_on(): 
2     _connect_battery_and_main_switch() 
3     key_state = get_value(driver_variables.DriverSwitches.PowerSupply.KeyPosition) 
4     engine_speed = get_value(asm_mdl_drv.MDL_DISP.EngineSpeed.n_Engine) 
5     if key_state != driver_variables.DriverSwitches.PowerSupply.KeyPosition.IGNITION or engine_speed != 0: 
6         if engine_speed > 0.5: 
7             Event.wait( 
          (asm_mdl_veh.MDL_DISP.Overview.v_x_Vehicle_CoG,  
   Event.plusminus(0, 2), Event.ACTION_FAIL_RETURN), 
          (asm_mdl_drv.MDL_DISP.ActiveTransmission.Gear,  
   0, Event.ACTION_FAIL_RETURN), timeout = 60) 
8         set_value(driver_variables.DriverSwitches.PowerSupply.KeyPosition, 
                     driver_variables.DriverSwitches.PowerSupply.KeyPosition.IGNITION) 
9     set_value(driver_variables.DriverSwitches.Brake.DS_ParkingBrake, ON) 
10     set_neutral() 
11     utilities.sleep(2) 

 

We only call this function in a script and execute the script in Dummy. The following is the 
output from Dummy. 

 

1 Exceptions found:0 
2 -------------------------------------------------------------------------------- 
3 
4 total paths tested:105 
 

As we stated in the chapter 4.1.2, the hardware environmental signals (BatteryConnect and 
BatteryMainSwitch) used in _connect_battery_and_main_switch()  will be registered in the 
exception list and given a default successful value. The KeyPosition (line 3) signal has 5 possible 
values (KEY_REMOVED: -1, KEY_INSERTED: 0, RADIO_MODE: 1, IGNITION: 2 and START: 3). 
In line 4, the script tries to get the current engine speed. The possible values are (0, 3000 and 
10000). Function set_neutral() (line 10) is shown below: 

1 def set_neutral(): 
2     if gearbox_is_working: 
3         gearbox_type = 
get_value(asm_mdl_drv.MDL_DISP.CUSTOM_SWITCHES_DRIVETRAIN.Sw_GearShifter) 
4         if 1 == gearbox_type: 
5             set_gear(0) 
6             res = Event.wait( 
                 (asm_mdl_drv.MDL_DISP.ActiveTransmission.Gear, 0, Event.ACTION_FAIL_RETURN), 
                 timeout = 30) 
7             if res != 0: 
8                 # Could not set neutral gear 
9                 Print().debugPrint("Failed setting manual gearbox in netural") 
 
10         elif 2 <= gearbox_type <= 7: 
11             set_gear(Gears.N) 
12             res = Event.wait( 
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                 (asm_mdl_drv.MDL_DISP.ActiveTransmission.Gear, 0, Event.ACTION_FAIL_RETURN), 
                 timeout = 30) 
13             if res != 0: 
14                 # Could not set neutral gear 
15                 Print().debugPrint("Failed setting gearbox in netural") 

Variable gearbox_is_working is a global variable and is True by default. There are seven 
possible values of signal Sw_GearShifter, including the KeyPosition and engine speed which 
increases the combination number to 5*3*7 = 105. It is easy to see that these value combinations are 
able to cover all execution paths. On the contrary, if the optimization is not applied, the total paths 
will be 350000. The exception list helps a lot to reduce the validation time of Dummy mode. 

4.1.4 Why not Symbolic execution 

The algorithm and implementation of Dummy mode is similar to Symbolic execution at first 
glimpse, but when looking into the details, we found that our customized tool, Dummy, is more 
capable and suitable to be integrated into our current test environment based on the following 
reasons. 

First of all, as a general-purpose code analysis tool, the Symbolic execution cannot be used to 
carry out the analysis of the signal classes of our code. For example, after analyzing the class 
DS_TurnSignal (listed in chapter 3.4) with Dummy, the result is that the possible values are -1, 0 
and 1. This conclusion is drawn based on the truth that the possible values are the class members 
which the names are not surrounded with two underscores (which are class members TURN_LEFT, 
TURN_RIGHT and OFF of DS_TurnSignal class, for example). Similar analysis of signal classes is 
done in Dummy mode. Symbolic execution is not aware of this customized convention in the 
naming of the signals members, so it cannot provide any useful information from this point of view.  

Secondly, as stated before, distributed systems, such as our test environment with a client-
server architecture, poses a big challenge to Symbolic execution because of their complexity in 
networking. In our case, after analyzing related signal classes, Dummy mode registers all possible 
values and is able to use them locally, as if they are received from networking. This can greatly 
reduce the complexity of testing our scripts, but Symbolic execution is unable to do that. 

The last and most important reason is, from the system design perspective, as the first step in 
our testing environment, it should be able to output customized analysis results and data structures 
(signal objects) for the next step (Mat mode). This is important and necessary for Mat mode because 
it will use these signal objects to form sequences, patterns and draw diagrams. But as a static code 
analysis tool, Symbolic execution can only generate testing results and related documentations.  

4.2 Mat Mode 

This chapter introduces the underlying mechanism of Mat mode and the detailed implementation, 
along with GUI to help locate logic errors in the script. 

4.2.1 Algorithm and Implementation 

Mat mode goes further than Dummy. Based on the theory of Thomas Gustafsson et al. [10], the test 
script is separated into two parts: stimuli that drive the SUT and independent guarded assertions. In 
Mat mode, operations in a script are firstly read as sequences, and then a pattern representing a test 
action is formed by these sequences (further details are given below). This pattern is used against a 
Mat file to evaluate the independent guarded assertions. The following gives a detailed description 
of the implementation: 
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1. Transform script operations into sequences 

In Dummy mode only “get” operations are considered because the returned values are the 
only factors determining the behavior of a script. In contrast, in Mat mode all types of 
operations, including “set”, “get”, “wait”, and “assertions”, are considered. Each of these 
four types of operations will be transformed into a unique class: sequence. In this 
transformation, the “wait” operation is more complicated because in a script it normally 
consists of many simultaneous getValue()s and subsequent reactions to the result of 
applying these value. A sequence object stores all the information relevant for each 
operation. 

2. Create a pattern from the sequences 

In Mat mode, operations are captured by a Recorder module. The Recorder listens to the 
calls to ModelVariable, then based on the type (set, get, wait, or assertion) of the caller, it 
will create a sequence. Once the script has completely executed, a complete set of 
sequences, also known as a pattern, is generated. The following is a partial Recorder 
produced log of a pattern transformed from the test script TC0005. The full transferred log 
can be found in appendix. 

///////////////ALL SEQs in Pattern//////////////////// 
SEQ: TYPE:31, 
Name:set_neutral, 
Value:None,Va:None,Action:0 with parallel of 0 
False 
SEQ: TYPE:2, 
Name:yellow1/Model Root/Yellow1/ControlPanel/Driver_Switches/Brake/DS_ParkingBra 
ke[0|1]/Control/Value, 
Value:0,Va:0,Action:0 with parallel of 0 
True 
SEQ: TYPE:2, 
Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_MainL 
ightSwitch[0_3]/Control/Value, 
Value:2,Va:0,Action:0 with parallel of 0 
True 
SEQ: TYPE:2, 
Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_Workl 
ightSwitch[0|1]/Control/Value, 
Value:1,Va:0,Action:0 with parallel of 0 
True 

3. Run the test script against a MAT-file 

To evaluate the independent guarded assertion, we apply the mechanism described in [10]. 
All operations before an assertion in a script are guards of this assertion 
({guard=>assertion}). The assertion should hold after all guards are applied. 

4.2.2 Analysis 

The algorithms introduced in Mat mode proposes a method of transferring imperative scripts into 
declarative scripts. The reason why we are able to achieve this is that we do not do the 
transformation from the programming language perspective, instead, we do this based on the 
nature of our scripts and testing environment: 

1. The script communicates with the server only through signals, and for each signal, we 
know its entire possible values. This is very important because it greatly reduces the 
complexity of the communication of a script and a server. It helps us to abstract the 
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To solve the problem, we can compare and merge declarative scripts. For example, the script 1 
and script 2 can be simply merged into “merged script” in Figure 4-6. Ideally, this can solve the 
problem, but we still have a few practical issues.  

Generally speaking, when we transfer a script from imperative to declarative script, the “pre” 
and “post” will be reused several times with the actions. For example, a script containing “pre”, 
“act1”, “act2”, “post” will be converted into two scripts: “pre”, “act1”, “post” and “pre”, “act2”, “post” 
because act1 and act2 are considered as two smallest “validation unit”, and the “pre” and “post” are 
designed as the general precondition and post-condition of the actions. For one hand, it is possible 
to combine act1 and act2 together, but doing this will reduce the applicability of this script because 
it will require more conditions of a scenario. For another reason, the testing cases in each action of a 
script are logically designed to be independent to each other, so it is pointless to combine them 
together. In chapter 2.4, we introduced two current issues hampering the merge: the relationships 
between each actions (ACT1…ACTN in each script) of a script and too many operations taken in 
“pre” step. 

Problem 1. The current script (Figure 2-3) does not guarantee the independence of each action. 
That means changing an action of a script (remove/add/simply execute) might cause the script fail. 
For example, consider a script with the following functions: “pre”, “act1”, “act2”, “act3”, “post”. 
Executing (“pre”, “act2”, “act3”, “post”) or (“pre”, “act2”, “post”) might not get successful result 
because some of the operations in “act1” is a precondition for “act2” or “act3”. The ideal goal is a 
script can run successfully with any action(s) between its “pre” and “post”.  

Problem 2. Ideally, there should have as few setValue() calls as possible in “pre”. Currently, 
there are many unnecessary setValues() in “pre”. For example, in function ignition_on(), variable 
DS_ParkingBrake will be set to “ON” no matter what is the current state of this signal. This is fine in 
imperative script, but in declarative testing, too many setValue() in “pre” will greatly reduce the 
applicability of a script when we do the matching to a Mat file.  

Although the above issues exist in the current environment and require some time to be solved, 
they do not block our project at all. If these problems are tackled, we are able to go one step further 
to build a more flexible, reusable and productive testing platform, and our new test environment 
gives full possibilities and supports for that. 

 The new environment is able to provide higher level abstraction and customization. The old 
environment is constructed with scripts, and the scripts can hardly be combined to build new scripts 
without modifications. In the new environment, each “pre”, “action” and “post” group makes a 
“meta validation” which is able to be combined with any other “meta validation”. With its own 
preconditions and post-conditions, each group forms a self-governing unit. As more imperative 
scripts are transformed into declarative scripts to create more “meta validations”, we are able to 
simply build new test scenarios by selecting and combining these existing “meta validations”.  

4.2.3 Graphical User Interface (GUI) 

The goal of the GUI is to provide information regarding the conflicts detected between a Mat file 
and a script in a user-friendly visual fashion. What the GUI shows is what a logic analyzer or digital 
oscilloscope would show when given the values provided as inputs and outputs to the SUT. The 
source data input to the GUI is a combination of the Mat file and the result of Mat program (the 
result of step 3 above). The Mat file serves as the base data to give the user a first impression of the 
general pattern of the signals of interest. If conflicts are found by Mat program, then they will be 
highlighted in the display of the signals. 

The Mat file generally contains a huge number of time-value pairs, where each time-value pair 
is recorded every 10 milliseconds on the HIL servers. The normal recorded time span of a Mat file is 
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several minutes. This duration gives sufficient time to perform a satisfactory test course. Therefore, 
the GUI provides an interface to the analysis tool that analyzes the data collected when executing a 
script. The Matplotlib was used to implement the GUI. Although it took a lot of work to implement 
the GUI, its detailed implementation will not be discussed here because the implementation details 
of GUI are irrelevant to the main topic of this thesis. Chapter 5 gives a comparison of this new GUI 
with the previous GUI tool used in RESI. 

The visual tool needs to be able to clearly show the value changes of a signal over a long period 
of time, typically a few minutes (as this is the duration of a complete test course). This tool should 
provide some common built-in functions, such as zoom in, zoom out, and pan, to enable users to 
focus on specific data. As we wish to investigate the relationship between multiple signals, it is 
convenient to show all signals of interest in one screen. 

The tool should also be able to show the result of running a test script in terms of highlighted 
errors when conflicts are found by the Mat program. When composing a script, it is common that 
one signal is ignored when an event should be triggered by two signals as preconditions. However, 
this is not easy to know which is the relevant signal among many related signals. Therefore, the GUI 
module sorts the signals based on a measure of how close the other signals are to the signal 
responsible for the conflict. The NumPy covariance tool is used to calculate the strength of these 
relationships. 

Figure 4-7 gives an overview of the output of the GUI tool in Mat mode. This figure shows ten 
signals plotted by the GUI for a time span of 500 seconds. Curves 1 to 5 are shown on the left half of 
the screen are and curves 6 to 10 on the right half of the screen (with the numbering in each case 
from top to bottom). The x-axis (horizontal) indicates time, while the y-axis shows the signal’s value 
(scaled to the maximum possible value of this signal). This feature is very important because if a 
fixed range of y-axis is used in all curves, either some of the curves cannot be displayed completely 
(for example, if use 0 to 1 range, curve 10 cannot be displayed completely) or the changes of the 
curves cannot be easily observed (for example, if use 0 to 15 range, the 4 depressed pits within 100 
and 300 seconds in curve 2 cannot be easily observed because their y-value is 0.2). Because we are 
showing the overall curves for a long period of time, it is possible that a signal is changed very 
frequently, exactly like the two blue rectangles in curve 1 (between 150 and 250 in x-axis). 

Some general functions are listed on the left bottom of the screen. The first button is home 
button. When pressed, the GUI will resume to the initial state. All operations including zoom in, 
zoom out, drags and drops will be undone. The following two buttons, left arrow and right arrow are 
used to go back or forward of user operations. When the forth button is pressed, all diagrams are 
enabled to drag and drop with mouse click and release. The fifth button is used to zoom in or out on 
a single curve. The sixth button is used to configure the layout of the GUI, such as the space between 
two curves, the indent of each curve and so on. The last button is used to take a screen shot and save 
it as a JPG file. The x and y values indicated at the right down corner shows the actual values for 
which ever curve the mouse is in. 
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5 Evaluation 

This chapter introduces the criteria used to evaluate the differences between the new testing 
environment and the existing one. In Table 3-1 of Section 3.2 a priority list was introduced. The new 
environment is required to fulfill all priories on the left of the table and satisfy as many as possible 
of those on the right of the table. The evaluation in this chapter will be mainly based upon whether 
the new environment achieves the requirements shown in this list of priorities. 

While some of the desirable properties were already provided in the old environment, for some 
reasons they are either unused or not easy to use. For this reason, the metrics used in the evaluation 
of this thesis project were selected considering two aspects: completeness (i.e., fulfilling the 
requirement or not) and ease of use. For some aspects such as the GUI, it is hard to determine 
which alternative is better because each user has his or her own preferences, therefore the 
comparison will be carried out based upon specific use cases in a number of different scenarios and 
the detailed operations will be listed and compared. 

All experiments are run on a computer with Intel Core i7-3740 (Quad Core), 16 GB RAM, and 
Microsoft’s Windows 7 64bit operating system.  

5.1 Offline debugging 

This function is very important in the new system because it forms the basis of many other 
functions. Because the new environment also uses the Pylint as a static code analysis tool in exactly 
the same way as in the old environment, we will not compare this part. The greatest improvement 
we made in the new environment is that we are able to find run-time exceptions. Python has a few 
types of exceptions, such as AssertionError, AttributeError, and so on. We selected 15 of the most 
common types of errors and deliberately put them into the script we are going to investigate. These 
errors are shown in Table 5-1. 

On the other hand, due to the limited time for this project, we randomly selected 10 scripts (out 
of 110 scripts, accounting for 9% of the scripts) to validate the new environment. The selected 
scripts are: TC0001, TC0002, TC0004, TC0005, TC0014, TC0016, TC0023, TC0037, TC0066 and 
TC0076.  

The result is shown in the following two sections in terms of two indicators: run time and error-
detection rate. 
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Table 5-1: Exceptions 

Exception Name Exception Description 

AssertionError It is raised when a failed assert() is triggered. 

AttributeError It is raised when an attribute reference or assignment fails. For 
example, when trying to reference to a non-exist attribute of an object. 

EOFError It is raised when a built-in Python function encounter the end of the 
input stream before reading any data. 

IOError It is raised when an IO error happens, such as disk full, file not exist. 

IndexError This error is raised when referencing an item in the list with an index 
which is beyond the range of the list.   

KeyError This error is raised when trying to retrieve a value with a key which 
does not exist in the dictionary. 

MemoryError This error is raised when the program runs out of memory. 

NameError This error is raised when a non-exist name is referenced within the 
current naming scope. 

NotImplementedError If a method or behavior is required to be implemented but ignored by a 
subclass. 

ReferenceError When an object is referenced after it has been garbage collected, a 
ReferenceError will be raised. 

StopIteration StopIteration is raised on calling next() function of iterators when it has 
reached the end. 

SyntaxError This error is raised when the Python parser cannot understand the 
source code. For example, calling eval(“two plus five”) will raise this 
error. 

TypeError This error is raised when the type is mismatched or used in a wrong 
fashion. For example, print (3)+”six” will raise this problem. 

ValueError This error is raised when the value is matched but the value is 
incorrect. 

ZeroDivitionError This error is raised when 0 is used as a denominator of a divided 
operation 

5.1.1 Run time 

The reason why we have considered run time here is to investigate how much faster we can find a 
bug in a script compared to a normal test (run against HIL) of a script. Normally, if we run a script 
against real HIL environment, it will take some time, t. During this t time, the HIL environment will 
only test and validate one running path. It is time consuming and difficult to test all paths to get a 
total time, so in order to compare to the Dummy mode, we only calculate a minimal running time of 
each script. The minimal running time is measured in this way: we pre-assume the script will 
terminate successfully and for the path it executes, we will accumulate the time. For example, if a 
script has an operation time.sleep(10) and there is no way of avoiding the execution of this 
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operation unless the script fails, then 10 seconds will be added to the accumulated running time of 
this script.  

For the Dummy mode, similar operations (sleep/wait operations) will be skipped because they 
are mainly used for the HIL hardware to respond, while Dummy mode is running purely in 
software. In Table 5-2 the running time for the selected 10 scripts is given and compared with the 
minimal running time on HIL. 

Table 5-2: Running time comparison: HIL hardware and Dummy mode 

Script 
Minimal Running 

Time (seconds) 
Dummy Running 
Time (seconds) 

Saved Time 

TC0001 2.0 1.85 7.5%

TC0002 4.5 1.96 56.5%

TC0004 26.0 7.88 70.0%

TC0005 12.0 5.96 50.4%

TC0014 3.0 1.80 40.0%

TC0016 3.6 1.56 57.0%

TC0023 10.0 4.30 57.0%

TC0037 10.0 2.10 21.0%

TC0066 10.0 6.50 65.0%

TC0076 124.5 33.20 73.3%

It can be seen from the table that for all 10 scripts Dummy mode takes less time and is able to 
test more test cases. For the least time saving case (TC0001) Dummy saves 7.5% time and for the 
most time saving case (TC0076) it saves 73.3%. The average savings in time for all 10 scripts is 
52.6%. 

5.1.2 Error Detection Rate 

As stated before, we randomly inserted errors into different code segment of each script and test if 
these errors were found. The results (shown in Table 5-3) shows that almost all errors can be found 
in Dummy mode (99.3%), but can only partially be found when the script is executed in HIL 
(81.3%). In fact, the two groups are not comparable because group A is not designed to be used for 
error detection, but from another perspective, group A can, to some extent, represent a normal bug 
detection rate when the script is finished and tested against the HIL environment. It should be 
noted that the result in group A is collected in a simulated way which presumes the script will 
terminate successfully and all assertions within the script will hold. 

After examined the scripts we found the test coverage is the most influential factor in the 
difference between the two groups. Because the goal of the test scripts is to validate the functionality 
of the production instead of making an error-tolerance program, most of the code serves the main 
branch (which is also the branch that will run successfully) and as a result, the error-detection rate 
is rather reasonable. 

We also analyzed the fact that one error is not being detected in Dummy mode (script TC0076). 
Based on the context, the system will generate a log message after the program has waited for 15 
seconds. As stated before, Dummy mode will not execute the wait() for any reason and that is why 
this error cannot be found. Admittedly, this might be a problem in logic of Dummy mode, but in 
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practical use this is not a problem, because the program will not behave differently based on the 
waiting time. 

Table 5-3: Errors Detected 

Script 
Errors Encountered 

in HIL (group A) 

Errors Detected 
in Dummy 
(group B) 

Total Errors 

TC0001 9 15 15

TC0002 15 15 15

TC0004 11 15 15

TC0005 13 15 15

TC0014 11 15 15

TC0016 12 15 15

TC0023 13 15 15

TC0037 15 15 15

TC0066 15 15 15

TC0076 8 14 15

 

We noticed that the bug detection rate in group A is not as high as group B, but as a default 
group with only one execution path, it is quite high. After investigating the scripts, we found that 
this occurs because the scripts are relative simple and do not contain complicated error-handling 
code. That is due to the nature of the script, as they are designed to find bugs of other systems, 
rather than being designed to be error-tolerant themselves. For example, the try/catch block is 
rarely used in our scripts, while it is quite common in Python applications. 

5.1.3 Ease of use: when an error is detected 

The following information is taken from an email from Jenkins when an error occurred. 

1 Exception Traceback: 
2   File "run_dummy.py", line 19, in <module> 
3     tc.execute() 
4   File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\main.R2014\Interface\exec 
5 ute.py", line 314, in execute 
6     self.execute_act(actname) 
7   File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\main.R2014\Interface\exec 
8 ute.py", line 171, in execute_act 
9     actRunner(self, act_name) 
10   File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\main.R2014\Interface\exec 
11 ute.py", line 160, in actRunner 
12     getattr(obj, act)() 
13   File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\TC_NCG\TC0005_ReverseLigh 
14 tActivationWithWorkingLights_Simple.py", line 110, in act1 
15     print(spam[6]) 
16 IndexError: list index out of range 
17 input serial: 
18 [('OFF', 0), ('TEMP_VALUE', 250), ('TEMP_Manual', 1), ('TEMP_Manual', 1)] 
19 
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5.3 Be able to run automatically 

Dummy mode can be easily triggered by Jenkins continuous integration system. We use unittest 
module in Python to trigger the Dummy mode. The unittest-xml-reporting package is used to output 
the result in XML and served as a bridge between Jenkins and our programs. 
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6 Conclusions and Future work 

In this chapter, this thesis project is finalized by demonstrating the outcomes and proposing future 
work. 

6.1 Conclusions 

Based on the discussion in Chapter 5 we can draw some conclusions. The new environment provides 
a unified solution to improve the experience of writing a test script when developing a test script. 
Two tools, Dummy mode and Mat mode is designed and implemented by myself. In Dummy mode, 
it is possible to identify many different types of runtime exceptions within a short time. In Mat 
mode, with the help of Mat files we can detect logic errors of the test script without being 
connecting to the HIL servers. A total number of 2600 lines of code is used to implement the whole 
project (excluding ~800 lines of code used for evaluation). 

In comparison to the old environment, the new environment is able to increase the efficiency of 
using HIL servers by means of reuse and reproduce the result of the signal. The new environment is 
better in terms of shorter running time and better support for investigating conflicts and errors 
offline. 

The original goals of this master thesis project (from Section 1.4) have been met. The detailed 
evaluation of the new integration testing environment was given in Chapter 5. In general, most 
targets have been achieved as planned, except for an optional requirement (test script 
management). Overall, a new script testing environment is implemented. 10 out of 110 scripts are 
tested in Dummy mode and a new script is composed to evaluate the Mat mode. Finally, the new 
environment (Dummy mode part) is being integrated into the current integration testing 
environment of RESI in Scania and is expected to facilitate the development cycle. 

I benefited a lot from conducting this project. By having a chance to work in Scania’s RESI 
department, I experienced the most advanced HIL laboratory in Sweden. This cutting edge server 
can greatly benefit the development and test cycle in terms of saving time and increasing 
productivity. However, if we want to take this one step further, further integration and 
customization is also very important. 

6.2 Limitations 

Due to the limited curation of this thesis project, the trigger sequence was not considered. Figure 6-1 
shows an example (highlighted by the red circle), where signals 1, 2, and 3 are triggered 
sequentially. Because the mechanism we are using in the Mat mode to detect if two signals are both 
triggered (equals to 1, for example) at a certain point of time is to validate their values at this time 
(in the picture, the time between each pair of green lines), the values before or after this point of 
time (the time outside each pair of green lines) are all ignored.  
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provide very useful information for other similar projects. The new environment can also save some 
time comparing to the old one, which also saves money (i.e., is an economic benefit). 

Maximizing the utilization of existing test scripts is also considered during the project. All 
existing scripts can benefit from the new environment with very limited changes, which is also a 
positive economic effect for Scania. 

The positive social effect of this project is we are able to increase the satisfaction of the test 
script composers. In the old environment, they need to wait in queue to use the HIL, find useful 
information in piles of log files, correct the script, and the continue the development loop. In the 
new environment, they are able to finish part of the job locally in a more convenient way. 
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Appendix A: Detailed results 

 

The transferred script log: 

SEQ: TYPE:31, 

Name:set_neutral, 

Value:None,Va:None,Action:0 with parallel of 0 

False 

SEQ: TYPE:2, 

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_MainL 

ightSwitch[0_3]/Control/Value, 

Value:2,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:2, 

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_Workl 

ightSwitch[0|1]/Control/Value, 

Value:1,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:3, 

Name:/wait_event, 

Value:0,Va:0,Action:0 with parallel of 1 

subevent:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_W 

orklightSwitch[0|1]/Control/Value,0,None,23 

False 

SEQ: TYPE:2, 

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_Workl 

ightSwitch[0|1]/Control/Value, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:3, 

Name:/wait_event, 

Value:0,Va:0,Action:0 with parallel of 1 

subevent:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_W 

orklightSwitch[0|1]/Control/Value,0,None,23 

False 

SEQ: TYPE:3, 

Name:/wait_event, 
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Value:0,Va:0,Action:0 with parallel of 2 

subevent:red1_mdl_env/Model Root/Red1_MDL_Env/MDLUserInterface/Environment/MDL_P 

AR/ManualControl/Pos_ClutchPedal[%]/Value,0,None,23 

subevent:central1_can1/BusSystems/CAN/Red_Main/TCProp_K/RX/ClutchPedalPosition,0 

,None,23 

False 

SEQ: TYPE:31, 

Name:set_neutral, 

Value:None,Va:None,Action:0 with parallel of 0 

False 

SEQ: TYPE:31, 

Name:set_neutral, 

Value:None,Va:None,Action:0 with parallel of 0 

False 

SEQ: TYPE:3, 

Name:/wait_event, 

Value:0,Va:0,Action:0 with parallel of 4 

subevent:red3_mdl_drv/Model Root/Red3_MDL_Drv/MDLUserInterface/Drivetrain/MDL_DI 

SP/ActiveTransmission/Gear[]/Out1,0,None,21 

subevent:central1_can2/BusSystems/CAN/Yellow_Main/GPM2_K/RX/GearboxInReverse,0,N 

one,23 

subevent:yellow3/Model Root/Yellow3/IO/ScalingFromHardware/VIS/CUV2/Physical/Lig 

hts/ReverseLight[0|1]/Conversion/Out1,0,None,23 

subevent:yellow3/BusSystems/CAN/VISSub_RBS/DriveLightingStatus_V/RX/WorklightInd 

icator,0,None,23 

False 

SEQ: TYPE:1, 

Name:red3_mdl_drv/Model Root/Red3_MDL_Drv/MDLUserInterface/Drivetrain/MDL_DISP/A 

ctiveTransmission/Gear[]/Out1, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:red3_mdl_drv/Model Root/Red3_MDL_Drv/MDLUserInterface/Drivetrain/MDL_DISP/ 

ActiveTransmission/Gear[]/Out1,Va:0,Action:0 with parallel of 0 

False 

SEQ: TYPE:1, 
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Name:central1_can2/BusSystems/CAN/Yellow_Main/ETC2_T/RX/CurrentGear, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:central1_can2/BusSystems/CAN/Yellow_Main/ETC2_T/RX/CurrentGear,Va:0,Action 

:0 with parallel of 0 

False 

SEQ: TYPE:1, 

Name:yellow3/Model Root/Yellow3/IO/ScalingFromHardware/VIS/CUV2/Physical/Lights/ 

ReverseLight[0|1]/Conversion/Out1, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:yellow3/Model Root/Yellow3/IO/ScalingFromHardware/VIS/CUV2/Physical/Lights 

/ReverseLight[0|1]/Conversion/Out1,Va:0,Action:0 with parallel of 0 

False 

SEQ: TYPE:1, 

Name:central1_can2/BusSystems/CAN/Yellow_Main/GPM2_K/RX/GearboxInReverse, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:central1_can2/BusSystems/CAN/Yellow_Main/GPM2_K/RX/GearboxInReverse,Va:0,A 

ction:0 with parallel of 0 

False 

SEQ: TYPE:1, 

Name:central1_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/ReverseLampInt 

ended, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:central1_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/ReverseLampIn 

tended,Va:0,Action:0 with parallel of 0 

False 
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SEQ: TYPE:1, 

Name:yellow3/BusSystems/CAN/VISSub_RBS/DriveLightingStatus_V/RX/WorklightIndicat 

or, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:yellow3/BusSystems/CAN/VISSub_RBS/DriveLightingStatus_V/RX/WorklightIndica 

tor,Va:0,Action:0 with parallel of 0 

False 

SEQ: TYPE:1, 

Name:central1_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/WorklightOutpu 

tStatus, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:central1_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/WorklightOutp 

utStatus,Va:0,Action:0 with parallel of 0 

False 

SEQ: TYPE:1, 

Name:yellow3/Model Root/Yellow3/IO/ScalingFromHardware/VIS/CUV2/Physical/Lights/ 

FifthWheel_WorkLight[0|1]/Conversion/Out1, 

Value:0,Va:0,Action:0 with parallel of 0 

True 

SEQ: TYPE:16, 

Name:assertEqual, 

Value:yellow3/Model Root/Yellow3/IO/ScalingFromHardware/VIS/CUV2/Physical/Lights 

/FifthWheel_WorkLight[0|1]/Conversion/Out1,Va:0,Action:0 with parallel of 0 

False 
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