e Y
% VETENSKAP %

<8 OCH KONST 2%

e

DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
STOCKHOLM, SWEDEN 2015

A Data Model Driven Approach
to Managing Network Functions
Virtualization

Aiding Network Operators in

Provisioning and Configuring
Network Functions

KRISTIAN SALLBERG.

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

A Data Model Driven Approach to Managing
Network Functions Virtualization

Aiding Network Operators in Provisioning and Configuring Network Functions

Kristian Sallberg

Master of Science Thesis

Communication Systems
School of Information and Communication Technology
KTH Royal Institute of Technology

Stockholm, Sweden

July 24, 2015

Examiner: Professor Gerald Q. Maguire Jr.

© Kristian Sallberg, July 24, 2015

Abstract

This master’s thesis explains why certain network services are difficult
to provision and configure using IT automation and cloud orchestration
software. An improvement is proposed and motivated. This proposed
improvement enables network operators to define a set of data models
describing how to provision and interconnect a set of Virtual Network
Functions (VNFs) (and possibly existing physical network functions) to form
networks. Moreover, the proposed solution enables network operators to
change the configuration at runtime. The work can be seen as a step towards
self managing and auto scaling networks.

The proposed approach is compared to a well known cloud management
system (OpenStack) in order to evaluate if the proposed approach decreases
the amount of time needed for network operators to design network topologies
and services containing VNFs. Data is collected through observations of
network operators, interviews, and experiments.

Analysis of this data shows that the proposed approach can decrease the
amount of time required for network operators to design network topologies
and services. This applies if the network operators are already acquainted
with the data modeling language YANG. The amount of time required to
provision VNFs so that they respond to connections can also be decreased
using the proposed approach. The proposed approach does not offer as much

functionality as OpenStack, as it is limited to VNF scenarios.

Keywords: NFV, SDN, VNF, Virtualization.

Sammanfattning

Denna masteruppsats forklarar varfor vissa nétverkstjanster ar svara att
skapa och konfigurera med IT-automationsverktyg och mjukvara foér mol-
norkestrering. En forbéttring foreslas och motiveras. Den foreslagna for-
béattringen tillater ndtverksoperatorer att definiera en méngd datamodeller,
for att beskriva hur Virtuella Natverksfunktioner (VNF:er) skall instantieras
och kopplas ihop till ndtverkstjanster. Dessutom tillater 16sningen nétverk-
soperatorer att andra konfiguration under tiden nétverken hanterar trafik.
Arbetet kan ses som ett steg mot sjalvhanterande och automatiskt skalande
natverk.

Den foreslagna losningen jamfors med ett valkdnt molnorkestreringsverk-
tyg (OpenStack) for att utviardera om den foreslagna 1osningen sénker mang-
den tid som nétverksoperatorer behover for att designa nétverkstopologier
och tjanster som innehaller VNF:er. Data samlas in genom observationer av
néatverksoperatorer, intervjuer, och experiment.

Analys av datan visar att den foreslagna losningen kan minska tiden
som behovs for att designa natverkstopologier och tjanster. Fallen dér
detta ar applicerbart, dr ndr VNF:er narvarar i natverk. Dessa ar enklare
att skapa, konfigurera, och é&ndra under tiden de exekverar, med den
foreslagna metoden. Detta krdver ocksa att natverksoperatéren ar bekant
med datamodelleringsspraket YANG. Tiden det tar att provisionera VNF:er,
tills dess att de svarar till anslutningar, kan sdnkas med hjilp av den
foreslagna metoden. Den forslagna metoden erbjuder vésentligt begransad

funktionalitet jamfort med OpenStack, den fokuserar pa att hantera VNF:er.

Keywords: NFV, SDN, VNF, Virtualization.

iii

Acknowledgements

I have enjoyed the help of my academic adviser and examiner, Professor
Gerald Q. ”Chip” Maguire Jr., who has provided invaluable feedback,
constructive criticism, and a never ending flow of ideas on how to improve
this master thesis project.

I want to thank my industrial supervisors Claes Wikstrom and
Johan Bevemyr for suggesting this master thesis topic to me, helping and
encouraging me throughout this master’s thesis project, and providing many
ideas and interesting discussions. Stefan Wallin has continuously provided
helpful feedback during the process of writing this master’s thesis. Tomas
Mellgren helped me with all practical problems I encountered and always
encouraged me to keep going.

I want to thank all of the employees of Cisco, Inc., formerly Tail-f, where
[worked during the period of this master’s thesis. They allowed me take part
in the inspiring, innovative, and encouraging environment that they share.
A special thank you to the Cisco, Inc. employees who volunteered their time
and expertise as participants in the evaluation phase of this master’s thesis
project. Finally, I wish to thank my beloved family for their everlasting

support and encouragement.

Contents

1 Introduction

Backgroundo oo
Problem
Purpose and Goals
Delimitations
Structure of the Thesis

1.1
1.2
1.3
1.4
1.5

2.1

2.2

2.3

2.1.1

Background
NFV

NFV Requirements

Network Configuration

2.2.1
2.2.2
2.2.3
224
2.2.5

Cisco IOS
NETCONEFE
YANG,

Related Work

2.3.1
2.3.2

2.3.3
2.34
2.3.5

Open vSwitch oL
OpenStack
2321 Heat
2322 Neutron.
Libvirt
OASIS TOSCA
FBOSS

2.4 SUMMATY

3.1
3.2
3.3
3.4

Method

Research Process
Research Paradigm,
Project Method
Data Collection

3.4.1
3.4.2
3.4.3
3.4.4

Time to Install
Time to Provision VMs
Cluster Tool
Model Assignments

vii

10
11
11
13
16
19
21
21
21
22
24
27
28
30
31

viil

CONTENTS

3.4.5 Sampling 37
3.4.6 SampleSize L 38
3.4.7 Target Population 39

3.5 Test Environment L. 39
3.6 Assessing Reliability & Validity of the Data Collected 40
3.6.1 Reliability 40
3.6.2 Validity 40
Gabbleduck 41
4.1 Architecture 41
4.1.1 Erlvirto 42
4.1.2 Weaver 42

4.2 Examples 43
421 Domain 43
4.2.2 Monitoring o 44
4.2.3 Network 45
424 CSR1000v VNF oL 46

4.3 SUMMATY o e 47
Analysis 49
5.1 Major Results 49
5.1.1 Timeto Install 49
5.1.1.1 Assuming No Problems Encountered 52

5.1.2 Time to Provision VMs 54

5.1.3 Cluster Tool 62
5.1.4 Model Assignments 64
5.1.4.1 Assignment One 66

5.1.4.2 Assignment Two 66

5.1.4.3 Assignment Three 67

5.1.4.4 Results and Analysis. 67

5.2 Reliability & Validity Analysis 71
Conclusions & Future Work 73
6.1 Conclusions 73
6.2 Limitations Lo o 74
6.3 Future Work 76
6.4 Required Reflectionso 78
6.4.1 Environmental & Sustainability Aspects 78
6.4.2 Ethical Aspects L. 79

6.4.3 Economic Aspects 80

CONTENTS

Bibliography

A Example Configuration

Files and Models

A.1 Heat Template of Logical Routers
A.2 OVS Configuration: ifconfig Trace
A.3 OVS Configuration: Logical Routers
A.4 Structure of libvirt-domain Model
A.5 Structure of libvirt-network Model
A6 CSR Template
A7 CSR NAT Template
A.8 CSR Day0 Configuration

B Measurements and Data
B.1 VM Ping and SSH Time Stamps
B.2 RAM Traces.
B.3 CPU Utilization Traces
B.4 Model Assignment Results

C Model Assignments
C.1 Assignment 1
C.2 Assignment 2
C.3 Assignment 3

List of Figures

1.1
1.2

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1

4.1

5.1
5.2
5.3
5.4
5.5

5.6
2.7

Thesis areas and focus. 2

Provisioning and defining networks between network appliances. 3

Comparison of classical network appliance approach and NFV.

(Adapted from Figure 1in [2].) 8
ConfD communication flow. 17
NCS communication flow. 20
NCS and ConfD. 20
Neutron OVS usage example. 24
Example network topology provisioned by Neutron. 25
TOSCA components overview. 29

TOSCA service template. (Adapted from Figure 1 in [31].) . . 29

Overview of methods used in evaluation. 35
Gabbleduck architecture overview. 41
Gabbleduck evaluation network topology. 55
OpenStack evaluation network topology. 55
VM ping time results.o 29
VM SSH time results. L. 60

The network topology described by the participants in the
interview. (Adapted from sketches drawn during the interview.) 63
Median results of model assignments. 67

Average results of model assignments. 68

X1

List of Tables

2.1
2.2
2.3

5.1
5.2

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

NETCONF operations. 13
Example: Neutron network listing. 25
Example: Neutron router listing. 26
Installation time measurements. 50
Start time measurements.o 53
VM ping and SSH time stamps. 105
VM ping median time (minutes). 105
VM SSH median time (minutes). 106
VM ping median time fitted line. 106
VM SSH median time fitted line. 106
Group X, test results. 110
Group Y, test results. 110
Both groups, median time and standard deviation. 110

xiii

List of Listings

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
4.1
4.2
4.3
4.4
4.5
5.1
5.2
5.3
5.4
5.5
Al
A2
A3
A4

Cisco IOS CLI example. 11
NETCONF example. 13
Example YANG model: NETCONF notification. 14
Example YANG model: YANG container & leaf. 15
Example YANG model: YANG list. 15
Example YANG model: Routing table. 18
HOT network template example. 23
HOT instance example. 23
Libvirt network definition.00 27
Libvirt domain definition. 28
TOSCA definitions document (Adapted from Example 4.3

in[30]). 30
Sample size calculation results. 38
Desirable sample size calculation results. 39
Gabbleduck monitor example. 44
Gabbleduck network definition example. 45
Linux bridge implementation. 46
CSR1000v route definitions. 47
CSR1000v network interfaces. 47
Devstack configuration. 52
Route list at host computer using OpenStack. 56
OpenStack virtual type settings. 56
Gabbleduck measuring network. 57
OpenStack measuring network. 58
Heat template of logical routers. 89
OVS Configuration: ifconfig trace. 90
OVS configuration: Logical routers. 91
Structure of YANG domain model. 92

XV

Xvi

A5
A6
AT
A8
B.1
B.2
C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8
C.9

LIST OF LISTINGS

Structure of YANG network model. 96
CSR template. 97
CSR NAT template. 100
CSR Day0 configuration. 102
RAM traces.. 107
CPU utilization traces. 108
Assignment 1 description. 111
Assignment 1 Ubuntu VM XML. 112
Assignment 1 Ubuntu VM YAML. 114
Assignment 1 CSR1000v Day0O configuration. 115
Assignment 2 description. 116
Assignment 2 network XML. 117
Assignment 2 network YAML. 117
Assignment 3 description.o 0oL L 118
Assignment 3 network XML. 119

C.10 Assignment 3 network YAML. 120

Acronyms & Abbreviations

This section defines abbreviations used in this master thesis.

API
ASA
ASIC
BGP
CDB
CIDR
CLI
ConfD

COTS
CPE
CSR1000v
Day0
ETSI
FBOSS
FWaa$S
GD
HOT
IAB
IEEE
IETF

Application Programming Interface

Adaptive Security Appliance

Application-Specific Integrated Circuit

Border Gateway Protocol

ConfDB or Configuration Database, part of ConfD
Classless Inter-Domain Routing

Command Line Interface

Configuration Daemon,
network configuration software

Commercial Off-the-shelf Hardware

Customer Premises Equipment

Cisco Cloud Series Router

Initial configuration of a managed network function
European Telecommunications Standards Institute
Facebook Open Source Switch

Firewall as a Service

Gabbleduck (Proposed approach of managing NFV)
Heat Orchestration Template

Internet Architecture Board

Institute of Electrical and Electronics Engineers

Internet Engineering Task Force

xXvii

xviii ACRONYMS & ABBREVIATIONS

10S Internetwork Operating System

1P Internet Protocol

JSON JavaScript Object Notation

KVM Kernel-based Virtual Machine

NAT Network Address Translation

NCS Network Control System

NIC Network Interface Controller

NSD Network Service Descriptor,
concept from ETSI NFV working group

OASIS Organization for the Advancement of
Structured Information Standards

OS Operating System

PNF Physical Network Function

QEMU Quick Emulator (Hypervisor)

RFC Request for Comments. A document published by the

IETF. Often a protocol specification based upon an
interoperating set of implementations.

RPC Remote Procedure Call
SDN Software-defined Networking
SNMP Simple Network Management Protocol
SSH Secure Shell
TOSCA Topology and Orchestration Specification
for Cloud Applications
VLAN Virtual Local Area Network
VM Virtual Machine
VNF Virtual Network Function, concept from ETSI NFV

working group

ACRONYMS & ABBREVIATIONS xix

VNFD

VPN
XML
YAML

Virtual Network Function Descriptor, concept from ETSI
NFV working group

Virtual Private Network
Extensible Markup Language
YAML Ain’t Markup Language

Chapter 1:

Introduction

This chapter describes the problems that led to this master’s thesis project.
It provides an introduction to this thesis and serves as a preview of the

technical and theoretical background that will be given in Chapter 2.

1.1 Background

Network management has traditionally been a labour intensive, and
expensive activity. When building networks to handle higher amounts
of traffic, new network appliances needed to be purchased, installed, and
configured by network operators.

During the last decade, Software Defined Networking (SDN) [1] emerged
and simplified network configuration and automation. SDN allows network
operators to configure (and reconfigure) network devices programmatically.
In parallel, cloud computing developed to help Internet businesses create
more efficient and scalable architectures.

More recently, Network Functions Virtualization (NFV) [2], was designed
and proposed by the European Telecommunications Standards Institute
(ETSI) [1]. The concept of NFV makes it possible to fully or partially
virtualize network functions on top of commercial of-the-shelf (COTS)
hardware. VNF, as mentioned in the abstract, is a part of the broader
concept of NFV. NFV is explained in greater detail in Section 2.1.

Cloud computing makes it possible to provision Virtual Machines (VMs) [3]
using software. It also provides elastic scaling to match peak loads, high
availability, and fault tolerance [4]. Cloud Computing and SDN are merging
and synergy effects appear in this overlap [1]. In addition, NFV can be

combined with cloud computing and SDN to create even greater value [2].

1

2 CHAPTER 1. INTRODUCTION

This intersection is illustrated in Figure 1.1 — highlighting the focus of this

thesis project at the intersection of these three areas.

Figure 1.1: Thesis areas and focus.

1.2 Problem

When transitioning from the traditional network management approach to

the NFV approach, two major problems must be overcome:

o Instead of buying and installing new network appliances, network
operators need to be able to specify topologies, then have these topology

specifications automatically realized by a system.

o The global state of an NFV network service has to be stored. This
state includes all network appliances that are part of a service, and all
configurations of these network appliances. This state will affect how
new network appliances should be configured when they are added to

the set of available services.

Figure 1.2 illustrates these two major problems. In this scenario, two
new network appliances (Box1 and Box2) are added between two existing
networks. Box1 and Box2 need to be (1) provisioned, this is, VMs are created
and booted, and (2) configured to set up network interfaces, routing tables,
etc. Then, the existing networks will need to be re-configured to be connected
to Box1 and Box2. Box1 and Box2 could be instances of any proprietary or

open source virtual or physical network appliance.

1.2. PROBLEM 3

Ty P AS DG S DI pww

Figure 1.2: Provisioning and defining networks between network appliances.

Currently, there is a gap between cloud computing software and SDN
tools [5]. Existing cloud management systems limit network operators
in terms of network configuration capabilities, as these systems were not
designed to connect to network appliances and to configure them. SDN tools,
on the other hand, often specialize in finding existing network appliances and
configure them. Their main purpose is not to provision VMs.

Cloud management systems were originally designed to provision and
orchestrate enterprise web applications [5]. Components of enterprise
applications, implemented as VMs, are usually only configured once.

The problem of provisioning and elastically scaling web services is well
understood and has been solved by several projects, such as OpenStack
(described in Section 2.3.2), Eucalyptus [6], and Google Ganeti [7]. This
topic is examined and explained further in the master’s thesis by Md.Igbal
Hossain and Md. Igbal Hossain [8]. A primary focus of cloud management
systems is to clone a data center from one location to another. Therefore,
runtime configuration is generally not the main focus.

The Organization for the Advancement of Structured Information Stan-
dards (OASIS) defined a Topology and Orchestration Specification for Cloud
Applications (TOSCA). TOSCA, as described in Section 2.3.4, provides a
modeling framework for expressing applications and relationships between
these applications. TOSCA focuses on the migration between different data
centers, rather than on provisioning and configuring network appliances [9].

Managing Virtual Network Functions (VNFs) is a distinct problem than
the typical cloud computing problem, and managing VNFs has a different

set of requirements. These requirements are described in Section 2.1.1.

4 CHAPTER 1. INTRODUCTION

The gap between the tools described in this section and the practical
requirements for deploying VNFs, has an important implication for network
operators who design network services that include VNFs. This implication
is that it is currently time consuming and difficult for network operators to

design, deploy, and manage VNFs.

1.3 Purpose and Goals

This master’s thesis project proposes an approach to address the problem
of the gap between cloud management systems and SDN. This approach is
referred to as Gabbleduck throughout the rest of this report. The purpose of
this master’s thesis is to evaluate whether the proposed approach can enable
network operators to design NFV network services within a relatively low
amount of time.

The goal is to provide network operators with technology which they will
be able to use to quickly and productively design network services. From a
wider perspective, the purpose of this master’s thesis project is to evaluate
whether a data model driven approach to NFV can serve end-users of many
different kinds of applications and whether these fundamental infrastructure
services can be improved. If they can be improved, then all applications
building upon the resulting networks can benefit from faster development

cycles.

1.4. DELIMITATIONS 5

1.4 Delimitations

As of July 2015, there are many cloud management systems available;
however, the evaluations in this master’s thesis will only consider a single
popular open source project, specifically OpenStack. This focus is due to the
limited duration of this thesis project.

In the future, elastic scaling of VNFs and network services will be
important to meet peaks in the demand for applications executing on top
of network services. Unfortunately, elastic scaling is outside the scope of this
master thesis, hence the author did not implement any support for elastic
scaling.

Virtualization using containers (Linux Containers and Docker) is rapidly
becoming a popular phenomenon in cloud computing. However, this
approach is outside of the scope of this thesis, as this thesis project will
only consider virtualization using VMs.

There is a relation between the complexity faced by network operators
to introduce or change network services, and the cost of introducing these
changes. This exact relationship between this complexity and cost are outside

the scope of this thesis project.

1.5 Structure of the Thesis

Chapter 2 provides deeper theoretical and technical background for the
thesis. Chapter 3 discusses scientific methods and how to measure and
validate Gabbleduck. Chapter 4 presents Gabbleduck in greater detail.
Chapter 5 presents and analyzes the results of the evaluations that have
been conducted as part of this master’s thesis project, and then discusses
the reliability and validity of these results. Finally, Chapter 6 presents

conclusions and suggests future work.

Chapter 2:

Background

This chapter provides some theoretical background for the reader and estab-
lishes a technical foundation for this thesis. Section 2.1 gives background
information about NFV. Section 2.2 describes network configuration and
how this concept is used in this thesis. Section 2.3 discusses related work.

Section 2.4 summarizes the chapter.

2.1 NFV

NFV, as presented in this thesis, is defined by ETSI. NFV is a concept
that proposes to complement, and in the long run, replace, physical network
appliances with virtual network functions. For instance, instead of selling a
packet router as a hardware unit with specialized circuit boards, NF'V enables
the software part of this packet router to be sold separately as a VM ready
to be instantiated in a cloud environment.

This allows network equipment vendors to innovate faster, since software
has shorter development cycles than hardware. Vendors can save money by
reducing their manufacturing costs [2]. Expensive production of specialized
networking hardware is no longer needed in the same extent as previously.

The left side of Figure 2.1 shows the classical approach to building
networks, where physical network appliances from many different vendors are
bought and connected to form networks. The right side shows a typical NFV
architecture, in which virtual network appliances of different vendors execute
together on the same type of underlying hardware (even though physical
network appliances may still be used in an NFV context). COTS servers,
storage, and switches are bought and deployed to form a cloud environment

in which VNFSs can execute.

8 CHAPTER 2. BACKGROUND

The NFV approach allows higher level network services, such as VLAN
and Virtual Private Network (VPN) as a Service, to be constructed using
software, rather than the traditional approach of physically connecting and
configuring special purpose network devices.

Classical Network NFV Approach
Appliance Approach

Firewall QOE Monitor Virtual Network Provision,
Function Configure
Orchestrate

@.' Message Router

Servers
Carrier Grade NAT
Storage
Deep Packet Inspection
Switches
_AN—
Router (=< E‘

Figure 2.1: Comparison of classical network appliance approach and NFV.
(Adapted from Figure 1 in [2].)

VNFs can be placed at and migrated to where they are needed most
or where CPU resources are currently available [10]. This can save energy
since elastic scaling and migration can be employed to use only as much
computing power as needed. Section 2.3.5 describes another approach to
networking equipment.

NFV defines Virtual Network Function Descriptors (VNFD), as templates
describing how to deploy a single VNF. Network Service Descriptors (NSD)
templates define a set of VNFDs. NSD templates are used to describe and
design network services [11, 9]. NSD templates can include many VNFDs

and rules for how these are interconnected.

2.1. NFV 9

2.1.1 NFV Requirements

Several requirements put on NFV by telecommunications operators, make
NFV be more than just an instance of the traditional cloud computing
concept or SDN [12]. Some of the relevant requirements, stated in ETSI’s

group specifications for NFV use cases [12], are:

e An NFV framework has to be able to manage networks consisting of

both physical network functions and virtual network functions,

e An NFV framework should be able to migrate and provision VNFs

across different environments,

e An NFV framework needs to be able to optimize placement of VNFs
in order to reduce energy consumption and to distribute the workload

of network services,

o An NFV framework needs to be able to provision and configure a VNF

so that its full potential is reached in terms of performance,

e An NFV framework needs sufficient monitoring so that operational

data can be fetched from VNFs under management,

e An NFV framework should be able to elastically scale VNFs so that

service level agreements can be met, and,

o An NFV framework needs to provide the same level of service regardless

of whether the network function is virtual or physical.

Some of these requirements are typically not met by existing cloud man-
agement systems, since they were designed to support a set of requirements [5]

mostly concerned with provisioning web applications in the cloud.

10 CHAPTER 2. BACKGROUND

2.2 Network Configuration

Traditional network configuration involves a network operator physically
connecting to a network device, to use a command line interface (CLI)
exposed by the network device’s operating system (OS). Using this CLI,
the network operator can change configurations supported by the network

appliance, to realize changes in networks and network services.

In 2003, the Internet Engineering Task Force (IETF) published Request
for Comments (RFC) 3535 [13]. It states that Simple Network Management
Protocol (SNMP) [14] is used to monitor network devices, but that it is not
used to configure them. Instead operators use CLIs to configure network
devices. RFC 3535 proposes that a new standard is needed, one that can be

general enough to configure devices regardless of the vendor-specific CLIs.

Following the requirements defined in RFC 3535, IETF designed and
standardized the network configuration protocol NETCONF [15] and the
associated data modeling language YANG [16]. Tail-f Systems (acquired by
Cisco, Inc.), the company where this thesis project was carried out, developed
tools around NETCONF and YANG to simplify the process of performing

network configuration.

One of these tools is Configuration Daemon (ConfD) [17]. ConfD was
designed to enable configuration of network devices using NETCONF and
YANG. ConfD is placed inside of devices, where it enables these devices to
be configured. Later on, another tool, Network Control System (NCS) [17],
was designed and developed, to configure network devices over NETCONF,
CLI, REST, and other protocols. This master’s thesis project builds upon
ConfD and NCS.

Each of these concepts will be described further. Section 2.2.2 explains
the NETCONTF protocol. Section 2.2.3 introduces the YANG data modeling
language. Section 2.2.4 explains the uses of ConfD relevant to this thesis,
and Section 2.2.5 does the same for NCS. Section 2.3.2 introduces the reader
to relevant parts of OpenStack.

2.2. NETWORK CONFIGURATION 11

2.2.1 Cisco IOS

Cisco, Inc. produces a large range of network devices. Many of these devices
make use of Internetwork Operating System (IOS) software [18], to enable
network operators to configure and monitor devices. IOS also realizes the
actual network functions, such as routing.

IOS provides a CLI that network operators can connect to over Secure
Shell (SSH) or telnet. Listing 2.1 shows how the IOS CLI can be used to
first enter the privileged EXEC mode, then to ask to see Border Gateway
Protocol (BGP) status, and finally to ask the device to provide the names
of its Network Interfaces (NICs). Privileged EXEC mode is marked by the
character "#” after the device’s name, when the mode is entered. BGP is
not enabled on this particular network device, therefore it is not possible to

get information about BGP.

Routerl> enable
Password: *****

3| Router1# show bgp

% BGP not active

5| Routerl# show html port all names

this [0] = ”?GigabitEthernetl”;

this [1] = "GigabitEthernet2”;

this [2] = ?GigabitEthernet3”;

this [3] = "LIINO”;

this [4] = "LI-Null0”;
Routerl#

Listing 2.1: Cisco IOS CLI example.

2.2.2 NETCONF

NETCONTF is a protocol designed specifically for network configuration [17,
15, 19]. NETCONF is implemented using Remote Procedure Calls (RPC)
with the data encoded using the Extensible Markup Language (XML) [15].
NETCONF was designed from a set of requirements specified by protocol
developers and network operators following an Internet Architecture Board
(IAB) Network Management Workshop [13].

12 CHAPTER 2. BACKGROUND

Some relevant and important requirements from this RFC, with respect to

this thesis, are:

o Ease of use for network operators,
o (lear distinction between configuration data and operational data,

« Operators should be able to focus on the network as a whole, and not

need to consider each device on its own, and

o The granularity of access control needed on management interfaces

needs to match operational needs.

NETCONF is a transactional protocol, leading implementations to
support network wide transactions. As an example, imagine a network
service currently in development by a network operator. This service might
be implemented over 20 different network elements, such as routers, firewalls,
and load balancers. When deploying the service, the network operator wants
to either have the service fully implemented, or if failing to configure one of
the elements, then all devices should be rolled back to their earlier states.

This approach to configuring network devices avoids leaving incomplete
configurations in network elements when something fails, therefore network
operators do not have to manually perform roll backs via a CLI [13].

NETCONTF is session based [15]. A session is created to connect a network
operator to a network device. Configurations within a session can be local or
global. Local configuration changes can only be seen from within the session,
while global configuration changes are visible to other sessions as well [15].
NETCONF supports multiple sessions configuring the same device at the
same time; however, not all network devices communicating over NETCONF
support multiple sessions.

Due to the features listed above, using NETCONF lowers complexity
and reduces the time needed for network operators to implement and deploy
new network services [17]. Table 2.1 lists the different primitive operations
defined by NETCONF and briefly explains their actions. These primitives

can be combined to create complex configurations.

N

Tl W

2.2. NETWORK CONFIGURATION 13

Table 2.1: Description of NETCONF operations.
Operation | Description

get Returns all variables.
get-config Reads the configuration of a device.
edit-config Edits the configuration of a device.

copy-config | Create a new configuration from an old.

delete-config | Deletes the configuration of a device.
lock Locks a device so that other NETCONF

clients can not modify it.
unlock Unlocks a locked device.

close-session | Closes a NETCONF session.
kill-session Forcibly kill a session in a non-graceful way.

Listing 2.2, shows an example of a NETCONF notification that shows an
error resulting from failure to provision a VM containing a firewall VNF. The
structure of this NETCONF message is defined by a corresponding YANG

model, this model is shown in Listing 2.3.

<notification
xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2015-05-06T14:19:14 —00:00</eventTime>
<domain—creation —error
xmlns="http://tail —f.com/ns/gabbleduck/libvirt —notif”>
<name>asa—vFirewall</name>
<error>error —domcreate</error>
<desc>internal error: process exited while connecting to
monitor: Cannot set up guest memory ’pc.ram’:
Cannot allocate memory
</desc>
</domain—creation —error>
</notification>

Listing 2.2: NETCONF example.

2.2.3 YANG

YANG is a data modeling language accompanying NETCONF [16]. It
describes configuration data and operational data expressed as a tree
structure. One of its main benefits is that it can easily be read and interpreted
by humans. Another of its main benefits is that YANG models and rules
defined in these models, can be validated for correct semantics and syntax
by tools [16].

14 CHAPTER 2. BACKGROUND

YANG is a schema language, YANG models define the overall structure
of a service, what database schema is needed, which configuration data can
be read-write, and what operational data should be possible to get from the
service. YANG files can be divided into modules, modules can be included
in other modules as sub modules. This makes it possible to divide services
into multiple files, where each file can have high cohesion, while the separate
modules can have low coupling.

Since YANG models are schema documents, instance documents following
/implementing schemas can be created. Instance documents can be defined
and encoded using XML or JavaScript Object Notation (JSON). For example,
these instance documents can describe how a router should be configured and
where it should be provisioned.

Listing 2.3 shows a YANG model defining the structure of NETCONF
notifications to notify a network operator that something has failed during
the phase of creating a domain. This YANG model is what defines the
structure of the NETCONF message shown in Listing 2.2.

notification domain—creation—error {
leaf name {
type leafref {
path 7/c:libvirt /d:domains/d:domain/d:name”;

}

leaf error {
type gabbleduck—error;

leaf desc {
type string;

Listing 2.3: Example YANG model: NETCONF notification.

Listing 2.4 shows the YANG container statement, that is, a structure that
can wrap other YANG statements. The container in this example has four
children; name, sockets, cores, and threads. Each child has a type, types
are checked and enforced by the tool that reads the YANG model. This
example also shows the YANG leaf statement. This statement is placed at

leaf positions in YANG trees. Leafs contain a value, but no children.

w N

2.2. NETWORK CONFIGURATION 15

container topology {
leaf name {
type string;

leaf sockets {
type uint32;

leaf cores {
type uint8;

}
leaf threads {
type uint32;

Listing 2.4: Example YANG model: YANG container & leaf.

Listing 2.5 shows the YANG list statement. A list can have one or two
key attributes, and these key attributes are what have to be unique in each
child of the YANG list. The list statement is useful when one wants to model
several children of the same type as a list, and distinguish these children with
a key/index. The listing shows an example of a YANG model where network
operators can add any number of reserved hosts to a DHCP server, as long as
the MAC addresses of these hosts are unique. In this listing the mac address
is the key that enforces all children of the host list to be unique.

container dhep {
list host {
key mac;
leaf mac {
type string;

leaf name {
type string;

leaf ip {
type inet:ip—address—mo—zone;

Listing 2.5: Example YANG model: YANG list.

There are two reasons for why NETCONF and YANG is used in this
master’s thesis project, instead of using plain JSON or YAML Ain’t Markup
Language (YAML) documents. The first reason is that Tail-f Systems
has developed two software systems (ConfD and NCS, which are described

16 CHAPTER 2. BACKGROUND

below) designed around NETCONF and YANG. The other reason is that
a separation of the schema and instance documents, with the possibility of
specifying type constraints and other constraints in the schema documents
was desired. The author believes that this can reduce the number of errors
network operators produce when designing network services by specifying

instance documents.

2.2.4 ConfD

ConfD is an on-device software system that provides configuration man-
agement capabilities [20]. ConfD makes it possible for developers of
network equipment, and other types of hardware and software, to provide
a north bound (i.e., interface toward the management system) transactional
management interface to devices.

Typically, a YANG model describes all configurable parameters available
in a device, as well as operational data that an operator can ask a device to
provide. As an example, configuration data could include which gateways the
routing table of a router should contain, this is something network operators
can add to and change over the course of the operation of the router.

Operational data, on the other hand, could include a counter indicating
the total number of packets that the router has routed. This total packet
count will increase during the life time of some network service. The operator
can read this value at any time, for example, for billing purposes, computing
packet rates, dimensioning of other resources, etc.

In the context of ConfD, YANG models serve as contracts for what is
(and what is not) supported by the device being managed. These models
are mirrored as database schemas and are implemented in a database man-
agement system named Configuration Database (CDB). Instance documents
implementing the schema documents, are stored as values in these databases.

These instance documents can change at runtime when operators load new
YANG modules into ConfD.

2.2. NETWORK CONFIGURATION 17

Device manufacturers must implement the functionality necessary to
handle all possible changes that can be made in the context of the YANG
schema models. They must also send northbound NETCONF notifications,
as defined by the YANG models they implement.

Figure 2.2 shows how this thesis project uses ConfD. Libvirt, described
further in Section 2.3.3, is the controlled application. A custom ConfD
subscriber is created, acting as a proxy between ConfD and Libvirt. YANG
models are defined, specifying what capabilities Libvirt supports. NCS,
detailed in Section 2.2.5 can control ConfD. In the figure, NCS is represented
by the operator.

Operator

T Device
NETCONF

>
ConfD femmnnnn w

Subscription changes
/ Notifications

ConfD Subscriber

iAPI Calls

Application (Libvirt)

Figure 2.2: ConfD communication flow.

There are several other uses for ConfD, in which the role of this software
component would be different. However, in the context of this thesis, the

ConfD subscriber application is the most relevant to describe.

18 CHAPTER 2. BACKGROUND

Listing 2.6, shows a YANG model where a simplified routing table maps
destination addresses to gateway addresses. As described earlier, this will
be used to create a database schema in CDB, where a simple table will be
realized. The operator can then (using NETCONF or CLI) add or remove

any number of rows in CDB.

module routing—table {
namespace “http://acme.example.com/router/routing—table”;
prefix routing—table;
organization "ACME, Inc.”;

description
"A simplified router table.”;

grouping table {
list row {
key 7destination”;

leaf destination {
type inet:ipvd—address;
description ”Destination address.”;

}

leaf gateway {
type inet:ipv4d—address;
description ”Gateway of associated address.”;
¥
}
}

Listing 2.6: Example YANG model: Routing table.

The ConfD subscriber subscribes to changes in CDB, either to the
entire database or only a sub part of the entire database. For instance,
a given subscriber might only be interested in configuration changes to the
destination addresses or only interested in changes to the gateways.

In either case, the ConfD subscriber will receive these configuration
changes, and with its knowledge of the router, configure the router appro-
priately. The ConfD subscriber can use a CLI, Application Programming
Interface (API) calls, or any other protocol that the router supports, to
communicate with the router in order to implement these configuration

changes.

2.2. NETWORK CONFIGURATION 19

Using this flow of communication, any network device can be configured
via network wide transactions, as long as there are (1) YANG models
specifying the configuration capabilities of that network device and (2) a
ConfD application that can configure the network device based on existing
contracts. These two requirements are important to remember throughout

the remainder of this thesis.

2.2.5 NCS

NCS, is similar to ConfD in that it configures devices based on the
configuration parameters defined in YANG models. However, NCS is more
commonly used as an orchestration tool. NCS consists of a device manager,
and a service manager, amongst other things [21].

The device manager is capable of configuring sets of network devices.
NCS has a device tree in which it can add/delete devices to manage, and by
performing all management operations through NCS in this way, NCS also
keeps track of all of the device and application configurations. This is in
contrast to ConfD, that normally manages only one device.

The NCS service manager accommodates service applications. These are
applications that can orchestrate or configure certain services, for instance
a VPN service. Services can include any number of devices. The Weaver
application, described in Section 4.1.2, is a collection of NCS services [21].

Note that, in the context of this thesis project, there is a client-server
relationship between NCS and ConfD. NCS is the client and ConfD is the
server. NCS asks ConfD to perform certain actions and listens for the results
of these actions. However, after the initialization of devices, NCS can add
provisioned devices to its own device tree and can then configure devices
without the need of doing it through ConfD.

20 CHAPTER 2. BACKGROUND

The objects symbolizing ConfD subscribers in the Figure 2.3, are
instances of the flow described in Figure 2.2, with the network operator
replaced by NCS. Both ConfD and NCS automatically generate northbound
management interfaces from provided YANG models. These management
interfaces include both web user interfaces and CLI. Figure 2.4 shows the
relationship between ConfD and NCS in more detail. This figure combines

objects from Figure 2.2 and 2.3.

Operator

4o

NCS
NETCONF NETCONF

ConfD / ConfD / ConfD /
Device Device Device

Figure 2.3: NCS communication flow.

T CLI / Web Ul

Operator

dd Ob Subsystems /
Managed Objects

Figure 2.4: NCS and ConfD.

2.3. RELATED WORK 21

2.3 Related Work

This section discusses related work. Alternatives to the work conducted
in this thesis, as well as additional background information about the

technology used in the thesis project, are briefly discussed.

2.3.1 Open vSwitch

Linux has three types of software switches: bridge, macvlan, and Open
vSwitch (OVS) [22]. Bridges can be used to connect Ethernet NICs together
through a common virtual network [23]. This makes it possible for these
NICs to communicate over this network. Macvlan allows a single NIC to be
associated with several IP addresses and MAC addresses.

OVS is a virtual, link layer switch, designed to interconnect VMs [24].
It is not executing as a VM, rather, it is an application executing on top
of the OS of a physical computer. OVS is used by OpenStack (introduced
in Section 2.3.2) to create connections between VMs. Moreover, OVS is
designed to be a distributed switch, it can execute on many host computers
and communicate between instances. This functionality, is something that
Linux bridges do not provide [25]. OVS bridges are more advanced than
Linux bridges. Forwarding is flow based (OVS supports the OpenFlow [26]
protocol), and has caching capabilities [22]. OVS can be used to simulate
routing functionality [27]. When comparing Gabbleduck with OpenStack
(described in Section 2.3.2), OVS is one of the components that is of interest.

2.3.2 OpenStack

OpenStack is one of the most commonly used open source cloud management
systems at the time of writing this thesis [28]. OpenStack was created
by NASA and Rackspace in order to create a free open source cloud
operating system for use in private clouds. Although Amazon at the time of
the OpenStack project initialization already offered Amazon Web Services

(AWS), a public cloud service, there was a need for software to manage

22 CHAPTER 2. BACKGROUND

private clouds.

OpenStack is composed of several more or less independent software
components. Nova Compute provisions VMs, Glance stores machine images,
Heat orchestrates VMs, and Neutron is OpenStack’s networking component.
Neutron and Heat are of special relevance to this thesis because in Section 5.1
the Gabbleduck system will be compared to OpenStack and these specific
OpenStack components. Section 2.3.2.1 describes Heat, and Section 2.3.2.2

describes Neutron.

2.3.2.1 Heat

OpenStack’s orchestration software component is Heat [28]. Heat reads
Heat Orchestration Template (HOT), YAML, and Amazon CloudFormation
templates. It uses these templates to provision and create VMs and network
topologies.

Listing 2.7 shows an example of a Heat YAML instance document. The
type of a template (its Template Format Version) is specified, followed by a
set of properties expressed as YAML objects. A virtual network networkl is
defined. To it, a subnet VLanl is attached. This subnet is given an address
space, in which a DHCP server can allocate IP addresses. Finally, a Neutron
port portl is defined. This port allocates an IP address and we can later
connect this port to any VM, so that the VM is reachable through its own
IP address.

When Heat reads this orchestration template, it will determine what
actions to take in order to realize the components defined by the template.
It will make API calls to Nova in order to provision needed VMs and uses
Glance to access VM images. Neutron might be called in order to configure

OVS or other network functions, like in the example described above.

SR

2.3. RELATED WORK 23

HeatTemplateFormatVersion: ’2012—12—12"
Description: Simple Network Topology

Resources:
networkl :
Type: OS::Neutron:: Net
Properties: {name: netl}
VLanl:
Type: OS::Neutron:: Subnet
Properties:
network id: {Ref: networkl}
ip__version: 4
cidr: 10.0.0.0/24
allocation_pools:
— {start: 10.0.0.5, start: 10.0.0.250}
portl:
Type: OS::Neutron:: Port
Properties:
name: portl
network: {Ref: VLanl}
fixed_ips:
— subnet: public—subnet
ip_address: 10.0.0.20

Listing 2.7: HOT network template example.

Listing 2.8 shows a VM created and configured through OpenStack’s Nova
component. It is configured to boot a Ubuntu 12.04 cloud image. Cloud
images are different from normal images in the sense that when booting,
they look for initial configurations, or Day0 configurations. An example
of providing a Day0 configuration through OpenStack can be seen in the
user__data field of the model, where a password is set in the provisioned VM.

The VM is connected to the port and network defined earlier.

HeatTemplateFormatVersion: ’2012—12—12"
instancel :
Type: OS::Nova:: Server
Properties:
name: ExampleVM

image: “ubuntu-—12.4"
flavor: ml.small
networks:

— network: {Ref: networkl}
port: {Ref: portl}
user__data: "#cloud—config
password: passwOrd”
user_data_format: RAW

Listing 2.8: HOT instance example.

24 CHAPTER 2. BACKGROUND

2.3.2.2 Neutron

Neutron is a software component providing network function interactions
to OpenStack applications [27]. It provides some basic SDN functionality.
Users can implement logical networks with logical routers and logical firewall
policies. Logical, in this context, means there is no physical or even dedicated
VM instance providing a firewall in the network. Instead, as mentioned in
Section 2.3.1, underlying software such as OVS is configured to provide this
functionality [27]. Figure 2.5 shows how OpenStack Neutron could use OVS
to interconnect a number of network appliances.

Neutron creates logical routers as a set of OVS configurations, specifying
what ports to route to different gateways. Logical networks are identified
as IP address ranges with a subnet masks, for instance 10.0.1.0/24. This
makes it possible to partition virtual networks. Logical routers can be placed
between logical networks to provide Network Address Translation (NAT),

just as can be done in physical networks.

ovs ovs ovs

— LAN ASA

— .:: I -

B ASA |emmmmmmmaeaeas CSR fesmmmmmmmcacaand WAN f—

Figure 2.5: Neutron OVS usage example.

Neutron’s programmability and configurability, is sufficient for many
cloud applications. However, this thesis claims that Neutron is insufficient
when one wants to use specific VNFs; such as Cisco or Juniper proprietary
virtual routers. Currently it is not possible to provision arbitrary VNFs using
Neutron, without first developing a specific plug-in for each such VNF to be

used in a desired topology.

2.3. RELATED WORK 25

Figure 2.6 shows a simple network provisioned by Neutron. The figure
depicts an OpenStack project, with two private networks, Viani and Vian2.
Vlanl is connected to the outside world (outside of the project) through
router! and Vlan2 through router2. The model defining this topology is
shown in Listing A.1.

Public (Global) 172.24.4.0/24

NIC: 172.24.4.127

U routerl router2 U

| 10.0.0.1

NIC: 172.24.4.123

10.0.1.1

VLanl 10.0.0.0/24 VLan2 10.0.1.0/24

Figure 2.6: Example network topology provisioned by Neutron.

Table 2.2 shows the logical networks created by Neutron in order to realize
the network described above. First is the public network, to which the project

is facing, and then two private networks accessible through the logical routers.

Table 2.2: Neutron Network List
id name | subnets

9a87b5... | public | 06e82... 172.24.4.0/24
0070cb... | Vlanl | 7d63b... 10.0.0.0/24
f50848... | Vlan2 | 8b469... 10.0.1.0/24

Table 2.3 shows the list of logical routers present in OpenStack when the
topology depicted in Figure 2.6 is implemented. Each router is connected to

a list of subnets.

26 CHAPTER 2. BACKGROUND

Table 2.3: List of Logical Routers

id name | external gateway info distributed | ha
{"net_id": 79a87b...””, "ips”: |
8ff12... | router2 | {"subnet id”: "06e82...", False False

"ip_address”: "172.24.4.5"}]}
{"net_id”: 79a87b...”, "ips”: |
£c930... | routerl | {”subnet id”: "06e82...", False False
"ip_address”: "172.24.4.3"}]}

Neutron provides functionality to configure a Firewall as a Service
(FWaaS) and other network functions as services. However, the network
operator is limited in how these services can be configured and controlled.
Just as with logical routers, FWaaS instances are not implemented as specific
VMs. Rather, they are are implemented as rules in all of the logical routers
across a project. These rules are translated to OVS configurations, just as
the routers are themselves. The OVS configurations for this example are

listed in Listing A.3 in the Appendix.

IS O

10
11

2.3. RELATED WORK 27

2.3.3 Libvirt

This thesis project uses Libvirt [29] as an abstraction layer to control the
underlying physical machines, and to control Virtual Machines. Libvirt
manages hypervisors and these hypervisors in turn interface with the
operating system of the underlying physical machines. In Libvirt terms,
a VM is a domain. Domains can be created, destroyed, migrated, etc.

Libvirt offers both a CLI and an API to instruct Libvirt what to do
with different domains. Libvirt also manages network interfaces and pools
of storage volumes. Domains typically store images which they use as hard
drives in these pools. The Libvirt API communicates using data encoded
as XML. Figure 2.9 shows an example definition of a virtual network. This
virtual network is bridged to the host machine’s NIC over a Linux bridge.
NAT is performed between the host executing Libvirt, and the address range
defined as 192.168.122.0/24. 1P addresses within the virtual network, ranged
from 2 to 254, can be allocated.

<network>
<name>default</name>
<bridge name="virbr0”/>
<forward mode="nat” />
<ip address="192.168.122.1"7 netmask="255.255.255.0">
<dhcp>
<range start="192.168.122.27 end="192.168.122.254"/>
</dhcp>
</ip>
<ip family="ipv6” address="2001:db8:ca2:2::1” prefix="647/>
</network>

Listing 2.9: Libvirt network definition.

Figure 2.10 shows an example definition of a Libvirt domain. It defines
a domain, based on a provided Ubuntu image, within the Quick Emulator
(QEMU) hypervisor. The domain is attached to the virtual network defined
above. When booted, the domain will mount a virtual CD-ROM provided
as an ISO image (day0.iso).

28 CHAPTER 2. BACKGROUND

<domain type=’gemu >
2| <name>ubuntu</name>
<memory>219200</memory>
<vepu>2</vepu>
<0s>
<type arch="x86_64" machine="pc >hvm</type>
<boot dev="hd’ />
</os>
<devices>
<emulator>/usr/bin/qemu—system—x86_ 64</emulator>
<disk type=’file’ device=’cdrom’>
<source file=’/home/acme/day0.iso’/>
<target dev="hdc’ />
<readonly />
</disk>
<disk type=’file’ device="disk >
<driver name=’'gemu’ type='qcow2’ cache=’none’ />
<source file=’/home/acme/ubuntu.img’/>
<target dev='hda’ bus=’ide’/>
</disk>
<interface type=’network >
<source network=’default’/>
</interface>
</devices>
5| </domain>

Listing 2.10: Libvirt domain definition.

2.3.4 OASIS TOSCA

TOSCA is defined by the OASIS standardization organization. It is a
template language that can be used to define instance templates for cloud
environments [30], much like HOT and Amazon CloudFormation. TOSCA
uses XML, and more recently, YAML, to encode data. It defines a number of
models, or templates, that can be combined to describe software components

and relations between these components.

Figure 2.7 shows different templates and types within TOSCA. Service
templates contain information about entire services that can consist of many
nodes, mostly network devices in the context of this thesis. Service templates
can also contain plans, plans are rules or definitions for how to perform

orchestration.

2.3. RELATED WORK 29

Service Template L Node Types

Topology Template
Relationship Types

Plans s Node Types

Figure 2.7: TOSCA components overview.

Topology templates model nodes in services, and relationships between
nodes. The relationship can denote, for instance, what type a node is,
and where this node should be hosted. Models can then be formed and
given to an orchestrator, that transforms these models into a set of deployed
instances [30]. Figure 2.8 shows an example topology defined using TOSCA.

It is a service template, defining both a set of node types, and a topology.

Service Template

/'r MNode Types _'“‘\1

Topology Template
/- s P Node Type

\ Capability Definitions

e o =1
L1 I— m
type for | © =
Relationship 2 @
— (]
Template I T, & Requiremeht Definitions
Relationship Types
: (" Relationship Type
i | type for

LT Ferupr—

Node
Template

Properties
&
SBdBIalu|

A

Plans

N
J

> A —

Figure 2.8: TOSCA service template. (Adapted from Figure 1 in [31].)

15

17

30 CHAPTER 2. BACKGROUND

Listing 2.11 shows a basic TOSCA template that defines two nodes. There

is also a relationship defined, connecting the two defined nodes.

<Definitions id="MyDefinitions” name="My Definitions”
targetNamespace="http: //www.example.com/MyDefinitions”
xmlns:my="http://www.example.com/MyDefinitions”>
<Import importType="http://www.w3.org/2001/XMLSchema”
namespace="http: //www.example.com/MyDefinitions”>
<NodeType name="Application”>
<PropertiesDefinition element="my:ApplicationProperties”/>
</NodeType>
<NodeType name="ApplicationServer ”>
<PropertiesDefinition
element="my:ApplicationServerProperties” />
</NodeType>
<RelationshipType name="ApplicationHostedOnApplicationServer”>
<ValidSource typeRef="my:Application”/>
<ValidTarget typeRef="my:ApplicationServer”/>
</RelationshipTemplate>
</Definitions>

Listing 2.11: TOSCA definitions document (Adapted from Example 4.3
in [30]).

2.3.5 FBOSS

Facebook Open Source Switch (FBOSS) [32], is another approach at building
and managing networks. It consists of open source hardware and open source
software. The hardware includes an Application-Specific Integrated Circuit
(ASIC): the Broadcom Trident II ASIC. The software executes on top of
Linux. In this way, the switch is designed as a UNIX server. Additionally,
the resulting switch is managed as a server and not simply as a network

device.

In the FBOSS architecture, the hardware and software are not tightly
bundled together. Instead, the project separates hardware and software in
the switches [32]. As a reminder, this is also what NFV proposes. FBOSS can
conceptually be placed between traditional networking equipment and NFV,

since it divides hardware and software but still provides specific hardware.

2.4. SUMMARY 31

2.4 Summary

NFV is a concept that proposes to add virtualized network equipment
to standard data center hardware. This can reduce costs, save energy,
and reduce the time needed by network operators when provisioning and
managing networks.

NFV orchestration places new requirements on cloud management sys-
tems. The management system needs to have application layer information
available in order to make informed decisions. The network operator must
have access to configuration data such as the placement of specific devices and
other resources. The network management module of the cloud management
system needs to be able to connect to devices and configure them according

to both their initial and subsequent configuration settings.

Chapter 3:

Method

This chapter provides an overview of the research methods used in this thesis.
Section 3.1 describes the research process. Section 3.2 discusses the research
paradigm. Section 3.3 explains which project method was used in this thesis
project. Section 3.4 focuses on the data collection techniques used during

this research.

3.1 Research Process

Looking back at Section 1.3, the purpose of this master’s thesis project is
to evaluate whether the Gabbleduck prototype improves the productivity of
network operators when designing network services. A mix of quantitative
and qualitative research methods are used. Some aspects can be measured
with statistical data. In addition to this, interviews and case studies are

carried out to gather thoughts and opinions.

The abductive method is used when performing observations and case
studies of network operators. The abductive method uses both inductive
and deductive methods to travel from a set of observations to a set of
likely conclusions [33]. This approach is used to collect opinions and
concepts that might otherwise be missed out when carrying out experimental
methods. When measuring performance parameters, experimental and
deductive approaches are used. These methods are helpful when gathering

statistical data.

33

34 CHAPTER 3. METHOD

3.2 Research Paradigm

This master thesis embraces the realistic [33, 34, 35] philosophical assump-
tion. The realistic assumption is helpful when performing observation
of research participants to collect opinions of working with the evaluated
systems.

In addition to realism, positivism is assumed when carrying out perfor-
mance tests. Positivism assumes that the reality is objectively given and
independent of the observer and instruments used. Positivism is commonly
assumed when using quantitative methods. Criticalism is not relevant to
this research, since it focuses mainly on the way society is structured and on

cultural aspects [33].

3.3 Project Method

The project is carried out in an iterative manner. This suits the project, since
initially the requirements were unclear. The understanding of the project,
the requirements, and what are good and bad solutions evolved rapidly in
the early stages of this project, and continued to evolve throughout the rest
of this master’s thesis project.

An alternative would be the waterfall method [36]. In this style of project
management, parts of the projects are developed in sequence, with each
step depending on the previous step. However, in order for this method
to be successful the requirements must be clear from the beginning. As
the requirements were not clear, the waterfall method was deemed to be

inappropriate [36].

3.4. DAaTA COLLECTION 35

3.4 Data Collection

In order to evaluate the systems researched in this master’s thesis project,
data is collected from experiments, case studies, and interviews. The
collection of data is divided into four parts, each part is explained in this
section. Figure 3.1 gives an overview of how each part of the data collection
relates to the methods described above. It also shows in which order these

data collections were performed.

Quantitative Qualitative
< - - - - >
Positivism, deductive : Realism, abductive
6 6 o 6 5
< < S % b7
2 % C
’O) 2 (o) @) (%
() () Oé () 6‘/
P % Y P N
%,) s, % %
2 o) % S %
CY % 2 N7 4
/,9(%f) /))Q //0/,
Q 4, % s
4

Figure 3.1: Overview of methods used in evaluation.

3.4.1 Time to Install

Time to Install Pt.1 consists of case studies of volunteer participants. This
measures the amount of time required for these volunteer network operators
to install the evaluated software on their work computers, and also notes
issues encountered.

Time to Install Pt.2 measures the amount of time required to install
the evaluated systems on a host computer, assuming that no issues are
encountered during the installations. The UNIX command ¢ime is used to
measure the amount of time (in seconds) required to install each system. The

results of these measurements and observations are presented in Section 5.1.1.

36 CHAPTER 3. METHOD

3.4.2 Time to Provision VMs

Both evaluated systems are used to provision VMs in groups from one to ten
VMs. Then, the amount of time required for the VMs to respond to ping
and SSH connections are measured. Two time stamps are collected for each
set of VMs measured. These time stamps represent (1) the wall clock time
when starting to provision the set of VMs, and (2) the wall clock time when
the last VM answered to ping, as well as SSH connections. The results of

these measurements are presented in Section 5.1.2.

3.4.3 Cluster Tool

Thoughts, opinions, and issues are collected from two network operators
working on a project that uses the Gabbleduck software as part of its tool
chain. An interview with these engineers was carried out. This interview,

and the outcomes of it, is explained in Section 5.1.3.

3.4.4 Model Assighnments

In order to measure the amount of time required for network operators
to design network services, three short (in terms of time to complete)
assignments are created. These assignments ask a set of volunteers to create
or modify provisioning templates (such as to introduce new functionality to
services) for both Heat and Gabbleduck.

This way, the complexity of the models, and the complexity of changes
to the models, can be quantified in terms of the number of required changes,
the difficulty of these changes, and how much time it takes to perform
these changes. Additionally, this shows whether it is possible to perform
these changes in the first place. Data is collected by asking participants to
measure the amount of time they need to solve assignments. In addition,
participants hand in their solutions, so that they can be analyzed, and so
that the investigator can count the amount of failures.

During data collection, there is the risk that participants will be affected
and biased by the order in which they use the systems evaluated. This is a

3.4. DAaTA COLLECTION 37

risk difficult to eliminate, however it is taken into account and reduced by
dividing participants in two groups and having these two groups solve their
own version of the assignments.

The difference of these two versions, is the order in which sub assignments
are solved. In the first version, an assignment involving Gabbleduck should
be solved first, and an assignment involving OpenStack should be solved
later. In the second version, this is reversed. Median results of the combined
groups are analyzed.

In addition to the problem of learning order effects, the results are also
affected by bias from if participants have worked with OpenStack before,
and if they have a good understanding of YANG. Participants with a
good understanding of YANG will likely perform significantly better than
participants who do not understand the concepts of YANG, during the parts
of the evaluation concerning Gabbleduck.

Participants who do not have the understanding of YANG, will instead
likely be slowed down in having to understand the link between YANG
model and instance document. The assignments are described further in
Section 5.1.4.

3.4.5 Sampling

In order to test the model assignments described above, the investigator has
to collect a group of participants to assist in the evaluation. When this group
of participants is collected, Simple Random Sampling (SRS) [37] is applied,
out of a group of available participating volunteers provided by Cisco, Inc.
The reason as to why SRS is used, is because the time to carry out
this project and the budget for this project are both limited, and because
SRS avoids introducing bias. There are more advanced types of sampling,
one of them is stratified sampling. In stratified sampling, the population
of available potential participants would be divided (on number of years of
managing networks, or on other differentiators) into groups, or strata. These

strata are then each sampled.

w N

38 CHAPTER 3. METHOD

3.4.6 Sample Size

When collecting data from the installation time experiment, the test is
repeated ten times to give sufficiently reliable results. The experiments
designed to provision VMs are significantly more time consuming to carry
out, therefore each test (there are twenty tests in total) is repeated only three
times. However, three times is expected to be enough to yield relatively stable
results, since the variations between tests are low.

The author was assigned eight network operators to volunteer in solving
assignments. These network operators are employed by Cisco, Inc. In order
to determine the significance level and power when given a population of
eight participants, the R programming language [38] was used to perform a
power analysis.

In the context of a power analysis in the R programming language, effect
size, significance level, and power are relevant concepts. Significance level
and power describe the probability of errors in the sampling. Significance
level is the probability of finding an effect that does not exist. Power is the
probability of finding an effect that does exist. Effect size [39] is a measure
of how strong a measurement is.

Listing 3.1 shows the results of a power analysis. The sample size is four
(four participants in each groups, since eight were available), when using two
groups, a significance level of 95% and a power of 16%. Effect size is 0.8,

which is weak. A stronger effect size would have been preferable.

> library (pwr)
> pwr.anova. test (k=2,f=.40,n=4)

Balanced one—way analysis of variance power calculation

k =2
n=4
f=10.4
sig.level = 0.05
power = 0.1601134

NOTE: n is number in each group

Listing 3.1: Sample size calculation results.

3.5. TEST ENVIRONMENT 39

Listing 3.2 shows a more desirable sample size, with a significance level
of 95%. This requires the sample size to be 26 participants, in each group
(where two groups would be used). However, in the scope of this research,

gathering 51 volunteers is not possible.

> pwr.anova.test (k=2, f =.40 , sig.level =.05 , power =.8)

Balanced one—way analysis of variance power calculation

k=2
n = 25.52457
f=10.4
sig.level = 0.05
power = 0.8

NOTE: n is number in each group

Listing 3.2: Desirable sample size calculation results.

3.4.7 Target Population

The target population is network engineers and operators, individuals
maintaining and developing network architectures and services. These

persons are likely employed by large or medium sized network operators.

3.5 Test Environment

The tests assigned to participants are a set of text files. Participants are free
to use the environment they are most comfortable with. Participants are not
able to realize their models in the actual systems, instead they have to ask
the investigator to validate and accept their solutions, when they think they
are ready to do so. Hardware specifications differ between tests, thus they
are described where each part of the evaluation is presented in Section 5.1.
During the evaluation stages, a set of VNFs was provided by Cisco, Inc.,
these VNFs are:

o Cisco Adaptive Security Virtual Appliance (ASAv), a firewall

and content filter,

e Cisco Cloud Series Router 1000v, a router, and

40 CHAPTER 3. METHOD

« Ubuntu 12.04 Server AMDG64 (Cloud), a version of Ubuntu that
is minimal in size and has the ability to load specified configurations

when booting.

3.6 Assessing Reliability & Validity of
the Data Collected

Reliability and validity both depend on how well the researcher manages to
collect data during interviews and observations [35]. It also depends on how

many times tests are repeated to reach statistically significant results.

3.6.1 Reliability

The reliability of the results of measuring the amount of time required to
install the evaluated systems on a host computer, is the most reliable data
collected. This is because each test is repeated ten times.

In the case of evaluation using volunteering participants, if the difference
in the results collected from different volunteers is high, then this indicates
that the collected data has low reliability [35]. It means that a larger
sampling size participants would have been needed in order to reach a point

where the median results data stabilize.

3.6.2 Validity

Validity is used to measure the truthfulness of collected data [35]. The results
gathered when researching a phenomenon should be repeatable. If the same
data is collected several times, then the results of these collections should
be similar [35]. Important aspects of validity are; integrity, authenticity,
credibility, and criticality [40].

Criticality and integrity are connected to topics such as investigator bias,
and validity of the results acquired [40]. The investigator has to be self-
critical in how data is collected, the importance of how the assignments are

designed, and how this design affects the data collected.

Chapter 4:

Gabbleduck

This chapter introduces the system that was implemented as a part of this
master’s thesis project, the Gabbleduck. Section 4.1 explores the architecture
of the system, to give the reader an idea of what the system does. Section 4.2

presents examples to give a more applied understanding of it.

4.1 Architecture

Gabbleduck is a software artefact that is designed to fill the gap between
cloud management systems and SDN tools, as described in Section 1.2. It
can provision VNFs based on machine images and connect to these VNFs
over SSH to configure them. However, this requires that YANG models and
controllers are defined for these VNFs.

Figure 4.1 depicts the architecture of the Gabbleduck system. The
network operator can connect either to a service named Weaver or to a
service called Erlvirt. Weaver can also connect to Erlvirt in order to control
this service. Typically, one Erlvirt instance is executing on each host that

the operator wants to control.

N

NCS > ConfD Libvirt
Weaver Erlvirt KVM
| VM1 | VM2 | VM3 |

Figure 4.1: Gabbleduck architecture overview.

41

42 CHAPTER 4. GABBLEDUCK

4.1.1 Erlvirt

Erlvirt is a ConfD subscriber application. It subscribes to changes in
the CDB, and then iterates through each received set of changes. Erlvirt
also connects to Libvirt, through Libvirt’s remote API. The main purpose
of Erlvirt is to transform CDB changes to Libvirt XML definitions and
Libvirt API calls. Since Erlvirt can do this, it is possible to specify YANG
instance documents describing what kind of VM to provision along with its
configurations. Then, Erlvirt will realize these models.

When provisioning a VNF, such as a virtual router, it is common to
specify a Day(0 configuration. This Day0 configuration will be attached to
the VNF, and is used in part to set up a management IP address in the VNF.
This management address is later used by configuration tools to connect to
the VNF, so that it can be configured further.

4.1.2 Weaver

The Weaver is a set of NCS applications, used to control one or more Erlvirt
instances. NCS communicates with ConfD over the NETCONF protocol.

When Erlvirt has successfully provisioned a VNF, it sends a northbound
NETCONF notification informing the Weaver about this life cycle event.
Weaver then proceeds to load the device’s configuration into its device
tree. From this point and onwards, the Weaver can connect to the VNF’s
management address over SSH and configure it.

As described in Section 2.2.5, Weaver can add VMs directly to its device
tree. This makes it possible for Weaver to have a complete overview of all
managed VNFs (and these VNFs’ configurations) in one central system. This
also removes the need of communicating with VNFs through Erlvirt, instead

Weaver can connect directly to VNFs.

4.2. EXAMPLES 43

4.2 Examples

This section shows the functionality and some use cases of the Gabbleduck
system. It does this by introducing some example YANG models, and YANG

instance documents.

4.2.1 Domain

The YANG model libvirt-domain defines all configuration data that the
Gabbleduck supports, in terms of provisioning domains. An outline of the

structure of this model is shown in Listing A.4.

Since Gabbleduck is a layer on top of Libvirt, the libvirt-domain model
builds upon the configuration capabilities of Libvirt. When Erlvirt receives
a change notification from the CDB, it queries CDB asking to get the entire
domain instance document formatted as XML. Then, Erlvirt transforms this
XML to the format that Libvirt expects, and passes this transformed XML
to Libvirt. In this process of transforming the instance document, Erlvirt
might also download VM image files from a web server hosted by Weaver
and upload these image files to Libvirt’s volume pool. In these cases, Erlvirt
will then proceed to change the URL from the instance documents to the

local address the image file got in the host machine.

Listing C.2 shows an example of an instance document used to provision a
simple Ubuntu cloud machine. This Ubuntu machine is connected to a virtual
network that will be presented below. The instance document specifies how
much virtual RAM the VM should allocate, as well as how many virtual
CPUs to make use of. This VM will mount a hard drive named boot-disk,
this hard drive contains a machine image with an OS (contained in the ”.img”
file). Additionally a virtual CD-ROM containing initial configuration for the
OS is mounted. This configuration is defined as ubuntu-day0 in the instance

document.

NN N NN NN
S 0N AR W N

30

44 CHAPTER 4. GABBLEDUCK

4.2.2 Monitoring

The Gabbleduck system includes a software component that allows monitor-

ing of VMs, VNFs, and physical machines. This monitoring feature currently

supports ping and SSH probing of VMs. Monitoring allows the network

operator to receive notifications about the life cycle of VNFs.

Normally,

a VNF is reachable by ping requests before it is reachable over SSH. This

component will be mentioned again in Section 5.1.2 when discussing and

presenting analysis of the system. Listing 4.1 features an instance document,

showing how a monitor can be created and configured to monitor the IP
address 192.168.0.2, by pinging this address every 50 milliseconds. SSH
monitoring can be added by copying the monitor XML tag and replace ping-

monitor with ssh-monitor.

<config xmlns="http://tail—f.com/ns/config/1.0">
<lwmon xmlns="http://www. cisco .com/lwmon/lwmon”>
<notification —stream>gabbleduck</notification —stream>
<nodes>
<node>
<name>Monitor</name>
<addresses>
<address>
<address>192.168.0.2</address>
<monitors>
<monitor>

<label>ping</label>

<actions>
<action>

<label>ping—monitor</label>
<notif />

</action>

</actions>

<ping—monitor>
<enabled>true</enabled>
<poll__interval>50</poll__interval>
<active_threshold>1</active_threshold>
<inactive__threshold>8</inactive_threshold>

</ping—monitor>

</monitor>

</monitors>
</address>
</addresses>
</node>
</nodes>
</lwmon>
</config>

Listing 4.1: Gabbleduck monitor example.

NN NN NN N
WO U R W N

30

4.2. EXAMPLES 45

4.2.3 Network

The YANG model libvirt-network, defines the available configuration param-
eters of virtual networks within the Gabbleduck system. An outline of the
structure of this model is shown in Listing A.5. Listing 4.2 shows a YANG
instance document defining a virtual network configuration.

This virtual network is connected to the host machine’s NIC through a
Linux bridge named virbr(. Gabbleduck does not yet have a binding to OVS,
and therefore Linux bridges are used. NAT, between the NIC’s CIDR and
192.168.122.0/24 is performed on all ports between 1024 and 65535.

The gateway of the virtual network is defined as 192.168.122.1. A certain
sub space of the network is allocated to a DHCP server, so that connecting
VMs can be assigned IP addresses. Finally, one IP address (192.168.122.29)
is preallocated to a VM with a certain MAC address.

<config xmlns="http://tail—f.com/ns/config/1.0”>
<network>
<name>default</name>
<bridge>
<name>virbr0</name>
<stp>on</stp>
<delay>0</delay>
</bridge>
<forward>
<mode>nat</mode>
<nat>
<port>
<start>1024</start>
<end>65535</end>
</port>
</nat>
</forward>
<ip>
<name>default</name>
<address>192.168.122.1</address>
<family>ipv4</family>
<netmask>255.255.255.0</netmask>
<dhcp>
<range>
<start>192.168.122.100</start>
<end>192.168.122.254</end>
</range>
<host>
<mac>00:0a:95:9d:68:12</mac>
<name>VNFI< /name>
<ip>192.168.122.29</ip>
</host>
</dhep>
</ip>
</network>
</networks>
</libvirt>
</config>

Listing 4.2: Gabbleduck network definition example.

46 CHAPTER 4. GABBLEDUCK

Listing 4.3 shows the result of provisioning the above model using
Gabbleduck. A Linux bridge is implemented, bridging the virtual network
with the host machine’s NIC. This listing shows the bridge as seen by the
UNIX ifconfig command.

> ifconfig

virbr0 Link encap:Ethernet HWaddr 52:54:00:cd:96:5e
inet addr:192.168.122.1 Bcast:192.168.122.255

Mask:255.255.255.0

UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Listing 4.3: Linux bridge implementation.

4.2.4 CSR1000v VNF

The Cisco Cloud Series Router 1000v (CSR1000v) is an example of a VNF.
It is a router that supports BGP, VPN tunnels, etc. An instance document
expressing how to provision a CSR1000v VNF is shown in Listing A.6. This
model defines a number of virtual networks, a number of virtual NICs, and
the domain that will execute the actual CSR1000v software. The purpose is
to define networks, and interconnect these networks through the router.

Mounted to the domain, is an initial router configuration, embedded as
tosxe__config.txt. This configuration is applied before the router provides a
management [P address that network operators can connect to. The purpose
of this initial configuration is to create such a management address. The
content of this configuration file is illustrated in Listing A.8.

Once a management [P address has been configured, and this interface
listens to traffic, it is possible to connect NCS to the router. NCS can then
configure more advanced options within the VNF. An example of how to set
up NAT, routes, and access lists, is provided in Listing A.7. Listings 4.4
shows a key part of this listing, specifically, a list of route forwards that
can be specified. Prefixes and masks correspond to default gateways. The
variables, such as DEFAULT _GATEWAY are replaced by Weaver.

AW N

-~

19

4.3. SUMMARY 47

<route>
<ip—route—forwarding—list>
<prefix>0.0.0.0</prefix>
<mask>0.0.0.0</mask>
<forwarding—address>{$DEFAULT GATEWAY}</forwarding—address>
</ip-route—forwarding—list>
</route>

Listing 4.4: CSR1000v route definitions.

Listing 4.5 shows how NICs can be defined and configured. In this in-
stance document, two NICs are defined. Together with them, groups defining
inbound and outbound access control lists are defined. These interfaces are

used when performing NAT for the Gigabit Ethernet interface 72"

<interface xmlns="urn:ios” tags="merge”>
<GigabitEthernet>
<name>1</name>
<ip>
<access—group>
<direction>in</direction>
<access—list>101</access—list>
</access—group>
<nat>
<outside />
</nat>
</ip>
</GigabitEthernet>
<GigabitEthernet>
<name>2</name>
<ip>
<nat>
<inside />
</nat>
</ip>
</GigabitEthernet>
</interface>

Listing 4.5: CSR1000v network interfaces.

4.3 Summary

The Gabbleduck system can provision and configure VNFs. Network
operators need to provide instance documents defining single VNFs and
complete services including several VNFs, in order for Gabbleduck to create
and configure network services. Initially, VNFs are provisioned by Erlvirt
and Libvirt, then NCS can connect to these VNFs to configure them. NCS
can also connect to physical network devices that are part of network services,

to configure these network devices too.

Chapter 5:

Analysis

This chapter discusses how Gabbleduck and OpenStack were analyzed. It
presents major results in Section 5.1. Reliability analysis and validity analysis

is presented and motivated in 5.2.

5.1 Major Results

This section presents major results collected from the analysis of the Gab-
bleduck system, OpenStack, and the work conducted as part of this master’s
thesis project. Section 5.1.1 analyzes the time required to install Gabbleduck,
and OpenStack. Section 5.1.2 presents some provisioning specifications and
analyzes the amount of time required to provision and connect to different
sets of VMs, defined by these specifications. Section 5.1.3 analyzes a minor
internal Cisco project that makes use of the Gabbleduck system. Finally,
Section 5.1.4, presents some assignments designed to measure the time taken

to understand, design, and redesign some provisioning specifications.

5.1.1 Time to Install

A global metric to consider when evaluating how productive network
operators can be while using a system, is how quickly they can install
that system on a host machine. In an NFV scenario, typically the NFV
management system has to be installed on all servers that can accommodate
VNFs. If the installation process is time consuming, then this slows down
network operators in the long run. However, the most important aspect
of this, is that if it takes too long, then the operators will not even want to

install the system, hence they will look for another way to achieve their goals.

49

50 CHAPTER 5. ANALYSIS

It should be noted that it is difficult to give an estimate of the installation
time of these systems. As this installation time depends on the participants’
experience in debugging such systems and their experience of the platforms
these systems are based on.

The installation process was observed by the author when six Cisco
employees installed the Gabbleduck software on their work computers. These
observations were not performed in a group, but rather they were performed
individually as these employees were interested in using the Gabbleduck
system, and also interested in using OpenStack. These employees were not
assigned by their manager to carry out these tests, instead they did it out of
personal interest. Before starting, the author was notified so that measuring
of the time could be done.

Observing participants one by one, has the advantage that the investiga-
tor can focus on observing each individual participant. Additionally, as the
participants did not communicate with each other, they could not help each
other with difficulties. The exception is participant F, who was helped by
participant E, since they worked on the same project, and had very similar
environments. This explains why participant F had the fastest installation
time out of all participants. The drawback of observing participants one by
one, is that it is time consuming. Table 5.1 presents the results of measuring

installation times.

Table 5.1: Installation time measurements.

Participant | Gabbleduck (m) | OpenStack (m)
Participant A 24 15
Participant B 32 261
Participant C 41 —
Participant D 52 —
Participant E 75 15
Participant F 21 16
Average 40.8 76.8
Median 36.5 15.5
St dev 18 106

5.1. MAJOR RESULTS 51

The Gabbleduck installation procedure on Ubuntu systems proved to be
difficult. On one occasion (while observing participant E), one of the build
tools failed to download the correct dependencies from a web server. This
caused the build tool to believe the task was finished, when it was not,
and some of the components were never compiled. The time taken for this
participant to debug and discover the source of the problem, contributed to
the far above average installation time.

One problem was encountered by all participants. This was that, when
installing Libvirt, the UNIX user of the participant had to be added to a
new UNIX group, named libvirtd. To be added properly, the UNIX user has
to log out and log in again. The error message from Gabbleduck was not
helpful, hence the participants were all spending time on troubleshooting this
issue.

Another problem was that participants occasionally forgot to execute a
script that sets important environment variables, both of ConfD/NCS and
of the Gabbleduck system. These are needed when the Gabbleduck system
accesses compiled binary files of software libraries. The median time to install
the Gabbleduck system was 36.5 minutes, with an average of ~41 minutes.

When installing OpenStack, all participants choose to use Devstack.
Devstack is a set of installation scripts designed to simplify the process of
installing and configuring OpenStack and its components. This does not
correspond to a production environment, where operators would perhaps
install different OpenStack components on different physical machines.

Compared to Gabbleduck, OpenStack is a more well tested project,
with a more developed installation procedure (Devstack). A major issue
encountered while installing Devstack, was failing to provide a proper
configuration file that controls which OpenStack components to install.
An example of such a configuration file is depicted in Listing 5.1. This
configuration specifies some required passwords, sets up a network bridge
between the host computer’s NIC and the default OpenStack virtual network,
enables a certain subset of Neutron’s components, and activates the Heat

component.

52 CHAPTER 5. ANALYSIS

> cat local.conf
[[local |localrc]]

3| ADMIN_PASSWORD=somepassword

DATABASE PASSWORD=$ADMIN PASSWORD

5| RABBIT PASSWORD=$ADMIN PASSWORD
;| SERVICE_PASSWORD=$ADMIN_PASSWORD

SERVICE TOKEN=2682f596—-76f3—11e3—b3b2—e716£9080d50

ol PUBLIC_INTERFACE=eth0

Q USE PROVIDERNET FOR PUBLIC=TTrue
OVS _PHYSICAL BRIDGE=br—ex

PUBLIC BRIDGE=br—ex
OVS_BRIDGE_MAPPINGS=public : br—ex

s| disable service n—net

enable_service q—svc

7l enable_service q—agt

enable_service q—dhcp

ol enable_service q—13

enable_ service g—meta

Heat components

;| enable service heat

enable_service h—api

;| enable_service h—api—cfn
ijlenable_service h—api—cw

enable_service h—eng

Listing 5.1: Devstack configuration.

Research participant B experienced problems with Python dependencies,
and resolved these within 4 hours. Participants C and D failed to install
Devstack within a day, hence the observation was aborted. This was likely
due to inconsistencies between the different components of Devstack, at the
time of these installation attempts. The median amount of time required to
install Devstack was 15.5 minutes. The average amount of time required was

76.8 minutes.

5.1.1.1 Assuming No Problems Encountered

After observing research participants install the systems investigated, the
evaluation turned to investigating how much time it takes to install the
systems, assuming the network operators encounter no problems during the
installation procedure. These tests were all performed on the same computer,
which has an Intel Core i7-4600U CPU @ 2.10GHz x 4 CPUs, with 8GB

5.1. MAJOR RESULTS 53

RAM. The same tests were performed (in sequence, not in parallel) ten
times to increase the reliability of the estimated time for an installation.
Table 5.2 shows the results of this investigation. The median time to start the
Gabbleduck system is ~59 seconds, while the median time to start OpenStack
using Devstack is ~603 seconds. The standard deviation is 2.38 seconds in
the case of starting Gabbleduck, and 11.77 seconds in the case of starting
OpenStack. This suggests that the measured installation times varied only

slightly.

Table 5.2: Start time measurements.

Round | Gabbleduck (s) OpenStack (s)

1 62.863 638
2 56.896 607
3 57.332 603
4 58.411 604
D 59.605 601
6 58.973 597
7 58.755 601
8 55.273 598
9 61.361 602
10 55.637 605
Average 58.511 605.6
Median 58.583 602.5
St dev 2.387 11.77

The reason that the time to install the Gabbleduck system is an order of
magnitude lower than OpenStack through Devstack is likely that OpenStack
is a much larger (in terms of number of components and functionality)
system than the Gabbleduck system. Data gathered from RAM allocation
measurements of the systems is discussed in Section 5.1.2. When starting,
both systems utilize all four CPUs available on the machine, as shown in
Listing B.2.

54 CHAPTER 5. ANALYSIS

5.1.2 Time to Provision VMs

In the future, when implementing auto scaling of network services that
include VNFs, the amount of time required to provision VMs will be a critical
measurement. Because of this, the time to provision groups of VMs on one
host machine, so that they all respond to ping and SSH connection attempts,
was measured. When provisioning many VMs, one would typically spread
them across several host machines. However, these measurements focus on
the time to start VMs, rather than the time to send creation notifications to
a set of host machines.

To perform these tests, a machine with a Intel® Core™ i5-4570 CPU
@ 3.20GHz CPU was used. This machine was controlled remotely, thus
acting as a server. The CPU has four cores, with one thread in each core
(the CPU does not support Intel® Hyper-Threading Technology) [41]. The
amount of RAM is 16 GB. This machine had no Internet connection during
the experimentation, it was connected through an Ethernet switch to the
controlling computer. The switch used was a 5 port NETGEAR 10/100
Mbps Switch FS605 v3. The MTU was 1500 both of the machine running
ConfD, and of the machine used to control the aforementioned machine.

The measurements were performed by handing instance documents of
the YANG domain and network models described earlier to the Gabbleduck
system. Heat YAML templates were given to OpenStack’s Heat component.
The Gabbleduck network models created a virtual network with the CIDR
10.0.0.0/24. The VMs were created, booted, and connected to this virtual
network. The first VM in each set of VMs was assigned (by static assignment
rather than DHCP) the IP address 10.0.0.5, and the consecutively booted
machines were assigned the following addresses up until 10.0.0.14 (in the
case of provisioning ten VMs).

The largest set of VMs provisioned, was ten Ubuntu 12.04 Cloud images,
with 2GB of virtual memory each. RAM measurements are presented later

in this section, and can also be seen in Listing B.1.

5.1. MAJOR RESULTS 55

The virtual OpenStack network was realized automatically when starting
OpenStack, hence there was no need to provide a Heat specification document
to achieve this. Figure 5.1 shows the topology created by the Gabbleduck
system. A Linux bridge is connected to the host’s LAN network to allow the
host computer to connect to the VMs (remember that Gabbleduck does not
make use of OVS at the time of writing this thesis).

Host LAN 192.168.0.0/24

virbro

TestNetwork 10.0.0.0/24

10.0.0.5 10.0.0.14

VM1 VM... VM... VM10

Figure 5.1: Gabbleduck evaluation network topology.

Figure 5.2 shows the slightly more complicated topology realized by
OpenStack. OpenStack by default has a public network that interfaces with
the host computer, then machines are connected to a private subnet that is

connected through a logical router.

Host LAN 192.168.0.0/24

| br-ex

Public (Global) 172.24.4.0/24

I 172.24.4.2

| 10.0.0.1

Private network 10.0.0.0/24

10.0.0.5 10.0.0.14

VM1 VM... VM... VM10

Figure 5.2: OpenStack evaluation network topology.

w N

56 CHAPTER 5. ANALYSIS

Listing 5.2 shows the actual route to the private OpenStack subnet
10.0.0.0/24, implemented in the host machine’s routing table. This is

observed by issuing the UNIX route command on the host machine.

Destination Gateway Genmask Flags Metric Ref Use Iface
10.0.0.0 172.24.4.2 255.255.255.0 U 0 0 0 br—ex

Listing 5.2: Route list at host computer using OpenStack.

In these experiments, the KVM hypervisor was used below Libvirt, both
by OpenStack and by Gabbleduck. In the Gabbleduck system, this is
specified for each domain, by the domain instance document. OpenStack
determines the underlying hypervisor based on a configuration file located
on the host computer. Part of the specific configuration used in these

experiments is shown in Listing 5.3.

> cat /etc/nova/nova.conf

[libvirt]

vif driver = nova.virt.libvirt.vif.LibvirtGenericVIFDriver
;| inject__partition = —2

live_migration_uri = gemu+ssh://stack@%s/system

use_usb_tablet = False

cpu_mode = none

virt_type = kvm

Listing 5.3: OpenStack virtual type settings.

Listing 5.4 shows the YANG instance document of the virtual network
that was created by Gabbleduck during the measurements. This example is
truncated after showing only one VM’s IP address. The domain specifications
are similar to the one shown in Listing C.2. However, note that in the
experiments, each VM will need its own unique name and network interface
configurations. This is because we need to be able to connect to each machine

with a unique address.

5.1. MAJOR RESULTS 57

<networks xmlns="http://tail —f.com/ns/gabbleduck/libvirt —network
7>
<network>
<name>gabblemeasure</name>
<bridge>
<name>virbr0</name>
<stp>on</stp>
<delay>0</delay>
</bridge>
<forward>
<mode>route</mode>
</forward>
<ip>
<name>default</name>
<address>192.168.0.0</address>
<family>ipvd</family>
<netmask>255.255.0.0</netmask>
<dhcp>
<host>
<mac>52:54:00:fa:41:03</mac>
<name>vimnl</name>
<ip>192.168.0.2</ip>
</host>
</dhcp>
</ip>
</network>

j|</networks>

Listing 5.4: Gabbleduck measuring network.

Listing 5.5 shows how the OpenStack VM instances were defined. Note
that the Heat template (OS::Nova::Server) for specifying VMs, is on a more
abstract, higher level than the Gabbleduck specification documents. For
instance, as a result it is more difficult to specify the amount of RAM
to allocate to VMs via Heat, than it would be using Gabbleduck. The
network operator would have to first create a flavor specification with
this information, and then reference this specification in the Nova instance

specification.

58 CHAPTER 5. ANALYSIS

HeatTemplateFormatVersion: ’2012—12—-12"
Description: Ubuntu machine

Resources:
portl:

Type: OS::Neutron:: Port

Properties:
network: private
fixed_ips:
— subnet: private—subnet

ip_address: 10.0.0.5

instancel :
Type: OS::Nova:: Server
Properties:
name: test —01
image: "ubuntulmage”
flavor: ml.small
networks:
— network: public
port: {Ref: portl}
user__data: "#cloud—config
password: mysecret
chpasswd: { expire: False }
ssh__pwauth: True
#meta—data
network—interfaces: |
auto ethO
iface ethO inet static
address 10.0.0.5
netmask 255.255.255.0
gateway 10.0.0.17
user _data_format: RAW

Listing 5.5: OpenStack measuring network.

Monitors attempting to connect to the provisioned machines using ping
and SSH were created. They all constantly attempted to connect, with a 50
ms interval. To avoid excessive ping and SSH connection attempts, only as
many monitors as there are VMs were created in each test.

In order to save time when developing the test environment, Gabbleduck’s
monitoring system was used to measure the provisioning time of VMs
created by Openstack. However, this overhead should be negligible, since
the memory and CPU footprint of the Gabbleduck monitor is low (around
110MB RAM). This can be seen from Listing B.1. Note that when performing
OpenStack tests, Gabbleduck did not connect to Libvirt, it only spawned and

5.1. MAJOR RESULTS 59

hosted monitors.

The wall clock time at which a set of VMs started booting, and the time
at which the monitors succeeded in connecting to their assigned VM (with
ping and SSH), was logged to a file. This file was then used to calculate
the time required to provision the VM. Both the amount of time required
for each VM to start responding to ping requests, and the amount of time
required for the SSH server to start, was measured this way.

Each set of VMs (one to ten per set), was tested three times. Listing 4.1
(presented in Section 4.2.2) showed an example of how monitors can be
defined using Gabbleduck.

Figure 5.3 shows that the time to provision and start a set of VMs, so that
they all respond to ping requests, is consistently lower using the Gabbleduck
system, than using the OpenStack system. When provisioning ten VMs with
Gabbleduck, the median amount of time required to ping all VMs is ~1m
41s. When provisioning ten VMs with OpenStack, a median time of ~2m 35s

was measured.

S
NN
N,
N4
N
N
N
N
&

R

QQ ,//’

00 Y/'

S v i oS

S : V/ Polynomial (OS)
- v GD

—— Polynomial (GD)

kS

7
\\

%
\‘4
<

$,
S v
QQ
QQ

&0%\
1
<
«

N
S

Time to get ping response from all VMs (minutes)
s

0
=
N
w
N
ul
o
\,
(o]
©

10

@)
%

Number of VMs

Figure 5.3: VM ping time results.

60 CHAPTER 5. ANALYSIS

In the figure, OS is used to abbreviate OpenStack, and GD is used to
abbreviate Gabbleduck. Table B.2 presents median time ping values for all
sets of VMs. Table B.4 reports the coefficients and R? values for the fitted
lines in Figure 5.3.

Figure 5.4 shows the amount of time required for all SSH servers in a set of
VMs to start listening to connection attempts. This amount of time is higher
when VMs are provisioned by OpenStack, than when VMs are provisioned
by Gabbleduck. An exception to this is observed when starting only one or
two VMs. In the latter case, VMs provisioned by OpenStack respond earlier
to SSH connections. Provisioning was done serially, in the sense that Libvirt
received instructions serially. However, once the initial creation of VMs had

been performed, then VMs booted in parallel.

14:00.00
__13:00.00
é 12:00.00
£ 11:00.00
£ 10:00.00
S 09:00.00
¢ 08:00.00
& 07:00.00 oS
‘c’z’c 06:00.00 Polynomial (OS)
g 05:00.00 v GD
8 04:00.00 - v v Polynomial (GD)
S 03:00.00 J7J‘L"//,L,,,,,,,y/—f—r—¥’”””¥// v
e o20000Y ¥
£ 01:00.00
00:00.00

1 2 3 4 5 6 7 8 9 10
Number of VMs

Figure 5.4: VM SSH time results.

5.1. MAJOR RESULTS 61

When provisioning a set of ten VMs using OpenStack, the median amount
of time required for all VMs to respond to SSH connections, was 12.5 minutes.
The median amount of time time required to connect over SSH to all VMs,
when provisioning these VMs with Gabbleduck, was ~3 minutes 44 seconds.
Table B.3 shows the median time values to connect over SSH, for all sets of
VMs. Table B.5 reports the coefficients and R? values for the fitted lines in
Figure 5.4.

From the RAM traces in Listing B.1, we can see that the RAM used by
OpenStack is roughly 4600MB. The RAM used by Gabbleduck was only 110
MB. Both systems utilize all four available CPUs of the host machine. This is
shown in Listing B.2. CPU load tends to be high initially when provisioning
a set of VMs and then decreases as the VMs boot. Gabbleduck uses 13.3%
of total CPU resources and later 8.7% of total CPU resources. OpenStack
initially uses 21.7% of CPU resources, while later it uses only 2.8% of total
CPU resources.

The author believes that there is a correlation between the lower CPU
utilization of OpenStack (after the initially high CPU utilization) when
booting, and the greater amount of time required to ping (and SSH) to
all VMs. This might be controlled by some Libvirt parameter that the
author has not discovered, that might have to be set through OpenStack.
The CPU utilization was measured with the mpstat UNIX command. An
average of 50 measurements, with a one second delay between measurements

was calculated.

62 CHAPTER 5. ANALYSIS

5.1.3 Cluster Tool

In order to collect thoughts and opinions on the Gabbleduck system, an
interview with two participants was conducted. These participants are
the ones labeled E and F earlier, in Section 5.1.1. Participants E and F
are employees of Cisco, Inc., and they were aware that their opinions and
the information they shared was collected and potentially included in this
master’s thesis report. They were selected for an interview, because they
evaluated the Gabbleduck system in a minor company internal system. This
section presents the learning outcomes of this interview. The questions asked

were the following:

o« Why did you choose to use Gabbleduck? What other management

systems did you consider?

« What is the most important aspect of a system assisting in managing

networks containing VNFs?
o In what ways did Gabbleduck help you with your task?
o In what ways did Gabbleduck system did not help?

o What features were you missing in your management system?

In the internal company project, there was a need to provision a number
of VMs, and install certain software on predefined nodes. A couple of these
VMs act as routers (in that respect they are defined as VNFs). However,
VNFs were not used as described previously in this master’s thesis. The
CSR1000v was not used to provision routers. Instead, Debian VMs were
used with routes set up within these VMs.

These Debian VMs were pre-installed into a qcow?2 file, thus the initial
configuration was specified only once for all VM instances. Because of this,
there was no need for the Day0 configuration functionality of Erlvirt. The
topology that was provisioned is illustrated in Figure 5.5.

The participants had previously defined scripts that implemented the
desired topology using Vagrant [42] together with VirtualBox [43]. However,

5.1. MAJOR RESULTS 63

192.168.31.0/24 192.168.40.0/24 192.168.41.0/24

: : L3
192.168.30.0/24 ; 2 103 2 .
; v 5| RLF—O— A
' f ' 1 .1
: ; o] A2
O— *r
1 2 2 1
) 2 13 -
4| R2 —0O— B —O<
' v 4 A2

192.168.50.0/24 192.168.51.0/24

Figure 5.5: The network topology described by the participants in the
interview. (Adapted from sketches drawn during the interview.)

they found Vagrant to be less stable than expected. Frequently, VMs would
be created and not started, or deleted according to Vagrant — but still

continue executing.

Because of this, the participants decided to evaluate Libvirt.
Participant E had previously used Libvirt. Participant E had previously
also used OpenStack and found it difficult to set OpenStack up properly,
and to debug it when errors occurred. This previous difficulty was explained

to result from the many different components of OpenStack.

Given this background, the participants were choosing between using
Libvirt without any overlay, and using the Erlvirt part of the Gabbleduck
system. Since the participants were comfortable using YANG models to
express VMs and networks, they initially chose to use Erlvirt. After some
time, when they had iterated their models, and decided upon a topology,
they exported all XML documents that had been generated by Erlvirt and
could then hand them directly to Libvirt.

This meant that they could circumvent Erlvirt, using only Libvirt, rather
than Erlvirt and Gabbleduck, which has the advantage of not needing to
execute ConfD and Erlvirt on the host machine. According to participant F,
when this step was taken, they missed Gabbleduck’s features of downloading

and caching of machine images, and uploading these images to Libvirt’s

64 CHAPTER 5. ANALYSIS

volume pool.

The participants both said the assistance of a reliable tool is important,
as such a tool gives the operator detailed control over both network
configuration and settings in the hypervisor. It is important to avoid loosing
control of the details, to make it easier to tune performance and perform
other operations.

Participant E stated that an initial problem was that all VMs’ default
gateways would be the network bridge created by Gabbleduck. This means
that all VMs were accessible directly from the host machine, even though
they were located in subnets that should only be accessible via the routers
(R1 and R2 in Figure 5.5).

Scripts connecting (over SSH) to the VMs to set up routes, and to remove
the old network configuration connecting VMs directly to the host computer,
had to be implemented in order to force traffic to go through the designed
topology. Another issue, was that SSH connections to VMs deeper in the
network topology proved to be slow.

Participant F would like to see a connection between Gabbleduck and
OVS, similarly to how OpenStack is connected to OVS. With this connection,
it would be possible to create more advanced virtual networks, including

tunnels between networks.

5.1.4 Model Assignments

Perhaps the most important measure of the usefulness of an NVF manage-
ment system, is the amount of time needed to design network services and the
difficulty of modeling these network services. Therefore, three assignments
were designed by the author and given to two groups of research participants:
group X and group Y.

Since we are comparing Gabbleduck with OpenStack, each assignment
consists of two parts: part A and part B. For group X, part A is an assignment
related to Gabbleduck and part B is related to OpenStack. For group Y, the
reverse applies. The reason to divide the participants in two groups, is to

lower the learning effects of which system is used first. Since the sub parts of

5.1. MAJOR RESULTS 65

the assignments are very similar, the first part would likely take much longer
time than the second one, had we not have divided participants into these
two groups we would have ended up with biased results.

In the assignments, the participants were asked to complete unfinished
models (or modify finished models), the participants were also asked to
measure the time they needed to complete these tasks. The idea is that
in this way, the complexity of using the systems to design network services
can be quantified.

The assignments were packed into two tarballs (depending on the
participant’s designated group), and given to the participants. These
designated groups were randomized based on network operators that were
tasked by their manager to participate in this evaluation. None of these
participants were the same as those mentioned earlier, i.e. participants (A-
F). Instead, these participants are identified by a number from 1-8. The
reasons for this is both practical (many network operators were absent due
to summer holidays) and because the investigator wanted to have fresh eyes
for this investigation.

After the assignments were finished, participants were asked to provide
their thoughts and comments on any problems they experienced. This makes
it possible to capture opinions and thoughts that are not easy to capture
with the earlier quantitative measurements. To help participants, a number
of files were provided in a directory, these are largely the same as those listed
in Appendix A.

Note that these assignments focused on provisioning and providing initial
configurations to VNFs. Assignments providing subsequent configurations,
were not tested, since OpenStack’s Neutron components does not have
support to configure the CSR1000v VNF.

66 CHAPTER 5. ANALYSIS

5.1.4.1 Assignment One

Assignment one, shown in Listing C.1, is designed as an introduction to
the evaluated systems’ templates. Participants are asked to modify instance
documents that currently represent a Ubuntu VM, (shown in Listing C.2 and

Listing C.3), to instance documents representing a CSR1000v VNF.

This assignment requires participants to read and understand how to
provision a single VM, so that they can then modify the instance documents.
The participants will want to look at the YANG model libvirt-domain,
to learn the capabilities of a domain and also the Heat YAML template.
Moreover, participants will need to look at the CSR1000v Day0 configuration
file (shown in Listing C.4) to see how the CSR router will be initially

configured.

Note that, with the current provisioning flow of OpenStack, it is not
possible to provide a valid initial configuration to the CSR router. A virtual
CD-ROM has to be mounted to the CSR, providing these configurations as
a text file. This is something that Gabbleduck does. However, this issue is
ignored in these assignments, as it would likely be a simple task to further

develop OpenStack to support this.

5.1.4.2 Assignment Two

Assignment two, shown in Listing C.5, is designed to evaluate each systems’
approach to defining virtual networks. Participants are asked to define a
VLAN with the CIDR 10.0.0.0/24, and connect this VLAN to the host
computer’s NIC through a bridge. This assignment requires participants
to read and understand the YANG model representing libvirt-network (the
outline of this YANG model is shown in Listing A.5). They also need to
understand the Neutron concepts Net and Subnet. Participants are provided
with stub models that they can use in solving the assignments. These stub

models are shown in Listing C.6 and Listing C.7.

5.1. MAJOR RESULTS 67

5.1.4.3 Assignment Three

Assignment three, shown in Listing C.8, is designed to evaluate how difficult
it is to connect a VM to a network. The participants need to combine the
learning outcomes of the previous two assignments in order to solve this
assignment. The networks that participants were supposed to implement
in assignment two, are provided (these are shown in Listing C.9 and
Listing C.10) to the participants. Also, the Ubuntu VM specification from
assignment one is provided. Assignment three asks the participants to

connect the given VM, with the given network.

5.1.4.4 Results and Analysis

This section presents the results from the model assignments performed by
the volunteer participants. Figure 5.6, presents the median amount of time
required by the combined groups (group X and group Y) of participants to
solve their assignments. Assignments labeled A (and mentioned as GD in the
legend) in this figure, are associated with Gabbleduck, while assignments B

(mentioned as OS in the legend) are associated with OpenStack.

2.B

g

1S

S 2A mOoS
2 EGD
<

QQQQQQQQQQQQQQQQQQQQQ
Q 000000000 0
QQ&QVQQ’Q‘*"\, NZENGENIN: mfﬂvm‘xmm@%‘/@‘@%‘b

Median amount of time required to solve assignment (minutes)

Figure 5.6: Median results of model assignments.

68 CHAPTER 5. ANALYSIS

In addition to the figure, Tables B.6, B.7, and B.8 present this data in
detail. Table B.8 also shows the standard deviation for each assignment. The
standard deviation is high for most tests, for example with ~23 minues 56
seconds for assignment 2.A. This suggests that the amount of time required
for participants to solve the assignment varies to a high degree.

Figure 5.7 shows the average amount of time required for participants to
solve the assignments. The average amount of time required to solve 2.A was
high due participants 1 and 2 needing a larger amount of time to solve this

assignment, compared to the median.

1B

=
]
£
s 2+ [I—— = 0s
2 ®GD

1A
O & & O O P O P P P P P O O &
SO O .O QQ QS OO O O O O O O O OO O
NIRVIRN GRS RIR N N ERRE SaE

Average amount of time required to solve assignment (minutes)

Figure 5.7: Average results of model assignments.

The median amount of time required to modify the given Ubuntu model
so that it instead provisions a CSR VNF, is ~7 minutes 21 seconds using
Gabbleduck, and ~7 minutes 26 seconds using OpenStack. In a small
assignment such as this, consulting and understanding a rather long (over
1500 lines) YANG model such as libvirt-domain, can be a major overhead.
The fact that the median amount of time required to solve 1.A is lower than
1.B, suggests that most participants solved the assignment without looking
at the YANG model in detail. The Gabbleduck approach proved to be a

little bit faster. However, the difference is a minor.

5.1. MAJOR RESULTS 69

Assignment one requires the participants to allocate a certain amount
of RAM to the CSR1000v VNF. In the Gabbleduck provisioning model, it
is easy to find where to change this. However, participants were not told
the unit of memory until they consulted the YANG model. From the YANG
model, it is clear that the unit is kilobytes. The OpenStack approach requires
participants to find out how much memory is allocated to the m1.small flavor
(a flavor defines how much RAM and how many virtual CPUs a certain type
of virtual machine is allocated).

Gabbleduck allows operators to define Day0 configurations with a URL
to a text file, while OpenStack requires operators to define this information
directly in the provisioning model, as a property named user_data [44].

Assignment two requires the participants to complete an instance docu-
ment that defines how to provision a virtual network. The median amount
of time required to complete this assignment, is ~8 minutes 2 seconds using
Gabbleduck, and ~18 minutes 41 seconds using OpenStack. The results show
that the participants could perform better in this assignment when using the
Gabbleduck approach to defining networks.

The YANG model libvirt-network is relatively short (280 lines), which
makes it fairly easy to read and understand, for someone who is acquainted
with YANG. The Heat model requires the participants to find information
about Neutron Net and Subnet in the OpenStack documentation (links to
these are provided in the assignment description).

Participant 7 did not manage to solve assignment 2.A (which to this
participant was presented as 2.B since participant 7 was a member of group
Y). This means that this particular set of measurements only has seven

samples, instead of eight.

70 CHAPTER 5. ANALYSIS

Assignment three requires the participants to provide network connec-
tivity to the VM defined in assignment one. The median amount of
time required to complete this assignment, is ~15 minutes 11 seconds
using Gabbleduck, and ~40 minutes 9 seconds using OpenStack. These
results suggest that, having looked at the YANG models already, the
participants could solve the Gabbleduck related assignment much faster than
the OpenStack related assignment.

OpenStack, in this scenario, requires a Neutron Port, to connect the
network and the VM. This is likely a major contributor to the much higher
amount of time required for participants to solve the assignment using
OpenStack, than using Gabbleduck. There was no stub Neutron Port, to
guide participants that this was needed. Instead, this was a challenge that
participants needed to overcome. This may have been a bad design choice
when constructing the assignments or it may simply be an example of the

difficulties caused by a more complex (but more flexible) tool.

5.2. RELIABILITY & VALIDITY ANALYSIS 71

5.2 Reliability & Validity Analysis

Since the Devstack installation procedure downloads software from a fairly
frequently updated repository, it is possible that there will occasionally
be bugs (and inconsistencies between the different parts of the system).
Unfortunately, this proved to significantly slow the installation process down.
Sometimes, these bugs are simply too difficult and time consuming to track
down. In these cases, installing OpenStack through Devstack is simply not
viable within a reasonable time.

Installing release versions of OpenStack is not easy either, as the
installation process can for instance fail due to currently unavailable web
resources. This suggests that (1) there should be a way to ensure that a given
release of Devstack is consistent or (2) that there should be an alternative
source for installing a consistent version of OpenStack.

This problem was experienced by participants C and D (as shown in
Table 5.1). In these cases, the participants had to wait several days until the
OpenStack developers detected and fixed the bugs.

The data of the experiments presented in Table 5.2 was measured ten
times for each experiment, thus this data has a relatively high level of
confidence. A decision to stop testing this measurement was taken when
the result did not seem to change much between the rounds. The twenty
separate experiments of Section 5.1.2 were done in three rounds each. A
larger number of rounds (ten or higher) would give a higher level of confidence
in the data. However, due to the limited time available when performing

these experiments — this was not done.

Chapter 6:

Conclusions & Future Work

This chapter concludes this master’s thesis. Section 6.1 presents conclusions
drawn from the results and analysis presented in Chapter 5. Section 6.2
presents and discusses factors limiting the results. Section 6.3 presents future
work in the field of this master’s thesis. Finally, Section 6.4 discusses required

reflections.

6.1 Conclusions

As shown in Chapter 4, a system capable of provisioning and configuring
VNFs has been designed and implemented. This system, is capable of not
only creating VMs, but also of connecting to these VMs and configuring
them based on YANG models serving as contracts (or specifications) of which
settings can be configured. This is essential in NFV scenarios. The prototype
system can be used in real projects, as shown by Section 5.1.3.

According to measurement data presented in Section 5.1.1, installing
Gabbleduck requires less time than installing OpenStack. This is useful in
cases where network operators want to install the software to new machines,
or reinstall systems in order to upgrade versions.

Gabbleduck proved to be more efficient than OpenStack when provision-
ing VMs, as shown in Section 5.1.2. Currently, this difference is not critical.
To use cases such as dynamically adding routers in VPN networks, differences
in minutes are negligible. However, in the future, when implementing

automatic scaling of VNF systems, this will become important.

73

74 CHAPTER 6. CONCLUSIONS & FUTURE WORK

From Section 5.1, we can see that the goal of making network operators
more productive, was met in the context of the designed assignments. This
result however, assumes that network operators are already acquainted with

the YANG based approach to provisioning services.

6.2 Limitations

Putting together a sufficiently large group of participants to observe was
a major limitation of this project. A larger sample size would give greater
statistical power. Collecting a group of participants, has a number limitations
in itself.

Informed consent has to be considered, as participants need to know they
are going to take part in a study and they must be willing to do so (without
coercion). The overall experience of participants varied to a high degree,
both in using/reading YANG models and of cloud systems in general. For
instance, participants who had used both Libvirt and OpenStack before,
solved the designed assignments very quickly.

There is an inherent risk that participants are biased towards one of
the systems evaluated. This may occur because they have used OpenStack
before, and because of that, they like it or do not like it. There may also
exist bias as a result of the order of learning the different systems that are
to be evaluated.

For instance, a participant might find the first system encountered
difficult to comprehend. Then, when using another similar system, the
participant might experience this as being less difficult, because he or she
has already become familiarized with the concepts and ideas as introduced
by the first system. This particular bias was considered and attempts were
made to reduce it, by providing assignments in different order to different
participants, as was explained in Section 5.1.4.

Another problem, that was unfortunately not considered when designing
assignments, is that participants have different strategies when solving
assignments. When asked to solve the assignments, some participants spend

time early on to understand provided YANG models. These participants

6.2. LIMITATIONS 75

require a high amount of time to solve the first assignment, but a lower
amount of time to solve later assignments. Other participants solved
assignments without first studying the YANG models, and then later on
had to go back to do that. This made these participants require a higher
amount of time when solving later assignments.

The assignments did not specify what precision to measure the amount of
time required to solve assignments in. This lack of specification, lead some of
the participants to measure their performance in precision of seconds, while
others counted minutes only.

My academic adviser pointed out the problems of recruiting participants
and the probability of learning effects based upon the order of learning these
two different systems. However, I choose to carry out these experiments
(referring to Section 5.1.4) even though I was warned about these problems,
since the time and complexity for network operators to design network
services including VNFs was the motivation for the project of which this
master’s thesis project was a part.

While conducting experiments provisioning times of sets of VMs, the
computer used in these experiments had only 16GB RAM and one CPU
with four cores, this was a limitation. In contrast, an example Cisco blade
server [45] supports up to 6TB RAM and four CPU’s with up to 15 cores
each.

Instead of using release versions of OpenStack, the installation system
Devstack was used. This should have no impact on the performance of
OpenStack itself (KVM was already installed and executing on the host
computer), but this did probably decrease the amount of time required by

network operators to install OpenStack.

76 CHAPTER 6. CONCLUSIONS & FUTURE WORK

6.3 Future Work

There are a number of possible extensions and improvements available in the
area of this master’s thesis project. The research efforts concerning NVF are
growing quickly.

OpenStack is continuously being developed. Support for NFV use cases
is in the process of being planned or proposed [46]. Future work could
compare the Gabbleduck approach with OpenStack’s future NFV support.
In addition, Ericsson is adding NFV support to OpenStack through a
proprietary plug-in [5], this could also be included in evaluations.

One of the major contributions to NFV that is needed in the future is to
introduce elastic scaling of VNFs. Elastic scaling requires network operators
to carefully design scalable network architectures. This will mean that there
is a need for appropriate tools which can provision and dynamically configure
these VNFs. This elastic scaling is very important, since it could bring
the same kinds of functionality to networking, as cloud systems brought
to computing.

If, for instance, a major sports event is hosted in a certain city, then the
network infrastructure in that city could be reinforced (scaled out) during
this event so that visitors can use their smart phones without network outages
caused by system overload. Then, when the sports event has finished, the
network infrastructure could be automatically scaled in.

Some VNFs require several minutes to boot up and to be of any value to
services and users. Automatic scaling would likely require an image cache
containing preconfigured (already booted once) versions of VNFs, these could
then very quickly be configured into the desired state. This area of how much
to configure and when is an important topic for future research.

Automatic placement of VNFs in available hosts, would be a useful
addition to the Gabbleduck. Scheduling of jobs in a distributed network of
compute hosts is a well known and well understood problem [47]. However,
the requirements for where to place VNFs are significantly different from
the requirements of where to place computation jobs in clusters. These

differences in requirements could be investigated.

6.3. FUTURE WORK 77

Some well known cloud management systems were left out of the scope
of this thesis because of time constraints. These could be taken into account
in future research. Additionally, several different VM hypervisors can be
investigated.

Different hypervisors have different characteristics, and can potentially
be run below Libvirt with very little change to OpenStack or Gabbleduck.
For instance, a certain hypervisor might be designed to be very secure, while
another hypervisor might be designed to offer maximal CPU performance
to managed VMs. Yet another hypervisor might be designed to offer
maximal network throughput. Several papers have presented and compared
hypervisors, two of these are: Quantitative comparison of Xen and KVM [48]
and Analysis of virtualization technologies for high performance computing
environments [49].

An interesting idea for future research, would be to replace the Switches
layer of Figure 2.1 with FBOSS (as was introduced in Section 2.3.5). This
could extend the NFV concept to be even more programmable, as it would
allow network operators to treat the physical switches in data centers as
UNIX servers rather than just switches. Future work could research how
this would affect the NFV concept as a whole and the switch layers of data
centers in particular.

Finally, it could be investigated whether a translation from YAML to
YANG would be possible. This way, OpenStack could instruct ConfD or NCS
to configure network devices in a way that is required in order to fully support
NFV use cases. Using this approach, instead of developing OpenStack’s
Neutron component to support configuration of a wide variety of network
devices, the existing model driven approach of NETCONF and YANG (and

the existing functionality to configure network devices) could be harnessed.

78 CHAPTER 6. CONCLUSIONS & FUTURE WORK

6.4 Required Reflections

This section focuses on some of the environmental, ethical, and economic
aspects of this master’s thesis project. Section 6.4.1 discusses environmental
implications. Section 6.4.2 discusses ethical aspects. Section 6.4.3 discusses

economic aspects.

6.4.1 Environmental & Sustainability Aspects

This master’s thesis project concerns the production and evaluation of
infrastructure software that potentially other applications will depend upon.
Hence, it is important that everything is developed with sustainability in
mind.

Using effective cloud and network management systems, in combination
with NF'V technology, the world’s total energy consumption could potentially
be lowered by more cleverly utilizing computing power and by scheduling
applications (and network functions) to execute on those machines that are
currently powered on, while keeping unneeded hardware turned off [4].

There are efforts to reduce energy consumption in physical network
equipment too. In his master’s thesis, Eric Svensson shows how the
power consumption of broadband networks can be reduced by constantly
re-configuring networks to make them efficient [50]. The Institute of
Electrical and Electronics Engineers (IEEE) presented work on Energy-
Efficient Ethernet, that lowers energy consumption in periods of low levels
of traffic [51].

6.4. REQUIRED REFLECTIONS 79

6.4.2 Ethical Aspects

A possible scenario is that a malicious user or organization gets access to a
cloud or network control systems and shuts down important services, steals
secret information, or starts a huge number of VMs to cause economic loss.
This can harm the environment due to high electricity consumption, while
causing large financial losses, as well as damages of the reputation, of the
network operator.

Getting access to many devices would unfortunately be easier for a
malicious user when the system is controlled by a central manager, provided
that the attacker is able to exploit this central manager. In a system where
users have to physically connect to network devices in order to configure
them, it is more difficult to cause damage on a large scale.

When performing interviews and observations, it is important to protect
interviewees’ identities in order to preserve their privacy. No names, genders,
or other personal details of these interviewees was recorded. Nor are details
of the participants mentioned anywhere in this thesis.

A question that springs to mind when thinking about the future of NFV
systems is: Will automated systems make network operators obsolete? The
author believes that this will not be the case. Potentially, low skilled network
operators who manually configure network devices on behalf of high skilled
network architects, might be replaced by automated systems.

However, high skilled network architects (or operators) will likely be in
greater demand in the future than today. This is since it is difficult to design
scalable network topologies. This process of designing scalable networks, is
not easily transitioned to algorithms or artificial intelligence, at least not in

the near future.

80 CHAPTER 6. CONCLUSIONS & FUTURE WORK

6.4.3 Economic Aspects

The major goal of this master’s thesis project was to make network operators
more productive, if successful this should lead to cost savings. Every step
in the chain of consumer applications (such as databases, web back-end, and
graphical user interfaces) would benefit from shorter development cycles of
network infrastructure.

Both initial investment costs and operational expenses can be lowered by
using an NFV model instead of traditional, specialize, on-premises network
equipment [2]. Moving network functions from specialized hardware to
standard commodity hardware will make these network functions cheaper
to design and implement.

When costs of developing applications are sufficiently lowered (by cheaper
infrastructure), then more developers can afford to realize their ideas. This
is turn, gives consumers access to a wider variety of useful services and
applications. In turn, as more and more services are created, the economy
hopefully benefits as do the wider variety of users (since it is now feasible to

create services even for smaller groups of users).

Bibliography

[1] R. Jain and S. Paul, “Network virtualization and software
defined networking for cloud computing: a survey,” [EFEE
Communications Magazine, vol. 51, mno. 11, pp. 24-31,
2013. doi: 10.1109/MCOM.2013.6658648. [Online]. Available:
http://dx.doi.org/10.1109/MCOM.2013.6658648

2] ETSI GS NFV, NFV White Paper, Oct. 2012. [Online]. Available:
http://portal.etsi.org/nfv/nfv_ white paper.pdf

[3] J. Smith and R. Nair, “The architecture of virtual machines,” Computer,

vol. 38, no. 5, pp. 32-38, May 2005. doi: 10.1109/MC.2005.173

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp.
50-58, Apr. 2010. doi: 10.1145/1721654.1721672. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721672

[5] Ericsson, “Ericsson Review : OpenStack as the API framework
for NFV: the benefits, and the extensions needed,” Apr. 2015.
[Online]. Available: http://www.ericsson.com/res/thecompany/docs/

publications/ericsson_ review /2015 /er-openstack-api-nfv.pdf

6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The eucalyptus open-source cloud-
computing system,” in Cluster Computing and the Grid, 2009.
CCGRID’09. 9th IEEE/ACM International Symposium on. IEEE,
2009, pp. 124-131.

[7] Google, Inc., “Ganeti overview,” Jun. 2015. [Online]. Available:
https://code.google.com /p/ganeti/

81

http://dx.doi.org/10.1109/MCOM.2013.6658648
http://portal.etsi.org/nfv/nfv_white_paper.pdf
http://doi.acm.org/10.1145/1721654.1721672
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2015/er-openstack-api-nfv.pdf
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2015/er-openstack-api-nfv.pdf
https://code.google.com/p/ganeti/

82

8]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

Md. Igbal Hossain, Md. Igbal Hossain, “Dynamic scaling of a web-based
application in a Cloud Architecture,” no. TRITA-ICT-EX-2014:13,
2014. [Online]. Available: http://www.diva-portal.org/smash/record.
jst?pid=diva2:699823

Tail-f Systems, “Deploying virtual = network functions:
TOSCA & NETCONF/YANG,” Feb. 2015. [Online].
Available: http://www.tail-f.com /wordpress/wp-content /uploads/

2015/02/HR-Cisco- ALU-TOSCA-YANG-WP-2-17-15.pdf

A. Roozbeh, “Resource monitoring in a Network Embedded Cloud:
An extension to OSPF-TE.,” in Proceedings of the 2013 IEEE/ACM
6th International Conference on Utility and Cloud Computing. TEEE
Computer Society, 2013, pp. 139-146.

ETSI GS NFV, ETSI GS NFV-MAN 001, Dec. 2014. [Online].
Available: http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_ 099/
001/01.01.01_60/gs_ NFV-MAN001v010101p.pdf

——, NFV Virtualization Requirements, Oct. 2013. [Online].
Available: http://www.etsi.org/deliver/etsi_gs/nfv/001_099/004/01.
01.01_60/gs_ nfv004v010101p.pdf

J. Schoenwaelder, “Overview of the 2002 TAB Network Management
Workshop,” RFC 3535 (Informational), Internet Engineering Task
Force, May 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3535.
txt

J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple
Network Management Protocol (SNMP),” RFC 1157 (Historic),
Internet Engineering Task Force, May 1990. [Online]. Available:
http://www.ietf.org/rfc/rfc1157.txt

R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman,
“Network Configuration Protocol (NETCONF),” RFC 6241 (Proposed
Standard), Internet Engineering Task Force, Jun. 2011. [Online|.
Available: http://www.ietf.org/rfc/rfc6241.txt

http://www.diva-portal.org/smash/record.jsf?pid=diva2:699823
http://www.diva-portal.org/smash/record.jsf?pid=diva2:699823
http://www.tail-f.com/wordpress/wp-content/uploads/2015/02/HR-Cisco-ALU-TOSCA-YANG-WP-2-17-15.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2015/02/HR-Cisco-ALU-TOSCA-YANG-WP-2-17-15.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/004/01.01.01_60/gs_nfv004v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/004/01.01.01_60/gs_nfv004v010101p.pdf
http://www.ietf.org/rfc/rfc3535.txt
http://www.ietf.org/rfc/rfc3535.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc6241.txt

BIBLIOGRAPHY 83

[16]

[18]

[19]

23]

[24]

M. Bjorklund, “YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF),” RFC 6020 (Proposed
Standard), Internet Engineering Task Force, Oct. 2010. [Online].
Available: http://www.ietf.org/rfc/rfc6020.txt

S. Wallin and C. Wikstrom, “Automating network and service
configuration using NETCONF and YANG,” in Proceedings of the 25th
International Conference on Large Installation System Administration.
Berkeley, CA, USA: USENIX Association, 2011, pp. 22-22. [Online].
Available: http://dl.acm.org/citation.cfm?id=2208488.2208510

K. Dooley and I. Brown, Cisco 10S Cookbook. O’Reilly Media, Inc.,
2006. ISBN 0596527225

J. Schonwiélder, M. Bjorklund, and P. Shafer, “Network configuration
management using NETCONF and YANG,” IEEE Communications
Magazine, vol. 48, no. 9, pp. 166-173, 2010. doi: 10.1109/MC.2005.173

Tail-f Systems, “Tail-f ConfD User Guide : unpublished,” Feb. 2015.
[Online]. Available: https://developer.cisco.com/site/confD/

———, “Tail-f NCS User Guide : unpublished,” Jun. 2015.

T. Makita, “Virtual switching technologies and linux bridge,” Jun.
2014. [Online]. Available: http://events.linuxfoundation.org/sites/
events/files/slides/LinuxConJapan2014_makita_0.pdf

L. Foundation, “bridge,” Nov. 2009. [Online]. Available: http://www.

linuxfoundation.org/collaborate /workgroups/networking /bridge

B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker, “Extending networking into the virtualization layer,” in
FEight ACM Workshop on Hot Topics in Networks (HotNets-VIII),
HOTNETS 09, New York City, NY, USA, October 22-23, 2009,
2009. [Online]. Available: http://conferences.sigcomm.org/hotnets/
2009 /papers/hotnets2009-final143.pdf

http://www.ietf.org/rfc/rfc6020.txt
http://dl.acm.org/citation.cfm?id=2208488.2208510
https://developer.cisco.com/site/confD/
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConJapan2014_makita_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConJapan2014_makita_0.pdf
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf
http://conferences.sigcomm.org/hotnets/2009/papers/hotnets2009-final143.pdf

84

[25]

[26]

28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

Open vSwitch, “Open vSwitch Frequently Asked Questions,” Jun. 2014.
[Online]. Available: http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=
openvswitch;a=blob_ plain;f=FAQ;hb=HEAD

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, Mar. 2008. doi: 10.1145/1355734.1355746. [Online].
Available: http://doi.acm.org/10.1145/1355734.1355746

OpenStack Foundation, “Layer 3 Networking in Neutron - via
Layer 3 agent & OpenVSwitch,” May 2015. [Online]. Available:
http://docs.openstack.org/developer /neutron/devref/layer3.html

O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: Toward an
open-source solution for cloud computing,” International Journal of
Computer Applications, vol. 55, no. 3, pp. 3842, October 2012.
doi: 10.5120/8738-2991. [Online]. Available: http://www.ijcaonline.
org/archives/volume55/number3/8738-2991

M. Bolte, M. Sievers, G. Birkenheuer, O. Niehorster, and A. Brinkmann,
“Non-intrusive virtualization management using Libvirt,” in Proceedings
of Design, Automation and Test in Europe (DATE), Dresden, Germany,
8 - 12 # mar 2010, pp. 574-579.

OASIS TOSCA, “Topology and Orchestration Specification for Cloud
Applications (TOSCA) Primer Version 1.0,” Jan. 2013. [Online].
Available: http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/
tosca-primer-v1.0-cnd01.pdf

——, “Topology and Orchestration Specification for Cloud Applications
Version 1,” Mar. 2013. [Online]. Available: http://docs.oasis-open.org/
tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf

A. Simpkins, “Facebook Open Switching System ("FBOSS”)
and Wedge in the open,” Mar. 2015. [Online].

http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=blob_plain;f=FAQ;hb=HEAD
http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=openvswitch;a=blob_plain;f=FAQ;hb=HEAD
http://doi.acm.org/10.1145/1355734.1355746
http://docs.openstack.org/developer/neutron/devref/layer3.html
http://www.ijcaonline.org/archives/volume55/number3/8738-2991
http://www.ijcaonline.org/archives/volume55/number3/8738-2991
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf

BIBLIOGRAPHY 85

[34]

Available: https://code.facebook.com /posts/843620439027582/

facebook-open-switching-system-fboss-and-wedge-in-the-open

A. Hakansson, “Portal of research methods and methodologies
for research projects and degree projects,” in Proceedings of the
International Conference on Frontiers in Education : Computer Science
and Computer Engineering FECS’13. CSREA Press U.S.A, 2013, pp.
67-73.

M. Myers, Qualitative Research in Business € Management.
SAGE Publications, 2009. ISBN 9781412921657. [Online|. Available:
http://books.google.se/books?id=lpEVEfnbx9cC

N. Golafshani, “Understanding reliability and validity in qualitative
research,” The qualitative report, vol. 8, mno. 4, pp. 597-607, 2003.
[Online]. Available: http://www.nova.edu/ssss/QR/QRS8-4/golafshani.
pdf

M. Huo, J. Verner, L. Zhu, and M. A. Babar, “Software
quality and agile methods,” in Proceedings of the 28th Annual
International Computer Software and Applications Conference - Volume
01, ser. COMPSAC ’04. Washington, DC, USA: IEEE Computer
Society, 2004. ISBN 0-7695-2209-2-1 pp. 520-525. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1025117.1025549

S. Singh, “Simple random sampling,” in Advanced Sampling Theory
with Applications. Springer Netherlands, 2003, pp. 71-136. ISBN
978-94-010-3728-0. [Online]. Available: http://dx.doi.org/10.1007/
978-94-007-0789-4_ 2

N. Matloft, The art of R programming: a tour of statistical software
design. No Starch Press, 2011. ISBN 1593273843

S. Nakagawa and 1. C. Cuthill, “Effect size, confidence interval and
statistical significance: a practical guide for biologists,” Biological
Reviews, vol. 82, no. 4, pp. 591-605, 2007.

https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open
https://code.facebook.com/posts/843620439027582/facebook-open-switching-system-fboss-and-wedge-in-the-open
http://books.google.se/books?id=lpEVEfnbx9cC
http://www.nova.edu/ssss/QR/QR8-4/golafshani.pdf
http://www.nova.edu/ssss/QR/QR8-4/golafshani.pdf
http://dl.acm.org/citation.cfm?id=1025117.1025549
http://dx.doi.org/10.1007/978-94-007-0789-4_2
http://dx.doi.org/10.1007/978-94-007-0789-4_2

36

[40]

[41]

[42]

[43]

[44]

[45]

[47]

BIBLIOGRAPHY

R. Whittemore, S. K. Chase, and C. L. Mandle, “Validity in qualitative
research,” Qualitative health research, vol. 11, no. 4, pp. 522-537,
2001. [Online]. Available: http://www.sagepub.com/gray/Website%

20material /Journals/whittemore.pdf

Intel Corporation, “Intel® Core™ i5-4570 Processor
(6M Cache, up to 3.60 GHz),” Jan. 2013.
[Online]. Available: http://ark.intel.com/products/75043/

Intel-Core-i5-4570-Processor-6M-Cache-up-to-3_ 60-GHz

M. Peacock, Creating Development Environments with Vagrant. Packt
Publishing, 2013. ISBN 1849519188, 9781849519182

V. Community, “Oracle VM VirtualBox,” Jun. 2015. [Online]. Available:

https://www.virtualbox.orl

OpenStack, “Os:mova::server,” Jun. 2015. [Online|. Available: http://

docs.openstack.org/hot-reference/content/OS__ Nova___ Server.html

Cisco, Inc., “Cisco UCS B460 M4 Blade Server (with Intel® Xeon
E7 v2 CPU),” Jun. 2015. [Online|. Available: http://www.cisco.
com/c/dam/en/us/products/collateral /servers-unified-computing/
ucs-b-series-blade-servers/B460M4__SpecSheet.pdf

OpenStack Telco Working Group, “TelcoWorkingGroup mission
statement and scope,” Apr. 2015. [Online|. Available: https:
/ /wiki.openstack.org/wiki/TelcoWorkingGroup

K. Ousterhout, P. Wendell, M. Zaharia, and 1. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, ser. SOSP
'13. ACM, 2013. doi: 10.1145/2517349.2522716. ISBN 978-1-4503-
2388-8 pp. 69-84. [Online]. Available: http://doi.acm.org/10.1145/
2517349.2522716

http://www.sagepub.com/gray/Website%20material/Journals/whittemore.pdf
http://www.sagepub.com/gray/Website%20material/Journals/whittemore.pdf
http://ark.intel.com/products/75043/Intel-Core-i5-4570-Processor-6M-Cache-up-to-3_60-GHz
http://ark.intel.com/products/75043/Intel-Core-i5-4570-Processor-6M-Cache-up-to-3_60-GHz
https://www.virtualbox.orl
http://docs.openstack.org/hot-reference/content/OS__Nova__Server.html
http://docs.openstack.org/hot-reference/content/OS__Nova__Server.html
http://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/B460M4_SpecSheet.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/B460M4_SpecSheet.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/B460M4_SpecSheet.pdf
https://wiki.openstack.org/wiki/TelcoWorkingGroup
https://wiki.openstack.org/wiki/TelcoWorkingGroup
http://doi.acm.org/10.1145/2517349.2522716
http://doi.acm.org/10.1145/2517349.2522716

BIBLIOGRAPHY 87

[48]

[49]

[50]

[51]

T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao, “Quantitative comparison of Xen and KVM,” Xen Summit,
Boston, MA, USA, pp. 1-2, 2008.

A. J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J. Qiu, and
G. C. Fox, “Analysis of virtualization technologies for high performance
computing environments,” in Cloud Computing (CLOUD), 2011 IEEE
International Conference on. IEEE, 2011, pp. 9-16.

E. Svensson, “A First Step Toward Green Wireline Broadband : A tool
for systematic measurement of Digital Subscriber Line parameters as
input to dynamic power optimization algorithms,” Dec. 2011. [Online].
Available: http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%
3Adiva-53600

K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi,
and J. A. Maestro, “IEEE 802.3 az: the road to energy efficient
ethernet,” Communications Magazine, IEEFE, vol. 48, no. 11, pp. 50—
56, 2010.

http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-53600
http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-53600

Appendix A:

Example Configuration
Files and Models

A.1 Heat Template of Logical Routers

HeatTemplateFormatVersion: ’'2012—12—12"
Description: Simple Network Topology

Resources:
networkl :
Type: OS::Neutron::Net
Properties: {name: vlanl}

network?2:
Type: OS::Neutron::Net
Properties: {name: vlan2}

subnetl :

Type: OS::Neutron:: Subnet

Properties:
network_id: {Ref: networkl}
ip_version: 4
cidr: 10.0.0.0/24
allocation_ pools:
— {end: 10.0.0.150, start: 10.0.0.20}

subnet2:

Type: OS::Neutron:: Subnet

Properties:
network id: {Ref: network2}
ip_ version: 4
cidr: 10.0.1.0/24
allocation_ pools:
— {end: 10.0.1.150, start: 10.0.1.20}

portl:
Type: OS::Neutron::Port
Properties:
name: portl
network: public
fixed_ips:
— subnet: public—subnet
ip_ address: 172.24.4.123

port2:
Type: OS::Neutron:: Port
Properties:
name: port2
network: public
fixed_ips:

89

63
64
65
66
67
68
69

NN NN NN N
DU W N = O

0 -~

=~

90

— subnet: public—

APPENDIX A. EXAMPLE CONFIGURATION
F1LES AND MODELS

subnet

ip_address: 172.24.4.127

routl:
Type: ’OS::Neutron:

rout2:
Type: ’OS::Neutron:

router interfacel:
Type: OS::Neutron::
Properties:
router_id: {Ref:
subnet_id: {Ref:

router_ _interface2:
Type: OS::Neutron::
Properties:
router_id: {Ref:
subnet_id: {Ref:

router_ pubinterfacel :
Type: OS::Neutron::
Properties:
router_id: {Ref:
port_id: {Ref:

router_ pubinterface2:
Type: OS::Neutron::
Properties:
router_id: {Ref:
port_id: {Ref:

: Router’

: Router’

RouterInterface
routl}

subnetl}
RouterInterface
rout2}

subnet2}
RouterInterface
routl}

portl}
RouterInterface

rout2}
port2}

Listing A.1: Heat template of logical routers.

A.2 OVS Configuration: ifconfig Trace

br—ex Link encap:Ethernet HWaddr 02:c4:39:da:02:4d
inet addr:172.24.4.1 Bcast:0.0.0.0
Mask:255.255.255.0
inet6 addr: fe80::ec47:82ff:feaa:2d5f/64 Scope:Link
UP BROADCAST RUNNING MTIU:1500 Metric:1
RX packets:49 errors:0 dropped:0 overruns:0 frame:0
TX packets:45 errors:0 dropped:0 overruns:0 carrier:0

collisions:0

txqueuelen:0

RX bytes:3660 (3.6 KB) TX bytes:3069 (3.0 KB)

br—int Link encap:Ethernet HWaddr 86:ba:3e:50:57:48
inet6 addr: fe80::201b:65ff:fe99:571f/64 Scope:Link
UP BROADCAST RUNNING MIU:1500 Metric:1
RX packets:133 errors:0 dropped:0 overruns:0 frame:0

TX packets:8
collisions:0

errors:0 dropped:0 overruns:0 carrier:0
txqueuelen:0

RX bytes:8702 (8.7 KB) TX bytes:648 (648.0 B)

br—tun Link encap:Ethernet HWaddr 66:b2:9e:da:0b:40
inet6 addr: fe80::8c¢53:14ff:fea4:¢230/64 Scope:Link
UP BROADCAST RUNNING MTIU:1500 Metric:1

RX packets:0
TX packets:8
collisions:0

errors:0 dropped:0 overruns:0 frame:0
errors:0 dropped:0 overruns:0 carrier:0
txqueuelen:0

RX bytes:0 (0.0 B) TX bytes:648 (648.0 B)

Listing A.2: OVS Configuration: ifconfig trace.

NN

NN
NG)

A.3. OVS CONFIGURATION: LOGICAL ROUTERS

91

A.3 OVS Configuration: Logical Routers

computer: location$ sudo ovs—vsctl show
9¢023c27—1cf7—46f2—a7c8—a8d32bbae8cd
Bridge br—tun
fail _mode: secure
Port br—tun
Interface br—tun
type: internal
Port patch—int
Interface patch—int
type: patch
options: {peer=patch—tun}
Bridge br—ex
Port br—ex
Interface br—ex
type: internal
Port "qg—053fb28e—fb”
Interface ”qg—053fb28e—fbh”
type: internal
Bridge br—int
fail mode: secure
Port ”"tap6adl17169—52”7
tag: 1
Interface ”tap6adl17169—52”
type: internal
Port "qr—ee65896a—11"
tag: 13
Interface ”"qr—ee65896a—11"
type: internal
Port patch—tun
Interface patch—tun
type: patch
options: {peer=patch—int}
Port "qr—161c2ef0—3a”
tag: 3
Interface ”"qr—161c2ef0—3a”
type: internal
Port ”"tap9159df83—0c”
tag: 13
Interface ”tap9159df83—0c¢”
type: internal
Port br—int
Interface br—int
type: internal
Port "qr—6a2cla94—ab”
tag: 1
Interface "qr—6a2cla94—ab”
type: internal
ovs_version: 72.0.27

Listing A.3: OVS configuration: Logical routers.

(S

&)

W W WNNNNNNDNNN
O © ® N O Uk WN =

SIS

SIS

92

A.4 Structure of

APPENDIX A. EXAMPLE CONFIGURATION
F1LES AND MODELS

libvirt-domain Model

module: libvirt —domain
augment /c:libvirt:
+—rw data—sources® [name]

+—rw name? string
+—rw type? source—type
+—rw source

+—rw file

+—rw url

| +—rw url? string
| 4+—rw file —name?
| 4+—rw content?
+—rw dev
+—rw dir
+—rw startup—policy?
+—rw domains
+—rw domain* [name]
+—rw name?
+—=x rebuild
+—x restart —domain
| +—w input
| +—w rank?
+—x get—domain—xml
| 4+—ro output

+—rw monitoring

c:absolute—path
string

+—rw iso—member—url* [url]

+—rw iso—member—text* [file —name]
string
string

c:absolute—path
c:absolute—path
enumeration

string

vir—restart —type

| +—ro domain—xml? string
| +—ro0 virt—xml-validate? string
+—x snapshot

| +—w input

| +——w name? string

+—x snapshot—delete

| +—w input

| +——w name string

+—rw monitor—node? string
+—rw start—up* [after]
| +—rw after? xs:duration
| 4+—rw action action—type
| 4+—rw target string
| 4+—rw data—source —> /c:libvirt /data—sources /name
| +—rw disk — ../../../devices/disk/id
+—rw failure* [after]
+—rw after? xs:duration
+—rw action action—type
+—rw target string
+—rw data—source —> /c:libvirt /data—sources /name
+—rw disk - ../../../devices/disk/id
+—rw wanted—state? vir—domain—state
+—rw hypervisor—type? hypervisor—type
+—rw description? string
+—rw uuid? yang: uuid
+—TIw cpu
+—rw mode? enumeration
+—rw model? cpu—model
+—rw vendor? enumeration
+—rw topology
+—rw sockets? uint 32
| 4+—rw cores? uint 32
| 4+—rw threads? uint32
+—rw match? enumeration
+—rw feature* [name]
| 4+—rw name? cpu—feature
| 4+—rw policy? enumeration
+—Trw numa

65
66
67
68
69
70

86

90

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

A.4. STRUCTURE OF LIBVIRT-DOMAIN MODEL

+—rw cell* [id]
+—rw id? uint32
+—rw cpus? cpuset
+—rw memory? uint32
+—rw mem-access? enumeration
+—rw cputune
+—rw shares? uint32
+—rw period? uint 32
+—rw quota? int 64
+—rw emulator—period? uint 32
+—rw emulator—quota? int 64
+—rw vcpupin* [vcpu]
| 4+—rw vepu? uint 16
| 4+—rw cpuset cpuset
+—rw emulatorpin
+—rw cpuset? cpuset
+—rw memory? uint 64
+—rw current—memory? uint 64
+—rw memory—backing
+—rw hugepages
| +—rw page* [id]
\ +—rw id? string
| +—rw size? uint 64
| +—rw unit? string
| +—rw nodeset? cpuset
+—rw nosharepages? empty
+—rw locked? empty
+—Trw vcpu
+—rw placement? enumeration
+—rw cpuset? cpuset
+—rw count? uint 16
+—rw current? uint 16
+—Trw oS
+—rw type
| +—rw os—type enumeration
| 4+—rw arch? enumeration
| 4+—rw machine? union
| +—rw init? c:absolute—path
| 4+—rw initarg* [id]
\ +—rw id? string
| +—rw argument? string
+—rw boot* [dev]
+—rw dev? enumeration
+—rw bootloader? c:absolute—path
+—rw bootloader—args? string
+—rw features
+—rw pae? empty
+—rw apic!
+—rw eoi? c:on—off
+—rw acpi? empty
+—rw hap? empty
+—rw hyperv!
| +—rw relaxed
\ +—rw state? c:on—off
| 4+—rw vapic
| | +—rw state? c:on—off
| +—rw spinlocks
| +—rw state? c:on—off
\ +—rw retries? uint 32
+—rw viridian? empty
+—rw privnet? empty
+—rw pvspinlock!
+—rw state? c:on—off
+—rw devices
+—rw emulator? string
+—rw disk* [id]
| +—rw id? string
| +—rw device? enumeration
| 4+—rw rawio? enumeration

93

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

94

APPENDIX A. EXAMPLE CONFIGURATION

| 4+—rw url? S

| +—rw content?
+—rw dev
+—rw dir

+—rw source
+—rw bridge?
+—rw network?
+—rw dev
+—rw mode?
+—rw socket
+—rw type
+—rw path
+—rw mode
+—rw address
+—rw type?
+—rw domain?
+—rw bus?
+—rw slot?
+—rw function?
+—rw model?
+—rw target?
+—rw mac—address?
4+—rw virtualport
+—rw type?
+—rw parameters
+—rw manageri
+—rw typeid?

+—rw instance

+—rw interfac
+—rw graphics* [type]
+—rw type?
+—rw (connection—ty
+——:(port)
| +—rw port?
+—rw autoport

+—rw listen?

\

|

|

+——:(socket)
+—rw socket?

+—rw typeidversion?

+—rw profileid?

+—rw websocket?

+—rw share—policy?

F1LES AND MODELS

4+—rw sgio? enumeration

+—rw type? source—type

+—rTw source
+—rw file c:absolute—path
+—rw url string

+—rw iso—member—url* [url]

tring

+—rw iso-member—text* [file —name]
| 4+—rw file —name?

string

string
c:absolute—path
c:absolute—path

+—rw startup—policy? enumeration
+—rw readonly? boolean
+—rw target
+—rw dev string
+—rw bus? enumeration
+—rw tray? enumeration
+—rw removable? c:on—off
+—rw address
+—rw type? string
+—rw controller? uint8
+—rw bus? uint8
+—rw unit? uint8
+—rw driver
+—rw name? string
+—rw type? disk—type
+—rw cache? string
+—rw interface* [id]
+—rw id? string
4+—rw type? enumeration

c:device—name

—> /c:libvirt /n:networks/network /name
c:device—name

enumeration

enumeration
c:absolute—path
enumeration

string

string

string

string

string

string

c:device—name
c:unicast—mac—address

enumeration

d? uint8

uint 32

uint8

id? yang: uuid

string

eid? yang: uuid
enumeration

pe)?

uint 16
? c:yes—no
uint 16
address—ip—or—name
enumeration

string

A.4. STRUCTURE OF LIBVIRT-DOMAIN MODEL

203 +—rw serial* [type]
204 | +—rw type? string
205 | 4+—rw target
206 | +—rw type? string
207 | +—rw port? uint8
208 +—rw console* [type]
209 +—rw type? string
210 +—rw target
211 +—rw type? string
212 +—rw port? uint8
213 +—ro domain—console* [name]
214 | +—ro name? string
215 | 4+—ro buffer? string
216 +—ro domain—status* [name]
+—r0 name? string
+—ro state? vir —domain—state
+—ro reason? vir —domain—reason
4+—ro uuid? yang: uuid
+—ro mem—max? uint32
+—ro mem-used? uint32
2 +—ro vcpus? uint 16
224 +—ro cpu—time? uint 64
225 +—ro snapshots* [name]
226 +—ro name? string
227 +—ro0 creationTime? yang: date—and—time
228 +—ro hypervisor
229 4+—ro type? string
230 +—ro version? uint 64
231 +—ro node
232 +—ro model? string
233 +—ro memory? uint 64
234 4+—ro0 cpus? uint32
235 +—ro mhz? uint 32
236 +—ro nodes? uint32
237 +—ro sockets? uint32
238 +—ro0 cores? uint 32
239 +—ro threads? uint32

Listing A.4: Structure of YANG domain model.

wW N =

96

A.5

APPENDIX A. EXAMPLE CONFIGURATION
F1LES AND MODELS

Structure of libvirt-network Model

module:

libvirt —network

augment /libvirt—common:libvirt:
+—rw networks
+—rw network* [name]

+—rw name? string
+—rw connections? uint32
+—rw ipv6? libvirt —common: yes—no
+—rw uuid? yang: uuid
+—rw bridge
| 4+—rw name? libvirt —common: device —name
| +—rw stp? libvirt —common: on—off
| +—rw delay? uint 32
+—rw mac
| 4+—rw address? libvirt —common: unicast—mac—address
+—rw forward
+—rw dev? libvirt —common: device —name
+—rw mode? enumeration
+—rw nat
| 4+—rw address
| | 4+—rw start? inet:ipv4—address—no—zone
| | 4+—rw end? inet:ipv4—address—no—zone
| 4+—rw port
| +—rw start? non—zero—port—number
| +—rw end? non—zero—port—number
+—rw managed? libvirt —common: yes—no
+—rw interface* [dev]
+—rw dev? libvirt —common: device —name
+—rw domain
| +—rw name? inet : domain—name
+—rw ip* [name]
+—rw name? string
+—rw address? inet :ip—address—no—zone
+—rw family? enumeration

+—rw (netmask—or—prefix)?
| +——:(netmask)

| | 4—rw netmask? inet :ipv4d—address—no—zone
| +——:(prefix)
+—rw prefix? uint8
+—rw dhcp
+—rw range* [start end]
+—rw start? inet :ip—address—no—zone
| 4+—rw end? inet:ip—address—no—zone
+—rw host* [mac]
+—rw mac? libvirt —common: unicast —mac—address
+—rw name? string
+—rw ip? inet :ip—address—no—zone
+—rw virtualport
+—rw type? enumeration
+—rw parameters
+—rw managerid? uint8
+—rw typeid? uint 32
+—rw typeidversion? uint8
+—rw instanceid? yang: uuid
+—rw profileid? string
+—rw interfaceid? yang: uuid

Listing A.5: Structure of YANG network model.

A.6. CSR TEMPLATE 97

A.6 CSR Template

<config xmlns="http://acme.com/ns/config/1.07>
<devices xmlns="http://acme.com/ns/ncs”>
<device tags="nocreate”>
<name>{$DEVICE NAME}< /name>
<config tags="merge”>
<libvirt xmlns="http://acme.com/ns/gabbleduck/
libvirt —common”>
<networks xmlns="http://acme.com/ns/gabbleduck/
libvirt —network”>
<network>

<name>wan< /name>

<bridge>
<name>virbrwan</name>
<stp>on</stp>
<delay>0</delay>

</bridge>

<ip>
<name>default</name>
<address>192.168.9.1</address>
<netmask>255.255.255.0</netmask>

</ip>

</network>

<network>
<name>monitor</name>
<bridge>
<name>virbrmon</name>
<stp>on</stp>
<delay>0</delay>
</bridge>
<ip>
<name>default</name>
<address>{SMONITOR _IF ADDRESS}</address>
<netmask>255.255.255.0</netmask>
</ip>
</network>
<network>
<name>lan</name>
<bridge>
<name>virbrlan</name>
<stp>on</stp>
<delay>0</delay>
</bridge>
</network>
</networks>
<domains xmlns="http://acme.com/ns/gabbleduck/
libvirt —domain”>
<domain>
<name>{$DOMAIN NAME}< /name>
<wanted—state>running</wanted—state>
<hypervisor—type>kvm</hypervisor —type>
<description>{$DESC}</description>
<monitoring>
<monitor—node>inside</monitor—node>
<start-—up>
<after>PToM</after>
<action>reboot</action>
</start—up>
<start-—up>
<after>PTIOM</after>
<action>reset</action>
</start—up>
<start-—up>
<after>PT15M</after>
<action>reinitialize</action>

66
67
68
69

N =

00 N~
= O © 0O U W N

o

98

APPENDIX A. EXAMPLE CONFIGURATION
F1LES AND MODELS

<target>dayl</target>
</start—up>
<start-—up>
<after>PT25M</after>
<action>reinitialize</action>
<target>day0</target>
</start—up>
<failure>
<after>PT30s</after>
<action>reboot</action>
</failure>
<failure>
<after>PTIOM</after>
<action>reset</action>
</failure>
<failure>
<after>PT20M</after>
<action>reinitialize</action>
<target>dayl</target>
</failure>
</monitoring>
<cpu>
<mode>host—passthrough</mode>
</cpu>
<memory>2621440</memory>
<current—memory>2621440</current —memory>
<os>
<type>
<arch>x86_ 64</arch>
<machine>pc</machine>
<os—type>hvim</os—type>
</type>
<boot>
<dev>hd</dev>
</boot>
</os>
<features>
<pae/>
<apic>
</apic>
</features>
<devices>
<emulator>/usr/bin/gemu—system—x86_ 64</emulator>
<disk>
<id>cd</id>
<device>cdrom</device>
<type>dynamic—iso</type>
<source>
<iso—member—text>
<file -name>iosxe_ config.txt</file —name>
<content>{$CSR_DAY0}</content>
</iso-—member—text>
</source>
<target>
<dev>hde</dev>
<bus>ide</bus>
</target>
</disk>
<disk>
<id>disk</id>
<type>url</type>
<source>
<url>{$IMAGE URL}</url>
</source>
<target>
<dev>hda</dev>
<bus>ide</bus>
</target>
<address>

135
136
137
138
139
140
141
142

143

A.6. CSR TEMPLATE

<type>drive</type>
<controller>0</controller>
<bus>0</bus>
<unit>0</unit>
</address>
<driver>
<name>gemu< /name>
<type>qcow2</type>
<cache>none</cache>
</driver>
</disk>
<interface>
<id>gigl</id>
<type>network</type>
<source>
<network>wan</network>
</source>
</interface>
<interface>
<id>gig2</id>
<type>network</type>
<source>
<network>monitor</network>
</source>
</interface>
<interface>
<id>gig3</id>
<type>network</type>
<source>
<network>lan</network>
</source>
</interface>
</devices>
</domain>
</domains>
</libvirt>
</config>
</device>
</devices>
</config>

99

Listing A.6: CSR template.

APPENDIX A. EXAMPLE CONFIGURATION
100 F1LES AND MODELS

A.7 CSR NAT Template

<config xmlns="http://acme.com/ns/config/1.0”>
<devices xmlns="http://acme.com/ns/ncs”>
<device tags="nocreate”>
<name>{ $DEVICE_NAME}< /name>
<config>
<ip xmlns="urn:ios” tags="merge”>
<dhcp>
<excluded—address>
<low—list>
<low>{$LAN_IP ADDRESS}</low>
</low—list>
</excluded—address>
<pool>
<id>BRANCH DHCP POOI</id>
<network>
<network—number>{$LAN_NET ADR}</network—number>
<mask>{$LAN_IP_MASK}</mask>
</network>
<dns—server>{$DNS SERVER}</dns—server>
<default —router>{$LAN_IP_ADDRESS}</default —router>
<lease>
<days>1</days>
<hours>1</hours>
</lease>
</pool>
</dhcp>
<nat>
<inside>
<source>
<list>
<id>1</id>
<interface>
<GigabitEthernet>1</GigabitEthernet>
</interface>
<overload />
</list>
</source>
</inside>
</nat>
<route>
<ip—-route—forwarding—1list>
<prefix>0.0.0.0</prefix>
<mask>0.0.0.0</mask>
<forwarding—address>{$DEF_GW}</forwarding—address>
</ip—-route—forwarding—list>
</route>
</ip>
<interface xmlns="urn:ios” tags="merge”>
<GigabitEthernet>
<name>1</name>
<ip>

62
63
64

66
67
68

69

~
Gk W N = O

® 0 0 0 0 N N N N N N N~
TR X DR O © C

w0

99
100
101
102
103

A.7. CSR NAT TEMPLATE 101

<access—group>
<direction>in</direction>
<access—list>101</access—list>
</access—group>
<nat>
<outside />
</nat>
</ip>
</GigabitEthernet>
<GigabitEthernet>
<name>3</name>
<ip>
<nat>
<inside />
</nat>
</ip>
</GigabitEthernet>
</interface>
<access—list xmlns="urn:ios” tags="merge”’>
<access—list —standard—range>
<listnumber>1</listnumber>
<std—access—list —rule>
<rule>permit {$LAN NET ADR} {$LAN INV_MASK}</rule>
</std—access—list —rule>
</access—list —standard—range>
<access—list —extended—range>
<listnumber>101</listnumber>
<ext—access—list —rule>
<rule>permit ip any host {$SWAN_IP_ADDRESS}</rule>
</ext—access—list —rule>
<ext—access—list —rule>
<rule>deny ip {$LAN_NET ADDRESS}
{SLAN_INV_MASK} any</rule>
</ext—access—list —rule>
<ext—access—list —rule>
<rule>permit icmp any any echo—reply</rule>
</ext—access—list —rule>
<ext—access—list —rule>
<rule>permit icmp any any time—exceeded</rule>
</ext—access—list —rule>
<ext—access—list —rule>
<rule>permit icmp any any unreachable</rule>
</ext—access—list —rule>
<ext—access—list —rule>
<rule>deny ip any any</rule>
</ext—access—list —rule>
</access—list —extended—range>
</access—list>
</config>
</device>
</devices>
</config>

Listing A.7: CSR NAT template.

APPENDIX A. EXAMPLE CONFIGURATION
102 F1LES AND MODELS

A.8 CSR Day0 Configuration

L4 DAYO HOSTNAME AND ENABLE PASSWORD
|

hostname gorgonzola
!

enable secret admin
|

Wit DAYO VTY LINE
!

line con 0
exec—timeout 30 0

!

line vty 0 15
exec—timeout 30 0
transport input ssh

transport output none
|

| bt DAYO MANAGEMENT VRE AND INTERFACE —

¢.g.172.16.0.21 255.255.255.0 (CSR)
!
interface GigabitEthernet 1
description wan interface
ip address $WAN IP_ADDRESS $WAN IP_ MASK
no shutdown
!
interface GigabitEthernet 2
description Monitor interface
ip address $MONITOR IP_ADDRESS 255.255.255.0
no shutdown
!
interface GigabitEthernet 3
description Lan interface
ip address $LAN IP_ADDRESS $LAN IP_ MASK

no shutdown
!

Listing A.8: CSR Day0 configuration.

Appendix B:

Measurements and Data

B.1 VM Ping and SSH Time Stamps

Test specifies how many VMs were started. GD means Gabbleduck, OS
means OpenStack. Start, Last ping, and Last SSH refer wall clock times

when the last VM in a set of VMs responded to ping and SSH respectively.
Ping and SSH is the delta between last ping and Start, and last SSH and

Start.

Test Start Last ping | Last SSH | Ping (m) | SSH (m)

GD11 | 12:35:15.70 | 12:35:29.68 | 12:37:31.51 | 00:00:13.98 | 00:02:15.81
GD1 2 | 15:42:02.91 | 15:42:17.03 | 15:44:19.00 | 00:00:14.13 | 00:02:16.10
GD1 3 | 12:41:41.88 | 12:41:55.91 | 12:43:57.85 | 00:00:14.03 | 00:02:15.97
GD21 | 12:50:20.96 | 12:50:40.90 | 12:52:44.13 | 00:00:19.93 | 00:02:23.16
GD2 2 | 12:53:36.15 | 12:53:56.40 | 12:55:59.81 | 00:00:20.25 | 00:02:23.67
GD2 3 | 12:58:01.98 | 12:58:21.81 | 13:00:24.58 | 00:00:19.83 | 00:02:22.60
GD3 1 | 13:02:48.37 | 13:03:14.99 | 13:05:20.35 | 00:00:26.62 | 00:02:31.97
GD3 2 | 13:05:43.40 | 13:06:10.24 | 13:08:16.26 | 00:00:26.84 | 00:02:32.86
GD3 3 | 13:09:18.81 | 13:09:45.78 | 13:11:51.35 | 00:00:26.98 | 00:02:32.54
GD4 1 | 13:17:19.87 | 13:17:58.04 | 13:20:00.34 | 00:00:38.17 | 00:02:40.47
GD4 2 | 14:07:29.67 | 14:08:07.41 | 14:10:10.93 | 00:00:37.75 | 00:02:41.27
GD4 3 | 14:13:40.55 | 14:14:15.82 | 14:16:24.74 | 00:00:35.28 | 00:02:44.19
GD5 1 | 14:19:38.82 | 14:20:28.46 | 14:22:30.23 | 00:00:49.64 | 00:02:51.42
GD5 2 | 14:23:32.86 | 14:24:23.29 | 14:26:25.97 | 00:00:50.42 | 00:02:53.10
GD5 3 | 14:33:47.90 | 14:34:32.76 | 14:36:35.90 | 00:00:44.86 | 00:02:48.00
GD6 1 | 14:39:54.53 | 14:40:45.98 | 14:42:59.07 | 00:00:51.45 | 00:03:04.54
GD6 2 | 14:44:44.53 | 14:45:38.58 | 14:47:48.76 | 00:00:54.04 | 00:03:04.23

103

104 APPENDIX B. MEASUREMENTS AND DATA
GD6 3 | 14:49:48.07 | 14:50:39.60 | 14:52:48.60 | 00:00:51.53 | 00:03:00.53
GD71 | 15:05:46.71 | 15:06:43.31 | 15:09:02.29 | 00:00:56.60 | 00:03:15.58
GD7 2 | 15:11:54.50 | 15:12:50.12 | 15:15:07.93 | 00:00:55.61 | 00:03:13.43
GD7 3 | 15:16:29.20 | 15:17:28.90 | 15:19:44.74 | 00:00:59.70 | 00:03:15.54
GD8 1 | 15:20:45.61 | 15:21:56.14 | 15:24:06.43 | 00:01:10.53 | 00:03:20.82
GDS8 2 | 15:30:32.24 | 15:31:36.84 | 15:33:53.26 | 00:01:04.60 | 00:03:21.03
GD8 3 | 15:37:11.07 | 15:38:28.51 | 15:40:34.60 | 00:01:17.45 | 00:03:23.53
GD9 1 | 15:47:30.77 | 15:48:58.53 | 15:51:03.47 | 00:01:27.76 | 00:03:32.71
GD9 2 | 15:57:48.23 | 15:59:01.03 | 16:01:20.56 | 00:01:12.81 | 00:03:32.34
GD9 3 | 16:12:24.58 | 16:13:53.83 | 16:15:57.39 | 00:01:29.26 | 00:03:32.81
GD10 1 | 16:28:46.93 | 16:30:27.89 | 16:32:29.56 | 00:01:40.95 | 00:03:42.63
GD10 2 | 16:43:11.59 | 16:44:51.40 | 16:46:55.38 | 00:01:39.81 | 00:03:43.79
GD10 3 | 16:48:48.58 | 16:50:31.93 | 16:52:38.29 | 00:01:43.34 | 00:03:49.70
OS11 18:38:20.00 | 18:38:42.73 | 18:39:18.72 | 00:00:22.73 | 00:00:58.72
0S1 2 18:41:48.00 | 18:42:04.38 | 18:42:40.92 | 00:00:16.38 | 00:00:52.92
OS1 3 18:54:31.00 | 18:54:49.10 | 18:55:27.35 | 00:00:18.10 | 00:00:56.35
0S21 18:58:33.00 | 18:59:04.75 | 19:00:34.31 | 00:00:31.75 | 00:02:01.31
0S2 2 19:01:58.00 | 19:02:18.74 | 19:03:47.63 | 00:00:20.74 | 00:01:49.63
0S2 3 19:06:14.00 | 19:06:36.94 | 19:08:06.49 | 00:00:22.94 | 00:01:52.49
0S31 19:20:17.00 | 19:20:41.72 | 19:22:40.85 | 00:00:24.72 | 00:02:23.85
0S3 2 19:24:27.00 | 19:24:59.64 | 19:27:48.35 | 00:00:32.64 | 00:03:21.35
0S3 3 19:31:45.00 | 19:32:21.85 | 19:34:56.49 | 00:00:36.85 | 00:03:11.49
0S4 1 19:41:11.00 | 19:41:57.30 | 19:45:53.14 | 00:00:46.30 | 00:04:42.14
054 2 19:47:20.00 | 19:48:07.58 | 19:51:57.76 | 00:00:47.58 | 00:04:37.76
054 3 19:53:46.00 | 19:54:40.46 | 19:58:19.34 | 00:00:54.46 | 00:04:33.34
0S5 1 20:01:29.00 | 20:02:41.15 | 20:07:36.43 | 00:01:12.15 | 00:06:07.43
OS5 2 | 20:10:56.00 | 20:11:40.17 | 20:16:28.24 | 00:00:44.17 | 00:05:32.24
OS5 3 | 20:22:46.00 | 20:23:50.15 | 20:28:43.06 | 00:01:04.15 | 00:05:57.06
0S6 1 20:32:59.00 | 20:34:29.19 | 20:40:32.13 | 00:01:30.19 | 00:07:33.13
0S6 2 | 20:42:27.00 | 20:43:46.79 | 20:49:47.66 | 00:01:19.79 | 00:07:20.66
0S6 3 13:10:32.00 | 13:11:53.82 | 13:17:29.26 | 00:01:21.82 | 00:06:57.26

B.1. VM PiNnG AND SSH TIME STAMPS 105
OS71 13:21:00.00 | 13:22:32.91 | 13:29:33.04 | 00:01:32.91 | 00:08:33.04
OS72 | 13:36:25.00 | 13:38:09.68 | 13:45:03.14 | 00:01:44.68 | 00:08:38.14
OS73 | 13:47:23.00 | 13:49:10.77 | 13:55:56.98 | 00:01:47.77 | 00:08:33.98
0S8 1 14:00:21.00 | 14:02:23.54 | 14:10:37.72 | 00:02:02.54 | 00:10:16.72
0S8 2 14:12:19.00 | 14:14:29.81 | 14:22:51.60 | 00:02:10.81 | 00:10:32.60
0S8 3 14:25:11.00 | 14:27:10.32 | 14:35:24.08 | 00:01:59.32 | 00:10:13.08
0S9 1 14:39:26.00 | 14:41:31.41 | 14:50:51.22 | 00:02:05.41 | 00:11:25.22
0S89 2 14:54:37.00 | 14:56:51.90 | 15:06:02.73 | 00:02:14.90 | 00:11:25.73
0S9 3 | 15:07:34.00 | 15:09:49.25 | 15:19:02.70 | 00:02:15.25 | 00:11:28.70
OS10 1 | 15:30:49.00 | 15:33:23.73 | 15:42:58.19 | 00:02:34.73 | 00:12:09.19
0OS10 2 | 16:00:42.00 | 16:03:19.75 | 16:13:31.42 | 00:02:37.75 | 00:12:49.42
0OS10 3 | 16:19:21.00 | 16:21:55.05 | 16:31:50.54 | 00:02:34.05 | 00:12:29.54

Table B.1: VM ping and SSH time stamps.

Table B.2: VM ping median time (minutes).

Amount of Machines | OpenStack | Gabbleduck
1 00:18.10 00:14.03
2 00:22.94 00:19.93
3 00:32.64 00:26.84
4 00:47.58 00:37.74
5 01:04.15 00:49.64
6 01:21.82 00:51.53
7 01:44.68 00:56.60
8 02:02.54 01:10.53
9 02:14.90 01:27.76
10 02:34.73 01:40.95

106 APPENDIX B. MEASUREMENTS AND DATA

Table B.3: VM SSH median time (minutes).

Amount of Machines | OpenStack (m) | Gabbleduck (m)

1 00:56.35 02:15.97

2 01:52.49 02:23.16

3 03:11.49 02:32.54

4 04:37.76 02:41.27

) 05:57.06 02:51.42

6 07:20.66 03:04.23

7 08:33.98 03:15.54

8 10:16.72 03:21.03

9 11:25.73 03:32.71

10 12:29.54 03:43.79

Table B.4: VM ping median time fitted line.

R2

Equation

OS fitted line

0.9988610626

f(x) = -0.000002153x>
+ 4.23994215660883E-005x>
— 5.34519428616658E-005x + 0.0002203858

GD fitted line

0.9901573996

f(x) = 1.26921368240812E-006x>
~ 1.56727531727531E-005x2
+ 0.0001462297x + 0.000011902

Table B.5: VM

SSH median time fitted line.

R2

Equation

OS fitted line

0.9993992512

f(x) = - 4.76717405536852E-006x
+ 8.11772236251406E-005x>
+ 0.000533181x + 0.000015179

GD fitted line

0.9978693691

f(x) = - 4.46208883708874E-007x>
+ 8.40314874169023E-006x>
+ 6.93028508913935E-005x 4 0.0014923746

B.2. RAM TRACES

B.2 RAM Traces

5| Mem:
j|—/+ buffers/cache:

OpenStack with 10 VMs, and the Gabbleduck monitor executing:

> free —m

total
Mem: 15960
—/4+ buffers/cache:
i| Swap: 16291

OpenStack with 10 VMs,

> free —m
total

Mem: 15960

2|—/+ buffers/cache:

Swap: 16291

used free shared
14990 970 2
7701 8259

0 16291

OpenStack with no VMs:

5/> free —m

total
Mem: 15960
—/+ buffers/cache:
Swap: 16291

used free shared
14880 1080 2
7585 8375

0 16291
used free shared
11369 4590 1
4443 11517

0 16291

Neither OpenStack or Gabbleduck executing:

;|> free —m

total
15960

Swap: 16291

Running Gabbleduck with 10 VMs:

> free —m

total
Mem: 15960
—/4+ buffers/cache:
Swap: 16291

used free shared
6734 9226 1
711 15249
0 16291
used free shared
13111 2849 1
2920 13040
0 16291

buffers
249

Gabbleduck monitor shut down:

buffers
249

buffers
249

buffers
249

buffers
249

cached
7039

cached
7046

cached
6677

cached
5774

cached
9941

Listing B.1: RAM traces.

108 APPENDIX B. MEASUREMENTS AND DATA

B.3 CPU Utilization Traces

(mpstat —P ALL 1 50) is used (50 times 1 second pause)

3| Freshly rebooted host machine:

4| Average: CPU %usr %mnice %sys %iowait %irq %soft %steal %guest %gnice %idle
5| Average: all 0.33 0.00 0.23 0.15 0.00 0.00 0.00 0.00 0.00 99.30
6| Average: 0 0.40 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 99.50
7| Average: 1 0.40 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 99.30
8| Average: 2 0.40 0.00 0.30 0.10 0.00 0.00 0.00 0.00 0.00 99.20
9| Average: 3 0.20 0.00 0.20 0.30 0.00 0.00 0.00 0.00 0.00 99.30

11| During start phase of Devstack:

12| Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
13| Average: all 13.09 0.00 2.42 8.00 0.00 0.06 0.00 0.00 0.00 76.42
14| Average: 0 12.08 0.00 2.17 5.03 0.00 0.07 0.00 0.00 0.00 80.65
15| Average: 1 16.09 0.00 2.83 7.37 0.00 0.09 0.00 0.00 0.00 73.61
16| Average: 2 13.51 0.00 2.30 11.20 0.00 0.07 0.00 0.00 0.00 72.91
17| Average: 3 10.70 0.00 2.38 &8.39 0.00 0.05 0.00 0.00 0.00 78.48

19| OpenStack with no VMs:

20| Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
1| Average: all 3.10 0.00 0.90 1.46 0.00 0.01 0.00 0.00 0.00 94.53
2| Average: 0 3.11 0.00 1.01 0.23 0.00 0.00 0.00 0.00 0.00 95.65
Average: 1 3.34 0.00 0.88 4.01 0.00 0.01 0.00 0.00 0.00 91.76
Average: 2 3.21 0.00 0.89 1.28 0.00 0.03 0.00 0.00 0.00 94.60
Average: 3 2.75 0.00 0.82 0.30 0.00 0.00 0.00 0.00 0.00 96.13

NN NN

O R W

OpenStack during start phase of 10 VMs (initially):

Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
Average: all 21.71 0.00 10.44 24.87 0.00 0.17 0.00 15.19 0.00 27.63
Average: 0 22.60 0.00 9.75 13.09 0.00 0.18 0.00 14.52 0.00 39.87
1| Average: 1 19.77 0.00 13.38 23.14 0.00 0.18 0.00 15.06 0.00 28.48

© 00

Average: 2 22.07 0.00 9.99 33.42 0.00 0.14 0.00 15.44 0.00 18.95
3| Average: 3 22.36 0.00 8.65 29.84 0.00 0.16 0.00 15.79 0.00 23.21

W oW W wWwWwwWNN NN
=W N o

5| OpenStack during start phase of 10 VMs (later):
36| Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle

37| Average: all 2.80 0.00 1.26 82.40 0.00 0.02 0.00 0.13 0.00 13.40
38| Average: 0 2.63 0.00 1.21 86.79 0.00 0.00 0.00 0.08 0.00 9.29
39| Average: 1 2.70 0.00 1.09 84.66 0.00 0.02 0.00 0.10 0.00 11.43
10| Average: 2 2.62 0.00 1.11 80.27 0.00 0.02 0.00 0.24 0.00 15.75
11| Average: 3 3.28 0.00 1.63 77.88 0.00 0.02 0.00 0.08 0.00 17.11
12

43| top:

14| 25881 libvirt4+ 20 0 5034512 226704 16588 S 0.3 1.4 0:08.75 gemu—system—x86
151 26436 libvirt+ 20 0 5041300 223660 16348 S 0.3 1.4 0:06.99 gemu—system—x86
46| 26675 libvirt4+ 20 0 5073572 219232 16376 S 0.3 1.3 0:07.03 gemu—system—x86
17| 27723 libvirt4+ 20 0 5018164 209716 16420 S 0.3 1.3 0:18.20 gemu—system—x86
18127914 libvirt+ 20 0 5041300 211644 16620 S 0.3 1.3 0:16.77 gemu—system—x86

50| OpenStack with 10 VMs:

51| Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
52| Average: all 3.01 0.00 1.00 1.72 0.00 0.03 0.00 0.02 0.00 94.23
3| Average: 0 2.93 0.00 1.01 4.79 0.00 0.04 0.00 0.02 0.00 91.21
54| Average: 1 2.93 0.00 1.07 1.19 0.00 0.00 0.00 0.02 0.00 94.79
5| Average: 2 3.05 0.00 0.83 0.20 0.00 0.04 0.00 0.04 0.00 95.84
56| Average: 3 3.08 0.00 1.07 0.67 0.00 0.02 0.00 0.02 0.00 95.14

58| Gabbleduck with no VMs:

59| Average: CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
60| Average: all 0.76 0.00 0.30 0.12 0.00 0.01 0.00 0.00 0.00 98.81
61| Average: 0 0.74 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 99.02
62| Average: 1 0.52 0.00 0.16 0.24 0.00 0.00 0.00 0.00 0.00 99.08
63| Average: 2 1.15 0.00 0.48 0.16 0.00 0.00 0.00 0.00 0.00 98.21
64| Average: 3 0.66 0.00 0.32 0.08 0.00 0.00 0.00 0.00 0.00 98.94

66| Gabbleduck during start phase of 10 VMs (initially):

B.3. CPU UTILIZATION TRACES

Average:
Average:
Average:
Average:
Average:
Average:

CPU %usr %nice

all
0
1
2
3

13.28
14.14
15.75
12.96
10.24

0.00

Gabbleduck during start
CPU %usr %nice

Average:
Average:
Average:
Average:
Average:
Average:

all
0

1
2
3

8.74
8.60
12
11
1

8.
9.
9.13

0.00
0.00
0.00
0.00
0.00

Gabbleduck with 10 VMs:
CPU %usr %mice

Average:
Average:
Average:
| Average:
7| Average:
Average:

all

WN = O

5.70
5.62
5.79
5.64
5.73

0.00
0.00
0.00
0.00
0.00

Ysys %iowait
0.00 31.87
0.00 30.72
0.00 37.21
0.00 27.62

31.96

17.76
15.99
19.01
28.20

7.84

%irq %soft %steal %guest Y%gnice %idle

0.00
0.00
0.00
0.00
0.00

0.34
0.36
0.56
0.18
0.24

phase of 10 VMs (later):
Ysys %iowait %irq %soft %steal %guest Y%gnice %idle

16.37
15.70
16.60
17.24
15.95

56.00
48.55
61.72
61.36
52.41

0.00
0.00
0.00
0.00
0.00

0.20
0.22
0.26
0.22
0.10

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

25.71
18.86
19.41
24.33
40.20

7.45
8.13
8.64
5.64
7.41

0.00 11.04
0.00 19.93
0.00 8.05
0.00 6.71
0.00 9.52

0.00 11.23
0.00 18.79
0.00 4.66
0.00 6.43
0.00 15.00

Ysys Niowait %irq %soft %steal Y%guest Y%gnice %idle
8.93 0.00
10.07 0.00
9.25 0.00
7.48 0.00
8.94 0.00

9.34
9.38
9.13
9.41
9.42

0.34
0.38
0.43
0.26
0.28

0.00
0.00
0.00
0.00
0.00

15.24
15.43
14.95
14.71
15.87

0.00 60.45
0.00 59.11
0.00 60.45
0.00 62.50
0.00 59.76

109

Listing B.2: CPU utilization traces.

110

APPENDIX B. MEASUREMENTS AND DATA

B.4 Model Assignment Results

Table B.6: Group X, test results.

Participant | 1.A 1.B 2.A 2.B 3.A 3.B Total

1 00:11:15 | 00:11:20 | 00:48:54 | 00:29:56 | 00:09:50 | 00:42:16 | 02:33:31
2 00:11:04 | 00:09:22 | 01:05:34 | 00:39:13 | 00:05:21 | 00:44:33 | 02:55:07
3 00:00:50 | 00:05:30 | 00:05:00 | 00:35:00 | 00:21:47 | 00:45:19 | 01:53:26
4 00:01:35 | 00:04:21 | 00:06:18 | 00:07:26 | 00:26:42 | 00:31:55 | 01:18:17

Table B.7: Group Y, test results.

Participant | 1.A 1.B 2.A 2.B 3.A 3.B Total

5 00:30:00 | 00:10:00 | 00:04:34 | 00:08:02 | 00:06:32 | 00:20:00 | 01:19:08
6 00:02:37 | 00:04:42 | 00:06:53 | 00:03:44 | 00:07:09 | 00:10:21 | 00:35:26
7 00:01:23 | 00:02:43 | 00:05:23 | - 00:41:21 | 00:21:41 | 01:12:31
8 00:10:57 | 00:11:32 | 00:35:19 | 00:34:41 | 00:38:56 | 00:09:34 | 02:20:59

Table B.8: Both groups, median time and standard deviation.

Test | Median Time | Std Dev | Average
1.A 00:07:21 00:04:42 | 00:06:43
1.B 00:07:26 00:09:07 | 00:09:26
2.A 00:08:02 00:25:10 | 00:24:36
2.B 00:18:41 00:15:37 | 00:20:28
3.A 00:15:11 00:07:45 | 00:15:40
3.B 00:40:09 00:16:13 | 00:32:15
Total | 01:36:49 - 01:49:08

13

Appendix C:

Model Assignments

C.1 Assignment 1

*¥** Informed consent: By taking part in this assessment, the data you provide
will be analyzed and published. No names will not be mentioned anywhere
in the resulting document. ***

—— HELP ——

* Assume that there is a webserver listening on port 4000,
containing the following files:
csr1000v.gcow?2 — A image file that will boot a
Cisco CSR1000v instance.
ubuntu—day0.txt — A Day0 configuration for the
Ubuntu VM.
* Available in this directory
iosxe_config.txt — A Day0 configuration for the
Cisco CSR1000v router.
* Available in this directory

* Assume that there is a virtual LAN already set up on the host computer,
with the following CIDR: 10.0.0.0/24. This is the VLAN that the Ubuntu
machine is added to.

* Please, allocate at least 2 GB of RAM to the CSR1000v VM.

ubuntu—day0.txt is an initial configuration that is given to the Ubuntu VM
(and received by cloud—init) that is already defined. The CSR1000v requires
another initial configuration, this one is given in iosxe_config.txt.

File list: iosxe_config.txt, ubuntu—day0.txt,
ubuntu.xml, ubuntu.yaml

We would like to change the ubuntu provisioning
templates to instead provision a CSR1000v.

(a) Modify ubuntu.xml, so that it instead of specifying
an Ubuntu VM, specifies a Cisco CSR1000v VM.
* Please measure how much time you need to solve
this assignment.

(b) Modify ubuntu.yaml, so that it instead of specifying
an Ubuntu VM, specifies a Cisco CSR1000v VM.
* Please measure how much time you need to solve
this assignment.

Listing C.1: Assignment 1 description.

111

112 APPENDIX C. MODEL ASSIGNMENTS

NN N

A W N =

NN NN

W oW W W W oW W W W N NN
© 0 9 O kA W N~ O O W O

gk W0 o= O

I Y

<config xmlns="http://acme.com/ns/config/1.0”>
<libvirt xmlns="http://acme.com/ns/anvil/libvirt —common”>
<domains xmlns="http://acme.com/ns/anvil/libvirt —domain”>
<domain>
<name>ToModify </name>
<wanted—state >running </wanted—state>
<hypervisor —type>kvin</hypervisor —type>
<description>
Provisioning specification for a Ubuntu VM.
</description>
<cpu>
<mode>host —passthrough </mode>
</cpu>
<memory>1097152 < /memory>
<vcpu>
<count>2</count>
</vepu>
<0s>
<type>
<arch>x86_64</arch>
<machine>pc</machine>
<os—type>hvmm</os—type>
</type>
<boot>
<dev>hd</dev>
</boot>
</os>
<features>
<pae/>
<apic>
</apic>
</features>
<devices>
<emulator>/usr/bin/qemu—system—x86_64</emulator>
<disk>
<id>ubuntu—day0</id>
<device>cdrom</device>
<type>dynamic—iso </type>
<source>
<iso—member—url>
<url>http://localhost /ubuntu—day0. txt </url>
</iso —member—url >
</source>
<target>
<dev>hdc</dev>
<bus>ide </bus>
</target>
</disk>
<disk>
<id>boot—disk </id>
<type>url</type>
<source>
<url>http://localhost:4000/ubuntu—12.04— \
server —cloudimg—amd64—disk 1.img</url>

L N N

0 0 ® N N N N N NN N NN
V= O © ® N w

o}
)

00
S

C.1. ASSIGNMENT 1

</source>
<target>
<dev>hda</dev>
<bus>ide </bus>
</target>
<address>
<type>drive </type>
<controller >0</controller >
<bus>0</bus>
<unit >0</unit>
</address>
<driver>
<name>gemu< /name>
<type>qcow2</type>
<cache>none</cache>
</driver>
</disk>
<interface>
<id>gigl</id>
<type>network</type>
<source>
<network>
private
</network>
</source>
<mac—address >52:54:00:fa:41:03 </mac—address>
<address>
<type>pci</type>
<domain>0x00</domain>
<bus>0x00</bus>
<slot >0x03</slot >
<function >0x0</function >
</address>
</interface >
</devices>
</domain>
</domains>
</libvirt >
</config>

113

Listing C.2: Assignment 1 Ubuntu VM XML.

W W ON NN N NN NN NN R E e e
= O © 00 9 O Uk W N = O © W N O U

114 APPENDIX C. MODEL ASSIGNMENTS

HeatTemplateFormatVersion: ’2012—-12—-12’

Description: Provisioning specification for a Ubuntu VM.

Resources:
ubuntuimage :
Type: OS:: Glance :: Image
Properties:
name: “ubuntulmage”

container format: bare

disk_format: qcow?2

is_public: True

location: ”http://localhost:4000/ubuntu—12.04— \
server —cloudimg—amd64—disk 1.img”

protected: False

instancel:
Type: OS::Nova:: Server
Properties:
name: ToModify
image: {Ref: ubuntuimage}
flavor: ml.small
networks:
— network: private
port: someport
user_data: |
#cloud —config
password: passwOrd
chpasswd: { expire: False }
ssh_pwauth: True
user_data format: RAW

Listing C.3: Assignment 1 Ubuntu VM YAML.

C.1. ASSIGNMENT 1 115

hostname roadrunner
|

enable secret admin
!

J|His DAYD VTY LINE
|

line con O
exec—timeout 30 0

!

line vty 0 15
exec—timeout 30 0
transport input ssh
transport output none
|

Wit DAYO. MANAGEMENT VRF AND INTERFACE — ¢.g.10.0.0.5

255.255.255.0 (CSR)
|

7linterface GigabitEthernet 1

description wan interface

ip address 192.168.0.100 255.255.255.0
no shutdown

!

interface GigabitEthernet 2
description Lan interface

ip address 10.0.0.5 255.255.255.0

no shutdown
!

o| 4 DAYO LOCAL USER
|

aaa new—model
|

username admin privilege 15 password admin
!

Wy DAYD SSH
!

36/ ip domain lookup
7lip domain—mame acme.com

ip tftp source—interface GigabitEthernet 1
ip ssh version 2
ip ssh source—interface GigabitEthernet 1

no ip ssh stricthostkeycheck
|

|| 4 DAYD GENERATE CRYPTO KEY
!

s|crypto key generate rsa modulus 2048 general—keys
|

7ldo write memory

Listing C.4: Assignment 1 CSR1000v Day0 configuration.

36

116 APPENDIX C. MODEL ASSIGNMENTS

C.2 Assignment 2

;| *** Informed consent: By taking part in this assessment ,

the data you provide will be analyzed and published.
No names will not be mentioned anywhere in the
resulting document. ***

— HEIP ——
* 7less ../ help/libvirt —network.yang”
*** This is a schema model, that defines
the structure of network.xml ***
*k

http://docs.openstack.org/hot—reference/ \
content /OS__ Neutron__ Net.html

http://docs.openstack.org/hot—reference/ \
content /OS__Neutron _ Subnet.html

File list: network.xml, network.yaml

In the previous assignment, a VLAN with the CIDR of
10.0.0.0/24 was assumed. Here, we would like to
implement this VLAN, and create a bridge to the
host computer’s NIC.

(a) In network.xml, fill out the <ip> tag as you
think it should be. Please measure how much
time you need to solve this assignment.

3l (b) In network.yaml, fill out the Properties of

publicsub , as you think it should be done.
Please measure how much time you need to
solve this assignment.

Listing C.5: Assignment 2 description.

N

16
17
18

1

20

N

C.2. ASSIGNMENT 2

117

<config xmlns="http://acme.com/ns/config/1.07>
<libvirt xmlns="http://acme.com/ns/acme/libvirt —common”>
<networks xmlns="http://acme.com/ns/acme/libvirt —network”>
<network>
<name>Assignment 2 network </name>
<bridge>
<name>virbr0</name>
<stp>on</stp>
<delay >0</delay>
</bridge>
<forward>
<mode>route </mode>
</forward>
<ip>

</ip>
</network>
</networks>
</libvirt >
</config>

Listing C.6: Assignment 2 network XML.

HeatTemplateFormatVersion: ’2012—-12—-12’
Description: Simple Network

Resources:
mypublic:
Type: OS:: Neutron:: Net
Properties: {name: mypublic}

publicsub:
Type: OS::Neutron:: Subnet
Properties:

Listing C.7: Assignment 2 network YAML.

oW N e

[T e
A W N R O © 0 9 O >

OO N0 NN
S1

I§]

W N NN
S © ®

118 APPENDIX C. MODEL ASSIGNMENTS

C.3 Assignment 3

;| *** Informed consent: By taking part in this assessment ,

the data you provide will be analyzed and published.
No names will not be mentioned anywhere in the
resulting document. ***

* 7less ../ help/libvirt —network.yang”
* http://docs.openstack.org/hot—reference/content/ \
OS__ Neutron Port.html

File list: network.xml, network.yaml, ubuntu.xml
(ubuntu.yaml from asnl is embedded in network.yaml)

In this assignment, we would like to connect the Ubuntu VM
given in the first assignment, with the network constructed
in the second assignment.

(a) In network.xml, add to the file what you think is
needed. Please measure how much time you need to
solve this assignment.

(b) In network.yaml, add to the file what you think
is needed. Please measure how much time you need
to solve this assignment.

Listing C.8: Assignment 3 description.

N

C.3. ASSIGNMENT 3

119

<config xmlns="http://acme.com/ns/config/1.07>
<libvirt xmlns="http://acme.com/ns/acme/libvirt —common”>
<networks xmlns="http://acme.com/ns/acme/libvirt —network”>

<network>
<name>Assignment 2 network </name>
<bridge>
<name>virbr0</name>
<stp>on</stp>
<delay >0</delay>
</bridge>
<forward>
<mode>route </mode>
</forward>
<ip>
<name>default </name>
<address >10.0.0.0</address>
<netmask >255.255.255.0 < /netmask>
<dhcp>
<range>
<start >10.0.0.2</start>
<end >10.0.0.254 </end>
</range>

</dhcp>
</ip>
</network>
</networks>
</libvirt >
</config>

Listing C.9: Assignment 3 network XML.

NN NN NN R E e e
D U R W N = O © W N O U

N
3

0NN

120 APPENDIX C. MODEL ASSIGNMENTS

HeatTemplateFormatVersion: ’2012—-12—-12’

Description: Simple Network

Resources:
ubuntuimage :
Type: OS:: Glance :: Image
Properties:
name: “ubuntulmage”

container format: bare

disk_format: qcow?2

is_public: True

location: ”"http://localhost:4000/ubuntu—12.04 \
—server —cloudimg—amd64—disk 1.img”

protected: False

mypublic:
Type: OS::Neutron:: Net
Properties: {name: mypublic}

publicsub:

Type: OS::Neutron:: Subnet

Properties:
network id: {Ref: mypublic}
ip_version: 4
cidr: 10.0.0.0/24
allocation_pools:
— {start: 10.0.0.2, end: 10.0.0.254}

instance 1:
Type: OS::Nova:: Server
Properties:
name: ToModify
image: {Ref: ubuntuimage}
flavor: ml.small
networks:
— network: private
port:
user_data: |
#cloud—config
password: passwOrd
chpasswd: { expire: False }
ssh_pwauth: True
user_ data format: RAW

Listing C.10: Assignment 3 network YAML.

TRITA-ICT-EX-2015:159

	Introduction
	Background
	Problem
	Purpose and Goals
	Delimitations
	Structure of the Thesis

	Background
	NFV
	NFV Requirements

	Network Configuration
	Cisco IOS
	NETCONF
	YANG
	ConfD
	NCS

	Related Work
	Open vSwitch
	OpenStack
	Heat
	Neutron

	Libvirt
	OASIS TOSCA
	FBOSS

	Summary

	Method
	Research Process
	Research Paradigm
	Project Method
	Data Collection
	Time to Install
	Time to Provision VMs
	Cluster Tool
	Model Assignments
	Sampling
	Sample Size
	Target Population

	Test Environment
	Assessing Reliability & Validity of the Data Collected
	Reliability
	Validity

	Gabbleduck
	Architecture
	Erlvirt
	Weaver

	Examples
	Domain
	Monitoring
	Network
	CSR1000v VNF

	Summary

	Analysis
	Major Results
	Time to Install
	Assuming No Problems Encountered

	Time to Provision VMs
	Cluster Tool
	Model Assignments
	Assignment One
	Assignment Two
	Assignment Three
	Results and Analysis

	Reliability & Validity Analysis

	Conclusions & Future Work
	Conclusions
	Limitations
	Future Work
	Required Reflections
	Environmental & Sustainability Aspects
	Ethical Aspects
	Economic Aspects

	Bibliography
	Example Configuration Files and Models
	Heat Template of Logical Routers
	OVS Configuration: ifconfig Trace
	OVS Configuration: Logical Routers
	Structure of libvirt-domain Model
	Structure of libvirt-network Model
	CSR Template
	CSR NAT Template
	CSR Day0 Configuration

	Measurements and Data
	VM Ping and SSH Time Stamps
	RAM Traces
	CPU Utilization Traces
	Model Assignment Results

	Model Assignments
	Assignment 1
	Assignment 2
	Assignment 3

