
Seamless Speaker Recognition

ANARGYROS CHATZARAS
and
GEORGIOS SAVVIDIS

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
STOCKHOLM, SWEDEN 2014

Seamless speaker recognition

Anargyros Chatzaras
Georgios Savvidis

Master of Science Thesis

Communication Systems
School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

20 January 2015

Examiner: Professor Gerald Q. Maguire Jr.

c© Anargyros Chatzaras, Georgios Savvidis, 20 January 2015

Abstract

In a technologically advanced society, the average person manages dozens of
accounts for e-mail, social networks, e-banking, and other electronic services. As
the number of these accounts increases, the need for automatic user identification
becomes more essential. Biometrics have long been used to identify people and
are the most common (if not the only) method to achieve this task.

Over the past few years, smartphones have become frequently used gadgets.
These devices have built-in microphones and are commonly used by a single user
or a small set of users, such as a couple or a family. This thesis uses a smartphone’s
microphone to capture user’s speech and identify him/her. Existing speaker
recognition systems typically prompt the user to provide long voice samples in
order to provide accurate results. This results in a poor user experience and
discourages users who do not have the patience to go through such a process.
The main idea behind the speaker recognition approach presented in this thesis
is to provide a seamless user experience where the recording of the user’s voice
takes place in the background.

An Android application is developed which silently collects voices samples
and performs speaker recognition without requiring extensive user interaction.
Two variants of the proposed tool have been developed and are described in
depth in this thesis. The open source framework Recognito is used to perform the
speaker recognition task. The analysis of Recognito showed that it is not capable
of achieving high accuracy especially when the voice samples contain background
noise. Finally, the comparison between the two architectures showed that they do
not differ significantly in terms of performance.

Keywords: speaker recognition, user authentication, seamless operation,
biometrics, standalone, client-server, Android.

i

Sammanfattning

I ett teknologiskt avancerat samhälle så hanterar den genomsnittliga personen
dussintals konton för e-post, sociala nätverk, internetbanker, och andra
elektroniska tjänster. Allt eftersom antalet konton ökar, blir behovet av automatisk
identifiering av användaren mer väsentlig. Biometri har länge använts för att
identifiera personer och är den vanligaste (om inte den enda) metoden för att utföra
denna uppgift.

Smartphones har under de senaste åren blivit allt mer vanligt förekommande,
de ger användaren tillgång till de flesta av sina konton och, i viss mån, även
personifiering av enheterna baserat på deras profiler på sociala nätverk. Dessa
enheter har inbyggda mikrofoner och används ofta av en enskild användare
eller en liten grupp av användare, till exempel ett par eller en familj. Denna
avhandling använder mikrofonen i en smartphone för att spela in användarens
tal och identifiera honom/henne. Befintliga lösningar för talarigenkänning ber
vanligtvis användaren om att ge långa röstprover för att kunna ge korrekta resultat.
Detta resulterar i en dålig användarupplevelse och avskräcker användare som inte
har tålamod att gå igenom en sådan process. Huvudtanken bakom den strategi
för talarigenkänningen som presenteras i denna avhandling är att ge en sömlös
användarupplevelse där inspelningen av användarens röst sker i bakgrunden.

En Android-applikation har utvecklats som, utan att märkas, samlar in
röstprover och utför talarigenkänning på dessa utan att kräva omfattande
interaktion av användaren. Två varianter av verktyget har utvecklats och dessa
beskrivs ingående i denna avhandling. Öpen source-ramverket Recognito används
för att utföra talarigenkänningen. Analysen av Recognito visade att det inte klarar
av att uppnå tillräckligt hög noggrannhet, speciellt när röstproverna innehåller
bakgrundsbrus. Dessutom visade jämförelsen mellan de två arkitekturerna att de
inte skiljer sig nämnvärt i fråga om prestanda.

Nyckelord: talarigenkänning, användarautentisering, sömlös drift, biometri,
fristående, klient-server, Android.

iii

Acknowledgements

We would like to sincerely thank our supervisor professor Gerald Q. Maguire Jr.
for his continuous support and guidance. His accurate feedback helped us improve
the content of our thesis and always pointed us towards the right direction. His
experience and deep knowledge along with his enthusiasm are an inspiration for
every student who works with him.

We deeply thank our families and friends for their constant support throughout
our studies. Special thanks to our colleague and friend Edvald Eysteinsson for his
help with the Swedish translation of the Abstract section of our thesis.

v

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Problem definition . 2
1.3 Goals . 2
1.4 Scope . 3
1.5 Target groups . 3
1.6 Structure . 3

2 Background 5
2.1 Uniqueness of human voice . 5
2.2 Identification, authentication and authorization 6
2.3 Speech recognition and speaker recognition 6
2.4 Speaker recognition process . 6
2.5 Speaker recognition types . 8
2.6 Voice features . 8

2.6.1 Feature extraction techniques 9
2.6.1.1 Linear Predictive Coding (LPC) 9
2.6.1.2 Mel Frequency Cepstral Coefficients (MFCC) . 10

2.6.2 User models . 11
2.7 Android and device identification 11
2.8 Related work . 12

2.8.1 VoiceXML and speaker recognition 13
2.8.2 Recognito . 14

2.8.2.1 Feature extraction process 14
2.8.2.2 Training phase 14
2.8.2.3 Recognition phase 15

2.8.3 Other speaker recognition systems 16

3 Method 19

vii

viii CONTENTS

4 A seamless speaker recognition mechanism 21
4.1 Restrictions and assumptions . 21

4.1.1 Audio recordings . 21
4.1.2 Energy consumption . 22
4.1.3 User experience . 24

4.2 Seamless speaker recognition architectures 25
4.2.1 Client-server architecture 25
4.2.2 Standalone architecture 28
4.2.3 Architecture comparison 29

5 Analysis 31
5.1 Performance evaluation . 31

5.1.1 Performance without background noise 33
5.1.2 Performance with background noise 38
5.1.3 Performance against imposters 38

5.2 Evaluation of specific usage scenarios 41
5.2.1 Performance without background noise 42
5.2.2 Performance with background noise 44
5.2.3 Performance against imposters 44

5.3 Evaluation of the proposed architectures 45

6 Conclusions and future work 47
6.1 Challenges . 47
6.2 Conclusions . 48
6.3 Future work . 49
6.4 Required reflections . 50

Bibliography 51

A Recognito 57
A.1 WavReader.java . 57

List of Figures

2.1 Example of a VoiceXML document 13
2.2 Recognito’s likelihood ratio . 15

4.1 Main application flow . 24
4.2 Client-server communication . 26
4.3 Example of authorised users per device 28

5.1 Correct match rate for alternative 1 34
5.2 Correct match rate density for alternative 1 35
5.3 Total number of erroneous recognitions for alternative 1 35
5.4 Correct match rate for alternative 2 36
5.5 Correct match rate density for alternative 2 37
5.6 Total number of erroneous recognitions for alternative 2 37
5.7 Correct non-match for alternative 1 39
5.8 Correct non-match rate density for alternative 1 39
5.9 Correct non-match rate for alternative 2 40
5.10 Correct non-match rate density for alternative 2 41
5.11 Correct match rate of specific usage scenarios 43
5.12 Percentage of errors by type . 43
5.13 Correct non-match rate of specific usage scenarios 45
5.14 Computation delay comparison 46

ix

List of Tables

2.1 Speaker recognition accuracy metrics 12

4.1 Voice samples format . 22
4.2 Application states . 23

5.1 Voice samples per user . 31
5.2 Number of users per scenario . 32
5.3 Technical specifications . 45

xi

List of Acronyms and Abbreviations

API Application Programming Interface

CMU Carnegie Mellon University

DCT Discrete Cosine Transformation

DFT Discrete Fourier Transformation

EU European Union

FFT Fast Fourier Transformation

FM Frequency Modulation

GMM Gaussian Mixture Model

GMM-UBM Gaussian Mixture Model-Universal Background Model

GPS Global Positioning System

GSM Global System for Mobile

IMEI International Mobile Station Equipment Identity

JSTK Java Speech Toolkit

JVM Java Virtual Machine

LGPL Lesser General Public License

LPC Linear Predictive Coding

LPCC Linear Predictive Cepstral Coefficients

LPCM Linear Pulse-Code Modulation

MFCC Mel Frequency Cepstral Coefficients

xiii

xiv LIST OF ACRONYMS AND ABBREVIATIONS

NIST National Institute of Science and Technology

OS Operating System

PDA Personal Digital Assistant

SPEAR Speaker Recognition

STT Speech To Text

TED Technology, Entertainment, Design

VQM Vector Quantisation Model

VXML VoiceXML

WAV Waveform Audio File Format

W3C World Wide Web Consortium

XML Extensive Markup Language

Chapter 1

Introduction

This chapter describes the specific problem that this thesis addresses, the context
of the problem, the goals of this thesis project, and outlines the structure of the
thesis.

1.1 Overview

Today, nearly everyone owns a smartphone or a tablet computer. These types of
devices have gained popularity mainly due to two reasons: they provide users with
a wide range of services that simplify their daily lives while also their typically
small size (compared to a desktop computer or a laptop) allows high portability
and facilitates transportation.

To better explain what a smartphone is, we start with a brief retrospective.
Initially, cell phones were created that allowed phone calls and (a bit later) text
message exchange. Later Personal Digital Assistants (PDAs) were introduced,
which were simply digital organisers before gaining wireless network connectivity.
Over time, cell phones began adding PDA-like functions and vice versa, resulting
in what is known today as a smartphone. In other words, smartphones can be
perceived as cell phones with PDA features or as PDAs with cell phone features
[1, 2].

A typical smartphone has, among other components, a touchscreen, camera(s),
speakers, microphone(s), accelerometer, WiFi and Bluetooth interfaces, Global
Positioning System (GPS) receiver and a relatively powerful processor. These
components allow information about the user and the device to be retrieved, and
create useful applications and accessories. For instance, this information could
include the user’s location, whether or not the user is facing the screen or is

1

2 CHAPTER 1. INTRODUCTION

holding the device close to the ear, the device’s orientation and much more.

As already mentioned, microphone is a standard component of any
smartphone. This gives us the opportunity to capture the user’s speech and, after
processing the sample through specific algorithms, extract features that allow us to
answer questions such as “Who is speaking?”, “What is being said?”, and “What
is the emotional state of the speaker?”. One way of doing this, is by comparing the
extracted features against previously stored features and recognise words, phrases
and actual speakers [3].

1.2 Problem definition
Most of today’s user authentication systems require a valid username and
password combination. However, this type of systems does not identify the actual
user. Anyone who knows a valid username and its corresponding password, can
identify himself/herself, even if these credentials belong to someone else. The
solution is to address this problem by using information that is unique for each
user. This can be achieved by analysing user’s biometrics, such as his/her voice.

In an attempt to address this issue, several manufacturers and individual
researchers have developed speaker recognition tools that identify a user by
examining the unique characteristics of his/her voice. In order to provide accurate
results, most of these tools need to be trained by collecting a fairly large number
of voice samples. This is typically done by prompting the user to read loud a
relatively long text while recording his/her voice. This scenario results in a poor
user experience and discourages users who do not have the patience to go through
such a process.

1.3 Goals
The main goal of this project is to develop an application that performs speaker
recognition with high accuracy, while at the same time minimising the required
explicit user interaction. To achieve this, the application gathers samples of the
user’s voice while running in the background, without requiring the user to interact
with the application. The collected data are used to continuously train the system
with the aim to provide as accurate results as possible.

The expected outcome is a system where a user will be accurately identified
after speaking shortly (for instance, after saying a single word), while at the same

1.4. SCOPE 3

time an illegitimate user will be rejected.

1.4 Scope
The scope of this thesis project is an Android application that seamlessly collects
user speech samples and accurately performs speaker recognition. Enhancements
regarding security issues are left open for implementation. This thesis describes a
generic tool for speaker identification that can be extended to implement concrete
services such as device personalisation based on the identified user’s profile.

1.5 Target groups
This project might interest mobile application developers who are looking for
alternative user identification solutions. It could also be interesting to enterprises
which provide services that require user identification. For example, banks that
offer e-banking services to their customers. This thesis contributes to research on
voice analysis and voice feature extraction and comparison.

1.6 Structure
The rest of this thesis is organised as follows. Chapter 2 explains fundamental
concepts used by this project, while also existing solutions related to speaker
identification are presented. Chapter 3 describes the method used in this thesis.
Chapter 4 gives a thorough description of the project’s technical parts. In Chapter
5, the outcome of the conducted experiments is presented and analysed. Finally, in
Chapter 6 we discuss the results of this project and describe what remains undone
and could be implemented in a follow-up project.

Chapter 2

Background

This chapter explains fundamental concepts that are necessary for the reader to
understand this thesis. It also presents existing tools and solutions related to
speaker identification.

2.1 Uniqueness of human voice

The sound of each person’s voice is considered to be unique because of a
set of characteristics that can be grouped into anatomical and behavioural
characteristics [4]. The human voice is the result of air passing from the lungs
through the vocal track which is composed by the laryngeal pharynx (beneath the
epiglottis), the oral pharynx (behind the tongue, between the epiglottis and the
velum), the oral cavity (forward of the velum and bounded by the lips, tongue,
and palate), the nasal pharynx (above the velum, rear end of nasal cavity) and
the nasal cavity (above the palate and extending from the pharynx to the nostrils).
This results in different vocal characteristics in terms of tone, frequency and range.
Differences in pitch are noticeable between adult men and women, as a result of
differences in larynx size of the two genders.

Behavioural characteristics also affect the human voice and may change over
time. Motion of the mouth, pronunciation and emotional state are some of the
behavioural components of a person’s voice [5]. This type of biometrics is also
known as behaviometrics [6].

Establishing the individuality of someone’s voice, can be a very difficult
task considering the large world population. Naresh et al. [7] have proved this
assumption by using a statistical model, namely statistically inferable dichotomy
model, which has previously been used to establish the uniqueness of handwriting

5

6 CHAPTER 2. BACKGROUND

and of fingerprints. This model allows us to experiment with a small group of
people and safely generalise the results to the entire population.

2.2 Identification, authentication and authorization
Three commonly confused concepts in information security are user identification,
user authentication and user authorisation. While identification is, basically,
identifying a single user among a finite number of users, authentication is the
act of proving that a user is indeed who he claims to be. For example, in a speaker
recognition system, identification would be the process of finding which user,
from a certain group of registered users, has just spoken. Authentication would be
the process of proving that a speaker who claims to be John, is indeed John.

Authorisation, on the other hand, takes place after a user has been
authenticated. It is the process of defining what the authenticated user is allowed
by the system to do. For instance, if the user is an administrator, then he/she has
probably more privileges than a regular user in the system [8].

2.3 Speech recognition and speaker recognition
Speech recognition and speaker recognition are two completely different
technologies. Speech recognition refers to the process of translating spoken
words and phrases into text and is also known as Speech To Text (STT). It
has become a widely used technology in automated systems in sectors such as
military, aerospace, education, health care but also in daily life services. Google’s
Google Now and Apple’s Siri are two common examples of services that use
speech recognition technologies.

Speaker recognition, on the other hand, is the process of determining who the
actual speaker is instead of what he/she has said. Speaker recognition depends
on biometrics, while speech recognition does not. In this thesis, we focus
on identifying the speaker (speaker recognition) instead of determining what a
speaker has said (speech recognition).

2.4 Speaker recognition process
Speaker recognition systems consist of two phases, namely training phase, also
known as enrolment phase, and recognition phase, also known as testing phase.
The recognition phase cannot take place without first having initiated the training

2.4. SPEAKER RECOGNITION PROCESS 7

phase. However, this does not mean that the training phase needs to be completed
before recognition can be performed. In fact, the training phase can be an ongoing
process, running simultaneously with the recognition phase. In particular [3, 5]:

Training phase
During this phase, the system is trained to recognise a speaker. The training
set consists of voice recordings that may vary from a single word to several
hours speech. The longer the training phase, the more information the
system learns about the user’s voice and, thus, the more accurate it becomes.
The outcome of this phase is a model, which describes a user’s voice.

Recognition phase
During this phase, the system attempts to recognise an initially unknown
speaker, based on stored models. After capturing a speech sample from this
unknown user, the system compares the characteristics of this user’s voice to
the stored models. The result of this comparison is a likelihood percentage
that will be used to determine whether or not the unknown user is in fact
one of the known, registered users. The minimum value of this certainty
threshold for a match to be considered valid, and thus for the unknown
user to be recognised as a registered user, may vary from implementation to
implementation.

In many speaker recognition systems, the training phase is a fixed step that
is finalised once the model is created and before the recognition phase starts. In
this project, however, the training phase is an ongoing procedure and does not
terminate after the model for a user is created. A user’s model is continuously
improved based on new input that is captured over time. Speech samples used by
the recognition phase can also be used by the training phase to improve an existing
model. If during the recognition phase, the recordings of an unknown user match
an existing model, then these recordings can be used to further improve this model.

The performance of the system is affected by a variety of factors that can be
briefly grouped in the following three categories for this thesis:

Technical factors
For example, at which rate is the voice sampled.

Recording environment factors
For instance, the distance between the speaker and the microphone, the
sound level of the user’s voice, etc.

Speaker physiological and psychological factors
For example, a cold, stress, etc.

8 CHAPTER 2. BACKGROUND

For the speaker identification task, only the voice should be considered. This
means the voice of the user needs to be loud and that any background noise must
be removed by applying some noise cancellation filters. The National Institute of
Science and Technology (NIST) has published a plan targeting the evaluation of
speaker detection systems [9].

2.5 Speaker recognition types
There are two types of speaker recognition systems, depending on the content of
the speech that the user gives to the system [3, 5]:

Text dependent
Also known as constrained mode. During the training phase, the user speaks
a utterance that can vary from a single word to a relatively long phrase.
During the recognition phase, text dependent systems require the user to
say the same word or phrase that he/she gave as an input during the training
phase.

Text independent
Also known as unconstrained mode. Unlike text dependent systems, in text
independent systems, the user is not required to speak the same utterance
during both the training and the recognition phase. Usually in this kind of
systems, the training phase is longer than it is in text dependent systems. In
addition, a text independent system might require a longer utterance during
the recognition phase in order to accurately recognise the speaker.

2.6 Voice features
In the training phase, the user registers himself/herself to the system, by providing
a number of samples of his/her voice. These samples (in the case of
text-independent voice recognition) are split into smaller frames of 20-30
milliseconds. These frames are then processed in an effort to suppress any channel
impairments [4] and extract the unique characteristics of human voice (tone,
speed, pitch, etc). A variety of characteristics, called features, are extracted from
the voice sample and compose a voiceprint. The features that one could extract
from a sample, can be grouped in five categories [10]:

• Short-term spectral features, extracted by performing Discrete Fourier
Transformation (DFT) or other, more complicated transformations on the
samples.

2.6. VOICE FEATURES 9

• Voice Source Features, which are dependent on anatomic uniqueness of user
voices (e.g. on the speaker’s glottal pulse shape).

• Spectro-temporal features, which by analysing the samples in the frequency
domain, can capture details caused by intonation. A representative of this
type of features is Frequency Modulation (FM) Features.

• Prosodic features, such as the speaker’s rhythm, or emphasis on a specific
sound (e.g. syllable emphasis due to a dialect), and are expressed by the
fundamental frequency (F0).

• High-level features, which focus on the finite set of words that a person
usually uses (idiolect).

2.6.1 Feature extraction techniques
Several feature extraction techniques are used in the field of audio and speech
processing. This section briefly presents two of the most popular ones, Linear
Predictive Coding (LPC) and Mel Frequency Cepstral Coefficients (MFCC).

2.6.1.1 Linear Predictive Coding (LPC)

LPC is one of the most powerful speech analysis methods while it is also very
useful for encoding high quality speech at low bit rate. The main idea behind
LPC is that a future speech sample can be predicted by linearly combining
past speech samples [11]. From a given audio sample, LPC extracts Linear
Predictive Cepstral Coefficients (LPCC) [12], a common set of features for speech
processing [13]. The basic steps of a typical LPC processor are [14]:

Pre-emphasis
The digital sound signal is flattened in order to become less susceptible to
finite precision effects.

Frame blocking
The outcome of the previous step is broken into frames of (typically) 20
milliseconds long [11].

Windowing
Each frame is passed through a window function in order to decrease gaps
at the beginning and the end of the signal.

Autocorrelation
After windowing, each frame is autocorrelated.

10 CHAPTER 2. BACKGROUND

LPC analysis
The derived autocorrelation values are converted into an LPC parameter set
by implementing the Levinson-Durbin recursion method.

LPCC extraction
Finally, the LPC parameter set is converted into LPCC.

2.6.1.2 Mel Frequency Cepstral Coefficients (MFCC)

MFCC is one of the most commonly used techniques for feature extraction
[13]. The main disadvantage of MFCC is its sensitivity to the presence of noise
because of its dependence on the spectral form [11]. Tyagi and Wellekens [15]
have proposed modifications to the MFCC algorithm in order to improve noise
robustness. The main steps for the MFCC derivation are [13]:

Pre-emphasis
The digital sound signal is flattened in order to become less susceptible to
finite precision effects.

Frame blocking
The outcome of the previous step is blocked into frames. In order to
smoothly transit from frame to frame, overlapping of the frames is often
used.

Windowing
Each frame is passed through a window function in order to decrease
discontinuities at the beginning and the end of the signal.

Fast Fourier Transformation (FFT)
After windowing, FFT is derived for each frame in order to extract
frequency components.

Mel scale filter bank
The Mel scale filter bank is applied to the outcome of the frame’s FFT. The
scale is approximately linear for frequencies up to 1 kHz and logarithmic for
frequencies above 1 kHz. The reason for this is that the human ear becomes
less frequency-sensitive as the frequency increases above 1 kHz [11].

Log
The logarithm of the Mel scale filter bank output is computed.

MFCC extraction
Finally, the MFCCs are derived by calculating the Discrete Cosine
Transformation (DCT) of the previous step’s outcome.

2.7. ANDROID AND DEVICE IDENTIFICATION 11

2.6.2 User models

After the feature extraction phase, the voiceprints are stored as user models in a
database. A user model can be described as a data structure that describes a user.
For example, a simple user model could consist of a voiceprint and a username.
The decision of which features will be used, affects how the pattern-matching
between the original voice sample and the sample that needs to be identified,
will be addressed. Also, depending on which features are used, an appropriate
model should be chosen. Different types of models perform better for specific
features than others. Although using all the available features would theoretically
maximise the system’s accuracy, it is practically impossible to do so since larger
feature sets result in larger models. The size of the model affects the computation
delay of the pattern matching step [4].

The types of models can be categorised into stochastic (parametric) and
template (non-parametric) models. In stochastic models, each speaker is
“modelled as a probabilistic source with an unknown but fixed probability density
function” [10]. Estimating the parameters involved in this density function from
the samples provided composes the training phase for this type of models. In
stochastic models, the pattern-matching problem is expressed as a probability of
matching two samples. A commonly used type of stochastic model is Gaussian
Mixture Models (GMM) [16]. In template models, the pattern-matching problem
is much simpler and is solved by calculating the distance between the two samples.
A typical template model is the Vector Quantisation Model (VQM) [17].

Regardless of what kind of model is used, a sample can be affected by
recording-specific factors, as described previously. The possible errors are either
falsely identifying a fake user or not identifying a legitimate one. Mismatch
in the quality of these factors can highly affect the accuracy of the system.
Thus, a necessary step in order to make the system more robust is to try to
eliminate this mismatch by normalising the “middle step products” in the process.
Examples include feature normalisation, speaker model compensation and score
normalisation [10]. For a detailed description of the challenges of fine-tuning the
decision threshold, the reader may refer to Furui [18] and Bimbot et al. [19].

2.7 Android and device identification

Android is one of the most popular mobile operating systems, powering more than
one billion devices around the globe [20]. Initially created by Android Inc. and
later bought by Google [21], Android Operating System (OS) is an open source

12 CHAPTER 2. BACKGROUND

platform based on the Linux kernel and designed for touchscreen devices.

In Android, there exists a variety of ways to uniquely identify a mobile
device. First, all devices are required to have at least one Gmail account. In
addition to this, every Android installation later than Android Froyo 2.2, assigns
a unique id, namely ANDROID ID, to the current installation of Android itself.
This is considered a secure and reliable token that uniquely characterises an
Android device [22], even though the Google Team announced some issues at
“a popular handset from a major manufacturer, where every instance has the same
ANDROID ID” [23]. If the device is a Global System for Mobile (GSM) enabled
device, it is assigned an International Mobile Station Equipment Identity (IMEI)
number. This allows tracking a unique instance of an application, running on a
specific device. However, this approach excludes all non-GSM enabled Android
devices, such as several tablets.

2.8 Related work
This section presents existing tools and research, related to the field of speaker
recognition. In order to be able to evaluate the different methods in biometric
research, a vocabulary of comparison has been developed. False match rate is
the rate at which a system falsely identifies a fake user’s sample, while false
non-match rate is the rate at which a system fails to identify a real user. Both these
errors push the acceptance threshold in different directions; failure to identify
a valid user means the threshold is too high and needs to be decreased, while
falsely identifying a fake user means that the acceptance threshold is too low and,
thus, needs to be increased. The terms correct match rate and correct non-match
rate are also used in this thesis. The first describes the rate at which a system
accurately identifies a speaker while the latter describes the rate at which a system
correctly does not identify a fake user. Table 2.1 summarises what these four
metrics represent when comparing the system’s output to reality.

Table 2.1: Speaker recognition accuracy metrics

Reality System Real user Fake user

Real user

Fake user

Correct match rate

False match rate

False non-match rate

Correct non-match rate

2.8. RELATED WORK 13

2.8.1 VoiceXML and speaker recognition
VoiceXML (VXML) is a digital document standard, developed by the World
Wide Web Consortium (W3C). The format of a VoiceXML document is based
on Extensible Markup Language (XML). The standard is designed for creating
audio and interactive media dialogs between computers and humans. Its main goal
is to add the advantages of web-based applications to interactive voice response
applications, such as automated customer service portals. Figure 2.1 represents
a simple VoiceXML document that synthesises and presents the voice message
“Hello world!” to the user, after which, the conversation ends. The top-level
<vxml>tag is a container for dialogs. Two types of dialogs exist: forms that
display information and accept user input, and menus that offer choices of what
the next step should be [24].

Figure 2.1: Example of a VoiceXML document

The VoiceXML standard defines XML elements that instruct the interpreter
client to provide speech synthesis, speech recognition, audio playback, etc.
However, the standard does not provide support for speaker recognition. To
achieve this, several third-party organisations have extended the standard, adding
support for this functionality. A few of these approaches have been selected and
are presented below.

BeVocal introduced an experimental extension to the VoiceXML standard in
order to support speaker verification. This extension includes all the necessary
XML elements for implementing the two phases of the speaker recognition
procedure, training and recognition, as described in Section 2.4. Along with
this VoiceXML extension, BeVocal released a guide describing how to use their
approach to create the necessary dialogs for a speaker recognition application
[25, 26].

IBM’s WebSphere Voice Server, software for developing and deploying

14 CHAPTER 2. BACKGROUND

conversational applications, provides a speaker verification component that allows
VoiceXML-based applications to submit audio for verification by a server. This
product has gained popularity among e-business applications that use audio dialog
technologies [27, 28].

2.8.2 Recognito
Recognito [29] is an open source speaker recognition framework written in Java
and developed by Amaury Crickx. Although it is still in an early development
stage, Recognito is a promising project with its main advantages being simplicity
and extensibility.

2.8.2.1 Feature extraction process

Recognito converts a voice sample into a voiceprint by using the LPC feature
extraction method described in Section 2.6.1.1. Before the feature extraction
phase, Recognito first removes silence since it is unnecessary overhead in the
process and it then applies normalisation to the given voice sample, in order
to make the feature extraction process unbiased towards sound volume sensitive
features. The selected technique for removing silence is based on a characteristic
of white noise: when applying autocorrelation to white noise, the average value of
the derived coefficients is close to zero. Recognito removes chunks of silence
when they are at least 4 seconds long and there has not been speech of 200
milliseconds or longer, during each chunk. Normalisation is performed in order to
apply a constant amount of gain to the entire sample. The value of the applied gain
is the maximum value of gain that exists in the sample before the normalisation
process starts.

The extracted features are stored in an array of double data type with a length
of 20 items. Given that in Java the size of a double is 8 bytes, this means that the
amount of memory required to store the extracted features is approximately 160
bytes (in reality there are a few extra bytes of overhead due to the array’s header).
In addition to the extracted features, Recognito’s voiceprint contains some general
information, resulting in a size of approximately 350 bytes.

2.8.2.2 Training phase

During the training phase, Recognito simply merges the voiceprint of an existing
user with a new voiceprint that was given as an input for this purpose. In
particular, Recognito recomputes the mean values of the voice features of the
existing voiceprint after adding the features of the new voiceprint. Recognito

2.8. RELATED WORK 15

provides convenient functions to train existing user models with new voiceprints.
Recognito does not provide any logic regarding whether or not a new voiceprint
is adequate for training a particular user model. Decisions like these, are
implementation dependent.

2.8.2.3 Recognition phase

The recognition process is based on the so called Universal Model, which is
an average of all known voiceprints (voiceprints that correspond to stored user
models) in the system. This means that the Universal Model itself is actually a
voiceprint. Each time a voice sample is sent to Recognito in order to recognise
its speaker, a voiceprint is generated. For each stored voiceprint, Recognito
calculates the Euclidean distance between this voiceprint and the Universal
Model. It then calculates how close the unknown voiceprint is to each stored
voiceprint, compared to the total distance between the stored voiceprint and the
Universal Model. The outcome is a likelihood ratio that describes the certainty
percentage that the unknown voiceprint belongs to the same user as the stored
voiceprint. The shorter the distance between the unknown voiceprint and a stored
voiceprint, the higher the likelihood that they both belong to the same speaker.

Since the Universal Model is the mean value of all the stored voiceprints, this
means that if there is only one stored voiceprint, then the Universal Model will
be equal to this voiceprint. Consequently, in such scenario an unknown voiceprint
will always be equally close both to the Universal Model and the stored voiceprint,
resulting in a 50% likelihood ratio, as shown in Figure 2.2. The more the stored
voiceprints in the system, the more relevant the likelihood ratio becomes.

Figure 2.2: Recognito’s likelihood ratio

16 CHAPTER 2. BACKGROUND

2.8.3 Other speaker recognition systems

Cristian M. Toader [30] extended the Pico project, presented by Frank Stajano
in [31], in order to create a multi-level unlocking model. Pico was originally
designed as an alternative authentication mechanism that replaces passwords with
authentication tokens. Pico unlocks after successfully communicating with small
devices, called Picosiblings, that are embedded in everyday items, such as keys,
jewellery, etc. Pico receives secret sequences by the Picosiblings and, when all
the necessary secrets are collected, it becomes unlocked and ready for use. In his
Master’s Thesis, Cristian M. Toader addresses as the main downside of Pico the
fact that it does not guarantee the identity of the owner of the Picosiblings. That
is, anyone who posses the required Picosiblings can unlock Pico and gain full
authentication privileges. His solution to this problem is a multi-level unlocking
scheme that combines biometrics and behaviometrics, such as iris, face, voice
and gait. To access these metrics, the role of the Picosibling is moved into a
mobile application that runs on an Android device. Each of these metrics has
a weight, based on the level of confidence it offers in identifying a person. In
addition, each metric generates a probability that the actual owner possesses the
device. The weighted sum of all these probabilities is then used to generate an
overall confidence level which is, in turn, used to unlock applications that are
associated with a confidence level that is lower than the generated one. For the
voice recognition process, Pico uses the Recognito library [29].

In [3], Carlos Dominguez Sanchez developed a speaker recognition tool for
handheld computers. The tool is written in C++ and it requires a single word
to be used for the training phase and the same word for the recognition phase.
Moreover, it uses the Euclidean distance to find the best match. In particular,
suppose there are two stored models, model A and model B, that represent user
A and user B, respectively. The total distance between model A and model B
is the sum of the Euclidean distances between each feature of model A and the
corresponding feature of model B. Thus, in order to find a match for an unknown
user model, the distance between this model and all the stored models, has to be
calculated. The shortest distance indicates the best match.

Alize [32] is an open source platform, distributed under Lesser General Public
License (LGPL) license and developed by the University of Avignon that is used
for voice and image verification. It is written in C++, and it offers a plethora of
configuration options, regarding for example which model to use.

The Java Speech Toolkit (JSTK), a library developed by the University of
Erlangen-Nuremberg, is used for speech recognition, speaker verification and

2.8. RELATED WORK 17

related tasks. It is written in Java is directly portable to Android, which means
that some of the calculations can take place in the device, if needed [33].

Another popular solution is Carnegie Mellon University’s (CMU) Sphinx,
which is a solution originally for speech recognition, but its modular design allows
for extension in order to perform speaker identification [34].

Other solutions in Python such as voiceid [35] and Speaker Recognition
(SPEAR) [36] also exist, although Python is not officially supported by Android.

Given the fact that the task of speaker verification consists of computationally
expensive operations, such as feature extraction and creation of models, systems
that utilise a server-based approach have been proposed. In [37] a distributed
system for speaker recognition is described which uses Gaussian Mixture Model-
Universal Background Model (GMM-UBM) models. A similar approach has
been described for speech recognition in [38]. Both proposals use a distributed
architecture composed of a frontend and a backend. The frontend is responsible
for removing noise in the sample and extracting the desired features, while the
backend is responsible for all the rest.

Brunet et al. [39] proposed a method that performs the entire speaker
recognition process on an Android mobile device. To achieve this, they extract
the MFCC features, and store them as a distance vector. For the pattern-matching
step, during the testing phase, they compare the test samples and extract their
Euclidean distance. They used samples both from a publicly accessible and a
private database, achieving promising accuracy results.

Chapter 3

Method

The engineering method and the scientific method are two different processes
of obtaining human knowledge. While the scientific method is related to
understanding how things are, the engineering method’s purpose is creating what
has never existed [40]. By making observations and conducting experiments,
the scientific method aims at proving a hypothesis that explains a natural
phenomenon. On the other hand, the main goal of the engineering method is
to provide a solution to a known problem [41]. The steps of the scientific method
can be summarised as follows:

1. Construct a hypothesis that explains a phenomenon.

2. Test the hypothesis with an experiment.

3. Analyse the results and validate the hypothesis. If the outcome does not
align with the hypothesis, then repeat the process from step 1.

4. Communicate the analysis results.

The steps of the engineering method can be summarised as follows:

1. Define the problem. Do background research and identify what needs to be
solved.

2. Specify requirements and constraints in order to provide quality results.

3. Develop a solution and verify that it meets the requirements. If not, then
repeat this step.

4. Communicate the analysis results with regards to time constraints, energy
consumption, etc.

19

20 CHAPTER 3. METHOD

In order to develop a seamless speaker recognition tool, not currently available
in the market, this thesis follows the engineering method, slightly altered at step
3. Generally, a common way of working with the engineering method involves
going back and forth between steps. This is called iteration and it is also adopted
by this thesis.

First, we define the problem that needs to be solved. After in-depth
background research, we identify what exactly has not been solved in the field
of speaker recognition.

In the second step, in order to specify the requirements and constraints of
our solution, we first have to fully understand how the speaker recognition
process works and what types of speaker recognition exist. Moreover, since
the application will be designed for the Android platform, we first study the
platform’s specifications, restrictions and guidelines. This step is tightly linked
to the outcome of step 1.

For the third step, instead of one, we develop two different prototypes that we
later compare to conclude which one of them meets the requirements set in the
previous step. The differences between the two solutions are explained in detail
in Chapter 4.

Finally, the two solutions, along with their evaluation results, are presented,
while problems that remain unresolved or require further improvement are also
discussed.

Chapter 4

A seamless speaker recognition
mechanism

This chapter presents two different architectures of the proposed speaker
recognition system. In addition, this chapter describes restrictions and limitations
of both architectures. The actual speaker recognition procedure is performed
by using the open source framework Recognito, which was described in Section
2.8.2.

4.1 Restrictions and assumptions

This section describes restrictions and assumptions that need to be taken into
consideration in order to achieve a good user experience.

4.1.1 Audio recordings

In order to convert a voice sample into a voiceprint, the sample has to be loaded
in the heap memory of the device that will perform this operation. The larger the
audio file, the more likely it is for the device to run out of memory. To reduce
this risk, while capturing user’s voice we store the recordings in small chunks
with maximum duration of 60 seconds each. The format of the recordings is
summarised in Table 4.1.

21

22 CHAPTER 4. A SEAMLESS SPEAKER RECOGNITION MECHANISM

Table 4.1: Voice samples format
File format Waveform Audio File Format (WAV)
Encoding format Linear Pulse-Code Modulation (LPCM)
Sample rate 44100 Hz
Bit depth 16 bits
Channels 1 (Mono)
Bit rate 1411.2 kbit/s

According to the official documentation, a sample rate of 44100 Hz is the
only rate that is guaranteed to work on all Android devices. Also, single channel
audio (mono) is the only channel configuration that is guaranteed to work on all
Android devices [42]. In addition, Recognito performs better with mono channel
audio. Using a stereo channel audio will double the processing time while it will
also decrease the accuracy, if the two channels are not identical [29].

Using the above format means that an audio file with a duration of 60 seconds
will be approximately 5.2 MB. The file size can be derived from the formula
below:

Size = (SampleRate * Channels * BitDepth * DurationInSeconds) / (8 * 1024)

which results in:

Size = (44100 * 1 * 16 * 60) / (8 * 1024)
Size = 5.167 MB

4.1.2 Energy consumption
Having the device’s microphone constantly enabled and recording user’s speech,
may result in unnecessary battery consumption while it might also cause recording
failure for other applications if a device does not support multiple instances of the
same codec [43].

In order to avoid this, the application periodically checks for voice signals
(capturing state). If not detected, the application enters an idle state, releasing
resources and consuming minimal battery energy. After this time has elapsed,
the application will check for voice and if speech is detected, the application will

4.1. RESTRICTIONS AND ASSUMPTIONS 23

enter the recording state. If a phone call is established, the idle state will be
instantly interrupted and the recording state will be entered, since it is very likely
that the user will speak. If the battery level is lower than 10%, the application will
become inactive. As soon as the device’s charging state has changed to charging,
the application will switch back to its capturing state. It is assumed that a mobile
device of an average user is not used during night hours. Thus, in order to further
reduce battery utilisation, the application will stop running between 23:00 and
08:00 local time, by default. During this period, the application enters again the
inactive state. The user can configure this time range through the application’s
settings. Table 4.2 describes the possible states of the mobile application. Figure
4.1 illustrates the main application flow as long as the application is not in the
inactive state.

Table 4.2: Application states
State Description
Capturing The application is capturing input voice in order to determine

whether or not a user is speaking.
Recording The recording begins when either a phone call has been

established or voice has been detected during the capturing state.
The recording state lasts for 60 seconds (not configurable by the
user) when triggered through the capturing state or, in case it was
initiated by a phone call, until the phone call is terminated.

Idle No voice was detected during the capturing state. The application
resources will be released for 60 seconds in order to reduce
energy consumption. After this amount of time has elapsed, the
application will go back to the capturing state. The duration of 60
seconds is the default value and can be changed by the user from
the application’s settings.

Inactive There are two reasons the application can be inactive. The first
reason is that it stopped running because it entered the defined
nightly period. The second reason is that the battery level has
gone below 10%. While inactive due to the second reason, the
application only checks for the device’s charging state. The
default value of 10% can be changed by the user from the
application’s settings.

Finally, regarding the client-server architecture and, in particular, the user
model’s update at the server (as described in Section 4.2.1), instead of opening

24 CHAPTER 4. A SEAMLESS SPEAKER RECOGNITION MECHANISM

a channel between the mobile device and the server every time there is a new
voice sample recorded, recordings are temporarily stored on the device in the
form of voiceprints and are sent to the server every 24 hours. This means that the
transmissions take place nightly at 23:00 local time (unless specified otherwise by
the user) or, in case of low battery or no network connectivity, the next available.

Figure 4.1: Main application flow

4.1.3 User experience
As mentioned before, the user models will be updated by voice samples captured
in the background, without requiring user interaction. However, it is vital that
the first voice sample that is used to create the corresponding user model, comes
from the actual user and not from a random person that happens to speak close
to the microphone during the first recording. Thus, in order to create a new user
model, user interaction is required. To achieve this while maintaining a good user
experience, the application will prompt the user to speak for approximately 10
seconds.

Another issue that needs to be addressed regarding the update of the user

4.2. SEAMLESS SPEAKER RECOGNITION ARCHITECTURES 25

models (training phase) is the certainty that the captured voice belongs to the
same person as the one represented by the user model that is about to be updated.
For instance, consider user model A that represents user A. In order to update this
model, it is important to first make sure that the recorded voice belongs to user
A. In other words, the following question needs to be answered: “What is the
minimum acceptable certainty required to update a user model?”. Section 2.8.2
described how Recognito calculates its likelihood ratio. For this thesis, we assume
that it is safe to update a user model when the likelihood ratio is at least 75%. This
threshold is referred to as certainty threshold. When the system receives a new
voiceprint, it compares it against all stored voiceprints. If it reaches the certainty
threshold for one of the stored voiceprints, it assumes that the new voiceprint
belongs to the same user and consequently updates the corresponding user model.
If the certainty threshold is reached for more than one stored voiceprints, then the
system selects the one that generated the highest likelihood ratio and updates the
corresponding user model accordingly.

4.2 Seamless speaker recognition architectures
In this section, two different architectures for the proposed speaker recognition
mechanism are presented. The first approach is a centralised architecture
where a server is responsible for carrying out part of the required speaker
recognition process. The second approach is a standalone architecture where all
the procedures and computations take place locally on each mobile device. Each
approach provides several advantages and new features compared to the other and
may be used to serve different use cases.

4.2.1 Client-server architecture
In the first scenario, we consider a centralised system where part of the process
takes place on a server. In particular, the mobile device is only responsible
for recording the user’s voice, converting it into a voiceprint and sending the
voiceprint to the server.

Initially, the user is prompted to select a username and to read loud a short text.
The speech is converted into a voiceprint and along with the username is sent to
the server in order to create a new user model. The server replies with a success
message if the operation was carried out successfully or with a failure message if
the username is already in use.

26 CHAPTER 4. A SEAMLESS SPEAKER RECOGNITION MECHANISM

After this initial phase, no further user interaction is required for the training
phase. The application runs in the background, switching between states, as
described in Table 4.2. All recorded data are temporarily stored on the device
in the form of voiceprints and are sent to the server once a day in order to update
the corresponding user models. Figure 4.2 describes what the communication
between the client and the server looks like. There are mainly two reasons for
converting the voice samples into voiceprints on the mobile device and not on the
server:

Data length
As explained in Section 4.1.1, a voice sample can be up to 5.2 MB. Sending
multiple samples of this size from the client to the server may result in
excessive network overload as well as increased delay for the serialisation
and deserialisation of the transmitted data. This problem is solved by
converting the voice samples into voiceprints and transmitting the latter.
Section 2.8.2.1 mentions that the size of a voiceprint is approximately 350
bytes, significantly smaller than a 5.2 MB voice sample.

Privacy concerns
Storing voice samples and transmitting them through a network has serious
implications in users’ privacy. The risk of leaking private conversations is
too high to overlook. This by no means implies that voiceprints do not
contain sensitive information. With regards to privacy concerns, the main
advantage of storing voiceprints instead of voice samples is that the content
of a conversation cannot be reproduced. The identity of the speaker, though,
might still be retrieved.

Figure 4.2: Client-server communication

4.2. SEAMLESS SPEAKER RECOGNITION ARCHITECTURES 27

In the client-server architecture, the recognition phase can occur in two ways:

Automatic recognition
The mobile device sends voiceprints to the server once a day (by default at
23:00) in order for the server to update the corresponding models. When
the server receives a new voiceprint, it has to recognise the speaker in
order to update the appropriate model. Once this is done, the server
responds to the client with the updated user model. This process is called
automatic recognition. However, sending voiceprints once a day means
that there is a high probability that they belong to multiple registered
users. In such case, the automatic recognition will not detect a single
user. To solve this problem, along with the voiceprints sent to the server,
the mobile device includes a timestamp that represents the creation time of
each voiceprint. The server updates all the matched user models and, based
on the timestamps, responds with the model that corresponds to the lastly
created voiceprint. In other words, the server will respond with the model of
the last of the registered users whose voices were recorded during the day.

Instant recognition
This option allows a registered user to be recognised at any time, instead of
waiting for automatic recognition to be performed. If the user selects this
option, he/she is prompted to speak shortly. The recording is converted into
a voiceprint and is sent to the server. The server, in turn, recognises the
user, updates the appropriate model and responds to the client with the user
model.

Finally, each device has a set of authorised users and only these users can use
the application on this particular device. The aim is to provide a certain level
of control to the device holder over who is allowed to use the application. In
addition, a user can be authorised to use the application on multiple devices. This
is achieved by linking each user model with the ANDROID ID(s) (as described
in Section 2.7) of the device(s) on which he/she is allowed to use the application.
Figure 4.3 illustrates a simple scenario where different users are authorised to use
different devices. A user can be authorised to use the application on a particular
device in two ways:

• He/she was granted access by an already authorised user. The latter needs
first to be recognised by the device before authorising new users.

• If there are no authorised users on the device, the application prompts the
user to authorise himself/herself either by registering to the system for the
first time or by entering his/her existing username.

28 CHAPTER 4. A SEAMLESS SPEAKER RECOGNITION MECHANISM

Figure 4.3: Example of authorised users per device

4.2.2 Standalone architecture
In the second scenario, we consider a standalone architecture without a server.
Similar to the client-server approach, in order to create a new user model, the
user is prompted to read a short text. After this step, no further user interaction is
required either for the training or for the recognition phase.

Unlike the client-server approach, in the standalone architecture the models
are created, updated and stored on the mobile device. Since there is no
communication required with a remote server, the models are updated as soon
as the new voice samples are recorded. This also allows the recognition to be
instant, without requiring further interaction by the user.

In Section 4.1 it was mentioned that the recording lasts for 60 seconds if it was
triggered while the application was in the capturing state or, in case it was initiated
by a phone call until the phone call is terminated. It was also mentioned that the
recordings are cut into chunks with a maximum duration of 60 seconds each. This

4.2. SEAMLESS SPEAKER RECOGNITION ARCHITECTURES 29

means that during a phone call, multiple voice samples might be recorded. In this
case, the system waits until the recording ends and it then converts the new voice
samples into voiceprints and begins the recognition process. During this process,
the system attempts to recognise the speaker of each voiceprint and if it succeeds,
it also updates the corresponding user model.

4.2.3 Architecture comparison
This section describes the main advantages and disadvantages of the two
architectures. A performance analysis of both architectures is presented in
Chapter 5.

Although the standalone approach allows for instant speaker recognition, the
absence of a server introduces a great disadvantage compared to the client-server
architecture. This is the inability to provide a cloud storage model and allow
cross-device speaker recognition. Unlike the standalone approach where the user
models are only available locally on each device, in a client-server approach the
models are available to any mobile device running the application as long as the
users are authorised to use these particular devices. This allows a user to be
recognised by multiple devices, using the same user model.

The main advantage of the standalone architecture is that it reduces the risk of
having sensitive information, such as voiceprints, leaked from a remote database
or eavesdropped during a client-server communication. Moreover, the standalone
approach scales better as the number of registered users increases, although
scalability issues at the client-server approach can be eliminated by adopting a
cloud computing architecture [44].

Finally, in both approaches the conversion of the voice samples into voiceprints
takes place on the mobile device. This requires that the audio file which contains
the recording be loaded on the device’s heap memory in order for the feature
extraction process to begin. Splitting the recordings into chunks with maximum
duration of 60 seconds each, given the selected audio format settings described
in Section 4.1, the size of each file will be approximately 5.2 MB. This may not
cause any problems on most modern Android devices but it does not guarantee
that the application will not run out of memory on devices with low capacities. It
is worth mentioning that as of 2014 nearly 19,000 distinct Android devices have
been reported by OpenSignal’s statistics results [45].

Chapter 5

Analysis

This chapter presents the evaluation results of the proposed model. Initially, the
accuracy of the Recognito framework is evaluated. In addition, the performance
of the two different architectures, described in Chapter 4, is also evaluated with
regards to the computation delay of the training and recognition phases.

5.1 Performance evaluation
Recognito’s accuracy is evaluated in terms of the four metrics described in
Section 2.8: correct match rate, correct non-match rate, false match rate and false
non-match rate. The voices of 10 speakers were recorded. As summarised in Table
5.1, 15 different voice samples were recorded per user where 1 is used to create
the corresponding user model, 10 are used to update the model and the remaining
4 are used for recognition. For the scope of this thesis, these 10 speakers are
referred to as real users. The aim is to observe how the performance is affected as
the user models are updated.

Table 5.1: Voice samples per user
Model creation samples 1
Training samples 10
Recognition samples with noise 2
Recognition samples without noise 2
Total number of samples 15

31

32 CHAPTER 5. ANALYSIS

In addition, as mentioned in Section 2.8.2.3, the accuracy of Recognito
depends on its Universal Model. The more the different voiceprints used for
generating the Universal Model, the more accurate the performance of Recognito.
In total, 4 different scenarios are presented: the Universal Model is generated from
the voiceprints of 10, 20, 50 and 100 users respectively. Voice samples recorded
during public speeches at Technology, Entertainment, Design (TED) conferences
[46], were used to create a number of dummy users.

For each scenario, consider N total number users in order that:

N = R + D

where R is the number of real users and D the number of dummy users. N
represents the number of different speakers used to generate the Universal Model
for each scenario and not the number of the user models that are created. The
number of the user models created is R. The voices of D dummy users are only
used to generate the Universal Models (together with the real users). There are
no user models created for the dummy users, thus these users cannot be updated
nor recognised. Table 5.2 summarises how many users are used to populate the
Universal Model in each scenario.

Table 5.2: Number of users per scenario
Scenario N R D

1 10 10 0
2 20 10 10
3 50 10 40
4 100 10 90

Finally, an additional 10 speakers that are referred to as fake users, have been
recorded. For each fake user, 2 voice samples were recorded in order to test the
system’s performance in terms of correct non-match rate. The role of these users
is to act as imposters and attempt to be recognised by the system when there are
no stored user models for them.

All voice samples used in the conducted experiments have the same format as
summarised in Table 4.1. The duration of the voice samples of the real, as well
as the fake users, is 60 seconds. For the dummy users there are two versions of

5.1. PERFORMANCE EVALUATION 33

voice samples. In the first version the duration of the samples is 60 seconds, while
in the second the duration is 10 minutes. The idea is to observe if using dummy
users with voice samples of 10 minutes rather than 60 seconds, will create better
Universal Models and improve the system’s accuracy.

The voice samples used for creating and training each user model were
recorded in an enterprise open plan office of approximately 70 employees with
low background noise. These samples, as well as the samples of the dummy
users, are common for all experiments. The experiments only differ with regards
to the voice samples used for the recognition phase and can be grouped into three
categories:

Performance without background noise
The recognition voice samples belong to real users and were recorded in the
same environment as the samples that are used for creating and training the
models. That is, an open plan office of approximately 70 employees.

Performance with background noise
The recognition voice samples belong to real users and were recorded in
an environment with noticeable background noise. In particular, they were
recorded at Stockholm’s central subway station during peak hours.

Performance against imposters
The recognition voice samples belong to fake users and were recorded in
the same environment as the samples that are used for creating and training
the models. That is, an open plan office of approximately 70 employees.

For each of the above three categories there are two alternatives. In the first
alternative, the voice samples of the dummy users have a duration of 60 seconds,
while in the second alternative the duration of these samples is 10 minutes.

The aim of the experiments is to find the state where the overall accuracy
approaches its maximum and cannot be significantly improved anymore. This
is mainly affected by two parameters: the Universal Model and the amount of
training needed for a user model.

5.1.1 Performance without background noise
In this experiment, the voice samples used for the recognition phase belong to real
users and were recorded in the same environment as the samples that are used for
creating and training the models. In particular, they were recorded in an enterprise

34 CHAPTER 5. ANALYSIS

open plan office of approximately 70 employees with fairly low background noise.

Initially 10 user models are created. For each model there are 10 training
rounds, where in each round the model is updated with a new voice sample. We
attempt to recognise the speaker of each model after the model is created, as well
as at the end of each training round, expecting that the accuracy increases as the
model is updated. An important characteristic of this experiment is that while
the model of a User x is updated round by round, the remaining 9 models stay
untrained. This applies for all 10 user models. The results presented below are the
average value of a total of 20 recognition attempts, using 2 different voice samples
for each user.

Figure 5.1 illustrates how the accuracy increases for each scenario when the
duration of the dummy users’ samples is 60 seconds. The maximum correct match
rate that is reached is 70% and is first reached by scenarios 3 and 4 after the 4th
training round. Scenarios 1 and 2 also reach 70% after the 6th and 7th round,
respectively. All scenarios are listed in Table 5.2. Figure 5.2 shows how the peak
of the correct match rate density changes for each scenario.

Figure 5.1: Correct match rate for alternative 1

5.1. PERFORMANCE EVALUATION 35

Figure 5.2: Correct match rate density for alternative 1

Figure 5.3: Total number of erroneous recognitions for alternative 1

36 CHAPTER 5. ANALYSIS

It is worth mentioning that 9% of the total recognition attempts that failed
(from all 4 scenarios combined) were false non-matches, while the remaining
91% were false matches. This means that the majority of the failures occurred
because the system falsely recognised another existing user instead of the actual
one. Figure 5.3 shows the number of errors after a total of 220 recognitions per
scenario. The number 220 is derived as follows: 20 recognitions per training
round (2 recognitions per user) in addition to 20 recognitions before the first
training round started.

Figure 5.4 presents the results of the second alternative, where the duration of
the dummy samples is 10 minutes. The longer samples result in a better Universal
Model which slightly improves the overall accuracy. For the real users, the same
samples and in the same order as in the first alternative, were used for creating
and updating the models, as well as for recognising the speakers. The maximum
correct match rate achieved in this case is 75%. It is first reached by scenario 4
after the 5th training round and is followed by scenarios 2 and 3 at the end of
the 6th training round. Scenario 1 has the same values as in the first alternative,
since there are no dummy users involved and its Universal Model was generated
only by voice samples of real users. Figure 5.5 shows how the peak of the correct
match rate density changes for each scenario.

Figure 5.4: Correct match rate for alternative 2

5.1. PERFORMANCE EVALUATION 37

Figure 5.5: Correct match rate density for alternative 2

Figure 5.6: Total number of erroneous recognitions for alternative 2

38 CHAPTER 5. ANALYSIS

Similar to the first alternative, the majority of all the failed recognition
attempts occurred due to false matches. In particular, 90% of all these attempts
were false matches, while only the remaining 10% were false non-matches. Figure
5.6 shows the number of errors after a total of 220 recognitions per scenario.

5.1.2 Performance with background noise

In the experiment presented in this section, the voice samples used for the
recognition phase belong to real users. However, unlike the experiment presented
in Section 5.1.1 these voice samples were not recorded in the same environment
as the voice samples used for creating and training the models. In particular, they
were recorded at Stockholm’s central subway station between 12:00 and 15:00 on
a Saturday afternoon and contain noticeable but not excessive background noise.

The process of creating and updating the user models, as well as recognising
the users is the same as described in Section 5.1.1. There are 10 training rounds
for each model and only one model is updated at any time, while the remaining
9 models stay untrained. There exist two alternatives of this experiment: one
where the duration of the dummy users’ voice samples is 60 seconds and a second
alternative where the duration of these samples is 10 minutes.

The results have shown that all 4 scenarios reached 100% of false-non
match rate, regardless of the number of training rounds that preceded the
recognition phase. The result was the same for both alternatives since using
longer voice samples for the dummy users (second alternative) did not improve
the performance.

5.1.3 Performance against imposters

The experiment presented in this section differs from the ones described in Section
5.1.1 and Section 5.1.2 in two ways. First, the voice samples that are used for
recognition, belong to fake users. That is, they belong to users that are not stored
in the system. Moreover, all existing user models are trained simultaneously.
This means that every time a fake user is recognised, all stored models have gone
through the same number of training rounds. The recognition phase happens once
after the actual user models are created and at the end of each training round. The
voice samples used for the recognition phase were recorded in the same open plan
office as the one where the samples for creating and training the models were also
recorded.

5.1. PERFORMANCE EVALUATION 39

Figure 5.7: Correct non-match for alternative 1

Figure 5.8: Correct non-match rate density for alternative 1

40 CHAPTER 5. ANALYSIS

Similar to the experiments presented in the previous sections, there exist two
alternatives. Figure 5.7 presents the resulted correct non-match rate after each
training round, for the first alternative. None of the scenarios reaches a high
correct non-match rate, with the peak being 45% for scenario 4 after the 8th
training round. Figure 5.8 shows the correct-non match rate density for each
scenario when the duration of the dummy users’ voice samples is 60 seconds.

Figure 5.9 illustrates the results of the second alternative. Scenario 1 has
the same outcome as in the first alternative since there are no dummy users
affecting the Universal Model. For the remaining scenarios, even though longer
voice samples were used to populate the Universal Model, there is no significant
improvement in performance. The highest correct non-match rate with a value of
45% is reached both in scenario 3 and scenario 4 after the 8th and 6th round,
respectively. Figure 5.10 shows the correct-non match rate density for each
scenario when the duration of the dummy users’ voice samples is 10 minutes.

Figure 5.9: Correct non-match rate for alternative 2

5.2. EVALUATION OF SPECIFIC USAGE SCENARIOS 41

Figure 5.10: Correct non-match rate density for alternative 2

5.2 Evaluation of specific usage scenarios
The experiments presented in Section 5.1 showed that generating a Universal
Model from the voice samples of 100 dummy users with a duration of 10 minutes,
slightly improves the overall accuracy. In this section, the following three usage
scenarios are evaluated when using the mentioned Universal Model:

1. A single user device.

2. A device shared by a couple.

3. A device shared by a 4-member family.

In the first scenario, we assume that a single user is stored in the system, while
in the second and third scenario there are 2 and 4 stored users, respectively. For all
three scenarios, the voice samples of the real users have been used, as described in
Section 5.1 and summarised in Table 5.1. For the second scenario, 10 couples of
one man and one woman were formed by unique combinations of the 10 real users.
Accordingly, for the third scenario 10 families of two women and two men were
formed by unique combinations of the 10 real users. In both cases, the age of the
members was also taken into consideration in order to simulate realistic scenarios

42 CHAPTER 5. ANALYSIS

of couples and families. Since there are not enough user samples, some of the real
users were selected multiple times to form a couple or a family. However, each
couple and family is unique with regards to the total members that it consists of.

Similar to the previous section, the experiments can be grouped into three
categories:

• Performance without background noise.

• Performance with background noise.

• Performance against imposters.

5.2.1 Performance without background noise
The voice samples used for the recognition phase in this experiment belong to real
users and were recorded in the same environment as the samples used for creating
and training the models. In particular, they were recorded in an enterprise open
plan office with fairly low background noise. The process of creating and updating
the user models, as well as recognising the users is the same as in the experiment
presented in Section 5.1.1. There are 10 training rounds for each model. In the
usage scenarios 2 and 3 only one model is updated at any time while the remaining
models stay untrained. This does not apply to the usage scenario 1 since in this
case there is always one stored user.

In the first usage scenario, the result is the average value of 20 recognition
attempts, 2 for each user. In the second usage scenario the result is the average
value of 40 recognition attempts, 2 for each member of a couple multiplied by 10
couples. Accordingly, in the third scenario the result is the average value of 80
recognition attempts, 2 for each member of a family multiplied by 10 families.

Figure 5.11 illustrates how the accuracy increases for each usage scenario as
the stored models are trained. The first two scenarios perform slightly better than
the third because of the number of users that are stored in the system. Fewer stored
users result in lower false match rate. In particular, as shown in Figure 5.12 the
false match rate in the single user scenario is 0 since there is always one stored
user. In the second scenario, the false match rate is close to 5% of the total errors,
while in the third scenario where there are 4 stored users, the false match rate
reaches 20% of the total errors.

5.2. EVALUATION OF SPECIFIC USAGE SCENARIOS 43

Figure 5.11: Correct match rate of specific usage scenarios

Figure 5.12: Percentage of errors by type

44 CHAPTER 5. ANALYSIS

5.2.2 Performance with background noise
Similar to the experiment presented in Section 5.1.2, the voice samples used for
the recognition phase in this experiment belong to real users and were recorded in
a different environment than the voice samples used for creating and training the
models. In particular, they were recorded at Stockholm’s central subway station
between 12:00 and 15:00 on a Saturday. In addition, the process of creating and
updating the user models, as well as recognising the users remains also the same.

The results have shown that all three usage scenarios reached 100% of
false-non match rate, regardless of how many training rounds preceded the
recognition phase. This outcome is expected given that the recognition also failed
for all the users in the experiment presented in Section 5.1.2.

5.2.3 Performance against imposters
The experiment presented here is similar to the one presented in Section 5.1.3. The
voice samples used for the recognition phase belong to fake users. In addition, in
the usage scenarios 2 and 3 all the existing user models are trained simultaneously.
This means that every time a user is recognised, all stored models have gone
through the same number of training rounds. This does not apply to the usage
scenario 1 since in this case there is always one stored user in the system.

Figure 5.13 illustrates how the correct non-match rate increases for each
scenario as the models are trained. Another important outcome is that the correct
non-match rate decreases significantly as the number of stored users increases
from 1 to 2 and then to 4. The more the stored users, the higher the possibility for
a false match.

5.3. EVALUATION OF THE PROPOSED ARCHITECTURES 45

Figure 5.13: Correct non-match rate of specific usage scenarios

5.3 Evaluation of the proposed architectures
This section presents the analysis results of the performance comparison of
the two proposed architectures. Their performance is compared in terms of
computation delay during the training and recognition phase.

A server was set up and deployed on a MacBook Pro laptop while the Android
applications were tested on a Nexus 5 smartphone. Table 5.3 provides additional
information about the technical specifications of the two devices.

Table 5.3: Technical specifications
Device OS version RAM Processor
MacBook Pro OS X 10.10.1 16 Gb 2 GHz Intel Core i7
Nexus 5 Android 4.4.4 2 Gb 2.3 GHz Krait 400

As mentioned in Chapter 4, in both architectures the voice samples are
converted into voiceprints on the mobile device. Thus, the delay for creating the

46 CHAPTER 5. ANALYSIS

voiceprints is not taken into consideration. The two architectures, standalone and
client-server, are compared with regards to the time it takes to update an existing
user model, as well as the time it takes to recognise a speaker.

Ten user models are created and stored in the system. Figure 5.14 illustrates
the average computation delay of 100 model training operations, as well as the
average delay of 100 recognition operations for each architecture. While in
the client-server architecture the average delay of the training phase is close
to 4 milliseconds, in the standalone architecture the average delay is close to
26 milliseconds. The difference in the recognition phase’s computation delay
between the two architectures is smaller: the average value in the client-server
architecture is close to 5 milliseconds while for the standalone it is approximately
20 milliseconds.

Figure 5.14: Computation delay comparison

Chapter 6

Conclusions and future work

This section describes the challenges that were faced during the implementation
of this thesis. In addition, it discusses the results of the experiments, as well as
possible improvements in future work. Finally, it brings up reflections on ethical
and social risks.

6.1 Challenges
The first challenge that was faced during the implementation process, regards a
known bug in one of the Android Application Programming Interfaces (APIs).
The Android platform provides an API that performs the required tasks for
the Google Voice Search [47] feature, namely SpeechRecognizer. This service
performs, among others, voice detection, voice capturing and speech recognition.
One of its features is giving feedback about whether or not there has been human
voice detected. This is used by our implementation in order to make a decision
about whether the recording of voice samples should start. In particular, the
SpeechRecognizer provides the following callbacks [48]:

• onBeginningOfSpeech()

• onEndOfSpeech()

Once the speech has started, the onBeginningOfSpeech() is triggered 10
seconds after the speaker has paused his/her speech. This 10 seconds duration
is the default value and according to the official documentation [49], developers
can parameterise this based on their needs. However, there is a bug in Android
version 4.4.4, as a result of which the SpeechRecognizer ignores any changes
to this value [50]. This bug affects our implementation since it does not allow
us to continue recording when a speaker pauses for more than 10 seconds. The

47

48 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

workaround that was used in our project, is that rather than stopping the recording
when the onEndOfSpeech() is triggered, we start a 30 seconds timer in the
onBeginningOfSpeech() and when this timer has expired, the recording stops.

Finally, there were found some compatibility issues between Recognito and
Android. Recognito’s implementation relies on the javax.sound.sampled package
for capturing, processing, and playback of sampled audio data. This javax API
is not supported by Android, making Recognito incompatible with Android.
The reason is that Android does not use a regular Java Virtual Machine (JVM)
but its own one, named Dalvik [51]. Dalvik works with a specific set of Java
packages and javax.sound.sampled is not one of them [52]. In order to work
around this problem, we replaced Recognito’s javax dependencies with a Java
class, called WavReader, which provides the same functionality without the need
of any javax packages. The WavReader class was provided by the Android User
Authentication Framework project [20] and it was sightly modified to fit the needs
of this thesis. The class can be found in Appendix A.1.

6.2 Conclusions
An analysis of Recognito showed that it is not capable of achieving high accuracy
results. When the voice samples used for the recognition phase do not contain
significant background noise, Recognito reached a moderate 75% accuracy.
However, it failed to recognise any of the speakers when the voice samples were
recorded in a noisy environment. In addition, Recognito performs poorly against
imposters as the number of stored users increases. Although, it achieved a 97%
correct non-match rate in the scenario where there was only one stored user, this
percentage dropped to 60% and 45% when the number of stored users increased
to 4 and 10 users, respectively.

The overall performance is slightly improved when we use voice samples of
100 dummy users with a duration of 10 minutes to generate Recognito’s Universal
Model. As mentioned in Section 2.8.2, the Universal Model is the mean value of a
set of voiceprints and, thus is a voiceprint itself. In order to achieve high accuracy
even when there is only one stored user, the system (both in standalone and client-
server) is initialised with a pre-generated Universal Model of 100 unique voice
samples, with a duration of 10 minutes each.

The comparison between the two architectures has shown that there is no
significant performance degradation in the standalone version compared to the
client-server. Their major difference in terms of computation delay occurs during

6.3. FUTURE WORK 49

the training phase where the standalone architecture has an average delay of 26
milliseconds while the client-server has a delay of approximately 4 milliseconds.
Although the standalone’s training phase is more than 6 times slower, the
difference of 22 milliseconds is not considered to be significant. According to
the official Android guidelines, the threshold beyond which users can generally
perceive slowness in an application is between 100 and 200 milliseconds [53].

Finally, in order to keep the size of the voice samples under control, all the
recordings are split into chunks with maximum duration of 60 seconds each.
This, along with the specified audio format settings, ensures that file size of each
voice sample will not exceed 5.2 MB. Although loading a 5.2 MB file in the heap
memory of a state-of-the-art smartphone will most likely not cause any problems,
it does not guarantee that the standalone version will not run out of memory on
devices with low capacities.

6.3 Future work
The first step of our future work is to evaluate other speaker recognition systems
in order to find one that achieves significantly improved accuracy compared to
Recognito. Both the standalone and the client-server architecture use a wrapper
around the selected recognition system (in this case, Recognito) in order to make
it easily replaceable.

In addition, it would be possible to further improve the accuracy of our system,
by combining speaker recognition with other features, such as:

Face recognition
Use the device’s camera to perform face recognition and combine it with
speaker identification to improve the likelihood ratio.

GPS
Make use of the user’s current location to increase the likelihood ratio. For
example, if a user’s speech was captured while he/she was at a location near
his/her home, then it is more likely that this speech belongs to this specific
user.

Calendars
Combine the use of GPS with calendars. Many users store in their electronic
calendars their daily events. These events usually provide information about
the location. If, for example, a user has an appointment at a specific address
and the GPS confirms that the user is indeed close to this location, then a

50 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

captured voice sample from this location is more likely to belong to this
user.

Android wear
Android watches gain popularity rapidly. Each watch is paired and
communicates with an Android smartphone. These devices have hardware
components such as accelerometers, gyroscopes, GPS and microphones
[54]. This allows us to gather additional user information that combined
with the information gathered by the user’s smartphone can improve the
system’s overall accuracy.

6.4 Required reflections
Storing biometric information on a server is a controversial approach. Although,
as of today, voice cannot be used to uniquely and safely identify a person, it is
possible that technology will be capable of achieving this in the future. In such
a case, a potential compromise of the server’s database would expose sensitive
information about all the registered users.

Finally, another issue is the legal frame of storing biometrics. Addressing
this, becomes complicated considering the different European Union (EU) and
nation-specific legislations, as well as the cultural background behind any written
law [55]. Similarly to all kind of biometrics, voice identification is prone to the
attacks that Ratha et al. pointed out [56], which raises a series of problems that
need to be addressed before considering any voice based identification system as
reliable.

Bibliography

[1] Dave Coustan, “How smartphones work,” Mar. 2014. [Online]. Available:
http://electronics.howstuffworks.com/smartphone.htm

[2] Liane Cassavoy, “What makes a phone a smartphone?” Mar. 2014.
[Online]. Available: http://cellphones.about.com/od/smartphonebasics/a/
what is smart.htm

[3] Carlos Domı́ngez Sánchez, “Speaker recognition in a handheld
computer,” Master’s thesis, KTH Royal Institute of Technology, 2010.
[Online]. Available: http://www.yumpu.com/en/document/view/3230127/
speaker-recognition-in-a-handheld-computer-skolan-for-

[4] Joseph P. Campbell Jr., “Speaker recognition: a tutorial,” Proceedings of the
IEEE, vol. 85, no. 9, pp. 1437–1462, Sep. 1997. doi: 10.1109/5.628714

[5] FBI Biometric Center of Excellence, “Speaker recognition,” Mar.
2014. [Online]. Available: http://www.fbi.gov/about-us/cjis/fingerprints
biometrics/biometric-center-of-excellence/files/speaker-recognition.pdf

[6] BehavioSec, “Behaviometrics,” Mar. 2014. [Online].
Available: http://www.behaviosec.com/wp-content/uploads/2012/01/
BehavioSec-Behaviometrics.pdf

[7] Naresh P. Trilok, Sung-Hyuk Cha, and Charles C. Tappert, “Establishing the
uniqueness of the human voice for security applications,” in Proceedings of
Student/Faculty Research Day. Pace University, May 2004.

[8] Finjan, “User identification and authentication,” Mar. 2014.
[Online]. Available: http://199.203.243.203/objects/manuals/9.2.0/User
Identification and Authentication.pdf

[9] National Institute of Standards (NIST), “The NIST year 2012 speaker
recognition evaluation plan,” May 2012. [Online]. Available: http:
//www.nist.gov/itl/iad/mig/upload/NIST SRE12 evalplan-v17-r1.pdf

51

http://electronics.howstuffworks.com/smartphone.htm
http://cellphones.about.com/od/smartphonebasics/a/what_is_smart.htm
http://cellphones.about.com/od/smartphonebasics/a/what_is_smart.htm
http://www.yumpu.com/en/document/view/3230127/speaker-recognition-in-a-handheld-computer-skolan-for-
http://www.yumpu.com/en/document/view/3230127/speaker-recognition-in-a-handheld-computer-skolan-for-
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/speaker-recognition.pdf
http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/biometric-center-of-excellence/files/speaker-recognition.pdf
http://www.behaviosec.com/wp-content/uploads/2012/01/BehavioSec-Behaviometrics.pdf
http://www.behaviosec.com/wp-content/uploads/2012/01/BehavioSec-Behaviometrics.pdf
http://199.203.243.203/objects/manuals/9.2.0/User_Identification_and_Authentication.pdf
http://199.203.243.203/objects/manuals/9.2.0/User_Identification_and_Authentication.pdf
http://www.nist.gov/itl/iad/mig/upload/NIST_SRE12_evalplan-v17-r1.pdf
http://www.nist.gov/itl/iad/mig/upload/NIST_SRE12_evalplan-v17-r1.pdf

52 BIBLIOGRAPHY

[10] Tomi Kinnunen and Haizhou Li, “An overview of text-independent speaker
recognition: From features to supervectors,” Speech Communication,
vol. 52, no. 1, pp. 12–40, Jan. 2010. doi: 10.1016/j.specom.2009.08.009.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167639309001289

[11] U. Shrawankar and V. M. Thakare, “Techniques for feature extraction in
speech recognition system : A comparative study,” arXiv:1305.1145 [cs],
May 2013, arXiv: 1305.1145. [Online]. Available: http://arxiv.org/abs/
1305.1145

[12] Hong Kook Kim, Seung Ho Choi, and Hwang Soo Lee, “On approximating
line spectral frequencies to LPC cepstral coefficients,” IEEE Transactions
on Speech and Audio Processing, vol. 8, no. 2, pp. 195–199, Mar. 2000. doi:
10.1109/89.824705

[13] Namrata Dave, “Feature extraction methods LPC, PLP and MFCC in speech
recognition,” International Journal For Advance Research in Engineering
And Technology(ISSN 2320-6802), vol. Volume 1, no. Issue VI, 2013.

[14] Eslam Mansour Mohammed, Mohammed Sharaf Sayed, Abdallaa
Mohammed Moselhy, and Abdelaziz Alsayed Abdelnaiem, “LPC and
MFCC performance evaluation with artificial neural network for spoken
language identification,” International Journal of Signal Processing, Image
Processing and Pattern Recognition, vol. 6, no. 3, Jun. 2013.

[15] V. Tyagi and Christian Wellekens, “On desensitizing the mel-cepstrum
to spurious spectral components for robust speech recognition,” in
IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2005. Proceedings. (ICASSP ’05), vol. 1, Mar. 2005. doi:
10.1109/ICASSP.2005.1415167 pp. 529–532.

[16] Douglas Reynolds, “Gaussian mixture models,” in Encyclopedia of
Biometrics, Stan Z. Li and Anil Jain, Eds. Springer US, Jan.
2009, pp. 659–663. ISBN 978-0-387-73002-8, 978-0-387-73003-5.
[Online]. Available: http://link.springer.com/referenceworkentry/10.1007/
978-0-387-73003-5 196

[17] F.K. Soong and A.E. Rosenberg, “On the use of instantaneous and
transitional spectral information in speaker recognition,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 36, no. 6, pp. 871–879,
Jun. 1988. doi: 10.1109/29.1598

http://www.sciencedirect.com/science/article/pii/S0167639309001289
http://www.sciencedirect.com/science/article/pii/S0167639309001289
http://arxiv.org/abs/1305.1145
http://arxiv.org/abs/1305.1145
http://link.springer.com/referenceworkentry/10.1007/978-0-387-73003-5_196
http://link.springer.com/referenceworkentry/10.1007/978-0-387-73003-5_196

BIBLIOGRAPHY 53

[18] Sadaoki Furui, “Recent advances in speaker recognition,” Pattern
Recognition Letters, vol. 18, no. 9, pp. 859–872, Sep.
1997. doi: 10.1016/S0167-8655(97)00073-1. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865597000731

[19] Frédéric Bimbot, Jean-François Bonastre, Corinne Fredouille, Guillaume
Gravier, Ivan Magrin-Chagnolleau, Sylvain Meignier, Teva Merlin, Javier
Ortega-Garcı́a, Dijana Petrovska-Delacrétaz, and Douglas A. Reynolds,
“A tutorial on text-independent speaker verification,” EURASIP Journal
on Advances in Signal Processing, vol. 2004, no. 4, p. 101962,
Apr. 2004. doi: 10.1155/S1110865704310024. [Online]. Available:
http://asp.eurasipjournals.com/content/2004/4/101962/abstract

[20] “Android user authentication framework - gitorious,” Nov. 2014. [Online].
Available: https://gitorious.org/android-user-auth

[21] “Google buys android for its mobile arsenal,” Mar. 2014. [Online].
Available: http://www.webcitation.org/5wk7sIvVb

[22] Niels Henze, “Hit it!: An apparatus for upscaling mobile HCI studies,”
in CHI ’12 Extended Abstracts on Human Factors in Computing
Systems, ser. CHI EA ’12. New York, NY, USA: ACM, 2012.
doi: 10.1145/2212776.2212450. ISBN 978-1-4503-1016-1 pp. 1333–1338.
[Online]. Available: http://doi.acm.org/10.1145/2212776.2212450

[23] T. Bray, “Identifying app installations | android developers blog,” Mar.
2014. [Online]. Available: http://android-developers.blogspot.se/2011/03/
identifying-app-installations.html

[24] “Voice extensible markup language (VoiceXML) version 2.0,”
Mar. 2014. [Online]. Available: http://www.w3.org/TR/2004/
REC-voicexml20-20040316/

[25] “Speaker verification,” Mar. 2014. [Online]. Available: https://cafe.bevocal.
com/docs/verification/index.html?content=overview.html

[26] “W3c ”voice browser” working group,” Mar. 2014. [Online]. Available:
http://www.w3.org/Voice/voice-implementations.html

[27] IBM, “Speaker verification guide,” Dec. 2014. [Online].
Available: http://pic.dhe.ibm.com/infocenter/wvsoem/v6r1m1/topic/com.
ibm.websphere.wvs.doc/wvs/wvs sv.pdf

http://www.sciencedirect.com/science/article/pii/S0167865597000731
http://asp.eurasipjournals.com/content/2004/4/101962/abstract
https://gitorious.org/android-user-auth
http://www.webcitation.org/5wk7sIvVb
http://doi.acm.org/10.1145/2212776.2212450
http://android-developers.blogspot.se/2011/03/identifying-app-installations.html
http://android-developers.blogspot.se/2011/03/identifying-app-installations.html
http://www.w3.org/TR/2004/REC-voicexml20-20040316/
http://www.w3.org/TR/2004/REC-voicexml20-20040316/
https://cafe.bevocal.com/docs/verification/index.html?content=overview.html
https://cafe.bevocal.com/docs/verification/index.html?content=overview.html
http://www.w3.org/Voice/voice-implementations.html
http://pic.dhe.ibm.com/infocenter/wvsoem/v6r1m1/topic/com.ibm.websphere.wvs.doc/wvs/wvs_sv.pdf
http://pic.dhe.ibm.com/infocenter/wvsoem/v6r1m1/topic/com.ibm.websphere.wvs.doc/wvs/wvs_sv.pdf

54 BIBLIOGRAPHY

[28] “IBM - WebSphere voice - family,” Mar. 2014. [Online]. Available:
http://www-01.ibm.com/software/voice/

[29] Amaury Crickx, “Recognito,” Jul. 2014. [Online]. Available: https:
//github.com/amaurycrickx/recognito

[30] Cristian M. Toader, “User authentication for pico: When to unlock a security
token,” Master’s thesis, University of Cambridge, Cambridge, UK, Jun.
2014.

[31] Frank Stajano, “Pico: No more passwords!” in Security Protocols
XIX, ser. Lecture Notes in Computer Science, Bruce Christianson, Bruno
Crispo, James Malcolm, and Frank Stajano, Eds. Springer Berlin
Heidelberg, Jan. 2011, no. 7114, pp. 49–81. ISBN 978-3-642-25866-4,
978-3-642-25867-1. [Online]. Available: http://link.springer.com/chapter/
10.1007/978-3-642-25867-1 6

[32] “ALIZE,” Mar. 2014. [Online]. Available: http://mistral.univ-avignon.fr/
index en.html

[33] “JSTK - a native java speech toolkit,” Mar. 2014. [Online]. Available:
https://code.google.com/p/jstk/

[34] “CMUSphinx wiki,” Mar. 2014. [Online]. Available:
http://cmusphinx.sourceforge.net/wiki/tutorialsphinx4/doc/Sphinx4-faq.
html#speaker identification

[35] “voiceid - speaker recognition/identification system in python,” Mar. 2014.
[Online]. Available: http://code.google.com/p/voiceid/

[36] “bob.spear 1.1.3 : Python package index,” Aug. 2014. [Online]. Available:
https://pypi.python.org/pypi/bob.spear

[37] M.F.R. Chowdhury, S.-A. Selouani, and D. O’Shaughnessy, “Text-
independent distributed speaker identification and verification using GMM-
UBM speaker models for mobile communications,” in 2010 10th
International Conference on Information Sciences Signal Processing and
their Applications (ISSPA), May 2010. doi: 10.1109/ISSPA.2010.5605556
pp. 57–60.

[38] Jin-Yu Li, Bo Liu, Ren-Hua Wang, and Li-Rong Dai, “A
complexity reduction of ETSI advanced front-end for DSR,” in
IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2004. Proceedings. (ICASSP ’04), vol. 1, May 2004. doi:
10.1109/ICASSP.2004.1325922 pp. I–61–4 vol.1.

http://www-01.ibm.com/software/voice/
https://github.com/amaurycrickx/recognito
https://github.com/amaurycrickx/recognito
http://link.springer.com/chapter/10.1007/978-3-642-25867-1_6
http://link.springer.com/chapter/10.1007/978-3-642-25867-1_6
http://mistral.univ-avignon.fr/index_en.html
http://mistral.univ-avignon.fr/index_en.html
https://code.google.com/p/jstk/
http://cmusphinx.sourceforge.net/wiki/tutorialsphinx4/doc/Sphinx4-faq.html#speaker_identification
http://cmusphinx.sourceforge.net/wiki/tutorialsphinx4/doc/Sphinx4-faq.html#speaker_identification
http://code.google.com/p/voiceid/
https://pypi.python.org/pypi/bob.spear

BIBLIOGRAPHY 55

[39] Kevin Brunet, Karim Taam, Estelle Cherrier, Ndiaga Faye, and Christophe
Rosenberger, “Speaker recognition for mobile user authentication: An
android solution,” 8ème Conférence sur la Sécurité des Architectures
Réseaux et Systèmes d’Information (SAR SSI), 2013.

[40] William A. Wulf, “Responsible citizenship in a technological democracy,”
Jun. 2014. [Online]. Available: http://www.cvaieee.org/html/resp citizen/
responsible citizenship.html

[41] Henry Petroski, “Reference guide on engineering practice and methods,” in
Reference Manual on Scientific Evidence, 2nd ed. Federal Judicial Center,
2000, pp. 577–624.

[42] “AudioRecord | android developers,” Jan. 2015. [Online]. Available:
http://developer.android.com/reference/android/media/AudioRecord.html

[43] “MediaRecorder | android developers,” Jan. 2015. [Online]. Available:
http://developer.android.com/reference/android/media/MediaRecorder.html

[44] Md. Iqbal Hossain and Md. Iqbal Hossain, “Dynamic scaling of a web-based
application in a cloud architecture,” Master’s thesis, KTH Royal Institute
of Technology, Stockholm, Sweden, Feb. 2014. [Online]. Available:
http://www.diva-portal.org/smash/get/diva2:699823/FULLTEXT02

[45] “Android fragmentation report august 2014,” Aug. 2014. [Online].
Available: http://opensignal.com/reports/2014/android-fragmentation/

[46] “TED: Ideas worth spreading,” Nov. 2014. [Online]. Available: http:
//www.ted.com/

[47] “Voice search – inside search – google,” Nov. 2014. [Online]. Available:
http://www.google.com/insidesearch/features/voicesearch/

[48] “RecognitionListener | android developers,” Nov. 2014.
[Online]. Available: http://developer.android.com/reference/android/speech/
RecognitionListener.html

[49] “RecognizerIntent | android developers,” Nov. 2014.
[Online]. Available: http://developer.android.com/reference/android/speech/
RecognizerIntent.html

[50] “Issue 76130 - android - RecognizerIntent -
EXTRA speech input complete silence length millis not working -
android open source project - issue tracker - google project

http://www.cvaieee.org/html/resp_citizen/responsible_citizenship.html
http://www.cvaieee.org/html/resp_citizen/responsible_citizenship.html
http://developer.android.com/reference/android/media/AudioRecord.html
http://developer.android.com/reference/android/media/MediaRecorder.html
http://www.diva-portal.org/smash/get/diva2:699823/FULLTEXT02
http://opensignal.com/reports/2014/android-fragmentation/
http://www.ted.com/
http://www.ted.com/
http://www.google.com/insidesearch/features/voicesearch/
http://developer.android.com/reference/android/speech/RecognitionListener.html
http://developer.android.com/reference/android/speech/RecognitionListener.html
http://developer.android.com/reference/android/speech/RecognizerIntent.html
http://developer.android.com/reference/android/speech/RecognizerIntent.html

56 BIBLIOGRAPHY

hosting,” Nov. 2014. [Online]. Available: https://code.google.
com/p/android/issues/detail?id=76130&q=Speech%20RecognizerIntent.
EXTRA SPEECH INPUT COMPLETE SILENCE LENGTH MILLIS&
colspec=ID%20Type%20Status%20Owner%20Summary%20Stars

[51] “Dalvik bytecode | android developers,” Nov. 2014. [Online]. Available:
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

[52] “Package index | android developers,” Nov. 2014. [Online]. Available:
http://developer.android.com/reference/packages.html

[53] “Keeping your app responsive | android developers,” Jan. 2015. [Online].
Available: http://developer.android.com/training/articles/perf-anr.html

[54] “Android wear,” Jan. 2015. [Online]. Available: http://www.android.com/
wear/

[55] “The european regulation on biometric passports,” Nov. 2014. [Online].
Available: http://www2.law.ed.ac.uk/ahrc/script-ed/vol4-3/hornung.asp

[56] N. K. Ratha, J. H. Connell, and R. M. Bolle, “Enhancing security and
privacy in biometrics-based authentication systems,” IBM Syst. J., vol. 40,
no. 3, pp. 614–634, Mar. 2001. doi: 10.1147/sj.403.0614. [Online].
Available: http://dx.doi.org/10.1147/sj.403.0614

https://code.google.com/p/android/issues/detail?id=76130&q=Speech%20RecognizerIntent.EXTRA_SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars
https://code.google.com/p/android/issues/detail?id=76130&q=Speech%20RecognizerIntent.EXTRA_SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars
https://code.google.com/p/android/issues/detail?id=76130&q=Speech%20RecognizerIntent.EXTRA_SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars
https://code.google.com/p/android/issues/detail?id=76130&q=Speech%20RecognizerIntent.EXTRA_SPEECH_INPUT_COMPLETE_SILENCE_LENGTH_MILLIS&colspec=ID%20Type%20Status%20Owner%20Summary%20Stars
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://developer.android.com/reference/packages.html
http://developer.android.com/training/articles/perf-anr.html
http://www.android.com/wear/
http://www.android.com/wear/
http://www2.law.ed.ac.uk/ahrc/script-ed/vol4-3/hornung.asp
http://dx.doi.org/10.1147/sj.403.0614

Appendix A

Recognito

A.1 WavReader.java

public class WavReader {
private String filePath;
private RandomAccessFile raf;
private int channels;
private int sampleRate;
private int byteRate;
private int frameSize;
private short resolution;
private int length;
private int payloadLength;

private long currentPos;

public WavReader(String filePath) {
this.filePath = filePath;
init();

}

private void init() {
try {

raf = new RandomAccessFile(filePath, "r");

// read and file length payload length fields
raf.seek(4);
length = Integer.reverseBytes(raf.readInt());
raf.seek(40);
payloadLength = Integer.reverseBytes(raf.readInt());

// get other metadata
// channel count

57

58 APPENDIX A. RECOGNITO

raf.seek(22);
channels = Short.reverseBytes(raf.readShort());
sampleRate = Integer.reverseBytes(raf.readInt());
byteRate = Integer.reverseBytes(raf.readInt());
frameSize = Short.reverseBytes(raf.readShort());
resolution = Short.reverseBytes(raf.readShort());

// set at start of data part
currentPos = 44;
raf.seek(currentPos);

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}
}

public int read(byte[] buffer) throws IOException {
return read(buffer, 0, buffer.length);

}

public int read(byte[] buffer, int offset, int count)
throws IOException {

int read = raf.read(buffer, offset, count);
currentPos += read;
raf.seek(currentPos);
return read;

}

public void reset() {
init();

}

public void close() throws IOException {
raf.close();

}

/**
* @return the channels

*/
public int getChannels() {

return channels;
}

/**
* @return the sampleRate

*/
public int getSampleRate() {

A.1. WAVREADER.JAVA 59

return sampleRate;
}

/**
* @return the frameSize

*/
public int getFrameSize() {

return frameSize;
}

/**
* @return the frameLength (payloadLength / frameSize)

*/
public int getFrameLength(){

return payloadLength / frameSize;
}

/**
* @return the byteRate

*/
public int getByteRate() {

return byteRate;
}

/**
* @return the resolution

*/
public short getResolution() {

return resolution;
}

/**
* @return the payloadLength

*/
public int getPayloadLength() {

return payloadLength;
}

/**
* Wav files are always little-endian (least significant bytes first).

*
* @return false

*/
public boolean isBigEndian(){

return false;
}

}

TRITA-ICT-EX-2015:01

www.kth.se

	Introduction
	Overview
	Problem definition
	Goals
	Scope
	Target groups
	Structure

	Background
	Uniqueness of human voice
	Identification, authentication and authorization
	Speech recognition and speaker recognition
	Speaker recognition process
	Speaker recognition types
	Voice features
	Feature extraction techniques
	Linear Predictive Coding (LPC)
	Mel Frequency Cepstral Coefficients (MFCC)

	User models

	Android and device identification
	Related work
	VoiceXML and speaker recognition
	Recognito
	Feature extraction process
	Training phase
	Recognition phase

	Other speaker recognition systems

	Method
	A seamless speaker recognition mechanism
	Restrictions and assumptions
	Audio recordings
	Energy consumption
	User experience

	Seamless speaker recognition architectures
	Client-server architecture
	Standalone architecture
	Architecture comparison

	Analysis
	Performance evaluation
	Performance without background noise
	Performance with background noise
	Performance against imposters

	Evaluation of specific usage scenarios
	Performance without background noise
	Performance with background noise
	Performance against imposters

	Evaluation of the proposed architectures

	Conclusions and future work
	Challenges
	Conclusions
	Future work
	Required reflections

	Bibliography
	Recognito
	WavReader.java

