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Abstract 
During the last decade, the number of devices capable of connecting to the Internet has grown 
enormously. The Internet of Things describes a scenario where Internet connected devices are 
ubiquitous and even the smallest device has a connection to the Internet. Many of these devices will be 
running on constrained platforms with limited power and computing resources. Implementing 
protocols that are both secure and resource efficient is challenging. Current protocols have generally 
been designed for mains powered devices; hence, they are not optimized for running on constrained 
devices. The Constrained Application Protocol (CoAP) is a protocol for network communication 
specifically designed for constrained devices. This thesis project examines CoAP and presents an 
extension that adds authentication in a way that is suitable for constrained devices, with respect to 
minimizing resource use. The proposed solution has been compared and contrasted with other 
alternatives for authentication, particularly those alternatives used with CoAP. It has also been 
implemented in code and experimentally evaluated with regards to performance versus vanilla CoAP. 

The main goal of this project is to implement a lightweight authentication extension for CoAP to 
be deployed and evaluated on constrained devices. This extension, called Short Message 
Authentication ChecK (SMACK), can be used on devices that require a method for secure 
authentication of messages while using only limited power. The main goal of the extension is to 
protect against battery exhaustion and denial of sleep attacks. Other benefits are that the extension 
adds no additional overhead when compared with the packet structure described in the latest CoAP 
specification. Minimizing overhead is important since some constrained networks may only support 
low bandwidth communication. 

Keywords:  
Constrained Application Protocol, CoAP, Internet of Things, message authentication, constrained 

devices, Contiki, Short Message Authentication Check, SMACK 
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Sammanfattning 
Under det senaste århundradet har antalet enheter som kan ansluta sig till Internet ökat enormt. ”The 
Internet of Things” beskriver ett scenario där Internet-anslutna enheter är närvarande överallt och även 
den minsta enhet har en uppkoppling till Internet. Många av dessa enheter kommer att vara begränsade 
plattformar med restriktioner på både kraft- och beräkningsresurser. Att implementera protokoll som 
både är säkra och resurseffektiva är en utmaning. Tillgängliga protokoll har i regel varit designade för 
enheter med anslutning till det fasta kraftnätet; på grund av detta är de inte optimerade för att köras på 
begränsade plattformar. Constrained Application Protocol (CoAP) är ett protokoll för 
nätverkskommunikation speciellt framtaget för begränsade plattformar. Denna uppsats undersöker 
CoAP protokollet och presenterar ett tillägg som erbjuder autentisering på ett sätt som passar 
begränsade plattformar, med avseende på att minimera resursanvändning. Den föreslagna lösningen 
har blivit beskriven och jämförd med andra alternativ för autentisering, speciellt de alternativ som 
används med CoAP. Lösningen har också implementerats i kod och blivit experimentellt utvärderad 
när det gäller prestanda jämfört med standardversionen av CoAP. 

Det huvudsakliga målet för detta projekt är att implementera en lättviktslösning för autentisering 
till CoAP som ska installeras och utvärderas på begränsade plattformar. Detta tillägg, Short Message 
Authentication checK (SMACK), kan användas på enheter som behöver en metod för säker 
autentisering av meddelanden samtidigt som kraftåtgången hålls låg. Huvudmålet för detta tillägg är 
att skydda mot batteridräneringsattacker och attacker som hindrar en enhet från att gå i viloläge. Andra 
fördelar är att tillägget inte kräver någon extra dataanvändning jämfört med paketstrukturen som 
beskrivs i den senaste CoAP-specifikationen. Att minimera overhead i kommunikationsprotokoll är 
viktigt eftersom vissa begränsade nätverk endast stödjer kommunikation över låg bandbredd. 

 

Nyckelord:  
Constrained Application Protocol, CoAP, Internet of Things, meddelandeautentisering, begränsade 

plattformar, Contiki, Short Message Authentication Check, SMACK 
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1 Introduction 
This report details the results of a master's thesis project “Lightweight Message Authentication for the 
Internet of Things” performed during the spring of 2014 at KTH Royal Institute of Technology. The 
project was conducted in cooperation with SICS Swedish ICT AB [1] in Kista. 

1.1 General introduction to the area 
During the last decade, the growth in the number of Internet enabled devices has been considerable. At 
the start of this expansion, people typically only owned a few Internet capable devices, typically in the 
form of personal computers. Today more and more devices have interfaces that allow Internet 
connectivity. One of the most significant developments has been in the number of smart phone 
devices. Currently people frequently own many devices that they use interchangeably for Internet 
access. Every day additional devices join the global Internet, potentially permitting access to or from 
them by other Internet enabled devices. 

The term Internet of Things (IoT) was coined by Kevin Ashton during 1999 [2], although the 
concept was discussed in scientific literature prior to this time. This term tries to define a future 
Internet where the growth in the number of device continues and almost all electronic devices have 
Internet connectivity. This growth is not limited to user-controlled devices, but also includes machine-
to-machine (M2M) communication, such as smart sensor systems. All of these Internet connected 
devices will have a representation in the Internet either in the form of an IP address or some other 
identifying information. Setting up such an infrastructure has many benefits, including remote 
monitoring, convenient control of devices owned by an individual, and increasing numbers of 
automated systems. Estimates of the number of wireless devices connected to the Internet suggest 30 
billion devices by 2020 [3]. Even today, IoT has emerged as an area for research and development. 

A "constrained device" is a device that has limited resources in terms of processing capacity, 
memory, or available power. Constrained devices are often used to implement sensor networks and 
automated systems that utilize M2M communication. The reason these devices are used is that they are 
small, inexpensive, and can perform the desired function(s), while consuming very little power. The 
software running on these devices has to be adapted to this constrained environment and ensures 
sufficient performance without requiring high speed processing, large memory capacity, or using 
excessive power. Creating small IP stacks and similar software have been necessary steps to realize 
IoT and to allow constrained devices to communicate efficiently via a network. Making IoT devices 
accessible through the same protocols used in the global Internet is also important when 
interconnecting these devices to the existing network infrastructures. 

Security is another important aspect of the IoT. If all devices have an IP-address and are accessible 
via the Internet, then security becomes an even more important issue as the number of potential 
attackers is greatly increased. Authentication is vital to prevent certain types of attacks against these 
devices and to confirm the validity of messages. For instance, a device can be inundated with 
messages in order to exhaust its battery supply, thus authentication has to be performed in an efficient 
manner and properly take into account the device’s limited power, storage, and computing capabilities. 
Because of this, the protocols used for authentication have to be adapted for these constrained devices 
and must meet requirements beyond the conventional requirements for mains powered devices. 

Combining the fast growth of IoT devices with limited resources and less mature security options 
means that these constrained devices can become a prime target for attacks. If these issues are 
overlooked, then sensitive systems including devices controlling people’s homes or industrial 
applications are at risk. This is especially true if devices such as smart light bulbs, industrial sensors, 
radiators, and other such applications continue to gain in popularity. It is important that security is 
built into the IoT as early as possible, as retrofitting security solutions is more a difficult challenge. 
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1.2 Problem definition 
Denial of service (DoS) attacks are malicious actions that attempt to deny access to or shut down some 
device [4]. For instance, such an attack could attempt to overwhelm a target with traffic or send 
malformed packets that the device does not know how to handle. For constrained devices the term 
"denial of sleep" is often used since these devices frequently rely on going to sleep when data is not 
being actively processed, sent, or received. It is crucial for the radio circuitry to be in sleep mode as 
long as possible in order to minimize power consumption. Simply receiving, parsing, and processing 
data sent to a constrained device can be costly since the radio needs to be on in order to receive the 
data, which drains a lot of power. In addition, power is need for processing the packet(s) that have 
been received. For these reasons, constrained devices are especially vulnerable to DoS attacks. In 
addition, they are rarely protected with intrusion detection and prevention systems that are common 
for servers on the Internet. However, firewalls or other types of gateways can be used to protect these 
devices from traffic coming from outside the local network. 

The problem addressed in this thesis project deals with how to design, implement, and evaluate a 
message authentication extension to CoAP for constrained devices. This solution must be both secure 
and economical with the resources of the system. Several important aspects have to be taken into 
consideration in order to ensure that the proposed extension is secure. First, it should be based on well 
tested security concepts, i.e., concepts that have been proven over time. Furthermore, authentication 
must be provided in an efficient manner. When it comes to resource usage, the extension should use 
code that has been optimized to reduce the amount of memory necessary to ensure that the resulting 
code will fit into the available memory of the device in question. In addition, the code should be 
adapted to minimize the required processing power. This can be accomplished by careful selection of 
algorithms and by reducing the size of fixed arrays and other memory structures that is used. Note that 
the extension may trade FLASH storage for processing, as generally, microcontrollers have increasing 
amounts of flash memory – but want to avoid either increasing their processor clock rates or requiring 
a much larger random access memory (RAM) – as both take additional dynamic power. The amount of 
RAM available is typical less than the FLASH storage and this limits what session information and 
other dynamic data that can be allocated and stored in RAM. However, some data has to be kept for 
each connected device in order to keep track of the session state and which keys are being used. 

Short Message Authentication ChecK (SMACK) is an extension of the Constrained Application 
Protocol (CoAP) [5] specialized for providing message authentication in a resource efficient manner. 
The methods used to provide this are general and can also be adapted to other communications 
protocols. Currently a prototype implementation of the SMACK authentication extension to CoAP 
exists (written in Java). It has been developed internally at SICS as a proof of concept (see beginning 
of Chapter 3). However, this implementation cannot be tested on most constrained devices since they 
have insufficient resources to run the required Java virtual machine, hence for such  a constrained 
device there is a need for an optimized implementation in C. This means that a version of this 
extension written in C needs to be created, tested, and evaluated on constrained devices. This version 
should be deployed on actual constrained devices for performance testing. 

SMACK needs to be discussed in the context of other authentication protocols. An energy efficient 
authentication protocol should lessen the severity of any DoS, such as a denial of sleep attack, since 
data that is not authenticated could be ignored by the device. Ignoring such data allows devices to 
reduce unnecessary message processing and only reply to legitimate requests. However, the resources 
used for authentication can be part of a DoS attack, hence we need to minimize the energy consumed 
by this authentication process. As there are a number of alternative protocols for authentication and 
confidentiality that could be used with CoAP, some of these protocols will be described and contrasted 
to the solution presented in this thesis. 
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1.3 Goals 
The following goals are the main objectives of this project: 

1. Implement the SMACK extension to the CoAP protocol in C, 
2. Optimize and adapt the implementation to run well on constrained devices, 
3. Test and evaluate the performance of the extension on actual constrained devices, 
4. Describe other existing alternatives for authentication and how they differ from SMACK, 
5. Compare SMACK to vanilla CoAP with practical experiments on constrained devices, 
6. Test the system to see that it ensures proper authentication, and 
7. Take into account the above test results to improve the extension wherever possible. 

1.4 Research methodology 
This project has selected a quantitative research methodology because the nature of the topic is 
suitable for statistical analysis. For instance, the round trip time for a CoAP request with the SMACK 
extension enabled versus a vanilla CoAP request can be compared. Additionally, we can compare and 
evaluate the performance of the SMACK extension by collecting data about the time spent performing 
specific calculations. As the goal of this thesis is to evaluate the SMACK extension to CoAP a 
quantitative research method is most suitable. The project also considered a qualitative methodology; 
however, it was rejected as quantitative data and statistical analysis of performance are important. The 
possibility to automate testing and analyze the results of this testing in a consistent manner favors a 
quantitative approach. 

This project uses a deductive approach to investigate the hypothesis that the SMACK extension to 
CoAP is a viable option for lightweight message authentication on constrained devices. The basic 
functionality of the SMACK extension will be tested and verified to work. In addition, the question of 
to what extent SMACK and in which areas SMACK is superior or inferior to existing systems will be 
discussed. Existing systems will be evaluated based upon external resources, while SMACK will be 
analyzed using experimental data. 

Empirical research will be performed as a part of this project, thus generating experimental results 
and data. The project will also utilize secondary sources to acquire information and allow analysis of 
systems that are not available for direct experiments. Comparison and evaluation of SMACK versus 
vanilla CoAP will be done using new data collected explicitly for this purpose. Results from these tests 
will be presented using statistical methods to highlight the performance of the different solutions that 
have been tested. The hardware used for the tests will be identical and care will be taken to measure 
equivalent processes relevant to each solution in order to ensure a fair comparison. 

1.5 Delimitations 
This thesis focuses on issues related to CoAP and authentication protocols implemented at the 
application, transport, or network layers. There are also methods for authentication and encryption in 
the lower layers of the protocol stack, such as those built into IEEE 802.15.4 [6] - used by 6LoWPAN. 
Further details of 6LoWPAN are given in Section 2.6 and relevant details of IEEE 802.15.4 are given 
in Section 2.6.1. However, these solutions rely on the fact that the underlying network utilizes a 
specific technology. Most devices connected to the Internet utilize versions of Ethernet that do not 
support similar functionality. In order to make the proposed solution as general as possible, 
authentication should be implemented at the network or higher layer. Protection at higher levels also 
provides end-to-end security, which is important for many applications. Additionally, because the IPv4 
and IPv6 protocols are so ubiquitous the solution should be compatible with these network layer 
protocols, thus this compatibility is a minimum requirement. Therefore the proposed solution does not 
rely on any specific lower layer technologies. However, we can of course learn from the mechanisms 
that have been applied at these lower layers (see for example Section 2.6.2). 
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The Contiki operating system (OS) will be used as a basis for the implementation of the 
authentication extension to CoAP. Section 2.5 gives relevant details of Contiki. Contiki currently has a 
fully functional CoAP implementation named Erbium (see Section 2.5.1) that is used as a basis for the 
proposed SMACK implementation. Furthermore, Contiki supports a large number of hardware 
platforms [7] and is a widely used OS for constrained devices. Contiki is open source software; hence 
all of the relevant source code is freely accessible. In addition, Contiki has a development environment 
that includes the Cooja network simulator (see Section 2.5.2). This simulator facilitates testing of 
applications. The evaluation considers the feasibility of the SMACK extension for authentication 
independent of the underlying hardware platform. However, benchmarks are used to understand how 
this authentication protocol performs in comparison with other potential alternatives when actually 
running on constrained devices. 

1.6 Structure of the thesis 
The thesis started with a chapter setting out the problem and goals to be addressed in this thesis 
project. Chapter 2 provides the background knowledge required to understand the topics discussed in 
the rest of this thesis. This includes technical background concerning existing protocols for 
authentication that could be used together with CoAP. Chapter 3 describes the design of SMACK and 
the details of how performing authenticating with it works. After this, the development environment 
used and information about how to develop for Contiki are given in Chapter 4. This same chapter 
describes the methodology and design methods used to create a C implementation of the SMACK 
protocol. The focus of this chapter is on several of the challenges encountered during the development 
process. Chapter 5 analyzes the results of the implementation described in the previous chapter and 
compares the proposed solution with alternatives. The thesis concludes in Chapter 6 with a summary 
of conclusions, suggestions for future work, and a description of some of the ethical, social, economic, 
sustainability, and other aspects of this thesis project. 
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2 Background 
This chapter contains background information concerning several concepts and tools used this project. 
Some of these concepts and tools are described in further detail in later chapters. A key aspect 
underlying this thesis project is the hardware of the constrained devices on which the authentication 
software is deployed. Another important topic is the software employed during the development and 
coding phases of this project. Several alternatives for implementing security on constrained devices 
exist. Some of these are the same protocols used on the Internet and some are protocols that have been 
adapted or even custom made to function better on constrained devices. The chapter concludes with a 
description of a number of different communications protocols and standards, as much of the thesis 
deals with these protocols. Details of these protocols are necessary in order to consider the solutions 
that have been chosen. 

2.1 Constrained Devices 
For the purpose of this thesis project, a constrained device is defined as a device that has limited 
resources in the form of hardware, such as memory, processing, and power. The available power is 
frequently limited capacity batteries. Furthermore, constrained devices often utilize networks with 
limited available bandwidth. Combining these factors means that memory usage, algorithm efficiency, 
and low bandwidth communications are important issues. As power consumption is reduced in sleep 
mode, these devices typically rely on rapidly transitioning to different levels of sleep when possible, 
thereby minimizing their battery power usage. Because some components draw more power than 
others do, it is especially important to optimize the power management of these components. The radio 
is normally the component that uses the most power and thus keeping it in sleep mode as much of the 
time as possible is quite important [8]. 

Sending data is more costly than doing calculations locally. Measurements by Madden et al. have 
shown that on some systems transmitting one bit is the equivalent of executing 800 instructions [9]. 
Because of this, the radio should be in sleep mode as much as possible and communications should be 
kept to a minimum. Often constrained devices are used as sensors or actuators, they generally have 
limited to no user interaction. This means that they are to a large extent autonomous, sending and 
receiving data only as necessary. Such M2M communication is different in character and pattern from 
user-induced communication. If some part of the system malfunctions or an attacker starts sending 
data to a node, then the node can be tricked into accepting incorrect data readings and the battery could 
be rapidly drained by keeping the radio constantly listening. In automated systems this might not be 
noticed until the battery is exhausted, unless the system is designed to inform a management systems 
of such an apparent attack. 

Figure 2-1 shows a typical example of a constrained device in the form of the Texas Instruments’ 
(TI) CC2538 board attached to a SmartRF board. This combination is frequently used for development 
purposes. This particular board has a maximum clock speed of 32 MHz [10]. There are constrained 
devices that are even more limited with regard to resources. For instance the Tmote Sky only has a 
8 MHz processor and 10 kB RAM [11], whereas the CC2538 has maximum of 32 kB of RAM 
(depending on the specific model of this chip). Typically, constrained devices clock the processor at a 
lower clock rate to reduce power consumption and because they have less demanding computational 
requirements, thus draining the battery at a slower rate than when clocking the processor at a high rate. 
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Moreover, it could decrease both the information that needs to be sent over the wireless link and 
reduce the computations necessary at the constrained device. However, this solution is outside the 
scope of this thesis project, hence it will not be addressed here, but remains for future work. 

2.7 IPsec 
Internet Protocol Security (IPsec) is a popular protocol for securing IP traffic with regard to 
confidentiality (by employing encryption), data integrity, and origin authentication. Its main purpose is 
to protect data in IP packets by defining the steps and protocols to achieve this. The protocol was first 
standardized by the Internet Engineering Task Force (IETF) in 1998 in RFC 2401 [36] and further 
updated in RFC 4301 [37]. This protocol is based upon earlier research protocols*, such as swIPe [38]. 
Some of these protocols had overly complex specifications [39] and hence it was decided that there 
was a need for a standardized and secure protocol that would take into account the benefits and lessons 
learned from the existing options at the time. 

One benefit of IPsec is that many different encryption algorithms are supported [37]. Furthermore, 
IPsec supports key management, session handling, replay protection, and more. IPsec defines a 
complete security infrastructure that can be used to deploy secure communication. IPsec is a well-
tested protocol that is widely used to realize Virtual Private Networks (VPN) [40]. Since IPsec is 
implemented at the network layer for both IPv4 and IPv6†, it can support any higher layer protocols, 
such as TCP or UDP. The advantage is that no higher layer protocol needs to be customized to work 
with IPsec; instead every higher layer protocol can run transparently over an IPsec security 
association. This is a strong point since it reduces the work needed for adding security to a network. 
Neither the devices themselves nor intermediary systems need any major modifications to enable 
IPsec. 

Some of the IPsec disadvantages include the fact that it is a quite complex system with many parts. 
The protocol is dynamic and can support a large number of configurable settings. Unfortunately, this 
large number of settings makes a complete implementation more difficult to create. The packet 
overhead for transmitting data is in the order of 50-80 bytes [42]. Performing the encryption and 
authentication steps also requires processing power. The amount of processing power depends on the 
chosen algorithm. Because of this IPsec may be impossible to implement on devices that are too 
constrained in terms of processing capacity or devices with severe limits on available electrical 
power [43]. The bandwidth overhead can also be a problem in low bandwidth networks, especially 
when small packets are frequently sent, thus making the overhead a significant part of the total data 
sent. 

2.8 Secure Real-time Protocol 
The Secure Real-time Protocol (SRTP) [44] addresses the case where there is a series of small 
amounts of data that need to be transmitted securely. It supports confidentiality, authentication 
(optionally), and replay detection - while adding only four bytes to the size of a Real-Time Protocol 
(RTP) [45] message. It does this by taking advantage of the RTP packet already including a sequence 
number and timestamp. Note that SRTP can tolerate packet loss. The protocol uses AES for encryption 
and a Hash-based Message Authentication Code (HMAC) based on the SHA1 hash function. Data 
confidentiality is realized by replacing the original RTP payload with an encrypted version. As for 
basing the HMAC on SHA1, even if some collisions or other security issues are found with SHA1, as 
is the case with MD5, this does not necessarily mean that an HMAC based on SHA1 will be 
compromised [46]. 

As mentioned above, the overhead compared to normal RTP traffic is very low. The only new 
fields defined are an optional field that identifies the master key used and a recommended field with 
authentication information. Fortunately, RTP already supports functionality typically needed for replay 
detection and mitigation of other common security flaws in the form of sequence numbers and 
timestamps. SRTP does not provide confidentiality to the RTP packet headers, the reason for this is to 

                                                      
* A list of some of this research can be found in the survey: http://web.mit.edu/tytso/www/ipsec/surv9703.html  
† Current standards specify that IPsec support should be implemented in any IPv6 nodes [41]. 



Background | 15 

 
 

allow header compression. If there is need to secure the packet headers, then the SRTP RFC 
recommends using another protocol, such as IPsec. 

Garg, Singh, and Tsai analyzed the security of SRTP and note that due to the use of HMAC-SHA1 
the protocol is susceptible to DoS attacks [47]. Because the HMAC calculation incurs overhead, 
flooding the receiver with SRTP packets can overwhelm it. The authors propose two different schemes 
to solve this problem. These two schemes combined are called SRTP+ and both are based upon the 
idea of adding another level of authentication that is cheaper to calculate. If a device is flooded with 
SRTP packets with incorrect HMAC values, the receiver utilizes a simpler protection method to 
quickly discard invalid packets. This additional layer imposes only a small overhead for legitimate 
traffic, but can avoid unnecessary processing in the case of DoS attacks. In comparison SMACK only 
needs to perform HMAC calculations for approximately every 16th packet (using the default 
configuration) rather than for every packet sent/received. 

SRTP+ Scheme 1 uses a shared seed for a pseudo-random number generator (PRNG) to provide 
authentication, both devices will generate the same values from the PRNG and thereby are able to 
confirm if a packet is authentic. For instance, the sender will transmit a message with the 10th output 
from the PRNG sequence as authentication and the receiver can confirm this by checking that the 10th 
value of its PRNG gives the same result. Since both of them use the same starting seed, the results will 
match if the message is authentic. The seeds have to be exchanged in a secure manner during a setup 
phase, before data transmission starts. 

SRTP+ Scheme 2 is even simpler and uses pre-computed numbers for authentication. The 
authentication values for the next N packets are periodically provided to the receiver. These value are 
encrypted and transmitted as part of a SRTP payload. After both parties share these same random 
numbers they are used as a one time key for each packet. The receiver checks if the incoming packet 
contains the next expected number and if so it accepts the packet. Each number is only used for one 
packet so the sender needs to keep supplying these numbers leading to a small increase in 
communication overhead. Test results show a speed improvement of at least 3.5 times for scheme 1 
and 8 times for scheme 2 in comparison to not using either of these schemes. 

2.9 Multimedia Internet KEYing (MIKEY) 
A common question for a security protocol is how to distribute or generate keys. The Multimedia 
Internet KEYing (MIKEY) [48] protocol is used to provide SRTP with session keys. One of its stated 
goals is to provide a key management system with end-to-end security. Other goals are simplicity, 
efficiency in terms of overhead and independence from the underlying protocols. A popular method 
for key distribution and management is the Internet Key Exchange (IKE) protocol (used by IPsec). 
However, as the MIKEY RFC [48] states, streaming data has special needs and needs a protocol better 
adapted to it. MIKEY is primarily intended for use with simple peer-to-peer connections or groups of 
small size. The system also supports a variety of scenarios, such as unicast, multicast, and many-to-
many communication. In contrast, IKE does not support multicast scenarios in a reasonable manner 
since each security association is between pairs of devices. In order to support multicast 
communication if n is the number of devices, then ௡(௡	ି	ଵ)ଶ  security associations will be necessary when 
using IKE. 

Another key point is that it should be possible to integrate MIKEY data in other protocols to avoid 
having to do MIKEY negotiation separately. Thus MIKEY should be included in the session 
establishment of other protocols as much as possible. How this can be accomplished is described in 
RFC 4567 where key management protocol support for Real Time Streaming Protocol (RTSP) and 
Session Description Protocol (SDP) among others are described [49]. RFC 4567 provides a framework 
describing how key management protocols can interact and carry their messages in RTSP or SDP 
traffic. Both RTSP and SDP are extended with new headers that support the required options for key 
management. Some important options added are an identifier that specifies the key management 
protocol used and a data field where whatever data the key management protocol wants to relay is 
placed. An important requirement of the key management protocol is that the initial step of the 
protocol must be possible to perform in a single request-response message exchange. MIKEY is 
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specifically mentioned in RFC 4567 and example scenarios where it is used are provided. MIKEY 
supports the previously mentioned requirement of needing few messages to initialize the shared keys. 
Security-wise a potential problem highlighted is that some protocols such as Session Initiation 
Protocol (SIP) utilize intermediate proxies. This can prevent the session setup traffic from being 
secured end-to-end. One implication of this is that an intermediary can intercept keys and use those to 
attack the encryption of the media stream created by the media delivery protocols. One solution to this 
is of course to use Secure/Multipurpose Internet Mail Extensions (S/MIME) to secure the SDP so that 
the proxies cannot see the MIKEY information. 

MIKEY uses AES in counter mode for encrypting the keys to be delivered, while authentication is 
provided by a HMAC based on SHA1. To create a secure communication session for distributing keys 
three methods are described: pre-shared keys, Diffie-Hellman key-exchange, and public-key 
encryption. For speed and efficiency the RFC recommends pre-shared keys, but notes that for larger 
systems this can be problematic. Public-key cryptography is more scalable, but requires a Public Key 
Infrastructure (PKI) to work optimally; in addition it is more resource consuming as symmetric 
encryption is faster than asymmetric. Diffie-Hellman key-exchange is more resource intensive than the 
previously mentioned methods and also requires PKI systems to ensure user authenticity and protect 
against man-in-the-middle (MITM) attacks. Several later RFCs add additional support for new 
methods to create a session and negotiate a common secret in addition to the three mentioned above. 

While the purpose of MIKEY is to distribute keys to systems, it still needs key information to be 
present in those systems, with the exception of Diffie-Hellman key-exchange where the end nodes 
generate the keys. The actual keys that MIKEY distributes to systems can be calculated either from 
pre-shared keys or a shared piece of data agreed upon by the devices during the initial MIKEY 
messages. Derivation of these keys is done with an HMAC based on SHA1. Timestamps are used to 
provide replay protection, which means that the clocks have to be synchronized. Clock 
synchronization is also used to reduce power consumption when using IEEE 802.15.4 and for WLANs 
operating in infrastructure mode the nodes also synchronize their clocks with the AP. To protect 
against replayed messages within the acceptable time window, a replay cache keeps track of the 
accepted messages that arrive in this window. A replay cache of 6 kB is assumed to be reasonable for 
most cases. This size is large for constrained devices as they may only have 10-50 kB of RAM. For 
extreme cases, a cache of up to 48 kB is mentioned in the MIKEY RFC [48] p. 31. In contrast 
SMACK requires only ~16 bytes for replay protection (using the default session length) as will be 
described in Section 3.6. 

2.10 DTLS 
Datagram Transport Layer Security (DTLS) is a protocol for encrypting UDP traffic based on the 
Transport Layer Security (TLS) [50] protocol, TLS is used for encryption of HTTP traffic, among 
other uses. DTLS was first presented in 2006 in RFC 4347 [51] and later updated in RFC 6347 [52]. In 
these RFCs, DTLS is presented as a series of deltas, specifying how and when it differs in 
implementation from TLS. The purpose of the protocol is to provide the same level of security that 
TLS provides to TCP traffic, but applied to UDP. Some of the common protocols used on the Internet 
such as Domain Name System (DNS) and many systems for Voice Over IP (VoIP) communication 
utilize UDP as their transport layer protocol. DNS has in the past been targeted by many attacks since 
it is a high value target. These attacks attempt to redirect users to fake websites by providing forged 
DNS entries. TLS does not support encrypting UDP traffic and because UDP cannot use the standard 
implementation of TLS, it therefore requires another method to achieve confidentiality and secure the 
user’s communication. 

There are some key differences between how DTLS and TLS functions. One main difference is 
that UDP does not have any built in functionality to ensure that packets are delivered to an application 
on the receiver in the correct order (as UDP lacks any concept of byte stream ordering). TCP uses 
sequence numbers and a request/acknowledgement scheme to ensure that bytes are reliably delivered 
and ordered correctly for delivery to the application layer, while UDP lacks this functionality [53]. 
This means that DTLS has to implement this functionality on top of UDP and do so at the application 
layer rather than at a lower layer in the TCP/IP stack. This is logical since DTLS must be self-
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contained and function without requiring any modifications to the lower layers. By reimplementing 
some of the functionality of TCP in DTLS the necessary benefits of TCP can be transferred to DTLS 
even though it is running over UDP. 

DTLS adds support for numbering and functionality to mitigate packet loss [51]. This is 
accomplished with sequence numbers in a similar fashion to TCP. DTLS also adds support for 
automatic packet retransmission, reordering, and replay detection. By combining all these features 
DTLS accomplishes what TCP and TLS together achieve. Some other considerations are that stream 
ciphers such as RC4 cannot be used with DTLS since they rely on the ordering of the data and make 
packets interdependent on each other, because of this stream ciphers are banned in DTLS [51] simply 
because the protocol would not function when using them. 

A potential security issue that has to be taken into account is DoS attacks, which can render the 
attacked device unresponsive. Because the source IP address of the device making a request is not 
verified an attacker can spoof messages and consume memory resources of the receiver by setting up 
fake DTLS sessions. To protect against this DTLS uses a concept called stateless cookies. These 
cookies force the sender to prove that it can both send and receive data on the IP address it is 
using [51], this greatly increases the difficulty of spoofing the source IP address. Apart from these 
changes, DTLS is very similar to TLS and this is a strong point since TLS is one of the most widely 
used security protocols on the modern Internet. This is also one of the main reasons DTLS is presented 
as deltas compared to the full scale TLS protocol, only parts of the implementation necessary to adapt 
the protocol to UDP need to be changed. As the TLS protocol itself is secure [54], as many parts as 
possible should be left unchanged. 

For UDP based traffic, such as CoAP, DTLS is a potential choice for protecting the traffic. 
However, there are issues with expensive cryptographic operations that have to be performed. This is 
especially important when the DTLS protocol is executing on constrained devices. A thesis by Stefan 
Jucker [55] explores the drawbacks and benefits of using DTLS with CoAP with a focus on the 
Californium library. Stefan Jucker found that DTLS is currently unsuitable for constrained 
devices [55], because the implementation uses too much memory and processing power to be 
appropriate for constrained devices. 

Another problem is the data overhead induced by using DTLS; since static length header fields are 
used the overhead can be significant. The most expensive parts of DTLS’s operation is session 
establishment. Running CoAP over DTLS can induce a delay of 40-130 ms and an overhead of 
29 bytes [55]. Additionally DTLS requires more messages to be sent to start a communication session 
than CoAP does. Establishing a session beforehand and reusing it shows much better results with a 
resulting delay of only 5 ms. However, because devices often go to sleep and communicate with many 
other devices simultaneously the DTLS handshake will have to be performed frequently. Especially in 
the case of sensor networks, one node can have many neighbors that it needs to communicate with 
simultaneously. It is noteworthy that some protocols such as MIKEY and SRTP (see Section 2.8) 
avoid this problem. In their case, the only additional cost is for the initial MIKEY key exchange and 
that can be done in one round trip plus the time for some local processing. 

2.11 Lithe: Lightweight Secure CoAP for the Internet of 
Things 

Lithe [56] proposes DTLS header compression for use with CoAP. Because DTLS was originally 
designed for reliable links with high bandwidth it is not ideal for constrained devices. DTLS 
introduces some overhead for each packet that it protects. On constrained networks, this extra 
overhead leads to additional radio usage. Lithe attempts to alleviate this problem by creating an 
integrated DTLS and CoAP system for the IoT. The goal of this solution is to reduce power 
consumption, while maintaining the end-to-end protection DTLS provides, through reduced packet 
sizes. 

Header compression for 6LoWPAN can compress the IPv6 headers and the UDP headers, while 
correctly dealing with the source/destination ports and checksum [32]. Lithe extends this functionality 
to the UDP payload by defining a new encoding type that allows the protocol to signal that the UDP 
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payload itself is also compressed. The UDP payload is assumed to be DTLS traffic and the targets of 
compression are the DTLS headers. The DTLS message types that have compression rules defined are 
Handshake, Record, ServerHello, and ClientHello messages. Some types are left uncompressed, as no 
fields suitable for compression are available in them, as is the case with the ServerHelloDone, 
ClientKeyExchange, and Finish messages. Fields that are important to maintain security such as the 
random-field that contains random data used for encryption purposes are left uncompressed and 
unaltered. 

Tests by Raza, et al. show a large decrease in overhead ranging from 14-100% depending on the 
message type. To achieve 100% savings Raza, et al. assume that some pre-shared information 
concerning certificate types, certificate authorities, and algorithms are available to the devices on the 
6LoWPAN network. This allows them to omit all fields in the CertificateRequest message. In addition 
to reduced overhead, the size of the implementation is small, requiring only 59.4 kB of ROM and 9.2 
kB RAM. Energy consumption is also reduced when using Lithe. As to round trip time, Lithe takes 
slightly longer than CoAP with DTLS in most scenarios. This shows that it is possible to reduce the 
overhead when using DTLS with CoAP in a power efficient manner without greatly increasing the 
round trip time of packets on the network. 

One specific problem mentioned by Raza, et al. is that if 6LoWPAN is forced to fragment a 
message due to its size the round trip time is greatly increased. This effect can only be seen when 
using CoAP in combination with DTLS, as this does not happen when using CoAP with compression 
enabled or CoAP alone. One of the design goals of the CoAP protocol is precisely to avoid 
fragmentation as much as possible [12]. However, when DTLS is enabled the extra overhead added by 
the DTLS header information can cause fragmentation. Lithe solves this by compressing enough of the 
DTLS headers that fragmenting packets can be avoided to a great extent, specifically 64 bytes of extra 
payload is available before a packet has to be fragmented compared to uncompressed DTLS. Lithe 
also saves power by reducing radio communication since a packet that is fragmented in two 
transmissions will utilized the radio more compared to transmitting the same packet unfragmented. 

2.12 Analysis of Existing Internet Protocols for the Internet 
of Things 

In 2011, Heer, et al. did an analysis of existing Internet protocols and their applicability to IoT [57]. In 
their paper they consider limitations of traditional Internet protocols and what special challenges arise 
for IoT. The following paragraphs cover some of the challenges with regards to security that they 
identified for IoT. 

One major issue and a defining characteristic of IoT is that both the network itself and the devices 
have very limited resources in terms of bandwidth, memory, Central Processing Unit (CPU) 
capabilities, and available electrical power. Because of this some technologies such as public key 
encryption, which is very resources intensive, are less suited to the IoT. Furthermore, the small link 
MTU size before fragmentation of packets occurs introduces the possibility of attacks and 
performance loss due to fragmentation. Their paper also notes that assumptions cannot be made about 
the power usage of a specific protocol unless an implementation is actually made for specific IoT 
devices. Because of the limited resources, the susceptibility of IoT devices to DoS attacks is 
heightened. When resources are more limited, exhausting them is easier and occurs more quickly than 
for conventional mains power computer systems. The main targets of exhaustion are battery power and 
RAM. Protocols such as IKEv2 and DTLS avoid creating state for a connection until the address of the 
other party has been verified. This can protect against DoS attacks when an attacker uses a spoofed IP 
address as the source IP in an attack. By not creating state until the connection has been verified makes 
the process of creating countless spurious connections made more difficult -- as it puts added 
constraints on the source of the connection. 

Another issue is that interconnecting the IoT with the Internet can interfere with end-to-end 
security. When security protocols protect header information of packets, then these headers cannot 
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easily be rewritten or modified by gateways (when needed)*. One proposed solution is to share keys 
with the gateway, however this weakens the system’s security. Another option is to use the same 
packet format on the IoT and the Internet, thus avoiding the need for rewriting packets - although this 
can reduce performance in the IoT. A third option is to only protect specific parts of a packet and leave 
other parts that can be modified, thus an appropriate tradeoff between security and performance is 
important. Finally, the last alternative mentioned is to use advanced MACs that allow for some 
transformation of messages without breaking integrity, but this solution is more complex and difficult 
to use for encrypted data. 

Key distribution and defining identities for each device is another challenge. For instance, one way 
this can be done is in a distributed way is for devices to form ad hoc security associations and share 
keys as needed. Another option is to have a centralized system that distributes identity information and 
keys to devices, but a drawback of this is the introduction of a single point of failure. Distributing 
certificates and bootstrapping information can be more cumbersome in the case of constrained device 
and networks, as certificates and keys can be relatively large. Privacy issues should also be considered, 
some protocols such as DTLS allow the client to remain anonymous by requiring authentication only 
of the server. However, just as in the case of TLS authenticating only one party can lead to MITM 
attacks. Despite this there is also an advantage in allowing one-way authentication as the server-client 
relationship means that it is more common to have a trusted server and unknown clients that must be 
authenticated to gain access. 

In conclusion, Heer, et al. emphasize that solutions should scale from small to large scale 
networks. Additionally, they note that is important to consider not only end-to-end security solutions, 
but also consider systems that will work well when securing communication for larger groups. Which 
layer to secure in the IoT remains important for researchers to consider as there are advantages to 
placing security at each layer of the network stack, but resource limitations make it difficult to secure 
all of the protocol layers. One specific concept that protocols working in the IoT should take into 
account is the need for providing security and sharing keys between layers. 

                                                      
* This is particularly an issue when using network address translation when using IPv4 addresses for IoT devices. 
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3 SMACK 
The Short Message Authentication ChecK (SMACK) is a proposed security extension to CoAP. This 
protocol adds a method for lightweight authentication of messages to CoAP. Its main goal is protection 
against battery exhaustion and denial of sleep attacks. Currently a proof of concept implementation 
exists written in Java by Marco Tiloca at SICS [58]. The specification of the SMACK extension will 
be used to create a C version that extends the Erbium CoAP implementation on Contiki. SMACK 
requires some modifications to function well on constrained devices. Specifically, the memory 
footprint and processing power required should be reduced. SMACK also has to be adapted to fit with 
the REST model that Contiki uses to implement protocols such as CoAP. 

SMACK is an attempt to create a robust and lightweight authentication extension to CoAP. The 
current Java prototype implementation of SMACK is written on top of the Californium library. The 
current implementation functions on full feature devices, but needs to be adapted and implemented in 
C to run on constrained devices. Few of these constrained devices can run the Java runtime and 
execute Java programs, thus most constrained device require an implementation that uses a language 
operating closer to hardware, such as C. 

Technical details of the SMACK extension will be covered in later sections of this chapter. 
Briefly, SMACK relies on using a MAC to authenticate messages. This MAC acts a signature that is 
attached to each message sent, so that the receiver can verify that a given message is correctly 
authenticated and thus should be further processed Locally computing a matching MAC can be 
considered proof that the sender and receiver share some secret data (such as encryption keys) [59]. . A 
MAC is typically lightweight to compute and small in size. Calculating this MAC should be secure 
and resource efficient. 

3.1 Overview 
The main result of the SMACK extension to CoAP is to introduce a MAC in a section of the token 
field. The token field is specified in the CoAP header to differentiate between different communication 
sessions. The length of this field is variable and between 0-8 bytes. SMACK takes advantage of this 
field and the fact that it is already defined in the standard. This means that no new fields need to be 
defined and the necessary modifications to the protocol are small. In place of the token field SMACK 
introduces two subfields, one that serves the same purpose as the old token field named "request ID" 
and another field named "validity check" holds a MAC. By default, a 4 byte long token field is used 
which SMACK subdivides into a 2 byte Request ID subfield and a 2 byte Validity check subfield. 

Another advantage of reusing the token field is that SMACK is backwards compatible with CoAP 
devices that are not using this field. If a SMACK request is sent to a server that does not implement 
SMACK this server will place a copy of the received token in the outgoing packet and reply with that. 
This is the standard operating procedure for CoAP, using the same token used in the reply as was used 
for the request. Since the MAC is a part of the token field this overloading of the token field is 
completely transparent to devices that do not use the token field or implement the SMACK extension. 
However, devices that implement SMACK can differentiate between the sub-fields of the token field 
and can check the MAC. Splitting and reusing the token field in this way causes no additional 
problems since this field was optional from the beginning. Additionally, SMACK retains the same 
functionality the token field provides, but reduces the number of bytes that can be used for tokens by 2 
bytes as the MAC uses 2 of the 8 bytes available in the token field. 

The goal of SMACK is to ensure protection against DoS, specifically denial of sleep and battery 
exhaustion attacks - particularly for constrained devices. Protection against these types of attacks is 
important since most constrained devices have a very limited source of power. For example, if the 
device is battery powered then an attacker can drain the battery by sending request messages and 
thereby causing the radio and processor to use up all of the available battery power. In many cases, 
once the battery is drained it may never be replaced or replacing it can take a lot of time and effort. 
Sensor nodes in particular can be spread over an area and an individual node may never receive service 
or replacement of faulty parts. Additionally, nodes may be placed in difficult to reach places such that 
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The KDC distributes the initial seed and master key to all devices involved in a communication 
session. The master key is now fixed and can be used to generate further keys. The master key and the 
seed are used as input to a pseudo random function (PRF) to create a master session key that is valid 
for a particular global session. This master session key is subsequently used together with the initial 
message ID (MID) of a CoAP packet to generate a session key for a specific session. A session is 
identified by the initial MID of the first packet received. For CoAP this MID is a 16-bit value in the 
header that is transmitted and automatically incremented for each message sent. 

Furthermore, another instance of the session key is created in the form of Session keyJ. The 
purpose of this new session key is to provide greater variation in the keying material. All keys except 
A, B, and C are 32 bytes in length by default. Finally, keys A, B, and C are generated as shown in 
Table 3-1. These keys are used by SMACK to generate the MAC to be written in the CoAP header. 

Table 3-1: Generation of Keys A, B, C  

Key Size (byte) Bit range (big endian) Source 

A 2 0 to 15 Session Key 

B 2 16 to 31 Session Key 

C 2 Start: 16 × ((݅ + 2) ݀݋݉ 16 

Stop: 16 × ((݅ + 2) ݀݋݉ 16) + 15 

Session KeyJ i	 = 	MID. J = 	 ୧ାଶଵ଺  

 

Keys A and B are generated in a straight forward fashion by simply taking a fixed segment of the 
Session Key. However, key C is generated from the constantly changing Session KeyJ. The choice of 
which particular Session KeyJ and which parts of it are to be used is determined by the message ID of 
the CoAP packet in question. For instance if the packet has MID 53, then the Session KeyJ used is 
Session Key number 3 and bits 112-127 of Session Key3 are used to create key C. Rotating the Session 
KeyJ and selecting different parts of it increases security because the same key is not used more than 
one packet. In this way, a new key C will be used for each packet. The cycle time of Session KeyJ 
depends on the output from the PRF, if there is a case where continuously taking the initial Session 
Key plus the current Session KeyJ as input to the PRF at some point loops, the same Session KeyJ will 
be generated. 

3.3 Pseudo Random Function 
The keys themselves rely heavily on a PRF to generate good key material. A good PRF will generate 
statistically random data no matter what input material is provided [60]. This means that a small 
change in the input material to a PRF will result in vastly different output. Ideally there should be no 
discernable relationship whatsoever between the input and output of a PRF. 

There are different ways to implement a PRF; the method chosen for SMACK is to use the 
SHA256 cryptographic hash function as its base. Hash functions provide fixed length output values 
calculated from the variable data they operate on. Typically, hashes are used to verify the integrity of 
data or as means of storing passwords. The benefit of hash functions is that they are very difficult to 
invert, meaning that if the hash is provided, then finding the original input data is hard. In practice, 
attacking hash functions is typically based upon testing variations of the input data until the desired 
hash is found. When the input is small, for example a short poorly selected password, then the original 
data can often be found from a hash. SHA256 is a hash algorithm created by the United States of 
America’s National Security Agency (NSA). It provides an output digest of 256 bits. Many other hash 
functions such as Message Digest 5 (MD5) have known security vulnerabilities [61]. Currently, 
SHA256 is considered a more secure hash function than MD5. 

The HMAC chosen by SMACK is the same as implemented by the TLS protocol [50]. This 
HMAC is also used in other protocols, such as IPsec and DTLS. The HMAC specification is given in 
RFC 2104 [46] and is a commonly used and standardized mechanism for message authentication. The 
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original HMAC was first described in a 1996 paper by Bellare, Canetti, and Krawczyk [62] who also 
authored RFC 2104. 

The SHA256 hash is used to implement a HMAC. A HMAC is a way to adapt hash functions to 
provide cryptographic security. In essence, a specific piece of data is hashed together with a key in 
several steps in order to increase the effort needed to reverse the function. The benefit of a HMAC is 
that data can be authenticated by using a specific key as one of the inputs to the function. For a normal 
hash function the output is always the same for a specific input, however since a HMAC uses the key 
as an additional input the output depends upon both the data and the key. 

An HMAC can be used to check if some portion of the data has been modified or not. If the parties 
share a key, then they calculate the HMAC of the data with this key both before transmission and after 
reception. If the HMAC of the received message matches the expected value then the data has not been 
modified and can be considered authentic. If the HMAC differs from the expected value, then the data 
(or key) must have changed. An attacker cannot easily modify the data and recalculate the HMAC, as 
would be the case if a simple hash function was used, because the correct key is needed to generate a 
valid HMAC. If the key is well chosen, then an HMAC is a strong method for authenticating data. For 
this implementation of SMACK, it is up to the user to select a good Master Key that the rest of the 
keys used will be generated from. This key can be distributed by a KDC or preprogrammed into the 
devices. As the master key is 32 bytes long it will be difficult to recover this key -- assuming the 
choice of key is sufficiently random. 

SMACK implements a PRF using a HMAC based on the SHA256 hash function. This PRF takes 
two values as input: a secret key and some arbitrary data to generate some output data. The main 
purpose of the PRF is as a wrapper to the HMAC to allow outputs of arbitrary length. To accomplish 
this it simply uses the HMAC multiple times according to the desired output length. Since SMACK by 
default uses a key length of 256 bits, the PRF only has to execute the HMAC once as the output from 
the HMAC is the same length as the hash function being used (and SHA256 has a 256 bit output). The 
PRF used by SMACK is similar in functionality to the PRF used by TLS. 

The PRF is used to generate sub-keys derived from the main master key. For every new session, a 
new key is generated using the PRF from the master session key and the initial message ID of this 
particular session, as provided by a KDC or for the implementation described in this thesis the KDC is 
emulated in software. Furthermore, the Session KeyJ is continuously refreshed by executing the PRF 
with the Session Key and last used Session KeyJ as input. In this way the future values of Session KeyJ 
rely on its previous iterations. Because the MID will wrap around to zero after 216 messages it is 
necessary to also rotate and change the Master Key after 65 536 messages have been exchanged 
between the devices. How this is best done is an open question, but it could be done by using a KDC 
or other methods of key distribution. 

3.4 Configuration values 
Most values used by SMACK are possibly to modify and dynamically change to provide adaptability 
for different situations and requirements. For example, some hardware can have lower processing 
power or less memory available and some networks can have special characteristics. There can also be 
different security requirements and tradeoffs. Table 3-2 shows the default settings that SMACK uses 
for some key values. 

The default size of the Token field in the CoAP header is 4 bytes, of these 2 bytes are the Validity 
Check (MAC) and 2 bytes are for the Request ID (i.e., the same purpose as the original Token field). 
The default key size was chosen to be 32 bytes to function smoothly with the hash and HMAC 
functions used that generate 32 byte outputs (thus the HMAC is used only once to generate all 32 
bytes). 
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Table 3-2: SMACK key values 

Name Value Description 

SMACK_AUTH_FIELD_SIZE 4 Size in bytes of Token field in CoAP 
header 

SMACK_VALIDITY_FIELD_SIZE 2 Size in bytes of Validity Check subfield 

SMACK_GALOIS_FIELD_SIZE 16 Field size in bits used for Galois 
calculations 

SMACK_KEY_SIZE 32 Key size in bytes of SMACK in bytes (256 
bits) 

SMACK_PORTION_SIZE 16 Controls how often Session KeyJ 
recalculates (in this case every 16th packet) 

SMACK_SESSION_LENGTH 127 Length of a SMACK session (packets) 

SMACK_ACCEPTANCE_WINDOW_SIZE 50 Upper limit for new session initial MID 
(multiplicative factor for the session size) 

 

3.5 Galois fields 
Galois field mathematics is used to calculate the value placed in the Validity Check subfield. Galois 
fields, also called finite fields, are defined as sets of numbers in which mathematical operations on the 
members of the set results in another member of the set [63]. SMACK uses a field size of 16, the range 
of such a Galois field is 0 .. 216 -1 (i.e., 0 .. 65 535). For example, when using a Galois field of 16 bits 
the following calculations hold true: 260	 × 	260 = 4123	 and 60000 + 20000 = 42048  as the 
results of the calculations are also members of the set and remain within the range of the field. 

Simple addition in a Galois field is performed using the exclusive or logical function	ܽ ⊕ ܾ = ܿ. 
Multiplication uses algorithms based on primitive polynomials. Each field size can have many 
potential primitive polynomials. In essence, a primitive polynomial is an irreducible polynomial, the 
equivalent to a prime number but for polynomials. Multiplication in a Galois field is performed 
modulo the primitive polynomial used for the specific field size. It is a more complex operation 
compared to simple addition. 

Often Galois field multiplication is performed using pre-computed lookup tables as multiplication 
is quite costly processing wise [64]. Many of the available implementations of Galois field 
mathematics in code rely on dynamically generating lookup tables that are loaded into RAM to assist 
with speeding up calculations. Since SMACK is developed for constrained devices, it cannot fully 
utilize such lookup table functionality for speeding up the calculations due to memory constraints.  
Many constrained devices have very limited RAM available and cannot afford large data structures 
permanently being loaded into memory. An alternative approach is saving pre-computed tables to the 
FLASH memory of the device, although this can introduce latency and the size required can still be 
too large for constrained devices. For instance, the code implementing Galois field calculations relying 
on pre-computed tables in James S. Plank’s library [65] requires at least 1 MB of space because the 
code that creates the tables is the following: malloc(sizeof(int)*nw[w]) and  
malloc(sizeof(int)*nw[w]*3) where a field size of 16 gives nw[16] = 216 and an integer uses 4 bytes of 
space. 

SMACK pre-computes certain values and utilizes a simple lookup table for some operations. 
SMACK has support for Galois field sizes from 1 to 16 and the primitive polynomials for each are 
stored in a table. The size of this table is 36 bytes. Using Galois field mathematics the three keys A, B, 
and C are used in addition to parts of the CoAP message header (m1, m2, and m3) that are included in 
the protection according to the following formula:  ܥܣܯ =	 (݉଴ + 	ܣ ×	݉ଵ + ଶܣ ×	݉ଶ) × ܤ +  ܥ
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SMACK implements replay protection in a simple and straight forward manner. First, when a 
message arrives SMACK checks whether it is a part of an existing session or not. This can be done by 
simply comparing the MID of the incoming request with the initial MID + session length for all 
current sessions. If the MID of the incoming request falls in the MID range of an existing session, then 
this message is accepted. If it is not part of an existing session, there are two cases. The MID is either 
evenly divisible by the session length, in this case a new session can be created, otherwise the message 
is discarded. The exact Initial MID that is assigned to a session can be provided by a KDC to ensure 
that both sender and receiver agree on only one allowed Initial MID. 

For each individual session, a bit array is kept of the messages that have been received. With the 
default session length of 127, this array will be ቒଵଶ଻଼ ቓ = 16 bytes long. When a message arrives the 
corresponding MID in the array is marked as received. If a message with ID 439 comes in this will 
mark bit 439	݉݀݋	127	 = 	58 in the bit array. The benefit of this solution is that the memory required 
is small and could be further reduced by reducing the session length. For a graphical representation of 
SMACK packet processing and replay protection see Figure 3-3. This figure clarifies the processing 
for several different potential scenarios. 

One drawback of the method described so far is that a limited form of replay attack is possible. It 
is not possible to reuse a message for the same session (or for different sessions), however when the 
message ID loops around and starts over a message with an old message ID can be reused. For 
instance an attacker can capture a packet with message ID 200, wait 65 535 (216) messages and then 
retransmit it. The reason this is possible is that the maximum message ID is 65 535, after that value is 
reached the count restarts at 0. Now new sessions will be created again and the message IDs will not 
be marked as read. This limits an attacker to only replaying a message once until waiting for the 
message ID to start over again. This problem has been solved in the SMACK implementation by 
simply changing the master key every 65 535 messages. The burden of this is not too large since a 
large number of packets can be transmitted before having to change keys. 

The following section will elaborate more on the functionality of the protocol in an example 
scenario. 
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3.7 Example scenario 
This section and Figure 3-4 describe a possible setup and example of how the SMACK protocol will 
be used to extend CoAP to providie authentication for a client communicating with a server device. 
There are three devices in the network: a server, a client, and a KDC. The following steps prepare the 
devices and then exchange authenticated messages from the client to the server: 

1. The client requests a Master Session Key and an Initial MID from the KDC. 

2. The client receives Master Session Key and an Initial MID from the KDC. 

3. The client creates the Session Key and Session KeyJ from the Master Session Key and Initial 
MID using the PRF. Then it generates keys A, B, and C for the first packet. For future packets 
the key C generated depends on the amount of packets transmitted within this session since 
Session KeyJ and the section of it used for key C depends on the MID of a packet. 

4. The client uses keys A, B, and C to calculate a MAC for the first packet to be sent. This MAC 
is placed in the last 2 bytes of the Token field of the CoAP header. The first 2 bytes are filled 
with a random value to provide the original functionality of the Token field (i.e., to identify a 
sequence of messages). 

5. The client transmits the first CoAP packet protected with SMACK. 

6. The server requests a Master Session Key and an Initial MID from the KDC. 

7. The server receives a Master Session Key and an Initial MID from the KDC. 

8. The server receives a packet and first checks if it matches the Initial MID received from the 
KDC. If so the server generates Session Key, Session KeyJ, and the three keys A, B, & C. 

9. The server then uses the same algorithm to calculate a MAC for the packet and checks if it 
matches the one included in the packet. If it does a session is created and the packet is 
accepted and marked as received, if not it is discarded. 

10. The server replies to the message. SMACK can function either as one-way or two-way 
authentication meaning the server can choose to embed a MAC or not. 

11. Since the client has incremented the amount of transmitted packets key C is recalculated from 
Session KeyJ and if needed a new Session KeyJ is created from the Session Key and the 
current Session KeyJ using the PRF. That will happen every time (i + 2) / 16 is incremented by 
a whole digit, meaning every 16th packet. 

12. The client now uses the keys A, B, and C to create a MAC for the second packet to be sent. 

13. The client transmits the packet. 

14. The server receives the packet and calculates the Initial MID for this session from the 
incoming packet’s MID. This can be done by taking the MID – (MID mod 
SMACK_SESSION_LENGTH). Then the server checks if there is an active session matching 
that Initial MID, if not the packet is discarded. Next the server checks that this MID has not 
been previously received (by checking the bitmap of received packets), if it has it is discarded. 
If it has not been previously received the MAC is checked by first recalculating key C (and 
Session KeyJ if needed) and then using the three keys A, B, & C to check the MAC. 

Whenever all the packets with MID starting from base MID up to base MID + 
SMACK_SESSION_LENGTH have been received a session is deleted. If the incoming MID 
of a packet is more than SMACK_ACCEPTANCE_WINDOW_SIZE * 
SMACK_SESSION_LENGTH over the lowest base MID of an active session the packet is 
rejected. 

New sessions will be created by the server when packets with MID that fall on Initial MID + 
SMACK_SESSION_SIZE * n are received assuming they are not duplicates and the session 
does not already exist. In a real scenario the KDC may be contacted to get new values for 
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4 Method 
The practical work performed as part of this thesis project extends the code of the CoAP 
implementation in Contiki, named Erbium, to add support for the SMACK extension. The current 
version of Contiki included with the Instant Contiki VMware image has an implementation of CoAP 
that supports the CoAP version 13 draft. Because this version was the latest available with the Contiki 
development environment at the start of the project, this version was used for the SMACK 
implementation. Erbium is written in C and can be used by Contiki applications if they wish to 
communicate using CoAP. This C code was modified to provide SMACK functionality for new and 
existing CoAP implementations. As mentioned in Section 2.5.2, the Cooja simulator and other tools 
are available to facilitate developing software on Contiki. This simplified the code development. 
Additionally, Cooja was used as a simulator to test code before deploying it. 

The software development method used was incremental development, thus the SMACK 
functionality was systematically added to the existing system. First, the MAC calculation was included 
in the client code. Next the server was modified to check the MAC before accepting a message. The 
client could be fully developed before creating the server, as a SMACK client can interact with a 
non-SMACK server. The existing Java implementation was used as a baseline for creating the C 
version. Furthermore, Marco Tiloca at SICS who developed the Java version, was available for 
discussion and questions regarding his implementation. However, it was necessary to make major 
modifications and design changes for the C version, as this version needs to function with the existing 
CoAP code in Contiki. 

The main issue when working with the SMACK protocol was that only a Java implementation 
existed. While this is sufficient for testing on hardware that can support the Java runtime, since the 
main purpose of SMACK is to solve issues with constrained devices having only a Java version is not 
sufficient. A version in C, or another low-level language, is necessary to evaluate the solution on 
actual constrained devices. Contiki was chosen as the operating systems as it is common and supported 
on many different types of constrained devices [7]. Additionally, Contiki was originally developed at 
SICS where this thesis project was performed. 

Having an implementation that functions with Contiki allowed an evaluation of the SMACK 
solution on many different types of constrained devices. These evaluations are described in the next 
chapter. 

4.1 Hardware 
The main board that was used for evaluation and testing in this project is the Texas Instruments 
CC2538 board, specifically the CC2538 evaluation version. The board is shown in Figure 2-1 on page 
6. Some of this board’s key specifications according to its data sheet are [67]: 

• ARM Cortex M3 Processor – 32MHz top clock speed 

• 512 kB FLASH memory 

• 32 kB RAM 

• Support for several low power modes 

• AES-128/256, SHA2 Hardware Encryption Engine 

• 2.4 GHz IEEE 802.15.4 transceiver 

The implementation was purposely kept general in order for it to function on as many of the 
devices that Contiki supports as possible. These devices have varying properties and varying levels of 
support for different low-level functions. Therefore, the SMACK implementation avoids using any 
board specific functionality and tries to be a general C program that can be run on as many devices as 
possible. This means that this implementation does not take advantage of the AES-128/256 and SHA2 
Hardware Encryption Engine, this is left for future work. 
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The particular CC2538 board used for the experiment was set to run at 16 MHz. According to the 
data sheet the values in Table 4-1 can be found or calculated for the CC2538 boards [67]. 

Table 4-1: CC2538 test hardware key values 

Name Description Value 

Voltage Voltage board runs on 3 volts 

Radio I_RX Current drain for radio receive 20 mA 

Radio I_TX Current drain for radio transmit 24 mA 

P_TX Power use for radio transmit 72 mW 

P_RX Power use for radio receive 60 mW 

CPU Current drain for CPU 7 mA 

P_CPU Power use for CPU 21 mW 

Real Time Clock (RTC)  Clock tick rate 32768 ticks/second 
 

4.2 Software environment used for development 
Texas Instruments’ Code Composer Studio (CCS) version 5.5.0 was partially used as the development 
environment when writing C code. CCS is a full Integrated Development Environment (IDE) and 
includes extensive support for debugging. A large portion of the coding was also done using the Gedit 
text-editor under the Contiki development VMware-image. A simple text editor was sufficient since 
the code that actually needed to be edited was contained in a relatively few number of files. As code 
already existed for simple CoAP client/server applications and the actual implementation of the CoAP 
protocol this existing code was used for further development. In practice, the make-files and settings 
were already configured and ready for compilation of the code. The client required some modifications 
to make it deliver keys to the main CoAP-stack and the main work took place by modifying the 
implementation of CoAP that comes with Contiki. 

CCS was used for compiling and transferring the applications to the actual hardware. CCS not 
only comes with a development environment but also functionality for transferring software to 
constrained devices such as the CC2538 board. CCS can be used together with a USB or Joint Test 
Action Group (JTAG) interface* to transfer applications to a specific board for testing. When using a 
JTAG interface it is possible to do high level debugging using CCS.  

4.3 SMACK C implementation 
The process of creating the implementation of SMACK in C followed these steps: 

1. Understand the general structure and functionality of the Contiki operating system. 

2. Become familiar with the CoAP implementation in Contiki (Erbium) 

3. Implement client functionality, calculating and marking packets with MACs 

4. Implement a server which checks each incoming packet and verifies its MAC 

5. Perform functional testing to ensure that the code behaves correctly 

6. Perform performance testing to evaluate the use of SMACK with regard to the goals specified 
in Section 0. 

                                                      
* A JTAG interface implements the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. 
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The resulting implementation is currently not available for download as there still are papers and 
related work ongoing at SICS based on this code. However it will likely be released in the future when 
papers at SICS have been published.  

4.4 Energest 
Contiki includes a framework for measuring the time spent in different states by a particular 
application. This makes it possible to measure exactly how long a Contiki program spent executing 
instructions or how long the radio was turned on for listening. If some key values, such as operational 
voltage and current drain, are known they can be used together with the timing information to 
calculate the energy use of a specific operation. The benefit of using this tool is that measuring and 
calculating power consumption (by combing the measurements with the known values) is simplified. 

Using Energest is simple and requires adding only a few lines of code to an application. The 
results are given in units of clock ticks, but dividing these results by the number of ticks per second for 
a particular hardware device gives results in seconds. Table 4-2 shows the metrics that can be 
measured using Energest. The reliability of Energest has been evaluated in a report by Adam 
Dunkels [68] and his conclusions show that the testing framework adds 0.7% overhead in terms of 
computation time. Furthermore, the report covers practical testing comparing Energest to actual power 
readings from a board and shows that the estimated energy use follows the graph of the measured 
energy use to a high extent when looking at the specific points where samples are taken.  

Table 4-2: Energest metrics 

Name Description (all values are measured in clock ticks) 

ENERGEST_TYPE_CPU CPU time 

ENERGEST_TYPE_LPM Time in Low Power Mode (LPM) 

ENERGEST_TYPE_TRANSMIT Radio transmission time 

ENERGEST_TYPE_LISTEN Radio reception time 

 

 





Analysis | 35 

 
 

5 Analysis 
The analysis consists of four parts: functional evaluation, comparison of overhead between vanilla 
CoAP and CoAP with the SMACK extension, performance evaluation on CC2538 boards, and 
simulated testing on other constrained devices. The performance evaluations use actual hardware with 
data collected using Energest. The normal vanilla version of CoAP is compared to CoAP with the 
SMACK extension. The performance of each implementation is assessed in terms of latency and time 
taken processing messages. When it comes to code size SMACK added 55 kB to existing Contiki 
CoAP code (108 kB). 23.6 kB was for SHA functionality, 9.3 kB for HMAC and finally 22.1 kB for 
the SMACK core code. 

5.1 Functional Testing 
Functional testing was initially conducted using the Cooja network simulator that is included with the 
Instant Contiki development image. The main point of this testing was to first ensure that the 
implementation fulfills the basic functionality of the SMACK extension. This was accomplished in 
two ways. First the current Java SMACK client developed at SICS was used to interface with the 
simulated nodes running in Cooja and it was confirmed that the Java client could communicate 
correctly with the Cooja nodes. This means that the SMACK implementation on top of CoAP in 
Contiki was compatible with the external Java client and its implementation of SMACK. In addition, 
the traffic was analyzed using the Wireshark packet capture tool to confirm that the structure of the 
packets exchanged followed the SMACK protocol specification. This way of testing allowed testing of 
the SMACK server in C independent of the corresponding C client as a third party reference 
implementation could be used as a client to ensure that the C SMACK server meets the specifications 
before testing it with the developed SMACK client. 

The second test performed was to simulate both a server and a client node running in Cooja and 
check that they could communicate with each other using the SMACK extended CoAP. Because the 
previous test showed that the SMACK server implementation met the specifications, the next step was 
to test the SMACK client implemented during this thesis project. Consequently, the client was tested 
against a SMACK server, both running on simulated nodes in Cooja. Additionally, the traffic was 
monitored by looking at debugging output from the two nodes. Both nodes were stress tested by 
transmitting a large number of CoAP requests (up to 10 000) to ensure that the session handling and 
related code did not have any issues that would appear after prolonged communication. Testing MID 
rollover after 65 535 messages was not tested as issues with KDC and key renewal have to be 
researched further. Some issues were discovered where the client or server crashed after many packets 
had been exchanged. These issues were corrected by making modifications to the code, among other 
changes the size used for some session handling data structures were reduced to ensure that the 
memory would not overflow when there were multiple sessions. For the CC2538 boards a maximum 
of 4 sessions could be supported. However old sessions are automatically cleared when all MIDs for 
that session have been received or if needed to make room for a new session. New incoming sessions 
are prioritized over older potentially inactive ones. 

In addition, some testing was done to ensure that SMACK actually provides authentication of 
messages as it should. For instance, packets with incorrect MACs were sent and these packets were 
not accepted by a server implementing the SMACK extension. If the MAC calculated by the server 
from the contents of the packet does not match the MAC embedded by the client in the packet, then 
the message was correctly discarded. This was easily confirmed both by debug output from the server 
and monitoring the network using Wireshark. Basic replay protection was also tested and replayed 
packets were simply ignored as they are already marked as received in the bit map keeping track of 
packets within a session.  
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5.2 Comparison of packet overhead 
In the case of SMACK, the number of packets required to initialize a communication session remains 
the same as for CoAP, except for communication with the KDC. Because SMACK has to receive keys 
there is periodically extra traffic generated for this. This implementation uses a KDC simulated in 
software, but a real setup would need some extra packets to exchange data with the KDC. One packet 
in each direction is sufficient for the KDC and a device to exchange the necessary information before a 
session starts. Ideally, the KDC should be close to the device or keys can be pre-shared between 
devices. It is advantageous to have the KDC close to a device to reduce latency in communicating 
keys. There is no handshake or other setup data exchanged between the two devices communicating 
using the SMACK extension, the MAC is simply added to each message by the transmitter and 
checked at the receiver.  

As far as communication overhead is concerned SMACK does not increase the size of the packets 
exchanged. This can be seen by comparing a CoAP packet protected with SMACK and a vanilla 
CoAP packet, as both include the Token field (with a variable size of 0-8 bytes). Many 
implementations of CoAP use a 4 byte token. SMACK also uses 4 bytes for the Token field; however, 
it splits it into two subfields one of which contains a MAC and the other retains the same purpose as 
the original Token field. SMACK uses an existing field of the CoAP header to include the MAC it 
calculates for each packet. The great advantage of this is that the protocol does not have to be modified 
nor does this add any extra overhead compared to vanilla CoAP traffic. In addition to that a request 
protected with SMACK is backwards compatible with vanilla CoAP since the contents of the Token 
field will be parsed as if it contained a normal 4 byte token and the subfield containing the MAC is not 
parsed as such by a vanilla CoAP server. If SMACK is enabled on receiver and sender both devices 
have to agree on the same length for the Token field. In the case where only the client has SMACK 
enabled the length is not relevant since the server will simply mirror the token sent by the client. 
Finally if only the server is using SMACK it will reject messages from vanilla clients since they will 
not be including correct MAC values in the 2 reserved bytes of the Token field. 

5.3 Performance Testing 
Performance testing was initially performed using the hardware described in Section 4.1, i.e. a 
TI CC2538 board. Scenarios involving SMACK and vanilla CoAP were both evaluated. Using 
Energest the time in different states was measured (see Table 5-1 and Table 5-2) and the power 
consumption was calculated using power information from the data sheets of the board. 

The time it takes to perform the MAC calculation was measured both for steady-state operation 
and also for the first SMACK packet (that establishes a session and generates keys). The whole time 
taken from the stack receiving a CoAP packet to when it is delivered to the receiving application was 
measured. This was also done for both steady-state and initial transactions. As vanilla CoAP does not 
use a MAC the portion of the code calculating it was not tested for vanilla CoAP. Instead only steady-
state and initial transactions were compared. In practice, the different tests were accomplished by 
controlling where in the source code of the Contiki CoAP stack the Energest start and end 
measurements calls were placed. As mentioned Energest needs only a few lines at the start and stop of 
the blocks of code of interest to measure the number of clock ticks during which the different 
components were active. 

Table 5-1: SMACK measurements 

Start Stop State Name 

CoAP request reception CoAP request delivery to application 1st transaction A 

Right before MAC check Right after MAC check 1st transaction B 

CoAP request reception CoAP request delivery to application Steady-state C 

Right before MAC check Right after MAC check Steady-state D 
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Table 5-2: Vanilla CoAP measurements 

Start Stop State Name 

CoAP request reception CoAP request delivery to application 1st transaction E 

CoAP request reception CoAP request delivery to application Steady-state F 

 

The duration between initial request and reply was measured when using unmodified CoAP and 
compared to that of CoAP with SMACK. The detailed results from this testing can be seen in 
Appendix A. All values from Energest of LPM and TRANSMIT were zero. This is because low-
power mode was not enabled as the processor was performing calculations and it was not in a resting 
state. In addition to that the radio was listening for incoming traffic and not in transmit mode.  The 
actual time in seconds calculated from the ticks can be found by dividing the ticks by 32 768 since that 
is the frequency of the internal clock. To get the actual energy usage the values in Table 4-1 can be 
used. The formula used is the following: ܧ = 	 ஼ܲ௉௎ × ݕܿ݊݁ݑݍ݁ݎ݂	ܥܴܶݏ݇ܿ݅ݐ	ܷܲܥ + ோܲ௑ ×  ݕܿ݊݁ݑݍ݁ݎ݂	ܥܴܶݏ݇ܿ݅ݐ	ܰܧܶܵܫܮ

The data in Table 5-3 show an overview of the test results with a confidence interval of 95% applied to 
the values calculated.  

Table 5-3: Energy statistics 

Test Energy (µJ) 

95% confidence interval 

Client time (ms) 

95% confidence interval 

SMACK full request 
1st transaction (A) 

316.22 ±0.97 43.32 ±2.02 

SMACK MAC check 
1st transaction (B) 

313.00 ±0.87 44.75 ±1.74 

SMACK full request 
steady-state (C) 

49.04 ±0.74 29.47 ±0.44 

SMACK MAC check 
steady-state (D) 

45.73 ±0.83 29.02 ±0.30 

Vanilla CoAP full request 
1st transaction (E) 

5.44 ±0.41 40.31 ±1.47 

Vanilla CoAP full request 
steady-state (F) 

5.72 ±0.46 28.39 ±0.32 

 

5.4 Testing on other constrained devices 
Hardware wise the code was only tested on the CC2538 devices and confirmed to function on those 
boards. However, using Cooja the code was also tested in a simulated environment for the Z1 [69] and 
WiSMote [70] type boards. On those boards the code functions without problems and can be 
comprehensively tested from a networking and software point of view to the extent that is possible in a 
simulation. Because Cooja supports simulated network traffic and even makes it possible to connect to 
boards inside the simulation from the host computer the code could also be tested with the Java 
version of SMACK and the Californium CoAP implementation. This means that the code could be 
tested with the same tools, the same network requests, and same client-side code used for the testing 
on the CC2538 hardware. 

5.5 Chapter summary 
From the packet overhead point of view SMACK does not add any additional packet overhead beyond 
what vanilla CoAP utilizes. However, SMACK adds some extra packets for initializing 
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communication due to the communications with a KDC that distributes keying material. Initializing 
SMACK communication uses significantly more energy compared to a vanilla CoAP request. Even in 
steady-state communication SMACK increases the energy usage of the constrained device. A client 
using SMACK to communicate with a server does not experience any significant slowdown; as 
requests using SMACK compared to vanilla CoAP experience at most only a few milliseconds of extra 
latency. Security wise SMACK provides authentication of messages and ensures that packets with an 
incorrect MAC are not accepted. An incorrect MAC can be both due to a packet being modified in 
transit or having the wrong keys used for the MAC calculation. 
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6 Conclusions and Future work 
This chapter contains the conclusions drawn from the work performed during this thesis project. It also 
covers interesting aspects that can be explored in the future and suggests some of the best directions to 
continue work on this problem. There are some aspects that were outside the scope of this report and 
also some aspects that were not investigated further due to the bounded duration of this thesis project. 
Finally, this chapter also includes some reflections regarding ethical, environmental, and social aspects 
of this work. These issues should also be taken into account when considering how to proceed with 
this topic. These considerations are important to ensure that the work done has value and is a good 
place to invest research resources as compared to other potential solutions and areas. 

6.1 Conclusions 
When comparing SMACK to the technologies described in Chapter 2 and elsewhere one clear benefit 
of SMACK compared to other solutions is its low overhead. For comparison, the “CoAP security 
options” proposed by Yegin adds up to 30 bytes of overhead per packet which may be unacceptable in 
constrained networks. By reusing parts of the CoAP header, a MAC could be added without expanding 
the packet’s size. SMACK requires limited memory for replay protection, only using one bit per 
packet in a session. As a result, a session size of 127 requires 16 bytes for replay protection. Another 
benefit of SMACK is that it provides end-to-end security in contrast to layer 2 security solutions, such 
as IEEE 802.15.4. Although there are also drawbacks to this method, as it is not able to protect lower 
layer headers. 

SMACK requires more energy compared to vanilla CoAP. This is not entirely surprising as 
additional calculations, in the form of the MAC calculation, are added as compared to vanilla CoAP. 
An interesting factor is how SMACK compares in resource use to other alternatives. As mentioned in 
Section 2.10 a paper found DTLS to be unsuitable for constrained devices due to its high resource use. 
However, in reality DTLS is currently used for securing communication on constrained devices and it 
is the recommended option for adding security to CoAP. Many other solutions such as SRTP are more 
costly when it comes to calculations required. For instance SRTP requires one HMAC calculation for 
each packet while SMACK only requires one every 16th packet (per default). SMACK performs a full 
HMAC calculation for every 16th packet and instead does the more lightweight Galois calculation of 
the MAC for each packet. This means that the processing induced by HMAC calculations will be 
significantly less in the case of SMACK, thereby saving some computational resources which can 
translate into saving power. 

Another result of using SMACK is that it enables a device to identify unsolicited traffic that is not 
properly authenticated. This gives the option of rejecting this traffic and possibly saving resources. In 
more advanced attacks where computationally expensive operations can be triggered on a host the 
protection SMACK affords can be useful even though it adds some computations as compared to 
vanilla CoAP. Further development of SMACK and possibly utilizing hardware encryption engines 
can reduce the power consumed in this authentication. In addition, using SMACK and having the 
ability to identify unauthenticated messages allows deploying proactive strategies. For instance, the 
attacker can be blocked at an earlier hop or the listening device can instruct the radio to use a different 
frequency or stop listening entirely. Compared to vanilla CoAP using SMACK means a node can 
distinguish between incoming legitimate messages and spurious ones. 

The main goal of implementing a version of the SMACK extension using C for the Contiki 
platform was accomplished. In addition, the implementation was successfully tested both on the Cooja 
simulator for various device as well as on CC2538 boards. The implementation was experimentally 
evaluated on these boards and compared to the vanilla version of CoAP. Even though a Java version of 
SMACK existed, a new implementation had to be written from scratch to fit into the architecture used 
to implement CoAP on Contiki. C is sufficiently different from Java that a complete rewrite was 
necessary. Different existing options for authentication and security on the IoT were described and 
their various benefits and drawbacks were described. Some further testing in practical experiments on 
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other hardware, testing with an attacker, and experimentally evaluating alternative security solutions 
are interesting avenues but were considered future work. 

Developing software on Contiki and adapting to the difference when writing code for constrained 
devices can take some time. For instance, testing the code on actual hardware can be a laborious 
procedure since the code has to be compiled and transferred to the memory of the boards. For the 
CC2538 platform the procedure of compiling and transferring an application to the hardware (the test 
boards) can take 5 minutes. Unfortunately, many of the development tools for theses device are 
lacking in functionality and polish. As a result, the best approach is to test and develop code using a 
simulator, such as Cooja. However, in some cases the specific board type being used does not exist in 
Cooja, so testing will have to use a different simulated board which can cause additional problems. 
However, it is important to periodically test the application on actual hardware to ensure that it 
actually functions as it should. The Cooja simulator is good, but unfortunately some inconsistencies 
can appear between real world performance and the simulation. Debugging support in Cooja is lacking 
and problems in the code can cause it to crash. 

6.2 Future work 
One interesting aspect for future work is to attempt to mitigate cases when the radio is simply 
overwhelmed with traffic. In these cases, it might be appropriate to simply power down the radio and 
ignore all traffic for a fixed period of time. If a device believes that it is under attack, then powering 
down the radio avoids using any power for receiving radio signals and parsing of messages. Using the 
SMACK extension allows the node to detect some forms of DoS attacks and initiate countermeasures. 
For example, a device could have a rule that when 100 packets with an invalid MAC have been 
received the radio should be powered down for 1 hour. Of course, this leads to a very simple denial of 
service attack, where the attacker simply sends many invalid packets to cause the device to power 
down its radio for an hour – thus preventing the device from carrying out its actual purpose for 
legitimate users. Alternatively, a device could stop listening to a specific frequency, network interface, 
or transmitter. However, in practice the number of frequencies that the device can operate in is limited 
and the attacker can utilize another address to continue the attack. 

Of course, the rule for when to power down or stop listening to a malicious transmitter needs to be 
carefully thought out and a study would need to be done to find an appropriate rule. Since powering 
down the radio means that no messages will be received and the device will be non-functional for a 
period of time, this has to be weighed against the potential benefits of doing so. For an individual 
sensor node powering down the radio conserves battery power (and thereby enables the continued 
operation of the node at some future time) which may be better than succumbing to an attack and 
permanently stop functioning. Future research should address the many complex tradeoffs that exist. 
How to prioritize degrees of functionality versus operating lifetime remains an open question. 

Another area to investigate is to evaluate different scenarios with an attacker in the network. 
Ensuring that legitimate clients can access a service while it is under attack is important. Research 
should examine how this can be ensured and to what extent SMACK provides this capability. The tests 
done as part of this thesis project only show SMACK functioning with a basic client server setup 
without an adversary. Adversaries can employ different tactics to discover which methods of attack are 
the most effective at bypassing SMACK’s protection. Ideally, SMACK could be adapted to provide 
better protection and countermeasures against the most successful attack strategies. Evaluating 
SMACK against real attacks and strategies is important for SMACK to become a more robust and 
reliable mechanism. Advanced attacks employing modified replayed packets or other techniques 
should be tested and evaluated against SMACK. 

It would also be interesting to run SMACK on additional or more highly constrained devices than 
those described in Section 4.1. One benefit of SMACK is that it is a relatively simple system hence it 
does not require much processing power or memory to operate. This is an advantage compared to 
other solutions and it would be interesting to investigate if and when SMACK would have a role, i.e., 
in which settings other solutions simply cannot be implemented due to the resource constraints of the 
platform. Implementation details such as how to best use SMACK together with a KDC and how to 
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best deal with changing keys after 65 536 messages (when the MID loops back to 0) should also be 
considered deeper. 

A future effort should take advantage of any AES-128/256 or SHA2 Hardware Encryption Engine 
that the device supports as part of the SMACK implementation. As per Section 2.6.2, it would be 
interesting to exploit IEEE 802.15.4 encryption and authentication in order to reduce the power 
consumption at the non-gateway wireless nodes. As noted previously this would break the end-to-end 
security, but might reduce both bandwidth requirements and power consumption of the constrained 
nodes. Also putting the authentication; related calculations and power drain on a gateway node can 
save the internal nodes the burden of performing this functionality. This can be especially beneficial 
when the gateway node is more powerful than the rest of the nodes in the network or if it already 
operates as a sink node in a sensor network. 

6.3 Required reflections 
The growth of sensor based systems and constrained devices has been large during the last several 
years and this trend is predicted to continue in the coming years [3]. Because of this, the attack surface 
of sensor based systems and constrained devices will also grow and hackers and malicious individuals 
will target these devices. Compounding this problem is that security solutions for constrained devices 
are not as mature as they are for conventional devices and the Internet as a whole. Attacks against 
sensor systems and other similar device are a potential threat that needs to be taken seriously. 
Manipulation or damaging such systems can have serious consequences, especially for industrial, 
medical, and safety applications. Both monitoring and control systems are increasingly automated and 
in many cases these applications are deployed using constrained devices. 

From an environmental point of view, reducing power consumption is beneficial. Many types of 
batteries contain harmful chemicals and damage the environment, hence many governmental 
organizations including the European Union (EU) have created regulations concerning them [71]. If 
the number of batteries used can be reduced this is beneficial to the environment. Preventing battery 
exhaustion attacks caused intentionally by attackers or misconfigured devices can potentially reduce 
the number of batteries that will be used. Sensor nodes are frequently used to monitor the environment, 
for example measuring pollution near a road. Improving the performance, reliability, and protecting 
these nodes against remote tampering with the sensor platform can help provide better and longer term 
environmental studies. 

Reducing waste is also beneficial from an economical point of view. Preventing attacks and 
damage to sensor nodes and other constrained devices is highly desirable since repairs and 
maintenance to such a device is generally costly. Furthermore, incorrect sensor data can damage 
equipment or produce incorrect results leading either to a need for replacing equipment or in some 
cases a need to redo experiments. There are also possible liability issues where companies that do not 
provide the maximum security possible to their customers can be held responsible for any damage 
caused by negligent security systems. The public relations impact on a company from having one of 
their systems attacked can cause financial repercussions and loss of trust. 

From an ethical point of view, adding protection and authentication to network traffic is beneficial 
for all involved parties. This is especially true today as these issues are frequently discussed in the 
news; hence protecting systems is often a high priority for companies and knowledgeable individuals. 
If a simple modification can be done to reduce the impact of attacks or prevent certain types of attacks, 
then there are many who feel that this modification should be adopted. Today it is increasingly 
common to see individuals attacking systems for either political or ideological reasons. Some of these 
attackers may feel they are acting completely ethically. Today there are even states who attack the 
infrastructures of others via hacking and other means. This has recently fostered discussion on the 
ethics of cyberwarfare. 

An important goal of SMACK is to provide partial protection for sensor systems from many of 
these issues. In particular, battery exhaustion attacks by premeditated attackers, ill-configured 
networks, or excessive traffic from some nodes should be possible to mitigate by using the SMACK 
extension of CoAP. By implementing SMACK the systems should become more robust and less 
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vulnerable to certain types of attacks. The current incarnation of SMACK does not meet all these goals 
but further development can improve the protocol and aim to alleviate some or all of these problems. 
SMACK is also backwards compatible with existing implementations of CoAP, as it works within the 
limits of the protocol specification. This thesis can contribute to the research area of security in the IoT 
which is a contemporary and continuously evolving one. In fact, CoAP only recently went through the 
final steps of standardization and was released as RFC7252 during June 2014 [5]. 
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Appendix table A-1: SMACK full request 1st transaction (A) 

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ) 

1 129 129 45.372320 318.8782 
2 127 127 46.492054 313.9343 
3 128 129 48.488310 318.2373 
4 128 129 49.536816 318.2373 
5 128 127 49.640880 314.5752 
6 128 128 39.126153 316.4063 
7 128 127 40.549250 314.5752 
8 128 129 39.731519 318.2373 
9 127 127 38.662179 313.9343 
10 129 128 39.701068 317.0471 
11 128 129 47.206422 318.2373 
12 128 128 42.439143 316.4063 
13 128 128 46.964981 316.4063 
14 127 126 38.568382 312.1033 
15 128 128 39.001957 316.4063 
16 128 128 46.730383 316.4063 
17 127 126 39.952008 312.1033 
18 129 128 49.396929 317.0471 
19 129 129 39.375747 318.8782 
20 128 128 39.457462 316.4063 
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Appendix table A-2: SMACK MAC check 1st transaction (B) 

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ) 

1 128 127 39.695271 314.5752 
2 126 126 49.269812 311.4624 
3 125 125 39.142058 308.9905 
4 127 128 45.892009 315.7654 
5 126 126 38.773785 311.4624 
6 127 127 48.853489 313.9343 
7 127 127 39.299551 313.9343 
8 126 126 41.948121 311.4624 
9 127 127 46.099647 313.9343 
10 127 127 46.726752 313.9343 
11 127 126 46.520161 312.1033 
12 127 128 47.393846 315.7654 
13 127 127 39.419678 313.9343 
14 126 126 48.452041 311.4624 
15 127 126 42.934851 312.1033 
16 128 127 45.814485 314.5752 
17 127 127 46.373495 313.9343 
18 127 127 46.284932 313.9343 
19 126 127 49.778397 313.2935 
20 126 125 46.282492 309.6313 
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Appendix table A-3: SMACK full request steady-state (C) 

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ) 

1 19 19 28.461930 46.96655 
2 20 20 29.093210 49.43848 
3 22 21 28.795830 52.55127 
4 19 19 30.494241 46.96655 
5 20 20 29.145955 49.43848 
6 19 19 31.139220 46.96655 
7 20 20 31.239230 49.43848 
8 20 20 28.949352 49.43848 
9 20 20 29.215587 49.43848 
10 21 20 30.112565 50.07935 
11 19 19 31.168349 46.96655 
12 20 20 30.184146 49.43848 
13 19 19 28.414438 46.96655 
14 20 20 28.792418 49.43848 
15 21 20 29.173403 50.07935 
16 20 20 29.888857 49.43848 
17 20 21 28.479949 51.26953 
18 20 20 29.251555 49.43848 
19 19 19 28.494056 46.96655 
20 21 20 28.895504 50.07935 
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Appendix table A-4: SMACK MAC check steady-state (D) 

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ) 

1 19 18 28.257435 45.1355 
2 18 18 28.502297 44.49463 
3 19 19 28.854716 46.96655 
4 18 18 28.591555 44.49463 
5 19 19 28.923440 46.96655 
6 18 18 28.547190 44.49463 
7 19 19 29.066824 46.96655 
8 18 18 28.937430 44.49463 
9 19 19 28.423447 46.96655 
10 20 20 30.988996 49.43848 
11 18 19 29.780253 46.32568 
12 18 17 29.230812 42.66357 
13 19 19 29.207136 46.96655 
14 19 19 29.084704 46.96655 
15 19 19 28.813161 46.96655 
16 18 18 28.255129 44.49463 
17 17 17 29.122000 42.02271 
18 18 19 28.912475 46.32568 
19 19 19 29.922730 46.96655 
20 18 18 28.912965 44.49463 
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Appendix table A-5: Vanilla CoAP full request 1st transaction (E) 

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ) 

1 2 2 35.326839 4.943848 
2 2 2 42.886738 4.943848 
3 3 3 42.447995 7.415771 
4 2 2 42.448066 4.943848 
5 2 2 42.941914 4.943848 
6 2 2 42.008624 4.943848 
7 2 3 34.963874 6.774902 
8 3 2 41.038543 5.584717 
9 2 2 42.107729 4.943848 
10 2 2 40.472046 4.943848 
11 2 2 42.123713 4.943848 
12 2 2 42.134863 4.943848 
13 2 3 42.430535 6.774902 
14 2 2 34.890959 4.943848 
15 3 3 41.660256 7.415771 
16 2 2 40.886314 4.943848 
17 2 2 35.690293 4.943848 
18 3 2 34.809036 5.584717 
19 2 2 42.265361 4.943848 
20 2 2 42.632726 4.943848 
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Appendix table A-6: Vanilla CoAP full request steady-state (F) 

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ) 

1 2 3 27.997135 6.774902 
2 3 2 28.012500 5.584717 
3 3 3 28.524019 7.415771 
4 3 3 28.951866 7.415771 
5 2 2 29.291832 4.943848 
6 2 2 28.062786 4.943848 
7 2 3 27.743472 6.774902 
8 3 3 28.428942 7.415771 
9 2 2 27.472838 4.943848 
10 2 2 27.777485 4.943848 
11 3 2 28.189758 5.584717 
12 3 2 29.953782 5.584717 
13 2 3 28.350951 6.774902 
14 2 2 28.246679 4.943848 
15 2 2 27.930228 4.943848 
16 3 2 28.328602 5.584717 
17 2 2 28.708958 4.943848 
18 2 2 27.692907 4.943848 
19 2 2 28.324412 4.943848 
20 2 2 29.894514 4.943848 
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