
Lightweight Message
Authentication for the Internet of
Things

RIKARD HÖGLUND

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
STOCKHOLM, SWEDEN 2014

Lightweight Message
Authentication for the Internet of

Things

Rikard Höglund
2014-11-24

Master’s Thesis

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology

Stockholm, Sweden

Abstract | i

Abstract
During the last decade, the number of devices capable of connecting to the Internet has grown
enormously. The Internet of Things describes a scenario where Internet connected devices are
ubiquitous and even the smallest device has a connection to the Internet. Many of these devices will be
running on constrained platforms with limited power and computing resources. Implementing
protocols that are both secure and resource efficient is challenging. Current protocols have generally
been designed for mains powered devices; hence, they are not optimized for running on constrained
devices. The Constrained Application Protocol (CoAP) is a protocol for network communication
specifically designed for constrained devices. This thesis project examines CoAP and presents an
extension that adds authentication in a way that is suitable for constrained devices, with respect to
minimizing resource use. The proposed solution has been compared and contrasted with other
alternatives for authentication, particularly those alternatives used with CoAP. It has also been
implemented in code and experimentally evaluated with regards to performance versus vanilla CoAP.

The main goal of this project is to implement a lightweight authentication extension for CoAP to
be deployed and evaluated on constrained devices. This extension, called Short Message
Authentication ChecK (SMACK), can be used on devices that require a method for secure
authentication of messages while using only limited power. The main goal of the extension is to
protect against battery exhaustion and denial of sleep attacks. Other benefits are that the extension
adds no additional overhead when compared with the packet structure described in the latest CoAP
specification. Minimizing overhead is important since some constrained networks may only support
low bandwidth communication.

Keywords:
Constrained Application Protocol, CoAP, Internet of Things, message authentication, constrained

devices, Contiki, Short Message Authentication Check, SMACK

Sammanfattning | iii

Sammanfattning
Under det senaste århundradet har antalet enheter som kan ansluta sig till Internet ökat enormt. ”The
Internet of Things” beskriver ett scenario där Internet-anslutna enheter är närvarande överallt och även
den minsta enhet har en uppkoppling till Internet. Många av dessa enheter kommer att vara begränsade
plattformar med restriktioner på både kraft- och beräkningsresurser. Att implementera protokoll som
både är säkra och resurseffektiva är en utmaning. Tillgängliga protokoll har i regel varit designade för
enheter med anslutning till det fasta kraftnätet; på grund av detta är de inte optimerade för att köras på
begränsade plattformar. Constrained Application Protocol (CoAP) är ett protokoll för
nätverkskommunikation speciellt framtaget för begränsade plattformar. Denna uppsats undersöker
CoAP protokollet och presenterar ett tillägg som erbjuder autentisering på ett sätt som passar
begränsade plattformar, med avseende på att minimera resursanvändning. Den föreslagna lösningen
har blivit beskriven och jämförd med andra alternativ för autentisering, speciellt de alternativ som
används med CoAP. Lösningen har också implementerats i kod och blivit experimentellt utvärderad
när det gäller prestanda jämfört med standardversionen av CoAP.

Det huvudsakliga målet för detta projekt är att implementera en lättviktslösning för autentisering
till CoAP som ska installeras och utvärderas på begränsade plattformar. Detta tillägg, Short Message
Authentication checK (SMACK), kan användas på enheter som behöver en metod för säker
autentisering av meddelanden samtidigt som kraftåtgången hålls låg. Huvudmålet för detta tillägg är
att skydda mot batteridräneringsattacker och attacker som hindrar en enhet från att gå i viloläge. Andra
fördelar är att tillägget inte kräver någon extra dataanvändning jämfört med paketstrukturen som
beskrivs i den senaste CoAP-specifikationen. Att minimera overhead i kommunikationsprotokoll är
viktigt eftersom vissa begränsade nätverk endast stödjer kommunikation över låg bandbredd.

Nyckelord:
Constrained Application Protocol, CoAP, Internet of Things, meddelandeautentisering, begränsade

plattformar, Contiki, Short Message Authentication Check, SMACK

Table

Abstra
Samm
Table
List of
List of
List of
1 Int

1.1
1.2
1.3
1.4
1.5
1.6

2 Ba
2.1
2.2

2.2
2.2
2.2

2.3
2.4
2.5

2.5
2.5

2.6
2.6

2.6

2.7
2.8
2.9
2.10
2.11
2.12

3 SM
3.1
3.2
3.3
3.4
3.5
3.6
3.7

4 Me
4.1
4.2
4.3
4.4

e of con

act
manfattnin

of conten
f Figures .
f Tables ..
f acronym
troduction

Gene
Probl
Goals
Rese
Delim
Struc

ckground
Cons
CoAP

 REST 2.1
 CoAP 2.2
 CoAP 2.3

Califo
Mave
Conti

 Erbium5.1
 Instan5.2

6LoW
 Authe6.1

6LoW
 Explo6.2

IPsec
Secu
Multi
DTLS
Lithe
Analy

MACK
Overv
Keys
Pseud
Confi
Galoi
Repla
Exam

ethod
Hardw
Softw
SMAC
Energ

ntents

............
ng
nts
............
............

ms and ab
n
eral introdu
em definit
s
arch meth

mitations ..
cture of th
d
trained De

P
...............
Security o
Granular s

ornium
en
iki
m
nt Contiki a

WPAN
entication a

WPAN
iting IEEE 8

c
re Real-tim
media Int

S
: Lightwei
ysis of Exis
............
view
..............
do Random
iguration v
s fields
ay detectio

mple scena
............
ware

ware envir
CK C imple
gest

.............

.............

.............

.............

.............
breviatio
.............
uction to t
tion
..............
hodology ..
..............
e thesis ..
.............
evices
..............
...............
ptions

security

..............

..............

..............
...............

and Cooja ..

..............
and encrypt
...............
802.15.4 e

..............
me Protoco
ernet KEY
..............
ght Secur
sting Inter
.............
..............
..............
m Function
values
..............
on
ario
.............
..............
onment us
ementatio
..............

.............

.............

.............

.............

.............
ns
.............
the area ..
.............
.............
.............
.............
.............
.............
.............
.............
...............
...............
...............

.............

.............

.............
...............
...............

.............
tion built in
...............
ncryption a

.............
ol

Ying (MIKE
.............

re CoAP fo
rnet Proto
.............
.............
.............
n
.............
.............
.............
.............
.............
.............
sed for de
n
.............

.............

.............

.............

.............

.............

.............

.............
..............
..............
..............
..............
..............
..............
.............
..............
..............
...............
...............
...............

..............

..............

..............

...............

...............

..............
nto IEEE 80
...............
and authen

..............

..............
Y)
..............
r the Inte
cols for th
.............
..............
..............
..............
..............
..............
..............
..............
.............
..............

evelopmen
..............
..............

............

............

............

............

............

............

............
.............
.............
.............
.............
.............
.............
............
.............
.............
...............
...............
...............

.............

.............

.............

...............

...............

.............
2.15.4 as u
...............
tication

.............

.............

.............

.............
rnet of Th

he Internet
............
.............
.............
.............
.............
.............
.............
.............
............
.............
t
.............
.............

Table of co

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............
...............
...............
...............

.............

.............

.............
...............
...............

.............
used by
...............
...............

.............

.............

.............

.............
ings
t of Things
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............

ontents | v

........ i

....... iii

........ v

...... vii

....... ix

....... xi

....... 1

........ 1

........ 2

........ 3

........ 3

........ 3

........ 4

....... 5

........ 5

........ 6

......... 8

......... 8

......... 9

...... 10

...... 10

...... 10

....... 10

....... 11

...... 12

....... 12

....... 13

...... 14

...... 14

...... 15

...... 16

...... 17
s 18
...... 21
...... 21
...... 22
...... 23
...... 24
...... 25
...... 26
...... 29
...... 31
...... 31
...... 32
...... 32
...... 33

vi | Table of contents

5 Analysis ... 35
5.1 Functional Testing ... 35
5.2 Comparison of packet overhead .. 36
5.3 Performance Testing .. 36
5.4 Testing on other constrained devices ... 37
5.5 Chapter summary ... 37

6 Conclusions and Future work .. 39
6.1 Conclusions .. 39
6.2 Future work .. 40
6.3 Required reflections ... 41

References .. 43
Appendix A. Detailed results .. 49

List of Figures | vii

List of Figures
Figure 2-1: Texas Instruments CC2538DK .. 6
Figure 2-2: CoAP Packet structure [12] .. 7
Figure 3-1: Keys used by SMACK ... 22
Figure 3-2: Message sections .. 26
Figure 3-3: Packet processing flowchart ... 28
Figure 3-4: Communication steps ... 30

List of Tables | ix

List of Tables
Table 2-1: Fields of a CoAP packet ... 7
Table 2-2: Yegin CoAP Security Options fields .. 9
Table 2-3: Granular security options ... 9
Table 3-1: Generation of Keys A, B, C ... 23
Table 3-2: SMACK key values .. 25
Table 4-1: CC2538 test hardware key values .. 32
Table 4-2: Energest metrics ... 33
Table 5-1: SMACK measurements .. 36
Table 5-2: Vanilla CoAP measurements .. 37
Table 5-3: Energy statistics .. 37

Appendix table A-1: SMACK full request 1st transaction (A) ... 49
Appendix table A-2: SMACK MAC check 1st transaction (B) .. 50
Appendix table A-3: SMACK full request steady-state (C) .. 51
Appendix table A-4: SMACK MAC check steady-state (D) .. 52
Appendix table A-5: Vanilla CoAP full request 1st transaction (E) 53
Appendix table A-6: Vanilla CoAP full request steady-state (F) .. 54

List of acronyms and abbreviations | xi

List of acronyms and abbreviations

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

AB Aktiebolag (Joint-stock company)

ACL Access Control List

AES Advanced Encryption Standard

AP Access Point

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

CCS Code Composer Studio

CEO Corporate Executive Officer

CLI Command Line Interface

CoAP Constrained Application Protocol

CPU Central Processing Unit

CTR Counter

DNS Domain Name System

DoS Denial of Service

DTLS Datagram Transport Layer Security

EU European Union

GNU GNU's Not Unix!

HMAC Hash-based Message Authentication Code

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

ID Identification

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IoT Internet of Things

IP Internet Protocol

IPv4 IP version 4

IPv6 IP version 6

JTAG Joint Test Action Group

JVM Java Virtual Machine

xii | List of acronyms and abbreviations

KDC Key Distribution Center

KTH Kungliga Tekniska Högskolan (KTH Royal Institute of Technology)

LPM Low Power Mode

M2M Machine to Machine

MAC Message Authentication Code or Media Access Control depending
upon context

MHz Megahertz

MID Message ID

MIKEY Multimedia Internet KEYing

MITM Man-In-The-Middle

MTU Maximum Transfer Unit

NSA National Security Agency

OS Operating System

PC Personal Computer

PCAP Packet CAPture

PKI Public Key Infrastructure

PRF Pseudo Random Function

PRNG Pseudo-Random Number Generator

RAM Random Access Memory

RC4 Rivest Cipher 4

REST Representational State Transfer

RFC Request for Comments

ROM Read Only Memory

RTC Real Time Clock

RTP Real-Time Protocol

RTSP Real Time Streaming Protocol

SDP Session Description Protocol

SHA Secure Hash Algorithm

SICS SICS (Swedish Institute of Computer Science) Swedish ICT AB

SIP Session Initiation Protocol

SMACK Short Message Authentication ChecK

SOAP Simple Object Access Protocol

SRTP Secure Real-Time Protocol

S/MIME Secure/Multipurpose Internet Mail Extensions

TCP Transmission Control Protocol

List of acronyms and abbreviations | xiii

TI Texas Instruments

TKL ToKen Length

TLS Transport Layer Security

UDP User Datagram Protocol

URL Uniform Resource Locator

USB Universal Serial Bus

VM Virtual Machine

VoIP Voice over IP

VPN Virtual Private Network

WWW World-Wide Web

XML eXtensible Markup Language

Introduction | 1

1 Introduction
This report details the results of a master's thesis project “Lightweight Message Authentication for the
Internet of Things” performed during the spring of 2014 at KTH Royal Institute of Technology. The
project was conducted in cooperation with SICS Swedish ICT AB [1] in Kista.

1.1 General introduction to the area
During the last decade, the growth in the number of Internet enabled devices has been considerable. At
the start of this expansion, people typically only owned a few Internet capable devices, typically in the
form of personal computers. Today more and more devices have interfaces that allow Internet
connectivity. One of the most significant developments has been in the number of smart phone
devices. Currently people frequently own many devices that they use interchangeably for Internet
access. Every day additional devices join the global Internet, potentially permitting access to or from
them by other Internet enabled devices.

The term Internet of Things (IoT) was coined by Kevin Ashton during 1999 [2], although the
concept was discussed in scientific literature prior to this time. This term tries to define a future
Internet where the growth in the number of device continues and almost all electronic devices have
Internet connectivity. This growth is not limited to user-controlled devices, but also includes machine-
to-machine (M2M) communication, such as smart sensor systems. All of these Internet connected
devices will have a representation in the Internet either in the form of an IP address or some other
identifying information. Setting up such an infrastructure has many benefits, including remote
monitoring, convenient control of devices owned by an individual, and increasing numbers of
automated systems. Estimates of the number of wireless devices connected to the Internet suggest 30
billion devices by 2020 [3]. Even today, IoT has emerged as an area for research and development.

A "constrained device" is a device that has limited resources in terms of processing capacity,
memory, or available power. Constrained devices are often used to implement sensor networks and
automated systems that utilize M2M communication. The reason these devices are used is that they are
small, inexpensive, and can perform the desired function(s), while consuming very little power. The
software running on these devices has to be adapted to this constrained environment and ensures
sufficient performance without requiring high speed processing, large memory capacity, or using
excessive power. Creating small IP stacks and similar software have been necessary steps to realize
IoT and to allow constrained devices to communicate efficiently via a network. Making IoT devices
accessible through the same protocols used in the global Internet is also important when
interconnecting these devices to the existing network infrastructures.

Security is another important aspect of the IoT. If all devices have an IP-address and are accessible
via the Internet, then security becomes an even more important issue as the number of potential
attackers is greatly increased. Authentication is vital to prevent certain types of attacks against these
devices and to confirm the validity of messages. For instance, a device can be inundated with
messages in order to exhaust its battery supply, thus authentication has to be performed in an efficient
manner and properly take into account the device’s limited power, storage, and computing capabilities.
Because of this, the protocols used for authentication have to be adapted for these constrained devices
and must meet requirements beyond the conventional requirements for mains powered devices.

Combining the fast growth of IoT devices with limited resources and less mature security options
means that these constrained devices can become a prime target for attacks. If these issues are
overlooked, then sensitive systems including devices controlling people’s homes or industrial
applications are at risk. This is especially true if devices such as smart light bulbs, industrial sensors,
radiators, and other such applications continue to gain in popularity. It is important that security is
built into the IoT as early as possible, as retrofitting security solutions is more a difficult challenge.

2 | Introduction

1.2 Problem definition
Denial of service (DoS) attacks are malicious actions that attempt to deny access to or shut down some
device [4]. For instance, such an attack could attempt to overwhelm a target with traffic or send
malformed packets that the device does not know how to handle. For constrained devices the term
"denial of sleep" is often used since these devices frequently rely on going to sleep when data is not
being actively processed, sent, or received. It is crucial for the radio circuitry to be in sleep mode as
long as possible in order to minimize power consumption. Simply receiving, parsing, and processing
data sent to a constrained device can be costly since the radio needs to be on in order to receive the
data, which drains a lot of power. In addition, power is need for processing the packet(s) that have
been received. For these reasons, constrained devices are especially vulnerable to DoS attacks. In
addition, they are rarely protected with intrusion detection and prevention systems that are common
for servers on the Internet. However, firewalls or other types of gateways can be used to protect these
devices from traffic coming from outside the local network.

The problem addressed in this thesis project deals with how to design, implement, and evaluate a
message authentication extension to CoAP for constrained devices. This solution must be both secure
and economical with the resources of the system. Several important aspects have to be taken into
consideration in order to ensure that the proposed extension is secure. First, it should be based on well
tested security concepts, i.e., concepts that have been proven over time. Furthermore, authentication
must be provided in an efficient manner. When it comes to resource usage, the extension should use
code that has been optimized to reduce the amount of memory necessary to ensure that the resulting
code will fit into the available memory of the device in question. In addition, the code should be
adapted to minimize the required processing power. This can be accomplished by careful selection of
algorithms and by reducing the size of fixed arrays and other memory structures that is used. Note that
the extension may trade FLASH storage for processing, as generally, microcontrollers have increasing
amounts of flash memory – but want to avoid either increasing their processor clock rates or requiring
a much larger random access memory (RAM) – as both take additional dynamic power. The amount of
RAM available is typical less than the FLASH storage and this limits what session information and
other dynamic data that can be allocated and stored in RAM. However, some data has to be kept for
each connected device in order to keep track of the session state and which keys are being used.

Short Message Authentication ChecK (SMACK) is an extension of the Constrained Application
Protocol (CoAP) [5] specialized for providing message authentication in a resource efficient manner.
The methods used to provide this are general and can also be adapted to other communications
protocols. Currently a prototype implementation of the SMACK authentication extension to CoAP
exists (written in Java). It has been developed internally at SICS as a proof of concept (see beginning
of Chapter 3). However, this implementation cannot be tested on most constrained devices since they
have insufficient resources to run the required Java virtual machine, hence for such a constrained
device there is a need for an optimized implementation in C. This means that a version of this
extension written in C needs to be created, tested, and evaluated on constrained devices. This version
should be deployed on actual constrained devices for performance testing.

SMACK needs to be discussed in the context of other authentication protocols. An energy efficient
authentication protocol should lessen the severity of any DoS, such as a denial of sleep attack, since
data that is not authenticated could be ignored by the device. Ignoring such data allows devices to
reduce unnecessary message processing and only reply to legitimate requests. However, the resources
used for authentication can be part of a DoS attack, hence we need to minimize the energy consumed
by this authentication process. As there are a number of alternative protocols for authentication and
confidentiality that could be used with CoAP, some of these protocols will be described and contrasted
to the solution presented in this thesis.

Introduction | 3

1.3 Goals
The following goals are the main objectives of this project:

1. Implement the SMACK extension to the CoAP protocol in C,
2. Optimize and adapt the implementation to run well on constrained devices,
3. Test and evaluate the performance of the extension on actual constrained devices,
4. Describe other existing alternatives for authentication and how they differ from SMACK,
5. Compare SMACK to vanilla CoAP with practical experiments on constrained devices,
6. Test the system to see that it ensures proper authentication, and
7. Take into account the above test results to improve the extension wherever possible.

1.4 Research methodology
This project has selected a quantitative research methodology because the nature of the topic is
suitable for statistical analysis. For instance, the round trip time for a CoAP request with the SMACK
extension enabled versus a vanilla CoAP request can be compared. Additionally, we can compare and
evaluate the performance of the SMACK extension by collecting data about the time spent performing
specific calculations. As the goal of this thesis is to evaluate the SMACK extension to CoAP a
quantitative research method is most suitable. The project also considered a qualitative methodology;
however, it was rejected as quantitative data and statistical analysis of performance are important. The
possibility to automate testing and analyze the results of this testing in a consistent manner favors a
quantitative approach.

This project uses a deductive approach to investigate the hypothesis that the SMACK extension to
CoAP is a viable option for lightweight message authentication on constrained devices. The basic
functionality of the SMACK extension will be tested and verified to work. In addition, the question of
to what extent SMACK and in which areas SMACK is superior or inferior to existing systems will be
discussed. Existing systems will be evaluated based upon external resources, while SMACK will be
analyzed using experimental data.

Empirical research will be performed as a part of this project, thus generating experimental results
and data. The project will also utilize secondary sources to acquire information and allow analysis of
systems that are not available for direct experiments. Comparison and evaluation of SMACK versus
vanilla CoAP will be done using new data collected explicitly for this purpose. Results from these tests
will be presented using statistical methods to highlight the performance of the different solutions that
have been tested. The hardware used for the tests will be identical and care will be taken to measure
equivalent processes relevant to each solution in order to ensure a fair comparison.

1.5 Delimitations
This thesis focuses on issues related to CoAP and authentication protocols implemented at the
application, transport, or network layers. There are also methods for authentication and encryption in
the lower layers of the protocol stack, such as those built into IEEE 802.15.4 [6] - used by 6LoWPAN.
Further details of 6LoWPAN are given in Section 2.6 and relevant details of IEEE 802.15.4 are given
in Section 2.6.1. However, these solutions rely on the fact that the underlying network utilizes a
specific technology. Most devices connected to the Internet utilize versions of Ethernet that do not
support similar functionality. In order to make the proposed solution as general as possible,
authentication should be implemented at the network or higher layer. Protection at higher levels also
provides end-to-end security, which is important for many applications. Additionally, because the IPv4
and IPv6 protocols are so ubiquitous the solution should be compatible with these network layer
protocols, thus this compatibility is a minimum requirement. Therefore the proposed solution does not
rely on any specific lower layer technologies. However, we can of course learn from the mechanisms
that have been applied at these lower layers (see for example Section 2.6.2).

4 | Introduction

The Contiki operating system (OS) will be used as a basis for the implementation of the
authentication extension to CoAP. Section 2.5 gives relevant details of Contiki. Contiki currently has a
fully functional CoAP implementation named Erbium (see Section 2.5.1) that is used as a basis for the
proposed SMACK implementation. Furthermore, Contiki supports a large number of hardware
platforms [7] and is a widely used OS for constrained devices. Contiki is open source software; hence
all of the relevant source code is freely accessible. In addition, Contiki has a development environment
that includes the Cooja network simulator (see Section 2.5.2). This simulator facilitates testing of
applications. The evaluation considers the feasibility of the SMACK extension for authentication
independent of the underlying hardware platform. However, benchmarks are used to understand how
this authentication protocol performs in comparison with other potential alternatives when actually
running on constrained devices.

1.6 Structure of the thesis
The thesis started with a chapter setting out the problem and goals to be addressed in this thesis
project. Chapter 2 provides the background knowledge required to understand the topics discussed in
the rest of this thesis. This includes technical background concerning existing protocols for
authentication that could be used together with CoAP. Chapter 3 describes the design of SMACK and
the details of how performing authenticating with it works. After this, the development environment
used and information about how to develop for Contiki are given in Chapter 4. This same chapter
describes the methodology and design methods used to create a C implementation of the SMACK
protocol. The focus of this chapter is on several of the challenges encountered during the development
process. Chapter 5 analyzes the results of the implementation described in the previous chapter and
compares the proposed solution with alternatives. The thesis concludes in Chapter 6 with a summary
of conclusions, suggestions for future work, and a description of some of the ethical, social, economic,
sustainability, and other aspects of this thesis project.

Background | 5

2 Background
This chapter contains background information concerning several concepts and tools used this project.
Some of these concepts and tools are described in further detail in later chapters. A key aspect
underlying this thesis project is the hardware of the constrained devices on which the authentication
software is deployed. Another important topic is the software employed during the development and
coding phases of this project. Several alternatives for implementing security on constrained devices
exist. Some of these are the same protocols used on the Internet and some are protocols that have been
adapted or even custom made to function better on constrained devices. The chapter concludes with a
description of a number of different communications protocols and standards, as much of the thesis
deals with these protocols. Details of these protocols are necessary in order to consider the solutions
that have been chosen.

2.1 Constrained Devices
For the purpose of this thesis project, a constrained device is defined as a device that has limited
resources in the form of hardware, such as memory, processing, and power. The available power is
frequently limited capacity batteries. Furthermore, constrained devices often utilize networks with
limited available bandwidth. Combining these factors means that memory usage, algorithm efficiency,
and low bandwidth communications are important issues. As power consumption is reduced in sleep
mode, these devices typically rely on rapidly transitioning to different levels of sleep when possible,
thereby minimizing their battery power usage. Because some components draw more power than
others do, it is especially important to optimize the power management of these components. The radio
is normally the component that uses the most power and thus keeping it in sleep mode as much of the
time as possible is quite important [8].

Sending data is more costly than doing calculations locally. Measurements by Madden et al. have
shown that on some systems transmitting one bit is the equivalent of executing 800 instructions [9].
Because of this, the radio should be in sleep mode as much as possible and communications should be
kept to a minimum. Often constrained devices are used as sensors or actuators, they generally have
limited to no user interaction. This means that they are to a large extent autonomous, sending and
receiving data only as necessary. Such M2M communication is different in character and pattern from
user-induced communication. If some part of the system malfunctions or an attacker starts sending
data to a node, then the node can be tricked into accepting incorrect data readings and the battery could
be rapidly drained by keeping the radio constantly listening. In automated systems this might not be
noticed until the battery is exhausted, unless the system is designed to inform a management systems
of such an apparent attack.

Figure 2-1 shows a typical example of a constrained device in the form of the Texas Instruments’
(TI) CC2538 board attached to a SmartRF board. This combination is frequently used for development
purposes. This particular board has a maximum clock speed of 32 MHz [10]. There are constrained
devices that are even more limited with regard to resources. For instance the Tmote Sky only has a
8 MHz processor and 10 kB RAM [11], whereas the CC2538 has maximum of 32 kB of RAM
(depending on the specific model of this chip). Typically, constrained devices clock the processor at a
lower clock rate to reduce power consumption and because they have less demanding computational
requirements, thus draining the battery at a slower rate than when clocking the processor at a high rate.

6 | Backg

Figure 2

2.2
The Con
applicati
for use
bandwid
multicas
exchang
autonom
maintena
initiated
in a mor
can also
the radio

CoA
CoAP fo
resource
Resource
provide
subset of
response
Content"
with HT

One
Protocol
drawbac
guarante
message
arrived c
CoAP ca
an implo
session
function

ground

2-1: Texas

CoAP
nstrained Ap
ion level of t
with constr

dth or proce
t support,
es [12]. An

mously comm
ance of the
by a person

re arbitrary p
help since i

o so as to onl

AP is quite si
ollows a sim
es, and the
e Locators (U
data from a
f the same m
e codes follo
" and a reply
TP, CoAP h

key differen
l (UDP); in
ks, but also

ees has to b
es" to specify
correctly. Th
an utilize mu
osion of ack
with receiv
ality UDP pr

s Instrumen

pplication Pr
the Transpor
rained device
ssing power
optimization

n important
municate wi
devices. Th
. For instanc

pattern where
it is easier to
ly operate wh

milar in stru
mple request/

other device
URL) are use
temperature

methods (in th
ow the style
y when no co
as many oth

nce between
contrast, to
provides som

be implemen
y that a mes
here are also
ulticast traffic
knowledgeme
vers, as is d
rovides.

ts CC2538D

rotocol (CoA
rt Control Pro
es that suffe
r. Key featu
ns for use

use case
ith each oth
his kind of t
ce, the traffic
eas machine
o predict wh
hen commun

ucture to the H
/response mo
e as a serve
ed to identify
sensor on a

he form of G
e of HTTP w
rresponding

her response

HTTP and C
HTTP which
me benefits.
nted by the
sage must re

o non-confirm
c since it ma
ents. This m
done when

DK

AP) [12] is
otocol (TCP

fer from lim
ures include

on constra
for CoAP

her – norma
traffic has d
c pattern can

communica
hen to expect
nication is ex

Hypertext T
odel that allo
er providing
fy resources.

device at the
GET, PUT, P
with a reply
resource wa
codes for va

CoAP is that
h uses TCP
 One drawba
application

eceive an ac
mable messa
arks such me

means that Co
using TCP,

a communic
P)/Internet pr
mited resourc

low overhe
ained device

is M2M
ally without

different char
differ since
tion can be e
t the next tra
xpected.

ransfer Proto
ows one dev

g some reso
For instance
e host named
OST, and DE
containing

as found uses
arious scenar

t the transpor
. This choic
ack is that th

on top of
cknowledgem
ages that do
ssages as no
oAP refrains
, but rather

cations proto
otocol (IP) s
ces, specifica
ead and com
es, and asy
communica

t human int
racteristics t
humans tend

extremely re
ansmission a

ocol (HTTP)
vice to act a
urces. As w

e, coap://exa
d example.co
ELETE) that
a resource u

s "4.04 Not F
ios.

rt protocol us
e of transpo
he reliable tr
UDP. CoA

ment to conf
not require
n-confirmab
s from creati

it builds u

ocol operatin
stack. It is sp
ally limited

mplexity, un
ynchronous
ation where
nteraction ap
than commu
d to request r
egular. This r
and thus pow

), but is less
as a client, re
with HTTP,
ample.com/te
om. CoAP al
t HTTP emp
using the co

Found". As is

sed is User D
ort protocol h
ransmission

AP uses "con
firm that the
such a conf

ble and thereb
ing a comm
upon the se

ng at the
pecialized

network
icast and
message
devices

part from
unications
resources
regularity

wer on/off

complex.
equesting
Uniform

mp could
lso uses a
loys. The

ode "2.05
s the case

Datagram
has some
that TCP
nfirmable
message

firmation.
by avoids

munication
essionless

The
protocol
by not u
The abil
actions s
reduce th
isolated
the latest

Figure 2

Tabl
and has
protocol
overhead
may req
only 4 b
can be se
bytes. Th
networks
networks

Table 2-

Field

Ver

T

TKL

Code

Message

Token

Options

Payload

Payload

properties o
with a simp

utilizing the
lity to speci
such as check
he need to s
lost message
t value until

2-2: CoAP

le 2-1 summa
few mandat
. CoAP allo
d, but an app

quire confirm
ytes. The ma
ent unfragme
he standard
s, as the act
s limit link la

-1: Fields

e ID

Marker (0xF

of CoAP are
ple packet str

acknowledg
fy whether
king a senso

switch the ra
e is not cruc
the next sch

P Packet stru

arizes the dif
tory fields. T
ows an app
plication can

mation from t
aximum reco
ented in an IP
also specifie

tual path MT
ayer frames t

s of a CoAP

Size in

FF)

e well adapte
ructure (see F

gements sent
messages re

or value frequ
adio on (thus
cial since a m
eduled senso

ucture [12]

fferent fields
The fact that
plication to
n also send m
the receiver.
ommended p
P packet. Th
es that assum
TU is diffic
to only 127 b

packet

n bits De

2 Ve

2 Ty
ack

4 Le

8 M

16 M

0-64 Co

 Sim

M

8 M

 Da

ed to constra
Figure 2-2).
t by TCP the
equire confir
uently witho
s helping to
missed readin
or reading.

s of a typical
t many of th
send small

more compl
. The size o
payload size
his assumes a
ming lower v
cult to determ
bytes [12].

escription

ersion of CoA

ype of messa
knowledgme

ength of toke

Message code

Matches reque

orrelate requ

milar to opti

Message type,

Marks start of

ata

ained device
Using UDP

e protocol re
rmation mea
ut inducing
minimize po
ng will simp

l CoAP pack
he fields are

non-confirm
ex packets w
f the manda
is 1024 byte

an IP Maxim
values may
mine with c

AP used

age: confirma
ent, or reset

en field in by

(such as 4.0

est/replies

est/response

ons of HTTP

proxy option

payload

es in that it i
reduces per

educes comm
ans that devi
too much ne

ower consum
ply mean tha

et. This pack
optional ma

mable mess
with options
tory header

es to ensure t
mum Transfer

be beneficia
ertainty. In

able, non-con

ytes (0-8 byte

4)

P

ns, cache ma

Backg

is a relativel
r packet over
munication o
ices can do
etwork traffic
mption). Typ
at the system

ket structure
akes CoAP a
ages with m
(including d
of a CoAP
that the CoA
r Unit (MTU
al, especially
addition, 6L

nfirmable,

es)

ax age, …

ground | 7

ly simple
rhead and
overhead.
common

c and can
ically, an

m will use

is simple
a flexible
minimum
data) and
packet is

AP packet
U) of 1280
y on IPv4
LoWPAN

8 | Backg

Matt
and spec
Californi
GitHub c
any meth
be used
CoAP. A
CoAP w
described

 R2.2.1
Represen
prominen
Roy Fiel
the diffe
(WWW)
accessed
to access
HTTP/1.

One
on a res
Protocol
function
architect
operation
publishin

 C2.2.2
In an ex
Protocol
protectio
CoAP ot
Accordin
possible
function
used by
be used f

Thei
Encrypti
Cipher B
and conf
cipher, a
additiona
Table 2-

In co
CoAP sp
4 bytes.
point of
utilized b
overhead
as oppos
for each

ground

thias Kovats
cifically Con
ium CoAP J
code reposito
hod for auth
as the main

At the time
was an open r

d in Sections

REST
ntational sta
nt example b
lding in his
erent compo
) be can be s
d using the H
s web conten
.1 as can be s

of the centr
source, typic
l (SOAP) tha
s are define
ture is that it
ns. As CoAP
ng resources

CoAP Sec
xpired Intern
l (CoAP) op
on, and encr
ther than the
ng to their d
to negotiate
ality is impl
the sender to
for the encry

ir draft only
ion Standard
Block Chaini
fidentiality t
authenticatio
al overhead
2 (in additio

ontrast, the S
pecification t
As the netw

f view, it is i
by the nodes
d is a large m
sed to a few
message.

sch has contr
ntiki. Both

Java library w
ory and a Co

hentication. I
method for
of the start
research que
s 2.2.2 and 2

te transfer (
being HTTP
doctoral dis

onents of sy
said to be a

HTTP protoco
nt according
seen in chap

ral ideas of R
cally an URL
at uses arbitr
ed using XM
t is lightweig
P is similar
.

curity opt
net-Draft A.
tions that ar

ryption for th
e two securit
draft, differe
 between the
lemented by
o request dif

yption or auth

y mentioned
d (AES) encr
ing-Message
to data [19].
on of data, a

- since each
n to the norm

SMACK exte
that allows fo

work links us
important to
s. If the pay
majority of th

larger ones,

ributed a lot
the Erbium
were written
ontiki fork fe
nstead, the D
achieving se
of this thesi

estion. A pot
2.2.3.

(REST) is a
P and the Wo
sertation in
stems, inclu
system base
ol with a lim
to fixed rule
ter 6 of Field

REST is to re
L. One of t
rary keyword

ML and then
ght and less c
to HTTP, C

tions
Yegin and

re used for p
he CoAP m
ty protocols
ent cryptogr
e sender and

defining ne
fferent securi
hentication.

the Counte
ryption func
 Authenticat
Positive asp

and full enc
h encrypted/

mal CoAP he

ension does n
or a token fie
sed by the co
o minimize th
load of the t
he data conta
, is particula

to CoAP im
CoAP imp

n mainly by h
eaturing Erbi
DTLS protoc
ecure commu
is project, th

tential solutio

system arch
orld Wide W
2000 [15]. In

uding how t
ed upon URL
mited number
es. The idea b
ding’s disser

ely on specif
the main alte
ds or functio
n executed a
complex bec

CoAP also ut

Z. Shelby
providing da

messages.” [1
(IPsec and D

raphic algori
receiver wh

ew options f
ity levels an

er with CBC
ction. In esse
tion Code (C
pects of this
cryption of t
/authenticate
eaders and pa

not require a
eld of 0-8 by
onstrained de
the overhead
transmitted m
ained in each

arly sensitive

mplementatio
plementation
him [13]. He
ium [14]. By
col (describe
unication, in
he best way
on utilizing n

hitecture use
Web in gener
n essence, R
hey can bes
Ls that allow
r of operatio
behind REST
rtation [15].

fic keywords
ernatives to
on names for
against data
cause of its r
tilizes the R

proposed “a
ata origin au
7] They def
DTLS) ment
ithms should

hich algorithm
for the CoAP
d to commun

C-MAC (CC
ence CCM c

CBC-MAC) a
approach ar

the data. Di
ed packet m
ayload).

any additiona
ytes of which
evice are oft

d low, thus m
messages is
h sent packe

e to big over

ons, work on
for Contiki

e is the owne
y design, the
ed in Section
ncluding auth

to impleme
new CoAP o

ed by many
ral. REST w

REST tries to
st interact. T
w objects sto
ns (GET, PU
T heavily inf

s or operation
REST is Si

r executing o
[16]. One b

restricted set
REST paradig

a set of Con
uthentication,
fined a new
tioned in the
d be support
ms will be us
P header. Th
nicate data th

M) mode [1
combines the
algorithms to
re strong sec
sadvantages

must include

al overhead w
h SMACK by
ten constrain
minimizing t
small, cases

et. Sending m
head since th

n constrained
i and the st
er of the Ca
CoAP proto

n 2.10) is exp
hentication,
ent authentic
options for s

Internet pro
was first pres
o define and
The world-w
ored at websi
UT, POST, D
fluenced the

ns to perform
imple Objec
operations. I
benefit of th
of predefine

gm for acces

nstrained Ap
, integrity an
method for

e CoAP spec
ted and it s
sed. The new
hese new he
that will subs

18] of the A
e Counter (C
o provide aut
curity using
include 30
the values s

when compar
y default onl

ned from a b
the processin
s can occur w
many small m
the overhead

d devices,
tandalone
lifornium

ocol lacks
xpected to
on top of
cation for
ecurity is

otocols, a
sented by

d describe
wide web
ites to be

DELETE)
design of

m actions
ct Access
In SOAP,
he REST
ed simple
ssing and

pplication
nd replay
securing

cification.
should be
w security
aders are
sequently

Advanced
CTR) and
thenticity
the AES
bytes of

shown in

red to the
ly utilizes
andwidth
ng power
where the
messages,
d is added

Table 2-

 C2.2.3
Another
identifie
DTLS p
specifyin
of protec
security
propose
allows fo

The
based on
authentic
AES and
proposal
2.2.2).

This
Security
to be app
A Secur
certificat
encryptio
encrypte
different

Table 2-

Name

Security

Security

SecurityE

As c
The calc
byte pay
paper is
However
slower fo
usage of
to packe
are signe

-2: Yegin

CoAP Gra
similar app

s some key
provides is a
ng exactly w
ction or to u
DTLS prov
an applicatio

or intermedia

encryption
n the well-k
cation and co
d AES is fre
ls for 6LoW

s approach re
On option is
plied and inc
rityToken op
tes, or Kerb
on paramete

ed data. All o
t options is sh

-3: Granu

On

Token

Encap

can be seen
culations by
yload (the m
faster when
r, if all the p

for a given am
f each solutio
ets (specifica
ed and encry

n CoAP Secu

C

N

M

O

T

anular sec
proach is pro

problems w
applied to al

which packets
use different
vides can int
on-layer secu
aries, such as

algorithm u
known AES
onfidentiality
equently use

WPAN use th

elies on defi
s added to ea
cludes other f
ption is used
beros tickets
ers including
of these optio
hown in Tab

ular security

in the table,
Granja, Mon
aximum size
taking advan

payloads are
mount of ban
on and notes
ally only requ
pted.

urity Option

Name

Context ID

Nonce

MAC

OptionCount

Total

curity
oposed in a
with the exis
ll packets in
s should be p
algorithms f

terfere with
urity solution
s gateways.

used to provi
algorithm an
y. In fact, co
ed to protect
his algorithm

fining new h
ach protected
features, such
to provide

s. Another f
g a nonce v
ons are on a

ble 2-3.

y options

Size (bytes)

30 bytes (as

Minimum 1

Nonce (12 b

, the amount
nteiro, and S
e to avoid 6L
ntage of the
encrypted a

ndwidth than
 that their pr
uest/replies)

ns fields

t

paper by Gr
sting CoAP-
n a session
protected. Th
for certain pa
gateways an
n that is mor

ide security
nd uses the

onstrained de
t traffic at t
m (including

header option
d packet. Thi
h as timestam
identity data
field named
value, Mess

a per-packet b

)

ssuming 20 b

 byte + varia

byte) + optio

t of overhea
Silva state tha
LoWPAN fr
granular con

and signed, th
n CoAP with
roposed solu
but is slowe

Size
(bytes)

1

12

16

1

30

ranja, Monte
-DTLS secu
and there is
here is also n
ackets. Final
nd proxies u
re flexible w

is by defau
CCM mode

evices often h
the link laye
g the securit

ns for the C
is option spe
mps that help
a, including

SecurityEn
sage Authen
basis. The es

byte URI)

able identity

onal MAC (8

d depends o
at overhead
ragmentation
ntrol and pro
hen the max

h DTLS. The
ution is only
er than CoAP

eiro, and Sil
rity solution

s no provisio
no way to sp
lly, the end-t
used with Co

with regard to

ult AES-CCM
e of operatio
have built in
er. Many of
ty options m

oAP protoco
cifies the det
p to protect a
username/pa
cap contains

ntication Cod
stimated ove

data

byte) + vari

on the securit
can be betw

n). The propo
otecting only
imum messa
ir measurem
superior whe
P with DTLS

Backg

lva [20]. Th
ns. First, the
on for granu
pecify differe
to-end transp
oAP. Theref
o security op

M. This alg
on that provi

hardware su
the existing

mentioned in

ol to add se
etails of the p
against replay
assword, pub
s authenticit
de (MAC),

erhead induc

iable encrypt

ity option(s)
ween 11-55%

osed solution
y some of the
age rate per

ments show th
en selectivel
S if all of th

ground | 9

heir paper
e security
ularity or
ent levels
port layer
fore, they
ptions and

orithm is
ides both

upport for
g security
n Section

curity. A
protection
y attacks.
blic keys,
ty and/or
and any

ed by the

ted data

selected.
 of an 88
n in their
e packets.
second is
he energy
y applied
e packets

10 | Back

2.3
Californi
Erbium (
to CoAP
the com
oriented
great ext
of the Co
the new

The
developm
unsuitab
has. In c
provides
extension
future w
use any
CoAP m
accessing

2.4
Maven i
the GNU
that defi
easily co
changes
many int
Maven a
find not
to fail.

2.5
Contiki
written a
on the In
on conne
operating
Memory
uIPv6 th

Cont
efficient
mix an e
for threa
compare
low pow
sensor ne

 E2.5.1
There is
named E
C. It is w
has been
takes int

kground

Califor
ium is a CoA
(see Section

P draft versio
mpatibility w

architecture
tent [23]. Th
oAP draft, s
drafts norma

resulting Ja
ment. One d

ble for constr
contrast, for
s a highly f
ns. Another

work in the re
form of auth

messages; how
g such resou

Maven
s a tool for

U "make" co
ine the build
ompiled and
and quickly
terdependent
also executes
only obviou

Contiki
is an operat

at SICS main
nternet of Th
ecting device
g system an

y (ROM). Co
hat was jointl

tiki is open s
way to impl

event driven
ading whilst
ed to conven
wer radio netw
etworks are a

Erbium
an impleme

Erbium and it
written by M

n tested to en
to account t

nium
AP implemen

2.5.1), is th
on 11 and has
ith the CoA
 with the log

his implemen
ince the prot
ally try to av

ava library
drawback is t
rained device
developmen

functional li
drawback i

eport on Cal
hentication.
wever later v
urces using th

simplifying
mmand for c

d process and
developed u
recompile th

t classes as th
s a number o
us errors in th

i
ting system
nly by Adam

hings. Their b
es to smartph
d can functi
ontiki is also
ly developed

source and fe
lement rudim
and linear m
maintaining

ntional fully
working and
additional ad

entation of C
t supplies a f

Matthias Kov
nsure that it f
the need to

ntation writte
e main autho
s been tested

AP specificat
gic split into
ntation also a
tocol is still
oid major ch

provides a
that the lang
es because o
nt on a PC o
brary that c
is the lack o
lifornium [23
Other system

versions of C
he “coaps://”

the building
compiling so
d any depen
using the M
he project. T
he design go

of built in tes
he code but

specifically
m Dunkels. H
business idea
hones in a co
on on devic

o known for
d with Cisco a

eatures other
mentary threa

model of exec
a low mem

multi-thread
d power prof
dvantages.

CoAP includ
fully function
vatsch, the sa
follows the la

reduce pow

en in Java. M
or of Califor
d for compati
tion [22]. Th
several parts
attempts to b
changing rap

hanges to the

baseline im
guage chosen
of the high re
or another d
can be used
of any secur
3]. By defau
ms have to b
Californium s
” designation

g of Java bas
oftware [24].
ndencies [25]

Maven utility.
This tool is he
oal is to creat
sts when com
also to find

created for
He is current
a is to provid
onvenient fa

ces with as li
having a sm

and Atmel [2

r innovative
ading). Basic
cution [27]. B

mory footprin
ding systems
filing [28]. L

ded with the
ning version
ame author
atest (at the t
wer usage an

Matthias Kov
rnium [21]. C
ibility at vari
his impleme
s and employ
be backward
pidly via fre

e protocol’s f

mplementatio
n for this im
equirements

device that su
d as a base
rity solution

ult, messages
be used to pr
started to imp

n.

ed applicatio
. Maven is b
]. Californium
 This makes
elpful since C
te a modular

mpiling softw
subtle proble

use on con
tly CEO of T
de interconne
shion. Conti
ittle as 10 kB

mall impleme
26].

technologies
cally prototh
Benefits of th

nt and also in
. Other func

Low power re

Contiki sou
n of the CoAP
who created
time - 2012)
nd is presen

vatsch, one o
Californium
ious so calle
entation follo
ys abstraction
ds compatibl
quently relea

functionality.

on that can
plementation
the Java Vir

upports Java
for a CoA

, this drawb
 are sent in
rovide secur
plement DTL

ons. In some
based on XM
m is distribu
s it easy for
Californium
r and layered
ware, this me
ems that cau

nstrained dev
Thingsquare,
ectivity of th
ki is a very r
B of RAM a
entation of th

s, such as pro
hreads are sta
hese technol
n many cases
ctionality sup
equirements

rce code. Th
P protocol sp

d the Californ
CoAP draft.

nted as a "lo

of the main a
currently sup

ed plugtests t
ows a typic
n and modul

le with older
ased drafts. A
.

be used fo
n was Java,
rtual Machin

a this implem
AP applicatio
back is ment
clear text an

rity to the tra
LS support a

e ways it is s
ML configura
uted in a for
a developer
is quite larg

d design solu
eans that it is
use the test c

vices. It was
, a company

hings, mostly
resource con
and 30kB R
the IPv6 stac

otothreads (a
ackless threa
logies includ
s reduced co
pported by C
and solid su

his implemen
pecification w
nium library
. This implem
ow power C

authors of
pports up
that grade
cal object
larity to a
r versions
Although

or further
as this is

ne (JVM)
mentation
on or for
tioned as
nd do not
ansmitted
and allow

similar to
ation files
rm that is
r to make
e and has
tion [23].

s easier to
onditions

s initially
focusing

y focusing
nservative
ead Only
ck named

a memory
ads which
de support
omplexity
Contiki is
upport for

ntation is
written in
y. Erbium
mentation
CoAP for

Contiki"
such as t
- while
improve
full CoA

Erbiu
protocol
Erbium’
impleme
efficientl
compare
ContikiM

 I2.5.2
A develo
Contiki.
image im
software
developm
working
of the Ub

Inclu
whilst co
and dev
monitori
dynamic
start run
with diff
client on

By l
nodes ca
simplify
as if they
and there
directly
ensuring

Furth
the captu
as Wires
traffic an
running
the CoA
Wireshar
fields in

The
capturing
other via
slows do
This is p

 [29]. This i
the ContikiM
still retainin
message ha

AP implemen

um employs
s following
s memory

entation with
ly while hav

ed to a naiv
MAC.

Instant C
opment imag
This image

mmediately
e for Contik
ment environ
on Contiki d

buntu Linux

uded in the i
ommunicatin

velop softwa
ing the netw
cally compile
nning the spe
ferent applic

n another or m

loading a clie
an easily be
ies analysis o
y were real p
e is even a s
collecting th

g that the pro

hermore, Co
ured traffic t
shark. This i
nd communic
under Contik

AP requireme
rk has a very
a packet and

alternative o
g network tr
a radio. The
own repeated
particularly

implementati
MAC mechan
ng the abilit
andling, supp
ntation for Co

s the built in
the REST c
footprint si

h the Contik
ving a small
ve implemen

Contiki an
ge file calle
file can be lo
provides a d

ki. This ima
nment. Insta
development
distribution.

image is a n
ng with each
are for the
work traffic t
es the entire
ecified applic
cations runni
more advanc

ent process o
e simulated
of the behav

physical devi
simple Comm
he text outpu
gram behave

ooja supports
to external P
is useful bec
cation with o
ki can easily
ents and late
y mature pac
d Wireshark

of analyzing
raffic can be

e process of
d cycles of e
true when t

ion takes ful
nism that ens
y to commu
port callback
ontiki is arou

n REST eng
communicati
ince code r
ki radio opti
 memory fo
ntation that

nd Cooja
d "Instant C
oaded into vi
developer w
ge file inclu

ant Contiki i
t and new ap
.

network simu
h other. The
Contiki plat
to analyze w
Contiki sour

cations on th
ng on the no

ced topologie

on one node
and monitor

vior of the ex
ices. Various
mand Line In
ut from each
es correctly.

s sniffing of
Packet CAPtu
cause this pr
other nodes.
be captured

er that they
ket-parsing e
supports par

 the softwar
e a problem
transferring
editing and t
the developm

ll advantage
sures the radi
unicate effic
k functions,
und 2600 line

gine of Cont
ion architect
reuse is hi

timizations r
ootprint and

does not ta

Contiki" is p
irtualization

with all the t
udes the ful
is the recom
pplications. T

ulator for sim
simulator, n

tform. It su
what data is
urce including
he simulated
odes, for ins
es.

and the serv
red. One of

xecuting prog
s ports and in
nterface (CL
h node in the

network traf
ure (PCAP)
roject, and m
In this way,

d and the rele
correctly ut

engine that s
rsing of CoA

re on actual
when the b
a program t

testing that
ment method

e of other op
io is switched
ciently. It al

and asynchr
es of C code

tiki allowing
ure, such as
igh. Erbium
resulting in
offers energ

ake advantag

rovided to f
software, su

tools needed
ll Contiki so

mmended sys
The image its

mulating a n
named Cooja
upports extra

being sent o
g any chang

d nodes. Cooj
stance a serv

ver on anothe
the main b

gram(s). For
nput/output d

LI) available
e simulation

ffic generate
files that can

most applicat
the network

evant fields c
tilize the ne
shows the nam

AP messages.

hardware is
boards are co
to the board
can be nece

d relies on m

ptimizations
d off for as m
so uses prot
ronous recep
.

g developers
 HTTP and

m combines
a system th

gy savings of
ge of the b

facilitate dev
uch as VMwa
d to start de
ource code
stem for dev
self is based

network of no
a, allows dev
acting statist
over the netw
es or additio
ja can simul
er applicatio

er node inter
enefits of u
instance, no

data can be m
for each nod

n. This helps

d by the sim
n later be inp
tions of Con

k traffic gene
checked to se
w extension
mes and dec

more cumbe
ommunicatin

ds for testing
ssary when
making incre

Backgr

that exist in
much time as
tothreads in
ption of pack

s to easily im
CoAP. This
an efficien

hat can com
f up to 26 ti

benefits conf

veloping soft
are [30]. Loa
eveloping an
and a preco

velopers to u
on a standar

nodes running
velopers to e
tics from no
twork. Startin
ons made. It
late various
on on one no

raction betw
using Cooja
odes can be m
monitored fro
de. A major
s with debug

mulation and
nput to progr
ntiki, rely on
erated by CoA
ee that they b
ns SMACK
coded values

ersome, espe
ng directly w
g also takes
developing
emental cha

round | 11

n Contiki,
s possible

order to
kets. The

mplement
s reduces
nt CoAP

mmunicate
imes [29]
ferred by

ftware for
ading this
nd testing
onfigured
use when
rd version

g Contiki
easily test
odes and
ng Cooja
will then
networks

ode and a

een these
is that it

monitored
om Cooja
benefit is

gging and

dumping
ams such

n network
AP nodes
both meet
provides.
of all the

ecially as
with each
time and
software.

anges and

12 | Back

testing w
connecti

Seve
can easil
complica
concurre
Alternati
and the t
propertie
stack, th
interfere

2.6
IPv6 ov
protocol
standard
function
UDP) [3
low pow
This com
common
hexadeci
combina
sender a
header c
compres
optimize

 A2.6.1
6

The IEE
enables
Control
to an ap
transmis
integrity
MAC lay

An i
traffic fr
When us
traffic fr
beyond t
packets
different
link laye
case with

* As cons
hardware

kground

whether the f
ing to them v

eral configur
ly be loaded
ated sensor
ently. The sim
ively, Cooja
transmission
es of the rad
hus the simu
ence and sign

6LoWP
er Low pow
to facilitate

d that specifi
s of 6LoWP

32][31][30][3
wer networks
mpression te
n knowledge
imal) could b

ation of sour
and receiver
compression
sed addresse

ed to function

Authentic
6LoWPAN

EE 802.15.4
authenticatio
Lists (ACL)
pplication to
sion. An app

y protection
yer provides

issue when u
rom outside,
sing ACLs t
rom it. Whe
the gateway
are authentic
tiation of sou
er technology
h the MAC a

strained device
e platforms.

functionality
via Universal

ration files a
d into Cooja

networks w
mulation can
has the abil

n properties o
dio medium
ulator is prim
nal loss will n

PAN
wer Wireless
e operation i
fies the oper
PAN is comp
31][30]. The
s that are con
echnique wo

of IPv6 add
be a replacem
rce and desti
addresses in

n [32]. Devic
es for comm
n well with D

cation an
N
standard pro
on and encr
 that can filt
o request an
plication can
or full conf
this function

using ACLs
there is no w

the nodes ha
en traffic arr

cannot diffe
cated. In con
urces and aut
y. Higher la
address.

es have limite

is still corre
l Serial Bus (

and programm
a. Cooja can
with more th
n be on a hig
lity to simula
of the radio
are not rele

marily used t
not be param

s Personal A
in low powe
ration on the
pression of t
e purpose of
nstrained in
orks by splitt
dresses and o
ment and com
ination IPv6

nstead of 32
ces can set
unication. T

DTLS [33].

nd encryp

ovides suppo
ryption at th
ter which dev
nd set the r
n signal to th
fidentiality (v
nality as a se

is that when
way for the i
ave to either
rives from d
erentiate betw
ntrast, a secu
thentication s
yer addressi

ed amounts of

ect. Extractin
(USB) and re

ming examp
n simulate bo
han 10 nod

gh abstract le
ate lower lev
medium can

evant, as CoA
to evaluate c

meters in the s

Area Networ
er wireless n
e physical a
the IP heade
f this compre
terms of ban

tting commu
other metada
mmon repres

6 addresses.
bytes that w
up such a

There are spe

ption built

ort for encryp
he MAC lay
vices are allo
required sec

he MAC laye
via encrypti

ervice.

n one node a
internal devic
r accept all t
different com
ween these s
urity solutio
since a highe
ing informati

f RAM it may

ng the outpu
etrieving the

ples are inclu
oth simple c

des with all
vel, i.e., con
vels - since e
n be specified
AP operates
code at the a
simulation.

rks (6LoWP
networks [31
and media ac
rs and heade

ession is to r
ndwidth and
unications in
ata. For insta
sentation for
In this way

would otherw
context and

cific adaptio

t into IEE

ption of the
yer [6]. It a
owed to com

curity param
er that the ne
ion) of the p

cts as a gate
ces to know
the traffic fr
mputers con
sources nor c

on working o
er layer solut
ion is also n

be difficult to

ut from board
ir output*.

uded in Insta
client/server

of these n
ncerned with
each node ha
d [30]. For th
on higher l

application l

AN) is an a
]. It relies o
ccess layers
ers from oth
reduce the b
time availab

to separate
ance, the con

a specific IP
only 1 byte

wise be neces
d then rely
ons of this co

EE 802.15

transmitted
lso includes

mmunicate in
meters in the
ext packet to
packet’s con

eway for the
from where

rom the gate
nected to th
can they asc
on higher lay
tion is unaffe
not lost betw

o collect large

ds frequently

ant Contiki a
topologies a

nodes comm
the applicati

as a physical
this thesis pr
levels of the
layer. For th

adaption of
on the IEEE
 [6]. One of

her protocols
bandwidth us
ble for trans
"contexts" t

ntext 0x01 (d
Pv6 address
e will be use
ssary when n
on the abb

ompression t

5.4 as use

frames. This
s support fo
n the network
e MAC laye
 be transmitt

ntents. After

network, by
the traffic o

eway or reje
he Internet t
certain if the
yers can pro
ected by the

ween devices

log files on th

y requires

and these
and more

municating
ion layer.
l position

roject, the
e network
his reason

the IPv6
802.15.4

f the key
 (such as
sage over
missions.
hat share

defined in
or even a

ed for the
not using
breviated,
technique

ed by

s security
or Access
k. It is up
er before
ted needs
this, the

y relaying
originates.
ct all the

the nodes
 received

ovide this
choice of
as is the

hese

A se
IEEE 80
overall s

•

•

•

•

•

•

One
This me
have to b
Bormann
security
a link w
because
drawbac
needed o
security

An e
traffic go
problem
end secu
to be co
authentic
specific n

Non
contents
addressin
informat
correctly
rely on th
is possib
informat

In co
end-to-en
intermed
mechani
networks
scenario
when a u
applicati
for instan
if one or
degraded

 E2.6.2
In the in
IEEE 80
nodes. T

ecurity analy
02.15.4 imple
security inste

• Using th

• Losing A

• Poor pra

• Shared k

• Modes th

• Insuffici

downside o
ans the prot
be set up for
n argue in t
the data rem

with reduced
many netwo
k is that dat
on top of wh
solution for

example of p
oing to the n
is what hap

urity, as traff
oming from
cation in a la
node, then th

etheless, the
following t

ng informati
tion in the I
y by each int
he destinatio

ble for the en
tion for highe

ontrast to lay
nd security

diate devices
isms to func
s where the
s, IoT devic
user remotel
ion layer me
nce: IEEE 80
r more devic
d, at least for

Exploitin
nterest of min
02.15.4 encry
This would

ysis presented
ements secu

ead of increas

he same key f

ACL state at

actical suppo

keying destro

hat employ e

ient integrity

f the authent
tection is onl
r all devices
their book "

mains vulnera
security, or w
orks do not
ta will be un
hat IEEE 802
LoWPAN n

potential sec
node will be

ppens to the
fic may be m

an authentic
arger group,
he keys for th

ere are advan
the IEEE 802
on and head
IP-header si
ermediate de

on IP address
ntire data pay
er layers can

yer 2 security
since they a

s do not hav
ction proper
re the end d
es will recei
ly reads som
echanism me
02.15.4 and
ces in the ne
r well-design

g IEEE 80
nimizing pow
yption and au

split the se

d by Sastry
urity. They e
sing it. Some

for multiple A

power failur

rt for group k

oys replay pr

encryption bu

 protection.

tication supp
ly for a spec
in the netwo

"The Wireles
able in certain
when data is
use IEEE 80

nprotected at
2.15.4 provid
etworks to co

curity risks i
e authenticat
traffic at the

modified at th
cated device
thus if these
he entire gro

ntages to imp
2.15.4 heade
ers of higher
ince this inf
evice (i.e. rou
s to determin
yload and for
nnot be tampe

y solutions, I
are based on

ve to share k
ly. This can
device ower
ive packets f

me value or re
ans that man
IEEE 802.3
etwork are c
ned security p

02.15.4 e
wer consump
uthentication
ecurity into

& Wagner [
even state th
e of the poten

ACL entries

res,

keying,

rotection,

ut not authen

port built int
cific link. Fo
ork if end-to
ss Embedde
n situations.
s forwarded
02.15.4 all t
t some point
des. As a re
omplement o

is the case w
ted and traff
e node itself.
he node but w
e. Furthermo
e keys are co
oup will be ex

plementing se
er are protec
r layers are p
formation is
uter). Router

ne the next-h
r the MAC h
ered with, i.e

IPsec (see Se
n the networ
keys or be in
n be a grea
rs/operators
from a remo
reconfigures
ny different t
Ethernet link

compromised
protocols.

encryptio
mption, it wou

n, thus reduc
two parts,

34], found s
hat some of
ntial security

,

ntication, and

to IEEE 802.
or this reaso

o-end security
ed Internet"

This is true
at the netwo

the way from
or that an a

sult they rec
or replace IE

where a node
fic coming fr
. The problem
will still app
ore, IEEE 8
mpromised,
xposed to the

ecurity at lay
cted by the s
protected. In

necessary f
rs must know
op. Another

headers them
e., it has inte

ection 2.7) an
rk or applic
nvolved in a
t advantage
lack control

ote device ov
an appliance
types of netw
ks. End-to-en
d the securit

n and aut
uld be benef
cing the need

rather than

some security
the options

y issues listed

d

.15.4 is that
n, security a
y is to be gu
that even w
when data le

ork layer [35
m the sender
additional sec
commend IPs
EEE 802.15.4

e is comprom
rom it will b
m stems from

pear to other
02.15.4 supp
perhaps by a

e attacker.

yer 2. One is
security opti
contrast, TL
for the mess

w where to fo
benefit is tha
selves. As a
grity protect

nd the SMAC
ation layer.

any way in o
when deali

l, such as th
ver the Intern
e at home. F
works can ea
nd security a
y of the end

thenticat
ficial if the g
d to do this a
n providing

Backgr

y problems w
available re

d in their pap

it is at the li
associations
uaranteed. Sh
with strong l
eaves a link,
5]. This is no
r to the rece
curity system
sec as a goo
4.

mised, as in
be authentica
m the lack o
nodes in the
ports group
a physical at

s that the ent
ions. This m
LS can not en
sage to be
orward the pa
at integrity p
result, the ad

tion.

CK extension
This means

order for the
ing with tra
he Internet.
net like, for
Furthermore,
asily carry th
also ensures
d-to-end traf

tion
gateway imp
at higher lay

end-to-end

round | 13

with how
educe the
per are:

ink layer.
and keys

helby and
link-layer
traverses

oteworthy
iver. The
m will be
od layer 3

this case
ated. The
of end-to-
e network

keys for
ttack on a

tire frame
means that
ncrypt the
delivered
acket and
protection
ddressing

n provide
s that the
e security
affic over

In many
example,
using an

he traffic,
that even

ffic is not

plemented
ers in the
security.

14 | Background

Moreover, it could decrease both the information that needs to be sent over the wireless link and
reduce the computations necessary at the constrained device. However, this solution is outside the
scope of this thesis project, hence it will not be addressed here, but remains for future work.

2.7 IPsec
Internet Protocol Security (IPsec) is a popular protocol for securing IP traffic with regard to
confidentiality (by employing encryption), data integrity, and origin authentication. Its main purpose is
to protect data in IP packets by defining the steps and protocols to achieve this. The protocol was first
standardized by the Internet Engineering Task Force (IETF) in 1998 in RFC 2401 [36] and further
updated in RFC 4301 [37]. This protocol is based upon earlier research protocols*, such as swIPe [38].
Some of these protocols had overly complex specifications [39] and hence it was decided that there
was a need for a standardized and secure protocol that would take into account the benefits and lessons
learned from the existing options at the time.

One benefit of IPsec is that many different encryption algorithms are supported [37]. Furthermore,
IPsec supports key management, session handling, replay protection, and more. IPsec defines a
complete security infrastructure that can be used to deploy secure communication. IPsec is a well-
tested protocol that is widely used to realize Virtual Private Networks (VPN) [40]. Since IPsec is
implemented at the network layer for both IPv4 and IPv6†, it can support any higher layer protocols,
such as TCP or UDP. The advantage is that no higher layer protocol needs to be customized to work
with IPsec; instead every higher layer protocol can run transparently over an IPsec security
association. This is a strong point since it reduces the work needed for adding security to a network.
Neither the devices themselves nor intermediary systems need any major modifications to enable
IPsec.

Some of the IPsec disadvantages include the fact that it is a quite complex system with many parts.
The protocol is dynamic and can support a large number of configurable settings. Unfortunately, this
large number of settings makes a complete implementation more difficult to create. The packet
overhead for transmitting data is in the order of 50-80 bytes [42]. Performing the encryption and
authentication steps also requires processing power. The amount of processing power depends on the
chosen algorithm. Because of this IPsec may be impossible to implement on devices that are too
constrained in terms of processing capacity or devices with severe limits on available electrical
power [43]. The bandwidth overhead can also be a problem in low bandwidth networks, especially
when small packets are frequently sent, thus making the overhead a significant part of the total data
sent.

2.8 Secure Real-time Protocol
The Secure Real-time Protocol (SRTP) [44] addresses the case where there is a series of small
amounts of data that need to be transmitted securely. It supports confidentiality, authentication
(optionally), and replay detection - while adding only four bytes to the size of a Real-Time Protocol
(RTP) [45] message. It does this by taking advantage of the RTP packet already including a sequence
number and timestamp. Note that SRTP can tolerate packet loss. The protocol uses AES for encryption
and a Hash-based Message Authentication Code (HMAC) based on the SHA1 hash function. Data
confidentiality is realized by replacing the original RTP payload with an encrypted version. As for
basing the HMAC on SHA1, even if some collisions or other security issues are found with SHA1, as
is the case with MD5, this does not necessarily mean that an HMAC based on SHA1 will be
compromised [46].

As mentioned above, the overhead compared to normal RTP traffic is very low. The only new
fields defined are an optional field that identifies the master key used and a recommended field with
authentication information. Fortunately, RTP already supports functionality typically needed for replay
detection and mitigation of other common security flaws in the form of sequence numbers and
timestamps. SRTP does not provide confidentiality to the RTP packet headers, the reason for this is to

* A list of some of this research can be found in the survey: http://web.mit.edu/tytso/www/ipsec/surv9703.html
† Current standards specify that IPsec support should be implemented in any IPv6 nodes [41].

Background | 15

allow header compression. If there is need to secure the packet headers, then the SRTP RFC
recommends using another protocol, such as IPsec.

Garg, Singh, and Tsai analyzed the security of SRTP and note that due to the use of HMAC-SHA1
the protocol is susceptible to DoS attacks [47]. Because the HMAC calculation incurs overhead,
flooding the receiver with SRTP packets can overwhelm it. The authors propose two different schemes
to solve this problem. These two schemes combined are called SRTP+ and both are based upon the
idea of adding another level of authentication that is cheaper to calculate. If a device is flooded with
SRTP packets with incorrect HMAC values, the receiver utilizes a simpler protection method to
quickly discard invalid packets. This additional layer imposes only a small overhead for legitimate
traffic, but can avoid unnecessary processing in the case of DoS attacks. In comparison SMACK only
needs to perform HMAC calculations for approximately every 16th packet (using the default
configuration) rather than for every packet sent/received.

SRTP+ Scheme 1 uses a shared seed for a pseudo-random number generator (PRNG) to provide
authentication, both devices will generate the same values from the PRNG and thereby are able to
confirm if a packet is authentic. For instance, the sender will transmit a message with the 10th output
from the PRNG sequence as authentication and the receiver can confirm this by checking that the 10th
value of its PRNG gives the same result. Since both of them use the same starting seed, the results will
match if the message is authentic. The seeds have to be exchanged in a secure manner during a setup
phase, before data transmission starts.

SRTP+ Scheme 2 is even simpler and uses pre-computed numbers for authentication. The
authentication values for the next N packets are periodically provided to the receiver. These value are
encrypted and transmitted as part of a SRTP payload. After both parties share these same random
numbers they are used as a one time key for each packet. The receiver checks if the incoming packet
contains the next expected number and if so it accepts the packet. Each number is only used for one
packet so the sender needs to keep supplying these numbers leading to a small increase in
communication overhead. Test results show a speed improvement of at least 3.5 times for scheme 1
and 8 times for scheme 2 in comparison to not using either of these schemes.

2.9 Multimedia Internet KEYing (MIKEY)
A common question for a security protocol is how to distribute or generate keys. The Multimedia
Internet KEYing (MIKEY) [48] protocol is used to provide SRTP with session keys. One of its stated
goals is to provide a key management system with end-to-end security. Other goals are simplicity,
efficiency in terms of overhead and independence from the underlying protocols. A popular method
for key distribution and management is the Internet Key Exchange (IKE) protocol (used by IPsec).
However, as the MIKEY RFC [48] states, streaming data has special needs and needs a protocol better
adapted to it. MIKEY is primarily intended for use with simple peer-to-peer connections or groups of
small size. The system also supports a variety of scenarios, such as unicast, multicast, and many-to-
many communication. In contrast, IKE does not support multicast scenarios in a reasonable manner
since each security association is between pairs of devices. In order to support multicast
communication if n is the number of devices, then ௡(௡	ି	ଵ)ଶ security associations will be necessary when
using IKE.

Another key point is that it should be possible to integrate MIKEY data in other protocols to avoid
having to do MIKEY negotiation separately. Thus MIKEY should be included in the session
establishment of other protocols as much as possible. How this can be accomplished is described in
RFC 4567 where key management protocol support for Real Time Streaming Protocol (RTSP) and
Session Description Protocol (SDP) among others are described [49]. RFC 4567 provides a framework
describing how key management protocols can interact and carry their messages in RTSP or SDP
traffic. Both RTSP and SDP are extended with new headers that support the required options for key
management. Some important options added are an identifier that specifies the key management
protocol used and a data field where whatever data the key management protocol wants to relay is
placed. An important requirement of the key management protocol is that the initial step of the
protocol must be possible to perform in a single request-response message exchange. MIKEY is

16 | Background

specifically mentioned in RFC 4567 and example scenarios where it is used are provided. MIKEY
supports the previously mentioned requirement of needing few messages to initialize the shared keys.
Security-wise a potential problem highlighted is that some protocols such as Session Initiation
Protocol (SIP) utilize intermediate proxies. This can prevent the session setup traffic from being
secured end-to-end. One implication of this is that an intermediary can intercept keys and use those to
attack the encryption of the media stream created by the media delivery protocols. One solution to this
is of course to use Secure/Multipurpose Internet Mail Extensions (S/MIME) to secure the SDP so that
the proxies cannot see the MIKEY information.

MIKEY uses AES in counter mode for encrypting the keys to be delivered, while authentication is
provided by a HMAC based on SHA1. To create a secure communication session for distributing keys
three methods are described: pre-shared keys, Diffie-Hellman key-exchange, and public-key
encryption. For speed and efficiency the RFC recommends pre-shared keys, but notes that for larger
systems this can be problematic. Public-key cryptography is more scalable, but requires a Public Key
Infrastructure (PKI) to work optimally; in addition it is more resource consuming as symmetric
encryption is faster than asymmetric. Diffie-Hellman key-exchange is more resource intensive than the
previously mentioned methods and also requires PKI systems to ensure user authenticity and protect
against man-in-the-middle (MITM) attacks. Several later RFCs add additional support for new
methods to create a session and negotiate a common secret in addition to the three mentioned above.

While the purpose of MIKEY is to distribute keys to systems, it still needs key information to be
present in those systems, with the exception of Diffie-Hellman key-exchange where the end nodes
generate the keys. The actual keys that MIKEY distributes to systems can be calculated either from
pre-shared keys or a shared piece of data agreed upon by the devices during the initial MIKEY
messages. Derivation of these keys is done with an HMAC based on SHA1. Timestamps are used to
provide replay protection, which means that the clocks have to be synchronized. Clock
synchronization is also used to reduce power consumption when using IEEE 802.15.4 and for WLANs
operating in infrastructure mode the nodes also synchronize their clocks with the AP. To protect
against replayed messages within the acceptable time window, a replay cache keeps track of the
accepted messages that arrive in this window. A replay cache of 6 kB is assumed to be reasonable for
most cases. This size is large for constrained devices as they may only have 10-50 kB of RAM. For
extreme cases, a cache of up to 48 kB is mentioned in the MIKEY RFC [48] p. 31. In contrast
SMACK requires only ~16 bytes for replay protection (using the default session length) as will be
described in Section 3.6.

2.10 DTLS
Datagram Transport Layer Security (DTLS) is a protocol for encrypting UDP traffic based on the
Transport Layer Security (TLS) [50] protocol, TLS is used for encryption of HTTP traffic, among
other uses. DTLS was first presented in 2006 in RFC 4347 [51] and later updated in RFC 6347 [52]. In
these RFCs, DTLS is presented as a series of deltas, specifying how and when it differs in
implementation from TLS. The purpose of the protocol is to provide the same level of security that
TLS provides to TCP traffic, but applied to UDP. Some of the common protocols used on the Internet
such as Domain Name System (DNS) and many systems for Voice Over IP (VoIP) communication
utilize UDP as their transport layer protocol. DNS has in the past been targeted by many attacks since
it is a high value target. These attacks attempt to redirect users to fake websites by providing forged
DNS entries. TLS does not support encrypting UDP traffic and because UDP cannot use the standard
implementation of TLS, it therefore requires another method to achieve confidentiality and secure the
user’s communication.

There are some key differences between how DTLS and TLS functions. One main difference is
that UDP does not have any built in functionality to ensure that packets are delivered to an application
on the receiver in the correct order (as UDP lacks any concept of byte stream ordering). TCP uses
sequence numbers and a request/acknowledgement scheme to ensure that bytes are reliably delivered
and ordered correctly for delivery to the application layer, while UDP lacks this functionality [53].
This means that DTLS has to implement this functionality on top of UDP and do so at the application
layer rather than at a lower layer in the TCP/IP stack. This is logical since DTLS must be self-

Background | 17

contained and function without requiring any modifications to the lower layers. By reimplementing
some of the functionality of TCP in DTLS the necessary benefits of TCP can be transferred to DTLS
even though it is running over UDP.

DTLS adds support for numbering and functionality to mitigate packet loss [51]. This is
accomplished with sequence numbers in a similar fashion to TCP. DTLS also adds support for
automatic packet retransmission, reordering, and replay detection. By combining all these features
DTLS accomplishes what TCP and TLS together achieve. Some other considerations are that stream
ciphers such as RC4 cannot be used with DTLS since they rely on the ordering of the data and make
packets interdependent on each other, because of this stream ciphers are banned in DTLS [51] simply
because the protocol would not function when using them.

A potential security issue that has to be taken into account is DoS attacks, which can render the
attacked device unresponsive. Because the source IP address of the device making a request is not
verified an attacker can spoof messages and consume memory resources of the receiver by setting up
fake DTLS sessions. To protect against this DTLS uses a concept called stateless cookies. These
cookies force the sender to prove that it can both send and receive data on the IP address it is
using [51], this greatly increases the difficulty of spoofing the source IP address. Apart from these
changes, DTLS is very similar to TLS and this is a strong point since TLS is one of the most widely
used security protocols on the modern Internet. This is also one of the main reasons DTLS is presented
as deltas compared to the full scale TLS protocol, only parts of the implementation necessary to adapt
the protocol to UDP need to be changed. As the TLS protocol itself is secure [54], as many parts as
possible should be left unchanged.

For UDP based traffic, such as CoAP, DTLS is a potential choice for protecting the traffic.
However, there are issues with expensive cryptographic operations that have to be performed. This is
especially important when the DTLS protocol is executing on constrained devices. A thesis by Stefan
Jucker [55] explores the drawbacks and benefits of using DTLS with CoAP with a focus on the
Californium library. Stefan Jucker found that DTLS is currently unsuitable for constrained
devices [55], because the implementation uses too much memory and processing power to be
appropriate for constrained devices.

Another problem is the data overhead induced by using DTLS; since static length header fields are
used the overhead can be significant. The most expensive parts of DTLS’s operation is session
establishment. Running CoAP over DTLS can induce a delay of 40-130 ms and an overhead of
29 bytes [55]. Additionally DTLS requires more messages to be sent to start a communication session
than CoAP does. Establishing a session beforehand and reusing it shows much better results with a
resulting delay of only 5 ms. However, because devices often go to sleep and communicate with many
other devices simultaneously the DTLS handshake will have to be performed frequently. Especially in
the case of sensor networks, one node can have many neighbors that it needs to communicate with
simultaneously. It is noteworthy that some protocols such as MIKEY and SRTP (see Section 2.8)
avoid this problem. In their case, the only additional cost is for the initial MIKEY key exchange and
that can be done in one round trip plus the time for some local processing.

2.11 Lithe: Lightweight Secure CoAP for the Internet of
Things

Lithe [56] proposes DTLS header compression for use with CoAP. Because DTLS was originally
designed for reliable links with high bandwidth it is not ideal for constrained devices. DTLS
introduces some overhead for each packet that it protects. On constrained networks, this extra
overhead leads to additional radio usage. Lithe attempts to alleviate this problem by creating an
integrated DTLS and CoAP system for the IoT. The goal of this solution is to reduce power
consumption, while maintaining the end-to-end protection DTLS provides, through reduced packet
sizes.

Header compression for 6LoWPAN can compress the IPv6 headers and the UDP headers, while
correctly dealing with the source/destination ports and checksum [32]. Lithe extends this functionality
to the UDP payload by defining a new encoding type that allows the protocol to signal that the UDP

18 | Background

payload itself is also compressed. The UDP payload is assumed to be DTLS traffic and the targets of
compression are the DTLS headers. The DTLS message types that have compression rules defined are
Handshake, Record, ServerHello, and ClientHello messages. Some types are left uncompressed, as no
fields suitable for compression are available in them, as is the case with the ServerHelloDone,
ClientKeyExchange, and Finish messages. Fields that are important to maintain security such as the
random-field that contains random data used for encryption purposes are left uncompressed and
unaltered.

Tests by Raza, et al. show a large decrease in overhead ranging from 14-100% depending on the
message type. To achieve 100% savings Raza, et al. assume that some pre-shared information
concerning certificate types, certificate authorities, and algorithms are available to the devices on the
6LoWPAN network. This allows them to omit all fields in the CertificateRequest message. In addition
to reduced overhead, the size of the implementation is small, requiring only 59.4 kB of ROM and 9.2
kB RAM. Energy consumption is also reduced when using Lithe. As to round trip time, Lithe takes
slightly longer than CoAP with DTLS in most scenarios. This shows that it is possible to reduce the
overhead when using DTLS with CoAP in a power efficient manner without greatly increasing the
round trip time of packets on the network.

One specific problem mentioned by Raza, et al. is that if 6LoWPAN is forced to fragment a
message due to its size the round trip time is greatly increased. This effect can only be seen when
using CoAP in combination with DTLS, as this does not happen when using CoAP with compression
enabled or CoAP alone. One of the design goals of the CoAP protocol is precisely to avoid
fragmentation as much as possible [12]. However, when DTLS is enabled the extra overhead added by
the DTLS header information can cause fragmentation. Lithe solves this by compressing enough of the
DTLS headers that fragmenting packets can be avoided to a great extent, specifically 64 bytes of extra
payload is available before a packet has to be fragmented compared to uncompressed DTLS. Lithe
also saves power by reducing radio communication since a packet that is fragmented in two
transmissions will utilized the radio more compared to transmitting the same packet unfragmented.

2.12 Analysis of Existing Internet Protocols for the Internet
of Things

In 2011, Heer, et al. did an analysis of existing Internet protocols and their applicability to IoT [57]. In
their paper they consider limitations of traditional Internet protocols and what special challenges arise
for IoT. The following paragraphs cover some of the challenges with regards to security that they
identified for IoT.

One major issue and a defining characteristic of IoT is that both the network itself and the devices
have very limited resources in terms of bandwidth, memory, Central Processing Unit (CPU)
capabilities, and available electrical power. Because of this some technologies such as public key
encryption, which is very resources intensive, are less suited to the IoT. Furthermore, the small link
MTU size before fragmentation of packets occurs introduces the possibility of attacks and
performance loss due to fragmentation. Their paper also notes that assumptions cannot be made about
the power usage of a specific protocol unless an implementation is actually made for specific IoT
devices. Because of the limited resources, the susceptibility of IoT devices to DoS attacks is
heightened. When resources are more limited, exhausting them is easier and occurs more quickly than
for conventional mains power computer systems. The main targets of exhaustion are battery power and
RAM. Protocols such as IKEv2 and DTLS avoid creating state for a connection until the address of the
other party has been verified. This can protect against DoS attacks when an attacker uses a spoofed IP
address as the source IP in an attack. By not creating state until the connection has been verified makes
the process of creating countless spurious connections made more difficult -- as it puts added
constraints on the source of the connection.

Another issue is that interconnecting the IoT with the Internet can interfere with end-to-end
security. When security protocols protect header information of packets, then these headers cannot

Background | 19

easily be rewritten or modified by gateways (when needed)*. One proposed solution is to share keys
with the gateway, however this weakens the system’s security. Another option is to use the same
packet format on the IoT and the Internet, thus avoiding the need for rewriting packets - although this
can reduce performance in the IoT. A third option is to only protect specific parts of a packet and leave
other parts that can be modified, thus an appropriate tradeoff between security and performance is
important. Finally, the last alternative mentioned is to use advanced MACs that allow for some
transformation of messages without breaking integrity, but this solution is more complex and difficult
to use for encrypted data.

Key distribution and defining identities for each device is another challenge. For instance, one way
this can be done is in a distributed way is for devices to form ad hoc security associations and share
keys as needed. Another option is to have a centralized system that distributes identity information and
keys to devices, but a drawback of this is the introduction of a single point of failure. Distributing
certificates and bootstrapping information can be more cumbersome in the case of constrained device
and networks, as certificates and keys can be relatively large. Privacy issues should also be considered,
some protocols such as DTLS allow the client to remain anonymous by requiring authentication only
of the server. However, just as in the case of TLS authenticating only one party can lead to MITM
attacks. Despite this there is also an advantage in allowing one-way authentication as the server-client
relationship means that it is more common to have a trusted server and unknown clients that must be
authenticated to gain access.

In conclusion, Heer, et al. emphasize that solutions should scale from small to large scale
networks. Additionally, they note that is important to consider not only end-to-end security solutions,
but also consider systems that will work well when securing communication for larger groups. Which
layer to secure in the IoT remains important for researchers to consider as there are advantages to
placing security at each layer of the network stack, but resource limitations make it difficult to secure
all of the protocol layers. One specific concept that protocols working in the IoT should take into
account is the need for providing security and sharing keys between layers.

* This is particularly an issue when using network address translation when using IPv4 addresses for IoT devices.

SMACK | 21

3 SMACK
The Short Message Authentication ChecK (SMACK) is a proposed security extension to CoAP. This
protocol adds a method for lightweight authentication of messages to CoAP. Its main goal is protection
against battery exhaustion and denial of sleep attacks. Currently a proof of concept implementation
exists written in Java by Marco Tiloca at SICS [58]. The specification of the SMACK extension will
be used to create a C version that extends the Erbium CoAP implementation on Contiki. SMACK
requires some modifications to function well on constrained devices. Specifically, the memory
footprint and processing power required should be reduced. SMACK also has to be adapted to fit with
the REST model that Contiki uses to implement protocols such as CoAP.

SMACK is an attempt to create a robust and lightweight authentication extension to CoAP. The
current Java prototype implementation of SMACK is written on top of the Californium library. The
current implementation functions on full feature devices, but needs to be adapted and implemented in
C to run on constrained devices. Few of these constrained devices can run the Java runtime and
execute Java programs, thus most constrained device require an implementation that uses a language
operating closer to hardware, such as C.

Technical details of the SMACK extension will be covered in later sections of this chapter.
Briefly, SMACK relies on using a MAC to authenticate messages. This MAC acts a signature that is
attached to each message sent, so that the receiver can verify that a given message is correctly
authenticated and thus should be further processed Locally computing a matching MAC can be
considered proof that the sender and receiver share some secret data (such as encryption keys) [59]. . A
MAC is typically lightweight to compute and small in size. Calculating this MAC should be secure
and resource efficient.

3.1 Overview
The main result of the SMACK extension to CoAP is to introduce a MAC in a section of the token
field. The token field is specified in the CoAP header to differentiate between different communication
sessions. The length of this field is variable and between 0-8 bytes. SMACK takes advantage of this
field and the fact that it is already defined in the standard. This means that no new fields need to be
defined and the necessary modifications to the protocol are small. In place of the token field SMACK
introduces two subfields, one that serves the same purpose as the old token field named "request ID"
and another field named "validity check" holds a MAC. By default, a 4 byte long token field is used
which SMACK subdivides into a 2 byte Request ID subfield and a 2 byte Validity check subfield.

Another advantage of reusing the token field is that SMACK is backwards compatible with CoAP
devices that are not using this field. If a SMACK request is sent to a server that does not implement
SMACK this server will place a copy of the received token in the outgoing packet and reply with that.
This is the standard operating procedure for CoAP, using the same token used in the reply as was used
for the request. Since the MAC is a part of the token field this overloading of the token field is
completely transparent to devices that do not use the token field or implement the SMACK extension.
However, devices that implement SMACK can differentiate between the sub-fields of the token field
and can check the MAC. Splitting and reusing the token field in this way causes no additional
problems since this field was optional from the beginning. Additionally, SMACK retains the same
functionality the token field provides, but reduces the number of bytes that can be used for tokens by 2
bytes as the MAC uses 2 of the 8 bytes available in the token field.

The goal of SMACK is to ensure protection against DoS, specifically denial of sleep and battery
exhaustion attacks - particularly for constrained devices. Protection against these types of attacks is
important since most constrained devices have a very limited source of power. For example, if the
device is battery powered then an attacker can drain the battery by sending request messages and
thereby causing the radio and processor to use up all of the available battery power. In many cases,
once the battery is drained it may never be replaced or replacing it can take a lot of time and effort.
Sensor nodes in particular can be spread over an area and an individual node may never receive service
or replacement of faulty parts. Additionally, nodes may be placed in difficult to reach places such that

22 | SMA

sending
benefit g

In a
reply fro
and crea
attacker
contrast,
are disc
preservin
minimal
message
potential

The
receiver
protectio
message
sections.
Selecting
changed

3.2
There ar
initial ke
initial ke
Figure 3

Figure 3

ACK

someone to
gained.

scenario wi
om the receiv
ating a reply

can request
, when using
arded befor
ng battery po
amount of p

e can therea
lly enabling t

purpose of
to check wh

on provided b
e. Only certa
. The MAC
g which spec
if some part

Keys
re several la
eys from a ke
eys are calle
-1 shows the

3-1: Keys

o replace the

ithout SMAC
ver. In addit

y (which may
a reading f

g SMACK m
e any furth
ower. Unfort
parsing has t
fter immedi
the radio to b

the MAC i
hether a rece
by SMACK

ain elements
must be qui
cific parts of
ts of this info

ayers of keys
ey distributio
ed master ke
e relationship

used by SM

e battery is

CK an attac
tion to the p
y contain se
from a speci

messages are
er processin
tunately, the
o be done in
ately be ign
be placed int

in the heade
eived messag

and the MA
of the CoAP
ck to calcula
f a CoAP re
ormation are

s used in SM
on center (KD
eys and are u
p between the

MACK

infeasible or

cker may sen
processing po
ensor data or
fic sensor o
authenticate

ng and unne
e radio has to
n order to che
nored – hen
to a sleep mo

er is to enab
ge is authent
AC is a lightw
P header are
ate, while sti
equest should

more impor

MACK. In a
DC) (or via s
used to gene
e different k

r simply no

nd hundreds
ower needed
r other data
r request a p

ed and those
ecessary rad
o be on in or
eck the MAC

nce avoiding
ode sooner.

ble message
ticated and th
weight mess
e authenticat
ill providing
d be include
rtant to protec

a real world
some other m
erate the key
eys used by

t worth the

of request
d to deal with
that takes po
particularly
that fail the

dio traffic ha
rder to receiv
C, but if the
g the rest of

e authenticat
herefore sho
age authenti
ed, as will b

g a reasonabl
d in the MA
ct.

scenario, de
method of key
ys used for t
SMACK.

cost compa

messages, e
th parsing th
ower to pro
large CoAP
 authenticati

has occurred
ve the messa
MAC is inco
f the proces

tion, thus al
ould be accep
ication of pa
be detailed in
le level of pr

AC calculatio

evices woul
ey distributio
the MAC ca

are to the

eliciting a
he request
duce), an
page. In

ion check
, thereby
age and a
orrect the
ssing and

llowing a
pted. The

arts of the
n coming
rotection.
on can be

d receive
n). These
lculation.

SMACK | 23

The KDC distributes the initial seed and master key to all devices involved in a communication
session. The master key is now fixed and can be used to generate further keys. The master key and the
seed are used as input to a pseudo random function (PRF) to create a master session key that is valid
for a particular global session. This master session key is subsequently used together with the initial
message ID (MID) of a CoAP packet to generate a session key for a specific session. A session is
identified by the initial MID of the first packet received. For CoAP this MID is a 16-bit value in the
header that is transmitted and automatically incremented for each message sent.

Furthermore, another instance of the session key is created in the form of Session keyJ. The
purpose of this new session key is to provide greater variation in the keying material. All keys except
A, B, and C are 32 bytes in length by default. Finally, keys A, B, and C are generated as shown in
Table 3-1. These keys are used by SMACK to generate the MAC to be written in the CoAP header.

Table 3-1: Generation of Keys A, B, C

Key Size (byte) Bit range (big endian) Source

A 2 0 to 15 Session Key

B 2 16 to 31 Session Key

C 2 Start: 16 × ((݅ + 2) ݀݋݉ 16

Stop: 16 × ((݅ + 2) ݀݋݉ 16) + 15

Session KeyJ i	 = 	MID. J = 	 ୧ାଶଵ଺

Keys A and B are generated in a straight forward fashion by simply taking a fixed segment of the
Session Key. However, key C is generated from the constantly changing Session KeyJ. The choice of
which particular Session KeyJ and which parts of it are to be used is determined by the message ID of
the CoAP packet in question. For instance if the packet has MID 53, then the Session KeyJ used is
Session Key number 3 and bits 112-127 of Session Key3 are used to create key C. Rotating the Session
KeyJ and selecting different parts of it increases security because the same key is not used more than
one packet. In this way, a new key C will be used for each packet. The cycle time of Session KeyJ
depends on the output from the PRF, if there is a case where continuously taking the initial Session
Key plus the current Session KeyJ as input to the PRF at some point loops, the same Session KeyJ will
be generated.

3.3 Pseudo Random Function
The keys themselves rely heavily on a PRF to generate good key material. A good PRF will generate
statistically random data no matter what input material is provided [60]. This means that a small
change in the input material to a PRF will result in vastly different output. Ideally there should be no
discernable relationship whatsoever between the input and output of a PRF.

There are different ways to implement a PRF; the method chosen for SMACK is to use the
SHA256 cryptographic hash function as its base. Hash functions provide fixed length output values
calculated from the variable data they operate on. Typically, hashes are used to verify the integrity of
data or as means of storing passwords. The benefit of hash functions is that they are very difficult to
invert, meaning that if the hash is provided, then finding the original input data is hard. In practice,
attacking hash functions is typically based upon testing variations of the input data until the desired
hash is found. When the input is small, for example a short poorly selected password, then the original
data can often be found from a hash. SHA256 is a hash algorithm created by the United States of
America’s National Security Agency (NSA). It provides an output digest of 256 bits. Many other hash
functions such as Message Digest 5 (MD5) have known security vulnerabilities [61]. Currently,
SHA256 is considered a more secure hash function than MD5.

The HMAC chosen by SMACK is the same as implemented by the TLS protocol [50]. This
HMAC is also used in other protocols, such as IPsec and DTLS. The HMAC specification is given in
RFC 2104 [46] and is a commonly used and standardized mechanism for message authentication. The

24 | SMACK

original HMAC was first described in a 1996 paper by Bellare, Canetti, and Krawczyk [62] who also
authored RFC 2104.

The SHA256 hash is used to implement a HMAC. A HMAC is a way to adapt hash functions to
provide cryptographic security. In essence, a specific piece of data is hashed together with a key in
several steps in order to increase the effort needed to reverse the function. The benefit of a HMAC is
that data can be authenticated by using a specific key as one of the inputs to the function. For a normal
hash function the output is always the same for a specific input, however since a HMAC uses the key
as an additional input the output depends upon both the data and the key.

An HMAC can be used to check if some portion of the data has been modified or not. If the parties
share a key, then they calculate the HMAC of the data with this key both before transmission and after
reception. If the HMAC of the received message matches the expected value then the data has not been
modified and can be considered authentic. If the HMAC differs from the expected value, then the data
(or key) must have changed. An attacker cannot easily modify the data and recalculate the HMAC, as
would be the case if a simple hash function was used, because the correct key is needed to generate a
valid HMAC. If the key is well chosen, then an HMAC is a strong method for authenticating data. For
this implementation of SMACK, it is up to the user to select a good Master Key that the rest of the
keys used will be generated from. This key can be distributed by a KDC or preprogrammed into the
devices. As the master key is 32 bytes long it will be difficult to recover this key -- assuming the
choice of key is sufficiently random.

SMACK implements a PRF using a HMAC based on the SHA256 hash function. This PRF takes
two values as input: a secret key and some arbitrary data to generate some output data. The main
purpose of the PRF is as a wrapper to the HMAC to allow outputs of arbitrary length. To accomplish
this it simply uses the HMAC multiple times according to the desired output length. Since SMACK by
default uses a key length of 256 bits, the PRF only has to execute the HMAC once as the output from
the HMAC is the same length as the hash function being used (and SHA256 has a 256 bit output). The
PRF used by SMACK is similar in functionality to the PRF used by TLS.

The PRF is used to generate sub-keys derived from the main master key. For every new session, a
new key is generated using the PRF from the master session key and the initial message ID of this
particular session, as provided by a KDC or for the implementation described in this thesis the KDC is
emulated in software. Furthermore, the Session KeyJ is continuously refreshed by executing the PRF
with the Session Key and last used Session KeyJ as input. In this way the future values of Session KeyJ
rely on its previous iterations. Because the MID will wrap around to zero after 216 messages it is
necessary to also rotate and change the Master Key after 65 536 messages have been exchanged
between the devices. How this is best done is an open question, but it could be done by using a KDC
or other methods of key distribution.

3.4 Configuration values
Most values used by SMACK are possibly to modify and dynamically change to provide adaptability
for different situations and requirements. For example, some hardware can have lower processing
power or less memory available and some networks can have special characteristics. There can also be
different security requirements and tradeoffs. Table 3-2 shows the default settings that SMACK uses
for some key values.

The default size of the Token field in the CoAP header is 4 bytes, of these 2 bytes are the Validity
Check (MAC) and 2 bytes are for the Request ID (i.e., the same purpose as the original Token field).
The default key size was chosen to be 32 bytes to function smoothly with the hash and HMAC
functions used that generate 32 byte outputs (thus the HMAC is used only once to generate all 32
bytes).

SMACK | 25

Table 3-2: SMACK key values

Name Value Description

SMACK_AUTH_FIELD_SIZE 4 Size in bytes of Token field in CoAP
header

SMACK_VALIDITY_FIELD_SIZE 2 Size in bytes of Validity Check subfield

SMACK_GALOIS_FIELD_SIZE 16 Field size in bits used for Galois
calculations

SMACK_KEY_SIZE 32 Key size in bytes of SMACK in bytes (256
bits)

SMACK_PORTION_SIZE 16 Controls how often Session KeyJ
recalculates (in this case every 16th packet)

SMACK_SESSION_LENGTH 127 Length of a SMACK session (packets)

SMACK_ACCEPTANCE_WINDOW_SIZE 50 Upper limit for new session initial MID
(multiplicative factor for the session size)

3.5 Galois fields
Galois field mathematics is used to calculate the value placed in the Validity Check subfield. Galois
fields, also called finite fields, are defined as sets of numbers in which mathematical operations on the
members of the set results in another member of the set [63]. SMACK uses a field size of 16, the range
of such a Galois field is 0 .. 216 -1 (i.e., 0 .. 65 535). For example, when using a Galois field of 16 bits
the following calculations hold true: 260	 × 	260 = 4123	 and 60000 + 20000 = 42048 as the
results of the calculations are also members of the set and remain within the range of the field.

Simple addition in a Galois field is performed using the exclusive or logical function	ܽ ⊕ ܾ = ܿ.
Multiplication uses algorithms based on primitive polynomials. Each field size can have many
potential primitive polynomials. In essence, a primitive polynomial is an irreducible polynomial, the
equivalent to a prime number but for polynomials. Multiplication in a Galois field is performed
modulo the primitive polynomial used for the specific field size. It is a more complex operation
compared to simple addition.

Often Galois field multiplication is performed using pre-computed lookup tables as multiplication
is quite costly processing wise [64]. Many of the available implementations of Galois field
mathematics in code rely on dynamically generating lookup tables that are loaded into RAM to assist
with speeding up calculations. Since SMACK is developed for constrained devices, it cannot fully
utilize such lookup table functionality for speeding up the calculations due to memory constraints.
Many constrained devices have very limited RAM available and cannot afford large data structures
permanently being loaded into memory. An alternative approach is saving pre-computed tables to the
FLASH memory of the device, although this can introduce latency and the size required can still be
too large for constrained devices. For instance, the code implementing Galois field calculations relying
on pre-computed tables in James S. Plank’s library [65] requires at least 1 MB of space because the
code that creates the tables is the following: malloc(sizeof(int)*nw[w]) and
malloc(sizeof(int)*nw[w]*3) where a field size of 16 gives nw[16] = 216 and an integer uses 4 bytes of
space.

SMACK pre-computes certain values and utilizes a simple lookup table for some operations.
SMACK has support for Galois field sizes from 1 to 16 and the primitive polynomials for each are
stored in a table. The size of this table is 36 bytes. Using Galois field mathematics the three keys A, B,
and C are used in addition to parts of the CoAP message header (m1, m2, and m3) that are included in
the protection according to the following formula: ܥܣܯ =	 (݉଴ + 	ܣ ×	݉ଵ + ଶܣ ×	݉ଶ) × ܤ + ܥ

26 | SMA

Note
and thus
mathema
modulo a

In ad
are secti
normal i
m1 is the
not prote

Figure 3

It ca
size of 1
unlikely
adversar
receiver
second, h
to ଶభలଶభల =
number
fully par
the MAC

3.6
One we
executed
and retra
message
protectio
containe
initial in
Once the
will even
attacker

In th
check su
the secu
requestin
obvious
is identic
result it i

ACK

e that the mu
s follow th
atical operat
a primitive p

ddition to ke
ions of the
integer value
e MID; and m
ected.

3-2: Messa

an be shown
16, as there

to guess th
ry would hav

is expecting
having them1 accepted
of messages
rsed power is
C as can be s

Replay
ll known at

d when an at
ansmits it la

e is authenti
on against re
ed in previou
nteraction wit
e required pa
n appear to o
in hiding the

he case of SM
ubfield of the
urity SMAC
ng resources
distinguishin
cal to a valid
is desirable t

ultiplications
e special ru
tions more c
polynomial: ܥܣܯ
eys A, B, and
CoAP packe

es for the pur
m2 is the Req

age sections

that the pro
are 2ଵ଺ poss

he same MA
ve to transm
g. Because o

m all arrive an
message pe
 the receiver
s still require

seen in the ex

y detecti
ttack agains
ttacker sniffs
ater. The ke
ic. Since the
play attacks.
usly sent val
th the device
acket has bee
originate fro
eir identity.

MACK, an a
e extended C

CK provides
or some oth

ng characteri
d packet. If s
to find metho

s and additio
ules mention
clearly is the

=	 (݉଴ ⊕ ܣ
d C in the for
ets as illustr
rpose of the
quest ID. No

bability of a
sible values
AC as that o
mit 2ଵ଺ messa

of this an a
nd be process
r second. T
r has to fully
ed to power
xperimental r

ion
t authentica

s the network
y here is th
e packet is
. In this way
lid packets.
e to be explo
en captured,
m the origin

attacker can c
CoAP header

and the at
her action de
istics that the
such an attac
ods that can p

ons in the ab
ned earlier.
e following

	ܣ ∙ 	݉ଵ ⊕ ܣ
rmula sectio
rated in Figu
calculation,

ote that this m

accomplishin
for the MAC

of the next v
ages to ensur
attacker that
sed by the re

This limits th
y parse. How
the radio an

results from

ation system
k traffic, cap
hat the MAC

valid, the r
y, an attacker
This attack

oited; simply
 then the att

nal sender sin

capture a Co
and resend i

ttacker can
epending on
e receiver ca
ck occurs, the
prevent repla

bove formula
An alterna
formula wh

∙ ܣ ∙ 	݉ଶ) ∙ ܤ
ns of the pac
ure 3-2. The
thus m0 is th
means that th

ng a forgery
C resulting
valid messag
re that one o
is capable o
ceiver, will h
he efficiency

wever, althou
nd do the lim
Chapter 5.3.

s is replay
ptures a corre
C in the pac
receiver will
r can trick a
is quite clev
passively lis

ack can com
nce it is an e

oAP request
it later. This
send this sp
what was in

an use to real
en this cause
ay attacks.

a are perform
tive represe

here dot repr

ܤ ⊕ ܥ

ckets are also
e colored se
he fields: Ver
he Options a

attack is 2ିଵ
from the com
ge the receiv
of them will
of transmitti
have their att
y of an attac
ugh the receiv
mited parsing

attacks [66]
ect message g
cket is valid
l accept it u
system into
ver since it
stening on th

mmence, in m
exact duplica

with a valid
could allow
pecific pack
the original

ize the packe
es problems

med in a Ga
entation show
resents mult

o used. The m
ections are t
er, T, TKL, a
and Payload

ଵ଺ when usin
mputation. T
ver is expec

l match the M
ing 2ଵ଺	mess
tack capacity

acker in term
ved message

g required to

. A replay
going to the

d and proves
unless there
accepting co
does not req

he network is
many cases th
ate. This can

d MAC in the
an attacker

ket again an
l packet. The
et is replayed
for the recei

alois field
wing the
iplication

mi values
treated as
and Code;
fields are

ng a field
Thus it is
cting. An
MAC the
sages per
y reduced
ms of the
es are not
calculate

attack is
receiver,

s that the
is some

ommands
quire any
s enough.
he packet

n assist an

e validity
to bypass
nd again,
ere are no
d, since it
iver. As a

SMACK | 27

SMACK implements replay protection in a simple and straight forward manner. First, when a
message arrives SMACK checks whether it is a part of an existing session or not. This can be done by
simply comparing the MID of the incoming request with the initial MID + session length for all
current sessions. If the MID of the incoming request falls in the MID range of an existing session, then
this message is accepted. If it is not part of an existing session, there are two cases. The MID is either
evenly divisible by the session length, in this case a new session can be created, otherwise the message
is discarded. The exact Initial MID that is assigned to a session can be provided by a KDC to ensure
that both sender and receiver agree on only one allowed Initial MID.

For each individual session, a bit array is kept of the messages that have been received. With the
default session length of 127, this array will be ቒଵଶ଻଼ ቓ = 16 bytes long. When a message arrives the
corresponding MID in the array is marked as received. If a message with ID 439 comes in this will
mark bit 439	݉݀݋	127	 = 	58 in the bit array. The benefit of this solution is that the memory required
is small and could be further reduced by reducing the session length. For a graphical representation of
SMACK packet processing and replay protection see Figure 3-3. This figure clarifies the processing
for several different potential scenarios.

One drawback of the method described so far is that a limited form of replay attack is possible. It
is not possible to reuse a message for the same session (or for different sessions), however when the
message ID loops around and starts over a message with an old message ID can be reused. For
instance an attacker can capture a packet with message ID 200, wait 65 535 (216) messages and then
retransmit it. The reason this is possible is that the maximum message ID is 65 535, after that value is
reached the count restarts at 0. Now new sessions will be created again and the message IDs will not
be marked as read. This limits an attacker to only replaying a message once until waiting for the
message ID to start over again. This problem has been solved in the SMACK implementation by
simply changing the master key every 65 535 messages. The burden of this is not too large since a
large number of packets can be transmitted before having to change keys.

The following section will elaborate more on the functionality of the protocol in an example
scenario.

28 | SMA

Figure 3
along wi
base MI
MID bel
SMACK
accounte
the uppe
SMACK
sessions
session l

ACK

3-3: Packe
ith its initial
ID + SMAC
longs to. A

K_SESSION_
ed for. The lo
er limit is r

K_SESSION_
and in addi

length.

et processin
MID. The in
K_SESSION
session will
_LENGTH h
owest initial
reached by
_LENGTH
ition to that

ng flowchart
nitial MID is

N_LENGTH
be deleted w

have been rec
MID of an e
adding the
(SL). This p
new session

t: * To clar
s the MID o

H it can easil
when all pac
ceived since
existing sessi
SMACK_A
puts a rang

ns must start

rify this step
f the first pa
ly be determ
ckets from t
 it means all
ion is the low

ACCEPTANC
e limit on a
t on MIDs th

p every crea
acket in this

mined which
he base MID
packets in th

wer limit for
CE_WINDO
acceptable M
hat fall on e

ated session
session. By
session an

D to the bas
this session h
acceptable M

OW_SIZE (S
MID values
even multipli

is stored
using the
incoming

se MID +
have been
MIDs and
SAWS) *

for new
ies of the

SMACK | 29

3.7 Example scenario
This section and Figure 3-4 describe a possible setup and example of how the SMACK protocol will
be used to extend CoAP to providie authentication for a client communicating with a server device.
There are three devices in the network: a server, a client, and a KDC. The following steps prepare the
devices and then exchange authenticated messages from the client to the server:

1. The client requests a Master Session Key and an Initial MID from the KDC.

2. The client receives Master Session Key and an Initial MID from the KDC.

3. The client creates the Session Key and Session KeyJ from the Master Session Key and Initial
MID using the PRF. Then it generates keys A, B, and C for the first packet. For future packets
the key C generated depends on the amount of packets transmitted within this session since
Session KeyJ and the section of it used for key C depends on the MID of a packet.

4. The client uses keys A, B, and C to calculate a MAC for the first packet to be sent. This MAC
is placed in the last 2 bytes of the Token field of the CoAP header. The first 2 bytes are filled
with a random value to provide the original functionality of the Token field (i.e., to identify a
sequence of messages).

5. The client transmits the first CoAP packet protected with SMACK.

6. The server requests a Master Session Key and an Initial MID from the KDC.

7. The server receives a Master Session Key and an Initial MID from the KDC.

8. The server receives a packet and first checks if it matches the Initial MID received from the
KDC. If so the server generates Session Key, Session KeyJ, and the three keys A, B, & C.

9. The server then uses the same algorithm to calculate a MAC for the packet and checks if it
matches the one included in the packet. If it does a session is created and the packet is
accepted and marked as received, if not it is discarded.

10. The server replies to the message. SMACK can function either as one-way or two-way
authentication meaning the server can choose to embed a MAC or not.

11. Since the client has incremented the amount of transmitted packets key C is recalculated from
Session KeyJ and if needed a new Session KeyJ is created from the Session Key and the
current Session KeyJ using the PRF. That will happen every time (i + 2) / 16 is incremented by
a whole digit, meaning every 16th packet.

12. The client now uses the keys A, B, and C to create a MAC for the second packet to be sent.

13. The client transmits the packet.

14. The server receives the packet and calculates the Initial MID for this session from the
incoming packet’s MID. This can be done by taking the MID – (MID mod
SMACK_SESSION_LENGTH). Then the server checks if there is an active session matching
that Initial MID, if not the packet is discarded. Next the server checks that this MID has not
been previously received (by checking the bitmap of received packets), if it has it is discarded.
If it has not been previously received the MAC is checked by first recalculating key C (and
Session KeyJ if needed) and then using the three keys A, B, & C to check the MAC.

Whenever all the packets with MID starting from base MID up to base MID +
SMACK_SESSION_LENGTH have been received a session is deleted. If the incoming MID
of a packet is more than SMACK_ACCEPTANCE_WINDOW_SIZE *
SMACK_SESSION_LENGTH over the lowest base MID of an active session the packet is
rejected.

New sessions will be created by the server when packets with MID that fall on Initial MID +
SMACK_SESSION_SIZE * n are received assuming they are not duplicates and the session
does not already exist. In a real scenario the KDC may be contacted to get new values for

30 | SMA

I
o

Figure 3

ACK

Initial MID a
of the Initial

3-4: Comm

and keys if n
MID is used

munication s

needed, how
d to create ne

steps

wever the curr
ew session an

rent impleme
nd also to ide

entation simu
entify it.

mulates this. TThe value

Method | 31

4 Method
The practical work performed as part of this thesis project extends the code of the CoAP
implementation in Contiki, named Erbium, to add support for the SMACK extension. The current
version of Contiki included with the Instant Contiki VMware image has an implementation of CoAP
that supports the CoAP version 13 draft. Because this version was the latest available with the Contiki
development environment at the start of the project, this version was used for the SMACK
implementation. Erbium is written in C and can be used by Contiki applications if they wish to
communicate using CoAP. This C code was modified to provide SMACK functionality for new and
existing CoAP implementations. As mentioned in Section 2.5.2, the Cooja simulator and other tools
are available to facilitate developing software on Contiki. This simplified the code development.
Additionally, Cooja was used as a simulator to test code before deploying it.

The software development method used was incremental development, thus the SMACK
functionality was systematically added to the existing system. First, the MAC calculation was included
in the client code. Next the server was modified to check the MAC before accepting a message. The
client could be fully developed before creating the server, as a SMACK client can interact with a
non-SMACK server. The existing Java implementation was used as a baseline for creating the C
version. Furthermore, Marco Tiloca at SICS who developed the Java version, was available for
discussion and questions regarding his implementation. However, it was necessary to make major
modifications and design changes for the C version, as this version needs to function with the existing
CoAP code in Contiki.

The main issue when working with the SMACK protocol was that only a Java implementation
existed. While this is sufficient for testing on hardware that can support the Java runtime, since the
main purpose of SMACK is to solve issues with constrained devices having only a Java version is not
sufficient. A version in C, or another low-level language, is necessary to evaluate the solution on
actual constrained devices. Contiki was chosen as the operating systems as it is common and supported
on many different types of constrained devices [7]. Additionally, Contiki was originally developed at
SICS where this thesis project was performed.

Having an implementation that functions with Contiki allowed an evaluation of the SMACK
solution on many different types of constrained devices. These evaluations are described in the next
chapter.

4.1 Hardware
The main board that was used for evaluation and testing in this project is the Texas Instruments
CC2538 board, specifically the CC2538 evaluation version. The board is shown in Figure 2-1 on page
6. Some of this board’s key specifications according to its data sheet are [67]:

• ARM Cortex M3 Processor – 32MHz top clock speed

• 512 kB FLASH memory

• 32 kB RAM

• Support for several low power modes

• AES-128/256, SHA2 Hardware Encryption Engine

• 2.4 GHz IEEE 802.15.4 transceiver

The implementation was purposely kept general in order for it to function on as many of the
devices that Contiki supports as possible. These devices have varying properties and varying levels of
support for different low-level functions. Therefore, the SMACK implementation avoids using any
board specific functionality and tries to be a general C program that can be run on as many devices as
possible. This means that this implementation does not take advantage of the AES-128/256 and SHA2
Hardware Encryption Engine, this is left for future work.

32 | Method

The particular CC2538 board used for the experiment was set to run at 16 MHz. According to the
data sheet the values in Table 4-1 can be found or calculated for the CC2538 boards [67].

Table 4-1: CC2538 test hardware key values

Name Description Value

Voltage Voltage board runs on 3 volts

Radio I_RX Current drain for radio receive 20 mA

Radio I_TX Current drain for radio transmit 24 mA

P_TX Power use for radio transmit 72 mW

P_RX Power use for radio receive 60 mW

CPU Current drain for CPU 7 mA

P_CPU Power use for CPU 21 mW

Real Time Clock (RTC) Clock tick rate 32768 ticks/second

4.2 Software environment used for development
Texas Instruments’ Code Composer Studio (CCS) version 5.5.0 was partially used as the development
environment when writing C code. CCS is a full Integrated Development Environment (IDE) and
includes extensive support for debugging. A large portion of the coding was also done using the Gedit
text-editor under the Contiki development VMware-image. A simple text editor was sufficient since
the code that actually needed to be edited was contained in a relatively few number of files. As code
already existed for simple CoAP client/server applications and the actual implementation of the CoAP
protocol this existing code was used for further development. In practice, the make-files and settings
were already configured and ready for compilation of the code. The client required some modifications
to make it deliver keys to the main CoAP-stack and the main work took place by modifying the
implementation of CoAP that comes with Contiki.

CCS was used for compiling and transferring the applications to the actual hardware. CCS not
only comes with a development environment but also functionality for transferring software to
constrained devices such as the CC2538 board. CCS can be used together with a USB or Joint Test
Action Group (JTAG) interface* to transfer applications to a specific board for testing. When using a
JTAG interface it is possible to do high level debugging using CCS.

4.3 SMACK C implementation
The process of creating the implementation of SMACK in C followed these steps:

1. Understand the general structure and functionality of the Contiki operating system.

2. Become familiar with the CoAP implementation in Contiki (Erbium)

3. Implement client functionality, calculating and marking packets with MACs

4. Implement a server which checks each incoming packet and verifies its MAC

5. Perform functional testing to ensure that the code behaves correctly

6. Perform performance testing to evaluate the use of SMACK with regard to the goals specified
in Section 0.

* A JTAG interface implements the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture.

Method | 33

The resulting implementation is currently not available for download as there still are papers and
related work ongoing at SICS based on this code. However it will likely be released in the future when
papers at SICS have been published.

4.4 Energest
Contiki includes a framework for measuring the time spent in different states by a particular
application. This makes it possible to measure exactly how long a Contiki program spent executing
instructions or how long the radio was turned on for listening. If some key values, such as operational
voltage and current drain, are known they can be used together with the timing information to
calculate the energy use of a specific operation. The benefit of using this tool is that measuring and
calculating power consumption (by combing the measurements with the known values) is simplified.

Using Energest is simple and requires adding only a few lines of code to an application. The
results are given in units of clock ticks, but dividing these results by the number of ticks per second for
a particular hardware device gives results in seconds. Table 4-2 shows the metrics that can be
measured using Energest. The reliability of Energest has been evaluated in a report by Adam
Dunkels [68] and his conclusions show that the testing framework adds 0.7% overhead in terms of
computation time. Furthermore, the report covers practical testing comparing Energest to actual power
readings from a board and shows that the estimated energy use follows the graph of the measured
energy use to a high extent when looking at the specific points where samples are taken.

Table 4-2: Energest metrics

Name Description (all values are measured in clock ticks)

ENERGEST_TYPE_CPU CPU time

ENERGEST_TYPE_LPM Time in Low Power Mode (LPM)

ENERGEST_TYPE_TRANSMIT Radio transmission time

ENERGEST_TYPE_LISTEN Radio reception time

Analysis | 35

5 Analysis
The analysis consists of four parts: functional evaluation, comparison of overhead between vanilla
CoAP and CoAP with the SMACK extension, performance evaluation on CC2538 boards, and
simulated testing on other constrained devices. The performance evaluations use actual hardware with
data collected using Energest. The normal vanilla version of CoAP is compared to CoAP with the
SMACK extension. The performance of each implementation is assessed in terms of latency and time
taken processing messages. When it comes to code size SMACK added 55 kB to existing Contiki
CoAP code (108 kB). 23.6 kB was for SHA functionality, 9.3 kB for HMAC and finally 22.1 kB for
the SMACK core code.

5.1 Functional Testing
Functional testing was initially conducted using the Cooja network simulator that is included with the
Instant Contiki development image. The main point of this testing was to first ensure that the
implementation fulfills the basic functionality of the SMACK extension. This was accomplished in
two ways. First the current Java SMACK client developed at SICS was used to interface with the
simulated nodes running in Cooja and it was confirmed that the Java client could communicate
correctly with the Cooja nodes. This means that the SMACK implementation on top of CoAP in
Contiki was compatible with the external Java client and its implementation of SMACK. In addition,
the traffic was analyzed using the Wireshark packet capture tool to confirm that the structure of the
packets exchanged followed the SMACK protocol specification. This way of testing allowed testing of
the SMACK server in C independent of the corresponding C client as a third party reference
implementation could be used as a client to ensure that the C SMACK server meets the specifications
before testing it with the developed SMACK client.

The second test performed was to simulate both a server and a client node running in Cooja and
check that they could communicate with each other using the SMACK extended CoAP. Because the
previous test showed that the SMACK server implementation met the specifications, the next step was
to test the SMACK client implemented during this thesis project. Consequently, the client was tested
against a SMACK server, both running on simulated nodes in Cooja. Additionally, the traffic was
monitored by looking at debugging output from the two nodes. Both nodes were stress tested by
transmitting a large number of CoAP requests (up to 10 000) to ensure that the session handling and
related code did not have any issues that would appear after prolonged communication. Testing MID
rollover after 65 535 messages was not tested as issues with KDC and key renewal have to be
researched further. Some issues were discovered where the client or server crashed after many packets
had been exchanged. These issues were corrected by making modifications to the code, among other
changes the size used for some session handling data structures were reduced to ensure that the
memory would not overflow when there were multiple sessions. For the CC2538 boards a maximum
of 4 sessions could be supported. However old sessions are automatically cleared when all MIDs for
that session have been received or if needed to make room for a new session. New incoming sessions
are prioritized over older potentially inactive ones.

In addition, some testing was done to ensure that SMACK actually provides authentication of
messages as it should. For instance, packets with incorrect MACs were sent and these packets were
not accepted by a server implementing the SMACK extension. If the MAC calculated by the server
from the contents of the packet does not match the MAC embedded by the client in the packet, then
the message was correctly discarded. This was easily confirmed both by debug output from the server
and monitoring the network using Wireshark. Basic replay protection was also tested and replayed
packets were simply ignored as they are already marked as received in the bit map keeping track of
packets within a session.

36 | Analysis

5.2 Comparison of packet overhead
In the case of SMACK, the number of packets required to initialize a communication session remains
the same as for CoAP, except for communication with the KDC. Because SMACK has to receive keys
there is periodically extra traffic generated for this. This implementation uses a KDC simulated in
software, but a real setup would need some extra packets to exchange data with the KDC. One packet
in each direction is sufficient for the KDC and a device to exchange the necessary information before a
session starts. Ideally, the KDC should be close to the device or keys can be pre-shared between
devices. It is advantageous to have the KDC close to a device to reduce latency in communicating
keys. There is no handshake or other setup data exchanged between the two devices communicating
using the SMACK extension, the MAC is simply added to each message by the transmitter and
checked at the receiver.

As far as communication overhead is concerned SMACK does not increase the size of the packets
exchanged. This can be seen by comparing a CoAP packet protected with SMACK and a vanilla
CoAP packet, as both include the Token field (with a variable size of 0-8 bytes). Many
implementations of CoAP use a 4 byte token. SMACK also uses 4 bytes for the Token field; however,
it splits it into two subfields one of which contains a MAC and the other retains the same purpose as
the original Token field. SMACK uses an existing field of the CoAP header to include the MAC it
calculates for each packet. The great advantage of this is that the protocol does not have to be modified
nor does this add any extra overhead compared to vanilla CoAP traffic. In addition to that a request
protected with SMACK is backwards compatible with vanilla CoAP since the contents of the Token
field will be parsed as if it contained a normal 4 byte token and the subfield containing the MAC is not
parsed as such by a vanilla CoAP server. If SMACK is enabled on receiver and sender both devices
have to agree on the same length for the Token field. In the case where only the client has SMACK
enabled the length is not relevant since the server will simply mirror the token sent by the client.
Finally if only the server is using SMACK it will reject messages from vanilla clients since they will
not be including correct MAC values in the 2 reserved bytes of the Token field.

5.3 Performance Testing
Performance testing was initially performed using the hardware described in Section 4.1, i.e. a
TI CC2538 board. Scenarios involving SMACK and vanilla CoAP were both evaluated. Using
Energest the time in different states was measured (see Table 5-1 and Table 5-2) and the power
consumption was calculated using power information from the data sheets of the board.

The time it takes to perform the MAC calculation was measured both for steady-state operation
and also for the first SMACK packet (that establishes a session and generates keys). The whole time
taken from the stack receiving a CoAP packet to when it is delivered to the receiving application was
measured. This was also done for both steady-state and initial transactions. As vanilla CoAP does not
use a MAC the portion of the code calculating it was not tested for vanilla CoAP. Instead only steady-
state and initial transactions were compared. In practice, the different tests were accomplished by
controlling where in the source code of the Contiki CoAP stack the Energest start and end
measurements calls were placed. As mentioned Energest needs only a few lines at the start and stop of
the blocks of code of interest to measure the number of clock ticks during which the different
components were active.

Table 5-1: SMACK measurements

Start Stop State Name

CoAP request reception CoAP request delivery to application 1st transaction A

Right before MAC check Right after MAC check 1st transaction B

CoAP request reception CoAP request delivery to application Steady-state C

Right before MAC check Right after MAC check Steady-state D

Analysis | 37

Table 5-2: Vanilla CoAP measurements

Start Stop State Name

CoAP request reception CoAP request delivery to application 1st transaction E

CoAP request reception CoAP request delivery to application Steady-state F

The duration between initial request and reply was measured when using unmodified CoAP and
compared to that of CoAP with SMACK. The detailed results from this testing can be seen in
Appendix A. All values from Energest of LPM and TRANSMIT were zero. This is because low-
power mode was not enabled as the processor was performing calculations and it was not in a resting
state. In addition to that the radio was listening for incoming traffic and not in transmit mode. The
actual time in seconds calculated from the ticks can be found by dividing the ticks by 32 768 since that
is the frequency of the internal clock. To get the actual energy usage the values in Table 4-1 can be
used. The formula used is the following: ܧ = 	 ஼ܲ௉௎ × ݕܿ݊݁ݑݍ݁ݎ݂	ܥܴܶݏ݇ܿ݅ݐ	ܷܲܥ + ோܲ௑ × ݕܿ݊݁ݑݍ݁ݎ݂	ܥܴܶݏ݇ܿ݅ݐ	ܰܧܶܵܫܮ

The data in Table 5-3 show an overview of the test results with a confidence interval of 95% applied to
the values calculated.

Table 5-3: Energy statistics

Test Energy (µJ)

95% confidence interval

Client time (ms)

95% confidence interval

SMACK full request
1st transaction (A)

316.22 ±0.97 43.32 ±2.02

SMACK MAC check
1st transaction (B)

313.00 ±0.87 44.75 ±1.74

SMACK full request
steady-state (C)

49.04 ±0.74 29.47 ±0.44

SMACK MAC check
steady-state (D)

45.73 ±0.83 29.02 ±0.30

Vanilla CoAP full request
1st transaction (E)

5.44 ±0.41 40.31 ±1.47

Vanilla CoAP full request
steady-state (F)

5.72 ±0.46 28.39 ±0.32

5.4 Testing on other constrained devices
Hardware wise the code was only tested on the CC2538 devices and confirmed to function on those
boards. However, using Cooja the code was also tested in a simulated environment for the Z1 [69] and
WiSMote [70] type boards. On those boards the code functions without problems and can be
comprehensively tested from a networking and software point of view to the extent that is possible in a
simulation. Because Cooja supports simulated network traffic and even makes it possible to connect to
boards inside the simulation from the host computer the code could also be tested with the Java
version of SMACK and the Californium CoAP implementation. This means that the code could be
tested with the same tools, the same network requests, and same client-side code used for the testing
on the CC2538 hardware.

5.5 Chapter summary
From the packet overhead point of view SMACK does not add any additional packet overhead beyond
what vanilla CoAP utilizes. However, SMACK adds some extra packets for initializing

38 | Analysis

communication due to the communications with a KDC that distributes keying material. Initializing
SMACK communication uses significantly more energy compared to a vanilla CoAP request. Even in
steady-state communication SMACK increases the energy usage of the constrained device. A client
using SMACK to communicate with a server does not experience any significant slowdown; as
requests using SMACK compared to vanilla CoAP experience at most only a few milliseconds of extra
latency. Security wise SMACK provides authentication of messages and ensures that packets with an
incorrect MAC are not accepted. An incorrect MAC can be both due to a packet being modified in
transit or having the wrong keys used for the MAC calculation.

Conclusions and Future work | 39

6 Conclusions and Future work
This chapter contains the conclusions drawn from the work performed during this thesis project. It also
covers interesting aspects that can be explored in the future and suggests some of the best directions to
continue work on this problem. There are some aspects that were outside the scope of this report and
also some aspects that were not investigated further due to the bounded duration of this thesis project.
Finally, this chapter also includes some reflections regarding ethical, environmental, and social aspects
of this work. These issues should also be taken into account when considering how to proceed with
this topic. These considerations are important to ensure that the work done has value and is a good
place to invest research resources as compared to other potential solutions and areas.

6.1 Conclusions
When comparing SMACK to the technologies described in Chapter 2 and elsewhere one clear benefit
of SMACK compared to other solutions is its low overhead. For comparison, the “CoAP security
options” proposed by Yegin adds up to 30 bytes of overhead per packet which may be unacceptable in
constrained networks. By reusing parts of the CoAP header, a MAC could be added without expanding
the packet’s size. SMACK requires limited memory for replay protection, only using one bit per
packet in a session. As a result, a session size of 127 requires 16 bytes for replay protection. Another
benefit of SMACK is that it provides end-to-end security in contrast to layer 2 security solutions, such
as IEEE 802.15.4. Although there are also drawbacks to this method, as it is not able to protect lower
layer headers.

SMACK requires more energy compared to vanilla CoAP. This is not entirely surprising as
additional calculations, in the form of the MAC calculation, are added as compared to vanilla CoAP.
An interesting factor is how SMACK compares in resource use to other alternatives. As mentioned in
Section 2.10 a paper found DTLS to be unsuitable for constrained devices due to its high resource use.
However, in reality DTLS is currently used for securing communication on constrained devices and it
is the recommended option for adding security to CoAP. Many other solutions such as SRTP are more
costly when it comes to calculations required. For instance SRTP requires one HMAC calculation for
each packet while SMACK only requires one every 16th packet (per default). SMACK performs a full
HMAC calculation for every 16th packet and instead does the more lightweight Galois calculation of
the MAC for each packet. This means that the processing induced by HMAC calculations will be
significantly less in the case of SMACK, thereby saving some computational resources which can
translate into saving power.

Another result of using SMACK is that it enables a device to identify unsolicited traffic that is not
properly authenticated. This gives the option of rejecting this traffic and possibly saving resources. In
more advanced attacks where computationally expensive operations can be triggered on a host the
protection SMACK affords can be useful even though it adds some computations as compared to
vanilla CoAP. Further development of SMACK and possibly utilizing hardware encryption engines
can reduce the power consumed in this authentication. In addition, using SMACK and having the
ability to identify unauthenticated messages allows deploying proactive strategies. For instance, the
attacker can be blocked at an earlier hop or the listening device can instruct the radio to use a different
frequency or stop listening entirely. Compared to vanilla CoAP using SMACK means a node can
distinguish between incoming legitimate messages and spurious ones.

The main goal of implementing a version of the SMACK extension using C for the Contiki
platform was accomplished. In addition, the implementation was successfully tested both on the Cooja
simulator for various device as well as on CC2538 boards. The implementation was experimentally
evaluated on these boards and compared to the vanilla version of CoAP. Even though a Java version of
SMACK existed, a new implementation had to be written from scratch to fit into the architecture used
to implement CoAP on Contiki. C is sufficiently different from Java that a complete rewrite was
necessary. Different existing options for authentication and security on the IoT were described and
their various benefits and drawbacks were described. Some further testing in practical experiments on

40 | Conclusions and Future work

other hardware, testing with an attacker, and experimentally evaluating alternative security solutions
are interesting avenues but were considered future work.

Developing software on Contiki and adapting to the difference when writing code for constrained
devices can take some time. For instance, testing the code on actual hardware can be a laborious
procedure since the code has to be compiled and transferred to the memory of the boards. For the
CC2538 platform the procedure of compiling and transferring an application to the hardware (the test
boards) can take 5 minutes. Unfortunately, many of the development tools for theses device are
lacking in functionality and polish. As a result, the best approach is to test and develop code using a
simulator, such as Cooja. However, in some cases the specific board type being used does not exist in
Cooja, so testing will have to use a different simulated board which can cause additional problems.
However, it is important to periodically test the application on actual hardware to ensure that it
actually functions as it should. The Cooja simulator is good, but unfortunately some inconsistencies
can appear between real world performance and the simulation. Debugging support in Cooja is lacking
and problems in the code can cause it to crash.

6.2 Future work
One interesting aspect for future work is to attempt to mitigate cases when the radio is simply
overwhelmed with traffic. In these cases, it might be appropriate to simply power down the radio and
ignore all traffic for a fixed period of time. If a device believes that it is under attack, then powering
down the radio avoids using any power for receiving radio signals and parsing of messages. Using the
SMACK extension allows the node to detect some forms of DoS attacks and initiate countermeasures.
For example, a device could have a rule that when 100 packets with an invalid MAC have been
received the radio should be powered down for 1 hour. Of course, this leads to a very simple denial of
service attack, where the attacker simply sends many invalid packets to cause the device to power
down its radio for an hour – thus preventing the device from carrying out its actual purpose for
legitimate users. Alternatively, a device could stop listening to a specific frequency, network interface,
or transmitter. However, in practice the number of frequencies that the device can operate in is limited
and the attacker can utilize another address to continue the attack.

Of course, the rule for when to power down or stop listening to a malicious transmitter needs to be
carefully thought out and a study would need to be done to find an appropriate rule. Since powering
down the radio means that no messages will be received and the device will be non-functional for a
period of time, this has to be weighed against the potential benefits of doing so. For an individual
sensor node powering down the radio conserves battery power (and thereby enables the continued
operation of the node at some future time) which may be better than succumbing to an attack and
permanently stop functioning. Future research should address the many complex tradeoffs that exist.
How to prioritize degrees of functionality versus operating lifetime remains an open question.

Another area to investigate is to evaluate different scenarios with an attacker in the network.
Ensuring that legitimate clients can access a service while it is under attack is important. Research
should examine how this can be ensured and to what extent SMACK provides this capability. The tests
done as part of this thesis project only show SMACK functioning with a basic client server setup
without an adversary. Adversaries can employ different tactics to discover which methods of attack are
the most effective at bypassing SMACK’s protection. Ideally, SMACK could be adapted to provide
better protection and countermeasures against the most successful attack strategies. Evaluating
SMACK against real attacks and strategies is important for SMACK to become a more robust and
reliable mechanism. Advanced attacks employing modified replayed packets or other techniques
should be tested and evaluated against SMACK.

It would also be interesting to run SMACK on additional or more highly constrained devices than
those described in Section 4.1. One benefit of SMACK is that it is a relatively simple system hence it
does not require much processing power or memory to operate. This is an advantage compared to
other solutions and it would be interesting to investigate if and when SMACK would have a role, i.e.,
in which settings other solutions simply cannot be implemented due to the resource constraints of the
platform. Implementation details such as how to best use SMACK together with a KDC and how to

Conclusions and Future work | 41

best deal with changing keys after 65 536 messages (when the MID loops back to 0) should also be
considered deeper.

A future effort should take advantage of any AES-128/256 or SHA2 Hardware Encryption Engine
that the device supports as part of the SMACK implementation. As per Section 2.6.2, it would be
interesting to exploit IEEE 802.15.4 encryption and authentication in order to reduce the power
consumption at the non-gateway wireless nodes. As noted previously this would break the end-to-end
security, but might reduce both bandwidth requirements and power consumption of the constrained
nodes. Also putting the authentication; related calculations and power drain on a gateway node can
save the internal nodes the burden of performing this functionality. This can be especially beneficial
when the gateway node is more powerful than the rest of the nodes in the network or if it already
operates as a sink node in a sensor network.

6.3 Required reflections
The growth of sensor based systems and constrained devices has been large during the last several
years and this trend is predicted to continue in the coming years [3]. Because of this, the attack surface
of sensor based systems and constrained devices will also grow and hackers and malicious individuals
will target these devices. Compounding this problem is that security solutions for constrained devices
are not as mature as they are for conventional devices and the Internet as a whole. Attacks against
sensor systems and other similar device are a potential threat that needs to be taken seriously.
Manipulation or damaging such systems can have serious consequences, especially for industrial,
medical, and safety applications. Both monitoring and control systems are increasingly automated and
in many cases these applications are deployed using constrained devices.

From an environmental point of view, reducing power consumption is beneficial. Many types of
batteries contain harmful chemicals and damage the environment, hence many governmental
organizations including the European Union (EU) have created regulations concerning them [71]. If
the number of batteries used can be reduced this is beneficial to the environment. Preventing battery
exhaustion attacks caused intentionally by attackers or misconfigured devices can potentially reduce
the number of batteries that will be used. Sensor nodes are frequently used to monitor the environment,
for example measuring pollution near a road. Improving the performance, reliability, and protecting
these nodes against remote tampering with the sensor platform can help provide better and longer term
environmental studies.

Reducing waste is also beneficial from an economical point of view. Preventing attacks and
damage to sensor nodes and other constrained devices is highly desirable since repairs and
maintenance to such a device is generally costly. Furthermore, incorrect sensor data can damage
equipment or produce incorrect results leading either to a need for replacing equipment or in some
cases a need to redo experiments. There are also possible liability issues where companies that do not
provide the maximum security possible to their customers can be held responsible for any damage
caused by negligent security systems. The public relations impact on a company from having one of
their systems attacked can cause financial repercussions and loss of trust.

From an ethical point of view, adding protection and authentication to network traffic is beneficial
for all involved parties. This is especially true today as these issues are frequently discussed in the
news; hence protecting systems is often a high priority for companies and knowledgeable individuals.
If a simple modification can be done to reduce the impact of attacks or prevent certain types of attacks,
then there are many who feel that this modification should be adopted. Today it is increasingly
common to see individuals attacking systems for either political or ideological reasons. Some of these
attackers may feel they are acting completely ethically. Today there are even states who attack the
infrastructures of others via hacking and other means. This has recently fostered discussion on the
ethics of cyberwarfare.

An important goal of SMACK is to provide partial protection for sensor systems from many of
these issues. In particular, battery exhaustion attacks by premeditated attackers, ill-configured
networks, or excessive traffic from some nodes should be possible to mitigate by using the SMACK
extension of CoAP. By implementing SMACK the systems should become more robust and less

42 | Conclusions and Future work

vulnerable to certain types of attacks. The current incarnation of SMACK does not meet all these goals
but further development can improve the protocol and aim to alleviate some or all of these problems.
SMACK is also backwards compatible with existing implementations of CoAP, as it works within the
limits of the protocol specification. This thesis can contribute to the research area of security in the IoT
which is a contemporary and continuously evolving one. In fact, CoAP only recently went through the
final steps of standardization and was released as RFC7252 during June 2014 [5].

References | 43

References
[1] ‘About SICS Swedish ICT’, About SICS | SICS. [Online]. Available: https://www.sics.se/about-

sics. [Accessed: 02-Mar-2014]
[2] K. Ashton, ‘That “Internet of Things” Thing’, RFID Journal, New York, NY, 22-Jun-2009

[Online]. Available: http://www.rfidjournal.com/articles/view?4986. [Accessed: 02-Mar-2014]
[3] ABI Research, ‘More Than 30 Billion Devices Will Wirelessly Connect to the Internet of

Everything in 2020’, ABI Research press release, London, United Kingdom, 09-May-2013
[Online]. Available: https://www.abiresearch.com/press/more-than-30-billion-devices-will-
wirelessly-conne. [Accessed: 02-Mar-2014]

[4] Qijun Gu and Peng Liu, ‘Denial of Service Attacks’, Handbook of Computer Networks:
Distributed Networks, Network Planning, Control, Management, and New Trends and
Applications, vol. 3, Jun. 2007 [Online]. DOI: 10.1002/9781118256107.ch29

[5] Z. Shelby, K. Hartke, and C. Bormann, ‘The Constrained Application Protocol (CoAP)’, Internet
Request for Comments, vol. RFC 7252 (Proposed Standard), Jun. 2014 [Online]. Available:
http://www.rfc-editor.org/rfc/rfc7252.txt

[6] IEEE Computer Society, ‘Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)’, Institute of
Electrical and Electronics Engineers, New York, NY, IEEE Standard 0-7381-4997-7, Sep. 2006
[Online]. Available: https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

[7] ‘Contiki Hardware’, Contiki Hardware. [Online]. Available: http://www.contiki-
os.org/hardware.html. [Accessed: 02-Mar-2014]

[8] M. Stemm and R. H. Katz, ‘Measuring and Reducing Energy Consumption of Network
Interfaces in Hand-Held Devices’, IEICE Transactions on Communication, vol. E80-B, no. 8,
pp. 1125–1131, Aug. 1997 [Online]. Available:
http://www.cs.colorado.edu/~rhan/CSCI_7143_002_Fall_2001/Papers/Stemm97_EnergyConsu
mptionNetworkInterface.pdf

[9] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong, ‘TAG: a Tiny
AGregation Service for Ad-Hoc Sensor Networks’, in 5th Annual Symposium on Operating
Systems Design and Implementation (OSDI), Boston, Massachusetts, USA, 2012 [Online].
Available: http://db.lcs.mit.edu/madden/html/madden_tag.pdf

[10] ‘Texas Instruments - CC2538dk - CC2538, Zigbee/802.15.4, Dev Kit’, CC2538dk - Texas
Instruments - CC2538, Zigbee/802.15.4, Dev Kit | Farnell Sverige. [Online]. Available:
http://se.farnell.com/texas-instruments/cc2538dk/cc2538-zigbee-802-15-4-dev-kit/dp/2356505.
[Accessed: 02-Mar-2014]

[11] ‘Tmote Sky - Ultra low power IEEE 802.15.4 compliant wireless sensor module’. Moteiv
Corporation, 02-Jun-2006 [Online]. Available:
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

[12] Z. Shelby, Sensinode, K. Hartke, and C. Bormann, ‘Constrained Application Protocol (CoAP)’,
Internet Draft, vol. draft-ietf-core-coap-18, p. 25, Jun. 2013 [Online]. Available:
https://tools.ietf.org/html/draft-ietf-core-coap-18. [Accessed: 02-Mar-2014]

[13] Matthias Kovatsch, ‘Matthias Kovatsch’, Matthias Kovatsch, 08-May-2014. [Online].
Available: http://people.inf.ethz.ch/mkovatsc/. [Accessed: 02-Mar-2014]

[14] M. Kovatsch, ‘GitHub Repositories’. 2014 [Online]. Available:
http://github.com/mkovatsc?tab=repositories

[15] R. Fielding, ‘Architectural Styles and the Design of Network-based Software Architectures’,
Doctoral dissertation, University of California, Irvine, 2000 [Online]. Available:
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. [Accessed: 02-Mar-2014]

[16] N. Mitra and Y. Lafon, ‘SOAP Version 1.2 Part 0: Primer (Second Edition)’, W3C
Recommendation, Apr. 2007 [Online]. Available: http://www.w3.org/TR/soap12-part0/#L1153

[17] A. Yegin and Z. Shelby, ‘CoAP Security Options’, Internet Draft, vol. draft-yegin-coap-security-
options-00, Oct. 2011 [Online]. Available: https://tools.ietf.org/html/draft-yegin-coap-security-
options-00

44 | Appendix A. Detailed results

[18] D. Whiting, R. Housley, and N. Ferguson, ‘Counter with CBC-MAC (CCM)’, Internet Request
for Comments, vol. RFC 3610 (Informational), Sep. 2003 [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3610.txt

[19] M. Dworkin, ‘Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality’, National Institute of Standards and Technology,
Gaithersburg, MD, NIST Special Publication 800-38C, May 2004 [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf

[20] J. Granjal, E. Monteiro, and J. S. Silva, ‘Application-Layer Security for the WoT: Extending
CoAP to Support End-to-End Message Security for Internet-Integrated Sensing Applications’, in
Wired/Wireless Internet Communication, vol. 7889, V. Tsaoussidis, A. J. Kassler, Y.
Koucheryavy, and A. Mellouk, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
140–153 [Online]. Available: http://link.springer.com/10.1007/978-3-642-38401-1_11.
[Accessed: 04-Mar-2014]

[21] M. Kovatsch, ‘Californium (Cf) CoAP framework in Java’, Californium (Cf) CoAP framework -
Java CoAP Implementation, 05-Feb-2014. [Online]. Available:
http://people.inf.ethz.ch/mkovatsc/californium.php. [Accessed: 02-Mar-2014]

[22] ‘ETSI CTI Plugtests Guide First Draft V0.0.15’, Sophia Antipolis, France, Mar. 2012 [Online].
Available: http://www.etsi.org/plugtests/CoAP/Document/CoAP_TestDescriptions_v015.pdf.
[Accessed: 02-Mar-2014]

[23] D. Pauli and D. Im Obersteg, ‘Californium’, Lab Project, Swiss Federal Institute of Technology
Zurich, Zurich, 2011 [Online]. Available:
http://people.inf.ethz.ch/mkovatsc/resources/californium/cf-thesis.pdf

[24] Dennis Morse, Roland McGrath, and Mike Frysinger, ‘make - GNU make utility to maintain
groups of programs’, UNIX man pages : make (), 22-Aug-1989. [Online]. Available:
http://unixhelp.ed.ac.uk/CGI/man-cgi?make. [Accessed: 02-Mar-2014]

[25] Apache Maven Project, ‘Introduction to the POM’, Maven - Introduction to the POM, 21-May-
2014. [Online]. Available: http://maven.apache.org/guides/introduction/introduction-to-the-
pom.html. [Accessed: 02-Mar-2014]

[26] Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O’Flynn, Blake Leverett, Eric
Gnoske, Michael Vidales, Geoff Mulligan, Nicolas Tsiftes, Niclas Finne, and Adam Dunkels,
‘Making Sensor Networks IPv6 Ready’, in Proceedings of the 6th ACM conference on
Embedded network sensor systems, Raleigh, NC, USA, 2008, pp. 421–422 [Online]. DOI:
10.1145/1460412.1460483

[27] A. Dunkels, O. Schmidt, T. Voigt, and A. Muneeb, ‘Protothreads: Simplifying event-driven
programming of memory constrained embedded systems’, in Proceedings of the Fourth ACM
Conference on Embedded Networked Sensor Systems, Boulder, Colorado, USA, 2006 [Online].
Available: http://dunkels.com/adam/dunkels06protothreads.ppt. [Accessed: 02-Mar-2014]

[28] A. Dunkels, ‘Contiki: Bringing IP to Sensor Networks’, ERCIM News, no. 76, pp. 59–60, Jan-
2009 [Online]. Available: http://ercim-news.ercim.eu/images/stories/EN76/EN76-web.pdf

[29] M. Kovatsch, S. Duquennoy, and A. Dunkels, ‘A Low-Power CoAP for Contiki’, in Proceedings
of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS ’11), 2011, pp. 855 – 860 [Online]. DOI: 10.1109/MASS.2011.100

[30] ‘Get Started with Contiki’, Get Started with Contiki, Instant Contiki and Cooja. [Online].
Available: http://www.contiki-os.org/start#simulation. [Accessed: 02-Mar-2014]

[31] Z. Shelby, 6LoWPAN: the wireless embedded internet. Chichester, U.K: J. Wiley, 2009.
[32] J. Hui and P. Thubert, ‘Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based

Networks’, Internet Request for Comments, vol. RFC 6282 (Proposed Standard), pp. 10–11, Sep.
2011 [Online]. Available: http://www.rfc-editor.org/rfc/rfc6282.txt

[33] S. Raza, D. Trabalza, and T. Voigt, ‘6LoWPAN Compressed DTLS for CoAP’, presented at the
IEEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS),
2012, 2012, pp. 287–289 [Online]. DOI: 10.1109/DCOSS.2012.55

[34] N. Sastry and D. Wagner, ‘Security Considerations for IEEE 802.15.4 Networks’, in WiSe ’04
Proceedings of the 3rd ACM workshop on Wireless security, Philadelphia, Pennsylvania, 2004
[Online]. DOI: 10.1145/1023646.1023654

Appendix A. Detailed results | 45

[35] Z. Shelby and C. Bormann, ‘Layer 3 mechanisms’, in 6LoWPAN: The Wireless Embedded
Internet, 1st ed., Chichester, U.K: J. Wiley, 2009, p. 87 [Online]. Available:
http://elektro.upi.edu/pustaka.elektro/Wireless%20Sensor%20Network/6LoWPAN.pdf

[36] S. Kent and R. Atkinson, ‘Security Architecture for the Internet Protocol’, Internet Request for
Comments, vol. RFC 2401 (Proposed Standard), Nov. 1998 [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2401.txt

[37] S. Kent and K. Seo, ‘Security Architecture for the Internet Protocol’, Internet Request for
Comments, vol. RFC 4301 (Proposed Standard), p. 85, Dec. 2005 [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4301.txt

[38] John Ioannidis and Matt Blaze, ‘Architecture and Implementation of Network-layer Security
Under Unix’, in Proceedings of USENIX Security Symposium, Santa Clara, California, USA,
1993.

[39] P. Lambert, ‘Minutes of the Internet Protocol Security Protocol Working Group (IPSEC)’,
Toronto, Canada, Meeting report, Jul. 1994 [Online]. Available: ftp://ftp.ietf.org/ietf-online-
proceedings/94jul/area.and.wg.reports/sec/ipsec/ipsec-minutes-94jul.txt. [Accessed: 02-Jun-
2014]

[40] Sheila Frankel, Karen Kent, Ryan Lewkowski, Angela D. Orebaugh, Ronald W. Ritchey, and
Steven R. Sharma, ‘Guide to IPsec VPNs - Recommendations of the National Institute of
Standards and Technology’, U.S. Department of Commerce, Gaithersburg, MD, NIST Special
Publication 800-77, Dec. 2005 [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-77/sp800-77.pdf

[41] E. Jankiewicz, J. Loughney, and T. Narten, ‘IPv6 Node Requirements’, Internet Request for
Comments, vol. RFC 6434 (Informational), p. 18, Dec. 2011 [Online]. Available: http://www.rfc-
editor.org/rfc/rfc6434.txt

[42] Christos Xenakis, Nikolaos Laoutaris, Lazaros Marakos, and Ioannis Stavrakakis, ‘A generic
characterization of the overheads imposed by IPsec and associated cryptographic algorithms’,
University of Athens, Athens, 50, May 2005 [Online]. Available:
http://www.cse.msstate.edu/~ramkumar/ipsec_overheads.pdf

[43] S. Park, W. Haddad, S. Chakrabarti, J. Laganier, and K. Kim, ‘IPv6 over Low Power WPAN
Security Analysis’, Internet Draft, vol. draft-daniel-6lowpan-security-analysis-05, p. 16, Mar.
2011 [Online]. Available: http://www.potaroo.net/ietf/all-ids/draft-daniel-6lowpan-security-
analysis-05.txt. [Accessed: 02-Mar-2014]

[44] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, ‘The Secure Real-time
Transport Protocol (SRTP)’, Internet Request for Comments, vol. RFC 3711 (Proposed
Standard), Mar. 2004 [Online]. Available: http://www.rfc-editor.org/rfc/rfc3711.txt

[45] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, ‘RTP: A Transport Protocol for Real-
Time Applications’, Internet Request for Comments, vol. RFC 1889 (Proposed Standard), Jan.
1996 [Online]. Available: http://www.rfc-editor.org/rfc/rfc1889.txt

[46] H. Krawczyk, M. Bellare, and R. Canetti, ‘HMAC: Keyed-Hashing for Message Authentication’,
Internet Request for Comments, vol. RFC 2104 (Informational), Feb. 1997 [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2104.txt. [Accessed: 07-May-2014]

[47] S. Garg, N. Singh, and T. Tsai, ‘Short Paper: Schemes for Enhancing the Denial-of-Service
Tolerance of SRTP’, in First International Conference on, Athens, Greece, 2005, pp. 409 – 411
[Online]. DOI: 10.1109/SECURECOMM.2005.48

[48] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman, ‘MIKEY: Multimedia Internet
KEYing’, Internet Request for Comments, vol. RFC 3830 (Proposed Standard), Aug. 2004
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3830.txt

[49] J. Arkko, F. Lindholm, M. Naslund, K. Norrman, and E. Carrara, ‘Key Management Extensions
for Session Description Protocol (SDP) and Real Time Streaming Protocol (RTSP)’, Internet
Request for Comments, vol. RFC 4567 (Proposed Standard), Jul. 2006 [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4567.txt

[50] T. Dierks and E. Rescorla, ‘The Transport Layer Security (TLS) Protocol Version 1.2’, Internet
Request for Comments, vol. RFC 5246 (Proposed Standard), p. 14, Aug. 2008 [Online].
Available: http://www.rfc-editor.org/rfc/rfc5246.txt. [Accessed: 02-May-2014]

46 | Appendix A. Detailed results

[51] E. Rescorla and N. Modadugu, ‘Datagram Transport Layer Security’, Internet Request for
Comments, vol. RFC 4347 (Proposed Standard), Apr. 2006 [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4347.txt

[52] E. Rescorla and N. Modadugu, ‘Datagram Transport Layer Security Version 1.2’, Internet
Request for Comments, vol. RFC 6347 (Proposed Standard), Jan. 2012 [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6347.txt. [Accessed: 02-Mar-2014]

[53] F. Chunyan, ‘TCP/UDP Basics’, Canada [Online]. Available:
http://users.encs.concordia.ca/~glitho/F09_TCP_UDP.pdf

[54] Bhargavan, Karthikeyan and Fournet, Cedric and Kohlweiss, Markulf and Pironti, Alfredo and
Strub, and Pierre-Yves, ‘Implementing TLS with Verified Cryptographic Security’, presented at
the 2013 IEEE Symposium on Security and Privacy (SP), Berkeley, CA, USA, 2013, pp. 445–
459 [Online]. DOI: 10.1109/SP.2013.37

[55] Stefan Jucker, ‘Securing the Constrained Application Protocol’, Master’s Thesis, ETH Zurich,
Zurich, 2012 [Online]. Available: http://people.inf.ethz.ch/mkovatsc/resources/californium/cf-
dtls-thesis.pdf

[56] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, ‘Lithe: Lightweight Secure CoAP
for the Internet of Things’, IEEE Sensors Journal, vol. 13, no. 10, pp. 3711–3720, Oct. 2013
[Online]. DOI: 10.1109/JSEN.2013.2277656

[57] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S. Kumar, and K. Wehrle, ‘Security
Challenges in the IP-based Internet of Things’, Wireless Personal Communications, vol. 61, no.
3, pp. 527–542, Sep. 2011 [Online]. DOI: 10.1007/s11277-011-0385-5

[58] T. Marco, ‘Talk by Marco Tiloca’, Amsterdam, CWI, Room L017, 13-Dec-2013 [Online].
Available: http://projects.cwi.nl/crypto/risc.html. [Accessed: 02-Mar-2014]

[59] Çetin Kaya Koç, ‘Message Authentication’, University of California Santa Barbara [Online].
Available: http://cs.ucsb.edu/~koc/ccs130h/notes/mac2.pdf

[60] M. Bellare, R. Canetti, and H. Krawczyk, ‘Pseudorandom Functions Revisited: The Cascade
Construction and its Concrete Security’, p. 3, Oct. 2005 [Online]. Available:
http://cseweb.ucsd.edu/~mihir/papers/cascade.pdf

[61] Xiaoyun Wang and Hongbo Yu, ‘How to Break MD5 and Other Hash Functions’, in
EUROCRYPT 2005, Aarhus, Denmark, 2005 [Online]. DOI: 10.1007/11426639_2

[62] M. Bellare, R. Canetti, and H. Krawczyk, ‘Keying Hash Functions for Message Authentication’,
in Crypto 96 Proceedings, Santa Barbara, California, USA, 1996 [Online]. Available:
http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf

[63] Jorge Castiñeira Moreira and Patrick Guy Farrell, ‘Appendix B: Galois Fields GF(q)’, in
Essentials of Error-Control Coding, 1st ed., Wiley, 2006 [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/9780470035726.app2/pdf

[64] J. Torres-Jimenez, N. Rangel-Valdez, A. L. Gonzalez-Hernandez, and H. Avila-George,
‘Construction of logarithm tables for Galois Fields’, International Journal of Mathematical
Education in Science and Technology, vol. 42, no. 1, pp. 91–102, Feb. 2010 [Online]. DOI:
10.1080/0020739X.2010.510215

[65] James S. Plank, ‘Fast Galois Field Arithmetic Library in C/C++’. [Online]. Available:
http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593/

[66] S. Malladi, J. Alves-Foss, and R. B. Heckendorn, ‘On Preventing Replay Attacks on Security
Protocols’, University of Idaho, Moscow, ID, USA [Online]. Available:
http://www.researchgate.net/publication/2837470_On_Preventing_Replay_Attacks_on_Security
_Protocols

[67] ‘CC2538 - A Powerful System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN and ZigBee
Applications’. Texas Instruments, Dec-2012 [Online]. Available:
http://www.ti.com/lit/gpn/cc2538

[68] Adam Dunkels, Fredrik Österlind, Nicolas Tsiftes, and Zhitao He, ‘Software-based On-line
Energy Estimation for Sensor Nodes’, Swedish Institute of Computer Science [Online].
Available: http://dunkels.com/adam/dunkels07softwarebased.pdf

[69] Zolertia, ‘Z1 Low-Power WSN Platform’. Zolertia [Online]. Available:
http://zolertia.com/sites/default/files/Zolertia-Z1-Brochure.pdf

Appendix A. Detailed results | 47

[70] Arago Systems, ‘WiSMote - IPv6 platform for Wireless Sensor Networks R&D’. Arago Systems
[Online]. Available:
http://www.aragosystems.com/images/stories/WiSMote/Doc/wismote_en.pdf

[71] European Parliament and Council of the European Union, ‘Directive 2006/66/EC of the
European Parliament and of the Council on batteries and accumulators and waste batteries and
accumulators and repealing Directive 91/157/EEC’, OJ, vol. 49, no. L266, Sep. 2006 [Online].
Available: http://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32006L0066&from=EN

Appendix A. Detailed results | 49

Appendix A. Detailed results

Appendix table A-1: SMACK full request 1st transaction (A)

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ)

1 129 129 45.372320 318.8782
2 127 127 46.492054 313.9343
3 128 129 48.488310 318.2373
4 128 129 49.536816 318.2373
5 128 127 49.640880 314.5752
6 128 128 39.126153 316.4063
7 128 127 40.549250 314.5752
8 128 129 39.731519 318.2373
9 127 127 38.662179 313.9343
10 129 128 39.701068 317.0471
11 128 129 47.206422 318.2373
12 128 128 42.439143 316.4063
13 128 128 46.964981 316.4063
14 127 126 38.568382 312.1033
15 128 128 39.001957 316.4063
16 128 128 46.730383 316.4063
17 127 126 39.952008 312.1033
18 129 128 49.396929 317.0471
19 129 129 39.375747 318.8782
20 128 128 39.457462 316.4063

50 | Appendix A. Detailed results

Appendix table A-2: SMACK MAC check 1st transaction (B)

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ)

1 128 127 39.695271 314.5752
2 126 126 49.269812 311.4624
3 125 125 39.142058 308.9905
4 127 128 45.892009 315.7654
5 126 126 38.773785 311.4624
6 127 127 48.853489 313.9343
7 127 127 39.299551 313.9343
8 126 126 41.948121 311.4624
9 127 127 46.099647 313.9343
10 127 127 46.726752 313.9343
11 127 126 46.520161 312.1033
12 127 128 47.393846 315.7654
13 127 127 39.419678 313.9343
14 126 126 48.452041 311.4624
15 127 126 42.934851 312.1033
16 128 127 45.814485 314.5752
17 127 127 46.373495 313.9343
18 127 127 46.284932 313.9343
19 126 127 49.778397 313.2935
20 126 125 46.282492 309.6313

Appendix A. Detailed results | 51

Appendix table A-3: SMACK full request steady-state (C)

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ)

1 19 19 28.461930 46.96655
2 20 20 29.093210 49.43848
3 22 21 28.795830 52.55127
4 19 19 30.494241 46.96655
5 20 20 29.145955 49.43848
6 19 19 31.139220 46.96655
7 20 20 31.239230 49.43848
8 20 20 28.949352 49.43848
9 20 20 29.215587 49.43848
10 21 20 30.112565 50.07935
11 19 19 31.168349 46.96655
12 20 20 30.184146 49.43848
13 19 19 28.414438 46.96655
14 20 20 28.792418 49.43848
15 21 20 29.173403 50.07935
16 20 20 29.888857 49.43848
17 20 21 28.479949 51.26953
18 20 20 29.251555 49.43848
19 19 19 28.494056 46.96655
20 21 20 28.895504 50.07935

52 | Appendix A. Detailed results

Appendix table A-4: SMACK MAC check steady-state (D)

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ)

1 19 18 28.257435 45.1355
2 18 18 28.502297 44.49463
3 19 19 28.854716 46.96655
4 18 18 28.591555 44.49463
5 19 19 28.923440 46.96655
6 18 18 28.547190 44.49463
7 19 19 29.066824 46.96655
8 18 18 28.937430 44.49463
9 19 19 28.423447 46.96655
10 20 20 30.988996 49.43848
11 18 19 29.780253 46.32568
12 18 17 29.230812 42.66357
13 19 19 29.207136 46.96655
14 19 19 29.084704 46.96655
15 19 19 28.813161 46.96655
16 18 18 28.255129 44.49463
17 17 17 29.122000 42.02271
18 18 19 28.912475 46.32568
19 19 19 29.922730 46.96655
20 18 18 28.912965 44.49463

Appendix A. Detailed results | 53

Appendix table A-5: Vanilla CoAP full request 1st transaction (E)

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ)

1 2 2 35.326839 4.943848
2 2 2 42.886738 4.943848
3 3 3 42.447995 7.415771
4 2 2 42.448066 4.943848
5 2 2 42.941914 4.943848
6 2 2 42.008624 4.943848
7 2 3 34.963874 6.774902
8 3 2 41.038543 5.584717
9 2 2 42.107729 4.943848
10 2 2 40.472046 4.943848
11 2 2 42.123713 4.943848
12 2 2 42.134863 4.943848
13 2 3 42.430535 6.774902
14 2 2 34.890959 4.943848
15 3 3 41.660256 7.415771
16 2 2 40.886314 4.943848
17 2 2 35.690293 4.943848
18 3 2 34.809036 5.584717
19 2 2 42.265361 4.943848
20 2 2 42.632726 4.943848

54 | Appendix A. Detailed results

Appendix table A-6: Vanilla CoAP full request steady-state (F)

Test CPU (ticks) LISTEN (ticks) Client time (ms) Energy (µJ)

1 2 3 27.997135 6.774902
2 3 2 28.012500 5.584717
3 3 3 28.524019 7.415771
4 3 3 28.951866 7.415771
5 2 2 29.291832 4.943848
6 2 2 28.062786 4.943848
7 2 3 27.743472 6.774902
8 3 3 28.428942 7.415771
9 2 2 27.472838 4.943848
10 2 2 27.777485 4.943848
11 3 2 28.189758 5.584717
12 3 2 29.953782 5.584717
13 2 3 28.350951 6.774902
14 2 2 28.246679 4.943848
15 2 2 27.930228 4.943848
16 3 2 28.328602 5.584717
17 2 2 28.708958 4.943848
18 2 2 27.692907 4.943848
19 2 2 28.324412 4.943848
20 2 2 29.894514 4.943848

TRITA-ICT-EX-2014:136

www.kth.se

