DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
{@ﬁ STOCKHOLM, SWEDEN 2014
A

FKTHY

VETENSKAP
28 OCH KONST %%

s

Lightweight Message
Authentication for the Internet of

Things

RIKARD HOGLUND

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

Lightweight Message
Authentication for the Internet of
Things

Rikard Hoglund

2014-11-24
Master’s Thesis

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology
Stockholm, Sweden

Abstract | i

Abstract

During the last decade, the number of devices capable of connecting to the Internet has grown
enormously. The Internet of Things describes a scenario where Internet connected devices are
ubiquitous and even the smallest device has a connection to the Internet. Many of these devices will be
running on constrained platforms with limited power and computing resources. Implementing
protocols that are both secure and resource efficient is challenging. Current protocols have generally
been designed for mains powered devices; hence, they are not optimized for running on constrained
devices. The Constrained Application Protocol (CoAP) is a protocol for network communication
specifically designed for constrained devices. This thesis project examines CoAP and presents an
extension that adds authentication in a way that is suitable for constrained devices, with respect to
minimizing resource use. The proposed solution has been compared and contrasted with other
aternatives for authentication, particularly those aternatives used with CoAP. It has also been
implemented in code and experimentally evaluated with regards to performance versus vanilla CoAP.

The main goal of this project is to implement a lightweight authentication extension for CoAP to
be deployed and evaluated on constrained devices. This extension, called Short Message
Authentication ChecK (SMACK), can be used on devices that require a method for secure
authentication of messages while using only limited power. The main goal of the extension is to
protect against battery exhaustion and denial of sleep attacks. Other benefits are that the extension
adds no additional overhead when compared with the packet structure described in the latest CoAP
specification. Minimizing overhead is important since some constrained networks may only support
low bandwidth communication.

Keywords:
Constrained Application Protocol, CoAP, Internet of Things, message authentication, constrained
devices, Contiki, Short Message Authentication Check, SMACK

Sammanfattning | iii

Sammanfattning

Under det senaste &rhundradet har antalet enheter som kan ansluta sig till Internet 6kat enormt. " The
Internet of Things’ beskriver ett scenario dér Internet-anslutna enheter & narvarande Gverallt och dven
den minsta enhet har en uppkoppling till Internet. Manga av dessa enheter kommer att vara begrénsade
plattformar med restriktioner pa bade kraft- och berakningsresurser. Att implementera protokoll som
bade &r sikra och resurseffektiva & en utmaning. Tillgangliga protokoll har i regel varit designade for
enheter med andlutning till det fasta kraftnétet; pa grund av detta ar de inte optimerade for att koras pa
begransade plattformar. Constrained Application Protocol (CoAP) & ett protokoll for
natverkskommunikation speciellt framtaget fér begransade plattformar. Denna uppsats undersoker
CoAP protokollet och presenterar ett tillagg som erbjuder autentisering pa ett sitt som passar
begransade plattformar, med avseende pa att minimera resursanvandning. Den foreslagna |Gsningen
har blivit beskriven och jamférd med andra aternativ for autentisering, speciellt de alternativ som
anvands med CoAP. Losningen har ocksa implementerats i kod och blivit experimentellt utvarderad
nér det gdller prestanda jamfort med standardversionen av CoAP.

Det huvudsakliga malet for detta projekt & att implementera en lattviktslGsning for autentisering
till CoAP som ska installeras och utvarderas pa begransade plattformar. Detta tilldgg, Short Message
Authentication check (SMACK), kan anvdndas pd enheter som behover en metod for siker
autentisering av meddelanden samtidigt som kraftdtgangen halls I1&g. Huvudmalet for detta tillagg &
att skydda mot batteridraneringsattacker och attacker som hindrar en enhet frén att gai vilolage. Andra
fordelar ar att tillagget inte kréaver nagon extra dataanvandning jamfort med paketstrukturen som
beskrivs i den senaste CoAP-specifikationen. Att minimera overhead i kommunikationsprotokoll &r
viktigt eftersom vissa begransade nétverk endast stodjer kommunikation 6ver 1&g bandbredd.

Nyckelord:
Constrained Application Protocol, CoAP, Internet of Things, meddel andeautentisering, begrénsade
plattformar, Contiki, Short Message Authentication Check, SMACK

Table of contents | v

Table of contents

Y 1] 1 = T i
SamMMaANTAtENING ... e e iii
Table Of CONTENTS. ... et e aaaaaans \Y;
1S 0 N T [= vii
1S o0 N 1= 01 = iX
List of acronyms and abbreviations ... e Xi
1 R 1) o T Lo T o T 1
1.1 General introduction to the area.........ccooiiiiiiiiiii e, 1
1.2 Problem definition e 2
1.3 60 7= 1 3
1.4 Research methodology........oooii e 3
1.5 DEliMItAtIONS ...t e 3
1.6 Structure of the thesis ... i, 4
2 = - Vo 1 | o] 61 o [5
2.1 ConstraiNed DeVICESiiii i e et e 5
2.2 COA PP i e i, 6
D I o 4 8
2.2.2 COAP SECUITY OPTIONS. .ttt ettt ettt ettt e e e e e e aaneeees 8
2.2.3 COAP Granular SECUNILYt e 9
2.3 L= 10 110 o o T 10
2.4 = Y= 10
2.5 L0 1 1 | 10
22085 T O 3 o 1 o o 10
2.5.2 Instant ContikKi aNd COOJa...uuuuuiiiiiiii et 11
2.6 BLOVM P AN L. e 12
2.6.1 Authentication and encryption built into IEEE 802.15.4 as used by
LG 0 VAT 12
2.6.2 Exploiting IEEE 802.15.4 encryption and authentication.......................... 13
2.7 = o 14
2.8 Secure Real-time ProtoColcooiiiiiiii i e 14
2.9 Multimedia Internet KEYing (MIKEY) ..o 15
2.10 D 16
2.11 Lithe: Lightweight Secure CoAP for the Internet of Things............. 17
2.12 Analysis of Existing Internet Protocols for the Internet of Things.... 18
B Y| N 4 - 21
3.1 L@ 1YY YT 21
3.2 ST 22
3.3 Pseudo Random FUNCHION ... e ceeeeeeaanes 23
3.4 Configuration ValUescooiii e e et 24
3.5 Galois flelds. ..o s 25
3.6 Replay deteCtiono e e 26
3.7 = 0]] [T Yo o = T 1 29
A METNOA ... s 31
4.1 o = L0 1Y V7= o 31
4.2 Software environment used for development....................lll 32
4.3 SMACK C implementationccceoiiiiiiiiii i i 32

4.4 e 1= e 2 33

vi | Table of contents

L T N = 1 Y21 1 35
5.1 Functional Testing ...ccceiueiii i et aaaas 35
5.2 Comparison of packet overheadcccooiiiiiiiiiiiiiiii i, 36
5.3 PerformancCe TeSTINGcuuuu e aees 36
5.4 Testing on other constrained deviCcescooviiiiiiiiiiiiiiiiiiiiiiaan, 37
5.5 Chapter SUMMAIY ...oooiii i ettt et et eaeaaaans 37

6 Conclusions and Future Workoooiiiiiiiiiiiii e 39
6.1 @0 o Tod 11153 T o 1 39
6.2 FULUIrE WOTK . .o e 40
6.3 Required refleCtions........ccooiiiiiiiii i e 41

R 1= =T o= 43

Appendix A. Detailed resultS.......cooi e 49

List of Figures | vii

List of Figures

Figure2-1: Texas InstrumentS CC2538DKc.ccveiiiiieiierieeiecieesieseesreesie e esae e sree e 6
Figure2-2: COAP Packet StTUCIUIE [12]oveeieeeeceeie ettt 7
Figure3-1: Keysused DY SMACK ...t e 22
Figure 3-2: M ESSA0E SECHIONS......cueieerieeieeeeie ettt sttt st e et nb e sne e 26
Figure 3-3: Packet processing fIOWChAIT...........ccoiiiiiireieee e 28

Figure3-4: COMMUNICALION SEEPSeeiveeieeiesteeieeeeseesie e saeesaeseesseeaesreesseeseeeseesseesesseenns 30

List of Tables|ix

List of Tables

Table 2-1: Fields of @ COAP PACKEL.........c.ooiirieeieeee e e 7
Table 2-2: Y egin CoAP Security OptionS fields.........ccovereienerireeee e 9
Table 2-3: Granular SECUNLY OPLIONSooiiiiieiirieeee et 9
Table 3-1: Generation of KEYSA, B, C ..ot 23
Table 3-2: SMACK KEY VAIUES.......c.oeieeeiieie et ee sttt see s sae ettt nseenaesneenes 25
Table 4-1: CC2538 test hardware Key ValUES............cccvceeveeieceecece e 32
Table 4-2: ENENgESt MELTICS ...ttt 33
Table 5-1: SMACK MEBSUIEIMENES.......eiiiieeiiieiee e eiee st see e sre e se e see e seeesseeseeesseesneeens 36
Table 5-2: Vanilla COAP MEASUIEMENTES.......cc.eiueiieieeieeee et 37
Table 5-3: ENErgY SEaLISHICS. .. .veviiieeieeieeeee et 37
Appendix table A-1: SMACK full request 1st transaction (A)ccevceeverreereereeieeseeseeeeens 49
Appendix table A-2: SMACK MAC check 1st transaction (B)ccccoeeveeveeiieieenesiee e 50
Appendix table A-3: SMACK full request steady-state (C)cceeeevreevevieseeieceeseecie e 51
Appendix table A-4: SMACK MAC check steady-state (D)ccooceeverrierernenieseenesie e 52
Appendix table A-5: Vanilla CoAP full request 1st transaction (E)ccoveeevvreeneeinnnenne 53

Appendix table A-6: Vanilla CoAP full request steady-state (F)ccovvrerierieeieenenenenene 54

List of acronyms and abbreviations | xi

List of acronyms and abbreviations

6LOWPAN 1Pv6 over Low power Wireless Personal Area Networks

AB Aktiebolag (Joint-stock company)

ACL Access Control List

AES Advanced Encryption Standard

AP Access Point

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

CCS Code Composer Studio

CEO Corporate Executive Officer

CLI Command Line Interface

CoAP Constrained Application Protocol

CPU Central Processing Unit

CTR Counter

DNS Domain Name System

DoS Denial of Service

DTLS Datagram Transport Layer Security

EU European Union

GNU GNU's Not Unix!

HMAC Hash-based M essage Authentication Code
HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology
ID Identification

IDE Integrated Devel opment Environment
|[EEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

IKE Internet Key Exchange

loT Internet of Things

P Internet Protocol

IPv4 IPversion 4

IPv6 IPversion 6

JTAG Joint Test Action Group

VM Java Virtual Machine

xii | List of acronyms and abbreviations

KDC Key Distribution Center

KTH Kungliga Tekniska Hogskolan (KTH Royal Institute of Technology)

LPM Low Power Mode

M2M Machine to Machine

MAC Message Authentication Code or Media Access Control depending
upon context

MHz Megahertz

MID Message ID

MIKEY MultimediaInternet KEYing

MITM Man-In-The-Middle

MTU Maximum Transfer Unit

NSA National Security Agency

(O Operating System

PC Personal Computer

PCAP Packet CAPture

PKI Public Key Infrastructure

PRF Pseudo Random Function

PRNG Pseudo-Random Number Generator

RAM Random Access Memory

RC4 Rivest Cipher 4

REST Representational State Transfer

RFC Request for Comments

ROM Read Only Memory

RTC Real Time Clock

RTP Real-Time Protocol

RTSP Real Time Streaming Protocol

SDP Session Description Protocol

SHA Secure Hash Algorithm

SICS SICS (Swedish Institute of Computer Science) Swedish ICT AB

SIP Session Initiation Protocol

SMACK Short Message Authentication ChecK

SOAP Simple Object Access Protocol

SRTP Secure Real-Time Protocol

SMIME Secure/Multipurpose Internet Mail Extensions
TCP Transmission Control Protocol

TI
TKL
TLS
UDP
URL
USB
VM
VolP
VPN
WWW
XML

Texas Instruments

ToKen Length

Transport Layer Security
User Datagram Protocol
Uniform Resource L ocator
Universal Serial Bus
Virtual Machine
Voiceover IP

Virtual Private Network
World-Wide Web
eXtensible Markup Language

List of acronyms and abbreviations | xiii

Introduction | 1

1 Introduction

This report details the results of a master's thesis project “Lightweight Message Authentication for the
Internet of Things’ performed during the spring of 2014 at KTH Roya Institute of Technology. The
project was conducted in cooperation with SICS Swedish ICT AB [1] in Kista.

1.1 General introduction to the area

During the last decade, the growth in the number of Internet enabled devices has been considerable. At
the start of this expansion, people typicaly only owned afew Internet capable devices, typically in the
form of personal computers. Today more and more devices have interfaces that allow Internet
connectivity. One of the most significant developments has been in the number of smart phone
devices. Currently people frequently own many devices that they use interchangeably for Internet
access. Every day additional devices join the global Internet, potentially permitting access to or from
them by other Internet enabled devices.

The term Internet of Things (loT) was coined by Kevin Ashton during 1999 [2], although the
concept was discussed in scientific literature prior to this time. This term tries to define a future
Internet where the growth in the number of device continues and almost all electronic devices have
Internet connectivity. This growth is not limited to user-controlled devices, but aso includes machine-
to-machine (M2M) communication, such as smart sensor systems. All of these Internet connected
devices will have a representation in the Internet either in the form of an IP address or some other
identifying information. Setting up such an infrastructure has many benefits, including remote
monitoring, convenient control of devices owned by an individual, and increasing numbers of
automated systems. Estimates of the number of wireless devices connected to the Internet suggest 30
billion devices by 2020 [3]. Even today, |0T has emerged as an area for research and devel opment.

A "constrained device" is a device that has limited resources in terms of processing capacity,
memory, or available power. Constrained devices are often used to implement sensor networks and
automated systems that utilize M2M communication. The reason these devices are used is that they are
small, inexpensive, and can perform the desired function(s), while consuming very little power. The
software running on these devices has to be adapted to this constrained environment and ensures
sufficient performance without requiring high speed processing, large memory capacity, or using
excessive power. Creating small IP stacks and similar software have been necessary steps to realize
loT and to allow constrained devices to communicate efficiently via a network. Making 10T devices
accessible through the same protocols used in the global Internet is also important when
interconnecting these devices to the existing network infrastructures.

Security is another important aspect of the 10T. If al devices have an |P-address and are accessible
via the Internet, then security becomes an even more important issue as the number of potential
attackers is greatly increased. Authentication is vital to prevent certain types of attacks against these
devices and to confirm the validity of messages. For instance, a device can be inundated with
messages in order to exhaust its battery supply, thus authentication has to be performed in an efficient
manner and properly take into account the device' s limited power, storage, and computing capabilities.
Because of this, the protocols used for authentication have to be adapted for these constrained devices
and must meet requirements beyond the conventional requirements for mains powered devices.

Combining the fast growth of 10T devices with limited resources and less mature security options
means that these constrained devices can become a prime target for attacks. If these issues are
overlooked, then sensitive systems including devices controlling people’s homes or industrial
applications are at risk. This is especially true if devices such as smart light bulbs, industrial sensors,
radiators, and other such applications continue to gain in popularity. It is important that security is
built into the |oT as early as possible, as retrofitting security solutionsis more adifficult challenge.

2 | Introduction

1.2 Problem definition

Denial of service (DoS) attacks are malicious actions that attempt to deny access to or shut down some
device[4]. For instance, such an attack could attempt to overwhelm a target with traffic or send
malformed packets that the device does not know how to handle. For constrained devices the term
"denial of sleep” is often used since these devices frequently rely on going to sleep when data is not
being actively processed, sent, or received. It is crucia for the radio circuitry to be in sleep mode as
long as possible in order to minimize power consumption. Simply receiving, parsing, and processing
data sent to a constrained device can be costly since the radio needs to be on in order to receive the
data, which drains a lot of power. In addition, power is need for processing the packet(s) that have
been received. For these reasons, constrained devices are especially vulnerable to DoS attacks. In
addition, they are rarely protected with intrusion detection and prevention systems that are common
for servers on the Internet. However, firewalls or other types of gateways can be used to protect these
devices from traffic coming from outside the local network.

The problem addressed in this thesis project deals with how to design, implement, and evaluate a
message authentication extension to CoAP for constrained devices. This solution must be both secure
and economical with the resources of the system. Several important aspects have to be taken into
consideration in order to ensure that the proposed extension is secure. First, it should be based on well
tested security concepts, i.e., concepts that have been proven over time. Furthermore, authentication
must be provided in an efficient manner. When it comes to resource usage, the extension should use
code that has been optimized to reduce the amount of memory necessary to ensure that the resulting
code will fit into the available memory of the device in question. In addition, the code should be
adapted to minimize the required processing power. This can be accomplished by careful selection of
algorithms and by reducing the size of fixed arrays and other memory structures that is used. Note that
the extension may trade FLASH storage for processing, as generally, microcontrollers have increasing
amounts of flash memory — but want to avoid either increasing their processor clock rates or requiring
amuch larger random access memory (RAM) — as both take additional dynamic power. The amount of
RAM available is typical less than the FLASH storage and this limits what session information and
other dynamic data that can be allocated and stored in RAM. However, some data has to be kept for
each connected device in order to keep track of the session state and which keys are being used.

Short Message Authentication ChecK (SMACK) is an extension of the Constrained Application
Protocol (CoAP) [5] specialized for providing message authentication in a resource efficient manner.
The methods used to provide this are general and can also be adapted to other communications
protocols. Currently a prototype implementation of the SMACK authentication extension to CoAP
exists (written in Java). It has been developed internally at SICS as a proof of concept (see beginning
of Chapter 3). However, this implementation cannot be tested on most constrained devices since they
have insufficient resources to run the required Java virtual machine, hence for such a constrained
device there is a need for an optimized implementation in C. This means that a version of this
extension written in C needs to be created, tested, and evaluated on constrained devices. This version
should be deployed on actual constrained devices for performance testing.

SMACK needsto be discussed in the context of other authentication protocols. An energy efficient
authentication protocol should lessen the severity of any DoS, such as a denial of sleep attack, since
data that is not authenticated could be ignored by the device. Ignoring such data allows devices to
reduce unnecessary message processing and only reply to legitimate requests. However, the resources
used for authentication can be part of a DoS attack, hence we need to minimize the energy consumed
by this authentication process. As there are a number of aternative protocols for authentication and
confidentiality that could be used with CoAP, some of these protocols will be described and contrasted
to the solution presented in this thesis.

Introduction | 3

1.3 Goals
The following goals are the main objectives of this project:

1. Implement the SMACK extension to the CoAP protocol in C,

Optimize and adapt the implementation to run well on constrained devices,

Test and evaluate the performance of the extension on actual constrained devices,
Describe other existing alternatives for authentication and how they differ from SMACK,
Compare SMACK to vanilla CoAP with practical experiments on constrained devices,
Test the system to see that it ensures proper authentication, and

Take into account the above test results to improve the extension wherever possible.

NOo ok wdN

1.4 Research methodology

This project has selected a quantitative research methodology because the nature of the topic is
suitable for statistical analysis. For instance, the round trip time for a CoAP request with the SMACK
extension enabled versus a vanilla CoAP reguest can be compared. Additionally, we can compare and
evaluate the performance of the SMACK extension by collecting data about the time spent performing
specific calculations. As the goal of this thesis is to evaluate the SMACK extension to CoAP a
guantitative research method is most suitable. The project aso considered a qualitative methodol ogy;
however, it was rejected as quantitative data and statistical analysis of performance are important. The
possibility to automate testing and analyze the results of this testing in a consistent manner favors a
guantitative approach.

This project uses a deductive approach to investigate the hypothesis that the SMACK extension to
CoAP is a viable option for lightweight message authentication on constrained devices. The basic
functionality of the SMACK extension will be tested and verified to work. In addition, the question of
to what extent SMACK and in which areas SMACK is superior or inferior to existing systems will be
discussed. Existing systems will be evaluated based upon external resources, while SMACK will be
analyzed using experimental data.

Empirical research will be performed as a part of this project, thus generating experimental results
and data. The project will also utilize secondary sources to acquire information and allow analysis of
systems that are not available for direct experiments. Comparison and evauation of SMACK versus
vanilla CoAP will be done using new data collected explicitly for this purpose. Results from these tests
will be presented using statistical methods to highlight the performance of the different solutions that
have been tested. The hardware used for the tests will be identical and care will be taken to measure
equivalent processes relevant to each solution in order to ensure afair comparison.

1.5 Delimitations

This thesis focuses on issues related to CoAP and authentication protocols implemented at the
application, transport, or network layers. There are a'so methods for authentication and encryption in
the lower layers of the protocol stack, such as those built into |EEE 802.15.4 [6] - used by 6LoWPAN.
Further details of 6LOWPAN are given in Section 2.6 and relevant details of |EEE 802.15.4 are given
in Section 2.6.1. However, these solutions rely on the fact that the underlying network utilizes a
specific technology. Most devices connected to the Internet utilize versions of Ethernet that do not
support similar functionality. In order to make the proposed solution as general as possible,
authentication should be implemented at the network or higher layer. Protection at higher levels also
provides end-to-end security, which is important for many applications. Additionally, because the |Pv4
and IPv6 protocols are so ubiquitous the solution should be compatible with these network layer
protocols, thus this compatibility is a minimum requirement. Therefore the proposed solution does not
rely on any specific lower layer technologies. However, we can of course learn from the mechanisms
that have been applied at these lower layers (see for example Section 2.6.2).

4 | Introduction

The Contiki operating system (OS) will be used as a basis for the implementation of the
authentication extension to CoAP. Section 2.5 gives relevant details of Contiki. Contiki currently has a
fully functional CoAP implementation named Erbium (see Section 2.5.1) that is used as a basis for the
proposed SMACK implementation. Furthermore, Contiki supports a large number of hardware
platforms[7] and is awidely used OS for constrained devices. Contiki is open source software; hence
al of the relevant source codeis freely accessible. In addition, Contiki has a devel opment environment
that includes the Cooja network simulator (see Section 2.5.2). This simulator facilitates testing of
applications. The evaluation considers the feasibility of the SMACK extension for authentication
independent of the underlying hardware platform. However, benchmarks are used to understand how
this authentication protocol performs in comparison with other potential alternatives when actually
running on constrained devices.

1.6 Structure of the thesis

The thesis started with a chapter setting out the problem and goals to be addressed in this thesis
project. Chapter 2 provides the background knowledge required to understand the topics discussed in
the rest of this thesis. This includes technical background concerning existing protocols for
authentication that could be used together with CoAP. Chapter 3 describes the design of SMACK and
the details of how performing authenticating with it works. After this, the development environment
used and information about how to develop for Contiki are given in Chapter 4. This same chapter
describes the methodology and design methods used to create a C implementation of the SMACK
protocol. The focus of this chapter is on several of the challenges encountered during the development
process. Chapter 5 analyzes the results of the implementation described in the previous chapter and
compares the proposed solution with alternatives. The thesis concludes in Chapter 6 with a summary
of conclusions, suggestions for future work, and a description of some of the ethical, social, economic,
sustainability, and other aspects of this thesis project.

Background | 5

2 Background

This chapter contains background information concerning several concepts and tools used this project.
Some of these concepts and tools are described in further detail in later chapters. A key aspect
underlying this thesis project is the hardware of the constrained devices on which the authentication
software is deployed. Another important topic is the software employed during the development and
coding phases of this project. Several alternatives for implementing security on constrained devices
exist. Some of these are the same protocols used on the Internet and some are protocols that have been
adapted or even custom made to function better on constrained devices. The chapter concludes with a
description of a number of different communications protocols and standards, as much of the thesis
deals with these protocols. Details of these protocols are necessary in order to consider the solutions
that have been chosen.

2.1 Constrained Devices

For the purpose of this thesis project, a constrained device is defined as a device that has limited
resources in the form of hardware, such as memory, processing, and power. The available power is
frequently limited capacity batteries. Furthermore, constrained devices often utilize networks with
limited available bandwidth. Combining these factors means that memory usage, algorithm efficiency,
and low bandwidth communications are important issues. As power consumption is reduced in sleep
mode, these devices typicaly rely on rapidly transitioning to different levels of sleep when possible,
thereby minimizing their battery power usage. Because some components draw more power than
others do, it is especially important to optimize the power management of these components. The radio
is normally the component that uses the most power and thus keeping it in sleep mode as much of the
time as possible is quite important [8].

Sending data is more costly than doing calculations locally. Measurements by Madden et a. have
shown that on some systems transmitting one bit is the equivalent of executing 800 instructions[9].
Because of this, the radio should be in sleep mode as much as possible and communications should be
kept to a minimum. Often constrained devices are used as sensors or actuators, they generaly have
limited to no user interaction. This means that they are to a large extent autonomous, sending and
receiving data only as necessary. Such M2M communication is different in character and pattern from
user-induced communication. If some part of the system malfunctions or an attacker starts sending
data to a node, then the node can be tricked into accepting incorrect data readings and the battery could
be rapidly drained by keeping the radio constantly listening. In automated systems this might not be
noticed until the battery is exhausted, unless the system is designed to inform a management systems
of such an apparent attack.

Figure 2-1 shows a typical example of a constrained device in the form of the Texas Instruments
(TI) CC2538 board attached to a SmartRF board. This combination is frequently used for devel opment
purposes. This particular board has a maximum clock speed of 32 MHz [10]. There are constrained
devices that are even more limited with regard to resources. For instance the Tmote Sky only has a
8 MHz processor and 10 kB RAM [11], whereas the CC2538 has maximum of 32 kB of RAM
(depending on the specific model of this chip). Typically, constrained devices clock the processor at a
lower clock rate to reduce power consumption and because they have less demanding computational
requirements, thus draining the battery at a slower rate than when clocking the processor at a high rate.

6 | Background

z'in 83d
8390844} 4eus

@ FEC 10: TaT25200M
! 1€, 451H-25000M

MODEL . CCIsIeEN

CC2S38EM 1 2

z
3,
‘.

Figure2-1: TexasInstruments CC2538DK

2.2 CoAP

The Constrained Application Protocol (CoAP) [12] is a communications protocol operating at the
application level of the Transport Control Protocol (TCP)/Internet protocol (1P) stack. It is specialized
for use with constrained devices that suffer from limited resources, specificaly limited network
bandwidth or processing power. Key features include low overhead and complexity, unicast and
multicast support, optimizations for use on constrained devices, and asynchronous message
exchanges[12]. An important use case for CoAP is M2M communication where devices
autonomously communicate with each other — normally without human interaction apart from
maintenance of the devices. This kind of traffic has different characteristics than communications
initiated by a person. For instance, the traffic pattern can differ since humans tend to request resources
in a more arbitrary pattern whereas machine communication can be extremely regular. This regularity
can also help since it is easier to predict when to expect the next transmission and thus power on/off
the radio so as to only operate when communication is expected.

CoAP is quite similar in structure to the Hypertext Transfer Protocol (HTTP), but is less complex.
CoAP follows a simple request/response model that allows one device to act as a client, requesting
resources, and the other device as a server providing some resources. As with HTTP, Uniform
Resource Locators (URL) are used to identify resources. For instance, coap.//example.com/temp could
provide data from a temperature sensor on a device at the host named example.com. COAP aso uses a
subset of the same methods (in the form of GET, PUT, POST, and DELETE) that HTTP employs. The
response codes follow the style of HTTP with a reply containing a resource using the code "2.05
Content” and areply when no corresponding resource was found uses "4.04 Not Found". Asis the case
with HTTP, CoAP has many other response codes for various scenarios.

One key difference between HTTP and CoAP is that the transport protocol used is User Datagram
Protocol (UDP); in contrast, to HTTP which uses TCP. This choice of transport protocol has some
drawbacks, but also provides some benefits. One drawback is that the reliable transmission that TCP
guarantees has to be implemented by the application on top of UDP. CoAP uses "confirmable
messages’ to specify that a message must receive an acknowledgement to confirm that the message
arrived correctly. There are also non-confirmable messages that do not require such a confirmation.
CoAP can utilize multicast traffic since it marks such messages as non-confirmable and thereby avoids
an implosion of acknowledgements. This means that CoAP refrains from creating a communication
session with receivers, as is done when using TCP, but rather it builds upon the sessionless
functionality UDP provides.

Background | 7

The properties of CoAP are well adapted to constrained devices in that it is a relatively simple
protocol with a simple packet structure (see Figure 2-2). Using UDP reduces per packet overhead and
by not utilizing the acknowledgements sent by TCP the protocol reduces communication overhead.
The ability to specify whether messages require confirmation means that devices can do common
actions such as checking a sensor value frequently without inducing too much network traffic and can
reduce the need to switch the radio on (thus helping to minimize power consumption). Typically, an
isolated lost message is not crucial since a missed reading will simply mean that the system will use
the latest value until the next scheduled sensor reading.

DL 234 5 678 90 323 4,56 7890702 345 6789101
(Big Endian

Verl T I TKL | Code 1 Message ID

Tokénfopﬂonéﬂ

* Options (optional)

OXFE | Payload (optional)

FigUréZ—é: ‘ C‘oArP Iir’aci(et‘strruct'uré[llZ]'

Table 2-1 summarizes the different fields of atypical CoAP packet. This packet structure is simple
and has few mandatory fields. The fact that many of the fields are optional makes CoAP a flexible
protocol. CoAP alows an application to send small non-confirmable messages with minimum
overhead, but an application can also send more complex packets with options (including data) and
may require confirmation from the receiver. The size of the mandetory header of a CoAP packet is
only 4 bytes. The maximum recommended payload size is 1024 bytes to ensure that the COAP packet
can be sent unfragmented in an IP packet. This assumes an IP Maximum Transfer Unit (MTU) of 1280
bytes. The standard also specifies that assuming lower values may be beneficial, especialy on 1Pv4
networks, as the actual path MTU is difficult to determine with certainty. In addition, 6LoWPAN
networks limit link layer framesto only 127 bytes[12].

Table2-1: Fieldsof a CoAP packet

Field Sizein bits Description

Ver 2 | Version of CoAP used

T 2 | Type of message: confirmable, non-confirmable,
acknowledgment, or reset

TKL 4 | Length of token field in bytes (0-8 bytes)

Code 8 | Message code (such as 4.04)

Message ID 16 | Matches request/replies

Token 0-64 | Correlate request/response

Options Similar to options of HTTP
M essage type, proxy options, cache max age, ...

Payload Marker (OXFF) 8 | Marks start of payload

Payload Data

8 | Background

Matthias Kovatsch has contributed a lot to CoAP implementations, work on constrained devices,
and specificaly Contiki. Both the Erbium CoAP implementation for Contiki and the standalone
Californium CoAP Java library were written mainly by him [13]. He is the owner of the Caifornium
GitHub code repository and a Contiki fork featuring Erbium [14]. By design, the CoAP protocol lacks
any method for authentication. Instead, the DTLS protocol (described in Section 2.10) is expected to
be used as the main method for achieving secure communication, including authentication, on top of
CoAP. At the time of the start of this thesis project, the best way to implement authentication for
CoAP was an open research question. A potential solution utilizing new CoAP options for security is
described in Sections 2.2.2 and 2.2.3.

2.2.1 REST

Representational state transfer (REST) is a system architecture used by many Internet protocols, a
prominent example being HTTP and the World Wide Web in general. REST was first presented by
Roy Fielding in his doctoral dissertation in 2000 [15]. In essence, REST tries to define and describe
the different components of systems, including how they can best interact. The world-wide web
(WWW) be can be said to be a system based upon URLSs that allow objects stored at webstes to be
accessed using the HTTP protocol with alimited number of operations (GET, PUT, POST, DELETE)
to access web content according to fixed rules. The idea behind REST heavily influenced the design of
HTTP/1.1 as can be seen in chapter 6 of Fielding's dissertation [15].

One of the central ideas of REST isto rely on specific keywords or operations to perform actions
on a resource, typically an URL. One of the main aternatives to REST is Simple Object Access
Protocol (SOAP) that uses arbitrary keywords or function names for executing operations. In SOAP,
functions are defined using XML and then executed against datz [16]. One benefit of the REST
architecture is that it is lightweight and less complex because of its restricted set of predefined simple
operations. As CoAP is similar to HTTP, CoAP also utilizes the REST paradigm for accessing and
publishing resources.

2.2.2 COAP Security options

In an expired Internet-Draft A. Yegin and Z. Shelby proposed “a set of Constrained Application
Protocol (CoAP) options that are used for providing data origin authentication, integrity and replay
protection, and encryption for the CoAP messages.” [17] They defined a new method for securing
CoAP other than the two security protocols (IPsec and DTLS) mentioned in the CoAP specification.
According to their draft, different cryptographic algorithms should be supported and it should be
possible to negotiate between the sender and receiver which algorithms will be used. The new security
functionality is implemented by defining new options for the CoAP header. These new headers are
used by the sender to request different security levels and to communicate data that will subsequently
be used for the encryption or authentication.

Their draft only mentioned the Counter with CBC-MAC (CCM) mode [18] of the Advanced
Encryption Standard (AES) encryption function. In essence CCM combines the Counter (CTR) and
Cipher Block Chaining-Message Authentication Code (CBC-MAC) agorithms to provide authenticity
and confidentiality to data[19]. Positive aspects of this approach are strong security using the AES
cipher, authentication of data, and full encryption of the data. Disadvantages include 30 bytes of
additional overhead - since each encrypted/authenticated packet must include the values shown in
Table 2-2 (in addition to the normal CoAP headers and payload).

In contrast, the SMACK extension does not require any additional overhead when compared to the
CoAP specification that allows for atoken field of 0-8 bytes of which SMACK by default only utilizes
4 bytes. As the network links used by the constrained device are often constrained from a bandwidth
point of view, it is important to minimize the overhead low, thus minimizing the processing power
utilized by the nodes. If the payload of the transmitted messages is small, cases can occur where the
overhead is alarge majority of the data contained in each sent packet. Sending many small messages,
as opposed to a few larger ones, is particularly sensitive to big overhead since the overhead is added
for each message.

Background | 9

Table2-2: Yegin CoAP Security Optionsfields

Name Size
(bytes)

Context ID 1
Nonce 12
MAC 16
OptionCount 1
Total 30

2.2.3 CoOAP Granular security

Another similar approach is proposed in a paper by Granja, Monteiro, and Silva [20]. Their paper
identifies some key problems with the existing CoOAP-DTLS security solutions. First, the security
DTLS provides is applied to al packets in a session and there is no provision for granularity or
specifying exactly which packets should be protected. There is aso no way to specify different levels
of protection or to use different algorithms for certain packets. Finaly, the end-to-end transport layer
security DTLS provides can interfere with gateways and proxies used with CoAP. Therefore, they
propose an application-layer security solution that is more flexible with regard to security options and
allows for intermediaries, such as gateways.

The encryption algorithm used to provide security is by default AES-CCM. This algorithm is
based on the well-known AES algorithm and uses the CCM mode of operation that provides both
authentication and confidentiality. In fact, constrained devices often have built in hardware support for
AES and AES is frequently used to protect traffic at the link layer. Many of the existing security
proposals for 6LOWPAN use this algorithm (including the security options mentioned in Section
2.2.2).

This approach relies on defining new header options for the CoAP protocol to add security. A
SecurityOn option is added to each protected packet. This option specifies the details of the protection
to be applied and includes other features, such as timestamps that help to protect against replay attacks.
A SecurityToken option is used to provide identity data, including username/password, public keys,
certificates, or Kerberos tickets. Another field named SecurityEncap contains authenticity and/or
encryption parameters including a nonce value, Message Authentication Code (MAC), and any
encrypted data. All of these options are on a per-packet basis. The estimated overhead induced by the
different optionsis shown in Table 2-3.

Table2-3: Granular security options

Name Size (bytes)

SecurityOn 30 bytes (assuming 20 byte URI)

Security Token Minimum 1 byte + variable identity data

SecurityEncap Nonce (12 byte) + optional MAC (8 byte) + vari able encrypted data

As can be seen in the table, the amount of overhead depends on the security option(s) selected.
The calculations by Granja, Monteiro, and Silva state that overhead can be between 11-55% of an 88
byte payload (the maximum size to avoid 6LoWPAN fragmentation). The proposed solution in their
paper is faster when taking advantage of the granular control and protecting only some of the packets.
However, if al the payloads are encrypted and signed, then the maximum message rate per second is
slower for a given amount of bandwidth than CoAP with DTLS. Their measurements show the energy
usage of each solution and notes that their proposed solution is only superior when selectively applied
to packets (specifically only request/replies) but is slower than CoAP with DTLS if al of the packets
are signed and encrypted.

10 | Background

2.3 Californium

Californium is a CoAP implementation written in Java. Matthias Kovatsch, one of the main authors of
Erbium (see Section 2.5.1), is the main author of Californium [21]. Californium currently supports up
to CoAP draft version 11 and has been tested for compatibility at various so called plugtests that grade
the compatibility with the CoAP specification [22]. This implementation follows a typical object
oriented architecture with the logic split into several parts and employs abstraction and modularity to a
great extent [23]. This implementation also attempts to be backwards compatibl e with older versions
of the CoAP draft, since the protocol is still changing rapidly via frequently released drafts. Although
the new drafts normally try to avoid major changes to the protocol’ s functionality.

The resulting Java library provides a baseline implementation that can be used for further
development. One drawback is that the language chosen for this implementation was Java, as thisis
unsuitable for constrained devices because of the high requirements the Java Virtual Machine (JVM)
has. In contrast, for development on a PC or another device that supports Java this implementation
provides a highly functional library that can be used as a base for a CoAP application or for
extensions. Another drawback is the lack of any security solution, this drawback is mentioned as
future work in the report on Californium [23]. By default, messages are sent in clear text and do not
use any form of authentication. Other systems have to be used to provide security to the transmitted
CoAP messages; however later versions of Californium started to implement DTILS support and allow
accessing such resources using the “coaps://” designation.

2.4 Maven

Maven is a tool for ssimplifying the building of Java based applications. In some ways it is similar to
the GNU "make" command for compiling software [24]. Maven is based on XML configuration files
that define the build process and any dependencies [25]. Californium is distributed in a form that is
easily compiled and developed using the Maven utility. This makes it easy for a developer to make
changes and quickly recompile the project. Thistool is helpful since Californium is quite large and has
many interdependent classes as the design goal is to create a modular and layered design solution [23].
Maven also executes a number of built in tests when compiling software, this means that it is easier to
find not only obvious errors in the code but also to find subtle problems that cause the test conditions
to fail.

2.5 Contiki

Contiki is an operating system specifically created for use on constrained devices. It was initially
written at SICS mainly by Adam Dunkels. He is currently CEO of Thingsguare, a company focusing
on the Internet of Things. Their business idea is to provide interconnectivity of things, mostly focusing
on connecting devices to smartphones in a convenient fashion. Contiki is a very resource conservative
operating system and can function on devices with as little as 10 kB of RAM and 30kB Read Only
Memory (ROM). Contiki is also known for having a small implementation of the IPv6 stack named
ulPv6 that was jointly developed with Cisco and Atmel [26].

Contiki is open source and features other innovative technologies, such as protothreads (a memory
efficient way to implement rudimentary threading). Basically protothreads are stackless threads which
mix an event driven and linear model of execution [27]. Benefits of these technol ogies include support
for threading whilst maintaining a low memory footprint and also in many cases reduced complexity
compared to conventional fully multi-threading systems. Other functionality supported by Contiki is
low power radio networking and power profiling [28]. Low power requirements and solid support for
sensor networks are additional advantages.

2.5.1 Erbium

There is an implementation of CoAP included with the Contiki source code. This implementation is
named Erbium and it supplies a fully functioning version of the CoAP protocol specification written in
C. It is written by Matthias Kovatsch, the same author who created the Californium library. Erbium
has been tested to ensure that it follows the latest (at the time - 2012) CoAP draft. Thisimplementation
takes into account the need to reduce power usage and is presented as a "low power CoAP for

Background | 11

Contiki" [29]. This implementation takes full advantage of other optimizations that exist in Contiki,
such as the ContikiM AC mechanism that ensures the radio is switched off for as much time as possible
- while till retaining the ability to communicate efficiently. It aso uses protothreads in order to
improve message handling, support callback functions, and asynchronous reception of packets. The
full CoAP implementation for Contiki is around 2600 lines of C code.

Erbium employs the built in REST engine of Contiki allowing developers to easily implement
protocols following the REST communication architecture, such as HTTP and CoAP. This reduces
Erbium's memory footprint since code reuse is high. Erbium combines an efficient CoAP
implementation with the Contiki radio optimizations resulting in a system that can communicate
efficiently while having a small memory footprint and offers energy savings of up to 26 times[29]
compared to a naive implementation that does not take advantage of the benefits conferred by
ContikiMAC.

2.5.2 Instant Contiki and Cooja

A development image file called "Instant Contiki" is provided to facilitate developing software for
Contiki. Thisimage file can be loaded into virtualization software, such as VMware [30]. Loading this
image immediately provides a developer with al the tools needed to start developing and testing
software for Contiki. This image file includes the full Contiki source code and a preconfigured
development environment. Instant Contiki is the recommended system for dewelopers to use when
working on Contiki development and new applications. The image itself is based on a standard version
of the Ubuntu Linux distribution.

Included in the image is a network simulator for simulating a network of nodes running Contiki
whilst communicating with each other. The simulator, named Cooja, alows developers to easily test
and develop software for the Contiki platform. It supports extracting statistics from nodes and
monitoring the network traffic to analyze what data is being sent over the network. Starting Cooja
dynamically compiles the entire Contiki source including any changes or additions made. It will then
start running the specified applications on the simulated nodes. Cocja can simulate various networks
with different applications running on the nodes, for instance a server application on one node and a
client on another or more advanced topologies.

By loading a client process on one node and the server on another node interaction between these
nodes can easily be simulated and monitored. One of the main benefits of using Cooja is that it
simplifyies analysis of the behavior of the executing program(s). For instance, nodes can be monitored
asif they were real physical devices. Various ports and input/output data can be monitored from Cooja
and there is even a simple Command Line Interface (CLI) available for each node. A major benefit is
directly collecting the text output from each node in the ssimulation. This helps with debugging and
ensuring that the program behaves correctly.

Furthermore, Cooja supports sniffing of network traffic generated by the simulation and dumping
the captured traffic to external Packet CAPture (PCAP) files that can later be input to programs such
as Wireshark. This is useful because this project, and most applications of Contiki, rely on network
traffic and communication with other nodes. In this way, the network traffic generated by CoAP nodes
running under Contiki can easily be captured and the relevant fields checked to see that they both meet
the CoAP requirements and later that they correctly utilize the new extensions SMACK provides.
Wireshark has a very mature packet-parsing engine that shows the names and decoded values of all the
fields in a packet and Wireshark supports parsing of CoAP messages.

The aternative of analyzing the software on actual hardware is more cumbersome, especialy as
capturing network traffic can be a problem when the boards are communicating directly with each
other via radio. The process of transferring a program to the boards for testing also takes time and
slows down repeated cycles of editing and testing that can be necessary when developing software.
This is particularly true when the development method relies on making incremental changes and

12 | Background

testing whether the functionality is still correct. Extracting the output from boards frequently requires
connecting to them via Universal Serial Bus (USB) and retrieving their output .

Severa configuration files and programming examples are included in Instant Contiki and these
can easily be loaded into Cooja. Cooja can simulate both simple client/server topologies and more
complicated sensor networks with more than 10 nodes with all of these nodes communicating
concurrently. The simulation can be on a high abstract level, i.e., concerned with the application layer.
Alternatively, Cooja has the ability to simulate lower levels - since each node has a physica position
and the transmission properties of the radio medium can be specified [30]. For this thesis project, the
properties of the radio medium are not relevant, as CoAP operates on higher levels of the network
stack, thus the simulator is primarily used to evaluate code at the application layer. For this reason
interference and signal loss will not be parameters in the simulation.

2.6 6LOWPAN

IPv6 over Low power Wireless Personal Area Networks (6LOWPAN) is an adaption of the IPv6
protocol to facilitate operation in low power wireless networks[31]. It relies on the |IEEE 802.15.4
standard that specifies the operation on the physica and media access layers [6]. One of the key
functions of 6LoOWPAN is compression of the IP headers and headers from other protocols (such as
UDP) [32][31][30][31][30]. The purpose of this compression is to reduce the bandwidth usage over
low power networks that are constrained in terms of bandwidth and time available for transmissions.
This compression technique works by splitting communications into separate "contexts' that share
common knowledge of 1Pv6 addresses and other metadata. For instance, the context 0x01 (defined in
hexadecimal) could be a replacement and common representation for a specific |Pv6 address or even a
combination of source and destination 1Pv6 addresses. In this way only 1 byte will be used for the
sender and receiver addresses instead of 32 bytes that would otherwise be necessary when not using
header compression [32]. Devices can set up such a context and then rely on the abbreviated,
compressed addresses for communication. There are specific adaptions of this compression technique
optimized to function well with DTLS [33].

2.6.1 Authentication and encryption built into IEEE 802.15.4 as used by
6LOWPAN

The IEEE 802.15.4 standard provides support for encryption of the transmitted frames. This security
enables authentication and encryption at the MAC layer [6]. It aso includes support for Access
Control Lists (ACL) that can filter which devices are allowed to communicate in the network. It is up
to an application to request and set the required security parameters in the MAC layer before
transmission. An application can signal to the MAC layer that the next packet to be transmitted needs
integrity protection or full confidentiality (via encryption) of the packet's contents. After this, the
MAC layer provides this functionality as a service.

An issue when using ACLs is that when one node acts as a gateway for the network, by relaying
traffic from outside, there is no way for the internal devices to know from where the traffic originates.
When using ACLs the nodes have to either accept al the traffic from the gateway or reject all the
traffic from it. When traffic arrives from different computers connected to the Internet the nodes
beyond the gateway cannot differentiate between these sources nor can they ascertain if the received
packets are authenticated. In contrast, a security solution working on higher layers can provide this
differentiation of sources and authentication since a higher layer solution is unaffected by the choice of
link layer technology. Higher layer addressing information is also not lost between devices as is the
case with the MAC address.

" As constrained devices have limited amounts of RAM it may be difficult to collect large log files on these
hardware platforms.

Background | 13

A security analysis presented by Sastry & Wagner [34], found some security problems with how
|EEE 802.15.4 implements security. They even state that some of the options available reduce the
overal security instead of increasing it. Some of the potential security issues listed in their paper are:

e Using the same key for multiple ACL entries,

e Losing ACL state at power failures,

e Poor practical support for group keying,

e Shared keying destroys replay protection,

e Modesthat employ encryption but not authentication, and
e |nsufficient integrity protection.

One downside of the authentication support built into IEEE 802.15.4 is that it is at the link layer.
This means the protection is only for a specific link. For this reason, security associations and keys
have to be set up for all devices in the network if end-to-end security is to be guaranteed. Shelby and
Bormann argue in their book "The Wireless Embedded Internet” that even with strong link-layer
security the data remains vulnerable in certain situations. Thisis true when data leaves alink, traverses
a link with reduced security, or when data is forwarded at the network layer [35]. This is noteworthy
because many networks do not use |IEEE 802.15.4 al the way from the sender to the receiver. The
drawback is that data will be unprotected at some point or that an additional security system will be
needed on top of what IEEE 802.15.4 provides. As a result they recommend |Psec as a good layer 3
security solution for LOWPAN networks to complement or replace |EEE 802.15.4.

An example of potential security risks is the case where a node is compromised, as in this case
traffic going to the node will be authenticated and traffic coming from it will be authenticated. The
problem is what happens to the traffic at the node itself. The problem stems from the lack of end-to-
end security, as traffic may be modified at the node but will still appear to other nodes in the network
to be coming from an authenticated device. Furthermore, |IEEE 802.15.4 supports group keys for
authentication in alarger group, thusif these keys are compromised, perhaps by a physical attack on a
specific node, then the keys for the entire group will be exposed to the attacker.

Nonetheless, there are advantages to implementing security at layer 2. One i< that the entire frame
contents following the IEEE 802.15.4 header are protected by the security options. This means that
addressing information and headers of higher layers are protected. In contrast, TL S can not encrypt the
information in the IP-header since this information is necessary for the message to be delivered
correctly by each intermediate device (i.e. router). Routers must know where to forward the packet and
rely on the destination I1P address to determine the next-hop. Another benefit is that integrity protection
is possible for the entire data payload and for the MAC headers themselves. As a result, the addressing
information for higher layers cannot be tampered with, i.e., it hasintegrity protection.

In contrast to layer 2 security solutions, | Psec (see Section 2.7) and the SMACK extension provide
end-to-end security since they are based on the network or application layer. This means that the
intermediate devices do not have to share keys or be involved in any way in order for the security
mechanisms to function properly. This can be a great advantage when dealing with traffic over
networks where there the end device owers/operators lack control, such as the Internet. In many
scenarios, 10T devices will receive packets from a remote device over the Internet like, for example,
when a user remotely reads some value or reconfigures an appliance at home. Furthermore, using an
application layer mechanism means that many different types of networks can easily carry the traffic,
for instance: |IEEE 802.15.4 and |EEE 802.3 Ethernet links. End-to-end security also ensures that even
if one or more devices in the network are compromised the security of the end-to-end traffic is not
degraded, at least for well-designed security protocols.

2.6.2 Exploiting IEEE 802.15.4 encryption and authentication

In the interest of minimizing power consumption, it would be beneficial if the gateway implemented
IEEE 802.15.4 encryption and authentication, thus reducing the need to do this at higher layers in the
nodes. This would split the security into two parts, rather than providing end-to-end security.

14 | Background

Moreover, it could decrease both the information that needs to be sent over the wireless link and
reduce the computations necessary at the constrained device. However, this solution is outside the
scope of thisthesis project, hence it will not be addressed here, but remains for future work.

2.7 IPsec

Internet Protocol Security (IPsec) is a popular protocol for securing IP traffic with regard to
confidentiality (by employing encryption), data integrity, and origin authentication. Its main purpose is
to protect data in |P packets by defining the steps and protocols to achieve this. The protocol was first
standardized by the Internet Engineering Task Force (IETF) in 1998 in RFC 2401 [36] and further
updated in RFC 4301 [37]. This protocol is based upon earlier research protocols, such as swiPe [38].
Some of these protocols had overly complex specifications[39] and hence it was decided that there
was a heed for a standardized and secure protocol that would take into account the benefits and lessons
learned from the existing options at the time.

One benefit of IPsec is that many different encryption algorithms are supported [37]. Furthermore,
IPsec supports key management, session handling, replay protection, and more. IPsec defines a
complete security infrastructure that can be used to deploy secure communication. IPsec is a well-
tested protocol that is widely used to realize Virtual Private Networks (VPN) [40]. Since IPsec is
implemented at the network layer for both IPv4 and IPv6', it can support any higher layer protocols,
such as TCP or UDP. The advantage is that no higher layer protocol needs to be customized to work
with IPsec; instead every higher layer protocol can run transparently over an IPsec security
association. This is a strong point since it reduces the work needed for adding security to a network.
Neither the devices themselves nor intermediary systems need any major modifications to enable
IPsec.

Some of the IPsec disadvantages include the fact that it is a quite complex system with many parts.
The protocol is dynamic and can support a large number of configurable settings. Unfortunately, this
large number of settings makes a complete implementation more difficult to create. The packet
overhead for transmitting data is in the order of 50-80 bytes[42]. Performing the encryption and
authentication steps also requires processing power. The amount of processing power depends on the
chosen agorithm. Because of this IPsec may be impossible to implement on devices that are too
constrained in terms of processing capacity or devices with severe limits on available electrical
power [43]. The bandwidth overhead can also be a problem in low bandwidth networks, especially
when small packets are frequently sent, thus making the overhead a significant part of the total data
sent.

2.8 Secure Real-time Protocol

The Secure Real-time Protocol (SRTP) [44] addresses the case where there is a series of small
amounts of data that need to be transmitted securely. It supports confidentiality, authentication
(optionally), and replay detection - while adding only four bytes to the size of a Real-Time Protocol
(RTP) [45] message. It does this by faking advantage of the RTP packet aready including a sequence
number and timestamp. Note that SRTP can tolerate packet loss. The protocol uses AES for encryption
and a Hash-based Message Authentication Code (HMAC) based on the SHA1 hash function. Data
confidentiality is realized by replacing the original RTP payload with an encrypted version. As for
basing the HMAC on SHAL, even if some collisions or other security issues are found with SHA1L, as
is the case with MD5, this does not necessarily mean that an HMAC based on SHA1 will be
compromised [46].

As mentioned above, the overhead compared to normal RTP traffic is very low. The only new
fields defined are an optional field that identifies the master key used and a recommended field with
authentication information. Fortunately, RTP already supports functionality typically needed for replay
detection and mitigation of other common security flaws in the form of sequence numbers and
timestamps. SRTP does not provide confidentiality to the RTP packet headers, the reason for thisisto

" A list of some of this research can be found in the survey: http://web.mit.edu/tytso/www/ipsec/surv9703.html
" Current standards specify that |Psec support should be implemented in any IPv6 nodes [41].

Background | 15

allow header compression. If there is need to secure the packet headers, then the SRTP RFC
recommends using another protocol, such as | Psec.

Garg, Singh, and Tsal analyzed the security of SRTP and note that due to the use of HMAC-SHA1
the protocol is susceptible to DoS attacks [47]. Because the HMAC calculation incurs overhead,
flooding the receiver with SRTP packets can overwhelm it. The authors propose two different schemes
to solve this problem. These two schemes combined are called SRTP+ and both are based upon the
idea of adding another level of authentication that is cheaper to calculate. If a device is flooded with
SRTP packets with incorrect HMAC values, the receiver utilizes a simpler protection method to
quickly discard invalid packets. This additional layer imposes only a small overhead for legitimate
traffic, but can avoid unnecessary processing in the case of DoS attacks. In comparison SMACK only
needs to perform HMAC calculations for approximately every 16™ packet (using the default
configuration) rather than for every packet sent/received.

SRTP+ Scheme 1 uses a shared seed for a pseudo-random number generator (PRNG) to provide
authentication, both devices will generate the same values from the PRNG and thereby are able to
confirm if a packet is authentic. For instance, the sender will transmit a message with the 10™ output
from the PRNG sequence as authentication and the receiver can confirm this by checking that the 10"
value of its PRNG gives the same result. Since both of them use the same starting seed, the results will
match if the message is authentic. The seeds have to be exchanged in a secure manner during a setup
phase, before data transmission starts.

SRTP+ Scheme 2 is even simpler and uses pre-computed numbers for authentication. The
authentication values for the next N packets are periodically provided to the receiver. These value are
encrypted and transmitted as part of a SRTP payload. After both parties share these same random
numbers they are used as a one time key for each packet. The receiver checks if the incoming packet
contains the next expected number and if so it accepts the packet. Each number is only used for one
packet so the sender needs to keep supplying these numbers leading to a small increase in
communication overhead. Test results show a speed improvement of at least 3.5 times for scheme 1
and 8 times for scheme 2 in comparison to not using either of these schemes.

2.9 Multimedia Internet KEYing (MIKEY)

A common question for a security protocol is how to distribute or generate keys. The Multimedia
Internet KEYing (MIKEY) [48] protocol is used to provide SRTP with session keys. One of its stated
godls is to provide a key management system with end-to-end security. Other goals are simplicity,
efficiency in terms of overhead and independence from the underlying protocols. A popular method
for key distribution and management is the Internet Key Exchange (IKE) protocol (used by IPsec).
However, asthe MIKEY RFC [48] states, streaming data has special needs and needs a protocol better
adapted to it. MIKEY is primarily intended for use with simple peer-to-peer connections or groups of
small size. The system also supports a variety of scenarios, such as unicast, multicast, and many-to-
many communication. In contrast, IKE does not support multicast scenarios in a reasonable manner

since each security association is between pairs of devices. In order to support multicast

communication if » is the number of devices, then nn-1) security associations will be necessary when

2
using IKE.

Another key point is that it should be possible to integrate MIKEY data in other protocols to avoid
having to do MIKEY negotiation separately. Thus MIKEY should be included in the session
establishment of other protocols as much as possible. How this can be accomplished is described in
RFC 4567 where key management protocol support for Real Time Streaming Protocol (RTSP) and
Session Description Protocol (SDP) among others are described [49]. RFC 4567 provides a framework
describing how key management protocols can interact and carry their messages in RTSP or SDP
traffic. Both RTSP and SDP are extended with new headers that support the required options for key
management. Some important options added are an identifier that specifies the key management
protocol used and a data field where whatever data the key management protocol wants to relay is
placed. An important requirement of the key management protocol is that the initial step of the
protocol must be possible to perform in a single request-response message exchange. MIKEY is

16 | Background

specifically mentioned in RFC 4567 and example scenarios where it is used are provided. MIKEY
supports the previously mentioned requirement of needing few messages to initialize the shared keys.
Security-wise a potential problem highlighted is that some protocols such as Session Initiation
Protocol (SIP) utilize intermediate proxies. This can prevent the session setup traffic from being
secured end-to-end. One implication of thisis that an intermediary can intercept keys and use those to
attack the encryption of the media stream created by the media delivery protocols. One solution to this
is of course to use Secure/Multipurpose Internet Mail Extensions (SYMIME) to secure the SDP so that
the proxies cannot see the MIKEY information.

MIKEY uses AES in counter mode for encrypting the keys to be delivered, while authentication is
provided by aHMAC based on SHA L. To create a secure communication session for distributing keys
three methods are described: pre-shared keys, Diffie-Hellman key-exchange, and public-key
encryption. For speed and efficiency the RFC recommends pre-shared keys, but notes that for larger
systems this can be problematic. Public-key cryptography is more scalable, but requires a Public Key
Infrastructure (PKI) to work optimally; in addition it is more resource consuming as symmetric
encryption is faster than asymmetric. Diffie-Hellman key-exchange is more resource intensive than the
previously mentioned methods and also requires PKI systems to ensure user authenticity and protect
against man-in-the-middle (MITM) attacks. Severa later RFCs add additional support for new
methods to create a session and negotiate a common secret in addition to the three mentioned above.

While the purpose of MIKEY is to distribute keys to systems, it still needs key information to be
present in those systems, with the exception of Diffie-Hellman key-exchange where the end nodes
generate the keys. The actual keys that MIKEY distributes to systems can be calculated either from
pre-shared keys or a shared piece of data agreed upon by the devices during the initial MIKEY
messages. Derivation of these keys is done with an HMAC based on SHAL. Timestamps are used to
provide replay protection, which means that the clocks have to be synchronized. Clock
synchronization is also used to reduce power consumption when using |EEE 802.15.4 and for WLANS
operating in infrastructure mode the nodes also synchronize their clocks with the AP. To protect
against replayed messages within the acceptable time window, a replay cache keeps track of the
accepted messages that arrive in this window. A replay cache of 6 kB is assumed to be reasonable for
most cases. This size is large for constrained devices as they may only have 10-50 kB of RAM. For
extreme cases, a cache of up to 48 kB is mentioned in the MIKEY RFC [48] p. 31. In contrast
SMACK requires only ~16 bytes for replay protection (using the default session length) as will be
described in Section 3.6.

2.10 DTLS

Datagram Transport Layer Security (DTLS) is a protocol for encrypting UDP traffic based on the
Transport Layer Security (TLS) [50] protocol, TLS is used for encryption of HTTP traffic, among
other uses. DTLS wasfirst presented in 2006 in RFC 4347 [51] and later updated in RFC 6347 [52]. In
these RFCs, DTLS is presented as a series of deltas, specifying how and when it differs in
implementation from TLS. The purpose of the protocol is to provide the same level of security that
TLS provides to TCP traffic, but applied to UDP. Some of the common protocols used on the Internet
such as Domain Name System (DNS) and many systems for Voice Over IP (VolP) communication
utilize UDP as their transport layer protocol. DNS has in the past been targeted by many attacks since
it is a high value target. These attacks attempt to redirect users to fake websites by providing forged
DNS entries. TLS does not support encrypting UDP traffic and because UDP cannot use the standard
implementation of TLS, it therefore requires another method to achieve confidentiality and secure the
user’ s communication.

There are some key differences between how DTLS and TLS functions. One main difference is
that UDP does not have any built in functionality to ensure that packets are delivered to an application
on the receiver in the correct order (as UDP lacks any concept of byte stream ordering). TCP uses
sequence numbers and a reguest/acknowledgement scheme to ensure that bytes are reliably delivered
and ordered correctly for delivery to the application layer, while UDP lacks this functionality [53].
This means that DTLS has to implement this functionality on top of UDP and do so at the application
layer rather than at a lower layer in the TCP/IP stack. This is logical since DTLS must be self-

Background | 17

contained and function without requiring any modifications to the lower layers. By reimplementing
some of the functionality of TCP in DTLS the necessary benefits of TCP can be transferred to DTLS
even though it is running over UDP.

DTLS adds support for numbering and functionality to mitigate packet loss[51]. This is
accomplished with sequence numbers in a similar fashion to TCP. DTLS also adds support for
automatic packet retransmission, reordering, and replay detection. By combining all these features
DTLS accomplishes what TCP and TLS together achieve. Some other considerations are that stream
ciphers such as RC4 cannot be used with DTLS since they rely on the ordering of the data and make
packets interdependent on each other, because of this stream ciphers are banned in DTLS [51] simply
because the protocol would not function when using them.

A potential security issue that has to be taken into account is DoS attacks, which can render the
attacked device unresponsive. Because the source IP address of the device making a request is not
verified an attacker can spoof messages and consume memory resources of the receiver by setting up
fake DTLS sessions. To protect against this DTLS uses a concept called stateless cookies. These
cookies force the sender to prove that it can both send and receive data on the IP address it is
using [51], this greatly increases the difficulty of spoofing the source IP address. Apart from these
changes, DTLS is very similar to TLS and this is a strong point since TLS is one of the most widely
used security protocols on the modern Internet. Thisis also one of the main reasons DTL S is presented
as deltas compared to the full scale TLS protocol, only parts of the implementation necessary to adapt
the protocol to UDP need to be changed. As the TLS protocoal itself is secure [54], as many parts as
possible should be |eft unchanged.

For UDP based traffic, such as CoAP, DTLS is a potential choice for protecting the traffic.
However, there are issues with expensive cryptographic operations that have to be performed. Thisis
especially important when the DTLS protocoal is executing on constrained devices. A thesis by Stefan
Jucker [55] explores the drawbacks and benefits of using DTLS with CoAP with a focus on the
Californium library. Stefan Jucker found that DTLS is currently unsuitable for constrained
devices[55], because the implementation uses too much memory and processing power to be
appropriate for constrained devices.

Another problem is the data overhead induced by using DTLS; since static length header fields are
used the overhead can be significant. The most expensive parts of DTLS's operation is session
establishment. Running CoAP over DTLS can induce a delay of 40-130 ms and an overhead of
29 bytes [55]. Additionally DTLS requires more messages to be sent to start a communication session
than CoAP does. Establishing a session beforehand and reusing it shows much better results with a
resulting delay of only 5 ms. However, because devices often go to sleep and communicate with many
other devices simultaneously the DTLS handshake will have to be performed frequently. Especialy in
the case of sensor networks, one node can have many neighbors that it needs to communicate with
simultaneoudly. It is noteworthy that some protocols such as MIKEY and SRTP (see Section 2.8)
avoid this problem. In their case, the only additional cost is for the initial MIKEY key exchange and
that can be done in one round trip plus the time for some local processing.

2.11 Lithe: Lightweight Secure CoAP for the Internet of
Things

Lithe [56] proposes DTLS header compression for use with CoAP. Because DTLS was originally
designed for reliable links with high bandwidth it is not ideal for constrained devices. DTLS
introduces some overhead for each packet that it protects. On constrained networks, this extra
overhead leads to additional radio usage. Lithe attempts to alleviate this problem by creating an
integrated DTLS and CoAP system for the IoT. The goal of this solution is to reduce power
consumption, while maintaining the end-to-end protection DTLS provides, through reduced packet
sizes.

Header compression for 6LOWPAN can compress the IPv6 headers and the UDP headers, while
correctly dealing with the source/destination ports and checksum [32]. Lithe extends this functionality
to the UDP payload by defining a new encoding type that allows the protocol to signa that the UDP

18 | Background

payload itself is also compressed. The UDP payload is assumed to be DTLS traffic and the targets of
compression are the DTLS headers. The DTL S message types that have compression rules defined are
Handshake, Record, ServerHello, and ClientHello messages. Some types are |left uncompressed, as no
fields suitable for compression are available in them, as is the case with the ServerHelloDone,
ClientKeyExchange, and Finish messages. Fields that are important to maintain security such as the
random-field that contains random data used for encryption purposes are left uncompressed and
unaltered.

Tests by Raza, et al. show a large decrease in overhead ranging from 14-100% depending on the
message type. To achieve 100% savings Raza, et a. assume that some pre-shared information
concerning certificate types, certificate authorities, and algorithms are available to the devices on the
6LoWPAN network. This allows them to omit al fields in the CertificateRegquest message. In addition
to reduced overhead, the size of the implementation is small, requiring only 59.4 kB of ROM and 9.2
kB RAM. Energy consumption is also reduced when using Lithe. As to round trip time, Lithe takes
dightly longer than CoAP with DTLS in most scenarios. This shows that it is possible to reduce the
overhead when using DTLS with CoAP in a power efficient manner without grestly increasing the
round trip time of packets on the network.

One specific problem mentioned by Raza, et a. is that if 6LoWPAN is forced to fragment a
message due to its size the round trip time is greatly increased. This effect can only be seen when
using CoAP in combination with DTLS, as this does not happen when using CoAP with compression
enabled or CoAP aone. One of the design goals of the CoAP protocol is precisely to avoid
fragmentation as much as possible [12]. However, when DTLS is enabled the extra overhead added by
the DTL S header information can cause fragmentation. Lithe solves this by compressing enough of the
DTLS headers that fragmenting packets can be avoided to a great extent, specifically 64 bytes of extra
payload is available before a packet has to be fragmented compared to uncompressed DTLS. Lithe
also saves power by reducing radio communication since a packet that is fragmented in two
transmissions will utilized the radio more compared to transmitting the same packet unfragmented.

2.12 Analysis of Existing Internet Protocols for the Internet

of Things
In 2011, Heer, et a. did an analysis of existing Internet protocols and their applicability to 10T [57]. In
their paper they consider limitations of traditional Internet protocols and what special challenges arise
for 10T. The following paragraphs cover some of the challenges with regards to security that they
identified for 10T.

One mgjor issue and a defining characteristic of 10T is that both the network itself and the devices
have very limited resources in terms of bandwidth, memory, Central Processing Unit (CPU)
capabilities, and available electrical power. Because of this some technologies such as public key
encryption, which is very resources intensive, are less suited to the 1oT. Furthermore, the small link
MTU size before fragmentation of packets occurs introduces the possibility of attacks and
performance loss due to fragmentation. Their paper also notes that assumptions cannot be made about
the power usage of a specific protocol unless an implementation is actualy made for specific 10T
devices. Because of the limited resources, the susceptibility of 10T devices to DoS attacks is
heightened. When resources are more limited, exhausting them is easier and occurs more quickly than
for conventional mains power computer systems. The main targets of exhaustion are battery power and
RAM. Protocols such as IKEv2 and DTLS avoid creating state for a connection until the address of the
other party has been verified. This can protect against DoS attacks when an attacker uses a spoofed 1P
address as the source IP in an attack. By not creating state until the connection has been verified makes
the process of creating countless spurious connections made more difficult -- as it puts added
constraints on the source of the connection.

Another issue is that interconnecting the IoT with the Internet can interfere with end-to-end
security. When security protocols protect header information of packets, then these headers cannot

Background | 19

easily be rewritten or modified by gateways (when needed)’. One proposed solution is to share keys
with the gateway, however this weakens the system’s security. Another option is to use the same
packet format on the 10T and the Internet, thus avoiding the need for rewriting packets - although this
can reduce performancein the loT. A third option isto only protect specific parts of a packet and leave
other parts that can be modified, thus an appropriate tradeoff between security and performance is
important. Finally, the last alternative mentioned is to use advanced MACs that allow for some
transformation of messages without breaking integrity, but this solution is more complex and difficult
to use for encrypted data.

Key distribution and defining identities for each device is another challenge. For instance, one way
this can be done is in a distributed way is for devices to form ad hoc security associations and share
keys as needed. Another option isto have a centralized system that distributes identity information and
keys to devices, but a drawback of this is the introduction of a single point of failure. Distributing
certificates and bootstrapping information can be more cumbersome in the case of constrained device
and networks, as certificates and keys can be relatively large. Privacy issues should also be considered,
some protocols such as DTLS alow the client to remain anonymous by requiring authentication only
of the server. However, just as in the case of TLS authenticating only one party can lead to MITM
attacks. Despite this there is also an advantage in allowing one-way authentication as the server-client
relationship means that it is more common to have atrusted server and unknown clients that must be
authenticated to gain access.

In conclusion, Heer, et a. emphasize that solutions should scale from small to large scae
networks. Additionaly, they note that is important to consider not only end-to-end security solutions,
but also consider systems that will work well when securing communication for larger groups. Which
layer to secure in the loT remains important for researchers to consider as there are advantages to
placing security at each layer of the network stack, but resource limitations make it difficult to secure
al of the protocol layers. One specific concept that protocols working in the 10T should take into
account is the need for providing security and sharing keys between layers.

" Thisis particularly an issue when using network address translation when using | Pv4 addresses for 10T devices.

SMACK |21

3 SMACK

The Short Message Authentication ChecK (SMACK) is a proposed security extension to CoAP. This
protocol adds a method for lightweight authentication of messages to CoAP. Itsmain goal is protection
against battery exhaustion and denia of sleep attacks. Currently a proof of concept implementation
exists written in Java by Marco Tiloca at SICS[58]. The specification of the SMACK extension will
be used to create a C version that extends the Erbium CoAP implementation on Contiki. SMACK
requires some modifications to function well on constrained devices. Specifically, the memory
footprint and processing power required should be reduced. SMACK also has to be adapted to fit with
the REST model that Contiki uses to implement protocols such as CoAP.

SMACK is an attempt to create a robust and lightweight authentication extension to CoAP. The
current Java prototype implementation of SMACK is written on top of the Californium library. The
current implementation functions on full feature devices, but needs to be adapted and implemented in
C to run on constrained devices. Few of these constrained devices can run the Java runtime and
execute Java programs, thus most constrained device require an implementation that uses a language
operating closer to hardware, such as C.

Technical details of the SMACK extension will be covered in later sections of this chapter.
Briefly, SMACK relies on using a MAC to authenticate messages. This MAC acts a signature that is
attached to each message sent, so that the receiver can verify that a given message is correctly
authenticated and thus should be further processed Locally computing a matching MAC can be
considered proof that the sender and receiver share some secret data (such as encryption keys) [59]. . A
MAC is typicaly lightweight to compute and small in size. Calculating this MAC should be secure
and resource efficient.

3.1 Overview

The main result of the SMACK extension to CoAP is to introduce a MAC in a section of the token
field. The token field is specified in the CoAP header to differentiate between different communication
sessions. The length of this field is variable and between 0-8 bytes. SMACK takes advantage of this
field and the fact that it is already defined in the standard. This means that no new fields need to be
defined and the necessary modifications to the protocol are small. In place of the token field SMACK
introduces two subfields, one that serves the same purpose as the old token field named "request ID"
and another field named "validity check” holds a MAC. By default, a 4 byte long token field is used
which SMACK subdividesinto a 2 byte Request ID subfield and a 2 byte Validity check subfield.

Another advantage of reusing the token field is that SMACK is backwards compatible with CoAP
devices that are not using this field. If a SMACK request is sent to a server that does not implement
SMACK this server will place a copy of the received token in the outgoing packet and reply with that.
Thisis the standard operating procedure for CoAP, using the same token used in the reply as was used
for the request. Since the MAC is a part of the token field this overloading of the token field is
completely transparent to devices that do not use the token field or implement the SMACK extension.
However, devices that implement SMACK can differentiate between the sub-fields of the token field
and can check the MAC. Splitting and reusing the token field in this way causes no additional
problems since this field was optional from the beginning. Additionally, SMACK retains the same
functionality the token field provides, but reduces the number of bytes that can be used for tokens by 2
bytes as the MAC uses 2 of the 8 bytes available in the token field.

The goal of SMACK isto ensure protection against DoS, specifically denia of sleep and battery
exhaustion attacks - particularly for constrained devices. Protection against these types of attacks is
important since most constrained devices have a very limited source of power. For example, if the
device is battery powered then an attacker can drain the battery by sending request messages and
thereby causing the radio and processor to use up al of the available battery power. In many cases,
once the battery is drained it may never be replaced or replacing it can take a lot of time and effort.
Sensor nodes in particular can be spread over an area and an individual node may never receive service
or replacement of faulty parts. Additionally, nodes may be placed in difficult to reach places such that

22 | SMACK

sending someone to replace the battery is infeasible or simply not worth the cost compare to the
benefit gained.

In a scenario without SMACK an attacker may send hundreds of request messages, eliciting a
reply from the receiver. In addition to the processing power needed to deal with parsing the request
and creating a reply (which may contain sensor data or other data that takes power to produce), an
attacker can request a reading from a specific sensor or request a particularly large CoAP page. In
contrast, when using SMACK messages are authenticated and those that fail the authentication check
are discarded before any further processing and unnecessary radio traffic has occurred, thereby
preserving battery power. Unfortunately, the radio has to be on in order to receive the message and a
minimal amount of parsing has to be done in order to check the MAC, but if the MAC is incorrect the
message can thereafter immediately be ignored — hence avoiding the rest of the processing and
potentially enabling the radio to be placed into a sleep mode sooner.

The purpose of the MAC in the header is to enable message authentication, thus alowing a
receiver to check whether a received message is authenticated and therefore should be accepted. The
protection provided by SMACK and the MAC is a lightweight message authenti cation of parts of the
message. Only certain elements of the CoAP header are authenticated, as will be detailed in coming
sections. The MAC must be quick to calculate, while still providing a reasonabl e level of protection.
Selecting which specific parts of a CoAP request should be included in the MAC calculation can be
changed if some parts of thisinformation are more important to protect.

3.2 Keys

There are several layers of keys used in SMACK. In area world scenario, devices would receive
initial keysfrom akey distribution center (KDC) (or via some other method of key distribution). These
initial keys are called master keys and are used to generate the keys used for the MAC calculation.
Figure 3-1 shows the relationship between the different keys used by SMACK.

Seed Master Key
PRF
Master Session Key Initial MID
PRF f\
Session Key » Session Key J
PRF
L 4

Key A Key B Key C

Figure3-1: Keysused by SMACK

SMACK |23

The KDC distributes the initial seed and master key to all devices involved in a communication
session. The master key is now fixed and can be used to generate further keys. The master key and the
seed are used as input to a pseudo random function (PRF) to create a master session key that is valid
for a particular global session. This master session key is subsequently used together with the initial
message ID (MID) of a CoAP packet to generate a session key for a specific session. A session is
identified by the initial MID of the first packet received. For CoAP this MID is a 16-hit value in the
header that is transmitted and automatically incremented for each message sent.

Furthermore, another instance of the session key is created in the form of Session key;. The
purpose of this new session key is to provide greater variation in the keying material. All keys except
A, B, and C are 32 bytes in length by default. Finaly, keys A, B, and C are generated as shown in
Table 3-1. These keys are used by SMACK to generate the MAC to be written in the CoAP header.

Table3-1: Generation of KeysA, B, C

Key Size (byte) Bit range (big endian) Source
2 Oto15 Session Key
B 2 16t031 Session Key
2 Start: 16 X ((i + 2) mod 16 Session Key;
Stop: 16 X ((i +2) mod 16) + 15 | j = MID.] = %

Keys A and B are generated in a straight forward fashion by simply taking a fixed segment of the
Session Key. However, key C is generated from the constantly changing Session Key;. The choice of
which particular Session Key; and which parts of it are to be used is determined by the message ID of
the CoAP packet in question. For instance if the packet has MID 53, then the Session Key; used is
Session Key number 3 and bits 112-127 of Session Key; are used to create key C. Rotating the Session
Key; and selecting different parts of it increases security because the same key is not used more than
one packet. In this way, a new key C will be used for each packet. The cycle time of Session Key;
depends on the output from the PRF, if there is a case where continuously taking the initial Session
Key plus the current Session Key; as input to the PRF at some point loops, the same Session Key; will
be generated.

3.3 Pseudo Random Function

The keys themselves rely heavily on a PRF to generate good key material. A good PRF will generate
statistically random data no matter what input material is provided [60]. This means that a small
change in the input material to a PRF will result in vastly different output. Ideally there should be no
discernabl e relationship whatsoever between the input and output of a PRF.

There are different ways to implement a PRF; the method chosen for SMACK is to use the
SHA256 cryptographic hash function as its base. Hash functions provide fixed length output values
calculated from the variable data they operate on. Typicaly, hashes are used to verify the integrity of
data or as means of storing passwords. The benefit of hash functions is that they are very difficult to
invert, meaning that if the hash is provided, then finding the original input data is hard. In practice,
attacking hash functions is typically based upon testing variations of the input data until the desired
hash is found. When the input is small, for example a short poorly selected password, then the original
data can often be found from a hash. SHA256 is a hash algorithm created by the United States of
America s National Security Agency (NSA). It provides an output digest of 256 bits. Many other hash
functions such as Message Digest 5 (MD5) have known security vulnerabilities[61]. Currently,
SHA256 is considered a more secure hash function than MD5.

The HMAC chosen by SMACK is the same as implemented by the TLS protocol [50]. This
HMAC is also used in other protocols, such as IPsec and DTLS. The HMAC specification is given in
RFC 2104 [46] and is a commonly used and standardized mechanism for message authentication. The

24| SMACK

original HMAC was first described in a 1996 paper by Bellare, Canetti, and Krawczyk [62] who aso
authored RFC 2104.

The SHA256 hash is used to implement a HMAC. A HMAC is a way to adapt hash functions to
provide cryptographic security. In essence, a specific piece of data is hashed together with a key in
several steps in order to increase the effort needed to reverse the function. The benefit of a HMAC is
that data can be authenticated by using a specific key as one of the inputs to the function. For a normal
hash function the output is always the same for a specific input, however since a HMAC uses the key
as an additional input the output depends upon both the data and the key.

An HMAC can be used to check if some portion of the data has been modified or not. If the parties
share a key, then they calculate the HMAC of the data with this key both before transmission and after
reception. If the HMAC of the received message matches the expected value then the data has not been
modified and can be considered authentic. If the HMAC differs from the expected value, then the data
(or key) must have changed. An attacker cannot easily modify the data and recalculate the HMAC, as
would be the case if a simple hash function was used, because the correct key is needed to generate a
valid HMAC. If the key iswell chosen, then an HMAC is a strong method for authenticating data. For
this implementation of SMACK, it is up to the user to select a good Master Key that the rest of the
keys used will be generated from. This key can be distributed by a KDC or preprogrammed into the
devices. As the master key is 32 bytes long it will be difficult to recover this key -- assuming the
choice of key is sufficiently random.

SMACK implements a PRF using a HMAC based on the SHA256 hash function. This PRF takes
two values as input: a secret key and some arbitrary data to generate some output data. The main
purpose of the PRF is as a wrapper to the HMAC to allow outputs of arbitrary length. To accomplish
thisit simply uses the HMAC multiple times according to the desired output length. Since SMACK by
default uses a key length of 256 bits, the PRF only has to execute the HMAC once as the output from
the HMAC is the same length as the hash function being used (and SHA 256 has a 256 bit output). The
PRF used by SMACK issimilar in functionality to the PRF used by TLS.

The PRF is used to generate sub-keys derived from the main master key. For every new session, a
new key is generated using the PRF from the master session key and the initial message ID of this
particular session, as provided by a KDC or for the implementation described in this thesisthe KDC is
emulated in software. Furthermore, the Session Key; is continuously refreshed by executing the PRF
with the Session Key and last used Session Key; asinput. In thisway the future values of Session Key;
rely on its previous iterations. Because the MID will wrap around to zero after 2'° messages it is
necessary to also rotate and change the Master Key after 65536 messages have been exchanged
between the devices. How this is best done is an open question, but it could be done by using a KDC
or other methods of key distribution.

3.4 Configuration values

Most values used by SMACK are possibly to modify and dynamically change to provide adaptability
for different situations and requirements. For example, some hardware can have lower processing
power or less memory available and some networks can have special characteristics. There can also be
different security requirements and tradeoffs. Table 3-2 shows the default settings that SMACK uses
for some key values.

The default size of the Token field in the COAP header is 4 bytes, of these 2 bytes are the Validity
Check (MAC) and 2 bytes are for the Reguest ID (i.e., the same purpose as the original Token field).
The default key size was chosen to be 32 bytes to function smoothly with the hash and HMAC
functions used that generate 32 byte outputs (thus the HMAC is used only once to generate all 32
bytes).

SMACK |25

Table3-2: SMACK key values

Name Value Description

SMACK_AUTH_FIELD_SIZE 4 | Size in bytes of Token field in CoAP
header

SMACK_VALIDITY_FIELD_SIZE 2 | Sizein bytes of Validity Check subfield

SMACK_GALOIS FIELD _SIZE 16 | Field size in bits used for Gdois
calculations

SMACK_KEY_SIZE 32 | Key sizein bytes of SMACK in bytes (256
bits)

SMACK_PORTION_SIZE 16 | Controls how often Session Key;
recalculates (in this case every 16™ packet)

SMACK_SESSION_LENGTH 127 | Length of aSMACK session (packets)

SMACK_ACCEPTANCE_WINDOW_SIZE 50 | Upper limit for new session initidl MID
(multiplicative factor for the session size)

3.5 Galois fields

Galois field mathematics is used to calculate the value placed in the Validity Check subfield. Galois
fields, also called finite fields, are defined as sets of numbers in which mathematical operations on the
members of the set results in another member of the set [63]. SMACK uses afield size of 16, the range
of such aGaloisfield is0..2'°-1 (i.e, 0 .. 65 535). For example, when using a Galois field of 16 bits
the following calculations hold true: 260 x 260 = 4123 and 60000 + 20000 = 42048 as the
results of the calculations are also members of the set and remain within the range of the field.

Simple addition in a Galois field is performed using the exclusive or logical functiona @ b = c.
Multiplication uses agorithms based on primitive polynomials. Each field size can have many
potential primitive polynomials. In essence, a primitive polynomial is an irreducible polynomial, the
equivalent to a prime number but for polynomials. Multiplication in a Galois field is performed
modulo the primitive polynomial used for the specific field size. It is a more complex operation
compared to simple addition.

Often Galois field multiplication is performed using pre-computed |ookup tables as multiplication
is quite costly processing wise[64]. Many of the available implementations of Galois field
mathematics in code rely on dynamically generating lookup tables that are loaded into RAM to assist
with speeding up calculations. Since SMACK is developed for constrained devices, it cannot fully
utilize such lookup table functionality for speeding up the calculations due to memory constraints.
Many constrained devices have very limited RAM available and cannot afford large data structures
permanently being loaded into memory. An alternative approach is saving pre-computed tables to the
FLASH memory of the device, athough this can introduce latency and the size required can still be
too large for constrained devices. For instance, the code implementing Galois field calculations relying
on pre-computed tables in James S. Plank’s library [65] requires at least 1 MB of space because the
code that creates the tables is the following: malloc(sizeof(int) *nw/w]) and
malloc(sizeof{int) *nw/[w] *3) where afield size of 16 gives nw[16] = 2'° and an integer uses 4 bytes of
space.

SMACK pre-computes certain values and utilizes a simple lookup table for some operations.
SMACK has support for Galois field sizes from 1 to 16 and the primitive polynomials for each are
stored in atable. The size of thistableis 36 bytes. Using Galois field mathematics the three keys A, B,
and C are used in addition to parts of the CoAP message header (my, m,, and my) that are included in
the protection according to the following formula:

MAC = (mp+A X my + A2 X my)) XB+C

26 | SMACK

Note that the multiplications and additions in the above formula are performed in a Galois field
and thus follow the special rules mentioned earlier. An aternative representation showing the
mathematical operations more clearly is the following formula where dot represents multiplication
modul o a primitive polynomial:

MAC= (my@A -m QA-A-m) BHC

In addition to keys A, B, and C in the formula sections of the packets are also used. The m; values
are sections of the CoAP packets as illustrated in Figure 3-2. The colored sections are treated as
normal integer values for the purpose of the calculation, thus my is the fields: Ver, T, TKL, and Code;
m, isthe MID; and m; is the Reguest ID. Note that this means that the Options and Payload fields are
not protected.

01.2345 67T 890123454647 8930123456783 01

Verl T I TKL | Code | Message ID

RequestD Tofen Validity Check

Options (optional)

OxFF ; Payload (optional)

m0 «m1 em2
Figure3-2. Message sections

It can be shown that the praobability of accomplishing a forgery attack is 2~1° when using a field
size of 16, as there are 21° possible values for the MAC resulting from the computation. Thus it is
unlikely to guess the same MAC as that of the next valid message the receiver is expecting. An
adversary would have to transmit 21 messages to ensure that one of them will match the MAC the
receiver is expecting. Because of this an attacker that is capable of transmitting 21© messages per
second, having them all arrive and be processed by the receiver, will have their attack capacity reduced

tog = 1 accepted message per second. This limits the efficiency of an attacker in terms of the

number of messages the receiver has to fully parse. However, although the received messages are not
fully parsed power is still required to power the radio and do the limited parsing required to calculate
the MAC as can be seen in the experimental results from Chapter 5.3.

3.6 Replay detection

One well known attack againgt authentication systems is replay attacks[66]. A replay attack is
executed when an attacker sniffs the network traffic, captures a correct message going to the receiver,
and retransmits it later. The key here is that the MAC in the packet is valid and proves that the
message is authentic. Since the packet is valid, the receiver will accept it unless there is some
protection against replay attacks. In this way, an attacker can trick a system into accepting commands
contained in previoudly sent valid packets. This attack is quite clever since it does not require any
initial interaction with the device to be exploited; simply passively listening on the network is enough.
Once the required packet has been captured, then the attack can commence, in nmany cases the packet
will even appear to originate from the original sender since it is an exact duplicate. This can assist an
attacker in hiding their identity.

In the case of SMACK, an attacker can capture a CoAP request with avalid MAC in the validity
check subfield of the extended CoAP header and resend it later. Thiscould alow an attacker to bypass
the security SMACK provides and the attacker can send this specific packet again and again,
reguesting resources or some other action depending on what was in the original packet. There are no
obvious distinguishing characteristics that the receiver can use to realize the packet is replayed, since it
isidentical to avalid packet. If such an attack occurs, then this causes problems for the receiver. As a
result it is desirable to find methods that can prevent replay attacks.

SMACK | 27

SMACK implements replay protection in a simple and straight forward manner. First, when a
message arrives SMACK checks whether it is a part of an existing session or not. This can be done by
simply comparing the MID of the incoming request with the initial MID + session length for all
current sessions. If the MID of the incoming request fallsin the MID range of an existing session, then
this message is accepted. If it is not part of an existing session, there are two cases. The MID is either
evenly divisible by the session length, in this case a new session can be created, otherwise the message
is discarded. The exact Initial MID that is assigned to a session can be provided by a KDC to ensure
that both sender and receiver agree on only one allowed Initial MID.

For each individual session, a bit array is kept of the messages that have been received. With the

default session length of 127, this array will be [%] = 16 bytes long. When a message arrives the
corresponding MID in the array is marked as received. If a message with ID 439 comes in this will
mark bit 439 mod 127 = 58 inthe bit array. The benefit of this solution is that the memory required
issmall and could be further reduced by reducing the session length. For a graphical representation of
SMACK packet processing and replay protection see Figure 3-3. This figure clarifies the processing

for several different potential scenarios.

One drawback of the method described so far is that a limited form of replay attack is possible. It
is not possible to reuse a message for the same session (or for different sessions), however when the
message ID loops around and starts over a message with an old message ID can be reused. For
instance an attacker can capture a packet with message ID 200, wait 65 535 (2'°) messages and then
retransmit it. The reason thisis possible is that the maximum message ID is 65 535, after that value is
reached the count restarts at 0. Now new sessions will be created again and the message IDs will not
be marked as read. This limits an attacker to only replaying a message once until waiting for the
message ID to start over again. This problem has been solved in the SMACK implementation by
simply changing the master key every 65 535 messages. The burden of this is not too large since a
large number of packets can be transmitted before having to change keys.

The following section will elaborate more on the functionality of the protocol in an example
scenario.

28 | SMACK

Incoming
Packet

Is MID receved
for this session

MID is partof an
existing session

No

(*)MID <
Lowest base MID
of active session +
SL * SAWS

No
Yes

Y

Is MID modulo
session size=0

Discard
Packet

Yes
No

Is MAC correct?

Is MAC correct?

Yes

Yes l
L

Crm:e _[Mark MID
Session 'l as received
Y
Process
Packet
Contents

Figure3-3: Packet processing flowchart: * To clarify this step every created session is stored
along with itsinitial MID. The initial MID isthe MID of the first packet in this session. By using the
base MID + SMACK_SESSION_LENGTH it can easily be determined which session an incoming
MID belongs to. A session will be deleted when al packets from the base MID to the base MID +
SMACK_SESSION_LENGTH have been received since it means all packetsin this session have been
accounted for. The lowest initial MID of an existing session is the lower limit for acceptable MIDs and
the upper limit is reached by adding the SMACK_ACCEPTANCE_WINDOW_SIZE (SAWS) *
SMACK_SESSION_LENGTH (SL). This puts a range limit on acceptable MID values for new
sessions and in addition to that new sessions must start on MIDs that fall on even multiplies of the
session length.

3.7

SMACK |29

Example scenario

This section and Figure 3-4 describe a possible setup and example of how the SMACK protocol will
be used to extend CoAP to providie authentication for a client communicating with a server device.
There are three devices in the network: a server, a client, and a KDC. The following steps prepare the
devices and then exchange authenticated messages from the client to the server:

1.
2.
3.

© N o U

10.

11.

12.
13.
14.

The client requests a Master Session Key and an Initial MID from the KDC.
The client receives Master Session Key and an Initial MID from the KDC.

The client creates the Session Key and Session Key; from the Master Session Key and Initial
MID using the PRF. Then it generates keys A, B, and C for the first packet. For future packets
the key C generated depends on the amount of packets transmitted within this session since
Session Key; and the section of it used for key C depends on the MID of a packet.

The client uses keys A, B, and C to calculate a MAC for the first packet to be sent. This MAC
is placed in the last 2 bytes of the Token field of the CoAP header. The first 2 bytes are filled
with a random value to provide the original functionality of the Token field (i.e., to identify a

sequence of messages).
The client transmits the first CoAP packet protected with SMACK.

The server requests a Master Session Key and an Initial MID from the KDC.
The server receives aMaster Session Key and an Initial MID from the KDC.

The server receives a packet and first checks if it matches the Initial MID received from the
KDC. If so the server generates Session Key, Session Key;, and the three keys A, B, & C.

The server then uses the same algorithm to calculate a MAC for the packet and checks if it
matches the one included in the packet. If it does a session is created and the packet is
accepted and marked as received, if not it is discarded.

The server replies to the message. SMACK can function either as one-way or two-way
authentication meaning the server can choose to embed a MAC or not.

Since the client has incremented the amount of transmitted packets key C is recalculated from
Session Key; and if needed a new Session Key; is created from the Session Key and the
current Session Key; using the PRF. That will happen every time (i + 2) / 16 isincremented by
awhole digit, meaning every 16" packet.

The client now usesthe keys A, B, and C to create aMAC for the second packet to be sent.
The client transmits the packet.

The server receives the packet and calculates the Initial MID for this session from the
incoming packet's MID. This can be done by taking the MID - (MID mod
SMACK_SESSION_LENGTH). Then the server checks if there is an active session matching
that Initial MID, if not the packet is discarded. Next the server checks that this MID has not
been previously received (by checking the bitmap of received packets), if it has it is discarded.
If it has not been previously received the MAC is checked by first recalculating key C (and
Session Key; if needed) and then using the three keys A, B, & C to check the MAC.

Whenever al the packets with MID starting from base MID up to base MID +
SMACK_SESSION_LENGTH have been received a session is deleted. If the incoming MID
of a packet is more than SMACK_ACCEPTANCE WINDOW _SIZE *
SMACK_SESSION_LENGTH over the lowest base MID of an active session the packet is
rejected.

New sessions will be created by the server when packets with MID that fall on Initial MID +
SMACK_SESSION_SIZE * n are received assuming they are not duplicates and the session
does not already exist. In a real scenario the KDC may be contacted to get new values for

30 | SMACK

Initial MID and keys if needed, however the current implementation simulates this. The value
of the Initial MID is used to create new session and also to identify it.

Client KD Server
1. Request Initial MID & Master Session Key

2. Receive Initial MID & Master Session Key

3. Keys A, B & C generated

4. Calculate MAC using A,
B & C + packet contents

5. Transmit CoAP packet with MAC

I 6. Request Initial MID & Master Session Key
I 7.Receive Initial MID & Master Session Key
i 8. Is incoming MID == Initial MID?

If so generate keys A, B & C.
9. Use keys A, B & C to calculate MAC then
compare to MAC in packet. Mark as received

10. Reply to request if MAC matches

11. Recalculate key C
12. Use keys A, B & C to generate
MAC for next packet

13. Transmit next packet N

14. Receive packet, find session,
check for replays

Figure3-4: Communication steps

Method | 31

4 Method

The practical work performed as part of this thesis project extends the code of the CoAP
implementation in Contiki, named Erbium, to add support for the SMACK extension. The current
version of Contiki included with the Instant Contiki VMware image has an implementation of CoAP
that supports the CoAP version 13 draft. Because this version was the latest available with the Contiki
development environment at the start of the project, this version was used for the SMACK
implementation. Erbium is written in C and can be used by Contiki applications if they wish to
communicate using CoAP. This C code was modified to provide SMACK functionality for new and
existing CoAP implementations. As mentioned in Section 2.5.2, the Cooja simulator and other tools
are available to facilitate developing software on Contiki. This simplified the code development.
Additionally, Cooja was used as a simulator to test code before deploying it.

The software development method used was incremental development, thus the SMACK
functionality was systematically added to the existing system. First, the MAC calculation was included
in the client code. Next the server was modified to check the MAC before accepting a message. The
client could be fully developed before creating the server, as a SMACK client can interact with a
non-SMACK server. The existing Java implementation was used as a baseline for creating the C
version. Furthermore, Marco Tiloca at SICS who developed the Java version, was available for
discussion and questions regarding his implementation. However, it was necessary to make mgjor
modifications and design changes for the C version, as this version needs to function with the existing
CoAP code in Contiki.

The main issue when working with the SMACK protocol was that only a Java implementation
existed. While this is sufficient for testing on hardware that can support the Java runtime, since the
main purpose of SMACK is to solve issues with constrained devices having only a Java version is not
sufficient. A version in C, or another low-level language, is necessary to evaluate the solution on
actual constrained devices. Contiki was chosen as the operating systems asit is common and supported
on many different types of constrained devices [7]. Additionally, Contiki was originally developed at
SICS where this thesis project was performed.

Having an implementation that functions with Contiki allowed an evaluation of the SMACK
solution on many different types of constrained devices. These evaluations are described in the next
chapter.

4.1 Hardware

The main board that was used for evaluation and testing in this project is the Texas Instruments
CC2538 board, specifically the CC2538 evaluation version. The board is shown in Figure 2-1 on page
6. Some of this board’ s key specifications according to its data sheet are [67]:

e ARM Cortex M3 Processor — 32MHz top clock speed
e 512 kB FLASH memory

e 32kB RAM

e Support for severa low power modes

o AES-128/256, SHA2 Hardware Encryption Engine

e 24 GHzIEEE 802.15.4 transceiver

The implementation was purposely kept general in order for it to function on as many of the
devices that Contiki supports as possible. These devices have varying properties and varying levels of
support for different low-level functions. Therefore, the SMACK implementation avoids using any
board specific functionality and tries to be a general C program that can be run on as many devices as
possible. This means that this implementation does not take advantage of the AES-128/256 and SHA?2
Hardware Encryption Engine, thisis|eft for future work.

32 | Method

The particular CC2538 board used for the experiment was set to run at 16 MHz. According to the
data sheet the values in Table 4-1 can be found or calculated for the CC2538 boards [67].

Table4-1: CC2538 test hardware key values

Name Description Value

Voltage Voltage board runs on 3volts

Radio | RX Current drain for radio receive 20 mA
Radiol_TX Current drain for radio transmit 24 mA

P TX Power use for radio transmit 72 mW

P_RX Power use for radio receive 60 mwW

CPU Current drain for CPU 7 mA

P_CPU Power use for CPU 21 mwW

Real Time Clock (RTC) Clock tick rate 32768 ticks/second

4.2 Software environment used for development

Texas Instruments' Code Composer Studio (CCS) version 5.5.0 was partially used as the devel opment
environment when writing C code. CCS is a full Integrated Development Environment (IDE) and
includes extensive support for debugging. A large portion of the coding was also done using the Gedit
text-editor under the Contiki development VMware-image. A simple text editor was sufficient since
the code that actually needed to be edited was contained in a relatively few number of files. As code
already existed for simple CoAP client/server applications and the actual implementation of the CoAP
protocol this existing code was used for further development. In practice, the make-files and settings
were aready configured and ready for compilation of the code. The client required some modifications
to make it deliver keys to the main CoAP-stack and the main work took place by modifying the
implementation of CoAP that comes with Contiki.

CCS was used for compiling and transferring the applications to the actual hardware. CCS not
only comes with a development environment but also functionality for transferring software to
constrained devices such as the CC2538 board. CCS can be used together with a USB or Joint Test
Action Group (JTAG) interface to transfer applications to a specific board for testing. When using a
JTAG interfaceit is possible to do high level debugging using CCS.

4.3 SMACK C implementation
The process of creating the implementation of SMACK in C followed these steps:

1. Understand the general structure and functionality of the Contiki operating system.
Become familiar with the CoAP implementation in Contiki (Erbium)

Implement client functionality, calculating and marking packets with MACs
Implement a server which checks each incoming packet and verifiesits MAC
Perform functional testing to ensure that the code behaves correctly

o g A~ w DN

Perform performance testing to evaluate the use of SMACK with regard to the goals specified
in Section O.

" A JTAG interface implements the |EEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture.

Method | 33

The resulting implementation is currently not available for download as there still are papers and
related work ongoing at SICS based on this code. However it will likely be released in the future when
papers at SICS have been published.

4.4 Energest

Contiki includes a framework for measuring the time spent in different states by a particular
application. This makes it possible to measure exactly how long a Contiki program spent executing
instructions or how long the radio was turned on for listening. If some key values, such as operational
voltage and current drain, are known they can be used together with the timing information to
calculate the energy use of a specific operation. The benefit of using this tool is that measuring and
calculating power consumption (by combing the measurements with the known values) is simplified.

Using Energest is simple and requires adding only a few lines of code to an application. The
results are given in units of clock ticks, but dividing these results by the number of ticks per second for
a particular hardware device gives results in seconds. Table 4-2 shows the metrics that can be
measured using Energest. The reliability of Energest has been evaluated in a report by Adam
Dunkels[68] and his conclusions show that the testing framework adds 0.7% overhead in terms of
computation time. Furthermore, the report covers practical testing comparing Energest to actual power
readings from a board and shows that the estimated energy use follows the graph of the measured
energy use to a high extent when looking at the specific points where samples are taken.

Table4-2: Energest metrics

Name Description (all values are measured in clock ticks)
ENERGEST_TYPE_CPU CPU time

ENERGEST _TYPE LPM Timein Low Power Mode (LPM)
ENERGEST_TYPE_TRANSMIT Radio transmission time
ENERGEST_TYPE_LISTEN Radio reception time

Analysis| 35

5 Analysis

The analysis consists of four parts:. functional evaluation, comparison of overhead between vanilla
CoAP and CoAP with the SMACK extension, performance evaluation on CC2538 boards, and
simulated testing on other constrained devices. The performance evaluations use actua hardware with
data collected using Energest. The normal vanilla version of CoAP is compared to CoAP with the
SMACK extension. The performance of each implementation is assessed in terms of latency and time
taken processing messages. When it comes to code size SMACK added 55 kB to existing Contiki
CoAP code (108 kB). 23.6 kB was for SHA functionality, 9.3 kB for HMAC and finally 22.1 kB for
the SMACK core code.

5.1 Functional Testing

Functional testing was initially conducted using the Cooja network simulator that is included with the
Instant Contiki development image. The main point of this testing was to first ensure that the
implementation fulfills the basic functionality of the SMACK extension. This was accomplished in
two ways. First the current Java SMACK client developed at SICS was used to interface with the
simulated nodes running in Cooja and it was confirmed that the Java client could communicate
correctly with the Cooja nodes. This means that the SMACK implementation on top of CoAP in
Contiki was compatible with the external Java client and its implementation of SMACK. In addition,
the traffic was analyzed using the Wireshark packet capture tool to confirm that the structure of the
packets exchanged followed the SMACK protocol specification. Thisway of testing allowed testing of
the SMACK server in C independent of the corresponding C client as a third party reference
implementation could be used as a client to ensure that the C SMACK server meets the specifications
before testing it with the developed SMACK client.

The second test performed was to simulate both a server and a client node running in Cooja and
check that they could communicate with each other using the SMACK extended CoAP. Because the
previous test showed that the SMACK server implementation met the specifications, the next step was
to test the SMACK client implemented during this thesis project. Consequently, the client was tested
against a SMACK server, both running on simulated nodes in Cooja. Additionally, the traffic was
monitored by looking at debugging output from the two nodes. Both nodes were stress tested by
transmitting a large number of CoAP requests (up to 10 000) to ensure that the session handling and
related code did not have any issues that would appear after prolonged communication. Testing MID
rollover after 65535 messages was not tested as issues with KDC and key renewa have to be
researched further. Some issues were discovered where the client or server crashed after many packets
had been exchanged. These issues were corrected by making modifications to the code, among other
changes the size used for some session handling data structures were reduced to ensure that the
memory would not overflow when there were multiple sessions. For the CC2538 boards a maximum
of 4 sessions could be supported. However old sessions are automatically cleared when all MIDs for
that session have been received or if needed to make room for a new session. New incoming sessions
are prioritized over older potentially inactive ones.

In addition, some testing was done to ensure that SMACK actually provides authentication of
messages as it should. For instance, packets with incorrect MACs were sent and these packets were
not accepted by a server implementing the SMACK extension. If the MAC calculated by the server
from the contents of the packet does not match the MAC embedded by the client in the packet, then
the message was correctly discarded. This was easily confirmed both by debug output from the server
and monitoring the network using Wireshark. Basic replay protection was also tested and replayed
packets were simply ignored as they are already marked as received in the bit map keeping track of
packets within a session.

36 | Analysis

5.2 Comparison of packet overhead

In the case of SMACK, the number of packets required to initialize a communication session remains
the same as for CoAP, except for communication with the KDC. Because SMACK has to receive keys
there is periodically extra traffic generated for this. This implementation uses a KDC simulated in
software, but a real setup would need some extra packets to exchange data with the KDC. One packet
in each direction is sufficient for the KDC and a device to exchange the necessary information before a
session starts. Ideally, the KDC should be close to the device or keys can be pre-shared between
devices. It is advantageous to have the KDC close to a device to reduce latency in communicating
keys. There is no handshake or other setup data exchanged between the two devices communicating
using the SMACK extension, the MAC is simply added to each message by the transmitter and
checked at the receiver.

Asfar as communication overhead is concerned SMACK does not increase the size of the packets
exchanged. This can be seen by comparing a CoAP packet protected with SMACK and a vanilla
CoAP packet, as both include the Token field (with a variable size of 0-8 bytes). Many
implementations of CoAP use a 4 byte token. SMACK also uses 4 bytes for the Token field; however,
it splits it into two subfields one of which contains a MAC and the other retains the same purpose as
the original Token field. SMACK uses an existing field of the CoAP header to include the MAC it
calculates for each packet. The great advantage of thisis that the protocol does not have to be modified
nor does this add any extra overhead compared to vanilla CoAP traffic. In addition to that a request
protected with SMACK is backwards compatible with vanilla CoAP since the contents of the Token
field will be parsed asif it contained a normal 4 byte token and the subfield containing the MAC is not
parsed as such by a vanilla CoAP server. If SMACK is enabled on receiver and sender both devices
have to agree on the same length for the Token field. In the case where only the client has SMACK
enabled the length is not relevant since the server will simply mirror the token sent by the client.
Finally if only the server is using SMACK it will reject messages from vanilla clients since they will
not be including correct MAC valuesin the 2 reserved bytes of the Token field.

5.3 Performance Testing

Performance testing was initially performed using the hardware described in Section 4.1, i.e. a
Tl CC2538 board. Scenarios involving SMACK and vanilla CoAP were both evaluated. Using
Energest the time in different states was measured (see Table 5-1 and Table 5-2) and the power
consumption was cal culated using power information from the data sheets of the board.

The time it takes to perform the MAC calculation was measured both for steady-state operation
and also for the first SMACK packet (that establishes a session and generates keys). The whole time
taken from the stack receiving a CoAP packet to when it is delivered to the receiving application was
measured. This was also done for both steady-state and initial transactions. As vanilla CoAP does not
use a MAC the portion of the code calculating it was not tested for vanilla CoAP. Instead only steady-
state and initial transactions were compared. In practice, the different tests were accomplished by
controlling where in the source code of the Contiki CoAP stack the Energest start and end
measurements calls were placed. As mentioned Energest needs only afew lines at the start and stop of
the blocks of code of interest to measure the number of clock ticks during which the different
components were active.

Table5-1: SM ACK measur ements

Start Stop State Name
CoAP request reception CoAP request delivery to application 1% transaction A
Right before MAC check Right after MAC check 1% transaction B
COoAP request reception CoAP request delivery to application Steady-state C
Right before MAC check Right after MAC check Steady-state D

Analysis| 37

Table5-2: Vanilla CoAP measurements

Start Stop State Name
COoAP request reception CoAP request delivery to application 1¥ transaction E
CoAP request reception CoAP request delivery to application Steady-state F

The duration between initial request and reply was measured when using unmodified CoAP and
compared to that of CoAP with SMACK. The detailed results from this testing can be seen in
Appendix A. All values from Energest of LPM and TRANSMIT were zero. This is because low-
power mode was not enabled as the processor was performing calculations and it was not in a resting
state. In addition to that the radio was listening for incoming traffic and not in transmit mode. The
actual time in seconds calculated from the ticks can be found by dividing the ticks by 32 768 since that
is the frequency of the internal clock. To get the actual energy usage the values in Table 4-1 can be
used. The formula used is the following:

y CPU ticks + Pow X LISTEN ticks
RTC frequency ®* " RTC frequency

The datain Table 5-3 show an overview of the test results with a confidence interval of 95% applied to
the values cal culated.

Table5-3: Energy statistics

E = Pcpy

Test Energy (1J) Client time (ms)

95% confidenceinterval 95% confidenceinterval
SMACK full request 316.22 +0.97 43.32 £2.02
1st transaction (A)
SMACK MAC check 313.00 £0.87 4475 £1.74
1st transaction (B)
SMACK full request 49.04 £0.74 29.47 £0.44
steady-state (C)
SMACK MAC check 45.73 £0.83 29.02 £0.30
steady-state (D)
Vanilla CoAP full request 5.44 +0.41 40.31 £1.47
1st transaction (E)
Vanilla CoAP full request 5.72 £+0.46 28.39 £0.32
steady-state (F)

5.4 Testing on other constrained devices

Hardware wise the code was only tested on the CC2538 devices and confirmed to function on those
boards. However, using Cooja the code was also tested in a simulated environment for the Z1 [69] and
WiSMote [70] type boards. On those boards the code functions without problems and can be
comprehensively tested from a networking and software point of view to the extent that is possiblein a
simulation. Because Cooja supports simulated network traffic and even makes it possible to connect to
boards inside the simulation from the host computer the code could aso be tested with the Java
version of SMACK and the Californium CoAP implementation. This means that the code could be
tested with the same tools, the same network requests, and same client-side code used for the testing
on the CC2538 hardware.

5.5 Chapter summary

From the packet overhead point of view SMACK does not add any additional packet overhead beyond
what vanilla CoAP utilizes. However, SMACK adds some extra packets for initializing

38| Anaysis

communication due to the communications with a KDC that distributes keying material. Initializing
SMACK communication uses significantly more energy compared to a vanilla CoAP request. Even in
steady-state communication SMACK increases the energy usage of the constrained device. A client
using SMACK to communicate with a server does not experience any significant slowdown; as
reguests using SMACK compared to vanilla CoAP experience at most only afew milliseconds of extra
latency. Security wise SMACK provides authentication of messages and ensures that packets with an
incorrect MAC are not accepted. An incorrect MAC can be both due to a packet being modified in
transit or having the wrong keys used for the MAC calculation.

Conclusions and Future work | 39

6 Conclusions and Future work

This chapter contains the conclusions drawn from the work performed during this thesis project. It also
covers interesting aspects that can be explored in the future and suggests some of the best directionsto
continue work on this problem. There are some aspects that were outside the scope of this report and
also some aspects that were not investigated further due to the bounded duration of this thesis project.
Finally, this chapter also includes some reflections regarding ethical, environmental, and social aspects
of this work. These issues should also be taken into account when considering how to proceed with
this topic. These considerations are important to ensure that the work done has value and is a good
place to invest research resources as compared to other potential solutions and areas.

6.1 Conclusions

When comparing SMACK to the technologies described in Chapter 2 and elsewhere one clear benefit
of SMACK compared to other solutions is its low overhead. For comparison, the “CoAP security
options” proposed by Y egin adds up to 30 bytes of overhead per packet which may be unacceptable in
constrained networks. By reusing parts of the CoAP header, a MAC could be added without expanding
the packet's size. SMACK requires limited memory for replay protection, only using one bit per
packet in a session. As aresult, a session size of 127 requires 16 bytes for replay protection. Another
benefit of SMACK isthat it provides end-to-end security in contrast to layer 2 security solutions, such
as |[EEE 802.15.4. Although there are also drawbacks to this method, as it is not able to protect lower
layer headers.

SMACK requires more energy compared to vanilla CoAP. This is not entirely surprising as
additional calculations, in the form of the MAC calculation, are added as compared to vanilla CoAP.
An interesting factor is how SMACK compares in resource use to other alternatives. As mentioned in
Section 2.10 a paper found DTLS to be unsuitable for constrained devices due to its high resource use.
However, in reality DTLS is currently used for securing communication on constrained devices and it
is the recommended option for adding security to CoAP. Many other solutions such as SRTP are more
costly when it comes to calculations required. For instance SRTP requires one HMAC calculation for
each packet while SMACK only requires one every 16™ packet (per default). SMACK performs a full
HMAC calculation for every 16™ packet and instead does the more lightweight Galois calculation of
the MAC for each packet. This means that the processing induced by HMAC calculations will be
significantly less in the case of SMACK, thereby saving some computational resources which can
trandlate into saving power.

Another result of using SMACK isthat it enables a device to identify unsolicited traffic that is not
properly authenticated. This gives the option of rejecting this traffic and possibly saving resources. In
more advanced attacks where computationally expensive operations can be triggered on a host the
protection SMACK affords can be useful even though it adds some computations as compared to
vanilla CoAP. Further development of SMACK and possibly utilizing hardware encryption engines
can reduce the power consumed in this authentication. In addition, using SMACK and having the
ability to identify unauthenticated messages allows deploying proactive strategies. For instance, the
attacker can be blocked at an earlier hop or the listening device can instruct the radio to use a different
frequency or stop listening entirely. Compared to vanilla CoAP using SMACK means a node can
distinguish between incoming legitimate messages and spurious ones.

The main goa of implementing a version of the SMACK extension using C for the Contiki
platform was accomplished. In addition, the implementation was successfully tested both on the Cooja
simulator for various device as well as on CC2538 boards. The implementation was experimentally
evaluated on these boards and compared to the vanilla version of CoAP. Even though a Java version of
SMACK existed, a new implementation had to be written from scratch to fit into the architecture used
to implement CoAP on Contiki. C is sufficiently different from Java that a complete rewrite was
necessary. Different existing options for authentication and security on the 10T were described and
their various benefits and drawbacks were described. Some further testing in practical experiments on

40 | Conclusions and Future work

other hardware, testing with an attacker, and experimentally evaluating alternative security solutions
are interesting avenues but were considered future work.

Developing software on Contiki and adapting to the difference when writing code for constrained
devices can take some time. For instance, testing the code on actual hardware can be a laborious
procedure since the code has to be compiled and transferred to the memory of the boards. For the
CC2538 platform the procedure of compiling and transferring an application to the hardware (the test
boards) can take 5 minutes. Unfortunately, many of the development tools for theses device are
lacking in functionality and polish. As a result, the best approach is to test and develop code using a
simulator, such as Cooja. However, in some cases the specific board type being used does not exist in
Cooja, so testing will have to use a different simulated board which can cause additional problems.
However, it is important to periodically test the application on actual hardware to ensure that it
actually functions as it should. The Cooja simulator is good, but unfortunately some inconsistencies
can appear between real world performance and the simulation. Debugging support in Coogjais lacking
and problems in the code can cause it to crash.

6.2 Future work

One interesting aspect for future work is to attempt to mitigate cases when the radio is simply
overwhelmed with traffic. In these cases, it might be appropriate to simply power down the radio and
ignore al traffic for a fixed period of time. If a device believes that it is under attack, then powering
down the radio avoids using any power for receiving radio signals and parsing of messages. Using the
SMACK extension allows the node to detect some forms of DoS attacks and initiate countermeasures.
For example, a device could have a rule that when 100 packets with an invalid MAC have been
received the radio should be powered down for 1 hour. Of course, this leads to a very ssmple denial of
service attack, where the attacker simply sends many invalid packets to cause the device to power
down its radio for an hour — thus preventing the device from carrying out its actual purpose for
legitimate users. Alternatively, a device could stop listening to a specific frequency, network interface,
or transmitter. However, in practice the number of frequencies that the device can operate in is limited
and the attacker can utilize another address to continue the attack.

Of course, the rule for when to power down or stop listening to a malicious transmitter needs to be
carefully thought out and a study would need to be done to find an appropriate rule. Since powering
down the radio means that no messages will be received and the device will be non-functional for a
period of time, this has to be weighed against the potential benefits of doing so. For an individua
sensor node powering down the radio conserves battery power (and thereby enables the continued
operation of the node at some future time) which may be better than succumbing to an attack and
permanently stop functioning. Future research should address the many complex tradeoffs that exist.
How to prioritize degrees of functionality versus operating lifetime remains an open question.

Another area to investigate is to evauate different scenarios with an attacker in the network.
Ensuring that legitimate clients can access a service while it is under attack is important. Research
should examine how this can be ensured and to what extent SMACK provides this capability. The tests
done as part of this thesis project only show SMACK functioning with a basic client server setup
without an adversary. Adversaries can employ different tactics to discover which methods of attack are
the most effective at bypassing SMACK's protection. Ideally, SMACK could be adapted to provide
better protection and countermeasures against the most successful attack strategies. Evaluating
SMACK against rea attacks and strategies is important for SMACK to become a more robust and
reliable mechanism. Advanced attacks employing modified replayed packets or other techniques
should be tested and evaluated against SMACK.

It would also be interesting to run SMACK on additional or more highly constrained devices than
those described in Section 4.1. One benefit of SMACK isthat it is arelatively simple system hence it
does not require much processing power or memory to operate. This is an advantage compared to
other solutions and it would be interesting to investigate if and when SMACK would have arole, i.e.,
in which settings other solutions simply cannot be implemented due to the resource constraints of the
platform. Implementation details such as how to best use SMACK together with a KDC and how to

Conclusions and Future work | 41

best deal with changing keys after 65 536 messages (when the MID loops back to 0) should also be
considered deeper.

A future effort should take advantage of any AES-128/256 or SHA2 Hardware Encryption Engine
that the device supports as part of the SMACK implementation. As per Section 2.6.2, it would be
interesting to exploit IEEE 802.15.4 encryption and authentication in order to reduce the power
consumption at the non-gateway wireless nodes. As noted previously this would break the end-to-end
security, but might reduce both bandwidth requirements and power consumption of the constrained
nodes. Also putting the authentication; related calculations and power drain on a gateway node can
save the internal nodes the burden of performing this functionality. This can be especially beneficia
when the gateway node is more powerful than the rest of the nodes in the network or if it already
operates as a sink node in a sensor network.

6.3 Required reflections

The growth of sensor based systems and constrained devices has been large during the last severa
years and thistrend is predicted to continue in the coming years [3]. Because of this, the attack surface
of sensor based systems and constrained devices will also grow and hackers and malicious individuals
will target these devices. Compounding this problem is that security solutions for constrained devices
are not as mature as they are for conventional devices and the Internet as a whole. Attacks against
sensor systems and other similar device are a potential threat that needs to be taken serioudly.
Manipulation or damaging such systems can have serious consequences, especialy for industrial,
medical, and safety applications. Both monitoring and control systems are increasingly automated and
in many cases these applications are deployed using constrained devices.

From an environmental point of view, reducing power consumption is beneficial. Many types of
batteries contain harmful chemicals and damage the environment, hence many governmental
organizations including the European Union (EU) have created regulations concerning them [71]. If
the number of batteries used can be reduced this is beneficia to the environment. Preventing battery
exhaustion attacks caused intentionally by attackers or misconfigured devices can potentialy reduce
the number of batteries that will be used. Sensor nodes are frequently used to monitor the environment,
for example measuring pollution near a road. Improving the performance, reliability, and protecting
these nodes against remote tampering with the sensor platform can help provide better and longer term
environmental studies.

Reducing waste is also beneficial from an economical point of view. Preventing attacks and
damage to sensor nodes and other constrained devices is highly desirable since repairs and
maintenance to such a device is generally costly. Furthermore, incorrect sensor data can damage
equipment or produce incorrect results leading either to a need for replacing equipment or in some
cases a need to redo experiments. There are also possible liability issues where companies that do not
provide the maximum security possible to their customers can be held responsible for any damage
caused by negligent security systems. The public relations impact on a company from having one of
their systems attacked can cause financial repercussions and loss of trust.

From an ethical point of view, adding protection and authentication to network traffic is beneficial
for al involved parties. This is especialy true today as these issues are frequently discussed in the
news; hence protecting systems is often a high priority for companies and knowledgeable individuals.
If asimple modification can be done to reduce the impact of attacks or prevent certain types of attacks,
then there are many who feel that this modification should be adopted. Today it is increasingly
common to see individuals attacking systems for either political or ideological reasons. Some of these
attackers may feel they are acting completely ethically. Today there are even states who attack the
infrastructures of others via hacking and other means. This has recently fostered discussion on the
ethics of cyberwarfare.

An important goal of SMACK is to provide partial protection for sensor systems from many of
these issues. In particular, battery exhaustion attacks by premeditated attackers, ill-configured
networks, or excessive traffic from some nodes should be possible to mitigate by using the SMACK
extension of CoAP. By implementing SMACK the systems should become more robust and less

42 | Conclusions and Future work

vulnerable to certain types of attacks. The current incarnation of SMACK does not meet all these goals
but further development can improve the protocol and aim to alleviate some or all of these problems.
SMACK is aso backwards compatible with existing implementations of CoAP, as it works within the
limits of the protocol specification. This thesis can contribute to the research area of security in the loT
which is a contemporary and continuously evolving one. In fact, CoAP only recently went through the
final steps of standardization and was released as RFC7252 during June 2014 [5].

References | 43

References

[1]

[2]

(3]

[4]

(5]

(6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

‘About SICS Swedish ICT’, About SICS | SICS. [Onling]. Available: https://www.si cs.se/about-
sics. [Accessed: 02-Mar-2014]

K. Ashton, ‘That “Internet of Things” Thing’, RFID Journal, New Y ork, NY, 22-Jun-2009
[Onling]. Available: http://www.rfidjournal.com/articles/view?4986. [Accessed: 02-Mar-2014]
ABI Research, ‘More Than 30 Billion Devices Will Wirelessly Connect to the Internet of
Everything in 2020°, ABI Research press release, London, United Kingdom, 09-May-2013
[Onling]. Available: https://www.abiresearch.com/press/more-than-30-billion-devices-will-
wirelessly-conne. [Accessed: 02-Mar-2014]

Qijun Gu and Peng Liu, ‘Denia of Service Attacks', Handbook of Computer Networks:
Distributed Networks, Network Planning, Control, Management, and New Trends and
Applications, vol. 3, Jun. 2007 [Online]. DOI: 10.1002/9781118256107.ch29

Z. Shelby, K. Hartke, and C. Bormann, ‘ The Constrained Application Protocol (CoAP)’, Internet
Request for Comments, vol. RFC 7252 (Proposed Standard), Jun. 2014 [Onling]. Available:
http://www.rfc-editor.org/rfc/rfc7252.txt

|EEE Computer Society, ‘Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS)', Institute of
Electrical and Electronics Engineers, New York, NY, |[EEE Standard 0-7381-4997-7, Sep. 2006
[Onling]. Available: https://standards.ieee.org/getieee802/downl 0ad/802.15.4-2011. pdf

‘Contiki Hardware', Contiki Hardware. [Onling]. Available: http://www.contiki-
os.org/hardware.html. [Accessed: 02-Mar-2014]

M. Stemm and R. H. Katz, ‘Measuring and Reducing Energy Consumption of Network
Interfaces in Hand-Held Devices', IEICE Transactions on Communication, vol. ES80-B, no. 8,
pp. 1125-1131, Aug. 1997 [Onling]. Available:

http://www.cs.colorado.edu/~rhan/CSCI_7143 _002_Fall_2001/Papers/Stemm97_EnergyConsu
mptionNetworkInterface. pdf

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong, ‘ TAG: aTiny
AGregation Service for Ad-Hoc Sensor Networks', in 5th Annual Symposium on Operating
Systems Design and Implementation (OSDI), Boston, Massachusetts, USA, 2012 [Onling].
Available: http://db.Ics.mit.edu/madden/html/madden_tag.pdf

‘Texas Instruments - CC2538dk - CC2538, Zighee/802.15.4, Dev Kit', CC2538dk - Texas
Instruments - CC2538, Zigbee/802.15.4, Dev Kit | Farnell Sverige. [Online]. Available:
http://se.farnell.com/texas-instruments/cc2538dk/cc2538-zi gbee-802- 15-4-dev-kit/dp/2356505.
[Accessed: 02-Mar-2014]

‘Tmote Sky - Ultralow power |EEE 802.15.4 compliant wireless sensor module’ . Moteiv
Corporation, 02-Jun-2006 [Online]. Available:
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet. pdf

Z. Shelby, Sensinode, K. Hartke, and C. Bormann, ‘ Constrained Application Protocol (CoAP)’,
Internet Draft, vol. draft-ietf-core-coap-18, p. 25, Jun. 2013 [Onling]. Available:

https://tool s.ietf.org/html/draft-ietf-core-coap-18. [Accessed: 02-Mar-2014]

Matthias Kovatsch, ‘Matthias Kovatsch’, Matthias Kovatsch, 08-May-2014. [Online].
Available: http://people.inf.ethz.ch/mkovatsc/. [Accessed: 02-Mar-2014]

M. Kovatsch, ‘ GitHub Repositories’. 2014 [Onling]. Available:
http://github.com/mkovatsc?tab=repositories

R. Fielding, ‘ Architectural Styles and the Design of Network-based Software Architectures’,
Doctoral dissertation, University of California, Irvine, 2000 [Online]. Available:
https://www.ics.uci.edu/~fiel ding/pubs/dissertation/top.htm. [Accessed: 02-Mar-2014]

N. Mitraand Y. Lafon, * SOAP Version 1.2 Part O0: Primer (Second Edition)’, W3C
Recommendation, Apr. 2007 [Online]. Available: http://www.w3.0rg/ TR/soapl2-part0/#L 1153
A. Yeginand Z. Shelby, ‘ CoAP Security Options, Internet Draft, vol. draft-yegin-coap-security-
options-00, Oct. 2011 [Onling]. Available: https://tools.ietf.org/html/draft-yegin-coap-security-
options-00

44 | Appendix A. Detailed results

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Whiting, R. Housley, and N. Ferguson, ‘ Counter with CBC-MAC (CCM)’, Internet Request

for Comments, vol. RFC 3610 (Informational), Sep. 2003 [Online]. Available: http://www.rfc-

editor.org/rfc/rfc3610.txt

M. Dworkin, * Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality’, Nationa Institute of Standards and Technology,
Gaithersburg, MD, NIST Special Publication 800-38C, May 2004 [Online]. Available;
http://csrc.nist.gov/publicationg/ni stpubs/800-38C/SP800-38C_updated-July20 2007.pdf

J. Granja, E. Monteiro, and J. S. Silva, ‘ Application-Layer Security for the WoT: Extending
CoAP to Support End-to-End Message Security for Internet-1ntegrated Sensing Applications’, in
Wired/Wireless Internet Communication, Vol. 7889, V. Tsaoussidis, A. J. Kassler, Y.
Koucheryavy, and A. Mellouk, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
140-153 [Online]. Available: http://link.springer.com/10.1007/978-3-642-38401-1_11.
[Accessed: 04-Mar-2014]

M. Kovatsch, ‘ Californium (Cf) CoAP framework in Java, Californium (Cf) CoAP framework -
Java CoAP Implementation, 05-Feb-2014. [Onling]. Available:
http://people.inf.ethz.ch/mkovatsc/californium.php. [Accessed: 02-Mar-2014]

‘ETSI CTI Plugtests Guide First Draft V0.0.15", Sophia Antipolis, France, Mar. 2012 [Onling].
Available: http://www.etsi.org/plugtests CoAP/Document/CoAP_TestDescriptions_v015.pdf.
[Accessed: 02-Mar-2014]

D. Pauli and D. Im Obersteg, ‘ Californium’, Lab Project, Swiss Federal Institute of Technology
Zurich, Zurich, 2011 [Online]. Available:

http://peopl e.inf.ethz.ch/mkovatsc/resources/californium/cf-thesis.pdf

Dennis Morse, Roland McGrath, and Mike Frysinger, ‘ make - GNU make utility to maintain
groups of programs’, UNIX man pages : make (), 22-Aug-1989. [Onling]. Available:
http://unixhel p.ed.ac.uk/CGIl/man-cgi?make. [Accessed: 02-Mar-2014]

Apache Maven Project, ‘ Introduction to the POM’, Maven - Introduction to the POM, 21-May-
2014. [Onling]. Available: http://maven.apache.org/guides/introduction/introduction-to-the-
pom.html. [Accessed: 02-Mar-2014]

Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O’ Flynn, Blake Leverett, Eric
Gnoske, Michael Vidales, Geoff Mulligan, Nicolas Tsiftes, Niclas Finne, and Adam Dunkels,
‘Making Sensor Networks IPv6 Ready’, in Proceedings of the 6th ACM conference on
Embedded network sensor systems, Raleigh, NC, USA, 2008, pp. 421-422 [Online]. DOI:
10.1145/1460412.1460483

A. Dunkels, O. Schmidt, T. Voigt, and A. Muneeb, ‘ Protothreads: Simplifying event-driven
programming of memory constrained embedded systems', in Proceedings of the Fourth ACM
Conference on Embedded Networked Sensor Systems, Boulder, Colorado, USA, 2006 [Onling].
Available: http://dunkels.com/adam/dunkel sO6protothreads.ppt. [Accessed: 02-Mar-2014]

A. Dunkels, ‘ Contiki: Bringing IP to Sensor Networks', ERCIM News, no. 76, pp. 59-60, Jan-
2009 [Online]. Available: http://ercim-news.ercim.eu/images/stories) EN76/EN76-web. pdf

M. Kovatsch, S. Duguennoy, and A. Dunkels, ‘A Low-Power CoAP for Contiki’, in Proceedings
of the 2011 IEEFE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS ’11), 2011, pp. 855 —860 [Online]. DOI: 10.1109/MASS.2011.100

‘Get Started with Contiki’, Get Started with Contiki, Instant Contiki and Cooja. [Onling].
Available: http://mww.contiki-os.org/start#simulation. [Accessed: 02-Mar-2014]

Z. Shelby, 6LoWPAN: the wireless embedded internet. Chichester, U.K: J. Wiley, 2009.

J. Hui and P. Thubert, * Compression Format for |Pv6 Datagrams over |EEE 802.15.4-Based
Networks', Internet Request for Comments, vol. RFC 6282 (Proposed Standard), pp. 10-11, Sep.
2011 [Online]. Available: http://www.rfc-editor.org/rfc/rfc6282.txt

S. Raza, D. Trabalza, and T. Voigt, ‘6LoOWPAN Compressed DTLS for CoAF’, presented at the
|EEE 8th International Conference on Distributed Computing in Sensor Systems (DCOSS),
2012, 2012, pp. 287-289 [Online]. DOI: 10.1109/DCOSS.2012.55

N. Sastry and D. Wagner, * Security Considerations for IEEE 802.15.4 Networks', in WiSe "04
Proceedings of the 3rd ACM workshop on Wireless security, Philadel phia, Pennsylvania, 2004
[Onling]. DOI: 10.1145/1023646.1023654

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Appendix A. Detailed results | 45

Z. Shelby and C. Bormann, ‘Layer 3 mechanisms', in 6LoWPAN: The Wireless Embedded
Internet, 1st ed., Chichester, U.K: J. Wiley, 2009, p. 87 [Onling]. Available:

http://el ektro.upi.edu/pustaka.el ektro/Wirel ess¥%20Sensor%20N etwork/6L oWPAN.. pdf

S. Kent and R. Atkinson, ‘ Security Architecture for the Internet Protocol’, Internet Request for
Comments, vol. RFC 2401 (Proposed Standard), Nov. 1998 [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2401.txt

S. Kent and K. Seo, ‘ Security Architecture for the Internet Protocol’, Internet Request for
Comments, vol. RFC 4301 (Proposed Standard), p. 85, Dec. 2005 [Onling]. Available:
http://www.rfc-editor.org/rfc/rfc4301.txt

John loannidis and Matt Blaze, ‘ Architecture and Implementation of Network-layer Security
Under Unix’, in Proceedings of USENIX Security Symposium, Santa Clara, California, USA,
1993.

P. Lambert, ‘ Minutes of the Internet Protocol Security Protocol Working Group (IPSEC)’,
Toronto, Canada, Meeting report, Jul. 1994 [Online]. Available: ftp://ftp.ietf.org/ietf-online-
proceedings/94j ul/area.and.wg.reports/sec/i psec/ipsec-minutes-94jul .txt. [Accessed: 02-Jun-
2014]

Sheila Frankel, Karen Kent, Ryan Lewkowski, Angela D. Orebaugh, Ronald W. Ritchey, and
Steven R. Sharma, * Guide to |Psec VPNs - Recommendations of the National Institute of
Standards and Technology’, U.S. Department of Commerce, Gaithersburg, MD, NIST Special
Publication 800-77, Dec. 2005 [Online]. Available:

http://csrc.nist.gov/publicationsg/ni stpubs/800-77/sp800-77. pdf

E. Jankiewicz, J. Loughney, and T. Narten, ‘IPv6 Node Requirements', Internet Request for
Comments, vol. RFC 6434 (Informational), p. 18, Dec. 2011 [Onling]. Available: http://mww.rfc-
editor.org/rfc/rfc6434.txt

Christos Xenakis, Nikolaos Laoutaris, Lazaros Marakos, and |oannis Stavrakakis, ‘A generic
characterization of the overheads imposed by |Psec and associated cryptographic algorithms’,
University of Athens, Athens, 50, May 2005 [Online]. Available:
http://www.cse.msstate.edu/~ramkumar/ipsec_overheads.pdf

S. Park, W. Haddad, S. Chakrabarti, J. Laganier, and K. Kim, ‘IPv6 over Low Power WPAN
Security Analysis', Internet Draft, vol. draft-daniel-6lowpan-security-analysis-05, p. 16, Mar.
2011 [Online]. Available: http://www.potaroo.net/ietf/all-ids/draft-daniel -6l owpan-security-
analysis-05.txt. [Accessed: 02-Mar-2014]

M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, ‘ The Secure Real-time
Transport Protocol (SRTP)', Internet Request for Comments, vol. RFC 3711 (Proposed
Standard), Mar. 2004 [Onling]. Available: http://www.rfc-editor.org/rfc/rfc3711.txt

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, ‘RTP: A Transport Protocol for Real-
Time Applications', Internet Request for Comments, vol. RFC 1889 (Proposed Standard), Jan.
1996 [Online]. Available: http://www.rfc-editor.org/rfc/rfc1889.txt

H. Krawczyk, M. Bellare, and R. Canetti, ‘HMAC: Keyed-Hashing for Message Authentication’,
Internet Request for Comments, vol. RFC 2104 (Informational), Feb. 1997 [Onling]. Available:
http://www.rfc-editor.org/rfc/rfc2104.txt. [Accessed: 07-May-2014]

S. Garg, N. Singh, and T. Tsai, ‘ Short Paper: Schemes for Enhancing the Denial-of-Service
Tolerance of SRTFP, in First International Conference on, Athens, Greece, 2005, pp. 409 — 411
[Onling]. DOI: 10.1109/SECURECOMM .2005.48

J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman, ‘MIKEY : Multimedia Internet
KEYing', Internet Request for Comments, vol. RFC 3830 (Proposed Standard), Aug. 2004
[Onling]. Available: http://mwww.rfc-editor.org/rfc/rfc3830.txt

J. Arkko, F. Lindholm, M. Naslund, K. Norrman, and E. Carrara, ‘ Key Management Extensions
for Session Description Protocol (SDP) and Real Time Streaming Protocol (RTSP)’, Internet
Request for Comments, vol. RFC 4567 (Proposed Standard), Jul. 2006 [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4567.txt

T. Dierksand E. Rescorla, ‘ The Transport Layer Security (TLS) Protocol Version 1.2°, Internet
Request for Comments, vol. RFC 5246 (Proposed Standard), p. 14, Aug. 2008 [Onlin€].
Available: http://www.rfc-editor.org/rfc/rfc5246.txt. [Accessed: 02-May-2014]

46 | Appendix A. Detailed results

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

E. Rescorlaand N. Modadugu, ‘ Datagram Transport Layer Security’, Internet Request for

Comments, vol. RFC 4347 (Proposed Standard), Apr. 2006 [Online]. Available: http://www.rfc-

editor.org/rfc/rfc4347.txt

E. Rescorlaand N. Modadugu, ‘ Datagram Transport Layer Security Version 1.2', Internet

Request for Comments, vol. RFC 6347 (Proposed Standard), Jan. 2012 [Online]. Available:

http://www.rfc-editor.org/rfc/rfc6347.txt. [Accessed: 02-Mar-2014]

F. Chunyan, ‘TCP/UDP Basics', Canada[Onling]. Available:

http://users.encs.concordia.ca/~glitho/FO9_TCP_UDP.pdf

Bhargavan, Karthikeyan and Fournet, Cedric and Kohlweiss, Markulf and Pironti, Alfredo and

Strub, and Pierre-Yves, ‘Implementing TLS with Verified Cryptographic Security’, presented at

the 2013 |EEE Symposium on Security and Privacy (SP), Berkeley, CA, USA, 2013, pp. 445—

459 [Onling]. DOI: 10.1109/SP.2013.37

Stefan Jucker, * Securing the Constrained Application Protocol’, Master’s Thesis, ETH Zurich,

Zurich, 2012 [Online]. Available: http://people.inf.ethz.ch/mkovatsc/resources/californium/cf-

dtls-thesis.pdf

S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, ‘Lithe: Lightweight Secure CoAP

for the Internet of Things', IEEE Sensors Journal, vol. 13, no. 10, pp. 3711-3720, Oct. 2013

[Onling]. DOI: 10.1109/JSEN.2013.2277656

T. Heer, O. GarciaMorchon, R. Hummen, S. L. Keoh, S. S. Kumar, and K. Wehrle, ‘ Security

Challengesin the IP-based Internet of Things', Wireless Personal Communications, vol. 61, no.

3, pp. 527-542, Sep. 2011 [Onling]. DOI: 10.1007/s11277-011-0385-5

T. Marco, ‘ Talk by Marco Tiloca', Amsterdam, CWI, Room L017, 13-Dec-2013 [Onling].

Avalilable: http://projects.cwi.nl/crypto/risc.html. [Accessed: 02-Mar-2014]

Cetin KayaKoc, ‘Message Authentication’, University of California Santa Barbara [Onling].

Available: http://cs.ucsb.edu/~koc/ccs130h/notes/mac?. pdf

M. Bellare, R. Canetti, and H. Krawczyk, ‘ Pseudorandom Functions Revisited: The Cascade

Construction and its Concrete Security’, p. 3, Oct. 2005 [Onling]. Available:

http://cseweb.ucsd.edu/~mihir/papers/cascade.pdf

Xiaoyun Wang and Hongbo Y u, ‘How to Break MD5 and Other Hash Functions', in

EUROCRYPT 2005, Aarhus, Denmark, 2005 [Onling]. DOI: 10.1007/11426639_2

M. Bellare, R. Canetti, and H. Krawczyk, ‘ Keying Hash Functions for Message Authentication’,

in Crypto 96 Proceedings, Santa Barbara, California, USA, 1996 [Online]. Available:

http://cseweb.ucsd.edu/~mi hir/papers/kmd>s. pdf

Jorge CadtifieiraMoreiraand Patrick Guy Farrell, ‘ Appendix B: Galois Fields GF(q)’, in

Essentials of Error-Control Coding, 1st ed., Wiley, 2006 [Onling]. Available:

http://onlinelibrary.wiley.com/doi/10.1002/9780470035726.app2/pdf

J. Torres-Jimenez, N. Rangel-Valdez, A. L. Gonzalez-Hernandez, and H. Avila-George,

‘Construction of logarithm tables for Galois Fields', International Journal of Mathematical

Education in Science and Technology, vol. 42, no. 1, pp. 91-102, Feb. 2010 [Online]. DOI:

10.1080/0020739X.2010.510215

James S. Plank, ‘Fast Galois Field Arithmetic Library in C/C++'. [Online]. Available:

http://web.eecs.utk.edu/~plank/plank/papers/CS-07-593/

S. Mdlladi, J. Alves-Foss, and R. B. Heckendorn, ‘ On Preventing Replay Attacks on Security

Protocols', University of Idaho, Moscow, ID, USA [Onling]. Available:

http://www.researchgate.net/publication/2837470_On_Preventing_Replay Attacks _on_Security
Protocols

‘CC2538 - A Powerful System-On-Chip for 2.4-GHz |EEE 802.15.4, 6LoWPAN and ZigBee

Applications'. Texas Instruments, Dec-2012 [Online]. Available:

http://www.ti.com/lit/gpn/cc2538

Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He, * Software-based On-line

Energy Estimation for Sensor Nodes', Swedish Institute of Computer Science [Onling].

Available: http://dunkel s.com/adam/dunkel SO7softwarebased. pdf

Zolertia, ‘Z1 Low-Power WSN Platform’. Zolertia[Onling]. Available:

http://zolertia.com/sites/defaul t/files/Zolertia-Z1-Brochure.pdf

[70]

[71]

Appendix A. Detailed results | 47

Arago Systems, ‘WiSMote - |Pv6 platform for Wireless Sensor Networks R& D’. Arago Systems
[Onling]. Available:

http://www.aragosystems.com/images/stories/Wi SM ote/Doc/wismote_en.pdf

European Parliament and Council of the European Union, ‘ Directive 2006/66/EC of the
European Parliament and of the Council on batteries and accumulators and waste batteries and
accumulators and repealing Directive 91/157/EEC’, OJ, vol. 49, no. L266, Sep. 2006 [Onling].
Available: http://eur-lex.europa.eu/legal -

content/EN/TXT/PDF/?2uri=CEL EX:32006L 0066& from=EN

Appendix A.

Appendix table A-1:

Detailed results

Appendix A.

SMACK full request 1st transaction (A)

Detailed results | 49

Test CPU (ticks) LISTEN (ticks) Client time(ms) | Energy (1J)
1 129 129 45.372320 318.8782
2 127 127 46.492054 313.9343
3 128 129 48.488310 318.2373
4 128 129 49.536816 318.2373
5 128 127 49.640880 314.5752
6 128 128 39.126153 316.4063
7 128 127 40.549250 314.5752
8 128 129 39.731519 318.2373
9 127 127 38.662179 313.9343
10 129 128 39.701068 317.0471
11 128 129 47.206422 318.2373
12 128 128 42.439143 316.4063
13 128 128 46.964981 316.4063
14 127 126 38.568382 312.1033
15 128 128 39.001957 316.4063
16 128 128 46.730383 316.4063
17 127 126 39.952008 312.1033
18 129 128 49.396929 317.0471
19 129 129 39.375747 318.8782
20 128 128 39.457462 316.4063

50 | Appendix A. Detailed results

Appendix table A-2:

SMACK MAC check 1st transaction (B)

Test CPU (ticks) LISTEN (ticks) Client time(ms) | Energy (1J)
1 128 127 39.695271 314.5752
2 126 126 49.269812 311.4624
3 125 125 39.142058 308.9905
4 127 128 45.892009 315.7654
5 126 126 38.773785 311.4624
6 127 127 48.853489 313.9343
7 127 127 39.299551 313.9343
8 126 126 41.948121 311.4624
9 127 127 46.099647 313.9343
10 127 127 46.726752 313.9343
11 127 126 46.520161 312.1033
12 127 128 47.393846 315.7654
13 127 127 39.419678 313.9343
14 126 126 48.452041 311.4624
15 127 126 42934851 312.1033
16 128 127 45.814485 314.5752
17 127 127 46.373495 313.9343
18 127 127 46.284932 313.9343
19 126 127 49.778397 313.2935
20 126 125 46.282492 309.6313

Appendix table A-3:

Appendix A.

SMACK full request steady-state (C)

Detailed results | 51

Test CPU (ticks) LISTEN (ticks) Client time(ms) | Energy (1J)
1 19 19 28.461930 46.96655
2 20 20 29.093210 49.43848
3 22 21 28.795830 52.55127
4 19 19 30.494241 46.96655
5 20 20 29.145955 49.43848
6 19 19 31.139220 46.96655
7 20 20 31.239230 49.43848
8 20 20 28.949352 49.43848
9 20 20 29.215587 49.43848
10 21 20 30.112565 50.07935
11 19 19 31.168349 46.96655
12 20 20 30.184146 49.43848
13 19 19 28.414438 46.96655
14 20 20 28.792418 49.43848
15 21 20 29.173403 50.07935
16 20 20 29.888857 49.43848
17 20 21 28.479949 51.26953
18 20 20 29.251555 49.43848
19 19 19 28.494056 46.96655
20 21 20 28.895504 50.07935

52 | Appendix A. Detailed results

Appendix table A-4:

SMACK MAC check steady-state (D)

Test CPU (ticks) LISTEN (ticks) Client time(ms) | Energy (1J)
1 19 18 28.257435 45.1355
2 18 18 28.502297 44.49463
3 19 19 28.854716 46.96655
4 18 18 28.591555 44.49463
5 19 19 28.923440 46.96655
6 18 18 28.547190 44.49463
7 19 19 29.066824 46.96655
8 18 18 28.937430 44.49463
9 19 19 28.423447 46.96655
10 20 20 30.988996 49.43848
11 18 19 29.780253 46.32568
12 18 17 29.230812 42.66357
13 19 19 29.207136 46.96655
14 19 19 29.084704 46.96655
15 19 19 28.813161 46.96655
16 18 18 28.255129 44.49463
17 17 17 29.122000 42.02271
18 18 19 28.912475 46.32568
19 19 19 29.922730 46.96655
20 18 18 28.912965 44.49463

Appendix A. Detailed results | 53

Appendix table A-5: Vanilla CoAP full request 1st transaction (E)

Test CPU (ticks) LISTEN (ticks) Client time(ms) | Energy (1J)
1 2 2 35.326839 4.943848
2 2 2 42.886738 4.943848
3 3 3 42.447995 7.415771
4 2 2 42448066 4.943848
5 2 2 42.941914 4.943848
6 2 2 42.008624 4.943848
7 2 3 34.963874 6.774902
8 3 2 41.038543 5.584717
9 2 2 42.107729 4.943848
10 2 2 40.472046 4.943848
11 2 2 42.123713 4.943848
12 2 2 42.134863 4.943848
13 2 3 42.430535 6.774902
14 2 2 34.890959 4.943848
15 3 3 41.660256 7.415771
16 2 2 40.886314 4.943848
17 2 2 35.690293 4.943848
18 3 2 34.809036 5.584717
19 2 2 42.265361 4.943848
20 2 2 42632726 4.943848

54 | Appendix A. Detailed results

Appendix table A-6:

Vanilla CoAP full request steady-state (F)

Test CPU (ticks) LISTEN (ticks) Client time(ms) | Energy (1J)
1 2 3 27.997135 6.774902
2 3 2 28.012500 5.584717
3 3 3 28.524019 7.415771
4 3 3 28.951866 7.415771
5 2 2 29.291832 4.943848
6 2 2 28.062786 4.943848
7 2 3 27.743472 6.774902
8 3 3 28.428942 7.415771
9 2 2 27.472838 4.943848
10 2 2 27.777485 4.943848
11 3 2 28.189758 5.584717
12 3 2 29.953782 5.584717
13 2 3 28.350951 6.774902
14 2 2 28.246679 4.943848
15 2 2 27.930228 4.943848
16 3 2 28.328602 5.584717
17 2 2 28.708958 4.943848
18 2 2 27.692907 4.943848
19 2 2 28.324412 4.943848
20 2 2 29.894514 4.943848

TRITA-ICT-EX-2014:136

