
Inter-Vehicle Communication
with Platooning

JOAKIM SANDBERG

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, FIRST LEVEL
STOCKHOLM, SWEDEN 2014

Inter-Vehicle Communication with
Platooning

Joakim Sandberg

2014-07-08

Bachelor’s Thesis

Examiner & Academic adviser
prof. Gerald Q. Maguire Jr.

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

Abstract | i

i

Abstract

Today’s way of driving works very well, but there can be substantial improvements made in the road
systems and in the vehicles themselves. Many of the disadvantages of current road systems and
vehicles can be removed in the future by using appropriate information and communication
technology.

A disadvantage that has been considered to be a major problem for many years is the fossil fuel-
consumption of vehicles. Hybrid-cars and all-electric cars are being developed to reduce the use of
fossil-based fuels. Since it could take a long time for these new types of vehicles to replace vehicles
currently using internal combustion engines, development must also seek to improve current vehicles.
Fuel-savings and safety are two major aspects that researchers and vehicle manufacturers are trying to
address.

One approach that provides fuel-savings is driving in a convoy. Both Scania and Volvo are
currently developing this approach. They aim to achieve the same goal, but in two different ways -
since they do not build upon the exact same concepts. Scania is a major manufacturer of trucks and
buses, while Volvo is a major manufacturer of trucks, buses, and cars. Both are seeking to improve the
fuel-savings for trucks and busses, but Volvo is also seeking to improve fuel-savings for cars.

Unfortunately, with every solution are new problems. Convoy driving brings advantages, but
appropriate communication between the vehicles of the convoy and those seeking to join a convoy is
necessary for this approach to work well. This is particularly challenging as these vehicles are in
moving while communicating. For this reason, the communication needs to utilize wireless links.

This thesis shows in more detail how the inter-vehicle communication works using Wi-Fi and why
this is a good media to use when driving a convoy. The testing of Wi-Fi between two driving vehicles
and in implementation of two model vehicles shows another perspective of Wi-Fi than today’s use of it.

Keywords

IT-system, fuel savings, convoy, Scania, Volvo, wireless communication, Wi-Fi, model vehicles.

Sammanfattning | iii

iii

Sammanfattning

Dagens sätt att köra i samhället fungerar väldigt bra men det finns naturligtvis massor av nackdelar
med olika vägsystem och fordonen själva. Dessa nackdelar kan i framtiden försvinna med utvecklingen
av IT-systemen.

En stor nackdel som setts som ett problem sen flera år tillbaka är bränsleförbrukningen hos
fordonen. Det finns hybridbilar och t.o.m. elbilar vilka utvecklas i syfte att spara på jordens bränsle
resurser. Men eftersom det antagligen kommer ta flera tiotals år innan dessa fordon kommer ersätta
dagens fordon med bränslemotorer så måste utvecklingen också gå i två vägar, nämligen att förbättra
dagens bränsledrivna fordon. Bränsleförbrukning och säkerhet är de två främsta aspekterna vid denna
typ av utveckling.

Ett system som faktiskt förbättrar bränslebesparing är att köra på led som en konvoj. Detta
körsystem utvecklas just nu av två större företag, Scania och Volvo. De siktar mot samma mål men har
två olika tillvägagångssätt då de inte är i grunden exakt likadana företag. Scania bygger lastbilar och
bussar medan Volvo förutom dessa fordon även bygger bilar. Detta ger Volvo en chans att även
förbättra bilkörandet.

Men med varje lösning kommer det nya problem. Detta sätt att köra ger givetvis fördelar men man
oroar sig ändå för kommunikationen som behövs för detta system. Detta är inte enheter som står stilla
på exempelvis ett kontor eller flygplats, utan det är enheter som rör sig ständigt, vilket betyder att
kommunikationen måste vara trådlös.

Denna rapport går in mer i detalj hur den externa kommunikationen mellan fordon fungerar med
Wi-Fi och varför det är ett bra protokoll att använda i konvojer. Testerna med Wi-Fi körandes i två
bilar och även i två små modellbilar ger Wi-Fi ett annat perspektiv än dagens användning.

Nyckelord

IT-system, Minskad bränsleförbrukning, Förbättrad bränslebesparing, Konvoj, Scania, Volvo, Trådlös
kommunikation, Wi-Fi, modellbilar.

Table of contents | 5

v

Table of contents

Abstract ... i
Keywords .. i

Sammanfattning ... iii
Nyckelord .. iii

Table of contents ... v
List of Figures .. vii
List of Tables .. ix
List of acronyms and abbreviations xi
1 Introduction .. 1

1.1 General introduction to the area ... 1
1.2 Problem definition ... 2

1.2.1 Problem ... 2
1.2.2 Reliability ... 3
1.2.3 Inter-Vehicle Communication .. 3
1.2.4 Environmental issues .. 4

1.3 Goals ... 4
1.4 Problem context ... 4
1.5 Research Methodology ... 4
1.6 Structure of this thesis .. 5

2 Background .. 7
2.1 RADAR .. 7

2.1.1 DASR .. 7
2.1.2 Bosch .. 7
2.1.3 Functions ... 8
2.1.4 Audi ... 8
2.1.5 Scania ... 8
2.1.6 Volvo ... 9

2.2 Wi-Fi .. 9
2.2.1 GM .. 9
2.2.2 Ford ... 10

2.3 DSRC ... 10
2.3.1 Path history ... 10
2.3.2 Path Prediction .. 11
2.3.3 Emergency Electronic Brake Lights................................. 11
2.3.4 Blind Spot Warning.. 11
2.3.5 Lane Change Warning .. 11
2.3.6 Front Collision Warning ... 11
2.3.7 Do Not Pass Warning DNPW .. 11
2.3.8 Intersection Moving Assist ... 11

2.4 Related work... 12
3 Method .. 13

3.1 Choice of method ... 13
3.2 Goal ... 14

6 |Table of contents

3.3 Progress ... 14
3.3.1 Components .. 15
3.3.2 Implementation .. 15

3.4 Tasks ... 15
3.4.1 Successfully PING (Stationary) 16
3.4.2 Successfully PING (Mobile) ... 17
3.4.3 Send text messages (Stationary) 19
3.4.4 Send simple signals (Stationary) 19
3.4.5 Send simple signals (Mobile) .. 20
3.4.6 Handling lost connections ... 23

4 Analysis .. 25
4.1 Voltage measurements .. 25
4.2 PING tasks .. 27

4.2.1 Results from PING tasks ... 27
4.2.2 Analysis of PING results .. 31

4.3 V2V implementation in model ... 31
4.3.1 Wi-Fi communication testing ... 32
4.3.2 USDR sensor testing ... 32
4.3.3 Signals .. 32
4.3.4 Joining and leaving the convoy 37
4.3.5 Lost connection ... 38
4.3.6 Power consumption and other model specifications 39

4.4 Met goals .. 40
5 Conclusions and Future work .. 43

5.1 Conclusions ... 43
5.2 Future work .. 44
5.3 Required reflections .. 45

References .. 47
Appendix .. 51

Code listing 1.1 .. 51
Code listing 2.1 .. 53
Code listing 2.2 .. 55
Code listing 2.3 .. 57
Code listing 2.4 .. 59
Code listing 3.2 .. 65
Code listing 3.3 .. 74
Code listing 3.4 .. 80

List of Figures | vii

vii

List of Figures

Figure 1-1: Airflow with large and small inter-vehicle separation 1
Figure 1-2: Airflow along trucks .. 1
Figure 1-3: Airflow along one truck and several cars ... 2
Figure 3-1: Post-IT notes for organizing the work progress 14
Figure 3-2: Simple setup of an access point, router, and a couple of Arduinos 16
Figure 3-3: Cigarette lighter socket adapter, direct voltage, no conversion 17
Figure 3-4 Cigarette lighter socket adapter, conversion to 5V 1A 18
Figure 3-5: Setup of computers in two cars .. 18
Figure 3-6: Ultrasound distance radar sensor which can measure about 2-400

cm in a 15 degree wide operating area. [36] .. 20
Figure 3-7: Setup of front model with router R. Arduino is powered by

computer via the USB interface. ... 21
Figure 3-8: Setup of rear model with components (such as access point A and

motor M). The components are powered by three different power
sources. .. 21

Figure 3-9: Setup of simple signals test. Front model with router and servo.
Rear model with access point, servo motor, USDR sensor, and
motor. Figure 3-7 and Figure 3-8 shows the blueprints for each of
these. ... 22

Figure 4-1: Voltage measurements of the car’s cigarette lighter socket during a
short time period. ... 26

Figure 4-2: Voltage measurements of same socket but this time with a
converter. It gives a steady 12V even when the engine is on 26

Figure 4-3: Ping requests and replies between computer and router 27
Figure 4-4: Ping requests and replies between two computers via router 27
Figure 4-5: Computer connected to router sends ping requests to computer on

access point ... 28
Figure 4-6: Computer connected to access point sends ping requests to

computer on router ... 28
Figure 4-7: Arduino sends ping requests to computer via router 29
Figure 4-8: Computer sends ping requests to Arduino via router 29
Figure 4-9: Wireshark capture of a ping from a computer in the front car to

the access point in the rear car ... 30
Figure 4-10: Front model from the side. Leaning back because of the weight,

the yellow suspensions on rear wheels are almost fully retracted. 34
Figure 4-11: Rear model from the side. Leaning a bit forward due to better

weight balance so the suspensions are more extended than the
front model. .. 34

Figure 4-12: The rear axle is horizontal due to the retracted suspensions,
because of the weight. ... 35

Figure 4-13: The rear axle is not horizontal due to not fully retracted
suspension, because of better balance of the weight. 35

Figure 4-14: I/O connections of the controller ... 39
Figure 4-15: Final model controller .. 39
Figure 4-16: Began driving ... 41
Figure 4-17: After 10 seconds of driving .. 41

8 |List of Figures

Figure 4-18: After 20-25 seconds of driving. The front model at the upper left
corner and the rear model in the middle which apparently chose
its own path. ... 42

List of Tables | ix

ix

List of Tables

Table 3-1: Initial components... 15
Table 4-1: Statistics of the wired ping from computer to router 27
Table 4-2: Statistics of the wired ping from computer to computer 27
Table 4-3: Wireless PING between two computers 1st case 28
Table 4-4: Wireless PING between two computers 2nd case.................................. 28
Table 4-5: Statistics of Arduino sending ping requests to computer via router 29
Table 4-6: Wireless PING between Arduino and computer 2nd 29
Table 4-7: PING times (in milliseconds) from varying distances. The tests

with 10m and 20m have also obstacles such as walls in between 30
Table 4-8: Statistics of a ping from a computer in the front car to the access

point in the rear car .. 30
Table 4-9: Ping times when driving about 30-40 km/h on normal road with

distance about 10-15 meters between cars .. 31
Table 4-10: Ping times when driving about 50-60 km/h on normal road with

distance about 20-30 meters between cars. In the third test the
front car accelerated very fast from the rear car which resulted in
the fourth ping got lost and at time the distance was about 50 m. 31

List of acronyms and abbreviations | xi

xi

List of acronyms and abbreviations

ACC adaptive cruise control

AEBS Advanced Emergency Braking System

AIS automatic identification systems

BSW Blind Spot Warning

CAN Control Area Network

DASR Digital Airport Surveillance Radar

DNPW Do Not Pass Warning

DSRC Dedicated Short Range Communication

EEBL Emergency Electronic Brake Lights

FCW Front Collision Warning

GM General Motors

GNNS Global Navigation Satellite System

GPS Global Positioning System

IMA Intersection Moving Assist

ITS Intelligent Transportation System

LCW Lane Change Warning

LDWS Lane Departure Warning System

LED Light Emitting Diode

LIDAR LIght Detection And Ranging

LIN Local Interconnect Network

PoE Power over Ethernet

P2P Peer To Peer

SARTRE SAfe Road TRains for the Environment

STDMA Self-Organised Time Division Multiple Access

TTL Time To Live

U.S. DOT United States Department Of Transportation

USDR UltraSound Distance Radar

V2I Vehicle To Infrastructure

V2V Vehicle To Vehicle

VDL VHF Digital Link

WAVE Wireless Access in Vehicular Environments

WIFI Wireless Fidelity (i.e. Wireless Networks)

WLAN wireless local area network

1 Int

This cha
goals of t

1.1 G

This the
examina

As o
weather
concrete
while on
separatio

Toda
a more s
the amou
resistanc
airflows
traveling
two diffe

Figure 1-1

Figure 1-2

troductio

apter describ
this thesis pr

General int

esis will intro
ation of inter-

ne can notic
conditions,

e road with a
n a highway
on is normal

ay drivers are
sustainable m
unt of fuel th
ce can save f

above the v
g down betw
erent pattern

: Airflo

2: Airflo

on

es the specif
roject, and ou

troduction

oduce reade
-vehicle com

ce when drivi
type of road
a speed limi
during wint

l behaviour, a

e eager to ac
manner. Ther
hat must be
fuel. One me
vehicle in fr
een the vehic

ns of airflow.

ow with large a

ow along trucks

fic problem t
utlines the st

n to the are

rs to the gen
mmunication

ing today, the
dway, other v
t 30 km/h th
er the distan
as drivers do

chieve fuel sa
re are many
consumed t

ethod is to d
ront of you
cles and then

nd small inter-

s

that this the
tructure of th

ea

neral area o
(i.e., commu

e distances b
vehicles, and
the distance
nce should b
o not want to

avings due to
ways to save

to move a ve
drive closer to

can will go
n go over you

-vehicle separa

sis addresses
he thesis.

of convoy dri
unication bet

between vehi
d local speed

between veh
be at least 10

crash into o

o the high cos
e fuel while
hicle forward
o the vehicle

o direct abov
ur vehicle. F

ation

s, the contex

iving and th
tween the veh

icles depends
d limit. For e
hicles may b
0 meters. Tod
ther vehicles

st of fuel and
driving. One
d is air resis
e in front of
ve your vehi
igure 1-1 to F

In

xt of the prob

hen conduct
hicles in a co

s on the road
example, on
be only a few
day this inte
s.

d their desire
e factor that
stance. Decre
you. In this
icle rather t
Figure 1-3 sh

ntroduction | 1

1

blem, the

a deeper
onvoy).

d surface,
a normal

w meters,
er-vehicle

e to live in
increases

easing air
case, the

than first
how these

2 |Introductio

Figure 1-3

Unfo
vehicle i
rapidly.
vehicle s
vehicle
commun
reliable.

Ther
short ran
Fi*) and
System (
and disa
secure a
building

1.2 P

We defin
types of
consider
wireless

1.2.1 P

Although
and perh
– specifi
convoys.
for inter-

* Wi-Fi is a t
† For a detail

on

3: Airflo

ortunately, a
n front of th
The solution

spacing. In o
communicat

nication is sa

re are three t
nge wireless
 Dedicated
(GNSS) – su

advantages. O
and reliable
 a convoy.

roblem de

ne the proble
communicat

red†. Finally,
communicat

Problem

h the proble
haps the con
fically focusi
. The problem
-vehicle com

trade name for dev
led discussion of w

ow along one tr

at high speed
hem due to th
n is to introd
order to do th
tion. Not o
afety critical

types of com
communica

Short Range
uch as Globa
Our expectati
system that

efinition

em, and then
tion technolo
, we conside
tion has to fi

ms of realizi
struction of v
ng on the u
m is to select

mmunication

vices that utilize th
wired communica

ruck and sever

ds it is impo
he high risk
duce a system
his the vehic
only must
l – so we m

munications
ations system
e Communic
al Positioning
ion is that on
enables veh

n describe the
ogies that cou
er the curren
ll.

ing a convoy
vehicles, this

use of inter-v
t an appropr
in order to r

he IEEE 802.11 st
ation within vehicl

ral cars

ossible for h
of crashing

m that preve
cles must co
there be in

must ensure

s that are can
ms, such as w
cation (DSRC
g System (G
ne or more o
hicle to close

e requiremen
uld potential
nt environm

y might seem
s project take
-vehicle com
riate commun
realize and fa

tandards.
les see the candid

human drive
into this veh

ents such cra
mmunicate w
nter-vehicle
that this com

ndidates for i
wireless loca
C), RADAR,

GPS). Each o
of these altern
ely follow th

nts for reliab
lly be used in
ent and wha

m more relat
es an inform

mmunications
nication tech

acilitate vehic

ate thesis by Rasm

ers to drive
hicle if the ve
ashes, while
with each ot

communica
mmunication

implementat
l area netwo
 and Global
f them has t
natives can b
he vehicle in

ility. Next, se
n inter-vehicl
at requireme

ted to traffic
mation techno
s to realize a
hnology (incl
cle convoys.

mus Ekman [1].

closely follo
ehicle in fron
enabling clo

ther, leading
ation, but a
n is both se

tion in system
ork (WLAN)
l Navigation
their own ad
be used to int
n front of th

everal of the
le communic
ents a soluti

c engineering
ology (IT) pe
and facilitat
luding protoc

owing the
nt brakes
ose inter-

g to inter-
also this

ecure and

ms today:
(e.g. Wi-

n Satellite
dvantages
troduce a

hem, thus

e different
cation are
ion using

g, design,
erspective
te vehicle
col stack)

Introduction | 3

3

1.2.2 Reliability

In general, there are two ways of realizing inter-vehicle communication: wired and wireless
communication links. While wired communications in many settings offers high reliability it is
infeasible in some settings. For example, it is possible to used wired communication between a truck
and its trailer (or trailers). In this setting a wired communications link works well and this solution has
been in use for many decades. Although wireless replacements for this link have been investigated (see
for example [2]).

In the setting that is the focus of this thesis project, wireless communication will be used for inter-
vehicle communication. This means that each vehicle needs to be equipped with one or more antennas
and transmitters & receivers. Depending on the specifics of the wireless link the transmitters and
receivers will use different types of antennas (in the case of radio links) or emitters/detectors (in the
case of optical links).

The reliability of inter-vehicle communication is important to prevent incorrect information from
being used. Sources of error include environmental noise, weather, and intentional attacks. For
example, a malicious attacker could generate fake packets; conduct signal gaming against wireless
receivers; attempt to introduce viruses to cause problems with the electronic systems connected to the
receiver(s), etc. A secure and reliable system has to consider both accidental and purposeful
impairments.

Different types of wireless links offer different levels of reliability and safety. For example, WLAN
links can enable reliable and very secure communication [3]. WLANs are very common today and
nearly all smartphones, laptops, etc. have one or more WLAN interfaces built into them. WLAN links
work well when the end-points are close to each other; however, these links can be subject to
interference due to other transmitters and the interaction of the radio waves with the environment.
DSRC links are similar to WLAN, but they have been allocated a dedicated portion of the wireless
spectrum. For example, the US Federal Communications Commission (FCC) has allocated 75 MHz of
spectrum at 5.9 GHz for vehicle safety applications[4]. RADAR systems emit a signal and listen for
reflections of this signal. A scanned RADAR system can be used to scan a volume of space in front of a
vehicle (to identify obstacles such as vehicles, persons, animals, structures, etc.). Additionally, the
RADAR system can exploit the Dopper shift information to tell if the surface causing the reflection is
moving toward or away from the RADAR emitter. A RADAR system’s reliability depends upon how
sensitive the receiver is, how rapidly the system scans the volume of space, how the received signal is
processed, etc. GNSS systems, such as GPS, need to be able to get signals from three or more satellites
in order to compute their position in three dimensions and from four or more satellites in order to
compute their position and time. Buildings, vehicles, tunnels, etc. may prevent the GNSS receiver from
being able to receive signals from a sufficient number of satellites, thus reducing the accuracy of the
positioning (and time) information. In severe cases, the device may not be able to compute its position.
Many GNSS receivers use supplementary sources of information (such as accelerometers) to improve
their reliability. In some cases, a combination of GNSS receiver and information from fixed base
stations is used to provide improved accuracy and reliability.

1.2.3 Inter-Vehicle Communication

As noted earlier inter-vehicle communication requires high reliability and security as this
communication is being used in a safety critical application. This is particularly true when the vehicles
are moving at high speed with only very limited separations. In this setting data loss, incorrect
information, and unreliability may result in severe damage or even death.

The primary use of GNSS systems in vehicles today is for navigation to a destination and to get
directions to that destination. Trucks have utilized a GPS receiver to help the truck achieve a better fuel
economy, for example by using information from the GPS receiver to select the most appropriate gear
and when to use brakes during a descent. Since trucks have much greater fuel consumption than

4 |Introduction

normal cars (0.4-1.2 L/10 km for a car versus 3.5-4.5 L/10 km for a big truck with a heavy load[5]) the
fuel savings by electing the most appropriate speed, gear, braking profile, etc. can be considerable for
trucks. Additional information concerning the use of GPS can be found in [6]. Later in this thesis we
will examine if GNSS can be helpful in inter-vehicle communication, for example by considering the
use of these systems as proposed in Håkan Lans’s Self-Organised Time Division Multiple Access
(STDMA)[7] data link to an create automatic identification systems (AIS) (for maritime use) and VHF
Digital Link (VDL) Mode 4 for air traffic control.

1.2.4 Environmental issues

Today there are many different communication systems. Many of these systems are wireless. The
communication devices have some requirements in order for the communication to work properly.
First, they have to reach other devices – this means distance is an important factor. The material of
buildings and objects that the radio waves must pass or reflect from is a factor. Other requirements are
for example that communication should be available despite the weather or other traffic passing
between devices. The later means that wireless communication should be possible even when other
devices are using same protocol, same source and destination address, and even same frequency.
Therefore, the different types of wireless communication systems should not disturb the existing
systems.

Additionally, it is important that these systems should not constitute a health problem[8]. Today
there are many different types of wireless communication systems, such as cellular phones (including
mobile 3G and 4G systems), emergency services, Wi-Fi, and many more. All of these devices emit radio
waves. With more wireless communication, the cumulative amount of radio wave energy is increasing.
This is an important aspect since radiation has a negative effect on human body[9].

Another factor to take into account is the dead zones that occur either due to long distance from
the source or because different signals destructively interfere with each other [10]. In summary, when
creating wireless networks, careful considerations of environmental issues are as important as the
functionality of the system.

1.3 Goals

The main goal of this thesis project is to examine how to utilize inter-vehicle communications to realize
and facilitate vehicle convoys. This examination must consider whether this communication can be
sufficiently reliable and secure to be used to safely realize a convoy. This analysis will consider the
effect of convoys on traffic flows and whether convoys will create new problems.

1.4 Problem context

The examination carried out in this thesis project must consider environmental, technical, and safety
aspects of an inter-vehicle communication system. Safety is obviously a critical aspect since we
formation of a convoy will reduce the spacing between vehicles and should collisions occur the risk of
damage or even death is high. This is especially true when the vehicles are moving at high speeds as the
system will need to operate largely automatically since there is not enough time for the slow reactions
of humans to prevent a collision (or in the worst case a chain reaction of collisions).

1.5 Research Methodology

To find relevant information about earlier work and information that is trustworthy I have chosen to
search popular websites for the different subject areas. I will not search forums and online
encyclopaedias (such as Wikipedia) since they are not reliable sources. School libraries, websites of
public authorities and newsrooms are considered reliable sources of information. Later in this thesis, I

Introduction | 5

5

will analyse information using common sense and the scientific and engineering methods that I have
learned in my studies, and if necessary, I may even need to consider some less reliable sources.

1.6 Structure of this thesis

This thesis is divided into chapters. This first chapter introduced the thesis area, the problem, and the
goals of this thesis project. Chapter 2 provides relevant background information for the readers of this
thesis. Chapter 3 describes the method used to solve the problem and achieve the stated goals. Chapter
4 gives the results of the analysis of the proposed solution(s). The thesis concludes in Chapter 5 with a
summary of conclusions, suggestions for future work, and some reflections on the economic, social,
sustainability, and ethical aspects of this thesis project.

Background | 7

7

2 Background

Convoy driving has not been introduced globally, but it has already gained some interest. The primary
focus thus far has been on larger vehicles (such trucks) with heavy loads, but this approach has also
been tried with cars. This chapter will describe some of the early projects to introduce convoy driving.

The chapter begins with a description of a RADAR sensor, as this is an important sensor that has
been applied in some approaches to convoys. This is followed by a description of how Wi-Fi is
implemented in vehicles and how some vehicle manufacturers envision the use Wi-Fi. This is followed
by a description of the DSRC system. Finally, the chapter ends with a summary of related work.

2.1 RADAR

Radar has been used in many applications ranging from distance measurement to scanning for
obstacles, clouds, vehicles, etc. In air traffic control airplanes communicate with air traffic controllers
and airport based guidance systems in order to navigate safely from one location to another while
avoiding other aircraft, storms, mountains, etc. The same idea is used with boats and ships at sea.
Additionally, traffic control use radar for detecting vehicles that are going faster than the posted speed
limit. Road/highway departments use radar to detect voids under the road surface (in order to plan
road repairs).

2.1.1 DASR

Traditional air traffic control radar has enabled airport controllers to keep track of planes in a three
dimensional space with high precision and to monitor weather conditions. Today these high precision
radars for areas near air terminals are being replaced the Digital Airport Surveillance Radar (DASR)
which are more efficient[11].

2.1.2 Bosch

Bosch has developed high precision radars for usage in vehicles. Radar is used in vehicles to assist
other systems with the aim of increasing driving safety[12]. To understand how this is realized we need
to know a little bit about several other technologies used in modern vehicles.

A controller area network (CAN) is a communication system within the vehicle. It is typically
realized as a bus that interconnects different types of microcomputers so that these separate
controllers can communicate with other systems. For more information about CAN see the thesis of
Rasmus Ekman[1].

A related concept is a Local Interconnect Network (LIN). LIN (like CAN) is an internal
communication network, but it allows smaller and more lightweight systems to connect with each
other. To use CAN the microcomputers need to be relatively advanced, more complex, and typically
more expensive; while LIN allows simpler and lower cost interconnections.

Adaptive Cruise Control or Automatic Cruise Control (ACC) is implemented in most new vehicles
as an upgrade from the standard cruise control. ACC is similar to standard cruise control, but is
adaptive so that if the vehicle in front is braking, then this car will apply its brakes. ACC enables a
vehicle to maintain a minimum fixed distance from the vehicle ahead of it.

According to EU regulations[13], Advanced Emergency Braking System (AEBS) needs to be
implement in different classes of vehicles (categorized in terms of the total number of wheels, number
of seats, or freight weight and the total weight), specifically vehicles with the following properties[14]:

8 |Background

• M2 = Vehicles with mass under 5 tonnes*, at least four wheels, and maximum of eight seats.
• M3 = Vehicles with mass above 5 tonnes, at least four wheels, and more than eight seats.
• N2 = Vehicles for goods carriage between 3.5 tonnes and 12 tonnes.
• N3 = Vehicles for goods carriage above 12 tonnes.

A Lane Departure Warning System (LDW) is a system that warns the driver if the vehicle is
beginning to move outside of its lane. The system takes into account whether the turn indicator has
been activated. This technology can also be used to assist the driver to keep the vehicle centred in the
lane.

ACC, AEBS, and LDW systems are used to assist the driver in order to increase safety. ACC, AEBS,
and some LDW systems use radar as input. Bosch is still developing their radar systems. The first
version used a radar system operating in the 24 GHz frequency band to scan the area in front of the
vehicle. However, this frequency is used by other applications[15], hence a 77 GHz version was
subsequently introduced[16]. As the frequency increases the results are greater precision and the area
that the radar can cover increases, but the required power can be decreased if the components are fully
integrated[17: pp2746-2756].

2.1.3 Functions

The radar in vehicles can achieve a lot even though it is a quite simple component. If the radar
transceiver is placed at the vehicle’s front grill, it can scan an area from half a meter ahead up to 300
metres. Additionally, it may be able to detect vehicles driving in adjacent lanes when this other vehicle
is a couple of metres ahead of the transceiver. That means when driving on a single lane road in the
countryside, when the road goes to the left or the right, the radar still has knowledge of the vehicles
ahead.

2.1.4 Audi

Audi has introduced a new development to increase the safety. They implement radar to scan ahead
and to scan behind the car. Since the driver of vehicle A (the lead vehicle) cannot apply the brake of
vehicle B (unless they are communicating), all vehicle A can do is to prepare for a possible crash with
vehicle B coming from behind. In order to prepare, vehicle A scans the area behind it and if vehicle B is
approaching too fast, it tightens the seatbelts, folds up seats, and lowers the windows to about 90%,
leaving just a small gap for air. If a crash does not occur, then the system restores the previous settings
and carries on.[18]

2.1.5 Scania

Scania is manufacturing trucks and buses. Today’s trucks and busses consist of many IT-systems.
Some of these IT systems directly control and operate engines and gearboxes. For example, it is
possible to optimize the engine speed and choice of gear without any driver input. Additionally, the
driver can control these subsystems.

Although most of these systems can be switched on or off by the driver, most drivers prefer to keep
these systems engaged because they contribute substantially to efficient and safe operation of the
vehicle. Several years ago Scania developed and implemented[19] standard cruise control in many
cars. This innovation has the ability to maintain a fixed vehicle velocity, even when going up and down
small hills. Some cars and Scania trucks have extended ACC to make use of RADAR system that scan in
front of the vehicle in order to detect upcoming obstacles. If the vehicle is closing on an obstacle, then
the ACC slows the vehicle down to a speed that will not result in a collision. This is of course most

* Here tonnes refers to metric tonnes.

Background | 9

9

efficient at high speed on highways as opposed to driving within cities where starting- and stopping
occurs more frequently.

Scania is in process of introducing what they call “platooning”. Their first step is to use ACC to
maintain a specific separation distance from the vehicle in front of the vehicle, thus establishing a
convoy. In this first phase they simply programmed the ACC to maintain an optimal distance to vehicle
in front in order to gain efficiency, hence minimizing fuel consumption[20]. They are now
implementing a combination of Wi-Fi, GPS, and RADAR to support platooning.[21]

2.1.6 Volvo

Volvo has a very ambitious platooning effort in their project called SAfe Road TRains for the
Environment (SARTRE). This project builds upon a threefold problem statement: environment, safety,
and congestion.

Volvo has taken a different approach than Scania. Since Volvo also manufactures cars, they have
focused in their project on convoys consisting of both large trucks and cars. They have already
implemented this system to realize a convoy consisting of a leader truck (which acts as a master) and
following cars (which act as slaves to this master). What is different with their platooning from Scania’s
systems is that the following cars are not only using ACC but also use automatic steering. In other
words, the cars are driving themselves without any input from the driver. These cars simply follow the
leader truck’s speed and direction.[22]

The radar system in Volvo vehicles has been used mainly to prevent collisions in a city (where
speeds are slow). Their radar system uses a Light Detection and Ranging (LIDAR) sensor which detects
obstacles ahead and can stop the car when operating at speeds lower than 30km/h. As with many of
the automotive radar systems which implement automatic braking, the computer in the car prepares
the brakes when the radar senses that a crash is highly likely, enabling the brakes to be applied more
quickly.[23]

2.2 Wi-Fi

Wi-Fi is widely used to realize WLANs. When one hears the term “Wi-Fi”, many people immediately
associate it with home networks, office networks, school networks, public networks, and perhaps even
networks on airplanes (as some airlines have installed WLANs on their aircraft).

What if Wi-Fi was used in another application area, such as for vehicular traffic? Today the
Internet is used for traffic control, for example the traffic cameras and red light cameras of some cities
uses either Power over Ethernet (PoE)[24] or 3G or 4G cellular networks[25] to communication with a
central surveillance control center. Many vehicle manufacturers have already introduced Wi-Fi in
vehicles in order to improve their vehicles in different ways. Of course, the main function has been
safety improvements, but this technology has also been applied to improve traffic flow.

2.2.1 GM

General Motors (GM) has introduced Wi-Fi as a safety improvement of their vehicles. Their idea is that
vehicles can communicate which each other, i.e., vehicle-to-vehicle (V2V), and even communicating
with pedestrians, bicyclists, and other infrastructures, i.e., vehicle-to-infrastructure (V2I). Their
hypothesis is that peer-to-peer (P2P) communication can decrease communication latency, since
latency is a very important factor in preventing traffic accidents. If one did not use P2P
communication, then all communication would to go through access points which will introduce a bit
more delay. As a result not only vehicles need to be equipped with access points or routers, but other
devices, such as each pedestrian’s smartphone or tablet must have applications that support this P2P
communication when the pedestrian is traveling near vehicular traffic. GM’s system utilizes “Wi-Fi

10 |Background

Direct®” [26] (a P2P standard for Wi-Fi) to prevent many different types of accidents once it is widely
deployed in cities.[27]

2.2.2 Ford

The United States of America’s Department of Transportation (DOT) is working on V2V together with
many vehicle manufacturers. However, the US DOT is not in charge of what kind of V2V system is
implemented in vehicles. Ford is one of many vehicle manufacturers that have chosen to work with Wi-
Fi systems. Their system has every vehicle (with this system implemented) broadcast its position,
heading, and speed to nearby cars. This results in every car with this system being able to calculate if
another car could potentially crash into this vehicle. This Wi-Fi operates on a secure channel so that
only V2V cars speak to each other.[28]

2.3 DSRC

Similar to Wi-Fi, DSRC is a wireless protocol developed for V2V by the U.S. DOT and several vehicle
manufacturers. DSRC is an element of an intelligent transportation system (ITS). Although DSRC does
not support fully automatically driving vehicles, it is a major step toward a more secure and
autonomous world of vehicles and traffic.

DSRC can be divided into many subcategories of systems. All have one common goal: safety. Since
DSRC includes a lot of safety systems which works in parallel, a lot of information must be sent
between and received by the DSRC devices. This information is carried via different types of messages.
This data includes:

• GPS position,
• Speed,
• Acceleration,
• Heading,
• Transmission state,
• Brake status,
• Steering wheel angle,
• Path history, and
• Path prediction.

All but the last two are already common data in most vehicles, where this data may be used for
existing safety systems. As a result there are already computers inside vehicles collecting data from
various sensors, but in DSRC path history and path prediction have been added [29]. The reasons for
adding these two additional types of data are described in the following two subsections.

2.3.1 Path history

This system combines data from the different types of DSRC messages to calculate the historic route
for the last couple of hundreds of meters. The system dynamically creates a series of waypoints at
different distances between them (depending on the road). As the vehicle moves, it deletes older data
points when they are no longer necessary. For a long straight path (no sudden curves), the path history
is very simple, therefore the distance between data points can be quite far. However, when driving
around a curve, the direction is always changing so the data points are closer to each other in order to
give more precise data about the historic path of the vehicle.

Background | 11

11

2.3.2 Path Prediction

Path prediction is similar to path history, but instead of storing waypoints for the path that has already
been driven a path is calculated based upon the planned route to a destination, i.e., the potential route
the vehicle will follow in the future. For this to work in the short term – without a specific destination,
the system combines GPS data with the steering wheel angle, brake setting, and acceleration, to predict
a possible route. DSRC uses path prediction and path history to predict and prevent future crashes.

2.3.3 Emergency Electronic Brake Lights

When driving several vehicles in a row, as in a convoy, it is sometimes difficult for drivers in the middle
or further back in the convoy to see what is actually happening far in front of them, as most of the time
they can only see the vehicle in front of them. Therefore, if an accident or a sudden stop occurs by the
first driver of the convoy, the last driver may not know of this until all of the drivers ahead of them
have noticed the sudden stop, thus a crash is highly probable.

Emergency Electronic Brake Lights (EEBL) can be used to prevent this problem by communicating
to all of the trailing vehicles when a vehicle ahead is making a sudden stop. In such an event EEBL
activates a light on the dashboard or windscreen increasing the probably that the driver will be able to
stop before crashing.

2.3.4 Blind Spot Warning

DSRC also seeks to improve safe lane changing while driving. However, the blind spot is a problem
that exists when driving, but it is possible to assist drivers with a Blind Spot Warning (BSW) system.
When a vehicle is detected within the blind spot area and the driver applies their turning indicator a
light on the rear view mirrors will flash.

2.3.5 Lane Change Warning

Lane Change Warning (LCW) is similar to BSW, but by using V2V DSRC can know that a vehicle is
approaching the blind spot before a lane change is attempted, preventing a stressful situation for both
the driver attempting to change lanes and the driver approaching in that lane. If the driver heeds the
warning this may prevent an accident. The system uses the same flashing lights that BSW uses.

2.3.6 Front Collision Warning

The Front Collision Warning (FCW) system uses the EEBL as a warning system, whether driving in a
convoy or approaching a stationary vehicle on the road ahead when no reaction is taken by the driver.

2.3.7 Do Not Pass Warning DNPW

The Do Not Pass Warning (DNPW) is warning system that may prevent many common stressful
situations. Imagine that a truck is climbing slowly up a hill and you want to pass it to maintain your
tempo. However, since you are going up a hill, you might not be able to see an oncoming vehicle until it
is very close to you. DNPW uses DSRC to communicate with approaching vehicles (also using DSRC),
thus as soon as you attempt to pass (applying the turning indicator and switching lane) the DNPW will
warn you if another vehicle is approaching in opposite direction.

2.3.8 Intersection Moving Assist

There are many intersections in the road network today. Not all of them are safe, due to limited
visibility (with buildings or trees blocking your light of sight or due to a vehicle standing on the side of

12 |Background

the road) or due to a vehicle stopped in the intersection. Intersection Moving Assist (IMA) is a DSRC
system that via V2V calculates if another vehicle is approaching the intersection. If so, the system
warns the driver to be more careful via flashing lights on the dashboard. If a vehicle has stopped at an
intersection and another vehicle is approaching the intersection at high speed the driver of the
stationary vehicle can be warned before entering the intersection.

All these various subsystems of the DSRC provide safely improvements. Although DSRC offers
many possibilities to an individual vehicle, it works best with all other vehicles are equipped with the
same DSRC system. Therefore, there is a potentially long adoption curve and a substantial aggregate
investment must be made to achieve a fully functioning system. Additionally, the system will need to
be improved and optimized in the future, while the devices that must be installed in each vehicle will
need to have a low price. U.S. DOT believes that widespread adoption is still many years in the future.

2.4 Related work

As described above, there are some companies working with developing inter-vehicle
communication in different perspectives, such as V2I, V2V, and the vehicle’s own technology in traffic
such as brake assist and warnings.

Fortunately, there are also a lot of students that are working with the area as well, even though
they do not have the same resources available. As long as they have the interest, ideas and the
knowledge, they can contribute to the development as well.

There are many theses in this area with all different or quite similar perspective of the area. Here is
mentioned three theses done by students of KTH and Linköping University.

There is a thesis done by Simon Eiderbrant [30] which is a more analytic model of the convoys
with a very deep mathematic perspective. It is described very deeply with formulas how forces works
on the convoy and how different driving environments affect the driving.

Another thesis is done by Joakim Kjellberg [31] and describes also the convoy driving but with a
more analytic perspective of algorithms. This is also an interesting perspective since the algorithm is
the key of a platoon to be working correctly.

The last mentioned related thesis is done by Mani Amoozadeh [32] and is also a more of algorithm
perspective but is more deeply dug into messages that are sent in the convoy. The Certificate
Revocation List (CRL) is the key in the thesis.

All of these theses are very interesting because they all are within the same area of work, but each
perspective is very different from another.

Method | 13

13

3 Method

This chapter describes what I am going to do to solve the problem stated in Section 1.2, how I will do it,
and how I aim to accomplish the goals stated in Section 1.3. First, I will describe my method of work.
Why I have chosen this method and why I reject other methods. This is followed by a description of the
goals and how I will attempt to accomplish them. This will be followed by a description of the
implementation of a prototype and the planned tests, modelling, and analysis.

The overall work is described as a list of tasks. Each of these tasks is described along with how it
should be done. These tasks include setting up a test-bed and what software to be used.

The sections of this chapter will describe the method and guide both physical and theoretical
progress in this thesis project.

3.1 Choice of method

I have chosen to organize my work here with the help of Scrum method. This is because I have
experience from an earlier course in using this method for a project. From that course (IT-project, built
a robot); I learned that using Scrum to organize all of the tasks from the beginning to the end of the
project will result in more qualitative progress and maybe also achieve a better result.

Scrum was originally introduced within software develop since software development is more agile
than the hardware develop department and Scrum is an agile-method [33].

In my earlier IT-project course, I was introduced to Scrum and learned then that even though we
worked with a hardware project we could organize our work with Scrum. Since my work in this thesis
includes both hardware development and software development, I have chosen to organize the
complete effort with Scrum. Unlike the earlier course and the original applications of Scrum, I will
work alone rather than in a team. However, this thesis project is being done in parallel with two other
related thesis projects – hence there is some degree of interaction with these other two thesis projects.

I began by collecting every idea I could find in a directory and later sorted through this material. I
began by collecting information about previous work in this area. This helped provide me with a good
understanding of this area. Next, I began with the actual modelling and testing of network signals (as
described in the next chapter). These efforts lead to the realization that I needed to organize by effort.
My own method of collecting, storing, and working with information would not have worked with all of
the tasks that I planned for this thesis project. One of the first steps was to organize tasks by writing
notes and organizing these notes as shown in Figure 3-1.

14 |Method

Figure 3-1

3.2 G

My goal
the princ
ambitiou
project’s

I wa
already h
may cha
project. A
models.
commun
commun

3.3 P

My prog
models a
problem

The
with ide
foundati
order to

Whe
between
the follow
major de
As I had
than pur
router as
the conv

: Post-

Goal

was to realiz
ciple of a con
us project, b
s goal.

s so eager to
have. Unfort

ange due to c
Although I b
Without fur

nication syst
nication.

rogress

gress was div
and gain com

ms that neede

first stage w
eas about ho
ion for the th
change comp

en deciding w
. Subsequen
wing subsect
ecision was t
a couple of A

rchasing exp
s a host and a

voy and one c

IT notes for or

ze a simple c
nvoy and to u
but I believe

o build the m
tunately, this
changes in t

built the mod
rther researc
tems, it was

vided into a
mpetence in
d to be solve

was to collect
ow the comm
hesis. The ne
ponents or a

what compon
ntly I needed
tions, I will d
to use a route
Arduinos lay

pensive Wi-F
an WLAN ac
client was pla

rganizing the w

convoy using
understand h
ed that I co

models that I
s is not a go
the demands
dels initially,
ch about inte
s impossible

a number of
the area, I h

ed.

t a lot of inf
munication n
ext stage was
adjust the dir

nents I shoul
d to make ev
describe som
er and a WLA

ying around t
i shields for

ccess point fo
aced in each

work progress

g model vehi
how inter-veh
ould build u

was later go
ood idea at th
s, available r
I knew that t
er-vehicle co
e to create

f different st
had to do ma

formation ab
needed to wo
s to test my
rection of my

ld work with
ven more dec
me of the init
LAN access p
together with
the Arduino

or a client. La
of the follow

icles. These m
hicle commu

upon well-es

ing to use th
he very begi
resources, or
there was a l

ommunicatio
a suitable w

tages. To ach
any tests in o

bout the area
ork. These s
ideas and an

y progress.

h, there were
cisions abou
ial test stage
oint for com

h a couple of
o (at ~US$10
ater, this hos

wing vehicles

models could
unication cou
tablished so

hat I purchas
nning of a p

r even the w
imit to what

on or my ow
working syst

hieve a work
order to und

a. The next s
stages establ
nalyze the re

many differ
t what comp

es and their c
mmunication b

Ethernet Sh
00 each) I de
st was placed
.

d be used to
uld be used. T
olutions to r

sed the parts
project, beca

whole idea be
t I could achi

wn testing of
tem for inte

king convoy
derstand the

stage was to
lished the th

esults of thes

rent options t
ponents to ch
components.
between the

hields for the
ecided to use

d in the first v

o examine
This is an
reach the

I did not
ause tasks
ehind the
eve using
different

er-vehicle

with the
different

come up
heoretical
se tests in

to choose
hoose. In
. The first

e vehicles.
m, rather
e a cheap
vehicle of

Method | 15

15

3.3.1 Components

The initial set of component are listed in Table 3-1. Most of these components were chosen because
they were available, as opposed to being specifically selected for this project.

Table 3-1: Initial components

Component Description Weight (grams)
Computer #1 Dell XPS13 i7 CPU, WLAN Interface, USB- Gigabit

Ethernet Interface, Windows 8.1

Computer #2 HP Pavillion DV6 AMD Turion X2 CPU, WLAN
Interface, Ethernet Interface, Windows 7

Router D-Link GO-RT-N300 powered with 12 VDC, 0.5 A 200
Access point NETGEAR WNCE2001 powered with 5 VDC,1 A 50
two Arduinos MEGA 2560

http://arduino.cc/en/Main/arduinoBoardMega2560
35 each

Arduino shield Ethernet shield based on Wiznet W5100 ethernet
chip.
http://arduino.cc/en/Main/ArduinoEthernetShield

25

Arduino shield
(for use in
models)

Motor shield based on the dual full bridge L298
chip. Motor max current 2A.
http://arduino.cc/en/Main/ArduinoMotorShieldR3

25

UltraSound
Distance Radar
(USDR) sensor

ElecfreaksHC-SR04 ranging module, measurement
range ~2cm to ~400cm, measurement angle 15
degrees, measurement accuracy 3mm.

14

Battery (for use
in models)

Make model “HQ Sealed Rechargeable battery”
12 V and 1.3 Ah lead acid battery

600

3.3.2 Implementation

Three different configurations were tested. The first test configuration was setup is on a “test-bench”
where everything is on a desk and mainly powered by mains power (using a 230 VAC to 12 VDC
adapter for the router and a 230 VAC to 5 VDC adapter for the access point). The laptops were
powered either by mains power adapters or by their internal batteries.

The second test configuration involved placing the devices in one or two vehicles. Some of the
system tests required only one vehicle, but other tests required two vehicles. The components were
powered either by internal/external batteries and/or the cigarette lighter socket.

The final test configuration was a LEGO® convoy model with each of the components powered by
external batteries.

3.4 Tasks

This section enumerates the tasks that I needed to complete. These tasks were expected to generate a
large amount of data that could subsequently be analyzed and documented. As mentioned above there
are three different configurations. As shown in the list of components I use a router and an access
point for wireless communication. The access point is used as a bridge[34] as shown in Figure 3-2.
Therefore, the router will only use ad hoc mode to communicate with the access point, i.e., the WLAN
will not accept association requests from other Wi-Fi devices trying to connect to router. As computer
#1 did not have an Ethernet port, a USB-Ethernet interface was used to connect it to the router or
access point.

16 |Method

Figure 3-2

3.4.1 S

This firs
test sinc
me with
more opt

3.4.1.1

The initi
“ping” co
router vi

3.4.1.2

The seco
router, h

3.4.1.3

The task
case one

3.4.1.4

In this t
Ethernet
Foster as
to what
prints a
packet. T
of the co
matched

2: Simp

Successfully

t task was sp
e this it show
the tools tha
timal way.

Wired PIN

ial test was d
ommand via
ia a CAT5e E

Wired PIN

ond task was
hence they sh

Wireless P

k is the same
e computer is

Wired PIN

test one Ard
t cable. The t
s shown in co
the Window
time-out err

This code is u
ode that I ch
d another dev

le setup of an

y PING (Stati

plit into seve
wed that con
at I would us

NG between

done to chec
a the Microso
Ethernet cabl

NG between

 to ping one
hould be able

PING betwee

e as the abov
s connected t

NG between A

duino card w
test simply p
ode listing 1.

ws ping prog
ror. It also p
used in subse

hanged was t
vice’s IP addr

access point, r

onary)

eral smaller
nnectivity cou
se in subsequ

computer an

ck the conne
oft Windows
e.

two comput

computer fr
e to ping each

en two comp

ve where two
to the router

Arduino and

with an Eth
ings the rout
.1 in the App
ram does. T

prints the tim
equent tests
the destinati
ress.

router, and a c

sub-tasks. T
uld be establ
uent testing a

nd router

ction betwee
s’ command

ters

rom another
h other.

puters

o computers
and the othe

d router

hernet shield
ter from the

pendix [35]. T
This code sen
me it took, t
using the Ar

ion IP addre

couple of Ardui

This task was
lished. Addit
and I learned

en a comput
prompt. The

. Both compu

should be ab
er computer

d is connect
Arduino. I m

This code sen
nds 10 pings
ime-to-live (
rduino to pin

ess and perha

nos

s a simplest
tionally, this
d how to carr

er and a rou
e computer w

uters were co

ble to ping e
is connected

ed to the ro
modified the c
nds several p
s, and either
(TTL) fields,
ng different d
aps the Ardu

test, but it w
 task help ac

rry out the te

uter using th
was connect

onnected to

each other, b
d to the acces

outer using
code written

pings in a row
r receives th
, and the siz
devices. The
uino’s IP add

was a key
cquainted
sting in a

he built in
ted to the

the same

ut in this
ss point.

a CAT5e
n by Blake
w, similar
em all or
e of each
only part

dress if it

3.4.1.5

After try
ping test
the Ardu

3.4.1.6

In this te
The purp
establish

3.4.1.7

In this te
a compu
access p
compute
terminal
different
to see ho

3.4.2 S

These te
measure
in a car w
followed
or an Ar
through
these m
adapter
measure
order to
were pro

* The Hypert

Wired PIN

ying to ping t
t. First I per
uino.

Wired PIN

est two Ardu
pose of this

h that they ha

Wireless P

est one Ardu
uter that is m
oint via an E

er for power
l window*, a.
t places in m
ow the distan

Successfully

ests repeate
ements were
where I have

d behind us w
rduino. Meas
a tunnel, an

measurements
shown in Fig

ements was m
avoid any p

ovided to pow

Figu

tem program was

NG between A

the router, I
rformed a pin

NG between

uinos were c
test was to

ave bi-directi

PING betwee

uino is conne
monitoring th
Ethernet cab
r and to mo
.k.a. Serial M

my home (wit
nce between t

y PING (Mob

ed the same
made in a n
e placed the

with a driver
surements w

nd countrysid
s. The route
gure 3-3) or
made to ensu
potentially d
wer the route

re 3-3:

used for this mon

Arduino and

I tried to pin
ng from the

two Arduino

onnected via
check that

ional commu

en two Ardu

cted via a cab
he network u
ble. This seco
onitor and c

Monitor. A nu
th varying di
the devices a

ile)

e tasks as a
umber of dif
router, a co

. In this seco
were made in
de driving). T
er was powe
an external

ure that the c
amage to th

er.

Cigarette light

nitoring.

d computer

ng a compute
Arduino to t

os

a cables to sa
each Arduin

unication.

uinos

ble to the rou
using Wiresh
ond Arduino

control this
umber of tes
istances betw
affected the d

above, but
fferent envir

omputer runn
ond car an ac
n different en
The distance
ered from e
12 VDC batt
cigarette ligh

he router and

ter socket adap

r

er attached t
the compute

ame router a
no is able to

uter. This ro
hark. The sec
o can also be
Arduino via
ts were cond

ween the dev
delay and thr

now the de
ronments. In
ning Wiresha
ccess point w
nvironments
e between the
ither the cig

tery (as show
hter socket p
d to ensure t

pter, direct volt

to same rout
er and then f

and they trie
o ping the ot

uter is also c
cond Arduin
e connected

a the Arduin
ducted after p
vices). These
roughput.

evices were
 these tasks,
ark, and an A
was attached
 (specifically
e cars was lo
garette light

wn in Figure
provide a volt
that sufficien

tage, no conve

ter. This is a
from the com

ed to ping ea
other Arduin

connected via
no is connect

via a USB c
no software’s
placing the d
tests were c

placed in
, I sat next to
Arduino. An

d to either a c
y city driving
ogged while c
ter socket (u
3-4). An init
tage of 12 V
nt voltage an

ersion

Method | 17

17

a two way
mputer to

ach other.
o, i.e., to

a cable to
ted to the
cable to a
s built-in
devices at
onducted

cars and
o a driver

nother car
computer
g, driving
collecting
using the
tial set of
or less in
nd power

18 |Method

Figure 3-4

3.4.2.1

In this t
while th
simple p
this test

Figure 3-5

4 Cigar

Wireless P

est a router
e following

ping comman
is shown in F

5: Setup

rette lighter soc

PING betwee

was placed
car had an a

nd in differen
Figure 3-5.

p of computers

cket adapter, c

en two comp

in the front
access point
nt driving en

s in two cars

conversion to 5

puters

car with on
t connected w
nvironments.

5V 1A

ne of the com
with a comp
. The configu

mputers with
puter. I this
uration of the

h Wireshark
test I will p

he equipment

installed,
perform a
t used for

Method | 19

19

3.4.2.2 Wireless PING between two Arduinos

This configuration is similar to the setup above with two computers. However, in the following car (i.e.,
the car with the access point) an Arduino was connected to the access point instead of a computer
being connected to this access point. In the car with the router, an Arduino was connected to another
of the router’s ports. The computer used Wireshark to monitor the traffic throughout the entire test.

3.4.3 Send text messages (Stationary)

In this test a number of different types of data packets were sent between the Arduinos. The first
question was whether text messages would be received in the expected order and what the
transmission delay was. This task was only performed once.

3.4.3.1 Wired text sending between two Arduinos

In this test text messages containing simple sentences or block of words were sent to check how they
would be received by the other device.

3.4.3.2 Wireless text sending between two Arduinos

In this test text messages were send to check if every letter in a sentence was received as expected, i.e.,
if there were any errors in the received messages.

3.4.4 Send simple signals (Stationary)

This set of test concerns signals from future sensors and systems that would need to be sent between
the Arduino cards. In the tests with the LEGO® models, I use only one type of sensor (a UltraSound
Distance Radar (USDR) sensor) that was placed on the second vehicle in the convoy. All of the signals
sent between Arduinos are encrypted/decrypted by the router and Accesspoint, as the Arduino’s
Ethernet shield does not provide encryption. When setting up the connection, the only requirements
for the code was to specify the MAC-addresses, IP-addresses, and port-numbers of the end points of
the communication. The access point supports WPA2-PSK [AES] encryption, while the router supports
WPA/WPA2 Mixed encryptions.

3.4.4.1 Wired connection between two Arduinos

The USDR sensor, a motor, and a servo motor are connected to the Arduinos and both of the Arduinos
are connect by Ethernet cables to the router. The signals sent included output from the USDR and
input to the servo motor and a regular motor.

3.4.4.2 Wireless signal sending between two Arduinos

This task is similar to the above, but one of the Arduinos is connect it to the access point and the
distance between the access point and router is varied. In this task I try to send the request signal and
leave signal from the “client” side of the convoy (the client is connected to the access point). This
organization was chosen because the connection to the convoy leader should be established by the
drivers of the model. The client model asks to join the convoy by sending a “join convoy” request to the
master driver. The master driver will either accept or decline this request. If a Wi-Fi connection is
established, then the client should send a “leave convoy” request when client wish to take over driving
their vehicle.

20 |Method

3.4.5 S

Here we
motor. T
part indi
This div
expected
area. The
the setup
the two
requires
NETGEA
shield an
control t
front of t

As m
shield. A
Arduinos
indicate
speed da
because
sent this
sending

Figure 3-6

Send simple

e describe th
The servo mo
ividually and

vide-and-con
d then troubl
e angle is qu
p of the two
models, each
the Arduino

AR® Accessp
nd a motor s
the steering
the steering w

mentioned ab
Although the
s use specia
the purpose

ata, ‘S’ for se
the data pac

s way due to
class and tha

(a) Ultraso

6: Ultras
area.

 signals (Mo

he setup of t
otor is used
d then more
quer techniq
leshooting co

uite narrow a
models and

h with an Ar
o to have an E
point and the
shield attache
of the front
wheels.

bove, the Ard
e router and
al characters

of the value
ervo degree d
ckets that are
the impleme
at class is im

und transce

sound distance
[36]

bile)

the Arduinos
to control st
test compon

que saved tim
ould be done
and the rang

how they ar
rduino. The
Ethernet shi
e LEGO® mo
ed to it. Both
wheels. Add

duino itself d
access poin
to make su

, for example
data, and ‘E’
e sent from t
entation of th
plemented b

eiver

e radar sensor

s with each
teering of th

nents were a
me during t
e. Figure 3-6

ge is between
re powered w
front model

ield attached
otor which re
h models hav

ditionally, the

does not pro
nt use WPA2
ure the corre
e ‘A’ to accep
for end char
the Ethernet
he Ethernet s
by sending by

r which can me

LEGO® mot
he models. T
added if the p
the test phas
6 shows the

n 3 – 300 cm
when testing
l is the “mas

d. The rear m
equires the A
ve the servo
e rear model

ovide any enc
2 encryption,
ect data is s
pt convoy, ‘R
racter of a da
t shield are s
send method
yte by byte.

(b) op

easure about 2-

tor, USDR s
This setup wa
previous test
se, since if th
USDR senso

m. Figure 3-7
simple signa

ter” and carr
model is the “s
Arduino to h
motor attach

l has an USD

cryption whe
, the program
ent. The cod

R’ to request c
ata value. Th
sent as a one
ds, which use

perating are

-400 cm in a 15

sensor, and t
as first done
t worked as e
the results a
or and the m
and Figure

als. Figure 3
rries the rout
slave” and it

have both an
hed to the Ar

DR sensor at

en using the
ms that run
de uses char
convoy, ‘M’ f

his encoding
e byte packet
es the Arduin

ea

5 degree wide

the servo
e for each
expected.
re not as

measuring
3-8 show

3-9 shows
ter which
t carries a
Ethernet

rduino to
tached in

Ethernet
s in both
racters to
for motor
was used
t. They’re
no’s main

operating

Figu

Figure 3-

re 3-7:

-8: Setu

Setup of front

up of rear mod

model with rou

el with compo
powe

uter R. Arduino

onents (such as
ered by three d

o is powered b

s access point
different power

by computer via

A and motor M

r sources.

a the USB inte

M). The compo

Method | 21

21

rface.

nents are

22 |Method

Figure 3-9

3.4.5.1

The USD
front of i
send its
it. In th
informat
USDR se

3.4.5.2

The mot
speed for
vehicle s
vehicles,

9: Setup
mot

USDR sign

DR sensor wi
it. This signa
data to the c

his experime
tion to the le
ensor it can a

Motor spe

tor speed sig
r this motor
signals be se
, despite chan

p of simple sig
tor, USDR sens

nal

ill be attache
al will be sen
client. In the
ent the lead
ead vehicle to
act if a sudde

eed signal

gnal is used
is the most i
ent with a h
nges in moti

nals test. Fron
sor, and motor

ed to the fron
nt to the host

 experimenta
vehicle did

o inform it of
en braking ac

to accelerat
important as
high priority
on of the lea

nt model with ro
r. Figure 3-7 an

nt of the mod
t from the cli
al setup the

d not have s
f what is hap
ction occurs b

te or brake t
spect of main
y in order to
ad vehicle.

outer and serv
nd Figure 3-8 sh

dels to estim
ient, and if th
front model
such a sens

ppening. As t
by the first v

the model v
ntaining a con
o maintain t

vo. Rear model
hows the bluep

mate the dista
he host has a
did not have

sor. Only th
he rear vehic

vehicle.

vehicle. Choo
nvoy. This re
the desired

 with access p
prints for each

ance to an ob
a similar sen
e a USDR at

he rear vehic
cle is equipp

osing the ap
equires that t
spacing betw

oint, servo
 of these.

bstacle in
sor it will
tached to
cle sends

ped with a

propriate
the inter-
ween the

Method | 23

23

3.4.5.3 Steering signal

An optional part of the model convoy was to make the following model car turn to follow the lead
vehicle, thus it will simply follow the lead vehicle wherever it goes.

3.4.5.4 Request to Join/Leave convoy

Here I will try to implement the same test as was done in the stationary test, where a vehicle requests
to join or leave the convoy. Hopefully some experience was gained from other tests with the models
where I sent signals or text between Arduinos, because this task requires sending signals that will
affect the final testing with the models.

Join and leave requests will utilize a handshaking protocol to ensure a safe and complete join or
leave of the convoy. The enter-convoy request begins with the rear model (acting as a “slave”) sending
a request to the master (i.e., the lead vehicle). The master can accept this convoy-request by sending a
signal to the slave to confirmation that the request has been granted in which case the convoy is
formed. A leave request is similar. The slave can send a leave request which the master accepts and
replies to indicating that the convoy is terminated. However, the master can also disable the formation
of a convoy by skipping the first handshake of a request from the slave. In this case, a convoy is not
formed.

3.4.6 Handling lost connections

In reality V2V communications must be very reliable and lost signals and connections must be taken
into account. Lost signals can be re-sent, but this requires a protocol to ensure that the signals are
re-sent. Lost connections are worse since no signals can be sent and the communication protocol must
start over.

For the tests in the two cars where I make pings I did not implement any handling of lost
connections, but I simply repeated the tests over and over to see where and when connectivity was lost.

It is important to properly handle connection in the tests with the models. Because I used a
wireless router with N-technology, the range of the router is quite large and it transmits quite strong
signals. The results was that it was very difficult to have a connection loss since both models had to be
very far from each other. A simulated connection loss would be sufficient to test what will happen to
the “slave” model vehicle and how it should handle such a lost connection.

Analysis | 25

25

4 Analysis

This chapter summarizes the results of the different tasks described in the previous chapter. It will also
analyze these results and draw parallels to currently developing systems.

The first section covers the basic tests of the components and power measurements. These results
and their consequences are important for the next section’s task to work properly and produce
successful results. The second section concerns the results of the basic ping tests.

The third section gives results about the tests conducted with the LEGO® model cars and the
implementation of the inter-vehicle communication system in these models.

4.1 Voltage measurements

As mentioned earlier, the components needed for this work were two Arduinos (each equipped with an
Ethernet shield), two computers, one router, and one access point.

The initial tests were conducted at a desk or in nearby room, but mainly were conducted within the
same building. The router, the access point, and the computers were connected to mains power. The
Arduinos were powered from their attached computers via a USB-cable which supplies 5V. These
Arduinos can either be powered via the USB host’s 5 VDC or an external power ranging from 7-12 VDC
(The onboard regulator is limited to an input voltage of 6-20 VDC).

For testing the device in real car, power was supplied via the car’s cigarette lighter socket. This
socket will supply ~12 VDC. The router’s power input is labelled 12 VDC at 500 mA. I initially believed
that it would not be a problem for the car to supply this power, but to ensure this I measured the
voltage to be sure of the exact voltage when the car’s engine is off, when the ignition is on, when
starting the engine, when the engine is running, and when turning off the engine. The results of these
measurements are shown in Figure 4-1. As can be seen in this figure the voltage, when the engine is on,
is a little above 14 VDC which I was a little concerned about since the router expected to be supplied
with 12 VDC. To address these concerns I bought an adapter which could be set to different output
voltages including 12 VDC, when the input voltage is 12-24VDC. Measurements of the adapter’s output
voltage during same engine states is shown in Figure 4-2. In both figures the dip in the voltage occurs
when the engines starts. To be more precise, the dip occurs exactly when the starting motor requires a
large amount of current to force the cylinders to move inside the petrol engine. This does not occur
when first turning the ignition key, but occurs shortly after this. This high demand for power is
provided by drawing power from the battery, however this causes the voltage to drop for just a second
because the alternator of the petrol engine then starts charging the battery by supplying it with about
14V. Since the cigarette lighter socket is directly connected to the battery’s poles, this output is also
14V. When I connected the router to the 12V output adapter and ran the car through the same engine
states as earlier, I noted that the voltage drop during engine start did not affect the router, thus the
router stayed on during all of the different engine states.

26 |Analysis

Figure 4-1

Figure 4-2

The
and outp

0

2

4

6

8

10

12

14

16

0

9

9.5

10

10.5

11

11.5

12

12.5

0

s

: Volta

2: Volta
when

access point
put 5 VDC.

Engine
on

1

Engine
on

1

ge measureme

ge measureme
n the engine is

t requires 1 A

2

2

ents of the car’

ents of same so
on

A at 5 VDC.

3

Vol

3

Vol

’s cigarette ligh

ocket but this

Therefore, I

Engine
off

4

tage (V

Voltage (V)

3 Engine
off

4

tage (V

Voltage (V)

hter socket du

time with a con

I used an ad

|||

)

4 5

)

ring a short tim

nverter. It gives

dapter that c

| 20

5 6

me period.

s a steady 12V

could take 12

0 Time (s)

6 Time (s)

V even

2-24 VDC

4.2 P

This sect
results a
analyzed
ICMP pr

4.2.1 R

Pinging
generate
informat
the same
of extra
seconds
between
in Table

Figure 4-3

Table 4-1:

Average

Minimum

Maximu

Figu
requestin
compute

Figure 4-4

Table 4-2:

Average
Minimum
Maximu

ING tasks

tion covers th
are shown a
d. These line
rotocol. The p

Results from

from the com
ed four ping
tion. Figure 4
e relevant inf

information
in the seco

 a request an
4-1. These st

3: Ping

 Statis

time

m time

m time

ure 4-4 show
ng computin
ed over 4 pin

4: Ping

 Statis

time
m time:
m time:

s

he PING task
as Wireshark
es of the scre
protocol of e

m PING tasks

mputer using
gs. Figure 4-
4-7 shows th
formation). W

n. For these
ond column
nd a respons
tatistics were

requests and r

stics of the wir

s the case fo
ng. The resu

ngs.

requests and r

stics of the wir

ks that were
k screenshot
een capture
ach packet is

s

g the built-in
-3 shows the
he results wh
Wireshark sh
tests, the p
of both figu

se. The statis
e computed o

replies between

ed ping from c

or a ping requ
ulting delay

replies between

ed ping from c

performed a
s and the P
where PING
s indicated in

n Microsoft
ese ping req

hen 10 pings
hows the sam

ping request
ures) are the
stics of the w
over 4 pings.

n computer an

computer to ro

uest being se
statistics ar

n two compute

computer to co

0
0
0

as described
PING reques
G requests an
n the fifth co

Windows pi
quests and r

requests are
me informati

times and
e informatio

wired ping fro
.

nd router

uter

0.00

0.00

0.00

ent by one co
e shown in

ers via router

omputer

0.00085s
0.00069s
0.00116s

above in Sec
t time and P
nd PING rep
lumn.

ng tool via th
replies along
e send by the
ion for both t
replies time

on needed to
om computer

138s

132s

141s

omputer and
Table 4-2. T

ctions 3.2.1-3
PING reply
plies occur u

the command
g with other
e Arduino (al
tests, along w

es (shown in
o compute t
r to router a

d the reply se
These statis

Analysis | 27

27

3.2.2. The
time are

utilize the

d prompt
r relevant
long with
with a lot

n units of
the delay

are shown

ent to the
tics were

28 |Analysis

Figu
to the ac
shown in

Figure 4-5

Table 4-3:

Average
Minimum
Maximu

Figu
to the ac
shown in

Figure 4-6

Table 4-4:

Average
Minimum
Maximu

Ardu
Arduino
4-5. The
OS, few r

s

ure 4-5 shows
ccess point (
n Table 4-3. T

5: Comp

 Wirel

time
m time:
m time:

ure 4-6 shows
ccess point (
n Table 4-4. T

6: Comp

 Wirel

time
m time:
m time:

uino make th
sends ping

ese statistics
routines to h

s the pings b
(wireless PIN
These statist

puter connecte

ess PING betw

s the pings b
(wireless PIN
These statist

puter connecte

ess PING betw

he ping requ
requests to c
were compu

handle by the

etween a com
NG between
ics were com

ed to router sen

ween two comp

between a com
NG between t
tics were com

ed to access po

ween two comp

est, compute
computer via

uted over 10
e microcontro

mputer conn
two comput

mputed over 4

nds ping reque

puters 1st case

0
0
0

mputer conn
two comput

mputed over 4

oint sends ping

puters 2nd case

0
0
0

er responds
a router. Th
 pings. (Very
oller?)

nected to the
ters 1st case).
4 pings.

ests to comput

e

0.00344s
0.00277s
0.00395s

nected to the
ers 2nd case)
4 pings.

g requests to c

e

0.00092s
0.0001s
0.00335s

with a ping
e statistics o
y fast pings,

router and a
. The statisti

ter on access p

router and a
. The statisti

computer on ro

reply. Figure
of these ping

possible du

a computer c
ics of these p

point

a computer c
ics of these

outer

e 4-7 shows
gs are shown
ue to Arduino

connected
pings are

connected
pings are

the pings
n in Table
os simple

Figure 4-7

Table 4-5:

Average
Minimum
Maximu

Com
sends pi
statistics
handles

Figure 4-8

Table 4-6:

Average
Minimum
Maximu

7: Ardui

 Statis

time
m time
m time

mputer makes
ng requests
s were comp
more proces

8: Comp

 Wirel

time
m time
m time

ino sends ping

stics of Arduin

s the ping re
to Arduino v

puted over 4
sses)

puter sends pin

ess PING betw

g requests to co

o sending ping

equest, Ardu
via router. Th
pings. (Very

ng requests to

ween Arduino a

omputer via ro

g requests to c

0
0
0

uino replies. F
The statistics
y slow pings

o Arduino via ro

and computer 2

0
0
0

outer

computer via ro

0.00006s
0.00005s
0.00008s

Figure 4-8 s
of these pin
compared w

outer

2nd

0.00473s
0.00019s
0.01215s

outer

hows the pin
ngs are shown
with previous

ngs when a c
n in Table 4
s statistics, c

Analysis | 29

29

computer
-6. These
computer

30 |Analysis

Tabl
Wiresha

Table 4-7:

Ping #

1
2
3
4
5
6
7
8
9

10
Wireless

IP setup:
192.168
192.168
192.168
192.168
192.168

Figure 4-9

Table 4-8:

Average
Minimum
Maximu

s

le 4-7 show
rk screen cap

 PING
obsta

s PING betwe

:
.0.1 = Route
.0.2 = Access
.0.3 = Compu
.0.4 = Arduin
.0.5 = Arduin

9: Wires

 Statis

time
m time
m time

ws the case
pture for this

times (in millis
acles such as w

Distanc
(ms)

609
2
2
2
2
2
2
3
3
3

een compute

r (front car)
spoint (rear c
uter (front ca
no#1 (front c
no#2 (rear ca

shark capture o

stics of a ping f

of a wireles
s case is show

seconds) from
walls in betwee

ce 1m

er and access

car)
ar)

car)
ar)

of a ping from

from a comput

ss PING bet
wn in Figure

m varying distan
en

Distan
(ms)

617
48
39
31
16
56
13
10
63

2033
s point (mob

a computer in

ter in the front

0
0
0

tween two A
4-9 and the

nces. The tests

nce 10m

bile)

the front car to

car to the acce

0.13477s
0.04075s
0.19505s

Arduinos (S
statistics in T

s with 10m and

Dista
(ms)

620
9
7

10
3053

8
2062
1024

7
1058

o the access p

ess point in the

Stationary ca
Table 4-8.

d 20m have als

ance 20m
)
0
9
7
0
3
8
2
4
7
8

point in the rear

e rear car

ase). The

o

r car

Analysis | 31

31

Table 4-9 shows the ping times when driving about 30-40 km/h on normal road with a distance
about 10-15 meters between cars, while Table 4-10 shows the ping times when driving about 50-60
km/h on normal road with distance about 20-30 meters between cars. In the third test, the front car
accelerated very fast from the rear car which resulted in the fourth ping being lost and at time the
distance was about 50 m.

Table 4-9: Ping times when driving about 30-40 km/h on normal road with distance about 10-15 meters between
cars

Test number 1 2 3 4 5

Average time (s) 0.00965 0.00687 0.00301 0.01535 0.02436

Minimum time (s) 0.00374 0.00216 0.00172 0.00313 0.00562

Maximum time (s) 0.01720 0.02028 0.00502 0.03596 0.04876

Table 4-10: Ping times when driving about 50-60 km/h on normal road with distance about 20-30 meters between
cars. In the third test the front car accelerated very fast from the rear car which resulted in the fourth
ping got lost and at time the distance was about 50 m.

Test number 1 2 3 4
Average time (s) 0.11430 0.28424 0.01505 0.00287
Minimum time (s) 0.00374 0.06933 0.00590 0.00211
Maximum time (s) 0.21676 0.48417 0.03442 0.00369

4.2.2 Analysis of PING results

In the mobile implementation of the ping tasks, the setup in the two cars had only one goal initially. It
was to enable two Arduinos be able to ping each other under different conditions while driving.
However, when I setup everything in the cars I decided to make them ping a first time before starting
driving, just to ensure that they were able to ping each other. This is where I encountered a problem. I
could not communicate between the two Arduinos even when the cars standing still near each other. I
could see on the access point that it had associated with the router by a green Light Emitting Diode
(LED). However, I could not understand why the Arduino could not successfully ping the Arduino
connected to access point. I asked the drivers to begin driving even though I had no connectivity
between Arduinos. To avoid wasting time I changed my goal to simply be able to ping the access point
in the other car, thus I had some sort of V2V communication – although it was not the initially desired
communication. This alternate goal was achieved, and the ping response time results shown above
prove that distance and perhaps speed affect the pinging times.

A few hours after this task was done, I tried to troubleshoot the Arduinos and realized that the
Arduino in the rear car attached to the access point did not run its program, therefore it did not have
an IP-address - hence this Arduino was not visible on the network.

One driving test environment I wanted to try was to drive through a tunnel while pinging.
Unfortunately, there was no nearby long tunnel. A future tests should try to ping between Arduinos
when in a tunnel to check whether the tunnel makes a difference.

4.3 V2V implementation in model

This section covers the last testing phase. In this test I implemented a simple V2V or “Inter-Model
communication” using Wi-Fi to communicate and used a USDR sensor to estimate the range between
the vehicles and obstacles. I began by testing the Wi-Fi communication for simple functions such as
steering and setting a specific motor speed. Then I used the USDR sensor to measure distances to

32 |Analysis

obstacles. When those two tests were completed I combined these functions to integrate both USDR
sensor readings and Wi-Fi communication. This enabled me to steer both models in same direction or
running each motor at same speed.

As mentioned in section 3.4.5 the Ethernet shield uses one byte data packet to send bytes to
another Ethernet shield. This became a problem when I wanted to send values longer than one digit
(as ASCII charcters). While I could use letters as commands in the protocol, I recognized that data
values for both servo and motor could have values greater than one digit – I need to support two or
three digit values. Details of how this was done are described in the following subsections.

4.3.1 Wi-Fi communication testing

This first step was to test Wi-Fi communication between two Arduinos, one connected to the router via
Ethernet shield and the other connected to the access point via an Ethernet shield. For these tests I
made the Arduinos PING each other, connect and disconnect to/from each other, and connected every
component I had (motor, servo motor, and USDR sensor). When initially connecting all of the
components I had not yet written code to support each of them, but I wanted to see if there was any
disturbance while these components were connected. Fortunately, this initial testing was success and
there were no errors when the Arduino connected to each other, even when programs begun running.
The first problem I encountered regarding Wi-Fi was that the behavior of the models when the
Arduinos connected to each other as this behavior seemed to differ from time to time when these
device were started. On the controllers (described further in Section 4.3.6), there are two LEDs
indicating different states during the testing process. These LEDs indicated when the Arduinos in the
models were connected to each other and indicated the “handshakes” while joining/leaving a convoy
(handshakes = requesting to join a convoy & the reply indicating that the vehicle was accepted to join
the convoy).

4.3.2 USDR sensor testing

In this testing, I ran through several tests to gain knowledge how the USDR sensor worked. The first
tests were mainly to see how sensitive the sensor was depending on the measured angle and how far
away the obstacle was. One result from the first test was that the floor had a negative effect on the
measurements. Because of that, I increased the horizontal angle of the sensor so that it was pitched up
a bit, about 20 degrees. After this adjustment, the sensor measured ranges perfectly when testing it,
although these test were component tests using only the sensor and some simply code (specifically
code to realize a serial connection with the computer). Using this code, I could monitor the output of
USDR sensor. One observation was that the farther away from the sensor the obstacle was within the
measured area, the longer it took for the pulse to return. This was as expected. However, the signal was
more unreliable as the distance to the obstacle increased. This was not good result because the signal
values could vary between 0-300, and if there was no obstacle within 300 cm, it could cause a very
long delay, since the sensor was waiting for the returning pulse echo.

4.3.3 Signals

Combining Wi-Fi communication, USDR sensor, and the motor was very straightforward and
everything worked as expected. I wrote code for one task or combined two or three tasks. If any
component acted unexpectedly, it was not hard to locate the error in the code. The main tasks where to
ensure that the rear model would not crash into the front model, to have both models steer in same
direction, and ensure that the rear model would properly apply its emergency brake if for some reason
the model in front stopped. All these tasks were part of the main goal of this thesis project. When
testing the individual components (USDR sensor, servo motor, motor), they ran well when sending
data or receiving commands over Wi-Fi. However, when they were connected to each other different
problems began appear.

Analysis | 33

33

4.3.3.1 Keeping distance to front vehicle

The first goal of the test with the two models was to see if the models could maintain a given separation
(i.e., for the following vehicle to remain within a fixed range of the lead vehicle).The goal was not
completely accomplish. Once every component on the models were electrically connected I began
testing, but I noticed a 30 second delay before the front model sent its data to the rear model. It was
very strange that this delay appeared because the requesting and accepting of convoy signals were not
delayed (as confirmed by the LEDs). However, once the “accepting convoy” signal was sent the delay
appeared. It was not easy to locate where in the code this delay originated, since everything was sent
wirelessly between the models. I began by searching the web for delay issues concerning the Arduino
Ethernet shield. However, this seemed to be an uncommon problem, although the issue seemed to be
related to Ethernet shield rev.2 but I used rev.3. Since I did not believe that the Ethernet shield itself
was the source of the delay I experimented with the code. After a while, I found the cause of the delay
and it indeed had nothing to do with Ethernet shield. It turned out that the delay was caused by the
USDR sensor. This sensor is used to measure the distance from the following model to model in front
of it.

Figure 4-10 shows a code snippet of the USDR sensor’s calculation. This code caused the 30 second
delay. However, this was very strange since the code only has two intentional microsecond long delays
plus the measured delay saved in variable “dur”. During a test where I wanted to confirm that this code
snippet was actually causing the delay I clocked the system time, the function millis() which returns
the system time after startup in milliseconds, before the code snippet and right after. Then to subtract
the times I got the time it took to compute the code snippet. If the sensor was working correctly and
since the code variable “dur” could vary between 116 – 23200 (speed of sound 340m/s is equal to 29
µs/cm and measureable distances is 2-400 cm, gives total distance of 4-800 cm which is 116-23200
µs), total time is maximum 23200 + 2 + 10 µs. This is equal to about 0,023 seconds which is nowhere
near the 30 seconds error delay. My conclusion is that the delay must be due to the physical setup of
the USDR sensor. The USDR sensor is mounted on a small breadboard. This board is connected via
wires to the Arduino, a power source, and the system ground. Perhaps the observed delay is caused by
poorly connected wires leading to some of the ranging echoes not being detected or perhaps it could be
because of the total delays in loop is not proper for what the sensor is required. Apparently the sensor
requires a minimum pulse length of 10µs according to [37] but minimum pulse length of 5µs according
to [38] and a minimum delay of 60 ms between two pulses. I wrote my code according to Arduinos
website which used the 5µs but I did not use a minimum 60ms delay between two pulses. These
settings may be the reason why USDR sensor is behaving incorrectly.

 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 long dur = pulseIn(echoPin, HIGH);
 long distance = microsecondsToCentimeters(dur);
Figure 4-10: Code snippet of calculating distance to obstacle.

This problem caused me to be unable to use the USDR sensor together with wireless data transfer.
Since the USDR sensor was supposed to help the system initiate emergency braking if necessary, I did
not see a major problem since the models were not going at high speed (as their speed was limited to
0.54 km/h, for details see Section 4.3.6). Given these low speeds, if the rear model crash into the front
model, it would not be such a great impact. On the first try, I also noticed that the rear model was
travelling a bit faster than the front model, even though each motor had been set to the same speed.

34 |Analysis

This was
weight w
which w
end, whi
might ha
middle o
The diffe
4-12 than

Figure 4

Figure 4-1

s

s probably b
was due to th

was placed ne
ich could be
ave had mor
of the model
erence in we
n the rear mo

4-10: Fro

11: Rear

ecause the fr
he router, w

ear the rear w
seen on the s
re resistance
(see Figure

ight balance
odel shown i

ont model from

model from th

ront model h
which was pla
wheels. Due
suspensions
e than the r
4-11). Figure
cause the re

in figure 4-13

m the side. Lean

e side. Leaning
m

had a differe
aced right ab
to these plac
(see Figure 4

rear model, w
e 4-12 and fi
ear axle to be
3.

ning back beca
wheels are alm

g a bit forward
more extended

ent weight an
bove the rea
cements, the
4-10). Theref
where the w
igure 4-13 sh
end more on

ause of the we
most fully retra

d due to better w
than the front

nd balance. N
ar wheels, an
e model was
fore, the mot

weight was m
how the rear
n the front m

ight, the yellow
acted.

weight balance
model.

Note that mo
nd the heavy
very heavy i
tor of the fro

more balance
axle in a clo

model, shown

w suspensions

e so the suspe

ost of the
y battery,
in its rear
ont model
ed in the

oser view.
n in figure

s on rear

ensions are

F

Figure 4-1

4.3.3.2

I program
#1. Code
master t
same ori
when thi

* The code sn

Figure 4-12:

13: The r

Keeping s

mmed the Ar
e listing 2.3*
then sends th
ientation, i.e
is test was do

nippets are includ

The rear ax

rear axle is not

same directi

rduinos to ru
is the maste

his same serv
e., they steeri
one.

ded in the appendi

xle is horizonta

horizontal due

on as front

un to be able
er’s code and
vo angle valu
ing in same d

ix.

al due to the re

e to not fully re
w

vehicle

e to steer acc
d it gets the s
ue to the rea
direction. Co

etracted suspen

etracted suspe
weight.

ording to the
servo angle fr
ar model. As
ode listing 2.

nsions, becaus

nsion, because

e input from
rom the user
a result, bot

.4 was runni

se of the weigh

e of better bala

m the user of c
r of compute
th models tu
ing on the re

Analysis | 35

35

ht.

ance of the

computer
er #1. The
urn to the
ear model

36 |Analysis

Ther
steering
to choos

Figu

I exa
did not h
drive for
the right
depende
had to d
travelled
moment
static inp
must be
varied de

I trie
steering
reading
make th
require a

Figu

Unfo
bump in
the chas
angle ha
to limit t
chassis.

s

re is a big pr
on the follow
e different p

ure 4-14: St

amined the c
have time to
rward a bit b
t path, it had
ed on time, b
depend on di
d, calculate t
t. The proble
put which al
exactly sam

epending on

ed to apply t
degree value
of the buffer
e delay in ti
a lot of readin

ure 4-15: St

ortunately, th
nto the chass

sis causing t
as a range of
the angles v

roblem with
wing vehicle
aths, as show

teering algo

code for the
o develop a s
before applyi
d to first driv
because the
stance travel
the distance

em with this
lso means th

me, or the US
each vehicle

this solution
e and speed v
r would be la
ime say 3 se
ngs of the bu

teering algo

he models a
is in some ca
the model to
0-180 degre

values to be b

this code wh
is applied di

wn in figure 4

orithm pro

following ve
solution in th
ing the turni
ve forward a
vehicles cou
lled. One po

e between th
s solution is
he distance m
SDR sensor m
es’ speed.

by thinking
value should
arge per seco
conds before

uffer during t

orithm as it

re not exactl
ases. If the m

o stop becaus
ee, with abou
between 40

hen looking
irectly with n
4-14.

oblem

ehicle to see
he code, but
ing as showin
a bit and then
uld drive diff
ossible solutio
he vehicles,
that either t

must be same
must work p

of code algo
d be inputted
ond. If the d
e the followi
those 3 secon

it should wo

ly the same,
model were m
se of the tire

ut 90 degree
and 140 deg

at the steeri
no intentiona

if there coul
t the purpose
ng in figure
n make the t
ferent speed
on is to mea
and then a

the distance
e during all d
properly and

orithms. One
d, but that wo
distance betw
ing vehicle s
nds.

ork

 which cause
moving when
e’s friction a
s orienting t

grees, in orde

ing. With thi
al delay whic

d be a soluti
e was make
4-15. To mak
turn. Howev
at different

asure the dist
apply the ste

between veh
driving, henc

d the distance

was to have
ould require

ween vehicles
should apply

ed the tires o
n this happen

against chass
he wheels st
er to avoid t

is code algor
ch causes the

ion to this p
the followin

ke the vehicl
ver, since tha

times, the a
tance the rea
eering at th
hicles should
ce each vehi

ce can be dyn

e a buffer wh
a big buffer

s was large e
y steering, th

of the front
ens, the tire c
sis. Because
traight forwa
the tires touc

rithm the
e vehicles

roblem. I
ng vehicle
le turn to
at did not
algorithm
ar wheels

he proper
d be as a
icle speed
namically

here every
since the

enough to
hat would

model to
can touch
the servo

ard, I had
ching the

Analysis | 37

37

4.3.3.3 Emergency braking

The emergency braking system was a very important part of what I wanted to accomplish. However,
because the USDR sensor failed to work properly (as described in Section 4.3.2) I chose to deactivate
the sensor and therefore I could not complete the emergency braking system. The idea was that if the
rear model vehicle continued moving toward the front model or was not slowing down sufficiently
based upon wireless commands, the USDR sensor was to override the system and apply the brakes,
thus preventing an impact with front model. Fortunately the speed, as I mentioned above, is very low
thus the result of an impact would be insignificant and the rear vehicle would simply shove the front
vehicle forward a little. As part of future work this functionality should be enabled and tested.

The following pseudo-code should prevent the rear model from crashing into the front model. The
code first checks if convoy mode is active, as otherwise a user is directly controlling the model. In
convoy mode, the distance between the vehicles is estimated using the USDR sensor and the speed of
following model’s motor is adjusted to maintain the desired separation. If the distance is 5 cm or less,
then the motor is immediately stopped, otherwise the motor’s speed is changed depending on how
close the following vehicle is to the lead vehicle. If closer than 10 cm, then the speed is slowed down
more rapidly, while if the separation is between 10 and 20 cm, then the speed is slowed down less
rapidly. When the separation is greater than 20 cm, it is unnecessary to perform an emergency braking
maneuver. The motor speed range is integer values between 0-255, however when increasing the
values from 0 and up to 255, there is first a noise coming from the motor when the values are between
0 and about 30 and the motor is not moving. It is caused by the pwm which is currently changing the
pulse width. Why the motor is not running at those values is also because it requires a minimum
current flow for the axle to start moving, which is too low at low integer values, but at some value the
current reaches the minimum edge and the axle starts to move. This edge is around integer value 30 in
the range 0-255. This value is of course higher than if the motor were not connected to anything, now it
has to start pulling the 1.8 kg vehicle, which resulting the value to be higher. I assume the motor axle
starts move at perhaps integer value 20-25 when it is disconnected from everything.

if(convoy == active){
 if(USDR.measuredDistance < 5cm){
 speed = 0;
 }
 else if(USDR.measuredDistance < 10cm){
 speed-=5;
 }
 else if(USDR.measuredDistance < 20cm){
 speed--;
 }
}

4.3.4 Joining and leaving the convoy

This section was planned to describe the testing of joining and leaving a convoy. While not all of the
desired functionality of the earlier stages of the project was achieved, I put a lot of time into the
process of joining a convoy. I succeeded in making a second vehicle join a convoy. The procedure is
quite simple; a wireless connection must be established to the lead vehicle. The user of the rear model
presses button “B” on their keypad, a couple of LED light up, and the user of front model is ask to press
button “A” (to accept the vehicle joining the convoy), and finally the convoy should be active. In convoy
mode the front model sends it speed data and servo motor degree data to the rear model that should
apply these values to its own motor and servo motor). This was a success and work almost every time.
However, sometimes it did not work and I was unable to solve the problem other than a cold reboot. In

38 |Analysis

the last days of the project, I found a temporary solution was to press the reset button on each Arduino
causing each system to reboot. Most of the time the connectionless state would not re-appear, although
when it appears it was generally because the access point did not get any power or the Ethernet shield
did not have time to initialize.

When things worked as they should, the access point and router were able to connect when the
Arduinos were initialized. My first thought was that a connection between the access point and the
router should be established when the user controlling the rear model pressed “B”, but that lead to
errors (More about that in next section).

4.3.5 Lost connection

Before I built the models, I thought that the users of the models would determine when the connection
between the vehicles was to happen. This would mean that the users of the vehicles would drive their
models for a couple of seconds and then the rear model driver could press the request button “B” to to
initiate the Ethernet connection and tell the rear model to send the request convoy message.
Unfortunately, this did not working since the Ethernet shield behavior was a bit different each time the
system started.

To solve this problem each Arduino waits for a specified time (30 seconds for the front model and
50 seconds for the rear model) to give the router and access point time to boot before attempting to
connect to their first hop device (i.e., router or access point). This was necessary because otherwise the
Arduino-to-Arduino connection was not always established. By waiting for the first hop device to start
the wireless connection between router and access point is always established before there is an
attempt at data transfer.

During testing there was never a lost connection between router and access point since the models
were never far enough from each other that the wireless signal was too weak for communications
between them.

However, I was made a routine to handle a lost connection just in case it should occur. This code
checks if the Ethernet is connected and if convoy mode is active. The following pseudo code illustrates
the idea:

if(Ethernet.connected(){
 if(convoy == active){
 speed = Ethernet.readSpeed();
 direction = Ethernet.readDirection();
 //apply motor speed and servo direction
 }
 else{
 speed = joystick_1.readY();
 direction = joystick_2.readX();
 //apply motor speed and servo direction
 }
}

else{
 speed = joystick_1.readY();
 direction = joystick_2.readX();
 //apply motor speed and servo direction
}

4.3.6 P

Both mo
battery b
has a rou
12 V via
12 V for t
even tho
tested th
Since bo
the whee
wheels a
using a g
about 1.8

With
with 12 V
rear mod
that need

In or
two iden
Figure 4

Power consu

odels used th
because I tho
uter which re
the seconda

the motor. B
ough is made
he motor wit
oth models u
els were abo
about 9080
gearbox to g
8 kg, which I

h every comp
V that the 12
del since the
ded 5V, such

rder for user
ntical contro
-15.

umption and

he same type
ought it was
equires 12 V
ary power in
Both models u
e for 9 V supp
th 12 V, foun

used a 1:7 gea
out 101.5 N.c
mm/min or

get a smaller
I thought was

ponent setup
2 V 1.3 Ah lea
e Arduino co
h as the servo

rs to drive th
ollers to driv

Figu

other model

e of power so
the most su
and 0.5 A. T

nput. The mo
use the same
ply can be su
nd that it re
arbox to get
cm (= 1.05 N

~9m/min. T
r gear ratio
s too much fo

p on the fro
ad acid batte
ould supply 5
o motor and U

hese models,
ve the two m

ure 4-14:

Figure 4-15:

l specificatio

ource, a 12 V
uitable for m
The Arduino
otor shield o
e sort of mot

upplied with
equired 0.56

a smaller ra
Nm) and at
That is equa
was that the

for the motor

ont model, it
ery could sup
5V and grou
USDR senso

I designed a
models. The

I/O connectio

Final mo

ns

V 1.3 Ah lead
my componen

can be supp
on that Ardu
or, a LEGO®

12V. Accordi
 Amps and d

atio and mor
30.5 rpm d

al to 0.15 m
e models we
r to be conne

t was clear th
pply. The ba

und, it could
r.

and impleme
final control

ns of the contr

odel controller

d acid battery
nts. For exam
plied with eit
uino should a
® Power Func
ing to Philipp
developed 14
re power, the
rives the 29
/s or 0.54 k

ere quite hea
cted directly

hat everythin
attery itself w

power the d

nted a contr
ller is shown

roller

y. I chose th
mple, the fro
ther 5 V via U
also be supp
ction XL mot
pe Hurbain [
4.5 N.cm at
e power and

97 mm circu
km/h. The re
avy. They bo
y to the whee

ng could be
weighs 0.6 kg
different com

roller. I chose
n in Figure

Analysis | 39

39

is type of
ont model
USB or 7-
plied with
tor which
[39], who
214 rpm.

d speed of
mference
eason for
oth weigh
els.

powered
g. On the

mponents

e to build
4-14 and

40 |Analysis

These controllers are connected to the models via a 16pin VGA cable. On the controller boards
there are two joysticks, a 4x4 keypad, and two LEDs. The keypad connects directly to the Arduino.
However, the joysticks require 5V. The LEDs are each connected via a 220 Ohm resistor to the
Arduino, while the other side of the diode is connected to a common ground. I chose to use a VGA
cable since it had an appropriate number of pins.

After these controllers were completed, I tested them. During this testing I noticed some issues
when driving, such as unexpected delays and servos behaving weirdly. As I had powered every 5V
component on the rear model using the Arduino’s 5 V output I suspected that this did not provide
enough current to power everything. To solve this, I redesigned the power system for the real model.
Now every component that needs 5 V uses a 12V 5V converter. This converter has a current limit of
3 Amps, which should be enough.

As the front model did not initially have a 12V 5V converter I had to do install such as converter
in order to use the controller.

Once everything worked after initial testing with the controller. I measured the current that was
required by the whole system (the steering servo motor, the driving motor, the keypad, the LEDs
turned on, the traffic between router and access point and of course the Arduino cards themselves) by
connecting a multimeter between the 12 V battery and the input connectors to power system. The
current varied between 0.3 – 0.6 Amps depending how much I used drive motor and steering servo
motor. If we assume an average of 0.5 Amps at 12 V the battery would be sufficient to operate each
vehicle for ~2.6 hours.

4.4 Met goals

The goal of this thesis project was to examine inter-vehicle communication and what the benefits and
problems might occur when using this in convoys. During my work I defined some smaller sub-goals.
These sub-goals made it easier to draw conclusions and then see if the initial goal was met.

These sub-goals were all related to inter-vehicle communication. First, ping was used to examine
the connectivity between the router and access point when they were placed in two different cars. This
enabled me to see how speed, distance, and environment could affect the WLAN radio-signals passing
between two vehicles. Even though I ran into a problem when the one Arduino was not running
properly, I could still use the access point, which this Arduino was attached to send and receive PING
frames and examined the results of capturing this traffic. This sub-goal was met and then I could
continue testing model vehicles by building up my own convoy.

When testing the model vehicles, there were several additional sub-goals defined. Several tests had
good results, but there were a couple tests that did not succeed. A important result of this testing was I
realized that there were only two important sub-goals with respect to successful convoy driving. First,
the speed of the vehicle should be the same and secondly the direction that each vehicle should turn at
each point along a path should be same, with only a small error allowed. After I made the decision to
deactivate the USDR sensor, I was unable to test the emergency braking procedure. In reality, this
functionality would be essential for a real convoy. The steering did not work as well as desired either
because the servo motor was not sufficiently powerful or the attachment of the servo motor to the
steering mechanism should be improved.

Using the two models I was able to establish that the working principle of using inter-vehicle
communication via Wi-Fi to form a convoy would work. However, the combination of small delays,
inaccurate motor speed, and errors in servo positions made the system’s behavior less that I would
have desired. Therefore, while I met the goal of a working convoy using inter-vehicle communication a
lot improvements are required in future work before even this model system will behave as I desire.

The main goal was met from a certain perspective. Although I did not manage to create a complete
working inter-vehicle communication system, I was able to solve many of the problems that came up
and was able to identify some of the issues that need to be taken into account and solved in the future.

As a resu
could gr
occur an
driving.

Figu
models w
rear mod
front mo

ult of this pro
eatly benefit

nd that they

ure 4-16 to F
were not follo
del was simp

odel).

oject I gained
t convoy driv
need to addr

Figure 4-18 s
ow exactly th
ply following

F

d a lot of kno
ving. Given m
ressed with c

hows the fin
he same path
g this lead v

Figure 4-

igure 4-17:

owledge abou
my experien
care since sa

nal system d
h when drivin
vehicle accor

-16: Bega

After 10 se

ut inter-vehic
ce, I know th
afety is a crit

during one tr
ng (the front
rding to the

an driving

conds of drivin

cle communi
here are man
tically impor

rial. It can be
model drive
Wi-Fi data i

ng

ication and s
ny problems
rtant factor o

e easily seen
er was drivin
it was receiv

Analysis | 41

41

see why it
s that can
of convoy

n that the
ng and the
ving from

42 |Analysis

Figure 4

s

4-18: After 20-25 seconnds of driving.
middl

The front mod
le which appar

el at the upper
rently chose its

r left corner an
s own path.

nd the rear moddel in the

Conclusions and Future work | 43

43

5 Conclusions and Future work

This chapter involves the conclusion of the thesis and the future work of the thesis concept. First is my
conclusion, what I have learned, whether I meet my goals, and if I made some mistakes and could pass
some useful knowledge on to others working in the same area. Secondly is what future work I suggest.
Specifically this second section describes things that I intentionally left undone or problems that I was
unable to solve during my project. The last section of this chapter gives some of my reflections on this
work regarding economy, environment, and other aspects.

5.1 Conclusions

I knew that inter-vehicle communication would be an important part of the future of driving and traffic
management when I stated this thesis project 4 months ago. When I researched what had been done
and what a number of large companies were working on I gained more understanding of how the
simple components of different systems (such as measuring distance, communicating between several
vehicle, maintaining a specific speed or direction) could altogether support a new means of safe and
economical driving. By testing these ideas myself with a simple inter-vehicle communication between
two cars implemented using model vehicles, I learned that these concepts could definitely improve
driving. Of course, there are many problems remaining to be solved and ensure a reliable system that
could perhaps replace human driving in the future, there need to be a lot more testing and analysis.

Because I worked alone in this thesis project I feel that I gained a lot of knowledge by trying to
make a working system. Even though I did not create optimal choices regarding the speed, weight, and
cabling, I managed to make an inter-vehicle communication system that worked. I am sure that inter-
vehicle communication will someday work in real vehicles. My use a of a home router and access point
increased the weight of the vehicles, thus I had to use fairly powerful motors. The weight of the vehicles
required me to gear down the ratio of the motor speed about 1:7, otherwise the motor would have
problems propelling the heavy models. An additional source of weight was the lead acid battery, even
though they were the smallest capacity (12 V at 1.3 Ah). This small capacity and the malfunction the
battery charger meant that I had to charge the batteries since the models required about 0.4 Amps.
While each of my choices might not have been the best choice, they were sufficient to make models
that worked sufficient to get some results. This made me realise that when inter-vehicle
communication is transferred to bigger models or real vehicles, everything will need to be adapted to
avoid unnecessary weight.

The goal was to examine whether inter-vehicle communication is a reliable communication
mechanism for using in a convoy and to see if it benefits the convoy or creates new problems. To see if
this goal was met, I analysed my test process and made a conclusion regarding Wi-Fi communication,
since that was the only inter-vehicle communication technology that I used.

The test process was divided into two parts. The PING testing phase where I setup the system in
two real vehicles and analysed the wireless communication while travelling through different traffic
environments. The second phase was to implement the wireless communication in models where the
goal was to make the rear model follow the front model regarding speed and direction.

During the first phase I had to ensure that the Wi-Fi devices, computers, and Arduino card could
communicate while being inside a car. While I did encounter a problem where I could not make a
connection between the computer in first car and the Arduino in the second car, I was able to
communicate with the access point in the second car, which the Arduino was attached to. This enabled
me to both establish that the Wi-Fi communication functioned and that this communication was
independent of the computers attached to the Wi-Fi devices (the router and access point). In the
analysis part of this phase I analysing the PINGs between the computer in the first car and access point
in the second car. This analysis was shown in section 4.2. It is clear that the distance and the speed
may have affected the PING replies leading to longer delays with higher speeds and longer distances.
Some of the PINGs were lost because the distance between the vehicles was too far. From this, I drew

44 |Conclusions and Future work

the conclusion that even though I met the goal of establishing communication between real vehicles,
the environment through which these devices were moving and the driving conditions affected the
communication more than I had thought. Unfortunately, I did not have time to test this
communication in additional driving environments, such as tunnels or high density traffic in cities.

In the second phase I implemented inter-vehicle communication between two models vehicles. I
encountered more problems than I expected, such as no connection between vehicles, data transfer
was different from sending versus receiving, motor was running even though I did not ask for
acceleration via the joystick, servo motor flipped out when trying to turn the front wheels, and the
hand controller was not correctly configured.

While I managed to solve many of the problems that occurred, I was forced to resort to temporary
solutions for some other problems. The majority of my problems were code related, but some of them
were actually hardware based, such as a lost power in the cables or perhaps a hidden shortcut between
a couple of wires. The first small test in which I tested the Arduino-to-Arduino wireless
communication I succeeded almost right away, but the biggest problem was not to establish a
connection it was to handle the data that was being sent between these two processors. It was very
difficult to understand exactly how the Ethernet shield and its Arduino library operated when sending
and receiving data. To better understand what was being done involved sending different types of
values, such as sending as an array, a single byte, an integer, a character, and more. Since I used the
keypad on the controller to request joining a convoy and an accept such a request, I had to read these
input and then sending them via the Ethernet shield as characters (i.e., as bytes). The problem
occurred when receiving them on the other model, as the ASCII values from the keypad were in the
range of values for the motor and servo signals. This was caused by my not understanding that I
needed to encode my message appropriately in order to send and receive them. I solved the problem by
sending and receiving an array and processing the bytes by reading two bytes as a “word” with the
library function “word(highByte, lowByte)”[40].

This thesis has given me a lot of experience even though it was only a 4 month long project. First, it
has taught me how to work alone with a big project and what the limits are when working alone.
Secondly, it showed me how many problems can encounter during a longer period of time. Working
with a project such as this shows the demands for quality is and making decisions about what is
significant and what is not.

I believe it is easy to work in this specific area if you have some interest in vehicles, traffic, or
internet communication in general. It is of course fun to begin a project where you have to research
outside of those areas you normally would work in. For me it has been very interesting to combine
internet technology with vehicles and see what benefit the combination might provide.

If I were to do this project all over again, I would have focused more on only one test of the model
vehicles, and perhaps focused on achieving excellent results for this one test, rather working with many
processes concerning the test models as I tried to accomplish everything myself. Because I worked
alone it is easy to start a variety of efforts and I was eager to succeed in everything. However, for
quality’s sake, which is very important in this area, I should have focused on one component or one
small sub-system of the complete problem of inter-vehicle communication in a convoy. I am not
disappointed with my work and my results, but I know that the quality of work is not the best, with
many errors, and poorly chosen solutions. I will take this experience with me in my career and
especially in my future work.

5.2 Future work

When I started this thesis project I made a survey of what had been done and companies are currently
working on. That information provided the background for my work with the models. In order to
rapidly realize a prototype using these model vehicles I used an existing Wi-Fi router and access point
as the wireless communication system between each of the two models. I also tried to use a USDR to
estimate the distance between the vehicles.

Conclusions and Future work | 45

45

Actual vehicles that use inter-vehicle communication also use GPS (a standard component already
in vehicles). Additionally, cameras have been developed for use in vehicles to implementation ACC or
city emergency brake systems. These components plus the wireless communication system will be the
main components of future V2V systems. All these components were a bit too expensive for my
experiment. Also it seemed they would be very difficult to work with in the small models that I utilized.
Fortunately, by using a low cost router designed for home-use together with some chips to control two
motors and perform the necessary I/O a low fidelity model system could be constructed.

In the future GPS and road-cameras that scan the road ahead could be added to the system to
develop it further. Extensive research is already being conducted for using GPS and road-cameras, so
we expect a lot of progress with these two sources of additional inputs. In comparison to actual V2V
system my models left out these and many other systems. Some future technologies that could be
explored include long distance radar and V2I systems. Radar could be used by the rear model to
measure a much larger area and could be effective even in models. As described in Section 2.1.2,
companies are already working on this.

I did not explore the use of V2I with my model vehicles, as they only use V2V. A V2I system could
interoperate with Wi-Fi devices in public Wi-Fi networks. In the case of model vehicles they could
communicate with Wi-Fi equipped cellphones, intersection cameras, or other devices that could
provide additional inputs to the system. For example, a smartphone with a Wi-Fi interface could have
been used instead of building a special purpose controller.

While there is quite a lot of future work related to this thesis, there are areas that could be seen as a
complement to it. Although I prototype an inter-vehicle communication implementation with two
models, there are many problems remaining before these systems will be implemented in real world,
especially as they need to work safely and be approved by the various regulators that will be involved.

It is not sufficient to carry out tests with only two models. In order to study traffic behavior, there
need to be many vehicles in order to extract patterns of driving in different environments. In the future
it will be increasing important to carry out tests with real vehicles, instead of small. However, such
testing will required greatly increased resources and perhaps authorization from different authorities
to carry out such tests. In order to avoid these problems I chose to work with model vehicles. Another
advantage of model vehicles is of course that any errors would not cause great damage or endanger
human life.

To follow up this work, I suggest focusing on a specific subarea. My work focused on inter-vehicle
communication but attempted to address many related problems in order to realize a prototype. For
the future, it will be important to understand how in vehicle Ethernets can exploited by vehicles and
what messages should be sent and how this communication can meet the requirements for safety,
reliability, and functionality. Clearly, safety is the most important factor when driving in a convoy and
it will be important to understand what requirements this will place on inter-vehicle communication
within the convoy.

5.3 Required reflections

There are many aspects to mention related to this thesis concerning economic, environmental, ethical,
and political issues. For example, V2V, V2I, intra-vehicle communication, and vehicle communication
will need to address safety. As this thesis has emphasized safety is a critically important issue for
convoy driving.

From a health perspective, wireless communication increases the radio energy that humans are
exposed to. Already today, users are exposed to radio waves from their smartphones, surf pads,
Bluetooth devices, Wi-Fi equipped devices, and more. So there is a question of what problems could
this convoy communication cause and what are the benefits of this communication? Do the benefits
outweigh the risks? What can be done to design the vehicles to minimize this exposure while gaining
the maximum benefits?

46 |Conclusions and Future work

The economic aspect of this area is very important and can have a very big effect. This new
technology can further leverage the internet to provide many new services to vehicles in traffic. As
noted in the beginning of this thesis convoy driving can directly reduce vehicles’ fuel consumption.
When combined with the self-driving vehicles that are now being tested the future seems to be
eliminating the driver which could have a significant economic impact on freight transport and
delivery and would also potentially have a major impact on traffic injuries and deaths, while increasing
the effective capacity of existing roadways.

From a social perspective, I believe it will be difficult for society to adapt to a traffic system which
relies on electronics, rather than humans. There is already a lot of reliance on electronics in the form of
traffic lights at intersections, train crossings, and ferries to name a few applications where traffic
movement is governed by electronics. When deploying convoys on highways, self-parking cars, traffic
lights that communicate with individual cars and convoys, etc. there must be high reliability as the
vehicle velocities will be increasing and the spacing between vehicles will be decreasing. So there is a
question of whether considerations of social aspect will slow down the introducing of this technology
or speed up the combination of the internet with traffic systems.

I believe there are some deep ethical issues that we will need to address in the near future. For
example, is it good to rely on electronics that would replace humans in many situations in the future?
What happens when an accident takes place and the car itself was driving? Where would these systems
provide the most benefits? How will these systems affect humans in general? How should humans
react to the introduction of such systems? All of these questions are hard to answer and I myself can
only speculate what the effects will be.

Inter-vehicle communication system will benefit convoy driving and general driving as much as
vehicles that will drive themselves in the future. However, this raises issues such as increased
unemployment (since there will be a reduction in the need for professional drivers), an increased
requirement to trust vehicle and traffic electronics, and the question of where there will be an option
for human interaction with the system. For example, when driving fully automatic vehicles which
communicate via internet should drivers have the option to take over their vehicle and drive as we do
nowadays or will this increase the risks to others too much, increase fuel consumption and pollution to
unacceptable levels, and allow too much independence of movement for individual drivers to be
acceptable to society and governments?

References | 47

47

References

[1] R. Ekman, “XXXX,” Kandidate thesis, KTH Royal Institute of Technology, School of

Information and Communication Technology, Stockholm, Sweden, (expected) 2014.
[2] M. Gunnarsson, “Truck-Trailer Wireless Connections,” Master’s thesis, KTH,

Microelectronics and Information Technology, IMIT, Stockholm, Sweden, 2001.
[3] “A Guide to ensuring Wireless LAN reliability,” Motorola.com. [Online]. Available:

https://www.google.se/search?q=wifi+reliability&oq=wifi+&gs_l=serp.3.0.35i39j0l9.
391088.395202.0.396868.5.5.0.0.0.0.1185.2945.1j1j4-1j7-
2.5.0....0...1c.1.39.serp..3.2.1215.G2Lg0DWVigs. [Accessed: 06-Apr-2014].

[4] US Federal Communications Commission, “Amendment of the Comm ission’s Rules
Regarding Dedicated Short-Range Communication Services in the 5.850-5.925 GHz
Band (5.9 GHz Band): Amendment of Parts 2 and 90 of the Commission’s Rules to
Allocate the 5.850- 5.925 GHz Band to the Mobile Service for Dedicated Short Range
Communications of Intelligent Transportation Services,” US Federal Communications
Commission, Washington, D.C., USA, Report and Order FCC 03-324, Dec. 2003.

[5] “Fuel consumption calculator,” scania.com. [Online]. Available:
http://www3.scania.com/en/Fuel-Consumption-
Calculator/?utm_source=1&utm_medium=2&utm_campaign=6. [Accessed: 06-Apr-
2014].

[6] L. Holm, “XXXX,” Kandidate thesis, KTH Royal Institute of Technology, School of
Information and Communication Technology, Stockholm, Sweden, (expected) 2014.

[7] K. Amouris, “Space-time division multiple access (STDMA) and coordinated, power-
aware MACA for mobile ad hoc networks,” presented at the IEEE Global
Telecommunications Conference, 2001. GLOBECOM ’01, San Antonio, TX, USA, vol.
5, pp. 2890–2895.

[8] Strålskyddsstiftelsen,
“www.stralskyddsstiftelsen.se/op/sites/default/files/pub/faktablad/13-0005-05.pdf,”
stralskyddsstiftelsen.se, 2013. [Online]. Available: about:blank. [Accessed: 06-Apr-
2014].

[9] L. Hardell, “Case-control study of the association between malignant brain tumours
diagnosed between 2007 and 2009 and mobile and cordless phone use,”
International Journal of Oncology, Sep. 2013.

[10] B. Mitchell, “What Is a Wireless Dead Zone?,” About.com Wireless / Networking.
[Online]. Available: http://compnetworking.about.com/b/2011/03/09/what-is-a-
wireless-dead-zone.htm. [Accessed: 06-Apr-2014].

[11] Raytheon Company, “Raytheon Company: ASR-11 Digital Airport Surveillance Radar
(DASR).” [Online]. Available:
http://www.raytheon.com/capabilities/products/asr11/. [Accessed: 06-Apr-2014].

[12] CAN-Cia, “CAN in Automation (CiA): Radar for vehicle safety,” can-cia.org. [Online].
Available: http://www.can-cia.org/index.php?id=1673. [Accessed: 06-Apr-2014].

[13] N. Bowyer, “InterRegs - Regulations Spotlight,” InterRegs.com, Jun-2012. [Online].
Available: http://www.interregs.com/spotlight.php?id=117. [Accessed: 06-Apr-2014].

[14] EUR-Lex, “Commission Regulation (EU) No 347/2012 of 16 April 2012,” eur-
lex.europa.eu, 2012. [Online]. Available: eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:109:0001:0017:EN:PDF.
[Accessed: 25-Apr-2014].

[15] ETSI, “ETSI - Automotive Radar,” ETSI. [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/intelligent-
transport/automotive-radar. [Accessed: 06-Apr-2014].

[16] Bosch Engineering, “Train Driver Assistance Radar, same type of LRR3 radar as used
in vehicles,” http://www.bosch-engineering.de/en. [Online]. Available:
http://www.bosch-

48 | References

engineering.de/en/de/einsatzgebiete/schienenfahrzeuge/sicherheit_8/lokfuehrerassi
stenz/lokfuehrerassistenz_1.html. [Accessed: 27-Jun-2014].

[17] J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A Fully-Integrated 77-GHz FMCW
Radar Transceiver in 65-nm CMOS Technology,” IEEE Journal of Solid-State
Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.

[18] Audi, “Adaptive cruise control - Driver assistants - Audi A8,” Audi UK. [Online].
Available: http://www.audi.co.uk/content/audi/new-cars/a8/a8/driver-
assistants/adaptive-cruise.html. [Accessed: 06-Apr-2014].

[19] Scania, “Adaptive Cruise Control (ACC) - scania.com.” [Online]. Available:
http://www.scania.com/products-services/trucks/safety-driver-support/driver-
support-systems/acc/. [Accessed: 06-Apr-2014].

[20] Scania, “Scania lines up for platooning trials.” [Online]. Available:
http://newsroom.scania.com/en-group/2012/04/04/scania-lines-up-for-platooning-
trials/. [Accessed: 06-Apr-2014].

[21] Scania, “Innovative Scania: Rolling towards platooning.” [Online]. Available:
http://newsroom.scania.com/en-group/2013/09/30/innovative-scania-rolling-
towards-platooning/. [Accessed: 25-Apr-2014].

[22] Volvo, “The SARTRE project,” sartre-project.eu. [Online]. Available:
http://www.sartre-project.eu/en/Sidor/default.aspx. [Accessed: 06-Apr-2014].

[23] EURO NCAP advanced, “Volvo City Safety | Euro NCAP - For safer cars krocktest
säkerhet,” se.euroncamp.com. [Online]. Available:
http://se.euroncap.com/se/rewards/volvo_city_safety.aspx. [Accessed: 06-Apr-
2014].

[24] Comtrol, “Power over Ethernet (PoE) For Intersection Monitoring
http://www.comtrol.com/applications/transportation/application-stories/power-
over-ethernet-poe-for-intersection-monitoring,” COMTROL Corp, Apr-2014. .

[25] C. Lindenau, “Cameras at the Intersection -- Security Today,” 01-Dec-2013. [Online].
Available: http://security-today.com/articles/2013/12/01/cameras-at-the-
intersection.aspx. [Accessed: 06-Apr-2014].

[26] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with Wi-Fi Direct: overview and experimentation,” IEEE Wireless
Communications, vol. 20, no. 3, pp. 96–104, Jun. 2013.

[27] GM News, “GM Developing Wireless Pedestrian Detection Technology,”
media.gm.com, 26-Jul-2012. [Online]. Available:
http://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/e
n/2012/Jul/0726_pedestrian.html. [Accessed: 06-Apr-2014].

[28] V. Hennigan, “Vehicle Technology If cars could talk, what would they say? | Ford Tech
LaneFord Tech Lane,” Ford Tech Lane, 21-Aug-2012. [Online]. Available:
http://fordtechlane.com/if-cars-could-talk-what-would-they-say-to-each-other/.
[Accessed: 03-Jul-2014].

[29] U.S. DOT RITA, “RITA - Intelligent Transportation Systems - DSRC: The Future of
Safer Driving Fact Sheet,” its.dot.gov. [Online]. Available:
http://www.its.dot.gov/factsheets/dsrc_factsheet.htm. [Accessed: 06-Apr-2014].

[30] S. Eiderbrant, Analytical model of a vehicle platoon. 2013.
[31] J. Kjellberg, Implementing control algorithms for platooning based on V2V

communication. 2011.
[32] M. Amoozadeh, Certificate Revocation List Distribution in Vehicular Communication

Systems. 2012.
[33] Scrum Alliance, “What is Scrum? An Agile Framework for Completing Complex

Projects - Scrum Alliance,” scrumalliance.org. [Online]. Available:
http://www.scrumalliance.org/why-scrum. [Accessed: 07-Apr-2014].

[34] D-link, “How to extend your network with a Wireless Bridge,” dlink.com. [Online].
Available: http://www.dlink.com/us/en/resource-centre/how-to-guides/how-to-
extend-your-network-with-a-wireless-bridge. [Accessed: 07-Apr-2014].

References | 49

49

[35] “Arduino Playground - ICMP Ping Library,” playground.arduino.cc, 16-Apr-2014.
[Online]. Available: http://playground.arduino.cc/Code/ICMPPing. [Accessed: 16-
Apr-2014].

[36] ElecFreaks, “HC-SR04 sensor manual,” www.micropik.com. [Online]. Available:
http://www.micropik.com/PDF/HCSR04.pdf. [Accessed: 24-Jun-2014].

[37] SwanRobotics, “HC-SR04 Project | SwanRobotics.com,” www.swanrobotics.com.
[Online]. Available: http://www.swanrobotics.com/HC-SR04_Project. [Accessed: 27-
Jun-2014].

[38] D. Mellis and T. Igoe, “Arduino - Ping,” arduino.cc. [Online]. Available:
http://arduino.cc/en/Tutorial/Ping?from=Tutorial.UltrasoundSensor. [Accessed: 27-
Jun-2014].

[39] P. Hurbain, “LEGO 9V Technic Motors compared characteristics,”
www.philohome.com. [Online]. Available:
http://www.philohome.com/motors/motorcomp.htm. [Accessed: 15-Jun-2014].

[40] Arduino, “Arduino - WordCast,” www.arduino.cc. [Online]. Available:
http://arduino.cc/en/Reference/WordCast. [Accessed: 19-Jun-2014].

Appendix | 51

51

Appendix

This appendix contains the code snippets that I used for different tests. Code listing 1.1 realizes a PING
program which tries to ping the network gateway.

Code listing 1.1

/*
 Ping Example

 This example sends an ICMP pings every 500 milliseconds, sends the human-

readable result over the serial port.

 Circuit:
 * Ethernet shield attached to pins 10, 11, 12, 13
 created 30 Sep 2010
 by Blake Foster
 */

#include <SPI.h>
#include <Ethernet.h>
#include <ICMPPing.h>

byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED}; // max address for

Ethernet shield
byte ip[] = {192,168,0,4}; // IP address for Ethernet shield
IPAddress pingAddr(192,168,0,1); // IP address to ping
int ping_count = 10;
SOCKET pingSocket = 0;
char buffer [256];
ICMPPing ping(pingSocket, (uint16_t)random(0, 255));

void setup()
{
 // start Ethernet
 Ethernet.begin(mac, ip);
 Serial.begin(9600);
}

void loop()
{
 if(ping_count > 0)
 {
 ICMPEchoReply echoReply = ping(pingAddr, 4);
 if (echoReply.status == SUCCESS)

52 | Appendix

 {
 sprintf(buffer,
 "Reply[%d] from: %d.%d.%d.%d: bytes=%d time=%ldms TTL=%d",
 echoReply.data.seq,
 echoReply.addr[0],
 echoReply.addr[1],
 echoReply.addr[2],
 echoReply.addr[3],
 REQ_DATASIZE,
 millis() - echoReply.data.time,
 echoReply.ttl);
 }
 else
 {
 sprintf(buffer, "Echo request failed; %d", echoReply.status);
 }
 Serial.println(buffer);
 ping_count--;
 delay(20);
 }
}

Appendix | 53

53

Code listings 2.1 and 2.2 represents the test where I sent simple motor speed signals between two
Arduinos connected to router and access point, described in section 3.4.5. Code 2.1 runs on the
Arduino which has the router connected to it, and is also connected to computer #1. Code 2.2 then
runs on the second Arduino which is connected to the access point.

Code listing 2.1

#include <SPI.h>
#include <Ethernet.h>
#include <ICMPPing.h>
byte mac[] = {0xDE, 0xAD, 0xBE, 0xFF, 0xFE, 0xED};
byte ip[] = {192,168, 0, 5};
byte master[] = {192,168,0,4};
EthernetClient client;
void setup()
{
 Ethernet.begin(mac, ip);
 Serial.begin(9600);
 delay(1000);
 if(client.connect(master, 40)){
 Serial.println("Connected");
 }
}
void loop()
{
 while(Serial.available() > 0){
 int speed = Serial.parseInt();
 if(client.connected()){
 client.print(speed);
 client.print('e');
 Serial.print("Input speed: ");
 Serial.println(speed);
 }
 else{
 client.connect(master, 40);
 Serial.println("Connected");
 }
 }
}

Appendix | 55

55

Code listing 2.2

#include <SPI.h>
#include <Ethernet.h>
#include <ICMPPing.h>
#include <String.h>
const int PWM_A = 3, DIR_A = 12,BRAKE_A = 9;
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xDD}; //mac address
byte ip[] = {192,168,0,4}; // IP address for Ethernet shield
EthernetServer master = EthernetServer(40);
int sekvens = 1;
String s;
int motorSpeed = 0;
void setup()
{
 Ethernet.begin(mac, ip);
 Serial.begin(9600);
 //pinMode(DIR_A, OUTPUT);
 //pinMode(BRAKE_A, OUTPUT);
}
void loop()
{
 EthernetClient client = master.available();
 if(client == true)
 {
 char c = client.read();
 if(c != 'e')
 s += c;
 else{
 motorSpeed = s.toInt();
 //Serial.println(number);
 s = "";
 }
 }
 delay(10);
 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, motorSpeed);
}

Appendix | 57

57

Code listings 2.3 and 2.4 represents the simple steering signals that were sent from the Arduino
connected to router, to the Arduino connected to the access point. Code 2.3 runs on the first Arduino
and code 2.4 on the second one.

Code listing 2.3

#include <SPI.h>
#include <Ethernet.h>
#include <Servo.h>

byte mac[] = {0xDE, 0xAD, 0xBE, 0xFF, 0xFE, 0xED};
byte ip[] = {192,168, 0, 5};
byte master[] = {192,168,0,4};

EthernetClient client;
Servo servo;

void setup()
{
 Ethernet.begin(mac, ip);
 Serial.begin(9600);
 servo.attach(24);
 delay(1000);
 if(client.connect(master, 40)){
 Serial.println("Connected");
 }
}
void loop()
{
 /*
 Servo turning
 */
 int firstChar = 0;
 while(Serial.available() > 0){
 char type;
 if(firstChar == 0){
 type = Serial.read();
 firstChar = -1;
 }
 if(type == 't')
 {
 int degree = Serial.parseInt();
 servo.write(degree);
 if(client.connected()){
 client.print(type);

58 | Appendix

 client.print(degree);
 client.print('e');
 Serial.print("Input type = ");
 Serial.print(type);
 Serial.print(" value = ");
 Serial.println(degree);
 }
 else{
 client.connect(master, 40);
 Serial.println("Connected");
 }
 }
 else
 {
 int value = Serial.parseInt();
 if(client.connected()){
 client.print(type);
 client.print(value);
 client.print('e');
 Serial.print("Input type = ");
 Serial.print(type);
 Serial.print(" value = ");
 Serial.println(value);
 }
 else{
 client.connect(master, 40);
 Serial.println("Connected");
 }
 }
 }
}

Appendix | 59

59

Code listing 2.4

#include <SPI.h>
#include <Ethernet.h>
#include <String.h>
#include <Servo.h>

const int
PWM_A = 3,
DIR_A = 12,
BRAKE_A = 9;

Servo servo;

byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xDD}; // mac address for

ethernet shield
byte ip[] = {192,168,0,4}; // IP address for Ethernet shield

EthernetServer master = EthernetServer(40);
int sekvens = 1;
String motorData;
String servoData;
int motorSpeed = 0;
int servoPosition = 0;
int writeServo = 0;

void setup()
{
 Ethernet.begin(mac, ip);
 Serial.begin(9600);
 servo.attach(24);
}
void loop()
{
 EthernetClient client = master.available();
 if(client == true)
 {
 char c = client.read();
 //if 't' then receive turning data
 if(c == 't')
 {
 sekvens = 2;

60 | Appendix

 }
 //else if 'm' then receive motor data (not significant in this test)
 else if(c == 'm')
 {
 sekvens = 3;
 }
 else if(c != 'e' && sekvens == 2)
 servoData += c;
 else if(c != 'e' && sekvens == 3)
 motorData += c;
 else if(c == 'e' && sekvens == 2){
 servoPosition = servoData.toInt();
 servoData = "";
 writeServo = 1;
 }
 else if(c == 'e' && sekvens == 3){
 motorSpeed = motorData.toInt();
 //Serial.println(number);
 motorData = "";
 }
 }
 delay(10);
 if(writeServo == 1){
 servo.write(servoPosition);
 writeServo = 0;
 }
}

Appendix | 61

Final versions of code for the models.

There are two versions of the code on both models: TCP with bad steering algorithm and UDP with
not steering algorithm. The UDP versions were tested but the front vehicle was not receiving any data,
however the code algorithms in general are supposed to work. Total of four final codes in this appendix
section. Code listing 3.1: TCP code on front vehicle. Code listing 3.2: TCP code on rear vehicle. Code
listing 3.3: UDP code on front vehicle. Code listing 3.4: UDP code on rear vehicle.

Code listing 3.1

#include <SPI.h>
#include <Ethernet.h>
#include <String.h>
#include <Servo.h>
#include <Keypad.h>

const int
PWM_A = 3, /* pin that controlls pulse width modulation value on motor */
DIR_A = 12, /* pin that controlls direction of the motor */
BRAKE_A = 9,/* pin that controlls if the brake is on or off on the motor */
Joystick_x_axle_pin = A9, /* pin that reads the X-value
 of the right joystick */
Joystick_y_axle_pin = A8, /* pin that reads the Y-value
of the left joystick */
LED_1 = 26, /* LED 1 that represents the ethernet connection state */
LED_2 = 27; /* LED 2 that represents the convoy connection state */

const byte ROWS = 4;
const byte COLS = 4;
char keys[ROWS][COLS] =
 {{'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}};
byte rowPins[ROWS] = {28,31,32,33};
byte colPins[COLS] = {37,34,35,36};
int count = 0;
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

Servo servo;

/* mac address of ethernet shield */
byte mac[] = {0xDE, 0xAD, 0xBE, 0XEF, 0xFE, 0xDE};
IPAddress ip(192,168,0,10); /* ip address of ethernet shield */
unsigned int localPort = 40; /* port to be used in connection */

62 | Appendix

boolean active_convoy = false; /* active convoy variable */
boolean active_request = false; /* request joining convoy variable */
boolean close_convoy = false; /* close convoy variable */

/* create server connection on specified port */
EthernetServer server = EthernetServer(localPort);

const int Maximum_command_length = 128; /* define maximum

command length of buffer */
char command_buffer_char[Maximum_command_length]; /* buffer to write

motor and speed data into */
byte command_buffer_byte[Maximum_command_length]; /* buffer to send

converted motor and speed data */

/* -- */
void setup(){
 pinMode(LED_1, OUTPUT);
 pinMode(LED_2, OUTPUT);
 pinMode(Joystick_x_axle_pin, INPUT);
 pinMode(Joystick_y_axle_pin, INPUT);
 servo.attach(47);
 Serial.begin(9600);/* allow serial connection if computer is connected */

 int i;
 for(i = 0; i < 30; i++)
 delay(1000); /* allow router to be booted up

before initializing ethernet shield */
 digitalWrite(LED_1, HIGH); /* indicate that ethernet initializing has

begun */
 Ethernet.begin(mac, ip);
 delay(1000);
 server.begin();
 delay(1000);
 digitalWrite(LED_1, LOW); /* turn off when ethernet is ready */
}
/* -- */
void loop(){
 /*-----READ 4x4 KEYPAD-----------------*/
 char key = keypad.getKey();
 delay(5);
/* if master has got a request from slave and press 'A' on keypad */
 if(active_request == true && key == 'A'){
 server.write('A'); /* send back char 'A' and wait for echo */

Appendix | 63

63

 digitalWrite(LED_1, HIGH); /* indicate that master has accepted
convoy request */

 }
/* if convoy is active and master press 'C' on keypad */
 if(active_convoy == true && key == 'C'){
 server.write('C'); /* write 'C' to slave */
 active_convoy = false; /* close convoy */
 digitalWrite(LED_1, LOW); /* turn off LED 1 */
 }
/* read right joystick */
 int steering_angle = analogRead(Joystick_x_axle_pin);
 delay(2);
/* read left joystick */
 int motor_speed = analogRead(Joystick_y_axle_pin);
 delay(2);
/*map read values to proper servo angle values */
 steering_angle = map(steering_angle, 1023, 0, 40, 140);

 if(motor_speed < 500)
/* map to proper motor speed values */
 motor_speed = map(motor_speed, 500, 0, 0, 255);
 else
 motor_speed = 0;

 /*apply motor speed and servo degree values */
 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, motor_speed);
 servo.write(steering_angle);
 delay(2);
 /* --------READ ETHERNET DATA---------------- */
 EthernetClient slave = server.available();
 if(slave == true){
 char data = slave.read(); /* read char from server */
 switch (data){
 case 'A': /* if char is 'A' */
 active_convoy = true; /* activate convoy */
 active_request = false; /* reset request variable */
 digitalWrite(LED_1, LOW); /* turn off LED 1 and turn on LED 2 */
 digitalWrite(LED_2, HIGH);
 break;

64 | Appendix

 case 'C': /* if char is 'C' */
 server.write('C'); /* echo it back */
 active_convoy = false; /* and close the convoy */
 break;

 case 'R': /* if char is 'R' */
 active_request = true; /* set current state to request is active */
 digitalWrite(LED_1, HIGH); /* turn LED 1 and 2 ON for one second */
 digitalWrite(LED_2, HIGH);
 delay(1000);
 digitalWrite(LED_1, LOW);
 digitalWrite(LED_2, LOW);
 }
 }
 /* -----WRITE MOTOR AND SERVO DATA -------------- */
 if(active_convoy == true){
 /* write steering angle and motor speed to char buffer */
 sprintf(command_buffer_char, "#steering_angle=%d,motor_speed=%dE\n",

steering_angle, motor_speed);
 int i;
 for(i = 0; i < 128; i++){
/* convert every char to byte value */
 command_buffer_byte[i] = (byte)command_buffer_char[i];
/* when last char is reached, break */
 if(command_buffer_char[i] == 'E'){
 break;
 }
 }
/* send byte buffer to server */
 server.write(command_buffer_byte, 128);
 }
}

Appendix | 65

65

Code listing 3.2

#include <SPI.h>
#include <Ethernet.h>
#include <String.h>
#include <Servo.h>
#include <Keypad.h>

const int
PWM_A = 3, /*pin that controlls the pulse width modulation value of

the motor */
DIR_A = 12, /*pin that sets the direction of the motor*/
BRAKE_A = 9, /*pin that controlles whether the brake is one or of on the

motor*/
trigPin = 48, /*pin that trig the signal of the USDR sensor*/
echoPin = 49, /*pin that listen to the echo signal of the USDR sensor*/
Joystick_x_axle_pin = A8, /*pin that reads the X-axle values on the

right joystick and applies these values to servo motor*/
Joystick_y_axle_pin = A9; /*pin that reads the Y-axle values on the

left joystick and applies these values to motor*/

const byte ROWS = 4;
const byte COLS = 4;
/*matrix that represents the 4x4 keypad*/
char keys[ROWS][COLS] =
 {{'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}};
byte rowPins[ROWS] = {30,31,32,33}; /*match the row pins on the matrix

with Arduno pins*/
byte colPins[COLS] = {37,34,35,36}; /*match the column pins on the

matrix with Arduino pins*/
//create a keypad object by the 4x4 matrix*/
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

/*connection states LEDs*/
const int
LED_1 = 40,
LED_2 = 41;

/* ACC variables */
int keypad_input_value = 0;
int default_acc_distance = 80;

66 | Appendix

int previous_acc_distance = 80;
int current_acc_distance = 80;
int measured_distance = 0;
boolean set_acc_distance = false;
boolean set_acc_speed = false;
boolean acc = false;
int current_acc_speed = 0;

Servo servo;

/* Ethernet variables */
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xDD};
IPAddress ip(192, 168, 0, 11);
IPAddress master(192,168,0,10);
unsigned int port = 40;
EthernetClient slave;
int connect_attempt; /*current attempt to connect to master*/
const int Maximum_connect_attempts = 10; /*maximum times to attempt to

connectt to master*/
const int Maximum_command_length = 128; /*maximum length for commands*/
char command_buffer_char[Maximum_command_length]; /*char buffer for

scaning commands */

/*Convoy variables*/
boolean active_convoy = false;
boolean receive_data = false;
int received_motor_speed = 0;

int wifi_speed = 0;
int wifi_steering = 95;
byte servo_value, motor_value;
/*loop variable for use when parsing the receiving buffer from master */
int current_byte;
int turn_buffer[256]; /*buffer for storing servo angle degrees */
int store_steer_degree = 95; /* default storing value in buffer */
int current_buffer_write_index = 0; /*begin write on first index */
/*begin reading on buffer index 220 for a static delay when begin turning

*/
int current_buffer_read_index = 220;
int received_steering_angle = 0;

Appendix | 67

67

/*---
----------------------*/

void setup(){
 /*setup of LED and joysticks as output or input, and attach servo motor*/
 pinMode(LED_1, OUTPUT);
 pinMode(LED_2, OUTPUT);
 pinMode(Joystick_x_axle_pin, INPUT);
 pinMode(Joystick_y_axle_pin, INPUT);
 servo.attach(24);
 Serial.begin(9600); /* allow Serial connection when debugging or

reprogramming with computer */
 /* Ethernet shield and connection setup */
 int i;
 for(i = 0; i < 50; i++){
/*50 second delay to enable the access point to start up*/
 delay(1000);
 }
 digitalWrite(LED_1, HIGH); /*turn on LED1 for indicating the ethernet

connection is initalizing*/
 Ethernet.begin(mac, ip);
 delay(1000); /* 1 second delay for the initalizing of

ethernet shield*/

 for(connect_attempt = 0; connect_attempt < Maximum_connect_attempts;

connect_attempt++){
/* if a connection with master was established, turn on LED 2 to indicate

drivers of that*/
 if(slave.connect(master, port)){
 digitalWrite(LED_2, HIGH);
 }
 delay(1000);
/* and after 1 second, turn of LED 1 to indicate drivers that ethernet

initalizing has ended */
 if(slave.connected()){
 digitalWrite(LED_1, LOW);
 break;
 }
 }

 int filling_buffer_index;
 for(filling_buffer_index = 0; filling_buffer_index < 256;

filling_buffer_index++){
 turn_buffer[filling_buffer_index] = 95;
 }
}

68 | Appendix

/*---*/
void loop(){
 /*--------------READ 4x4 KEYPAD-----------------------------*/
 char key = keypad.getKey();
 /*---------------READ JOYSTICKS----------------------------*/
 int x_axle_value = analogRead(Joystick_x_axle_pin); /* read value on x-

axle pin */
 delay(2); /* delay 2ms for value to be read properly */
 int y_axle_value = analogRead(Joystick_y_axle_pin); /* read value on y-

axle pin */
 delay(2); /* delay 2ms for value to be read properly */
 int servo_steering_value, motor_speed_value; /* define values

for later appliance */

 /*read values on joystick pins are values of 0-1023 but due to how I

mounted these joysticks on controller,
 the values will be read in negative way. The map-function normally has

input as:
 (source, fromLowest, fromHighest, toLowest, toHighest) which means I

should normally have used it like
 (source, 0, 1023, toLow, toHigh) but I had to use it like (source,

1023, 0, toLow, toHigh).
 Since the joysticks are center-positioned when not used, I had to

filter out the values from the furthest down
 to the center posistion which was, due to the negative reading, values

512-1023. I included a dead-zone of the
 accelerator joystick from 512-530 to remove the accidently reading of

the joystick when center posistioned because
 then values would vary between 510-515. */

 servo_steering_value = map(x_axle_value, 1023, 0, 40, 140);
 if(y_axle_value < 530)
 motor_speed_value = map(y_axle_value, 530, 0, 0, 255);
 else
 motor_speed_value = 0;

 if(active_convoy == false){
 if(acc == false){
 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, motor_speed_value); /* if neither convoy nor

acc is active, */
 servo.write(servo_steering_value); /* apply joystick values to

motor and servo */
 delay(2);
 }

Appendix | 69

69

 else{
 if(measured_distance < 5)
 current_acc_speed = 0; /* stop motor if distance

to obstacle is too close */
 else if(measured_distance < 10)
 current_acc_speed -= 20; /* decelerate motor if

distance to obstacle is fairly close */
 else if(measured_distance < current_acc_distance)
 current_acc_speed -=2; /* decelerate little when

distance is not so short */
 else if(measured_distance > current_acc_distance && current_acc_speed

< reference_acc_speed) /*distance further than set, */
 current_acc_speed += 5; /* accelerate */
 if(current_acc_speed < 0)
 current_acc_speed = 0;
 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, current_acc_speed); /* apply acc speed to motor */
 servo.write(servo_steering_value);/*apply joystick values to servo */
 delay(2);
 }
 }
 else{
 if(measured_distance < 5)
 wifi_speed = 0; /* stop motor when obstacle is very close */
 else if(measured_distance < 10) /* decelerate hard since

wifi_speed will be restored */
 wifi_speed -= 50; /* by the received value from Wi-Fi */
 else if(measured_distance < 20)
 wifi_speed -= 30; /* decelerate fairly hard when

distance is not so long */
 if(wifi_speed < 0)
 wifi_speed = 0;
 if(wifi_speed >= 30){/* enough speed to make motor axle start moving */
 wifi_steering = turn_buffer[current_buffer_read_index]; /*read wifi

steering from buffer */
 current_buffer_read_index++; /* next index */
 if(current_buffer_read_index == 256)
 current_buffer_read_index = 0; /* start over from buffer

beginning */
 }
 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, wifi_speed); /* apply motor speed */
 servo.write(wifi_steering); /* apply servo angle value */
 delay(2);
 }

70 | Appendix

 delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

 /*---------------- READ ULTRASOUND SENSOR ---------------*/
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 digitalWrite(trigPin, LOW); /* reset signal */
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH); /* trig a signal */
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW); /* stop triggering */
 long dur = pulseIn(echoPin, HIGH); /* read the echo */
 measured_distance = microsecondsToCentimeters(dur); /* convert to

distance */

 delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

 /*-----------------------HANDLE KEYPAD BUTTONS-----------------------*/
 switch (key){
 /*ACC ON*/
 case 'A': /* key is A */
 if(active_convoy == false && acc == false){ /* check if convoy is

inactive and acc is off */
 acc = true; /* turn acc on */
 current_acc_speed = motor_speed_value; /* save current

speed to acc speed */
 }
 else if(active_convoy == false && acc == true){ /* check if convoy is

inactive but acc is on */
 acc = false; /* turn acc off */
 }
 break;
 /* "JOIN CONVOY"/"ABORT CONVOY" - REQUEST */
 case 'B': /* key is B */
 if(active_convoy == false){
 slave.write('R'); /* if convoy is inactive, send join request */
 digitalWrite(LED_1, HIGH); /* and turn on LED 1 to inform driver */
 }
 else{
 slave.write('C');/*if convoy is active, send abort convoy request*/
 }
 break;

Appendix | 71

71

 case '#':
 /* when acc is on (only when convoy is inactive) and currently not

already setting speed,
set speed parameter to true */

 if(acc == true && active_convoy == false && set_acc_speed == false){
 set_acc_speed = true;
 }
 else if(acc == true && active_convoy == false && keypad_input_value >

0 && set_acc_speed == true){
 if(keypad_input_value >= 100) /* when acc is turned

on and input speed is higher or equal to 100, */
 current_acc_speed = keypad_input_value; /* save it for

applying to current speed (100 is just a feasible minimum
speed)*/

 keypad_input_value = 0; /* reset incrementing value */
 set_acc_speed=false; /*reset current setting speed state to false*/
 }
 break;

 case 'D':
 /* like speed setting on acc, the distance setting method work the

same */
 if(acc == true && active_convoy == false && set_acc_distance ==

false){
 set_acc_distance = true;
 }
 else if(acc == true && active_convoy == false && keypad_input_value >

0 && set_acc_distance == true){
 if(keypad_input_value > 20) /* feasible minimum

distance between vehicles */
 current_acc_distance = keypad_input_value;
 else
 current_acc_distance = 20; /* if set to lower, the default

value will replace the input */
 keypad_input_value = 0; /* reset the incrementing value */
 set_acc_distance = false; /* reset current setting distance

state to false */
 }
 break;

 case '0': /* check digits */
 case '1':
 case '2':
 case '3':

72 | Appendix

 case '4':
 case '5':
 case '6':
 case '7':
 case '8':
 case '9':
 int digit = (key - '0'); /* change from char to integer */
 keypad_input_value = digit + (keypad_input_value * 10);

/* replace the current keypad_input_value value depending on input */
/* the replacing is active so its happening after every button press */
/* and not calculated after every specifik buttons have been pressed */
/* works for 1-5 digits. Example: */
/* input = 5 -> */
/* keypad_input_value = 5 + (0*10) = 5 */
/* input = 120 -> */
/* keypad_input_value = 1 + (0*10) = 1 -> */
/* keypad_input_value = 2 + (1*10) = 12 -> */
/* keypad_input_value = 0 + (12*10) = 120 */
 }
 delay(10); /* Intentionally delay for proper USDR SENSOR use */

 /*------------------------------TA EMOT FRÅN MASTER----------------------

-----------*/
 if(slave.available()){
 byte read_byte = slave.read(); /* read a byte */
 switch (read_byte){
 case 'A':
 if(active_convoy == false){
 slave.write('A'); /* write acknowledge echo */
 active_convoy = true; /* activate convoy */
 digitalWrite(LED_1, LOW);
 digitalWrite(LED_2, HIGH); /* indicate convoy is active */
 }
 break;

 case 'C':
 active_convoy = false; /* close the convoy */
 break;

 case '#':
 for(current_byte = 0; current_byte < Maximum_command_length;

current_byte++){

Appendix | 73

73

 read_byte = slave.read();
/*convert byte to char value and store in buffer */
 command_buffer_char[current_byte] = (char)read_byte;
 if(read_byte == 'E'){
/* scan the buffer and read the received values of motor and servo */
 sscanf(command_buffer_char, "steering_angle=%d,motor_speed=%d",

&received_steering_angle, &received_motor_speed);
 wifi_speed = map(received_motor_speed, 0, 255, 0, 200);

/* part of steering algorithm - save steering values to buffer for later

readings */
 if(wifi_speed >= 30){
 turn_buffer[current_buffer_write_index] =

received_steering_angle;
 current_buffer_write_index++;
 if(current_buffer_write_index == 256)
 current_buffer_write_index = 0;
 }
 break;
 }
 }
 }
 }
 delay(20);
}
/* ----KONVERTERA ULTRALJUDSENSORNS TID TILL AVSTÅND------------------*/
long microsecondsToCentimeters(long microseconds)
{
 return microseconds / 29 / 2;
}

74 | Appendix

Code listing 3.3

#include <SPI.h>
#include <Ethernet.h>
#include <EthernetUdp.h>
#include <String.h>
#include <Servo.h>
#include <Keypad.h>

const int
PWM_A = 3, /* pin that controls the pulse width modulation value of

the motor */
DIR_A = 12, /* pin that sets the direction of the motor */
BRAKE_A = 9, /* pin that controls whether the brake is on or off */
VRx = A9, /* pin that reads the X-axle values on the right joystick */
VRy = A8, /* pin that reads the Y-axle values on the left joystick */
LED_1 = 26, /* pin for LED. Represents ethernet connection states */
LED_2 = 27; /* pin for LED. Represents convoy connection states */

const byte ROWS = 4;
const byte COLS = 4;
char keys[ROWS][COLS] =
 {{'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}};
byte rowPins[ROWS] = {28,31,32,33};
byte colPins[COLS] = {37,34,35,36};
int count = 0;
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

Servo servo;

byte mac[] = {0xDE, 0xAD, 0xBE, 0XEF, 0xFE, 0xDE};
IPAddress ip(192,168,0,10);
/* IPAddress slave(192,168, 0, 11); */ /* inactive backup connection

setup */
unsigned int localPort = 8888;
EthernetUDP Udp;

boolean active_convoy = false;
boolean active_request = false;
boolean close_convoy = false;

char command_buffer_char[UDP_TX_PACKET_MAX_SIZE];

Appendix | 75

75

byte command_buffer_byte[UDP_TX_PACKET_MAX_SIZE];
int current_index;

unsigned long start_time_request, start_time_ack, start_clock_broadcast,

end_time_request,
 end_time_ack, end_clock_broadcast = 0, broadcast_time = 4000,

time_out_limit = 10000;
boolean time_out = false, timing_out_request = false, timing_out_ack =

false, compute_time = false;

/* Variables for broadcasting from slave to master, broadcasting is LED_2

flashing every time slave
 send a broadcast signal */
boolean broadcast_LED = false, timing_out_broadcast = false;
unsigned long led_start_time = 0, led_end_time;

/*---*/
void setup(){
 pinMode(LED_1, OUTPUT);
 pinMode(LED_2, OUTPUT);
 pinMode(VRx, INPUT);
 pinMode(VRy, INPUT);
 servo.attach(47);
 Serial.begin(9600); /* Allow serial communication with computer when

troubleshooting */

 int i;
 for(i = 0; i < 30; i++)
 delay(1000); /* Allow the router to start up before Arduino

ethernet initialize */
 digitalWrite(LED_1, HIGH); /* Turn on LED_1 to indicate Ethernet shield

is initializing */
 Ethernet.begin(mac, ip); /* Ethernet init */
 Udp.begin(localPort); /* UDP init */
 delay(1000); /* Allow init time */
 digitalWrite(LED_1, LOW); /*Turn off when init is done */
}
/*--*/
void loop(){
 /*----------------------READ 4x4 KEYPAD-----------------------------*/
 char key = keypad.getKey();/*read keypad and save key to character "key"*/
 delay(5); /* allow some time for keypad to be read */

76 | Appendix

 if(active_request == true && key == 'A'){ /* if a convoy request is
active and master pressed 'A',

 send a confirmation char
'A' and wait for echo */

 /* Udp.beginPacket(slave, localPort); */ /*inactive backup
connection setup */

 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());/*create UDP packet */
 Udp.write('A'); /* write 'A' to it */
 Udp.endPacket(); /* send packet */
 timing_out_request = false; /* request timeout is passed */
 timing_out_ack = true; /* allow timeout for the echo of 'A' */
 start_time_ack = millis(); /* start timing */
 digitalWrite(LED_1, HIGH);/* indicate that master has accepted convoy */
 }
 if(active_convoy == true && key == 'C'){ /*if master close the convoy */
 /* Udp.beginPacket(slave, localPort); */ /*inactive backup

connection setup */
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /*create UDP

packet */
 Udp.write('C'); /* write 'C' to it */
 Udp.endPacket(); /* send packet */
 active_convoy = false; /* close the convoy */
 compute_time = false;/* do not compute time when convoy is inactive */
 }
 /*-------------READ JOYSTICKS--------------------------------*/
 int steering_angle = analogRead(VRx); /* read right joystick x-values */
 delay(2);
 int motor_speed = analogRead(VRy); /* read left joystick y-values */
 delay(2);

 /*joysticks are center positioned when not used, it benefits the steering

to automatically steer back to center when
 released. However it is problem for accelerator joystick. When center

positioned, the y-value is half way to max which
 would make the motor to go on half speed if directly applied. The values

must therefore be mapped so center positon is
 equal to zero for the motor. For the left joystick, the center position

to top position represents values 512-0.
 The mapping should therefore be inverted with 512 as lower value and 0

as higher value. To prevent false reading of joystick
 or just accidently touching of joystick, the lowest value is decreased

to 500. This allows a small "dead-zone" for the joystick.
 */

 steering_angle = map(steering_angle, 1023, 0, 40, 140); /* map joystick

values to proper servo angle values (limit: 0-180) */

Appendix | 77

77

 if(motor_speed < 500)
 motor_speed = map(motor_speed, 500, 0, 0, 255); /* map to proper motor

values */
 else
 motor_speed = 0; /* if joystick is moved down from

center position, it should not affect the motor speed */

 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, motor_speed);
 servo.write(steering_angle);
 delay(2);

 if(compute_time){
 end_time_request = millis(); /* clock the current time for the

request convoy timeout variable */
 if(end_time_request - start_time_request > time_out_limit &&

timing_out_request == true)
 time_out = true; /* if 10 seconds has passed

without master accepted convoy, timeout! */
 if(end_time_ack - start_time_ack > time_out_limit && timing_out_ack ==

true)
 time_out = true; /* if 10 seconds has passed

without the acknowledged echo from accepting has returned,
timeout! */

 if(end_clock_broadcast - start_clock_broadcast >= broadcast_time &&
 end_clock_broadcast - start_clock_broadcast < time_out_limit){
 broadcast_LED = true; /* if time between two broadcast

messages was within edge value range, make LED flash */
 led_start_time = millis(); /* clock time for how long LED

should light up during a flash */
 }
 else if(end_clock_broadcast - start_clock_broadcast > time_out_limit)
 time_out = true; /* if broadcast waiting time has

been over limit, make a timeout */
 }
 if(time_out == true){ /* if timeout is in action */
 if(timing_out_request == true){
 active_request = false; /* if timing out was due to slow

aknowledge of request, reset request variable */
 timing_out_request = false;
 }
 if(timing_out_ack == true){
 active_request = false; /* if timing out was due to slow/loss UDP

ack char 'A', reset request variable */
 timing_out_ack = false;
 }

78 | Appendix

 if(timing_out_broadcast == true){
 active_convoy = false; /* if timing out was due to no broadcast,

close the convoy and reset timing out variable */
 timing_out_broadcast = false;
 }
 time_out = false; /* reset time out variable */
 compute_time = false; /* quit compute time */
 }
 if(broadcast_LED == true){ /* make LED light up during a

second when flashing */
 digitalWrite(LED_2, HIGH);
 led_end_time = millis();
 if(led_end_time - led_start_time >= 1000){
 digitalWrite(LED_2, LOW);
 broadcast_LED = false;
 }
 }

 /*------READ ETHERNET DATA---*/
 int packets_available = Udp.parsePacket();
 if(packets_available){
 char packet = Udp.read();
 switch (packet){
 case 'A': /* if received acknowledge echo 'A' */
 active_convoy = true; /* activate convoy */
 active_request = false; /* reset request convoy variable */
 timing_out_ack = false; /* reset acknowledge timing out variable */
 digitalWrite(LED_1, LOW); /* turn off LED_1 */
 break;

 case 'B':
 /* broadcasting from slave vehicle every fourth second */
 start_clock_broadcast = end_clock_broadcast;
 end_clock_broadcast = millis();
 break;

 case 'C':
 /* Udp.beginPacket(slave, localPort); */ /*inactive backup

connection setup */
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create UDP

packet */
 Udp.write('C'); /* write 'C' to it */
 Udp.endPacket(); /* send packet */
 break;

Appendix | 79

79

 case 'R':
 active_request = true; /* got join convoy request */
 start_time_request = millis(); /* start timeout countdown variable */
 timing_out_request = true; /* set timing out to be due to request */
 compute_time = true; /* allow time to be computed */
 digitalWrite(LED_1, HIGH); /* turn on LED_1 and LED_2 for a second */
 digitalWrite(LED_2, HIGH);
 delay(1000); /* one second delay is okey for the timing out range */
 digitalWrite(LED_1, LOW);
 digitalWrite(LED_2, LOW);
 }
 }
 if(active_convoy == true){
 /*---------------------WRITE ETHERNET DATA---------------------*/
 sprintf(command_buffer_char, "#servo=%d,motor=%dE\n", steering_angle,

motor_speed); /*write motor speed and servo degree values
to the buffer that then sends away */

 for(current_index = 0; current_index < UDP_TX_PACKET_MAX_SIZE;
current_index++){ /* UDP_TX_PACKET_MAX_SIZE is default
maximum buffer size, set in EthernetUDP.h */

 command_buffer_byte[current_index] =
(byte)command_buffer_char[current_index]; /* convert buffer
values to byte before send */

 if(command_buffer_char[current_index] == 'E')
/* last char in buffer */

 break;
 }
 /* Udp.beginPacket(slave, localPort); */ /*inactive backup

connection setup */
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());/*create UDP packet */
 Udp.write(command_buffer_byte, UDP_TX_PACKET_MAX_SIZE);

/* write buffer to it */
 Udp.endPacket(); /* send packet */
 }
}

80 | Appendix

Code listing 3.4

#include <SPI.h>
#include <Ethernet.h>
#include <EthernetUdp.h>
#include <String.h>
#include <Servo.h>
#include <Keypad.h>
#include <Wire.h>

const int
PWM_A = 3, /*pin that controls the pulse width modulation value of the

motor */
DIR_A = 12, /*pin that sets the direction of the motor*/
BRAKE_A = 9, /*pin that controls whether the brake is on or off on the

motor*/
trigPin = 48, /*pin that trig the signal of the USDR sensor*/
echoPin = 49, /*pin that listen to the echo signal of the USDR sensor*/
Joystick_x_axle_pin = A8, /*pin that reads the X-axle values on the

right joystick */
Joystick_y_axle_pin = A9, /*pin that reads the Y-axle values on the

left joystick */
LED_1 = 40, /* pin for LED. Represents Ethernet initializing */
LED_2 = 41; /* pin for LED. Represents active convoy */

const byte ROWS = 4;
const byte COLS = 4;

/*matrix that represents the 4x4 keypad*/
char keys[ROWS][COLS] =
 {{'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}};
byte rowPins[ROWS] = {30,31,32,33}; /*match the row pins on the matrix

with Arduno pins*/
byte colPins[COLS] = {37,34,35,36}; /*match the column pins on the

matrix with Arduino pins*/
//create a keypad object by the 4x4 matrix*/
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

/* ACC variables */
int acc_sum = 0;
int default_acc_distance = 30;
int previous_acc_distance = 30;
int current_acc_distance = 30;

Appendix | 81

81

long measured_distance = 0;
boolean set_acc_distance = false;
boolean set_acc_speed = false;
boolean acc = false;
int current_acc_speed = 0;
int reference_acc_speed = 0;

Servo servo;

/* Ethernet variables */
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xDD};
IPAddress ip(192, 168, 0, 11);
/* IPAddress master(192, 168, 0, 10);*/
unsigned int localPort = 8888;
EthernetUDP Udp;
char command_buffer_char[UDP_TX_PACKET_MAX_SIZE]; /*buffer for commands*/
int current_char; /*loop variable for use when

parsing the receiving buffer from master */

/*Convoy variables*/
boolean active_convoy = false;
boolean receive_data = false;
int received_motor_speed = 0; /* received value from sscanf */

int wifi_speed = 0;
int wifi_steering = 95; /* default servo angle for center position */
byte servo_value, motor_value;
int store_steer_degree = 95;
int received_steering_angle = 0; /* receive value from sscanf */

/* time variables */
unsigned long start_time_request, start_time_cancel, start_broadcast_time,

end_time_request, end_time_cancel, end_broadcast_time,
time_out_limit = 10000, broadcast_time = 4000;

boolean time_out = false, timing_out_request = false, timing_out_cancel =
false, compute_time = false;

/*---
----------------------*/

void setup(){
 /*setup of LED and joysticks as output or input, and attach servo motor*/
 pinMode(LED_1, OUTPUT);
 pinMode(LED_2, OUTPUT);
 pinMode(Joystick_x_axle_pin, INPUT);
 pinMode(Joystick_y_axle_pin, INPUT);
 servo.attach(24);

82 | Appendix

 Serial.begin(9600); /* allow Serial connection when debugging or
reprogramming with computer */

 /* Ethernet shield and connection setup */
 int i;
 for(i = 0; i < 50; i++){ /*50 second delay to enable the access point to

start up*/
 delay(1000);
 }
 digitalWrite(LED_1, HIGH); /*turn on LED1 for indicating the ethernet

connection is initalizing*/
 Ethernet.begin(mac, ip);
 Udp.begin(localPort);
}
/*--*/
void loop(){
 /*-----------READ 4x4 KEYPAD---------------------------------*/
 char key = keypad.getKey();
 /*--------------READ JOYSTICKS-----------------------------------*/
 int x_axle_value = analogRead(Joystick_x_axle_pin); /* read value on x-

axle pin */
 delay(2); /* delay 2ms for value to be read properly */
 int y_axle_value = analogRead(Joystick_y_axle_pin); /* read value on y-

axle pin */
 delay(2); /* delay 2ms for value to be read properly */
 int servo_steering_value, motor_speed_value; /* define values

for later appliance */

 /*read values on joystick pins are values of 0-1023 but due to how I

mounted these joysticks on controller,
 the values will be read in negative way. The map-function normally has

input as:
 (source, fromLowest, fromHighest, toLowest, toHighest) which means I

should normally have used it like
 (source, 0, 1023, toLow, toHigh) but I had to use it like (source,

1023, 0, toLow, toHigh).
 Since the joysticks are center-positioned when not used, I had to

filter out the values from the furthest down
 to the center posistion which was, due to the negative reading, values

512-1023. I included a dead-zone of the
 accelerator joystick from 500-512 to remove the accidently reading of

the joystick when center posistioned because
 then values would vary between 510-515. */

 servo_steering_value = map(x_axle_value, 1023, 0, 40, 140); /* map raw

joystick values to servo degree */

Appendix | 83

83

 if(y_axle_value < 500)
 motor_speed_value = map(y_axle_value, 500, 0, 0, 255); /* map raw

joystick values to motor speed */
 else
 motor_speed_value = 0;

 /* if convoy is inactive, set speed either acc speed if acc is activated

or the read value from joystick and set servo degree angle to
read joystick value.

 If convoy is active, set speed and servo degree angle to read values
from master via Wi-Fi.

 Measure distance to obstacle if acc is activated or convoy is
activated, since the speed is not controlled with joysticks */

 if(active_convoy == false){
 if(acc == false){
 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, motor_speed_value);
 servo.write(servo_steering_value);
 delay(2);
 }
 else{
 if(measured_distance < 5)/* very short distance to osbtacle, stop! */
 current_acc_speed = 0;
 else if(measured_distance < 10) /* fairly short

distance, decelerate hard */
 current_acc_speed -= 30;
 else if(measured_distance < current_acc_distance) /* distance to

osbstacle shorter than set distance, decelerate */
 current_acc_speed--;
 else if(measured_distance > current_acc_distance && current_acc_speed

< reference_acc_speed) /*distance further than set, */
 current_acc_speed += 5; /* accelerate */
 if(current_acc_speed < 0) /* lower limit */
 current_acc_speed = 0;
 if(current_acc_speed > 255) /* higher limit */
 current_acc_speed = 255;

 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, current_acc_speed);
 servo.write(servo_steering_value);
 delay(2);
 }
 }
 else{

84 | Appendix

 if(measured_distance < 5)
 wifi_speed = 0;
 else if(measured_distance < 10)
 wifi_speed -= 50;
 else if(measured_distance < default_acc_distance)
 wifi_speed -= 20;
 if(wifi_speed < 0)
 wifi_speed = 0;
 digitalWrite(BRAKE_A, LOW);
 analogWrite(PWM_A, wifi_speed);
 servo.write(wifi_steering);
 delay(2);
 }
 delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

 /*---------------- READ ULTRASOUND SENSOR ---------------*/
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);
 long dur = pulseIn(echoPin, HIGH);
 measured_distance = microsecondsToCentimeters(dur);
 delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

 /*--------------------HANDLE KEYPAD BUTTONS-----------------------*/
 switch (key){
 /*ACC ON*/
 case 'A': /* key is A */
 if(active_convoy == false && acc == false){ /* check if convoy is

inactive and acc is off */
 acc = true; /* turn acc off */
 current_acc_speed = motor_speed_value; /* save current speed

to acc speed */
 reference_acc_speed = current_acc_speed; /* save reference copy */
 }
 else if(active_convoy == false && acc == true){ /* check if convoy is

inactive but acc is on */
 acc = false; /* turn acc off */
 }
 break;
 /* "JOIN CONVOY"/"ABORT CONVOY" - REQUEST */

Appendix | 85

85

 case 'B': /* key is B */
 if(active_convoy == false){
 /* Udp.beginPacket(master, localPort); */
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /*create UDP

packet */
 Udp.write('R'); /* write 'R' to it*/
 Udp.endPacket(); /* send packet */
 digitalWrite(LED_2, HIGH); /* and turn on LED 2 to inform driver */
 start_time_request = millis(); /* clock time and save

it to start_time variable */
 compute_time = true; /* allow computing time */
 timing_out_request=true; /*turn on timing out for joining request*/
 }
 else{ /* if convoy is active */
 /* Udp.beginPacket(master, localPort); */
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create

UDP packet */
 Udp.write('C'); /* write 'C' to it */
 Udp.endPacket(); /* send packet */
 start_time_cancel = millis(); /* clock

time and save it to start_time variable */
 timing_out_cancel=true; /*turn on timing out for canceling convoy*/
 }
 break;

 case '#':
 /* when acc is on (only when convoy is inactive) and currently not

already setting speed,
 set speed parameter to true */

 if(acc == true && active_convoy == false && set_acc_speed == false){
 set_acc_speed = true;
 }

 else if(acc == true && active_convoy == false && acc_sum > 0 &&

set_acc_speed == true){
 if(acc_sum >= 100) /* when acc is turned on and

input speed is higher or equal to 100, */
 current_acc_speed = acc_sum; /* save it for applying

to current speed (100 is just a feasible minimum speed)*/
 acc_sum = 0; /* reset incrementing value */
 set_acc_speed = false; /* reset current setting speed

state to false */
 }
 break;

86 | Appendix

 case 'D':
 /* like speed setting on acc, the distance setting method work the

same */
 if(acc == true && active_convoy == false && set_acc_distance ==

false){
 set_acc_distance = true;
 }
 else if(acc == true && active_convoy == false && acc_sum > 0 &&

set_acc_distance == true){
 if(acc_sum > 20) /* feasible minimum distance

between vehicles */
 current_acc_distance = acc_sum;
 else
 current_acc_distance = 20; /* if set to lower, the default

value will replace the input */
 acc_sum = 0; /* reset the incrementing value */
 set_acc_distance = false; /* reset current setting distance

state to false */
 }
 break;

 case '0': /* check digits */
 case '1':
 case '2':
 case '3':
 case '4':
 case '5':
 case '6':
 case '7':
 case '8':
 case '9':
 int digit = (key - '0'); /* change from char to integer */
 acc_sum = digit + (acc_sum * 10); /* replace the current acc_sum

value depending on input */
 /* the replacing is active so its happening after every button press */
 /* and not calculated after every specifik buttons have been pressed */
 /* works for 1-5 digits. Example: */
 /* input = 5 -> */
 /* acc_sum = 5 + (0*10) = 5 */
 /* input = 120 -> */
 /* acc_sum = 1 + (0*10) = 1 -> */
 /* acc_sum = 2 + (1*10) = 12 -> */
 /* acc_sum = 0 + (12*10) = 120 */
 }
 delay(10); /* Intentionally delay for proper USDR SENSOR use */

Appendix | 87

87

 /* compute different time-outs */
 if(compute_time == true){ /* computing time only when convoy is active */
 end_time_request = millis(); /* get current time in

milliseconds from system boot */
 end_time_cancel = end_time_request;
 end_broadcast_time = end_time_request;
 if(end_time_request - start_time_request > time_out_limit &&

timing_out_request == true)
 time_out = true; /* if 10 seconds is reached

without acknowledge the join request, time out! */
 if(end_time_cancel - start_time_cancel > time_out_limit &&

timing_out_cancel == true)
 time_out = true; /* if 10 seconds is reached

without acknowledge the cancel request, time out! */
 if(end_broadcast_time - start_broadcast_time > broadcast_time &&

active_convoy == true){
 /* Udp.beginPacket(master, localPort); */
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create UDP

packet */
 Udp.write('B'); /* write 'B' (Broadcast) */
 Udp.endPacket(); /* send

broadcast packet every fourth second in active convoy */
 start_broadcast_time = end_broadcast_time; /* reset time variable */
 }
 }
 if(time_out == true){ /* if time out is in action */
 active_convoy = false; /* deactivate convoy */
 if(timing_out_cancel == true)
 timing_out_cancel = false; /* if timing out was due to

cancel request, reset its variable */
 if(timing_out_request == true)
 timing_out_request = false; /* if timing out was due to

joining request, reset its varable */
 compute_time = false; /*don't compute time when convoy is inactive */
 time_out = false; /* reset time out after this block */
 }

 /*---------------RECEIVE FROM MASTER-------------------------------*/
 int packets_available = Udp.parsePacket(); /* check if there are

packets waiting for reading */
 if(packets_available){
 char packet = Udp.read(); /* read a character */
 switch (packet){
 case 'A': /* if we read 'A', master has accepted convoy */

88 | Appendix

 if(active_convoy == false){ /* only if convoy was
inactive before reading 'A' */

 /* Udp.beginPacket(master, localPort); */
 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create UDP

packet */
 Udp.write('A'); /* write 'A' to packet */
 Udp.endPacket(); /* send UDP packet away */
 active_convoy = true; /* activate convoy */
 compute_time = true; /* allow time to be computed */
 start_broadcast_time = millis(); /* clock the broadcast

time variable */
 digitalWrite(LED_1, LOW); /* turn off LED_1 and turn on LED_2 */
 digitalWrite(LED_2, HIGH);
 }
 break;

 case 'C': /* if we read 'C', master sent slave "close convoy" or
confirmed slave's close request */
 if(active_convoy == true){ /* only when convoy is already active */
 active_convoy = false; /* close convoy */
 digitalWrite(LED_2, LOW); /* turn off LED_2 */
 if(timing_out_cancel == true) /* if master confirmed

slave's close request, */
 timing_out_cancel = false; /* reset timing out variable */
 compute_time = false; /* cancel computing time */
 }
 break;

 case '#': /* indicate receiving a buffer */
 Udp.read(command_buffer_char, UDP_TX_PACKET_MAX_SIZE); /*read

buffer */

 /* scan buffer into servo angle and motor speed variables */
 sscanf(command_buffer_char, "servo=%d,motor=%dE",

&received_steering_angle, &received_motor_speed);
 wifi_speed = map(received_motor_speed, 0, 255, 0, 200); /*map

motor speed to proper physical speed according to master */
 wifi_steering = received_steering_angle;

 /* BACKUP (INSIGNIFICANT CODE FOR NOW)
 for(current_char = 0; current_char < Maximum_command_length;

current_char++){
 char read_packet = Udp.read();
 command_buffer_char[current_char] = read_packet;

Appendix | 89

89

 if(read_packet == 'E'){
 sscanf(command_buffer_char,

"steering_angle=%d,motor_speed=%dE", &received_steering_angle,
&received_motor_speed);

 wifi_speed = map(received_motor_speed, 0, 255, 0, 200);
 wifie_steering = received_steering_angle;
 break;
 }
 }
 */
 }

 }
 delay(20);
}
//------------------CONVERT USDR's TIME TO DISTANCE------------------
long microsecondsToCentimeters(long microseconds)
{
 return microseconds / 29 / 2;
}

90 | Append

This sect

Figure 6

Figure 6

dix

tion of appen

6-1: Statem

6-2: Statem

ndix shows th

machine of f

machine of

he statemach

front vehic

rear vehicl

hines represe

cle with TCP

le with TCP

ented by each

P

P

h code listingg.

Figure 6

Figure 6

6-3: Statem

6-4: State m

machine of

machine of

front vehic

f rear vehic

cle with UD

cle with UD

DP

DP

AAppendix | 91

91

93

TRITA-ICT-EX-2014:96

www.kth.se

