DEGREE PROJECT IN COMMUNICATION SYSTEMS, FIRST LEVEL
STOCKHOLM, SWEDEN 2014

Inter-Vehicle Communication
with Platooning

JOAKIM SANDBERG

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

Inter-Vehicle Communication with
Platooning

Joakim Sandberg

2014-07-08

Bachelor's Thesis

Examiner & Academic adviser
prof. Gerald Q. Maguire Jr.

KTH Royal Institute of Technology

School of Information and Communication Technology (ICT)
Department of Communication Systems

SE-100 44 Stockholm, Sweden

Abstract | i

Abstract

Today’s way of driving works very well, but there can be substantial improvements made in the road
systems and in the vehicles themselves. Many of the disadvantages of current road systems and
vehicles can be removed in the future by using appropriate information and communication
technology.

A disadvantage that has been considered to be a major problem for many years is the fossil fuel-
consumption of vehicles. Hybrid-cars and all-electric cars are being developed to reduce the use of
fossil-based fuels. Since it could take a long time for these new types of vehicles to replace vehicles
currently using internal combustion engines, development must also seek to improve current vehicles.
Fuel-savings and safety are two major aspects that researchers and vehicle manufacturers are trying to
address.

One approach that provides fuel-savings is driving in a convoy. Both Scania and Volvo are
currently developing this approach. They aim to achieve the same goal, but in two different ways -
since they do not build upon the exact same concepts. Scania is a major manufacturer of trucks and
buses, while Volvo is a major manufacturer of trucks, buses, and cars. Both are seeking to improve the
fuel-savings for trucks and busses, but Volvo is also seeking to improve fuel-savings for cars.

Unfortunately, with every solution are new problems. Convoy driving brings advantages, but
appropriate communication between the vehicles of the convoy and those seeking to join a convoy is
necessary for this approach to work well. This is particularly challenging as these vehicles are in
moving while communicating. For this reason, the communication needs to utilize wireless links.

This thesis shows in more detail how the inter-vehicle communication works using Wi-Fi and why
this is a good media to use when driving a convoy. The testing of Wi-Fi between two driving vehicles
and in implementation of two model vehicles shows another perspective of Wi-Fi than today’s use of it.

Keywords

IT-system, fuel savings, convoy, Scania, Volvo, wireless communication, Wi-Fi, model vehicles.

Sammanfattning | ii

Sammanfattning

Dagens satt att kora i samhéllet fungerar valdigt bra men det finns naturligtvis massor av nackdelar
med olika vagsystem och fordonen sjalva. Dessa nackdelar kan i framtiden férsvinna med utvecklingen
av IT-systemen.

En stor nackdel som setts som ett problem sen flera ar tillbaka ar bransleférbrukningen hos
fordonen. Det finns hybridbilar och t.o.m. elbilar vilka utvecklas i syfte att spara pa jordens bransle
resurser. Men eftersom det antagligen kommer ta flera tiotals ar innan dessa fordon kommer ersétta
dagens fordon med branslemotorer s& maste utvecklingen ocksa ga i tva vagar, namligen att forbattra
dagens bransledrivna fordon. Bransleférbrukning och sékerhet ar de tva framsta aspekterna vid denna
typ av utveckling.

Ett system som faktiskt forbattrar branslebesparing ar att kora pa led som en konvoj. Detta
korsystem utvecklas just nu av tva storre foretag, Scania och Volvo. De siktar mot samma mal men har
tva olika tillvagagangssatt da de inte ar i grunden exakt likadana foretag. Scania bygger lastbilar och
bussar medan Volvo forutom dessa fordon &ven bygger bilar. Detta ger Volvo en chans att &ven
forbattra bilkdrandet.

Men med varje 16sning kommer det nya problem. Detta satt att kdra ger givetvis fordelar men man
oroar sig anda for kommunikationen som behovs for detta system. Detta &r inte enheter som stér stilla
pa exempelvis ett kontor eller flygplats, utan det ar enheter som ror sig standigt, vilket betyder att
kommunikationen maste vara tradlos.

Denna rapport gar in mer i detalj hur den externa kommunikationen mellan fordon fungerar med
Wi-Fi och varfor det ar ett bra protokoll att anvanda i konvojer. Testerna med Wi-Fi kérandes i tva
bilar och aven i tvd sma modellbilar ger Wi-Fi ett annat perspektiv an dagens anvandning.

Nyckelord

IT-system, Minskad bransleférbrukning, Forbattrad branslebesparing, Konvoj, Scania, Volvo, Tradlos
kommunikation, Wi-Fi, modellbilar.

Table of contents | 5

Table of contents

A STTACT . et e i
[YAV 0] o £ i
Sammanfatiningccooooveeiii s i
NN 74 1] [0 o S i
Table Of CONENTSeeee e \Y;
LISt Of FIQUIES ..ccveici e Vil
IESY 0) B 1= o] (=1 IX
List of acronyms and abbreviations..............cccceeeeviiiiieiiienen, Xi
A 10} A o Yo 1V] o] [1
1.1 General introduction to the area........ccoceevveeeieiiiiiiieiie e, 1
1.2 Problem definition ... 2
1.2.1 ProbIEM ... 2

1.2.2 Reli@bilityoiie e 3

1.2.3 Inter-Vehicle Communicationccooeevviviiieiiieieeieeee, 3

1.24 Environmental iISSUESccuviiviiiiii e 4

1.3 Lo F= | £ 4
1.4 Problem CONtEXE ... 4
15 Research MethodolOgycoevvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 4
1.6 Structure of thiS theSIS ... 5
2 Background.........oooooiiiii 7
2.1 AN A T 7
2.1.1 DASR ..o 7

2.1.2 BOSCN .t 7

2.1.3 T [T3 10 o N 8

2.1.4 F XU o | 8

2.15 S Yor= 1 1= NP PRSP 8

2.1.6 o] 1Yo T 9

2.2 VT e e 9
2.2.1 G 9

2.2.2 [T (o 10

2.3 DS R C . 10
2.3.1 Path hiStOrycoovviiiiiiiiiiii 10

2.3.2 Path PrediCtion ... 11

2.3.3 Emergency Electronic Brake Lights.............coovvviiiiiiinnnee. 11

2.3.4 Blind Spot Warning.........cccoooeeeeviieeiiiiiii e 11

2.3.5 Lane Change Warningcceeeeeeveveeeeeeiiiiiieeieiieeeeeeeeeen 11

2.3.6 Front Collision Warningccoovvvvviiiieeeeeeeeeeceee e 11

2.3.7 Do Not Pass Warning DNPW............cccccciiiiiiiiiiiiiiiiee, 11

2.3.8 Intersection MoVviNg ASSISt.......ccooeeiiiiieiiiiiiiee e 11

2.4 ReEIALEA WOTK .. oot 12
3 MELNOA e e 13
3.1 Choice of Method.......cocueiiiiiii e, 13
3.2 [0 - | 14

6 |Table of contents

3.3 P0G ESS i 14
3.3.1 COMPONENTS ...euiiiiiee e 15

3.3.2 IMplementation............coovevuviiiii e 15

3.4 TASKS e, 15
34.1 Successfully PING (Stationary)ccccceeeevevvviviiiinneeeeeeee. 16

3.4.2 Successfully PING (Mobil€).........ccccoovveeiiiiiiiiiiiiiieeeeeeee, 17

3.4.3 Send text messages (Stationary)ccoeevevvveviiieeeeeeeeen. 19

3.4.4 Send simple signals (Stationary)cccccvvevvvvviiiieeeeeeenn, 19

3.4.5 Send simple signals (Mobile) ..., 20

3.4.6 Handling lost connectionscoooviiiiiieeeicececeee e, 23

A ANAIYSIS oo 25
4.1 Voltage mMeasuremMeNntS.o 25
4.2 PING TASKS ceiiiiiiiiiiiiiiiiiiiiiiieeeeeeet ettt eeeeeeeeeeees 27
4.2.1 Results from PING taskS.........coooviiiiiiiiiiiieeceeceiiin 27

4.2.2 Analysis of PING resultS........ccccooeeeviviiiiiiiiiieee e, 31

4.3 V2V implementation in model ... 31
431 Wi-Fi communication teStingcoovvvviiiiiiiiiiiiieeee, 32

4.3.2 USDR SeNnsor teStiNg.......uvueeiieeeeeeiieiiiiiie e 32

4.3.3 SIGNAIS . 32

4.3.4 Joining and leaving the convoyccccccceeeiiee e, 37

4.3.5 LOSt CONNECLIONcceviiieiiiiie e 38

4.3.6 Power consumption and other model specifications 39

4.4 MEL QOAIS .ot 40
5 Conclusions and FUture Workco.coeveeviiiiieiiieieieeeeeennn, 43
5.1 (000 [o3 18 E=Y 10 2 £ 43
5.2 FULUTE WOTK ettt e e e et e e e e eae s 44
5.3 Required reflectionsccoeiiiiiiiiiece e 45
RETEIrENCES ..., 47
F N 0] 0 1= [0 | PR 51
(@Yo [53] o o 00 000 51
COAE ISTING 2.0 .. 53
(@0 Yo L= 1ES3 1] o o T2 55
COode lISTING 2.3 .. et 57
(@0 Yo [TES 1] o T2 59
COodE lISTING 3.2 . i 65
(@0 Yo L= TES (] o T 70 74

COodE lISTING Bid o 80

List of Figures | vii

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4
Figure 3-5:
Figure 3-6:

Figure 3-7:

Figure 3-8:

Figure 3-9:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:

Figure 4-8:
Figure 4-9:

Figure 4-10:

Figure 4-11:

Figure 4-12:
Figure 4-13:

Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:

Airflow with large and small inter-vehicle separation...................cc......... 1
AIrflOW @lONQ tFUCKS ..eveeieeccecccee e 1
Airflow along one truck and several carscccccceeeveieiiiieieee e 2
Post-I1T notes for organizing the wWork progresscccoccvveeiviiieeeennee 14
Simple setup of an access point, router, and a couple of Arduinos........ 16
Cigarette lighter socket adapter, direct voltage, no conversion 17
Cigarette lighter socket adapter, conversion to5V 1Accccocveeeeen. 18
Setup of COMPULENS INTWO CAIS ... 18
Ultrasound distance radar sensor which can measure about 2-400

cm in a 15 degree wide operating area. [36]cccccovivirieiiiiiieee i, 20
Setup of front model with router R. Arduino is powered by

computer via the USB interface.ccccccvveeeee i 21

Setup of rear model with components (such as access point A and

motor M). The components are powered by three different power
SOUNCES. ettt e e e et ettt e e e e e e e ettt b s e e e e e e e e eeb e e e e e e e e e ebba e e e e e e e e e ennbn e e eeees 21
Setup of simple signals test. Front model with router and servo.

Rear model with access point, servo motor, USDR sensor, and

motor. Figure 3-7 and Figure 3-8 shows the blueprints for each of

BB e 22
Voltage measurements of the car’s cigarette lighter socket during a
SNOIT TIME PEITOM. ... 26
Voltage measurements of same socket but this time with a

converter. It gives a steady 12V even when the engineison.................. 26
Ping requests and replies between computer and router 27
Ping requests and replies between two computers via router 27
Computer connected to router sends ping requests to computer on
(oo ES LS o 0] 1 o | RSP PERPRT 28
Computer connected to access point sends ping requests to

COMPUEET ON FOULBTciiiiiiiiie ettt e e a e e e e e e e e e s 28
Arduino sends ping requests to computer via routerccccccceeueeee 29
Computer sends ping requests to Arduino via router.............ccccceeee..... 29
Wireshark capture of a ping from a computer in the front car to

the access PoINt IN the FEAr CaAl..........ooviiiiiiiiiiiiee e 30
Front model from the side. Leaning back because of the weight,

the yellow suspensions on rear wheels are almost fully retracted......... 34

Rear model from the side. Leaning a bit forward due to better
weight balance so the suspensions are more extended than the

FroNtMOdEL. ... 34
The rear axle is horizontal due to the retracted suspensions,

because of the WeIght..........oovviii i 35
The rear axle is not horizontal due to not fully retracted

suspension, because of better balance of the weight.cccccceeini. 35
1/0 connections of the controller............ccc 39
Final model CONTIOlIEr.........c..oeviiiii e 39
Began driVINg........ooiiiiiiiiiee e 41
After 10 seconds Of driVINgccvvviiiiieie e 41

Vi

8 |List of Figures

Figure 4-18: After 20-25 seconds of driving. The front model at the upper left
corner and the rear model in the middle which apparently chose
IES OWN PALN. oo e e a e e e e e 42

List of Tables | ix

List of Tables

Table 3-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:

Table 4-8:

Table 4-9:

Table 4-10:

INItial COMPONENTS.coiiiiiiiie e 15
Statistics of the wired ping from computer to routercccccceeeeeennn. 27
Statistics of the wired ping from computer to computer.............c......... 27
Wireless PING between two computers 1St Caseccccveeveeeeeeieiicivnnnnen. 28
Wireless PING between two computers 2nd Case.........cccccvveeeeeeeiinnnnnen. 28
Statistics of Arduino sending ping requests to computer via router..... 29
Wireless PING between Arduino and computer 2ndcccooccvveeeenne 29
PING times (in milliseconds) from varying distances. The tests

with 10m and 20m have also obstacles such as walls in between.......... 30
Statistics of a ping from a computer in the front car to the access

POINT IN TNE FEAN CANvviiiiiiiiee et e e 30
Ping times when driving about 30-40 km/h on normal road with
distance about 10-15 meters between Cars..........cccccevviiieeeiiiiiiee e 31

Ping times when driving about 50-60 km/h on normal road with
distance about 20-30 meters between cars. In the third test the

front car accelerated very fast from the rear car which resulted in

the fourth ping got lost and at time the distance was about 50 m. 31

List of acronyms and abbreviations

ACC
AEBS
AlS
BSW
CAN
DASR
DNPW
DSRC
EEBL
FCW
GM
GNNS
GPS
IMA
ITS
LCW
LDWS
LED
LIDAR
LIN
PoE
P2P
SARTRE
STDMA
TTL
U.S. DOT
USDR
V2l
V2V
VDL
WAVE
WIFI
WLAN

adaptive cruise control

Advanced Emergency Braking System
automatic identification systems
Blind Spot Warning

Control Area Network

Digital Airport Surveillance Radar
Do Not Pass Warning

Dedicated Short Range Communication
Emergency Electronic Brake Lights
Front Collision Warning

General Motors

Global Navigation Satellite System
Global Positioning System
Intersection Moving Assist
Intelligent Transportation System
Lane Change Warning

Lane Departure Warning System
Light Emitting Diode

LIght Detection And Ranging
Local Interconnect Network

Power over Ethernet

Peer To Peer

SAfe Road TRains for the Environment

Self-Organised Time Division Multiple Access

Time To Live

United States Department Of Transportation

UltraSound Distance Radar
Vehicle To Infrastructure
Vehicle To Vehicle

VHF Digital Link

Wireless Access in Vehicular Environments

Wireless Fidelity (i.e. Wireless Networks)

wireless local area network

List of acronyms and abbreviations | xi

Xi

Introduction | 1

1 Introduction

This chapter describes the specific problem that this thesis addresses, the context of the problem, the
goals of this thesis project, and outlines the structure of the thesis.

1.1 General introduction to the area

This thesis will introduce readers to the general area of convoy driving and then conduct a deeper
examination of inter-vehicle communication (i.e., communication between the vehicles in a convoy).

As one can notice when driving today, the distances between vehicles depends on the road surface,
weather conditions, type of roadway, other vehicles, and local speed limit. For example, on a normal
concrete road with a speed limit 30 km/h the distance between vehicles may be only a few meters,
while on a highway during winter the distance should be at least 10 meters. Today this inter-vehicle
separation is normal behaviour, as drivers do not want to crash into other vehicles.

Today drivers are eager to achieve fuel savings due to the high cost of fuel and their desire to live in
a more sustainable manner. There are many ways to save fuel while driving. One factor that increases
the amount of fuel that must be consumed to move a vehicle forward is air resistance. Decreasing air
resistance can save fuel. One method is to drive closer to the vehicle in front of you. In this case, the
airflows above the vehicle in front of you can will go direct above your vehicle rather than first
traveling down between the vehicles and then go over your vehicle. Figure 1-1 to Figure 1-3 show these
two different patterns of airflow.

AIRFLOW

N —

Ty — -

Figure 1-1: Airflow with large and small inter-vehicle separation

AlRFLOW

Figure 1-2: Airflow along trucks

2 |Introduction

AIRFLOW

e |

_
B ' N

Figure 1-3: Airflow along one truck and several cars

Unfortunately, at high speeds it is impossible for human drivers to drive closely following the
vehicle in front of them due to the high risk of crashing into this vehicle if the vehicle in front brakes
rapidly. The solution is to introduce a system that prevents such crashes, while enabling close inter-
vehicle spacing. In order to do this the vehicles must communicate with each other, leading to inter-
vehicle communication. Not only must there be inter-vehicle communication, but also this
communication is safety critical — so we must ensure that this communication is both secure and
reliable.

There are three types of communications that are candidates for implementation in systems today:
short range wireless communications systems, such as wireless local area network (WLAN) (e.g. Wi-
Fi*) and Dedicated Short Range Communication (DSRC), RADAR, and Global Navigation Satellite
System (GNSS) — such as Global Positioning System (GPS). Each of them has their own advantages
and disadvantages. Our expectation is that one or more of these alternatives can be used to introduce a
secure and reliable system that enables vehicle to closely follow the vehicle in front of them, thus
building a convoy.

1.2 Problem definition

We define the problem, and then describe the requirements for reliability. Next, several of the different
types of communication technologies that could potentially be used in inter-vehicle communication are
considered®. Finally, we consider the current environment and what requirements a solution using
wireless communication has to fill.

1.2.1 Problem

Although the problems of realizing a convoy might seem more related to traffic engineering, design,
and perhaps the construction of vehicles, this project takes an information technology (IT) perspective
— specifically focusing on the use of inter-vehicle communications to realize and facilitate vehicle
convoys. The problem is to select an appropriate communication technology (including protocol stack)
for inter-vehicle communication in order to realize and facilitate vehicle convoys.

" Wi-Fi is a trade name for devices that utilize the IEEE 802.11 standards.
T For a detailed discussion of wired communication within vehicles see the candidate thesis by Rasmus Ekman [1].

Introduction | 3

1.2.2 Reliability

In general, there are two ways of realizing inter-vehicle communication: wired and wireless
communication links. While wired communications in many settings offers high reliability it is
infeasible in some settings. For example, it is possible to used wired communication between a truck
and its trailer (or trailers). In this setting a wired communications link works well and this solution has
been in use for many decades. Although wireless replacements for this link have been investigated (see
for example [2]).

In the setting that is the focus of this thesis project, wireless communication will be used for inter-
vehicle communication. This means that each vehicle needs to be equipped with one or more antennas
and transmitters & receivers. Depending on the specifics of the wireless link the transmitters and
receivers will use different types of antennas (in the case of radio links) or emitters/detectors (in the
case of optical links).

The reliability of inter-vehicle communication is important to prevent incorrect information from
being used. Sources of error include environmental noise, weather, and intentional attacks. For
example, a malicious attacker could generate fake packets; conduct signal gaming against wireless
receivers; attempt to introduce viruses to cause problems with the electronic systems connected to the
receiver(s), etc. A secure and reliable system has to consider both accidental and purposeful
impairments.

Different types of wireless links offer different levels of reliability and safety. For example, WLAN
links can enable reliable and very secure communication [3]. WLANSs are very common today and
nearly all smartphones, laptops, etc. have one or more WLAN interfaces built into them. WLAN links
work well when the end-points are close to each other; however, these links can be subject to
interference due to other transmitters and the interaction of the radio waves with the environment.
DSRC links are similar to WLAN, but they have been allocated a dedicated portion of the wireless
spectrum. For example, the US Federal Communications Commission (FCC) has allocated 75 MHz of
spectrum at 5.9 GHz for vehicle safety applications[4]. RADAR systems emit a signal and listen for
reflections of this signal. A scanned RADAR system can be used to scan a volume of space in front of a
vehicle (to identify obstacles such as vehicles, persons, animals, structures, etc.). Additionally, the
RADAR system can exploit the Dopper shift information to tell if the surface causing the reflection is
moving toward or away from the RADAR emitter. A RADAR system’s reliability depends upon how
sensitive the receiver is, how rapidly the system scans the volume of space, how the received signal is
processed, etc. GNSS systems, such as GPS, need to be able to get signals from three or more satellites
in order to compute their position in three dimensions and from four or more satellites in order to
compute their position and time. Buildings, vehicles, tunnels, etc. may prevent the GNSS receiver from
being able to receive signals from a sufficient number of satellites, thus reducing the accuracy of the
positioning (and time) information. In severe cases, the device may not be able to compute its position.
Many GNSS receivers use supplementary sources of information (such as accelerometers) to improve
their reliability. In some cases, a combination of GNSS receiver and information from fixed base
stations is used to provide improved accuracy and reliability.

1.2.3 Inter-Vehicle Communication

As noted earlier inter-vehicle communication requires high reliability and security as this
communication is being used in a safety critical application. This is particularly true when the vehicles
are moving at high speed with only very limited separations. In this setting data loss, incorrect
information, and unreliability may result in severe damage or even death.

The primary use of GNSS systems in vehicles today is for navigation to a destination and to get
directions to that destination. Trucks have utilized a GPS receiver to help the truck achieve a better fuel
economy, for example by using information from the GPS receiver to select the most appropriate gear
and when to use brakes during a descent. Since trucks have much greater fuel consumption than

4 |Introduction

normal cars (0.4-1.2 L/10 km for a car versus 3.5-4.5 L/10 km for a big truck with a heavy load[5]) the
fuel savings by electing the most appropriate speed, gear, braking profile, etc. can be considerable for
trucks. Additional information concerning the use of GPS can be found in [6]. Later in this thesis we
will examine if GNSS can be helpful in inter-vehicle communication, for example by considering the
use of these systems as proposed in Hakan Lans’s Self-Organised Time Division Multiple Access
(STDMA)[7] data link to an create automatic identification systems (AlS) (for maritime use) and VHF
Digital Link (VDL) Mode 4 for air traffic control.

1.2.4 Environmental issues

Today there are many different communication systems. Many of these systems are wireless. The
communication devices have some requirements in order for the communication to work properly.
First, they have to reach other devices — this means distance is an important factor. The material of
buildings and objects that the radio waves must pass or reflect from is a factor. Other requirements are
for example that communication should be available despite the weather or other traffic passing
between devices. The later means that wireless communication should be possible even when other
devices are using same protocol, same source and destination address, and even same frequency.
Therefore, the different types of wireless communication systems should not disturb the existing
systems.

Additionally, it is important that these systems should not constitute a health problem[8]. Today
there are many different types of wireless communication systems, such as cellular phones (including
mobile 3G and 4G systems), emergency services, Wi-Fi, and many more. All of these devices emit radio
waves. With more wireless communication, the cumulative amount of radio wave energy is increasing.
This is an important aspect since radiation has a negative effect on human body[9].

Another factor to take into account is the dead zones that occur either due to long distance from
the source or because different signals destructively interfere with each other [10]. In summary, when
creating wireless networks, careful considerations of environmental issues are as important as the
functionality of the system.

1.3 Goals

The main goal of this thesis project is to examine how to utilize inter-vehicle communications to realize
and facilitate vehicle convoys. This examination must consider whether this communication can be
sufficiently reliable and secure to be used to safely realize a convoy. This analysis will consider the
effect of convoys on traffic flows and whether convoys will create new problems.

1.4 Problem context

The examination carried out in this thesis project must consider environmental, technical, and safety
aspects of an inter-vehicle communication system. Safety is obviously a critical aspect since we
formation of a convoy will reduce the spacing between vehicles and should collisions occur the risk of
damage or even death is high. This is especially true when the vehicles are moving at high speeds as the
system will need to operate largely automatically since there is not enough time for the slow reactions
of humans to prevent a collision (or in the worst case a chain reaction of collisions).

1.5 Research Methodology

To find relevant information about earlier work and information that is trustworthy | have chosen to
search popular websites for the different subject areas. | will not search forums and online
encyclopaedias (such as Wikipedia) since they are not reliable sources. School libraries, websites of
public authorities and newsrooms are considered reliable sources of information. Later in this thesis, |

Introduction | 5

will analyse information using common sense and the scientific and engineering methods that | have
learned in my studies, and if necessary, | may even need to consider some less reliable sources.

1.6 Structure of this thesis

This thesis is divided into chapters. This first chapter introduced the thesis area, the problem, and the
goals of this thesis project. Chapter 2 provides relevant background information for the readers of this
thesis. Chapter 3 describes the method used to solve the problem and achieve the stated goals. Chapter
4 gives the results of the analysis of the proposed solution(s). The thesis concludes in Chapter 5 with a
summary of conclusions, suggestions for future work, and some reflections on the economic, social,
sustainability, and ethical aspects of this thesis project.

Background | 7

2 Background

Convoy driving has not been introduced globally, but it has already gained some interest. The primary
focus thus far has been on larger vehicles (such trucks) with heavy loads, but this approach has also
been tried with cars. This chapter will describe some of the early projects to introduce convoy driving.

The chapter begins with a description of a RADAR sensor, as this is an important sensor that has
been applied in some approaches to convoys. This is followed by a description of how Wi-Fi is
implemented in vehicles and how some vehicle manufacturers envision the use Wi-Fi. This is followed
by a description of the DSRC system. Finally, the chapter ends with a summary of related work.

2.1 RADAR

Radar has been used in many applications ranging from distance measurement to scanning for
obstacles, clouds, vehicles, etc. In air traffic control airplanes communicate with air traffic controllers
and airport based guidance systems in order to navigate safely from one location to another while
avoiding other aircraft, storms, mountains, etc. The same idea is used with boats and ships at sea.
Additionally, traffic control use radar for detecting vehicles that are going faster than the posted speed
limit. Road/highway departments use radar to detect voids under the road surface (in order to plan
road repairs).

2.1.1 DASR

Traditional air traffic control radar has enabled airport controllers to keep track of planes in a three
dimensional space with high precision and to monitor weather conditions. Today these high precision
radars for areas near air terminals are being replaced the Digital Airport Surveillance Radar (DASR)
which are more efficient[11].

2.1.2 Bosch

Bosch has developed high precision radars for usage in vehicles. Radar is used in vehicles to assist
other systems with the aim of increasing driving safety[12]. To understand how this is realized we need
to know a little bit about several other technologies used in modern vehicles.

A controller area network (CAN) is a communication system within the vehicle. It is typically
realized as a bus that interconnects different types of microcomputers so that these separate
controllers can communicate with other systems. For more information about CAN see the thesis of
Rasmus Ekman[1].

A related concept is a Local Interconnect Network (LIN). LIN (like CAN) is an internal
communication network, but it allows smaller and more lightweight systems to connect with each
other. To use CAN the microcomputers need to be relatively advanced, more complex, and typically
more expensive; while LIN allows simpler and lower cost interconnections.

Adaptive Cruise Control or Automatic Cruise Control (ACC) is implemented in most new vehicles
as an upgrade from the standard cruise control. ACC is similar to standard cruise control, but is
adaptive so that if the vehicle in front is braking, then this car will apply its brakes. ACC enables a
vehicle to maintain a minimum fixed distance from the vehicle ahead of it.

According to EU regulations[13], Advanced Emergency Braking System (AEBS) needs to be
implement in different classes of vehicles (categorized in terms of the total number of wheels, number
of seats, or freight weight and the total weight), specifically vehicles with the following properties[14]:

8 |Background

e M2 = Vehicles with mass under 5 tonnes*, at least four wheels, and maximum of eight seats.
e M3 = Vehicles with mass above 5 tonnes, at least four wheels, and more than eight seats.

e N2 =Vehicles for goods carriage between 3.5 tonnes and 12 tonnes.

e N3 =Vehicles for goods carriage above 12 tonnes.

A Lane Departure Warning System (LDW) is a system that warns the driver if the vehicle is
beginning to move outside of its lane. The system takes into account whether the turn indicator has
been activated. This technology can also be used to assist the driver to keep the vehicle centred in the
lane.

ACC, AEBS, and LDW systems are used to assist the driver in order to increase safety. ACC, AEBS,
and some LDW systems use radar as input. Bosch is still developing their radar systems. The first
version used a radar system operating in the 24 GHz frequency band to scan the area in front of the
vehicle. However, this frequency is used by other applications[15], hence a 77 GHz version was
subsequently introduced[16]. As the frequency increases the results are greater precision and the area
that the radar can cover increases, but the required power can be decreased if the components are fully
integrated[17: pp2746-2756].

2.1.3 Functions

The radar in vehicles can achieve a lot even though it is a quite simple component. If the radar
transceiver is placed at the vehicle’s front grill, it can scan an area from half a meter ahead up to 300
metres. Additionally, it may be able to detect vehicles driving in adjacent lanes when this other vehicle
is a couple of metres ahead of the transceiver. That means when driving on a single lane road in the
countryside, when the road goes to the left or the right, the radar still has knowledge of the vehicles
ahead.

2.1.4 Audi

Audi has introduced a new development to increase the safety. They implement radar to scan ahead
and to scan behind the car. Since the driver of vehicle A (the lead vehicle) cannot apply the brake of
vehicle B (unless they are communicating), all vehicle A can do is to prepare for a possible crash with
vehicle B coming from behind. In order to prepare, vehicle A scans the area behind it and if vehicle B is
approaching too fast, it tightens the seatbelts, folds up seats, and lowers the windows to about 90%,
leaving just a small gap for air. If a crash does not occur, then the system restores the previous settings
and carries on.[18]

2.1.5 Scania

Scania is manufacturing trucks and buses. Today’s trucks and busses consist of many IT-systems.
Some of these IT systems directly control and operate engines and gearboxes. For example, it is
possible to optimize the engine speed and choice of gear without any driver input. Additionally, the
driver can control these subsystems.

Although most of these systems can be switched on or off by the driver, most drivers prefer to keep
these systems engaged because they contribute substantially to efficient and safe operation of the
vehicle. Several years ago Scania developed and implemented[19] standard cruise control in many
cars. This innovation has the ability to maintain a fixed vehicle velocity, even when going up and down
small hills. Some cars and Scania trucks have extended ACC to make use of RADAR system that scan in
front of the vehicle in order to detect upcoming obstacles. If the vehicle is closing on an obstacle, then
the ACC slows the vehicle down to a speed that will not result in a collision. This is of course most

* Here tonnes refers to metric tonnes.

Background | 9

efficient at high speed on highways as opposed to driving within cities where starting- and stopping
occurs more frequently.

Scania is in process of introducing what they call “platooning”. Their first step is to use ACC to
maintain a specific separation distance from the vehicle in front of the vehicle, thus establishing a
convoy. In this first phase they simply programmed the ACC to maintain an optimal distance to vehicle
in front in order to gain efficiency, hence minimizing fuel consumption[20]. They are now
implementing a combination of Wi-Fi, GPS, and RADAR to support platooning.[21]

2.1.6 Volvo

Volvo has a very ambitious platooning effort in their project called SAfe Road TRains for the
Environment (SARTRE). This project builds upon a threefold problem statement: environment, safety,
and congestion.

Volvo has taken a different approach than Scania. Since Volvo also manufactures cars, they have
focused in their project on convoys consisting of both large trucks and cars. They have already
implemented this system to realize a convoy consisting of a leader truck (which acts as a master) and
following cars (which act as slaves to this master). What is different with their platooning from Scania’s
systems is that the following cars are not only using ACC but also use automatic steering. In other
words, the cars are driving themselves without any input from the driver. These cars simply follow the
leader truck’s speed and direction.[22]

The radar system in Volvo vehicles has been used mainly to prevent collisions in a city (where
speeds are slow). Their radar system uses a Light Detection and Ranging (LIDAR) sensor which detects
obstacles ahead and can stop the car when operating at speeds lower than 30km/h. As with many of
the automotive radar systems which implement automatic braking, the computer in the car prepares
the brakes when the radar senses that a crash is highly likely, enabling the brakes to be applied more
quickly.[23]

2.2 Wi-Fi

Wi-Fi is widely used to realize WLANs. When one hears the term “Wi-Fi”, many people immediately
associate it with home networks, office networks, school networks, public networks, and perhaps even
networks on airplanes (as some airlines have installed WLANS on their aircraft).

What if Wi-Fi was used in another application area, such as for vehicular traffic? Today the
Internet is used for traffic control, for example the traffic cameras and red light cameras of some cities
uses either Power over Ethernet (PoE)[24] or 3G or 4G cellular networks[25] to communication with a
central surveillance control center. Many vehicle manufacturers have already introduced Wi-Fi in
vehicles in order to improve their vehicles in different ways. Of course, the main function has been
safety improvements, but this technology has also been applied to improve traffic flow.

221 GM

General Motors (GM) has introduced Wi-Fi as a safety improvement of their vehicles. Their idea is that
vehicles can communicate which each other, i.e., vehicle-to-vehicle (V2V), and even communicating
with pedestrians, bicyclists, and other infrastructures, i.e., vehicle-to-infrastructure (V2I). Their
hypothesis is that peer-to-peer (P2P) communication can decrease communication latency, since
latency is a very important factor in preventing traffic accidents. If one did not use P2P
communication, then all communication would to go through access points which will introduce a bit
more delay. As a result not only vehicles need to be equipped with access points or routers, but other
devices, such as each pedestrian’s smartphone or tablet must have applications that support this P2P
communication when the pedestrian is traveling near vehicular traffic. GM’s system utilizes “Wi-Fi

10 |Background

Direct®” [26] (a P2P standard for Wi-Fi) to prevent many different types of accidents once it is widely
deployed in cities.[27]

2.2.2 Ford

The United States of America’s Department of Transportation (DOT) is working on V2V together with
many vehicle manufacturers. However, the US DOT is not in charge of what kind of V2V system is
implemented in vehicles. Ford is one of many vehicle manufacturers that have chosen to work with Wi-
Fi systems. Their system has every vehicle (with this system implemented) broadcast its position,
heading, and speed to nearby cars. This results in every car with this system being able to calculate if
another car could potentially crash into this vehicle. This Wi-Fi operates on a secure channel so that
only V2V cars speak to each other.[28]

2.3 DSRC

Similar to Wi-Fi, DSRC is a wireless protocol developed for V2V by the U.S. DOT and several vehicle
manufacturers. DSRC is an element of an intelligent transportation system (ITS). Although DSRC does
not support fully automatically driving vehicles, it is a major step toward a more secure and
autonomous world of vehicles and traffic.

DSRC can be divided into many subcategories of systems. All have one common goal: safety. Since
DSRC includes a lot of safety systems which works in parallel, a lot of information must be sent
between and received by the DSRC devices. This information is carried via different types of messages.
This data includes:

e GPS position,

e Speed,
e Acceleration,
e Heading,

e Transmission state,
e Brake status,

e Steering wheel angle,
e Path history, and

e Path prediction.

All but the last two are already common data in most vehicles, where this data may be used for
existing safety systems. As a result there are already computers inside vehicles collecting data from
various sensors, but in DSRC path history and path prediction have been added [29]. The reasons for
adding these two additional types of data are described in the following two subsections.

2.3.1 Path history

This system combines data from the different types of DSRC messages to calculate the historic route
for the last couple of hundreds of meters. The system dynamically creates a series of waypoints at
different distances between them (depending on the road). As the vehicle moves, it deletes older data
points when they are no longer necessary. For a long straight path (no sudden curves), the path history
is very simple, therefore the distance between data points can be quite far. However, when driving
around a curve, the direction is always changing so the data points are closer to each other in order to
give more precise data about the historic path of the vehicle.

Background | 11

2.3.2 Path Prediction

Path prediction is similar to path history, but instead of storing waypoints for the path that has already
been driven a path is calculated based upon the planned route to a destination, i.e., the potential route
the vehicle will follow in the future. For this to work in the short term — without a specific destination,
the system combines GPS data with the steering wheel angle, brake setting, and acceleration, to predict
a possible route. DSRC uses path prediction and path history to predict and prevent future crashes.

2.3.3 Emergency Electronic Brake Lights

When driving several vehicles in a row, as in a convoy, it is sometimes difficult for drivers in the middle
or further back in the convoy to see what is actually happening far in front of them, as most of the time
they can only see the vehicle in front of them. Therefore, if an accident or a sudden stop occurs by the
first driver of the convoy, the last driver may not know of this until all of the drivers ahead of them
have noticed the sudden stop, thus a crash is highly probable.

Emergency Electronic Brake Lights (EEBL) can be used to prevent this problem by communicating
to all of the trailing vehicles when a vehicle ahead is making a sudden stop. In such an event EEBL
activates a light on the dashboard or windscreen increasing the probably that the driver will be able to
stop before crashing.

2.3.4 Blind Spot Warning

DSRC also seeks to improve safe lane changing while driving. However, the blind spot is a problem
that exists when driving, but it is possible to assist drivers with a Blind Spot Warning (BSW) system.
When a vehicle is detected within the blind spot area and the driver applies their turning indicator a
light on the rear view mirrors will flash.

2.3.5 Lane Change Warning

Lane Change Warning (LCW) is similar to BSW, but by using V2V DSRC can know that a vehicle is
approaching the blind spot before a lane change is attempted, preventing a stressful situation for both
the driver attempting to change lanes and the driver approaching in that lane. If the driver heeds the
warning this may prevent an accident. The system uses the same flashing lights that BSW uses.

2.3.6 Front Collision Warning

The Front Collision Warning (FCW) system uses the EEBL as a warning system, whether driving in a
convoy or approaching a stationary vehicle on the road ahead when no reaction is taken by the driver.

2.3.7 Do Not Pass Warning DNPW

The Do Not Pass Warning (DNPW) is warning system that may prevent many common stressful
situations. Imagine that a truck is climbing slowly up a hill and you want to pass it to maintain your
tempo. However, since you are going up a hill, you might not be able to see an oncoming vehicle until it
is very close to you. DNPW uses DSRC to communicate with approaching vehicles (also using DSRC),
thus as soon as you attempt to pass (applying the turning indicator and switching lane) the DNPW will
warn you if another vehicle is approaching in opposite direction.

2.3.8 Intersection Moving Assist

There are many intersections in the road network today. Not all of them are safe, due to limited
visibility (with buildings or trees blocking your light of sight or due to a vehicle standing on the side of

11

12 |Background

the road) or due to a vehicle stopped in the intersection. Intersection Moving Assist (IMA) is a DSRC
system that via V2V calculates if another vehicle is approaching the intersection. If so, the system
warns the driver to be more careful via flashing lights on the dashboard. If a vehicle has stopped at an
intersection and another vehicle is approaching the intersection at high speed the driver of the
stationary vehicle can be warned before entering the intersection.

All these various subsystems of the DSRC provide safely improvements. Although DSRC offers
many possibilities to an individual vehicle, it works best with all other vehicles are equipped with the
same DSRC system. Therefore, there is a potentially long adoption curve and a substantial aggregate
investment must be made to achieve a fully functioning system. Additionally, the system will need to
be improved and optimized in the future, while the devices that must be installed in each vehicle will
need to have a low price. U.S. DOT believes that widespread adoption is still many years in the future.

2.4 Related work

As described above, there are some companies working with developing inter-vehicle
communication in different perspectives, such as V2I, V2V, and the vehicle’s own technology in traffic
such as brake assist and warnings.

Fortunately, there are also a lot of students that are working with the area as well, even though
they do not have the same resources available. As long as they have the interest, ideas and the
knowledge, they can contribute to the development as well.

There are many theses in this area with all different or quite similar perspective of the area. Here is
mentioned three theses done by students of KTH and Linkdping University.

There is a thesis done by Simon Eiderbrant [30] which is a more analytic model of the convoys
with a very deep mathematic perspective. It is described very deeply with formulas how forces works
on the convoy and how different driving environments affect the driving.

Another thesis is done by Joakim Kjellberg [31] and describes also the convoy driving but with a
more analytic perspective of algorithms. This is also an interesting perspective since the algorithm is
the key of a platoon to be working correctly.

The last mentioned related thesis is done by Mani Amoozadeh [32] and is also a more of algorithm
perspective but is more deeply dug into messages that are sent in the convoy. The Certificate
Revocation List (CRL) is the key in the thesis.

All of these theses are very interesting because they all are within the same area of work, but each
perspective is very different from another.

Method | 13

3 Method

This chapter describes what | am going to do to solve the problem stated in Section 1.2, how | will do it,
and how | aim to accomplish the goals stated in Section 1.3. First, | will describe my method of work.
Why I have chosen this method and why | reject other methods. This is followed by a description of the
goals and how | will attempt to accomplish them. This will be followed by a description of the
implementation of a prototype and the planned tests, modelling, and analysis.

The overall work is described as a list of tasks. Each of these tasks is described along with how it
should be done. These tasks include setting up a test-bed and what software to be used.

The sections of this chapter will describe the method and guide both physical and theoretical
progress in this thesis project.

3.1 Choice of method

I have chosen to organize my work here with the help of Scrum method. This is because | have
experience from an earlier course in using this method for a project. From that course (IT-project, built
a robot); | learned that using Scrum to organize all of the tasks from the beginning to the end of the
project will result in more qualitative progress and maybe also achieve a better result.

Scrum was originally introduced within software develop since software development is more agile
than the hardware develop department and Scrum is an agile-method [33].

In my earlier IT-project course, | was introduced to Scrum and learned then that even though we
worked with a hardware project we could organize our work with Scrum. Since my work in this thesis
includes both hardware development and software development, | have chosen to organize the
complete effort with Scrum. Unlike the earlier course and the original applications of Scrum, I will
work alone rather than in a team. However, this thesis project is being done in parallel with two other
related thesis projects — hence there is some degree of interaction with these other two thesis projects.

| began by collecting every idea | could find in a directory and later sorted through this material. |
began by collecting information about previous work in this area. This helped provide me with a good
understanding of this area. Next, | began with the actual modelling and testing of network signals (as
described in the next chapter). These efforts lead to the realization that | needed to organize by effort.
My own method of collecting, storing, and working with information would not have worked with all of
the tasks that I planned for this thesis project. One of the first steps was to organize tasks by writing
notes and organizing these notes as shown in Figure 3-1.

13

14 |Method

Figure 3-1: Post-IT notes for organizing the work progress

3.2 Goal

My goal was to realize a simple convoy using model vehicles. These models could be used to examine
the principle of a convoy and to understand how inter-vehicle communication could be used. This is an
ambitious project, but I believed that | could build upon well-established solutions to reach the
project’s goal.

I was so eager to build the models that | was later going to use that | purchased the parts | did not
already have. Unfortunately, this is not a good idea at the very beginning of a project, because tasks
may change due to changes in the demands, available resources, or even the whole idea behind the
project. Although I built the models initially, 1 knew that there was a limit to what | could achieve using
models. Without further research about inter-vehicle communication or my own testing of different
communication systems, it was impossible to create a suitable working system for inter-vehicle
communication.

3.3 Progress

My progress was divided into a number of different stages. To achieve a working convoy with the
models and gain competence in the area, | had to do many tests in order to understand the different
problems that needed to be solved.

The first stage was to collect a lot of information about the area. The next stage was to come up
with ideas about how the communication needed to work. These stages established the theoretical
foundation for the thesis. The next stage was to test my ideas and analyze the results of these tests in
order to change components or adjust the direction of my progress.

When deciding what components | should work with, there were many different options to choose
between. Subsequently | needed to make even more decisions about what components to choose. In
the following subsections, | will describe some of the initial test stages and their components. The first
major decision was to use a router and a WLAN access point for communication between the vehicles.
As | had a couple of Arduinos laying around together with a couple of Ethernet Shields for them, rather
than purchasing expensive Wi-Fi shields for the Arduino (at ~US$100 each) | decided to use a cheap
router as a host and an WLAN access point for a client. Later, this host was placed in the first vehicle of
the convoy and one client was placed in each of the following vehicles.

Method | 15

3.3.1 Components

The initial set of component are listed in Table 3-1. Most of these components were chosen because
they were available, as opposed to being specifically selected for this project.

Table 3-1: Initial components

Component Description Weight (grams)

Computer #1 Dell XPS13i7 CPU, WLAN Interface, USB- Gigabit
Ethernet Interface, Windows 8.1

Computer #2 HP Pavillion DV6 AMD Turion X2 CPU, WLAN
Interface, Ethernet Interface, Windows 7

Router D-Link GO-RT-N300 powered with 12 VDC, 0.5 A 200
Access point NETGEAR WNCE2001 powered with 5 VDC,1 A 50
two Arduinos MEGA 2560 35 each
http://arduino.cc/en/Main/arduinoBoardMega2560
Arduino shield Ethernet shield based on Wiznet W5100 ethernet 25
chip.
http://arduino.cc/en/Main/ArduinoEthernetShield
Arduino shield Motor shield based on the dual full bridge L298 25
(foruse in chip. Motor max current 2A.
models) http://arduino.cc/en/Main/ArduinoMotorShieldR3
UltraSound ElecfreaksHC-SR04 ranging module, measurement 14

Distance Radar | range ~2cm to ~400cm, measurement angle 15
(USDR) sensor | degrees, measurement accuracy 3mm.

Battery (for use | Make model “HQ Sealed Rechargeable battery” 600
in models) 12 V and 1.3 Ah lead acid battery

3.3.2 Implementation

Three different configurations were tested. The first test configuration was setup is on a “test-bench”
where everything is on a desk and mainly powered by mains power (using a 230 VAC to 12 VDC
adapter for the router and a 230 VAC to 5VDC adapter for the access point). The laptops were
powered either by mains power adapters or by their internal batteries.

The second test configuration involved placing the devices in one or two vehicles. Some of the
system tests required only one vehicle, but other tests required two vehicles. The components were
powered either by internal/external batteries and/or the cigarette lighter socket.

The final test configuration was a LEGO® convoy model with each of the components powered by
external batteries.

3.4 Tasks

This section enumerates the tasks that 1 needed to complete. These tasks were expected to generate a
large amount of data that could subsequently be analyzed and documented. As mentioned above there
are three different configurations. As shown in the list of components | use a router and an access
point for wireless communication. The access point is used as a bridge[34] as shown in Figure 3-2.
Therefore, the router will only use ad hoc mode to communicate with the access point, i.e., the WLAN
will not accept association requests from other Wi-Fi devices trying to connect to router. As computer
#1 did not have an Ethernet port, a USB-Ethernet interface was used to connect it to the router or
access point.

15

16 |Method

ACCESSPOINT ROUTER

Lf T

| I
—)

| L
Lm=f | aroumo e | ARDUINO
SLAVE
Figure 3-2: Simple setup of an access point, router, and a couple of Arduinos

3.4.1 Successfully PING (Stationary)

This first task was split into several smaller sub-tasks. This task was a simplest test, but it was a key
test since this it showed that connectivity could be established. Additionally, this task help acquainted
me with the tools that | would use in subsequent testing and | learned how to carry out the testing in a
more optimal way.

3.4.1.1 Wired PING between computer and router

The initial test was done to check the connection between a computer and a router using the built in
“ping” command via the Microsoft Windows’ command prompt. The computer was connected to the
router via a CAT5e Ethernet cable.

3.4.1.2 Wired PING between two computers

The second task was to ping one computer from another. Both computers were connected to the same
router, hence they should be able to ping each other.

3.4.1.3 Wireless PING between two computers

The task is the same as the above where two computers should be able to ping each other, but in this
case one computer is connected to the router and the other computer is connected to the access point.

3.4.1.4 Wired PING between Arduino and router

In this test one Arduino card with an Ethernet shield is connected to the router using a CAT5e
Ethernet cable. The test simply pings the router from the Arduino. I modified the code written by Blake
Foster as shown in code listing 1.1 in the Appendix [35]. This code sends several pings in a row, similar
to what the Windows ping program does. This code sends 10 pings, and either receives them all or
prints a time-out error. It also prints the time it took, time-to-live (TTL) fields, and the size of each
packet. This code is used in subsequent tests using the Arduino to ping different devices. The only part
of the code that | changed was the destination IP address and perhaps the Arduino’s IP address if it
matched another device’s IP address.

Method | 17

3.4.1.5 Wired PING between Arduino and computer

After trying to ping the router, | tried to ping a computer attached to same router. This is a two way
ping test. First |1 performed a ping from the Arduino to the computer and then from the computer to
the Arduino.

3.4.1.6 Wired PING between two Arduinos

In this test two Arduinos were connected via cables to same router and they tried to ping each other.
The purpose of this test was to check that each Arduino is able to ping the other Arduino, i.e., to
establish that they have bi-directional communication.

3.4.1.7 Wireless PING between two Arduinos

In this test one Arduino is connected via a cable to the router. This router is also connected via cable to
a computer that is monitoring the network using Wireshark. The second Arduino is connected to the
access point via an Ethernet cable. This second Arduino can also be connected via a USB cable to a
computer for power and to monitor and control this Arduino via the Arduino software’s built-in
terminal window”, a.k.a. Serial Monitor. A number of tests were conducted after placing the devices at
different places in my home (with varying distances between the devices). These tests were conducted
to see how the distance between the devices affected the delay and throughput.

3.4.2 Successfully PING (Mobile)

These tests repeated the same tasks as above, but now the devices were placed in cars and
measurements were made in a number of different environments. In these tasks, | sat next to a driver
in a car where | have placed the router, a computer running Wireshark, and an Arduino. Another car
followed behind us with a driver. In this second car an access point was attached to either a computer
or an Arduino. Measurements were made in different environments (specifically city driving, driving
through a tunnel, and countryside driving). The distance between the cars was logged while collecting
these measurements. The router was powered from either the cigarette lighter socket (using the
adapter shown in Figure 3-3) or an external 12 VDC battery (as shown in Figure 3-4). An initial set of
measurements was made to ensure that the cigarette lighter socket provide a voltage of 12 V or less in
order to avoid any potentially damage to the router and to ensure that sufficient voltage and power
were provided to power the router.

Figure 3-3: Cigarette lighter socket adapter, direct voltage, no conversion

* The Hypertem program was used for this monitoring.

17

18 |Method

Figure 3-4 Cigarette lighter socket adapter, conversion to 5V 1A

3.4.2.1 Wireless PING between two computers

In this test a router was placed in the front car with one of the computers withi Wireshark installed,
while the following car had an access point connected with a computer. | this test I will perform a
simple ping command in different driving environments. The configuration of the equipment used for
this test is shown in Figure 3-5.

<__— N

N

12v

Figure 3-5: Setup of computers in two cars

Method | 19

3.4.2.2 \Wireless PING between two Arduinos

This configuration is similar to the setup above with two computers. However, in the following car (i.e.,
the car with the access point) an Arduino was connected to the access point instead of a computer
being connected to this access point. In the car with the router, an Arduino was connected to another
of the router’s ports. The computer used Wireshark to monitor the traffic throughout the entire test.

3.4.3 Send text messages (Stationary)

In this test a number of different types of data packets were sent between the Arduinos. The first
guestion was whether text messages would be received in the expected order and what the
transmission delay was. This task was only performed once.

3.4.3.1 Wired text sending between two Arduinos

In this test text messages containing simple sentences or block of words were sent to check how they
would be received by the other device.

3.4.3.2 Wireless text sending between two Arduinos

In this test text messages were send to check if every letter in a sentence was received as expected, i.e.,
if there were any errors in the received messages.

3.4.4 Send simple signals (Stationary)

This set of test concerns signals from future sensors and systems that would need to be sent between
the Arduino cards. In the tests with the LEGO® models, | use only one type of sensor (a UltraSound
Distance Radar (USDR) sensor) that was placed on the second vehicle in the convoy. All of the signals
sent between Arduinos are encrypted/decrypted by the router and Accesspoint, as the Arduino’s
Ethernet shield does not provide encryption. When setting up the connection, the only requirements
for the code was to specify the MAC-addresses, IP-addresses, and port-numbers of the end points of
the communication. The access point supports WPA2-PSK [AES] encryption, while the router supports
WPA/WPA2 Mixed encryptions.

3.4.4.1 Wired connection between two Arduinos

The USDR sensor, a motor, and a servo motor are connected to the Arduinos and both of the Arduinos
are connect by Ethernet cables to the router. The signals sent included output from the USDR and
input to the servo motor and a regular motor.

3.4.4.2 Wireless signal sending between two Arduinos

This task is similar to the above, but one of the Arduinos is connect it to the access point and the
distance between the access point and router is varied. In this task | try to send the request signal and
leave signal from the “client” side of the convoy (the client is connected to the access point). This
organization was chosen because the connection to the convoy leader should be established by the
drivers of the model. The client model asks to join the convoy by sending a “join convoy” request to the
master driver. The master driver will either accept or decline this request. If a Wi-Fi connection is
established, then the client should send a “leave convoy” request when client wish to take over driving
their vehicle.

19

20 [Method

3.4.5 Send simple signals (Mobile)

Here we describe the setup of the Arduinos with each LEGO® motor, USDR sensor, and the servo
motor. The servo motor is used to control steering of the models. This setup was first done for each
part individually and then more test components were added if the previous test worked as expected.
This divide-and-conquer technique saved time during the test phase, since if the results are not as
expected then troubleshooting could be done. Figure 3-6 shows the USDR sensor and the measuring
area. The angle is quite narrow and the range is between 3 — 300 cm. Figure 3-7 and Figure 3-8 show
the setup of the two models and how they are powered when testing simple signals. Figure 3-9 shows
the two models, each with an Arduino. The front model is the “master” and carries the router which
requires the Arduino to have an Ethernet shield attached. The rear model is the “slave” and it carries a
NETGEAR® Accesspoint and the LEGO® motor which requires the Arduino to have both an Ethernet
shield and a motor shield attached to it. Both models have the servo motor attached to the Arduino to
control the steering of the front wheels. Additionally, the rear model has an USDR sensor attached in
front of the steering wheels.

As mentioned above, the Arduino itself does not provide any encryption when using the Ethernet
shield. Although the router and access point use WPA2 encryption, the programs that runs in both
Arduinos use special characters to make sure the correct data is sent. The code uses characters to
indicate the purpose of the value, for example ‘A’ to accept convoy, ‘R’ to request convoy, ‘M’ for motor
speed data, ‘S’ for servo degree data, and ‘E’ for end character of a data value. This encoding was used
because the data packets that are sent from the Ethernet shield are sent as a one byte packet. They're
sent this way due to the implementation of the Ethernet send methods, which uses the Arduino’s main
sending class and that class is implemented by sending byte by byte.

L]

(a) Ultrasound transceiver (b) operating area

Figure 3-6: Ultrasound distance radar sensor which can measure about 2-400 cm in a 15 degree wide operating
area. [36]

Method | 21

230V

Y
ARDUINO I

Figure 3-7: Setup of front model with router R. Arduino is powered by computer via the USB interface.

ARDUINO

L

Figure 3-8: Setup of rear model with components (such as access point A and motor M). The components are
powered by three different power sources.

21

22 [Method

Figure 3-9: Setup of simple signals test. Front model with router and servo. Rear model with access point, servo
motor, USDR sensor, and motor. Figure 3-7 and Figure 3-8 shows the blueprints for each of these.

3.45.1 USDRsignal

The USDR sensor will be attached to the front of the models to estimate the distance to an obstacle in
front of it. This signal will be sent to the host from the client, and if the host has a similar sensor it will
send its data to the client. In the experimental setup the front model did not have a USDR attached to
it. In this experiment the lead vehicle did not have such a sensor. Only the rear vehicle sends
information to the lead vehicle to inform it of what is happening. As the rear vehicle is equipped with a
USDR sensor it can act if a sudden braking action occurs by the first vehicle.

3.4.5.2 Motor speed signal

The motor speed signal is used to accelerate or brake the model vehicle. Choosing the appropriate
speed for this motor is the most important aspect of maintaining a convoy. This requires that the inter-
vehicle signals be sent with a high priority in order to maintain the desired spacing between the
vehicles, despite changes in motion of the lead vehicle.

Method | 23

3.4.5.3 Steering signal

An optional part of the model convoy was to make the following model car turn to follow the lead
vehicle, thus it will simply follow the lead vehicle wherever it goes.

3.4.5.4 Request to Join/Leave convoy

Here I will try to implement the same test as was done in the stationary test, where a vehicle requests
to join or leave the convoy. Hopefully some experience was gained from other tests with the models
where | sent signals or text between Arduinos, because this task requires sending signals that will
affect the final testing with the models.

Join and leave requests will utilize a handshaking protocol to ensure a safe and complete join or
leave of the convoy. The enter-convoy request begins with the rear model (acting as a “slave™) sending
a request to the master (i.e., the lead vehicle). The master can accept this convoy-request by sending a
signal to the slave to confirmation that the request has been granted in which case the convoy is
formed. A leave request is similar. The slave can send a leave request which the master accepts and
replies to indicating that the convoy is terminated. However, the master can also disable the formation
of a convoy by skipping the first handshake of a request from the slave. In this case, a convoy is not
formed.

3.4.6 Handling lost connections

In reality V2V communications must be very reliable and lost signals and connections must be taken
into account. Lost signals can be re-sent, but this requires a protocol to ensure that the signals are
re-sent. Lost connections are worse since no signals can be sent and the communication protocol must
start over.

For the tests in the two cars where | make pings | did not implement any handling of lost
connections, but | simply repeated the tests over and over to see where and when connectivity was lost.

It is important to properly handle connection in the tests with the models. Because | used a
wireless router with N-technology, the range of the router is quite large and it transmits quite strong
signals. The results was that it was very difficult to have a connection loss since both models had to be
very far from each other. A simulated connection loss would be sufficient to test what will happen to
the “slave” model vehicle and how it should handle such a lost connection.

23

Analysis | 25

4 Analysis

This chapter summarizes the results of the different tasks described in the previous chapter. It will also
analyze these results and draw parallels to currently developing systems.

The first section covers the basic tests of the components and power measurements. These results
and their consequences are important for the next section’s task to work properly and produce
successful results. The second section concerns the results of the basic ping tests.

The third section gives results about the tests conducted with the LEGO® model cars and the
implementation of the inter-vehicle communication system in these models.

4.1 Voltage measurements

As mentioned earlier, the components needed for this work were two Arduinos (each equipped with an
Ethernet shield), two computers, one router, and one access point.

The initial tests were conducted at a desk or in nearby room, but mainly were conducted within the
same building. The router, the access point, and the computers were connected to mains power. The
Arduinos were powered from their attached computers via a USB-cable which supplies 5V. These
Arduinos can either be powered via the USB host’s 5 VDC or an external power ranging from 7-12 VDC
(The onboard regulator is limited to an input voltage of 6-20 VDC).

For testing the device in real car, power was supplied via the car’s cigarette lighter socket. This
socket will supply ~12 VDC. The router’s power input is labelled 12 VDC at 500 mA. | initially believed
that it would not be a problem for the car to supply this power, but to ensure this | measured the
voltage to be sure of the exact voltage when the car’s engine is off, when the ignition is on, when
starting the engine, when the engine is running, and when turning off the engine. The results of these
measurements are shown in Figure 4-1. As can be seen in this figure the voltage, when the engine is on,
is a little above 14 VDC which | was a little concerned about since the router expected to be supplied
with 12 VDC. To address these concerns | bought an adapter which could be set to different output
voltages including 12 VDC, when the input voltage is 12-24VDC. Measurements of the adapter’s output
voltage during same engine states is shown in Figure 4-2. In both figures the dip in the voltage occurs
when the engines starts. To be more precise, the dip occurs exactly when the starting motor requires a
large amount of current to force the cylinders to move inside the petrol engine. This does not occur
when first turning the ignition key, but occurs shortly after this. This high demand for power is
provided by drawing power from the battery, however this causes the voltage to drop for just a second
because the alternator of the petrol engine then starts charging the battery by supplying it with about
14V. Since the cigarette lighter socket is directly connected to the battery’s poles, this output is also
14V. When | connected the router to the 12V output adapter and ran the car through the same engine
states as earlier, | noted that the voltage drop during engine start did not affect the router, thus the
router stayed on during all of the different engine states.

25

26 |Analysis

Voltage (V)

Engine 1 3 Engine 20 Time (s)
on off

Voltage (V)

Figure 4-1: Voltage measurements of the car’s cigarette lighter socket during a short time period.

Voltage (V)

Engine 1 3 Engine 6 Time (s)
on off

Voltage (V)

Figure 4-2: Voltage measurements of same socket but this time with a converter. It gives a steady 12V even
when the engine is on

The access point requires 1 A at 5 VDC. Therefore, 1 used an adapter that could take 12-24 VDC
and output 5 VDC.

Analysis | 27

4.2 PING tasks

This section covers the PING tasks that were performed as described above in Sections 3.2.1-3.2.2. The
results are shown as Wireshark screenshots and the PING request time and PING reply time are
analyzed. These lines of the screen capture where PING requests and PING replies occur utilize the
ICMP protocol. The protocol of each packet is indicated in the fifth column.

4.2.1 Results from PING tasks

Pinging from the computer using the built-in Microsoft Windows ping tool via the command prompt
generated four pings. Figure 4-3 shows these ping requests and replies along with other relevant
information. Figure 4-7 shows the results when 10 pings requests are send by the Arduino (along with
the same relevant information). Wireshark shows the same information for both tests, along with a lot
of extra information. For these tests, the ping request times and replies times (shown in units of
seconds in the second column of both figures) are the information needed to compute the delay
between a request and a response. The statistics of the wired ping from computer to router are shown
in Table 4-1. These statistics were computed over 4 pings.

99.934112000 192.168.0.2 192.168.0.1 ICMP 74 Echo (ping) request 1d=0x0001, seq=80/20480, tt1=128 (reply in 10)
109.935428000 192.168.0.1 192.168.0.2 ICMP 74 Echo (ping) reply id=0x0001, seq=80/20480, tt1=30 (request in 9)
1110.936766000 192.168.0.2 192.168.0.1 ICMP 74 Echo (ping) request id=0x0001, seq=81/20736, tt1=128 (reply in 12)
1210.938165000 192.168.0.1 192.168.0.2 ICMP 74 Echo (ping) reply id=0x0001, seq=81/20736, tt1=30 (request in 11)
1311.126538000 192.168.0.2 192.168.0.1 DNS 83 standard query Ox6dS5a A win8.ipv6.microsoft.com

1411.939703000 192.168.0.2 192.168.0.1 ICMP 74 Echo (ping) request id=0x0001, seq=82/20992, tt1=128
1511.941100000 192.168.0.1 192.168.0.2 ICMP 74 Echo (ping) reply id=0x0001, seq=82/20992, tt1=30 (request in 14)
16 12.126700000 192.168.0.2 192.168.0.1 DNS 83 Standard query Ox6d5a A win8.ipvé.microsoft.com

17 12.758053000 192.168.0.2 192.168.1.6 SNMP 120 get-request 1.3.6.1.2.1.25.3.2.1.5.1 1.3.6.1.2.1.25.3.5.1.1.1 1.3.6.1

.759 i] 6 il F] 70 Destination unreachable k unreachable)

19 12.943198000 192.168.0.2 192.168.0.1 ICMP 74 Echo (ping) request 1d=0x0001, seq=83/21248, tt1=128 (reply in 20)
2012.944608000 192.168.0.1 192.168.0.2 ICMP 74 Echo (ping) reply id=0x0001, seq=83/21248, tt1=30 (request in 19)
Figure 4-3: Ping requests and replies between computer and router
Table 4-1: Statistics of the wired ping from computer to router
Average time 0.00138s
Minimum time 0.00132s
Maximum time 0.00141s

Figure 4-4 shows the case for a ping request being sent by one computer and the reply sent to the
requesting computing. The resulting delay statistics are shown in Table 4-2. These statistics were
computed over 4 pings.

7 5.922440000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) request 1id=0x0001, seq=84,/21504, ttl1=128 (reply in 10)
8 5.923289000 QuantaCo_15:€Broadcast ARP 60 who has 192.168.0.27 Tell 192.168.0.3

9 5.923331000 GoodwayI_S5b:f¢QuantaCo_15:6dARP 42192.168.0.2 is at 00:50:b6:5b:94:88

05.923602000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) reply id=0x0001, seq=84/21504, tt1=128 (request in 7)
16.924904000 192.168.0.2 192.168.

12 6.925591000 192.168.0.3 192.168.
13 7.141145000 fe80::3cOf:b(ff02::1:
14 7.142435000 192.168.0.3 224.0.0.
15 7.242708000 fe80::3cOf:b(ff02::1:

ICMP 74 Echo (ping) request id=0x0001, seq=85/21760, tt1=128 (reply in 12)
ICMP 74 Echo (ping) reply 1d=0x0001, seq=85,/21760, tt1=128 (request in 11)
LLMNF 86 Standard query Oxecld A isatap

LLMNF 66 Standard query Oxecld A isatap

LLMNF 86 Standard query Oxecld A isatap

w
NN W

FIDO00000ONWNWOO
w

16 7.242815000 192.168.0.3 224.0.0.252 LLMNF 66 Standard query Oxecld A isatap

17 7.445378000 192.168.0.3 192.168.0.255 NENS 92 Name query NB ISATAP<00>

18 7.928293000 192.168.0.2 192.168. ICMP 74 Echo (ping) request id=0x0001, seq=86/22016, tt1=128

19 7.929112000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) reply 1d=0x0001, seq=86/22016, ttl1=128 (request in 18)
20 8.194614000 192.168.0.3 192.168.0.255 NENS 92 Name query NB ISATAP<0O>

21 8.932633000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) request 97d=0x0001, seq=87/22272, tt1=128 (reply in 22)
22 8.933379000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) reply id=0x0001, seq=87/22272, tt1=128 (request in 21)
Figure 4-4: Ping requests and replies between two computers via router
Table 4-2: Statistics of the wired ping from computer to computer
Average time 0.00085s

Minimum time: 0.00069s

Maximum time: 0.00116s

27

28 |Analysis

Figure 4-5 shows the pings between a computer connected to the router and a computer connected
to the access point (wireless PING between two computers 1st case). The statistics of these pings are
shown in Table 4-3. These statistics were computed over 4 pings.

12 4.935669000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) request 1id=0x0001, seq=88/22528, tt1=128

13 4.938436000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) reply 1d=0x0001, seq=88/22528, tt1=128 (request in 12)
14 5.939723000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) request 1id=0x0001, seq=89/22784, tt1=128 (reply in 15)
155.943548000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) reply 1d=0x0001, seq=89/22784, tt1=128 (request in 14)
16 6.944709000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) request 1d=0x0001, seq=90/23040, tt1=128 (reply in 17)
17 6.948663000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) reply 1d=0x0001, seq=90/23040, tt1=128 (request in 16)
18 7.947210000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) request id=0x0001, seg=91,/23296, tt1=128

19 7.950429000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) reply 1d=0x0001, seq=91/23296, tt1=128 (request in 18)
Figure 4-5: Computer connected to router sends ping requests to computer on access point

Table 4-3: Wireless PING between two computers 1st case

Average time 0.00344s

Minimum time: 0.00277s

Maximum time: 0.00395s

Figure 4-6 shows the pings between a computer connected to the router and a computer connected
to the access point (wireless PING between two computers 2nd case). The statistics of these pings are
shown in Table 4-4. These statistics were computed over 4 pings.

5£1.281983000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) request 1d=0x0001, seq=4/1024, tt1=128 (reply in 8)
61.282175000 GoodwayI_Sb:¢Broadcast ARP 42 who has 192.168.0.37 Tell 192.168.0.2
7 1.285283000 Netgear_fb:l:GoodwayI_5b:94ARP 60192.168.0.3 js at 28:c6:8e:fb:1a:93
81.285330000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) reply 1d=0x0001, seqg=4,/1024, tt1=128 (request in 5)
91.938426000 192.168.0.2 192.168.0.255 BROW: 226 Become Backup Browser
10 1.999705000 192.168.0.2 192.168.0.1 DNS 83 standard query Ox6dcf A win8.ipv6.microsoft.com
112.278493000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) request 1id=0x0001, seq=5/1280, ttl1=128 (reply in 12)
12 2.278594000 192,168.0.2 192.168.0.3 ICMP 74 Echo (ping) reply id=0x0001, seq=5/1280, tt1=128 (request in 11)
13 3.281441000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) request +id=0x0001, seq=6/1536, ttl1=128
14 3,281545000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) reply 1d=0x0001, seq=6/1536, ttl1=128 (request in 13)
154.000247000 192.168.0.2 192.168.0.1 DNS 83 standard query Ox6dcf A win8.ipv6.microsoft.com
16 4.284547000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) request 1id=0x0001, seq=7/1792, tt1=128 (reply in 17)
17 4.284658000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) reply 1d=0x0001, seq=7/1792, tt1=128 (request in 16)
Figure 4-6: Computer connected to access point sends ping requests to computer on router
Table 4-4: Wireless PING between two computers 2nd case
Average time 0.00092s
Minimum time: 0.0001s
Maximum time: 0.00335s

Arduino make the ping request, computer responds with a ping reply. Figure 4-7 shows the pings
Arduino sends ping requests to computer via router. The statistics of these pings are shown in Table
4-5. These statistics were computed over 10 pings. (Very fast pings, possible due to Arduinos simple
0S, few routines to handle by the microcontroller?)

192.168.0.4

Analysis | 29

66 7.755409000 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=0/0, tt1=42 (reply in 67)

67 7.755487000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=0/0, tt1=128 (request in 66)
68 8.014201000 fe80::7919:5116 ff02::1:3 LLMNR 93 Standard query Oxdadé A SOVRUMS-DATOR

69 B.014202000 feB0::7919:5116 ff02::1:3 LLMNR 93 Standard query Ox46eb AAAA SOVRUMS-DATOR

70 8.014283000 192.168.0.2 224.0.0.252 LLMNR 73 standard query Ox46eb AAAA SOVRUMS-DATOR

71 8.014306000 192.168.0.2 224.0.0.252 LLMNR 73 Standard query Oxdadé A SOVRUMS-DATOR

72 8.259390000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=1/256, ttl=42 (reply in 73)

73 8.259448000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=1/256, tt1=128 (request in 72)
74 8.351952000 192.168.0.2 192.168.0. 255 NBNS 92 Name query NB SOVRUMS-DATOR<20>

75 8.603083000 192.168.0.2 192.168.0.1 DNS 85 Standard query Oxa7lf A SOVRUMS-DATOR.domain.name

76 8.763383000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=2/512, ttl=42 (reply in 77)

77 8.763449000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=2/512, tt1=128 (request in 76)
78 9.101999000 192.168.0.2 192.168.0. 255 NBNS 92 Name query NB SOVRUMS-DATOR<20>

79 9.267380000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=3/768, tt1=42 (reply in 80)

80 9. 267433000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=3/768, tt1=128 (request in 79)
81 9.771252000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=4/1024, ttl=42 (reply in 82)
82 9.771314000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=4,/1024, tt1=128 (request in 81)
83 9.985879000 GoodwayI_5b:94: de:ad:be:ef:fe:dcARP 42 who has 192.168.0.47 Tell 192.168.0.2

84 9.986192000 de:ad:be:ef:fe: GoodwayI_5b:94:8tARP 60 192.168.0.4 is at de:ad:be:ef:fe:dd

85 10. 275259000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=5/1280, ttl=42 (reply in 86)
86 10. 275308000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=5/1280, tt1=128 (request in 85)
87 10.603714000 192.168.0.2 192.168.0.1 DNS 85 Standard query Oxa7lf A SOVRUMS-DATOR.domain.name

88 10.779223000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=6/1536, ttl=42 (reply in 89)
89 10. 779275000 102.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=6/1536, tt1=128 (request in 88)
90 11. 283171000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=7/1792, ttl=42

91 11.283241000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=7/1792, ttl1=128 (request in 90)
92 11.787199000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=8/2048, ttl=42 (reply in 93)
93 11.787261000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=8/2048, tt1=128 (request in 92)
94 12. 291076000 192.168.0.4 192.168.0.2 ICMP 110 Echo (ping) request id=0x00e8, seq=9/2304, tt1=42 (reply in 95)
95 12.291152000 192.168.0.2 192.168.0.4 ICMP 110 Echo (ping) reply id=0x00e8, seq=9/2304, tt1=128 (request in 94)
Figure 4-7: Arduino sends ping requests to computer via router

Table 4-5: Statistics of Arduino sending ping requests to computer via router

Average time 0.00006s

Minimum time 0.00005s

Maximum time 0.00008s

Computer makes the ping request, Arduino replies. Figure 4-8 shows the pings when a computer
sends ping requests to Arduino via router. The statistics of these pings are shown in Table 4-6. These
statistics were computed over 4 pings. (Very slow pings compared with previous statistics, computer

handles more processes)

15 4.855623000 192.168.0.2 192.168.0.4 ICMP
16 4. 855809000 192.168.0.4 192.168.0.2 ICMP
17 4.858319000 Netgear_fb:1a:9 GoodwayI_5b:94:88ARP

18 5. 858196000 192.168.0.2 192.168.0.4 ICMP
19 5.861891000 192.168.0.4 192.168.0.2 ICMP
20 6.861645000 192.168.0.2 192.168.0.4 ICMP
21 6.864545000 192.168.0.4 192.168.0.2 ICmP
22 7.865545000 192.168.0.2 192.168.0.4 ICMP
23 7.877690000 192.168.0.4 192.168.0.2 ICMP

Figure 4-8:

Table 4-6:

74 Echo (ping)
74 Echo (ping)
60 192.168.0.4
74 Echo (ping)
74 Echo (ping)
74 Echo (ping)
74 Echo (ping)
74 Echo (ping)
74 Echo (ping)

request id=0x0001, seq=92/23552,
reply id=0x0001, seq=92/23552,
is at 28:c6:8e:fb:1a:93

request id=0x0001, seq=93/23808,
reply id=0x0001, seq=93/23808,
request 1d=0x0001, seq=94,/24064,
reply id=0x0001, seq=94/24064,
request 1d=0x0001, seq=95/24320,
reply id=0x0001, seq=95/24320,

Computer sends ping requests to Arduino via router

Wireless PING between Arduino and computer 2nd

tt1=128 (reply in 16)
tt1=128 (request in 15)

tt1=128 (reply in 19)
ttl=64 (request in 18)
ttl=128

ttl=64 (request in 20)
tt1=128 (reply in 23)
tt1=64 (request in 22)

Average time

0.00473s

Minimum time

0.00019s

Maximum time

0.01215s

29

30 |Analysis

Table 4-7 shows the case of a wireless PING between two Arduinos (Stationary case). The
Wireshark screen capture for this case is shown in Figure 4-9 and the statistics in Table 4-8.

Table 4-7: PING times (in milliseconds) from varying distances. The tests with 10m and 20m have also
obstacles such as walls in between

Ping # Distance 1m Distance 10m Distance 20m

(ms) (ms) (ms)

1 609 617 620
2 2 48 9
3 2 39 7
4 2 31 10
5 2 16 3053
6 2 56 8
7 2 13 2062
8 3 10 1024
9 3 63 7
10 3 2033 1058

Wireless PING between computer and access point (mobile)

IP setup:

192.168.0.1 = Router (front car)
192.168.0.2 = Accesspoint (rear car)
192.168.0.3 = Computer (front car)
192.168.0.4 = Arduino#1 (front car)
192.168.0.5 = Arduino#2 (rear car)

No. Time Source Destination Protocol Length Info

367 47.696908000 192.168.0.1 192.168.0.3 TCP 60 http > 62522 [ACK] Seq=41957 Ack=342 Win=8192 Len=0

368 47.748545000 GoodwayI_5b:c¢Broadcast ARP 42 who has 192.168.0.27 Tell 192.168.0.3

369 47.751774000 Netgear_fb:l:GoodwayI_5b:94ARP 60 192.168.0.2 is at 28:c6:8e:fb:1a:93

370 47.751822000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) request 1id=0x0001, seq=133/34048, ttl1=128 (reply in 453)
371 47.752897000 192.168.0.1 192.168.0.3 TCP L514 [TCP segment of a reassembled PDU]

My 7. 5YS/ILUVY SUE.108.U.3 19 dos.u.L 1P 340255 > NTIP LALK) SEQS354 ACKSL0BY WINSb5530 LEN=U
451 47.898823000 192.168.0.3 192.168.0.1 TCP 54 62525 > http [FIN, ACK] Seq=384 Ack=1689 Win=65536 Len=0
452 47.900413000 192.168.0.1 192.168.0.3 TCP 60 http > 62525 [ACK] Seq=1689 Ack=385 wWin=8192 Len=0
453 47.922737000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) reply id=0x0001, seq=133/34048, tt1=64 (request in 370)
AC4 A7 Q?R1CANAN 142 1RAR N 1 14?2 1R N 3 Tre 1814 MTre eanmant nf a reaaczamhlad pninl

T s SO DO D e e i e
499 48, 751603000 192,168.0.3 192.168.0.2 ICMP 74 Echo (ping) request 1id=0x0001, seq=134/34304, tt1=128 (reply in 501)
500 48.786751000 de:ad:be:ef:{Broadcast ARP 60 who has 192.168.0.5? Tell 192.168.0.4
501 48.946650000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) reply 1d=0x0001, seq=134/34304, ttl=64 (request in 499)
502 48.990071000 de:ad:be:ef:1Broadcast ARP 60 who has 192.168.0.57 Tell 192.168.0.4
503 49.192261000 de:ad:be:ef:{1Broadcast ARP 60 who has 192.168.0.5? Tell 192.168.0.4
504 49.394402000 de:ad:be:ef:1Broadcast ARP 60 who has 192.168.0.57 Tell 192.168.0.4

505 49.596748000 de:ad:be:ef:{Broadcast ARP 60 Who has 192.168.0.57 Tell 192.168.0.4
506 49.754779000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) request 1id=0x0001, seq=135/34560, tt1=128 (reply in 507)
507 49.795532000 192.168.0.2 192.168.0.3 ICMP 74 Echo (ping) reply i1d=0x0001, seq=135/34560, ttl1=64 (request in 506)

508 49.798877000 de:ad:be:ef:{Broadcast ARP 60 who has 192.168.0.57 Tell 192.168.0.4
509 50.001208000 de:ad:be:ef:{1Broadcast ARP 60 who has 192.168.0.5? Tell 192.168.0.4
5§10 50.110487000 fe80::7919:51ff02::c SSDP 208 M-SEARCH * HTTP/1.1

511 50.149338000 feB80::7919:51ff02::¢c SSDP 208 M-SEARCH * HTTP/1.1

512 50.203465000 de:ad:be:ef:{iBroadcast ARP 60 who has 192.168.0.5? Tell 192.168.0.4
513 50.405696000 de:ad:be:ef: 1Broadcast ARP 60 who has 192.168.0.57? Te'I'I 192.168. 0 4
514 50.454825000 68.0 uppP g

515 50.4557 0 92. =3 ICMP

516 50.607933000 de:ad:be:ef:{Broadcast e €00 hus 197 65 00T Tel) 19T 168 001
517 50.760691000 192.168.0.3 192.168.0.2 ICMP 74 Echo (ping) request 1id=0x0001, seq=136/34816, tt1=128 (reply in 519)
518 50.811279000 de:ad:be:ef:1Broadcast ARP 60 who has 192.168.0.57 Tell 192.168.0.4

519 50.893059000 192.168.0.2 192. 163 0.3 ICMP 74 Echo (ping) I'ep'ly 1d=0x0001, Seq-136,-’34816 tt1=64 (request in 517)

Figure 4-9: Wireshark capture of a ping from a computer in the front car to the access point in the rear car

Table 4-8: Statistics of a ping from a computer in the front car to the access point in the rear car

Average time 0.13477s

Minimum time 0.04075s

Maximum time 0.19505s

Analysis | 31

Table 4-9 shows the ping times when driving about 30-40 km/h on normal road with a distance
about 10-15 meters between cars, while Table 4-10 shows the ping times when driving about 50-60
km/h on normal road with distance about 20-30 meters between cars. In the third test, the front car
accelerated very fast from the rear car which resulted in the fourth ping being lost and at time the
distance was about 50 m.

Table 4-9: Ping times when driving about 30-40 km/h on normal road with distance about 10-15 meters between
cars

Test number 1 2 3 4 5

Average time (s) 0.00965 0.00687 0.00301 0.01535 0.02436

Minimum time (s) 0.00374 0.00216 0.00172 0.00313 0.00562

Maximum time (s) 0.01720 0.02028 0.00502 0.03596 0.04876

Table 4-10: Ping times when driving about 50-60 km/h on normal road with distance about 20-30 meters between

cars. In the third test the front car accelerated very fast from the rear car which resulted in the fourth
ping got lost and at time the distance was about 50 m.

Test number 1 2 3 4

Average time (s) 0.11430 0.28424 0.01505 0.00287
Minimum time (s) 0.00374 0.06933 0.00590 0.00211
Maximum time (s) 0.21676 0.48417 0.03442 0.00369

4.2.2 Analysis of PING results

In the mobile implementation of the ping tasks, the setup in the two cars had only one goal initially. It
was to enable two Arduinos be able to ping each other under different conditions while driving.
However, when | setup everything in the cars | decided to make them ping a first time before starting
driving, just to ensure that they were able to ping each other. This is where | encountered a problem. |
could not communicate between the two Arduinos even when the cars standing still near each other. |
could see on the access point that it had associated with the router by a green Light Emitting Diode
(LED). However, | could not understand why the Arduino could not successfully ping the Arduino
connected to access point. | asked the drivers to begin driving even though | had no connectivity
between Arduinos. To avoid wasting time | changed my goal to simply be able to ping the access point
in the other car, thus | had some sort of V2V communication — although it was not the initially desired
communication. This alternate goal was achieved, and the ping response time results shown above
prove that distance and perhaps speed affect the pinging times.

A few hours after this task was done, | tried to troubleshoot the Arduinos and realized that the
Arduino in the rear car attached to the access point did not run its program, therefore it did not have
an IP-address - hence this Arduino was not visible on the network.

One driving test environment | wanted to try was to drive through a tunnel while pinging.
Unfortunately, there was no nearby long tunnel. A future tests should try to ping between Arduinos
when in a tunnel to check whether the tunnel makes a difference.

4.3 V2V implementation in model

This section covers the last testing phase. In this test I implemented a simple V2V or “Inter-Model
communication” using Wi-Fi to communicate and used a USDR sensor to estimate the range between
the vehicles and obstacles. | began by testing the Wi-Fi communication for simple functions such as
steering and setting a specific motor speed. Then | used the USDR sensor to measure distances to

31

32 |Analysis

obstacles. When those two tests were completed | combined these functions to integrate both USDR
sensor readings and Wi-Fi communication. This enabled me to steer both models in same direction or
running each motor at same speed.

As mentioned in section 3.4.5 the Ethernet shield uses one byte data packet to send bytes to
another Ethernet shield. This became a problem when | wanted to send values longer than one digit
(as ASCII charcters). While | could use letters as commands in the protocol, | recognized that data
values for both servo and motor could have values greater than one digit — | need to support two or
three digit values. Details of how this was done are described in the following subsections.

4.3.1 Wi-Fi communication testing

This first step was to test Wi-Fi communication between two Arduinos, one connected to the router via
Ethernet shield and the other connected to the access point via an Ethernet shield. For these tests |
made the Arduinos PING each other, connect and disconnect to/from each other, and connected every
component | had (motor, servo motor, and USDR sensor). When initially connecting all of the
components | had not yet written code to support each of them, but | wanted to see if there was any
disturbance while these components were connected. Fortunately, this initial testing was success and
there were no errors when the Arduino connected to each other, even when programs begun running.
The first problem | encountered regarding Wi-Fi was that the behavior of the models when the
Arduinos connected to each other as this behavior seemed to differ from time to time when these
device were started. On the controllers (described further in Section 4.3.6), there are two LEDs
indicating different states during the testing process. These LEDs indicated when the Arduinos in the
models were connected to each other and indicated the “handshakes” while joining/leaving a convoy
(handshakes = requesting to join a convoy & the reply indicating that the vehicle was accepted to join
the convoy).

4.3.2 USDR sensor testing

In this testing, | ran through several tests to gain knowledge how the USDR sensor worked. The first
tests were mainly to see how sensitive the sensor was depending on the measured angle and how far
away the obstacle was. One result from the first test was that the floor had a negative effect on the
measurements. Because of that, | increased the horizontal angle of the sensor so that it was pitched up
a bit, about 20 degrees. After this adjustment, the sensor measured ranges perfectly when testing it,
although these test were component tests using only the sensor and some simply code (specifically
code to realize a serial connection with the computer). Using this code, | could monitor the output of
USDR sensor. One observation was that the farther away from the sensor the obstacle was within the
measured area, the longer it took for the pulse to return. This was as expected. However, the signal was
more unreliable as the distance to the obstacle increased. This was not good result because the signal
values could vary between 0-300, and if there was no obstacle within 300 cm, it could cause a very
long delay, since the sensor was waiting for the returning pulse echo.

4.3.3 Signals

Combining Wi-Fi communication, USDR sensor, and the motor was very straightforward and
everything worked as expected. | wrote code for one task or combined two or three tasks. If any
component acted unexpectedly, it was not hard to locate the error in the code. The main tasks where to
ensure that the rear model would not crash into the front model, to have both models steer in same
direction, and ensure that the rear model would properly apply its emergency brake if for some reason
the model in front stopped. All these tasks were part of the main goal of this thesis project. When
testing the individual components (USDR sensor, servo motor, motor), they ran well when sending
data or receiving commands over Wi-Fi. However, when they were connected to each other different
problems began appear.

Analysis | 33

4.3.3.1 Keeping distance to front vehicle

The first goal of the test with the two models was to see if the models could maintain a given separation
(i.e., for the following vehicle to remain within a fixed range of the lead vehicle).The goal was not
completely accomplish. Once every component on the models were electrically connected | began
testing, but I noticed a 30 second delay before the front model sent its data to the rear model. It was
very strange that this delay appeared because the requesting and accepting of convoy signals were not
delayed (as confirmed by the LEDs). However, once the “accepting convoy” signal was sent the delay
appeared. It was not easy to locate where in the code this delay originated, since everything was sent
wirelessly between the models. | began by searching the web for delay issues concerning the Arduino
Ethernet shield. However, this seemed to be an uncommon problem, although the issue seemed to be
related to Ethernet shield rev.2 but | used rev.3. Since | did not believe that the Ethernet shield itself
was the source of the delay | experimented with the code. After a while, | found the cause of the delay
and it indeed had nothing to do with Ethernet shield. It turned out that the delay was caused by the
USDR sensor. This sensor is used to measure the distance from the following model to model in front
of it.

Figure 4-10 shows a code snippet of the USDR sensor’s calculation. This code caused the 30 second
delay. However, this was very strange since the code only has two intentional microsecond long delays
plus the measured delay saved in variable “dur”. During a test where | wanted to confirm that this code
snippet was actually causing the delay | clocked the system time, the function millis() which returns
the system time after startup in milliseconds, before the code snippet and right after. Then to subtract
the times | got the time it took to compute the code snippet. If the sensor was working correctly and
since the code variable “dur” could vary between 116 — 23200 (speed of sound 340m/s is equal to 29
ps/cm and measureable distances is 2-400 cm, gives total distance of 4-800 cm which is 116-23200
us), total time is maximum 23200 + 2 + 10 ps. This is equal to about 0,023 seconds which is nowhere
near the 30 seconds error delay. My conclusion is that the delay must be due to the physical setup of
the USDR sensor. The USDR sensor is mounted on a small breadboard. This board is connected via
wires to the Arduino, a power source, and the system ground. Perhaps the observed delay is caused by
poorly connected wires leading to some of the ranging echoes not being detected or perhaps it could be
because of the total delays in loop is not proper for what the sensor is required. Apparently the sensor
requires a minimum pulse length of 10us according to [37] but minimum pulse length of 5us according
to [38] and a minimum delay of 60 ms between two pulses. | wrote my code according to Arduinos
website which used the 5us but | did not use a minimum 60ms delay between two pulses. These
settings may be the reason why USDR sensor is behaving incorrectly.

pinMode(trigPin, OUTPUT);

pinMode(echoPin, INPUT);

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

long dur = pulseIn(echoPin, HIGH);

long distance = microsecondsToCentimeters(dur);
Figure 4-10: Code snippet of calculating distance to obstacle.

This problem caused me to be unable to use the USDR sensor together with wireless data transfer.
Since the USDR sensor was supposed to help the system initiate emergency braking if necessary, | did
not see a major problem since the models were not going at high speed (as their speed was limited to
0.54 km/h, for details see Section 4.3.6). Given these low speeds, if the rear model crash into the front
model, it would not be such a great impact. On the first try, | also noticed that the rear model was
travelling a bit faster than the front model, even though each motor had been set to the same speed.

33

34 |Analysis

This was probably because the front model had a different weight and balance. Note that most of the
weight was due to the router, which was placed right above the rear wheels, and the heavy battery,
which was placed near the rear wheels. Due to these placements, the model was very heavy in its rear
end, which could be seen on the suspensions (see Figure 4-10). Therefore, the motor of the front model
might have had more resistance than the rear model, where the weight was more balanced in the
middle of the model (see Figure 4-11). Figure 4-12 and figure 4-13 show the rear axle in a closer view.
The difference in weight balance cause the rear axle to bend more on the front model, shown in figure
4-12 than the rear model shown in figure 4-13.

Figure 4-10: Front model from the side. Leaning back because of the weight, the yellow suspensions on rear
wheels are almost fully retracted.

Figure 4-11: Rear model from the side. Leaning a bit forward due to better weight balance so the suspensions are
more extended than the front model.

Analysis | 35

Figure 4-12: The rear axle is horizontal due to the retracted suspensions, because of the weight.

Figure 4-13: The rear axle is not horizontal due to not fully retracted suspension, because of better balance of the
weight.

4.3.3.2 Keeping same direction as front vehicle

I programmed the Arduinos to run to be able to steer according to the input from the user of computer
#1. Code listing 2.3" is the master’s code and it gets the servo angle from the user of computer #1. The
master then sends this same servo angle value to the rear model. As a result, both models turn to the
same orientation, i.e., they steering in same direction. Code listing 2.4 was running on the rear model
when this test was done.

* The code snippets are included in the appendix.

35

36 |Analysis

There is a big problem with this code when looking at the steering. With this code algorithm the
steering on the following vehicle is applied directly with no intentional delay which causes the vehicles
to choose different paths, as shown in figure 4-14.

) O | S R S

o (S D .

Figure 4-14: Steering algorithm problem

I examined the code for the following vehicle to see if there could be a solution to this problem. I
did not have time to develop a solution in the code, but the purpose was make the following vehicle
drive forward a bit before applying the turning as showing in figure 4-15. To make the vehicle turn to
the right path, it had to first drive forward a bit and then make the turn. However, since that did not
depended on time, because the vehicles could drive different speed at different times, the algorithm
had to depend on distance travelled. One possible solution is to measure the distance the rear wheels
travelled, calculate the distance between the vehicles, and then apply the steering at the proper
moment. The problem with this solution is that either the distance between vehicles should be as a
static input which also means the distance must be same during all driving, hence each vehicle speed
must be exactly same, or the USDR sensor must work properly and the distance can be dynamically
varied depending on each vehicles’ speed.

| tried to apply this solution by thinking of code algorithms. One was to have a buffer where every
steering degree value and speed value should be inputted, but that would require a big buffer since the
reading of the buffer would be large per second. If the distance between vehicles was large enough to
make the delay in time say 3 seconds before the following vehicle should apply steering, that would
require a lot of readings of the buffer during those 3 seconds.

o N . | R .

N

) O (I I .

Figure 4-15: Steering algorithm as it should work

Unfortunately, the models are not exactly the same, which caused the tires of the front model to
bump into the chassis in some cases. If the model were moving when this happens, the tire can touch
the chassis causing the model to stop because of the tire’s friction against chassis. Because the servo
angle has a range of 0-180 degree, with about 90 degrees orienting the wheels straight forward, | had
to limit the angles values to be between 40 and 140 degrees, in order to avoid the tires touching the
chassis.

Analysis | 37

4.3.3.3 Emergency braking

The emergency braking system was a very important part of what | wanted to accomplish. However,
because the USDR sensor failed to work properly (as described in Section 4.3.2) | chose to deactivate
the sensor and therefore | could not complete the emergency braking system. The idea was that if the
rear model vehicle continued moving toward the front model or was not slowing down sufficiently
based upon wireless commands, the USDR sensor was to override the system and apply the brakes,
thus preventing an impact with front model. Fortunately the speed, as | mentioned above, is very low
thus the result of an impact would be insignificant and the rear vehicle would simply shove the front
vehicle forward a little. As part of future work this functionality should be enabled and tested.

The following pseudo-code should prevent the rear model from crashing into the front model. The
code first checks if convoy mode is active, as otherwise a user is directly controlling the model. In
convoy mode, the distance between the vehicles is estimated using the USDR sensor and the speed of
following model’s motor is adjusted to maintain the desired separation. If the distance is 5 cm or less,
then the motor is immediately stopped, otherwise the motor’s speed is changed depending on how
close the following vehicle is to the lead vehicle. If closer than 10 cm, then the speed is slowed down
more rapidly, while if the separation is between 10 and 20 cm, then the speed is slowed down less
rapidly. When the separation is greater than 20 cm, it is unnecessary to perform an emergency braking
maneuver. The motor speed range is integer values between 0-255, however when increasing the
values from O and up to 255, there is first a noise coming from the motor when the values are between
0 and about 30 and the motor is not moving. It is caused by the pwm which is currently changing the
pulse width. Why the motor is not running at those values is also because it requires a minimum
current flow for the axle to start moving, which is too low at low integer values, but at some value the
current reaches the minimum edge and the axle starts to move. This edge is around integer value 30 in
the range 0-255. This value is of course higher than if the motor were not connected to anything, now it
has to start pulling the 1.8 kg vehicle, which resulting the value to be higher. | assume the motor axle
starts move at perhaps integer value 20-25 when it is disconnected from everything.

if(convoy == active){
if(USDR.measuredDistance < 5cm){
speed = 0;
}
else if(USDR.measuredDistance < 10cm){
speed-=5;
}
else if(USDR.measuredDistance < 20cm){
speed--;
}
}

4.3.4 Joining and leaving the convoy

This section was planned to describe the testing of joining and leaving a convoy. While not all of the
desired functionality of the earlier stages of the project was achieved, | put a lot of time into the
process of joining a convoy. | succeeded in making a second vehicle join a convoy. The procedure is
quite simple; a wireless connection must be established to the lead vehicle. The user of the rear model
presses button “B” on their keypad, a couple of LED light up, and the user of front model is ask to press
button “A” (to accept the vehicle joining the convoy), and finally the convoy should be active. In convoy
mode the front model sends it speed data and servo motor degree data to the rear model that should
apply these values to its own motor and servo motor). This was a success and work almost every time.
However, sometimes it did not work and | was unable to solve the problem other than a cold reboot. In

37

38 |Analysis

the last days of the project, | found a temporary solution was to press the reset button on each Arduino
causing each system to reboot. Most of the time the connectionless state would not re-appear, although
when it appears it was generally because the access point did not get any power or the Ethernet shield
did not have time to initialize.

When things worked as they should, the access point and router were able to connect when the
Arduinos were initialized. My first thought was that a connection between the access point and the
router should be established when the user controlling the rear model pressed “B”, but that lead to
errors (More about that in next section).

4.3.5 Lost connection

Before | built the models, | thought that the users of the models would determine when the connection
between the vehicles was to happen. This would mean that the users of the vehicles would drive their
models for a couple of seconds and then the rear model driver could press the request button “B” to to
initiate the Ethernet connection and tell the rear model to send the request convoy message.
Unfortunately, this did not working since the Ethernet shield behavior was a bit different each time the
system started.

To solve this problem each Arduino waits for a specified time (30 seconds for the front model and
50 seconds for the rear model) to give the router and access point time to boot before attempting to
connect to their first hop device (i.e., router or access point). This was necessary because otherwise the
Arduino-to-Arduino connection was not always established. By waiting for the first hop device to start
the wireless connection between router and access point is always established before there is an
attempt at data transfer.

During testing there was never a lost connection between router and access point since the models
were never far enough from each other that the wireless signal was too weak for communications
between them.

However, | was made a routine to handle a lost connection just in case it should occur. This code
checks if the Ethernet is connected and if convoy mode is active. The following pseudo code illustrates
the idea:
if(Ethernet.connected(){

if(convoy == active){

speed = Ethernet.readSpeed();
direction = Ethernet.readDirection();
//apply motor speed and servo direction

}
else{
speed = joystick_1.readY();
direction = joystick 2.readX();
//apply motor speed and servo direction
}
}
else{

speed = joystick 1.readY();
direction = joystick 2.readX();
//apply motor speed and servo direction

Analysis | 39

4.3.6 Power consumption and other model specifications

Both models used the same type of power source, a 12 V 1.3 Ah lead acid battery. I chose this type of
battery because | thought it was the most suitable for my components. For example, the front model
has a router which requires 12 V and 0.5 A. The Arduino can be supplied with either 5V via USB or 7-
12 V via the secondary power input. The motor shield on that Arduino should also be supplied with
12 V for the motor. Both models use the same sort of motor, a LEGO® Power Function XL motor which
even though is made for 9 V supply can be supplied with 12V. According to Philippe Hurbain [39], who
tested the motor with 12V, found that it required 0.56 Amps and developed 14.5 N.cm at 214 rpm.
Since both models used a 1:7 gearbox to get a smaller ratio and more power, the power and speed of
the wheels were about 101.5 N.cm (= 1.05 Nm) and at 30.5 rpm drives the 297 mm circumference
wheels about 9080 mm/min or ~9m/min. That is equal to 0.15 m/s or 0.54 km/h. The reason for
using a gearbox to get a smaller gear ratio was that the models were quite heavy. They both weigh
about 1.8 kg, which I thought was too much for the motor to be connected directly to the wheels.

With every component setup on the front model, it was clear that everything could be powered
with 12 V that the 12 V 1.3 Ah lead acid battery could supply. The battery itself weighs 0.6 kg. On the
rear model since the Arduino could supply 5V and ground, it could power the different components
that needed 5V, such as the servo motor and USDR sensor.

In order for users to drive these models, | designed and implemented a controller. | chose to build
two identical controllers to drive the two models. The final controller is shown in Figure 4-14 and
Figure 4-15.

T
oajoln)

i EE@BEE
2868

Figure 4-14: 1/0 connections of the controller

—

Figure 4-15: Final model controller

39

40 |Analysis

These controllers are connected to the models via a 16pin VGA cable. On the controller boards
there are two joysticks, a 4x4 keypad, and two LEDs. The keypad connects directly to the Arduino.
However, the joysticks require 5V. The LEDs are each connected via a 220 Ohm resistor to the
Arduino, while the other side of the diode is connected to a common ground. | chose to use a VGA
cable since it had an appropriate number of pins.

After these controllers were completed, | tested them. During this testing | noticed some issues
when driving, such as unexpected delays and servos behaving weirdly. As | had powered every 5V
component on the rear model using the Arduino’s 5V output | suspected that this did not provide
enough current to power everything. To solve this, | redesigned the power system for the real model.
Now every component that needs 5 V uses a 12V - 5V converter. This converter has a current limit of
3 Amps, which should be enough.

As the front model did not initially have a 12V - 5V converter | had to do install such as converter
in order to use the controller.

Once everything worked after initial testing with the controller. | measured the current that was
required by the whole system (the steering servo motor, the driving motor, the keypad, the LEDs
turned on, the traffic between router and access point and of course the Arduino cards themselves) by
connecting a multimeter between the 12 V battery and the input connectors to power system. The
current varied between 0.3 — 0.6 Amps depending how much | used drive motor and steering servo
motor. If we assume an average of 0.5 Amps at 12 V the battery would be sufficient to operate each
vehicle for ~2.6 hours.

4.4 Met goals

The goal of this thesis project was to examine inter-vehicle communication and what the benefits and
problems might occur when using this in convoys. During my work | defined some smaller sub-goals.
These sub-goals made it easier to draw conclusions and then see if the initial goal was met.

These sub-goals were all related to inter-vehicle communication. First, ping was used to examine
the connectivity between the router and access point when they were placed in two different cars. This
enabled me to see how speed, distance, and environment could affect the WLAN radio-signals passing
between two vehicles. Even though | ran into a problem when the one Arduino was not running
properly, 1 could still use the access point, which this Arduino was attached to send and receive PING
frames and examined the results of capturing this traffic. This sub-goal was met and then | could
continue testing model vehicles by building up my own convoy.

When testing the model vehicles, there were several additional sub-goals defined. Several tests had
good results, but there were a couple tests that did not succeed. A important result of this testing was |
realized that there were only two important sub-goals with respect to successful convoy driving. First,
the speed of the vehicle should be the same and secondly the direction that each vehicle should turn at
each point along a path should be same, with only a small error allowed. After I made the decision to
deactivate the USDR sensor, | was unable to test the emergency braking procedure. In reality, this
functionality would be essential for a real convoy. The steering did not work as well as desired either
because the servo motor was not sufficiently powerful or the attachment of the servo motor to the
steering mechanism should be improved.

Using the two models | was able to establish that the working principle of using inter-vehicle
communication via Wi-Fi to form a convoy would work. However, the combination of small delays,
inaccurate motor speed, and errors in servo positions made the system’s behavior less that I would
have desired. Therefore, while | met the goal of a working convoy using inter-vehicle communication a
lot improvements are required in future work before even this model system will behave as | desire.

The main goal was met from a certain perspective. Although I did not manage to create a complete
working inter-vehicle communication system, | was able to solve many of the problems that came up
and was able to identify some of the issues that need to be taken into account and solved in the future.

Analysis | 41

As a result of this project | gained a lot of knowledge about inter-vehicle communication and see why it
could greatly benefit convoy driving. Given my experience, | know there are many problems that can
occur and that they need to addressed with care since safety is a critically important factor of convoy
driving.

Figure 4-16 to Figure 4-18 shows the final system during one trial. It can be easily seen that the
models were not follow exactly the same path when driving (the front model driver was driving and the
rear model was simply following this lead vehicle according to the Wi-Fi data it was receiving from
front model).

Figure 4-16: Began driving

Figure 4-17: After 10 seconds of driving

41

42 |Analysis

Figure 4-18: After 20-25 seconds of driving. The front model at the upper left corner and the rear model in the
middle which apparently chose its own path.

Conclusions and Future work | 43

5 Conclusions and Future work

This chapter involves the conclusion of the thesis and the future work of the thesis concept. First is my
conclusion, what I have learned, whether | meet my goals, and if | made some mistakes and could pass
some useful knowledge on to others working in the same area. Secondly is what future work | suggest.
Specifically this second section describes things that | intentionally left undone or problems that | was
unable to solve during my project. The last section of this chapter gives some of my reflections on this
work regarding economy, environment, and other aspects.

5.1 Conclusions

I knew that inter-vehicle communication would be an important part of the future of driving and traffic
management when | stated this thesis project 4 months ago. When | researched what had been done
and what a number of large companies were working on | gained more understanding of how the
simple components of different systems (such as measuring distance, communicating between several
vehicle, maintaining a specific speed or direction) could altogether support a new means of safe and
economical driving. By testing these ideas myself with a simple inter-vehicle communication between
two cars implemented using model vehicles, | learned that these concepts could definitely improve
driving. Of course, there are many problems remaining to be solved and ensure a reliable system that
could perhaps replace human driving in the future, there need to be a lot more testing and analysis.

Because | worked alone in this thesis project | feel that | gained a lot of knowledge by trying to
make a working system. Even though | did not create optimal choices regarding the speed, weight, and
cabling, | managed to make an inter-vehicle communication system that worked. | am sure that inter-
vehicle communication will someday work in real vehicles. My use a of a home router and access point
increased the weight of the vehicles, thus | had to use fairly powerful motors. The weight of the vehicles
required me to gear down the ratio of the motor speed about 1:7, otherwise the motor would have
problems propelling the heavy models. An additional source of weight was the lead acid battery, even
though they were the smallest capacity (12 V at 1.3 Ah). This small capacity and the malfunction the
battery charger meant that | had to charge the batteries since the models required about 0.4 Amps.
While each of my choices might not have been the best choice, they were sufficient to make models
that worked sufficient to get some results. This made me realise that when inter-vehicle
communication is transferred to bigger models or real vehicles, everything will need to be adapted to
avoid unnecessary weight.

The goal was to examine whether inter-vehicle communication is a reliable communication
mechanism for using in a convoy and to see if it benefits the convoy or creates new problems. To see if
this goal was met, | analysed my test process and made a conclusion regarding Wi-Fi communication,
since that was the only inter-vehicle communication technology that I used.

The test process was divided into two parts. The PING testing phase where | setup the system in
two real vehicles and analysed the wireless communication while travelling through different traffic
environments. The second phase was to implement the wireless communication in models where the
goal was to make the rear model follow the front model regarding speed and direction.

During the first phase | had to ensure that the Wi-Fi devices, computers, and Arduino card could
communicate while being inside a car. While | did encounter a problem where | could not make a
connection between the computer in first car and the Arduino in the second car, I was able to
communicate with the access point in the second car, which the Arduino was attached to. This enabled
me to both establish that the Wi-Fi communication functioned and that this communication was
independent of the computers attached to the Wi-Fi devices (the router and access point). In the
analysis part of this phase | analysing the PINGs between the computer in the first car and access point
in the second car. This analysis was shown in section 4.2. It is clear that the distance and the speed
may have affected the PING replies leading to longer delays with higher speeds and longer distances.
Some of the PINGs were lost because the distance between the vehicles was too far. From this, | drew

43

44 |Conclusions and Future work

the conclusion that even though | met the goal of establishing communication between real vehicles,
the environment through which these devices were moving and the driving conditions affected the
communication more than | had thought. Unfortunately, | did not have time to test this
communication in additional driving environments, such as tunnels or high density traffic in cities.

In the second phase | implemented inter-vehicle communication between two models vehicles. |
encountered more problems than | expected, such as no connection between vehicles, data transfer
was different from sending versus receiving, motor was running even though | did not ask for
acceleration via the joystick, servo motor flipped out when trying to turn the front wheels, and the
hand controller was not correctly configured.

While | managed to solve many of the problems that occurred, | was forced to resort to temporary
solutions for some other problems. The majority of my problems were code related, but some of them
were actually hardware based, such as a lost power in the cables or perhaps a hidden shortcut between
a couple of wires. The first small test in which | tested the Arduino-to-Arduino wireless
communication | succeeded almost right away, but the biggest problem was not to establish a
connection it was to handle the data that was being sent between these two processors. It was very
difficult to understand exactly how the Ethernet shield and its Arduino library operated when sending
and receiving data. To better understand what was being done involved sending different types of
values, such as sending as an array, a single byte, an integer, a character, and more. Since | used the
keypad on the controller to request joining a convoy and an accept such a request, | had to read these
input and then sending them via the Ethernet shield as characters (i.e., as bytes). The problem
occurred when receiving them on the other model, as the ASCII values from the keypad were in the
range of values for the motor and servo signals. This was caused by my not understanding that |
needed to encode my message appropriately in order to send and receive them. | solved the problem by
sending and receiving an array and processing the bytes by reading two bytes as a “word” with the
library function “word(highByte, lowByte)”[40].

This thesis has given me a lot of experience even though it was only a 4 month long project. First, it
has taught me how to work alone with a big project and what the limits are when working alone.
Secondly, it showed me how many problems can encounter during a longer period of time. Working
with a project such as this shows the demands for quality is and making decisions about what is
significant and what is not.

| believe it is easy to work in this specific area if you have some interest in vehicles, traffic, or
internet communication in general. It is of course fun to begin a project where you have to research
outside of those areas you normally would work in. For me it has been very interesting to combine
internet technology with vehicles and see what benefit the combination might provide.

If 1 were to do this project all over again, | would have focused more on only one test of the model
vehicles, and perhaps focused on achieving excellent results for this one test, rather working with many
processes concerning the test models as | tried to accomplish everything myself. Because | worked
alone it is easy to start a variety of efforts and | was eager to succeed in everything. However, for
quality’s sake, which is very important in this area, | should have focused on one component or one
small sub-system of the complete problem of inter-vehicle communication in a convoy. | am not
disappointed with my work and my results, but |1 know that the quality of work is not the best, with
many errors, and poorly chosen solutions. | will take this experience with me in my career and
especially in my future work.

5.2 Future work

When | started this thesis project | made a survey of what had been done and companies are currently
working on. That information provided the background for my work with the models. In order to
rapidly realize a prototype using these model vehicles | used an existing Wi-Fi router and access point
as the wireless communication system between each of the two models. I also tried to use a USDR to
estimate the distance between the vehicles.

Conclusions and Future work | 45

Actual vehicles that use inter-vehicle communication also use GPS (a standard component already
in vehicles). Additionally, cameras have been developed for use in vehicles to implementation ACC or
city emergency brake systems. These components plus the wireless communication system will be the
main components of future V2V systems. All these components were a bit too expensive for my
experiment. Also it seemed they would be very difficult to work with in the small models that I utilized.
Fortunately, by using a low cost router designed for home-use together with some chips to control two
motors and perform the necessary 170 a low fidelity model system could be constructed.

In the future GPS and road-cameras that scan the road ahead could be added to the system to
develop it further. Extensive research is already being conducted for using GPS and road-cameras, so
we expect a lot of progress with these two sources of additional inputs. In comparison to actual V2V
system my models left out these and many other systems. Some future technologies that could be
explored include long distance radar and V2l systems. Radar could be used by the rear model to
measure a much larger area and could be effective even in models. As described in Section 2.1.2,
companies are already working on this.

I did not explore the use of V21 with my model vehicles, as they only use V2V. A V2I system could
interoperate with Wi-Fi devices in public Wi-Fi networks. In the case of model vehicles they could
communicate with Wi-Fi equipped cellphones, intersection cameras, or other devices that could
provide additional inputs to the system. For example, a smartphone with a Wi-Fi interface could have
been used instead of building a special purpose controller.

While there is quite a lot of future work related to this thesis, there are areas that could be seen as a
complement to it. Although | prototype an inter-vehicle communication implementation with two
models, there are many problems remaining before these systems will be implemented in real world,
especially as they need to work safely and be approved by the various regulators that will be involved.

It is not sufficient to carry out tests with only two models. In order to study traffic behavior, there
need to be many vehicles in order to extract patterns of driving in different environments. In the future
it will be increasing important to carry out tests with real vehicles, instead of small. However, such
testing will required greatly increased resources and perhaps authorization from different authorities
to carry out such tests. In order to avoid these problems | chose to work with model vehicles. Another
advantage of model vehicles is of course that any errors would not cause great damage or endanger
human life.

To follow up this work, | suggest focusing on a specific subarea. My work focused on inter-vehicle
communication but attempted to address many related problems in order to realize a prototype. For
the future, it will be important to understand how in vehicle Ethernets can exploited by vehicles and
what messages should be sent and how this communication can meet the requirements for safety,
reliability, and functionality. Clearly, safety is the most important factor when driving in a convoy and
it will be important to understand what requirements this will place on inter-vehicle communication
within the convoy.

5.3 Required reflections

There are many aspects to mention related to this thesis concerning economic, environmental, ethical,
and political issues. For example, V2V, V21, intra-vehicle communication, and vehicle communication
will need to address safety. As this thesis has emphasized safety is a critically important issue for
convoy driving.

From a health perspective, wireless communication increases the radio energy that humans are
exposed to. Already today, users are exposed to radio waves from their smartphones, surf pads,
Bluetooth devices, Wi-Fi equipped devices, and more. So there is a question of what problems could
this convoy communication cause and what are the benefits of this communication? Do the benefits
outweigh the risks? What can be done to design the vehicles to minimize this exposure while gaining
the maximum benefits?

45

46 |Conclusions and Future work

The economic aspect of this area is very important and can have a very big effect. This new
technology can further leverage the internet to provide many new services to vehicles in traffic. As
noted in the beginning of this thesis convoy driving can directly reduce vehicles’ fuel consumption.
When combined with the self-driving vehicles that are now being tested the future seems to be
eliminating the driver which could have a significant economic impact on freight transport and
delivery and would also potentially have a major impact on traffic injuries and deaths, while increasing
the effective capacity of existing roadways.

From a social perspective, | believe it will be difficult for society to adapt to a traffic system which
relies on electronics, rather than humans. There is already a lot of reliance on electronics in the form of
traffic lights at intersections, train crossings, and ferries to name a few applications where traffic
movement is governed by electronics. When deploying convoys on highways, self-parking cars, traffic
lights that communicate with individual cars and convoys, etc. there must be high reliability as the
vehicle velocities will be increasing and the spacing between vehicles will be decreasing. So there is a
guestion of whether considerations of social aspect will slow down the introducing of this technology
or speed up the combination of the internet with traffic systems.

| believe there are some deep ethical issues that we will need to address in the near future. For
example, is it good to rely on electronics that would replace humans in many situations in the future?
What happens when an accident takes place and the car itself was driving? Where would these systems
provide the most benefits? How will these systems affect humans in general? How should humans
react to the introduction of such systems? All of these questions are hard to answer and | myself can
only speculate what the effects will be.

Inter-vehicle communication system will benefit convoy driving and general driving as much as
vehicles that will drive themselves in the future. However, this raises issues such as increased
unemployment (since there will be a reduction in the need for professional drivers), an increased
requirement to trust vehicle and traffic electronics, and the question of where there will be an option
for human interaction with the system. For example, when driving fully automatic vehicles which
communicate via internet should drivers have the option to take over their vehicle and drive as we do
nowadays or will this increase the risks to others too much, increase fuel consumption and pollution to
unacceptable levels, and allow too much independence of movement for individual drivers to be
acceptable to society and governments?

References | 47

References

[1]
[2]
[3]

[4]

[]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Ekman, “XXXX,” Kandidate thesis, KTH Royal Institute of Technology, School of
Information and Communication Technology, Stockholm, Sweden, (expected) 2014.
M. Gunnarsson, “Truck-Trailer Wireless Connections,” Master’s thesis, KTH,
Microelectronics and Information Technology, IMIT, Stockholm, Sweden, 2001.

“A Guide to ensuring Wireless LAN reliability,” Motorola.com. [Online]. Available:
https://www.google.se/search?q=wifi+reliability&ogq=wifi+&gs_I=serp.3.0.35i39j0I9.
391088.395202.0.396868.5.5.0.0.0.0.1185.2945.1j1j4-1j7-
2.5.0....0...1¢c.1.39.serp..3.2.1215.G2LgODWVigs. [Accessed: 06-Apr-2014].

US Federal Communications Commission, “Amendment of the Comm ission’s Rules
Regarding Dedicated Short-Range Communication Services in the 5.850-5.925 GHz
Band (5.9 GHz Band): Amendment of Parts 2 and 90 of the Commission’s Rules to
Allocate the 5.850- 5.925 GHz Band to the Mobile Service for Dedicated Short Range
Communications of Intelligent Transportation Services,” US Federal Communications
Commission, Washington, D.C., USA, Report and Order FCC 03-324, Dec. 2003.
“Fuel consumption calculator,” scania.com. [Online]. Available:
http://www3.scania.com/en/Fuel-Consumption-
Calculator/?utm_source=1&utm_medium=2&utm_campaign=6. [Accessed: 06-Apr-
2014].

L. Holm, “XXXX,” Kandidate thesis, KTH Royal Institute of Technology, School of
Information and Communication Technology, Stockholm, Sweden, (expected) 2014.
K. Amouris, “Space-time division multiple access (STDMA) and coordinated, power-
aware MACA for mobile ad hoc networks,” presented at the IEEE Global
Telecommunications Conference, 2001. GLOBECOM '01, San Antonio, TX, USA, vol.
5, pp. 2890—2895.

Stralskyddsstiftelsen,
“www.stralskyddsstiftelsen.se/op/sites/default/files/pub/faktablad/13-0005-05.pdf,”
stralskyddsstiftelsen.se, 2013. [Online]. Available: about:blank. [Accessed: 06-Apr-
2014].

L. Hardell, “Case-control study of the association between malignant brain tumours
diagnosed between 2007 and 2009 and mobile and cordless phone use,”
International Journal of Oncology, Sep. 2013.

B. Mitchell, “What Is a Wireless Dead Zone?,” About.com Wireless / Networking.
[Online]. Available: http://compnetworking.about.com/b/2011/03/09/what-is-a-
wireless-dead-zone.htm. [Accessed: 06-Apr-2014].

Raytheon Company, “Raytheon Company: ASR-11 Digital Airport Surveillance Radar
(DASR).” [Online]. Available:
http://www.raytheon.com/capabilities/products/asrll/. [Accessed: 06-Apr-2014].
CAN-Cia, “CAN in Automation (CiA): Radar for vehicle safety,” can-cia.org. [Online].
Available: http://www.can-cia.org/index.php?id=1673. [Accessed: 06-Apr-2014].

N. Bowyer, “InterRegs - Regulations Spotlight,” InterRegs.com, Jun-2012. [Online].
Available: http://www.interregs.com/spotlight.php?id=117. [Accessed: 06-Apr-2014].
EUR-Lex, “Commission Regulation (EU) No 347/2012 of 16 April 2012,” eur-
lex.europa.eu, 2012. [Online]. Available: eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2012:109:0001:0017:EN:PDF.
[Accessed: 25-Apr-2014].

ETSI, “ETSI - Automotive Radar,” ETSI. [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/intelligent-
transport/automotive-radar. [Accessed: 06-Apr-2014].

Bosch Engineering, “Train Driver Assistance Radar, same type of LRR3 radar as used
in vehicles,” http://www.bosch-engineering.de/en. [Online]. Available:
http://www.bosch-

47

48 | References

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]

engineering.de/en/de/einsatzgebiete/schienenfahrzeuge/sicherheit_8/lokfuehrerassi
stenz/lokfuehrerassistenz_1.html. [Accessed: 27-Jun-2014].

J. Lee, Y.-A. Li, M.-H. Hung, and S.-J. Huang, “A Fully-Integrated 77-GHz FMCW
Radar Transceiver in 65-nm CMOS Technology,” IEEE Journal of Solid-State
Circuits, vol. 45, no. 12, pp. 2746—2756, Dec. 2010.

Audi, “Adaptive cruise control - Driver assistants - Audi A8,” Audi UK. [Online].
Available: http://www.audi.co.uk/content/audi/new-cars/a8/a8/driver-
assistants/adaptive-cruise.html. [Accessed: 06-Apr-2014].

Scania, “Adaptive Cruise Control (ACC) - scania.com.” [Online]. Available:
http://www.scania.com/products-services/trucks/safety-driver-support/driver-
support-systems/acc/. [Accessed: 06-Apr-2014].

Scania, “Scania lines up for platooning trials.” [Online]. Available:
http://newsroom.scania.com/en-group/2012/04/04/scania-lines-up-for-platooning-
trials/. [Accessed: 06-Apr-2014].

Scania, “Innovative Scania: Rolling towards platooning.” [Online]. Available:
http://newsroom.scania.com/en-group/2013/09/30/innovative-scania-rolling-
towards-platooning/. [Accessed: 25-Apr-2014].

Volvo, “The SARTRE project,” sartre-project.eu. [Online]. Available:
http://www.sartre-project.eu/en/Sidor/default.aspx. [Accessed: 06-Apr-2014].
EURO NCAP advanced, “Volvo City Safety | Euro NCAP - For safer cars krocktest
sakerhet,” se.euroncamp.com. [Online]. Available:
http://se.euroncap.com/se/rewards/volvo_city safety.aspx. [Accessed: 06-Apr-
2014].

Comtrol, “Power over Ethernet (PoE) For Intersection Monitoring
http://www.comtrol.com/applications/transportation/application-stories/power-
over-ethernet-poe-for-intersection-monitoring,” COMTROL Corp, Apr-2014. .

C. Lindenau, “Cameras at the Intersection -- Security Today,” 01-Dec-2013. [Online].
Available: http://security-today.com/articles/2013/12/01/cameras-at-the-
intersection.aspx. [Accessed: 06-Apr-2014].

D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device
communications with Wi-Fi Direct: overview and experimentation,” IEEE Wireless
Communications, vol. 20, no. 3, pp. 96—104, Jun. 2013.

GM News, “GM Developing Wireless Pedestrian Detection Technology,”
media.gm.com, 26-Jul-2012. [Online]. Available:
http://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/e
n/2012/Jul/0726_pedestrian.html. [Accessed: 06-Apr-2014].

V. Hennigan, “Vehicle Technology If cars could talk, what would they say? | Ford Tech
LaneFord Tech Lane,” Ford Tech Lane, 21-Aug-2012. [Online]. Available:
http://fordtechlane.com/if-cars-could-talk-what-would-they-say-to-each-other/.
[Accessed: 03-Jul-2014].

U.S. DOT RITA, “RITA - Intelligent Transportation Systems - DSRC: The Future of
Safer Driving Fact Sheet,” its.dot.gov. [Online]. Available:
http://www.its.dot.gov/factsheets/dsrc_factsheet.htm. [Accessed: 06-Apr-2014].

S. Eiderbrant, Analytical model of a vehicle platoon. 2013.

J. Kjellberg, Implementing control algorithms for platooning based on V2V
communication. 2011.

M. Amoozadeh, Certificate Revocation List Distribution in Vehicular Communication
Systems. 2012.

Scrum Alliance, “What is Scrum? An Agile Framework for Completing Complex
Projects - Scrum Alliance,” scrumalliance.org. [Online]. Available:
http://www.scrumalliance.org/why-scrum. [Accessed: 07-Apr-2014].

D-link, “How to extend your network with a Wireless Bridge,” dlink.com. [Online].
Available: http://www.dlink.com/us/en/resource-centre/how-to-guides/how-to-
extend-your-network-with-a-wireless-bridge. [Accessed: 07-Apr-2014].

[35]

[36]

[37]

[38]

[39]

[40]

References | 49

“Arduino Playground - ICMP Ping Library,” playground.arduino.cc, 16-Apr-2014.
[Online]. Available: http://playground.arduino.cc/Code/ICMPPing. [Accessed: 16-
Apr-2014].

ElecFreaks, “HC-SR04 sensor manual,” www.micropik.com. [Online]. Available:
http://www.micropik.com/PDF/HCSRO04.pdf. [Accessed: 24-Jun-2014].
SwanRobotics, “HC-SR04 Project | SwanRobotics.com,” www.swanrobotics.com.
[Online]. Available: http://www.swanrobotics.com/HC-SR04_Project. [Accessed: 27-
Jun-2014].

D. Mellis and T. Igoe, “Arduino - Ping,” arduino.cc. [Online]. Available:
http://arduino.cc/en/Tutorial/Ping?from=Tutorial.UltrasoundSensor. [Accessed: 27-
Jun-2014].

P. Hurbain, “LEGO 9V Technic Motors compared characteristics,”
www.philohome.com. [Online]. Available:
http://www.philohome.com/motors/motorcomp.htm. [Accessed: 15-Jun-2014].
Arduino, “Arduino - WordCast,” www.arduino.cc. [Online]. Available:
http://arduino.cc/en/Reference/WordCast. [Accessed: 19-Jun-2014].

49

Appendix | 51

Appendix

This appendix contains the code snippets that | used for different tests. Code listing 1.1 realizes a PING
program which tries to ping the network gateway.

Code listing 1.1

/*
Ping Example

This example sends an ICMP pings every 500 milliseconds, sends the human-
readable result over the serial port.

Circuit:

* Ethernet shield attached to pins 10, 11, 12, 13
created 30 Sep 2010

by Blake Foster

*/

#tinclude <SPI.h>
#tinclude <Ethernet.h>
#include <ICMPPing.h>

byte mac[] = {0xDE, ©xAD, OxBE, OxEF, OxFE, OxED}; // max address for
Ethernet shield

byte ip[] = {192,168,0,4}; // IP address for Ethernet shield
IPAddress pingAddr(192,168,0,1); // IP address to ping

int ping_count = 10;

SOCKET pingSocket = 0;

char buffer [256];

ICMPPing ping(pingSocket, (uintlé_t)random(®, 255));

void setup()

{
// start Ethernet

Ethernet.begin(mac, ip);
Serial.begin(9600);

void loop()

{
if(ping_count > @)
{
ICMPEchoReply echoReply = ping(pingAddr, 4);
if (echoReply.status == SUCCESS)

51

52 | Appendix

{
sprintf(buffer,
"Reply[%d] from: %d.%d.%d.%d: bytes=%d time=%ldms TTL=%d",
echoReply.data.seq,
echoReply.addr[0],
echoReply.addr[1],
echoReply.addr[2],
echoReply.addr[3],
REQ_DATASIZE,
millis() - echoReply.data.time,
echoReply.ttl);
}
else
{
sprintf(buffer, "Echo request failed; %d", echoReply.status);
}

Serial.println(buffer);
ping_count--;
delay(20);

¥

Appendix | 53

Code listings 2.1 and 2.2 represents the test where | sent simple motor speed signals between two
Arduinos connected to router and access point, described in section 3.4.5. Code 2.1 runs on the
Arduino which has the router connected to it, and is also connected to computer #1. Code 2.2 then
runs on the second Arduino which is connected to the access point.

Code listing 2.1

#include <SPI.h>

#include <Ethernet.h>

#include <ICMPPing.h>

byte mac[] = {OxDE, OxAD, OxBE, OxFF, OxFE, OxED};

byte ip[] = {192,168, 0, 5};

byte master[] = {192,168,0,4};

EthernetClient client;

void setup()

{
Ethernet.begin(mac, ip);
Serial.begin(9600);
delay(1000);
if(client.connect(master, 40)){

Serial.println("Connected");

}
void loop()

{
while(Serial.available() > 0){
int speed = Serial.parselnt();
if(client.connected()){
client.print(speed);
client.print('e');
Serial.print("Input speed: ");
Serial.println(speed);
}
else{
client.connect(master, 40);
Serial.println("Connected");

53

Code listing 2.2

#include <SPI.h>
#include <Ethernet.h>
#include <ICMPPing.h>
#include <String.h>
const int PWM_A = 3, DIR_A = 12,BRAKE_A = 9;
byte mac[] = {oxDE, ©xAD, OxBE, OxEF, OxFE, ©xDD}; //mac address
byte ip[] = {192,168,0,4}; // IP address for Ethernet shield
EthernetServer master = EthernetServer(40);
int sekvens = 1;
String s;
int motorSpeed = 0;
void setup()
{
Ethernet.begin(mac, ip);
Serial.begin(9600);
//pinMode(DIR_A, OUTPUT);
//pinMode (BRAKE_A, OUTPUT);

}
void loop()

{
EthernetClient client = master.available();
if(client == true)
{
char ¢ = client.read();
if(c = 'e")
S += ¢;
else{
motorSpeed = s.toInt();
//Serial.println(number);

s ="";

}
delay(10);

digitalWrite(BRAKE_A, LOW);
analogWrite(PWM_A, motorSpeed);

Appendix | 55

55

Appendix | 57

Code listings 2.3 and 2.4 represents the simple steering signals that were sent from the Arduino
connected to router, to the Arduino connected to the access point. Code 2.3 runs on the first Arduino
and code 2.4 on the second one.

Code listing 2.3

#tinclude <SPI.h>
#include <Ethernet.h>
#include <Servo.h>

byte mac[] = {OxDE, ©OxAD, OxBE, OxFF, OxFE, OxED};
byte ip[] = {192,168, 0, 5};
byte master[] = {192,168,0,4};

EthernetClient client;
Servo servo;

void setup()

{
Ethernet.begin(mac, ip);
Serial.begin(9600);
servo.attach(24);
delay(1000);
if(client.connect(master, 40)){

Serial.println("Connected");

}
void loop()

{
/*
Servo turning
*/
int firstChar = 0;
while(Serial.available() > 9){
char type;
if(firstChar == 0){
type = Serial.read();
firstChar = -1;
}
if(type == 't")
{
int degree = Serial.parselnt();
servo.write(degree);
if(client.connected()){
client.print(type);

57

58 | Appendix

client.print(degree);
client.print('e');
Serial.print("Input type = ");
Serial.print(type);
Serial.print(" value = ");
Serial.println(degree);

}

else{
client.connect(master, 40);
Serial.println("Connected");

}

else
{
int value = Serial.parselnt();
if(client.connected()){
client.print(type);
client.print(value);
client.print('e');
Serial.print("Input type = ");
Serial.print(type);
Serial.print(" value = ");
Serial.println(value);
}
else{
client.connect(master, 40);
Serial.println("Connected");

Code listing 2.4

#include <SPI.h>
#include <Ethernet.h>
#include <String.h>
#include <Servo.h>

const int
PWM_A = 3,
DIR A = 12,
BRAKE_A = 9;

Servo servo;

Appendix | 59

byte mac[] = {0xDE, ©xAD, OxBE, OxEF, OxFE, ©xDD}; // mac address for

ethernet shield
byte ip[] = {192,168,0,4}; // IP address for Ethernet

EthernetServer master = EthernetServer(40);

int sekvens = 1;
String motorData;
String servoData;

int motorSpeed = 0;
int servoPosition = 0;
int writeServo = 0;

void setup()
{

Ethernet.begin(mac, ip);

Serial.begin(9600);
servo.attach(24);

}
void loop()

{
EthernetClient client

if(client == true)

{

char ¢ = client.read();
//if 't' then receive turning data

if(c == 't)
{

sekvens = 2;

master.available();

shield

59

60 | Appendix

}
//else if 'm' then receive motor data (not significant in this test)
else if(c == 'm")
{
sekvens = 3;
}
else if(c != 'e' && sekvens == 2)
servoData += c;
else if(c != 'e' && sekvens == 3)

motorData += c;

else if(c == 'e' && sekvens == 2){
servoPosition = servoData.toInt();

servoData = "";
writeServo = 1;
}
else if(c == 'e' && sekvens == 3){

motorSpeed = motorData.toInt();
//Serial.println(number);

motorData = 5

}
delay(10);

if(writeServo == 1){
servo.write(servoPosition);
writeServo = 0;

Appendix | 61

Final versions of code for the models.

There are two versions of the code on both models: TCP with bad steering algorithm and UDP with
not steering algorithm. The UDP versions were tested but the front vehicle was not receiving any data,
however the code algorithms in general are supposed to work. Total of four final codes in this appendix
section. Code listing 3.1: TCP code on front vehicle. Code listing 3.2: TCP code on rear vehicle. Code
listing 3.3: UDP code on front vehicle. Code listing 3.4: UDP code on rear vehicle.

Code listing 3.1

#include <SPI.h>
#include <Ethernet.h>
#include <String.h>
#include <Servo.h>
#include <Keypad.h>

const int
PWM A = 3, /* pin that controlls pulse width modulation value on motor */
DIR_A = 12, /* pin that controlls direction of the motor */

BRAKE_A = 9,/* pin that controlls if the brake is on or off on the motor */
Joystick x_axle pin = A9, /* pin that reads the X-value
of the right joystick */
Joystick_y axle_pin = A8, /* pin that reads the Y-value
of the left joystick */

LED_1 = 26, /* LED 1 that represents the ethernet connection state */
LED 2 = 27; /* LED 2 that represents the convoy connection state */
const byte ROWS = 4;

const byte COLS = 4;

char keys[ROWS][COLS] =
{{‘1')'2l."3l)'Al})
{'4','5','6",'B"'},
{'7','8','9",'C'},
{**',"e","#','D'}};
byte rowPins[ROWS] = {28,31,32,33};
byte colPins[COLS] {37,34,35,36};
int count = ©;
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

Servo servo;

/* mac address of ethernet shield */

byte mac[] = {0xDE, ©xAD, OxBE, OXEF, OxFE, OxDE};

IPAddress ip(192,168,0,10); /* ip address of ethernet shield */
unsigned int localPort = 40; /* port to be used in connection */

62 | Appendix

boolean active convoy = false; /* active convoy variable */
boolean active_request = false; /* request joining convoy variable */
boolean close_convoy = false; /* close convoy variable */

/* create server connection on specified port */
EthernetServer server = EthernetServer(localPort);

const int Maximum_command_length = 128; /* define maximum
command length of buffer */

char command_buffer_char[Maximum_command_length]; /* buffer to write

motor and speed data into */

byte command_buffer_ byte[Maximum_command_length]; /* buffer to send
converted motor and speed data */

/* __ */
void setup(){

pinMode (LED_1, OUTPUT);

pinMode(LED_2, OUTPUT);

pinMode(Joystick x_axle_pin, INPUT);

pinMode(Joystick y axle pin, INPUT);

servo.attach(47);

Serial.begin(9600);/* allow serial connection if computer is connected */

int i;
for(i = 0; i < 30; i++)
delay(1000); /* allow router to be booted up

before initializing ethernet shield */

digitalWrite(LED_1, HIGH); /* indicate that ethernet initializing has
begun */

Ethernet.begin(mac, ip);

delay(1000);

server.begin();

delay(1000);

digitalWrite(LED_1, LOW); /* turn off when ethernet is ready */

/* __ */
void loop(){

char key = keypad.getKey();
delay(5);
/* if master has got a request from slave and press 'A' on keypad */
if(active_request == true && key == 'A"){
server.write('A'); /* send back char 'A' and wait for echo */

Appendix | 63

digitalWrite(LED 1, HIGH); /* indicate that master has accepted

convoy request */

}
/* if convoy is active and master press 'C' on keypad */
if(active convoy == true && key == 'C'){
server.write('C"); /* write 'C' to slave */
active_convoy = false; /* close convoy */
digitalWrite(LED_ 1, LOW); /* turn off LED 1 */
}

/* read right joystick */
int steering angle = analogRead(Joystick x_axle pin);
delay(2);
/* read left joystick */
int motor_speed = analogRead(Joystick_y axle_pin);
delay(2);
/*map read values to proper servo angle values */
steering _angle = map(steering angle, 1023, 0, 40, 140);

if(motor_speed < 500)
/* map to proper motor speed values */
motor_speed = map(motor_speed, 500, 9, 0, 255);

else

motor_speed = 0;

/*apply motor speed and servo degree values */
digitalWrite(BRAKE_A, LOW);

analogWrite(PWM_A, motor_speed);
servo.write(steering angle);

delay(2);

/¥ -------- READ ETHERNET DATA---------------- */
EthernetClient slave = server.available();
if(slave == true){

char data = slave.read();
switch (data){
case 'A':
active_convoy = true;
active request = false;
digitalWrite(LED_ 1, LOW);
digitalWrite(LED_2, HIGH);
break;

/* read char from server */

/* if char is 'A' */
/* activate convoy */
/* reset request variable */

/* turn off LED 1 and turn on LED 2 */

63

64 | Appendix

case 'C': /* if char is 'C' */
server.write('C'); /* echo it back */
active_convoy = false; /* and close the convoy */
break;

case 'R': /* if char is 'R"' */

active_request = true; /* set current state to request is active */
digitalWrite(LED_1, HIGH); /* turn LED 1 and 2 ON for one second */
digitalWrite(LED_2, HIGH);

delay(1000);

digitalWrite(LED_ 1, LOW);

digitalWrite(LED_2, LOW);

}
}
J* —mann WRITE MOTOR AND SERVO DATA -------------- * /
if(active_convoy == true){

/* write steering angle and motor speed to char buffer */

sprintf(command_buffer_char, "#steering angle=%d,motor_speed=%dE\n",
steering_angle, motor_speed);

int i;
for(i = 0; i < 128; i++){
/* convert every char to byte value */
command_buffer byte[i] = (byte)command_buffer_ char[i];
/* when last char is reached, break */
if(command_buffer_char[i] == "E'){
break;
}
}

/* send byte buffer to server */
server.write(command_buffer_byte, 128);

Appendix | 65

Code listing 3.2

#include <SPI.h>
#include <Ethernet.h>
#include <String.h>
#include <Servo.h>
#include <Keypad.h>

const int

PWM A = 3, /*pin that controlls the pulse width modulation value of
the motor */

DIR_ A = 12, /*pin that sets the direction of the motor*/

BRAKE_A = 9, /*pin that controlles whether the brake is one or of on the
motor*/

trigPin = 48, /*pin that trig the signal of the USDR sensor*/
echoPin = 49, /*pin that listen to the echo signal of the USDR sensor*/

Joystick x axle pin = A8, /*pin that reads the X-axle values on the
right joystick and applies these values to servo motor*/
Joystick y axle pin = A9; /*pin that reads the Y-axle values on the

left joystick and applies these values to motor*/

const byte ROWS = 4;
const byte COLS = 4;
/*matrix that represents the 4x4 keypad*/
char keys[ROWS][COLS] =
{{'17,72","3","A"},
{'4','5','6",'B"'},
{'7','8','9",'C'},
{**',"e",#','D'}};
byte rowPins[ROWS] = {30,31,32,33}; /*match the row pins on the matrix
with Arduno pins*/

byte colPins[COLS] = {37,34,35,36}; /*match the column pins on the
matrix with Arduino pins*/

//create a keypad object by the 4x4 matrix*/

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

/*connection states LEDs*/

const int
LED_1 = 40,
LED 2 = 41;

/* ACC variables */
int keypad_input_value = 0;
int default_acc_distance = 80;

65

66 | Appendix

int previous_acc_distance = 80;
int current_acc_distance = 80;
int measured _distance = 9;
boolean set_acc_distance = false;
boolean set_acc_speed = false;
boolean acc = false;

int current_acc_speed = 0;

Servo servo;

/* Ethernet variables */

byte mac[] = {oxDE, ©xAD, OxBE, OxEF, OxFE, ©xDD};

IPAddress ip(192, 168, 0, 11);

IPAddress master(192,168,0,10);

unsigned int port = 40;

EthernetClient slave;

int connect_attempt; /*current attempt to connect to master*/

const int Maximum_connect_attempts = 10; /*maximum times to attempt to
connectt to master*/

const int Maximum_command_length = 128; /*maximum length for commands*/

char command_buffer_char[Maximum_command_length]; /*char buffer for
scaning commands */

/*Convoy variables*/

boolean active_convoy = false;
boolean receive_data = false;
int received_motor_speed = 0;

int wifi speed = 0;

int wifi_steering = 95;

byte servo_value, motor_value;

/*loop variable for use when parsing the receiving buffer from master */

int current_byte;

int turn_buffer[256]; /*buffer for storing servo angle degrees */

int store steer degree = 95; /* default storing value in buffer */

int current_buffer_write_index = @; /*begin write on first index */

/*begin reading on buffer index 220 for a static delay when begin turning
*/

int current_buffer_read_index = 220;

int received_steering angle = 0;

Appendix | 67

void setup(){

/*

/*

/*

/*setup of LED and joysticks as output or input, and attach servo motor*/
pinMode(LED 1, OUTPUT);

pinMode (LED_2, OUTPUT);

pinMode(Joystick _x_axle_pin, INPUT);

pinMode(Joystick_y axle_pin, INPUT);

servo.attach(24);

Serial.begin(9600); /* allow Serial connection when debugging or
reprogramming with computer */

/* Ethernet shield and connection setup */

int i;

for(i = 0; i < 50; i++){

50 second delay to enable the access point to start up*/
delay(1000);

}

digitalWrite(LED_1, HIGH); /*turn on LED1 for indicating the ethernet
connection is initalizing*/

Ethernet.begin(mac, ip);

delay(1000); /* 1 second delay for the initalizing of
ethernet shield*/

for(connect_attempt = 0; connect_attempt < Maximum_connect_attempts;
connect_attempt++){

if a connection with master was established, turn on LED 2 to indicate
drivers of that*/

if(slave.connect(master, port)){
digitalWrite(LED_2, HIGH);

}

delay(1000);

and after 1 second, turn of LED 1 to indicate drivers that ethernet
initalizing has ended */

if(slave.connected()){
digitalWrite(LED_1, LOW);
break;

int filling buffer_index;

for(filling buffer _index = @; filling buffer_index < 256;
filling buffer_index++){

turn_buffer[filling buffer_index] = 95;

67

68 | Appendix

/* ___ */
void loop(){

) ISR READ 4x4 KEYPAD-------=--mmmmmmmmmmmmmeemm */

char key = keypad.getKey();

JH e READ JOYSTICKS-----=-====cmmmmmmmoomme e */

int x_axle value = analogRead(Joystick x_axle pin); /* read value on x-
axle pin */

delay(2); /* delay 2ms for value to be read properly */

int y axle value = analogRead(Joystick y axle pin); /* read value on y-
axle pin */

delay(2); /* delay 2ms for value to be read properly */

int servo_steering value, motor_speed value; /* define values
for later appliance */

/*read values on joystick pins are values of ©-1023 but due to how I
mounted these joysticks on controller,

the values will be read in negative way. The map-function normally has
input as:

(source, fromLowest, fromHighest, tolLowest, toHighest) which means I
should normally have used it like

(source, 0, 1023, tolLow, toHigh) but I had to use it like (source,
1023, 0, tolLow, toHigh).

Since the joysticks are center-positioned when not used, I had to
filter out the values from the furthest down

to the center posistion which was, due to the negative reading, values
512-1023. I included a dead-zone of the

accelerator joystick from 512-530 to remove the accidently reading of
the joystick when center posistioned because

then values would vary between 510-515. */

servo_steering value = map(x_axle value, 1023, 9, 40, 140);
if(y_axle value < 530)

motor_speed_value = map(y_axle_value, 530, 0, @, 255);
else

motor_speed_value = 0;

if(active _convoy == false){
if(acc == false){
digitalWrite(BRAKE_A, LOW);

analogWrite(PWM_A, motor_speed_value); /* if neither convoy nor
acc is active, */

servo.write(servo_steering value); /* apply joystick values to
motor and servo */

delay(2);

Appendix | 69

else{
if(measured_distance < 5)
current_acc_speed = 0; /* stop motor if distance

to obstacle is too close */
else if(measured distance < 10)

current_acc_speed -= 20; /* decelerate motor if
distance to obstacle is fairly close */

else if(measured_distance < current_acc_distance)

current_acc_speed -=2; /* decelerate little when
distance is not so short */

else if(measured distance > current_acc_distance && current_acc_speed
< reference_acc_speed) /*distance further than set, */

current_acc_speed += 5; /* accelerate */
if(current_acc_speed < 9)

current_acc_speed = 0;
digitalWrite(BRAKE_A, LOW);
analogWrite(PWM_A, current_acc_speed); /* apply acc speed to motor */
servo.write(servo_steering value);/*apply joystick values to servo */

delay(2);
}
}
else{
if(measured_distance < 5)
wifi speed = 0; /* stop motor when obstacle is very close */
else if(measured distance < 10) /* decelerate hard since
wifi_speed will be restored */
wifi speed -= 50; /* by the received value from Wi-Fi */

else if(measured _distance < 20)

wifi speed -= 30; /* decelerate fairly hard when
distance is not so long */

if(wifi_speed < 0)
wifi speed = 0;
if(wifi_speed >= 30){/* enough speed to make motor axle start moving */

wifi_steering = turn_buffer[current_buffer_read_index]; /*read wifi
steering from buffer */

current_buffer_read_index++; /* next index */
if(current_buffer_read_index == 256)
current_buffer_read_index = 0; /* start over from buffer
beginning */

}
digitalWrite(BRAKE_A, LOW);
analogWrite(PWM_A, wifi speed); /* apply motor speed */
servo.write(wifi_steering); /* apply servo angle value */
delay(2);

69

70 | Appendix

delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

A READ ULTRASOUND SENSOR --------------- */
pinMode(trigPin, OUTPUT);

pinMode(echoPin, INPUT);

digitalWrite(trigPin, LOW); /* reset signal */
delayMicroseconds(2);

digitalWrite(trigPin, HIGH); /* trig a signal */
delayMicroseconds(10);

digitalWrite(trigPin, LOW); /* stop triggering */

long dur = pulseIn(echoPin, HIGH); /* read the echo */

measured_distance = microsecondsToCentimeters(dur); /* convert to
distance */

delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

JF o HANDLE KEYPAD BUTTONS-----==---=---=---—--oo- */
switch (key){
/*ACC ON*/
case 'A': /* key is A */
if(active convoy == false && acc == false){ /* check if convoy is
inactive and acc is off */
acc = true; /* turn acc on */
current_acc_speed = motor_speed value; /* save current
speed to acc speed */
}
else if(active_convoy == false && acc == true){ /* check if convoy is
inactive but acc is on */
acc = false; /* turn acc off */
}
break;
/* "JOIN CONVOY"/"ABORT CONVOY" - REQUEST */
case 'B': /* key is B */
if(active_convoy == false){
slave.write('R"); /* if convoy is inactive, send join request */
digitalWrite(LED 1, HIGH); /* and turn on LED 1 to inform driver */
}
else{
slave.write('C");/*if convoy is active, send abort convoy request*/
}

break;

Appendix | 71

case '#':
/* when acc is on (only when convoy is inactive) and currently not
already setting speed,
set speed parameter to true */

if(acc == true && active_convoy == false && set_acc_speed == false){
set_acc_speed = true;
}
else if(acc == true && active_convoy == false && keypad input value >
0 && set_acc_speed == true){
if(keypad _input_value >= 1090) /* when acc is turned
on and input speed is higher or equal to 100, */
current_acc_speed = keypad_input_value; /* save it for
applying to current speed (100 is just a feasible minimum
speed)*/
keypad_input_value = 0; /* reset incrementing value */
set_acc_speed=false; /*reset current setting speed state to false*/
}
break;
case 'D':
/* like speed setting on acc, the distance setting method work the
same */
if(acc == true && active convoy == false && set acc_distance ==
false){
set_acc_distance = true;
}
else if(acc == true && active_convoy == false && keypad input value >
0 && set_acc_distance == true){
if(keypad input_value > 20) /* feasible minimum

distance between vehicles */
current_acc_distance = keypad_input_value;

else
current_acc_distance = 20; /* if set to lower, the default
value will replace the input */
keypad_input_value = 0; /* reset the incrementing value */
set _acc_distance = false; /* reset current setting distance
state to false */
}
break;
case '0': /* check digits */
case '1':
case '2'
case '3’

71

72

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Appendix

case
case

4
5
case '6':
case '7

8

case
case '9':

int digit = (key - '0"); /* change from char to integer */

keypad _input value = digit + (keypad input_value * 10);

replace the current keypad_input_value value depending on input */
the replacing is active so its happening after every button press */
and not calculated after every specifik buttons have been pressed */
works for 1-5 digits. Example: */

input = 5 -> */

keypad_input_value = 5 + (0*10) = 5 */
input = 120 -> */

keypad _input value = 1 + (0*10) =1 -> */
keypad input value = 2 + (1*10) = 12 -> */

keypad input value = 0 + (12*10) = 120 */

}
delay(10); /* Intentionally delay for proper USDR SENSOR use */

if(slave.available()){
byte read byte = slave.read(); /* read a byte */
switch (read_byte){

case 'A':

if(active_convoy == false){
slave.write('A"); /* write acknowledge echo */
active_convoy = true; /* activate convoy */

digitalWrite(LED_1, LOW);
digitalWrite(LED_2, HIGH); /* indicate convoy is active */
}

break;

case 'C':
active_convoy = false; /* close the convoy */
break;

case '#':
for(current_byte = 0; current_byte < Maximum_command_length;
current_byte++){

Appendix | 73

read_byte = slave.read();

/*convert byte to char value and store in buffer */
command_buffer_char[current_byte] = (char)read_byte;
if(read_byte == "E'){

/* scan the buffer and read the received values of motor and servo */

sscanf(command_buffer_char, "steering angle=%d,motor_speed=%d",
&received_steering_angle, &received_motor_speed);

wifi_speed = map(received_motor_speed, ©, 255, @, 200);

/* part of steering algorithm - save steering values to buffer for later
readings */
if(wifi_speed >= 30){

turn_buffer[current_buffer_write index] =
received_steering_angle;

current_buffer_write_ index++;
if(current_buffer_write_index == 256)
current_buffer_write index = 0;

}

break;

}
delay(20);

}
/* ----KONVERTERA ULTRALJUDSENSORNS TID TILL AVSTAND------------------ */
long microsecondsToCentimeters(long microseconds)

{

return microseconds / 29 / 2;

73

74 | Appendix

Code listing 3.3

#include <SPI.h>

#include <Ethernet.h>

#include <EthernetUdp.h>

#include <String.h>

#include <Servo.h>

#include <Keypad.h>

const int

PWM_A = 3, /* pin that controls the pulse width modulation value of
the motor */

DIR_A = 12, /* pin that sets the direction of the motor */

BRAKE_A = 9, /* pin that controls whether the brake is on or off */

VRx = A9, /* pin that reads the X-axle values on the right joystick */

VRy = A8, /* pin that reads the Y-axle values on the left joystick */

LED_1 = 26, /* pin for LED. Represents ethernet connection states */

LED_2 = 27; /* pin for LED. Represents convoy connection states */

const byte ROWS = 4;

const byte COLS = 4;

char keys[ROWS][COLS] =
{{'1",72,"3", A"},
{‘4')'5|J'6|)'Bl})
{‘7')'8|J'9|)'Cl})
{"*',%0","#','D'}};
byte rowPins[ROWS] {28,31,32,33};
byte colPins[COLS] {37,34,35,36};
int count Q;
Keypad keypad = Keypad(makeKeymap(keys), rowPins,

colPins, ROWS, COLS);

Servo servo;

byte mac[] = {OxDE, ©xAD, OxBE, OXEF, OxFE, OxDE};
IPAddress ip(192,168,0,10);

/* IPAddress slave(192,168, 0, 11); */
setup */

unsigned int localPort
EthernetUDP Udp;

/* inactive backup connection

8888;

boolean active convoy = false;
boolean active request = false;
boolean close convoy = false;

char command_buffer_char[UDP_TX_ PACKET_MAX_SIZE];

Appendix | 75

byte command_buffer_ byte[UDP_TX PACKET MAX SIZE];
int current_index;

unsigned long start_time_request, start_time_ack, start_clock broadcast,
end_time_request,
end_time_ack, end clock broadcast = @, broadcast time = 4000,
time out _limit = 10000;
boolean time out = false, timing out request = false, timing out_ack =
false, compute_time = false;

/* Variables for broadcasting from slave to master, broadcasting is LED 2
flashing every time slave

send a broadcast signal */
boolean broadcast LED = false, timing out broadcast = false;
unsigned long led_start_time = 0, led_end_time;

void setup(){
pinMode(LED_1, OUTPUT);
pinMode(LED 2, OUTPUT);
pinMode(VRx, INPUT);
pinMode(VRy, INPUT);
servo.attach(47);

Serial.begin(9600); /* Allow serial communication with computer when
troubleshooting */

int i;
for(i = 0; i < 30; i++)
delay(1000); /* Allow the router to start up before Arduino

ethernet initialize */

digitalWrite(LED_1, HIGH); /* Turn on LED 1 to indicate Ethernet shield
is initializing */

Ethernet.begin(mac, ip); /* Ethernet init */

Udp.begin(localPort); /* UDP init */
delay(1000); /* Allow init time */
digitalWrite(LED_ 1, LOW); /*Turn off when init is done */
}
/* __ */
void loop(){
A T T READ 4x4 KEYPAD----------c-mmmmmm e e e e oo - */
char key = keypad.getKey();/*read keypad and save key to character "key"*/
delay(5); /* allow some time for keypad to be read */

75

76 | Appendix

if(active request == true && key == 'A'){ /* if a convoy request is
active and master pressed 'A’,
send a confirmation char
"A' and wait for echo */

/* Udp.beginPacket(slave, localPort); */ /*inactive backup
connection setup */

Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());/*create UDP packet */

Udp.write('A'); /* write 'A' to it */
Udp.endPacket(); /* send packet */
timing out request = false; /* request timeout is passed */

timing out_ack = true; /* allow timeout for the echo of 'A' */
start_time ack = millis(); /* start timing */
digitalWrite(LED_1, HIGH);/* indicate that master has accepted convoy */
}
if(active _convoy == true && key == 'C'){ /*if master close the convoy */
/* Udp.beginPacket(slave, localPort); */ /*inactive backup
connection setup */
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /*create UDP
packet */
Udp.write('C"); /* write 'C' to it */
Udp.endPacket(); /* send packet */
active convoy = false; /* close the convoy */
compute_time = false;/* do not compute time when convoy is inactive */
}
[H e READ JOYSTICKS === */
int steering _angle = analogRead(VRx); /* read right joystick x-values */
delay(2);

int motor_speed = analogRead(VRy); /* read left joystick y-values */
delay(2);

/*joysticks are center positioned when not used, it benefits the steering
to automatically steer back to center when

released. However it is problem for accelerator joystick. When center
positioned, the y-value is half way to max which

would make the motor to go on half speed if directly applied. The values
must therefore be mapped so center positon is

equal to zero for the motor. For the left joystick, the center position
to top position represents values 512-0.

The mapping should therefore be inverted with 512 as lower value and ©
as higher value. To prevent false reading of joystick

or just accidently touching of joystick, the lowest value is decreased
to 500. This allows a small "dead-zone" for the joystick.

*/

steering angle = map(steering angle, 1023, 0, 40, 140); /* map joystick
values to proper servo angle values (limit: ©-180) */

Appendix | 77

if(motor_speed < 500)
motor_speed = map(motor _speed, 500, @, @, 255); /* map to proper motor
values */
else

motor_speed = 0; /* if joystick is moved down from
center position, it should not affect the motor speed */

digitalWrite(BRAKE_A, LOW);
analogWrite(PWM_A, motor_speed);
servo.write(steering angle);
delay(2);

if(compute time){

end_time_request = millis(); /* clock the current time for the
request convoy timeout variable */

if(end_time request - start time request > time out limit &&
timing_out_request == true)

time_out = true; /* if 10 seconds has passed

without master accepted convoy, timeout! */

if(end_time_ack - start_time_ack > time_out_limit && timing_out_ack ==
true)

time_out = true; /* if 10 seconds has passed
without the acknowledged echo from accepting has returned,
timeout! */
if(end _clock broadcast - start clock broadcast >= broadcast_time &&
end_clock broadcast - start clock broadcast < time out limit){

broadcast LED = true; /* if time between two broadcast
messages was within edge value range, make LED flash */
led start time = millis(); /* clock time for how long LED
should light up during a flash */
}
else if(end_clock broadcast - start_clock broadcast > time out limit)
time_out = true; /* if broadcast waiting time has
been over 1limit, make a timeout */
}
if(time out == true){ /* if timeout is in action */
if(timing_out_request == true){
active_request = false; /* if timing out was due to slow
aknowledge of request, reset request variable */
timing_out_request = false;
}

if(timing_out_ack == true){

active request = false; /* if timing out was due to slow/loss UDP
ack char 'A', reset request variable */

timing out_ack = false;

77

78 | Appendix

if(timing_out_broadcast == true){

active convoy = false; /* if timing out was due to no broadcast,
close the convoy and reset timing out variable */

timing out broadcast = false;

}
time_out = false; /* reset time out variable */
compute_time = false; /* quit compute time */

}

if(broadcast LED == true){ /* make LED light up during a

second when flashing */
digitalWrite(LED_ 2, HIGH);
led end_time = millis();
if(led end time - led_start time >= 1000){
digitalWrite(LED_2, LOW);
broadcast LED = false;

int packets_available = Udp.parsePacket();
if(packets_available){

char packet = Udp.read();

switch (packet){

case 'A': /* if received acknowledge echo 'A' */
active _convoy = true; /* activate convoy */

active request = false; /* reset request convoy variable */

timing out_ack = false; /* reset acknowledge timing out variable */
digitalWrite(LED_1, LOW); /* turn off LED_1 */

break;

case 'B':

/* broadcasting from slave vehicle every fourth second */
start _clock broadcast = end clock broadcast;
end_clock_broadcast = millis();

break;

case 'C':
/* Udp.beginPacket(slave, localPort); */ /*inactive backup
connection setup */
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create UDP

packet */
Udp.write('C"); /* write 'C' to it */
Udp.endPacket(); /* send packet */

break;

Appendix | 79

case 'R':

active_request = true; /* got join convoy request */
start_time request = millis(); /* start timeout countdown variable */
timing_out_request = true; /* set timing out to be due to request */
compute_time = true; /* allow time to be computed */
digitalWrite(LED_ 1, HIGH); /* turn on LED 1 and LED_2 for a second */

digitalWrite(LED_2, HIGH);

delay(1000); /* one second delay is okey for the timing out range */

digitalWrite(LED_1, LOW);
digitalWrite(LED_ 2, LOW);

}
}
if(active _convoy == true){
LT TSR WRITE ETHERNET DATA--------cmmmmmmmamm * /

sprintf(command_buffer_char, "#servo=%d,motor=%dE\n", steering angle,
motor_speed); /*write motor speed and servo degree values
to the buffer that then sends away */

for(current_index = 0; current_index < UDP_TX PACKET_MAX_ SIZE;
current_index++){ /* UDP_TX_PACKET_MAX_SIZE is default
maximum buffer size, set in EthernetUDP.h */

command_buffer_byte[current_index] =

(byte)command_buffer char[current_index]; /* convert buffer

values to byte before send */

if(command_buffer_char[current_index] == 'E")
/* last char in buffer */

break;

}

/* Udp.beginPacket(slave, localPort); */ /*inactive backup
connection setup */

Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());/*create UDP packet */

Udp.write(command buffer byte, UDP_TX PACKET MAX SIZE);
/* write buffer to it */

Udp.endPacket(); /* send packet */

79

80 | Appendix

Code listing 3.4

#include <SPI.h>
#include <Ethernet.h>
#include <EthernetUdp.h>
#include <String.h>
#include <Servo.h>
#include <Keypad.h>
#include <Wire.h>

const int
PWM_A

3, /*pin that controls the pulse width modulation value of the
motor */

DIR_ A = 12, /*pin that sets the direction of the motor*/

BRAKE_A = 9, /*pin that controls whether the brake is on or off on the
motor*/

48, /*pin that trig the signal of the USDR sensor*/

49, /*pin that listen to the echo signal of the USDR sensor*/

Joystick x axle pin = A8, /*pin that reads the X-axle values on the

right joystick */

Joystick y axle pin = A9, /*pin that reads the Y-axle values on the
left joystick */

40, /* pin for LED. Represents Ethernet initializing */

41; /* pin for LED. Represents active convoy */

trigPin
echoPin

LED_1
LED 2

const byte ROWS
const byte COLS

4;
4;

/*matrix that represents the 4x4 keypad*/
char keys[ROWS][COLS] =
{{'1",72%,"3","A"},
{'4','5","6",'B'},
{‘7')'8|J'9|"Cl})
{"*1,70", 4,0}
byte rowPins[ROWS] = {30,31,32,33}; /*match the row pins on the matrix
with Arduno pins*/

byte colPins[COLS] = {37,34,35,36}; /*match the column pins on the
matrix with Arduino pins*/

//create a keypad object by the 4x4 matrix*/
Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);

/* ACC variables */

int acc_sum = 0;

int default_acc_distance = 30;
int previous_acc_distance = 30;
int current_acc_distance = 30;

Appendix | 81

long measured distance = 0;
boolean set_acc_distance = false;
boolean set_acc_speed = false;
boolean acc = false;

int current_acc_speed = 0;

int reference_acc_speed = 0;

Servo servo;

/* Ethernet variables */

byte mac[] = {0xDE, ©xAD, OxBE, OxEF, OxFE, ©xDD};

IPAddress ip(192, 168, 0, 11);

/* IPAddress master(192, 168, 0, 10);*/

unsigned int localPort = 8888;

EthernetUDP Udp;

char command_buffer_char[UDP_TX_ PACKET_MAX_SIZE]; /*buffer for commands*/

int current_char; /*loop variable for use when
parsing the receiving buffer from master */

/*Convoy variables*/

boolean active convoy = false;

boolean receive data = false;

int received _motor_speed = 0; /* received value from sscanf */

int wifi_speed = 0;

int wifi_steering = 95; /* default servo angle for center position */
byte servo_value, motor_value;

int store steer degree = 95;

int received steering angle = 0; /* receive value from sscanf */

/* time variables */

unsigned long start_time_request, start_time_cancel, start_broadcast_time,
end_time_request, end time_cancel, end broadcast_time,
time out limit = 10000, broadcast time = 4000;

boolean time out = false, timing out request = false, timing out cancel =
false, compute_time = false;

void setup(){
/*setup of LED and joysticks as output or input, and attach servo motor*/
pinMode(LED 1, OUTPUT);
pinMode (LED_2, OUTPUT);
pinMode(Joystick _x_axle_pin, INPUT);
pinMode(Joystick_y axle_pin, INPUT);
servo.attach(24);

81

82 | Appendix

Serial.begin(9600); /* allow Serial connection when debugging or
reprogramming with computer */

/* Ethernet shield and connection setup */

int i;
for(i = 0; i < 50; i++){ /*50 second delay to enable the access point to
start up*/
delay(1000);

}

digitalWrite(LED_1, HIGH); /*turn on LED1 for indicating the ethernet
connection is initalizing*/

Ethernet.begin(mac, ip);
Udp.begin(localPort);

}
/* __ */
void loop(){
f AT T —— READ 4x4 KEYPAD-----=-m - mmmmmmmmmmmmoe oo */
char key = keypad.getKey();
[mmmmmme e READ JOYSTICKS === === === oo */

int x_axle_value = analogRead(Joystick x_axle_pin); /* read value on x-
axle pin */

delay(2); /* delay 2ms for value to be read properly */

int y_axle value = analogRead(Joystick_y axle_pin); /* read value on y-
axle pin */

delay(2); /* delay 2ms for value to be read properly */

int servo_steering_value, motor_speed_value; /* define values
for later appliance */

/*read values on joystick pins are values of ©-1023 but due to how I
mounted these joysticks on controller,

the values will be read in negative way. The map-function normally has
input as:
(source, fromLowest, fromHighest, toLowest, toHighest) which means I
should normally have used it like

(source, 0, 1023, toLow, toHigh) but I had to use it like (source,
1023, 0, tolLow, toHigh).

Since the joysticks are center-positioned when not used, I had to
filter out the values from the furthest down

to the center posistion which was, due to the negative reading, values
512-1023. I included a dead-zone of the

accelerator joystick from 500-512 to remove the accidently reading of
the joystick when center posistioned because

then values would vary between 510-515. */

servo_steering value = map(x_axle value, 1023, 0, 40, 140); /* map raw
joystick values to servo degree */

Appendix | 83

if(y_axle value < 500)

motor_speed value = map(y_axle_value, 500, 0, 0, 255); /* map raw
joystick values to motor speed */

else
motor_speed value = 0;

/* if convoy is inactive, set speed either acc speed if acc is activated
or the read value from joystick and set servo degree angle to
read joystick value.

If convoy is active, set speed and servo degree angle to read values
from master via Wi-Fi.

Measure distance to obstacle if acc is activated or convoy is
activated, since the speed is not controlled with joysticks */

if(active_convoy == false){

if(acc == false){
digitalWrite(BRAKE_A, LOW);
analogWrite(PWM_A, motor_speed_value);
servo.write(servo_steering value);
delay(2);

}

else{

if(measured _distance < 5)/* very short distance to osbtacle, stop! */
current_acc_speed = 0;

else if(measured_distance < 10) /* fairly short
distance, decelerate hard */
current_acc_speed -= 30;

else if(measured _distance < current_acc_distance) /* distance to
osbstacle shorter than set distance, decelerate */

current_acc_speed--;

else if(measured_distance > current_acc_distance && current_acc_speed
< reference_acc_speed) /*distance further than set, */

current_acc_speed += 5; /* accelerate */
if(current_acc_speed < 0) /* lower limit */
current_acc_speed = 0;
if(current_acc_speed > 255) /* higher limit */

current_acc_speed = 255;

digitalWrite(BRAKE_A, LOW);
analogWrite(PWM_A, current_acc_speed);
servo.write(servo_steering value);
delay(2);

}

else{

83

84 | Appendix

if(measured distance < 5)
wifi speed = 0;
else if(measured distance < 10)
wifi_speed -= 50;
else if(measured_distance < default_acc_distance)
wifi speed -= 20;
if(wifi_speed < 0)
wifi speed = 0;
digitalWrite(BRAKE_A, LOW);
analogWrite(PWM_A, wifi_speed);
servo.write(wifi_steering);
delay(2);

}
delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

A READ ULTRASOUND SENSOR --------------- */
pinMode(trigPin, OUTPUT);

pinMode(echoPin, INPUT);

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

long dur = pulseIn(echoPin, HIGH);

measured_distance = microsecondsToCentimeters(dur);
delay(12); /* Intentionally delay for proper ULTRASOUND SENSOR USE */

A e HANDLE KEYPAD BUTTONS----------------------- */
switch (key){
/*ACC ON*/
case 'A': /* key is A */
if(active convoy == false && acc == false){ /* check if convoy is
inactive and acc is off */
acc = true; /* turn acc off */
current_acc_speed = motor_speed value; /* save current speed
to acc speed */
reference_acc_speed = current_acc_speed; /* save reference copy */
}
else if(active_convoy == false && acc == true){ /* check if convoy is
inactive but acc is on */
acc = false; /* turn acc off */
}
break;

/* "JOIN CONVOY"/"ABORT CONVOY" - REQUEST */

Appendix | 85

case 'B': /* key is B */
if(active _convoy == false){
/* Udp.beginPacket(master, localPort); */
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /*create UDP

packet */
Udp.write('R"); /* write 'R' to it*/
Udp.endPacket(); /* send packet */
digitalWrite(LED_2, HIGH); /* and turn on LED 2 to inform driver */
start_time request = millis(); /* clock time and save
it to start_time variable */
compute_time = true; /* allow computing time */
timing out_request=true; /*turn on timing out for joining request*/
}
else{ /* if convoy is active */
/* Udp.beginPacket(master, localPort); */
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create
UDP packet */
Udp.write('C"); /* write 'C' to it */
Udp.endPacket(); /* send packet */
start_time_cancel = millis(); /* clock

time and save it to start_time variable */
timing out_cancel=true; /*turn on timing out for canceling convoy*/

}
break;
case '#':

/* when acc is on (only when convoy is inactive) and currently not
already setting speed,

set speed parameter to true */

if(acc == true && active_convoy == false && set_acc_speed == false){
set_acc_speed = true;
}
else if(acc == true && active convoy == false && acc_sum > 0 &&
set_acc_speed == true){
if(acc_sum >= 100) /* when acc is turned on and
input speed is higher or equal to 100, */
current_acc_speed = acc_sum; /* save it for applying
to current speed (100 is just a feasible minimum speed)*/
acc_sum = 0; /* reset incrementing value */
set_acc_speed = false; /* reset current setting speed
state to false */
}
break;

85

86 | Appendix

/*
/*
/*
/*
/*
/*
/*
/*
/*
}

de

case 'D':
/* like speed setting on acc, the distance setting method work the
same */
if(acc == true && active convoy == false && set acc_distance ==
false){
set_acc_distance = true;
}
else if(acc == true && active convoy == false && acc_sum > 0 &&
set_acc_distance == true){
if(acc_sum > 20) /* feasible minimum distance
between vehicles */
current_acc_distance = acc_sum;
else
current_acc_distance = 20; /* if set to lower, the default
value will replace the input */
acc_sum = 0; /* reset the incrementing value */
set _acc_distance = false; /* reset current setting distance
state to false */
}
break;
case 'O’ /* check digits */
case '1'
case '2'
case '3’
case '4':
case 'S5’
case '6'
case '7'
case '8’
case '9':
int digit = (key - '0"); /* change from char to integer */

acc_sum = digit + (acc_sum * 10); /* replace the current acc_sum
value depending on input */

the replacing is active so its happening after every button press */
and not calculated after every specifik buttons have been pressed */
works for 1-5 digits. Example: */

input = 5 -> */

acc_sum = 5 + (0*10) = 5 */

input = 120 -> */

acc_sum = 1 + (0*10) =1 -> */

acc_sum = 2 + (1*10) = 12 -> */

acc_sum = @ + (12*10) = 120 */

lay(10); /* Intentionally delay for proper USDR SENSOR use */

Appendix | 87

/* compute different time-outs */
if(compute_time == true){ /* computing time only when convoy is active */

end_time_request = millis(); /* get current time in
milliseconds from system boot */

end_time cancel = end_time_request;

end_broadcast_time = end_time_request;

if(end_time_request - start_time_request > time_out limit &&
timing_out_request == true)

time_out = true; /* if 10 seconds is reached
without acknowledge the join request, time out! */

if(end_time cancel - start time cancel > time out limit &&
timing out_cancel == true)

time out = true; /* if 10 seconds is reached
without acknowledge the cancel request, time out! */

if(end _broadcast time - start broadcast _time > broadcast time &&
active_convoy == true){

/* Udp.beginPacket(master, localPort); */
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create UDP

packet */
Udp.write('B'); /* write 'B' (Broadcast) */
Udp.endPacket(); /* send

broadcast packet every fourth second in active convoy */
start_broadcast_time = end _broadcast_time; /* reset time variable */

}
}
if(time out == true){ /* if time out is in action */
active_convoy = false; /* deactivate convoy */
if(timing_out_cancel == true)
timing out_cancel = false; /* if timing out was due to
cancel request, reset its variable */
if(timing_out_request == true)
timing out_request = false; /* if timing out was due to

joining request, reset its varable */
compute_time = false; /*don't compute time when convoy is inactive */
time_out = false; /* reset time out after this block */

int packets_available = Udp.parsePacket(); /* check if there are
packets waiting for reading */

if(packets_available){

char packet = Udp.read(); /* read a character */
switch (packet){
case 'A': /* if we read 'A', master has accepted convoy */

87

88 | Appendix

if(active convoy == false){ /* only if convoy was
inactive before reading 'A' */

/* Udp.beginPacket(master, localPort); */
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); /* create UDP

packet */

Udp.write('A'); /* write 'A' to packet */

Udp.endPacket(); /* send UDP packet away */
active _convoy = true; /* activate convoy */
compute_time = true; /* allow time to be computed */
start_broadcast_time = millis(); /* clock the broadcast

time variable */
digitalWrite(LED_1, LOW); /* turn off LED_1 and turn on LED_2 */
digitalWrite(LED_2, HIGH);

}
break;
case 'C': /* if we read 'C', master sent slave "close convoy" or
confirmed slave's close request */

if(active_convoy == true){ /* only when convoy is already active */
active_convoy = false; /* close convoy */
digitalWrite(LED 2, LOW); /* turn off LED_ 2 */
if(timing_out_cancel == true) /* if master confirmed

slave's close request, */
timing out_cancel = false; /* reset timing out variable */

compute_time = false; /* cancel computing time */
}
break;
case '#': /* indicate receiving a buffer */
Udp.read(command_buffer_ char, UDP_TX PACKET MAX_SIZE); /*read
buffer */

/* scan buffer into servo angle and motor speed variables */

sscanf(command_buffer_char, "servo=%d,motor=%dE",
&received_steering_angle, &received_motor_speed);

wifi_speed = map(received_motor_speed, 0, 255, 0@, 200); /*map
motor speed to proper physical speed according to master */
wifi_steering = received_steering_angle;

/* BACKUP (INSIGNIFICANT CODE FOR NOW)

for(current_char = @; current_char < Maximum_command_length;
current_char++){

char read _packet = Udp.read();
command_buffer_char[current_char] = read_packet;

Appendix | 89

if(read packet == "E'){
sscanf(command_buffer_char,

"steering_angle=%d,motor_speed=%dE", &received steering angle,
&received_motor_speed);

wifi_speed = map(received_motor_speed, 0, 255, 0, 200);
wifie steering = received_steering angle;

break;
}
}
*/
}
}
delay(20);
}
[/-----mmmmm e - CONVERT USDR's TIME TO DISTANCE------------------
long microsecondsToCentimeters(long microseconds)
{
return microseconds / 29 / 2;
}

89

90 | Appendix

This section of appendix shows the statemachines represented by each code listing.

FRONT VEHICLE STATEMACHINE TCP

Read TCP Write TCP Read TCP

char:'R'\ /’char:'h"\ char:'A‘\

Active
Acknowledge Convoy

Inactive
Convoy

Uninitialized

Reset
Switch

Write TCP
char="C'

Figure 6-1: Statemachine of front vehicle with TCP

REAR VEHICLE STATEMACHINE TCP

Active
Convoy

Write TCP Read TCP

char = 'R'\ /,ct'nar=':h"_\‘l

Wait
For
Accept

Inactive
Convaoy

Uninitialized

Read TCP‘Z Write TCP
’\Reset / l ~char="C' _;P‘;ar:'c'
Switch
Read TCP
char="C'

Figure 6-2: Statemachine of rear vehicle with TCP

Appendix | 91

FRONT VEHICLE STATEMACHINE UDP

Read UDP Write UDP Read UDP

/I Initialize\ /Tchar: 'R'\’ char ="A' ﬁchar: i
Active

Inactive
Acknowledge Convoy

Convoy
Read UDP
. / K---hr.har ='C' /
Write UDP

char="C'

Uninitialized

\Reset /

Switch

Timeout /
10 sec

Timeout
10 sec Write UDP
char="C'

Timeout
10 sec

Figure 6-3: Statemachine of front vehicle with UDP

REAR VEHICLE STATEMACHINE UDP

Write UDP Read UDP Write UDP
char="R' '\/ /7 char ="A' char ="A' \/

Active
Concoy

/‘, Initialize \I

Inactive
Convoy

\ Reset /
Switch

Uninitialized Acknowledge

Read UDP /

char="C'

Write UDP,
char ="C'

Timeout
10 sec y

Timeout

10 sec
Read UDP

char="C'

Timeout
10 sec

Figure 6-4: State machine of rear vehicle with UDP

91

TRITA-ICT-EX-2014:96

