

TFTP loading of programs into a
Microcontroller’s flash memory
and evaluation of Microchip’s
TCP/IP stack with ENC28J60

Kenan Alci
2014-05-28

Project for IK2553 performed at Department of Communication Systems

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology

Stockholm, Sweden

i

Abstract
This project began with a microprocessor platform developed by two master’s students:

Albert López and Francisco Javier Sánchez. Their platform was designed as a gateway for
sensing devices operating in the 868 MHz band. The platform consists of a Texas Instruments
MSP430F5437A microcontroller and a Microchip ENC28J60 Ethernet controller connected to
the MSP430 processor by a Serial Peripheral Interface.

Javier Lara Peinado implemented prototype white space sensors using the platform
developed by the earlier two students. As part of his effort, he partially implemented a Trivial
File Transfer Protocol (TFTP) system for loading programs into the flash memory of the
microcontroller using Microchip’s TCP/IP stack. However, he was not successful in loading
programs into the flash as the TFTP transfer got stuck at the first block.

The first purpose of this project was to find and fix the error(s) in the TFTP loading of
programs into the MSP430’s flash memory. The second purpose of this project was to
evaluate Microchip’s TCP/IP stack in depth. This report describes measurements of UDP
transmission rates. Additionally, the TFTP processing rate is measured and the TFTP program
loading code is documented. The report concludes with suggestions for possible
improvements of this system.

Keywords: TFTP loading, MSP430 flash, IP stack evaluation

iii

Sammanfattning
Projektet startade med en mikroprocessor-plattform som utvecklades av två

masterstudenter: Albert López och Francisco Javier Sánchez. Deras plattform var utformad
som en inkörsport för avkänning av apparater som arbetar i 868 MHz-bandet. Plattformen
består av en Texas Instruments MSP430F5437A mikrokontroller och en Microchip
ENC28J60 Ethernet controller ansluten till MSP430-processor med en SPI-gränssnitt (Serial
Peripheral Interface).

Javier Lara Peinado genomförde prototypvitt utrymme sensoreranvända plattformen som
utvecklades av de två tidigare nämnda studenter. Som en del av sitt arbete genomförde han
delvis ett Trivial File Transfer Protocol (TFTP) system för lastning program i flashminne
mikrokontroller med hjälp av Microchips TCP / IP-stack. Men han var inte framgångsrik i
lastning program i flash som TFTP-överföringen fastnade vid det första blocket.

Det första syftet för detta projekt var att hitta och åtgärda felet(er) i TFTP laddning av
program i MSP430 flashminne. Det andra syftet för detta projekt var att utvärdera Microchips
TCP/IP- stack på djupet. I denna rapport beskrivs mätningar av UDP överföringshastighet.
Dessutom mäts TFTP bearbetningshastighet och TFTP programladdningskoden
dokumenteras. Rapporten avslutas med förslag på möjliga förbättringar av systemet.

Nyckelord:TFTP programladdning, MSP430 flashminne, IP-protokollstackenutvärdering

v

Table of contents

Abstract .. i
Sammanfattning ... iii
Table of contents .. v
List of Figures .. vii
List of Tables .. ix
List of acronyms and abbreviations .. xi
1 Introduction .. 1

1.1 Problem description ... 1
1.2 Goals ... 1
1.3 Structure of this report ... 2

2 Background ... 3
2.1 What others already have done ... 3

2.1.1 Exploiting wireless sensors ... 3
2.1.2 Minding the spectrum gaps .. 3
2.1.3 Fixing the PoE functionality .. 3
2.1.4 Smart Door Lock ... 4

2.2 Dynamic Host Configuration Protocol .. 4
2.3 Trivial File Transfer Protocol .. 4

2.3.1 Structure of a packet .. 4
2.3.2 Initial connection .. 5
2.3.3 TFTP packets ... 5

3 Method ... 7
3.1 Objectives .. 7
3.2 Hardware ... 7

3.2.1 Motherboard .. 7
3.2.2 HP ProCurve Switch 2626 ... 9
3.2.3 Dell Optiplex GX620 ... 9
3.2.4 MSP430 Programmer ... 9

3.3 Software ... 10
3.3.1 Wireshark ... 10
3.3.2 Code Composer Studio ... 10

3.4 Connecting the embedded platform to the network 11
3.4.1 DHCP server .. 11
3.4.2 TFTP server ... 11

4 Analysis ... 13
4.1 Network topology ... 13
4.2 TFTP loading problem .. 14

4.2.1 Symptom .. 14
4.2.2 Causes of the problem& fixes .. 14
4.2.3 Result .. 16

4.3 IP stack evaluation ... 18

vi

4.3.1 UDP Packet sending from MCU to PC .. 18
4.3.2 UDP Packet sending from ENC28J60 buffer to PC ... 23
4.3.3 Analysis of TFTP processing .. 26
4.3.4 Conclusion .. 28

5 Conclusions and future work ... 29
5.1 General conclusions .. 29
5.2 Future work ... 30
5.3 Required reflections .. 30

References .. 31
Appendix A .. 33

vii

List of Figures
Figure 2-1: RRQ/WRQ .. 5
Figure 2-2: DATA packet .. 6
Figure 2-3: ACK packet .. 6
Figure 2-4: ERROR packet .. 6
Figure 3-1: Views of the front and back of the motherboard .. 9
Figure 3-2: TI MSP-FET430UIF ... 10
Figure 4-1: Network topology ... 13
Figure 4-2: Wireshark capture of the failed TFTP process ... 14
Figure 4-3: Memory map of MSP430F5437A .. 15
Figure 4-4: Memory map of MSP430F5437A after flashing TFTPboot 16
Figure 4-5: Success in sending TI-TXT file to the motherboard .. 17
Figure 4-6: Memory before loading TI-TXT file .. 17
Figure 4-7: Memory after loading TI-TXT file ... 18
Figure 4-8: Flowchart of the Analyze program for sending UDP packets from the

MCU ... 19
Figure 4-9: Transmission time for sending individual UDP packets of different sizes

from the MCU to the PC's Ethernet controller ... 20
Figure 4-10: Standard deviation of the transmission times shown in the previous figure

(MCU to PC) ... 22
Figure 4-11: Theoretical vs. measured transmission time to send a UDP packet of the

indicated size .. 23
Figure 4-12: Flowchart of the Analyze program (sending existing UDP packets from

the ENC28J60’s buffer) .. 23
Figure 4-13: Transmission time for individual UDP packets of the indicated sizes (i.e.,

transmission time of an existing packet in the ENC28J60’s buffer to PC) 24
Figure 4-14: Standard deviation (ENC28J60 to PC) ... 25
Figure 4-15: TFTP processing bit rate ... 26
Figure 4-16: TFTP boot loading processing time as a function of file size 28

ix

List of Tables
Table 2-1: TFTP opcodes ... 5
Table 4-1: Estimated transmission time of a single UDP packet based on the

regression analysis .. 21
Table 4-2: SPI processing speed .. 25
Table 4-3: TFTP download and flash programming times for different sized files 27

xi

List of acronyms and abbreviations

CCS Code Composer Studio
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
FET Flash Emulation Tool
GUI Graphical User Interface
IC Integrated Circuit
IDE Integrated Development Environment
IP Internet Protocol
JTAG Joint Test Action Group
LAN Local Area Network
MCU Microcontroller Unit
NIC Network Interface Controller
OS Operating System
PC Personal Computer
PoE Power over Ethernet
PSE Power Sourcing Equipment
RAM Random Access Memory
RISC Reduces Instruction Set Computer
RRQ Read Request
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
TI Texas Instruments
TID Transfer Identifier
UDP User Datagram Protocol
USD United States Dollar
WRQ Write Request

1

1 Introduction
This chapter specifies the problems that were addressed in this project, the problems

encountered during the project, the goals of the project, and a brief overview of the objectives
of the project.

1.1 Problem description
This project began with a microprocessor platform developed by Albert López and

Francisco Javier Sánchez as part of their master’s thesis project[1]. Their platform was
designed as a gateway for sensing devices operating in the 868 MHz band. The platform
consists of a Texas Instruments MSP430F5437A microcontroller unit (MCU) [2] and a
Microchip ENC28J60 Ethernet controller[3] connected to the MSP 430 processor by a Serial
Peripheral Interface (SPI).

Javier Lara Peinado implemented prototype white space sensors using the platform
developed by the earlier two students[4]. As part of his effort he partially implemented a
Trivial File Transfer Protocol (TFTP) based bootloader to load programs into the MCU’s
flash memory using Microchip’s TCP/IP stack. However, he was not successful in loading
programs into the flash memory as the TFTP transfer got stuck at the first block.

The first purpose of this project was to find and fix the error(s) in the TFTP loading of
programs into the MSP430’s flash memory. Due to this, a user is unable to easily load new
software into the processor. Instead, the user must manual program each board using a Joint
Test Action Group (JTAG) programmer. This makes it much harder to develop and deploy
applications for this platform.

The second purpose of this project was to evaluate Microchip’s TCP/IP stack in depth.
The reason for this examination is that the MCU is connected to the Ethernet controller by an
SPI interface. This means analyzing and documenting the system's performance and if
possible identifying bottlenecks. For example, does this SPI’s data rate limit the performance
of the processor’s maximum sending and receiving data rates. As part of this evaluation
measurements of UDP transmission rates were made.

Additionally, the TFTP processing rate was measured and the TFTP program loading code
was documented.

1.2 Goals
The main goal was to solve the TFTP loading issue in order to improve the usability of the

system, specifically to make it easier to write and deploy new applications, such as the test
programs to be used to assess the performance of the platform’s TCP/IP stack. This lead to the
following subtasks:

• Solve the TFTP loading problem – so that programs could be loaded from a TFTP
server into the MCU’s flash memory,

• Measuring transfer rates with different configurations of the platform,
• Identify bottlenecks in the system, and
• Suggest improvementsto the system.

2

1.3 Structure of this report
This report exists of five chapters. The first chapter introduced the purpose of the project,

stated the project’s goals, and defined a series of subtasks. The second chapter provides the
readers background information concerning what has already been done and what the reader
needs to know in order to understand this report. The third chapter explains the methods and
approaches to be used to solve the problems. The fourth chapter evaluates what was done and
gives a comprehensive analysis of the measurement results. Finally, the last chapter
summarizes our conclusions, describes what was not achieved, suggests future work that
could lead to improvements, and reflects upon several issues related to the project.

3

2 Background
This chapter provides the reader with a survey of related work. This is followed by a

description of two protocols (DHCP and TFTP) to allow the reader to better understanding the
content of this report.

2.1 What others already have done
As stated in the introduction, this project builds upon previous projects. This section

discusses what these previous students did in more detail.

2.1.1 Exploiting wireless sensors

Albert López and Francisco Javier Sánchez developed a gateway to sniff wireless sensor
traffic in the 868 MHz band in order to use this data for multiple purposes[1]. The main
component of the motherboard is a Texas Instruments’ (TI) MSP430F5437A MCU[2]. This
MCU was developed for ultra-low power applications. For network connectivity, they used an
Ethernet controller. A Microchip ENC28J60[3] Ethernet controller was chosen due its Serial
Peripheral Interface (SPI)[5] enabling it to communicate with the MSP430 MCU. An
additional advantage of using this Ethernet controller is that there is no need for an external
memory as the Ethernet controller integrates a dual port Random Access Memory (RAM)
buffer for receiving and sending data packets. Due to the low power consumption of this
platform (motherboard and radio daughterboard), the motherboard was designed so that it
could be powered by Power over Ethernet (PoE)[6][7]. In addition to the motherboard, they
developed a daughterboard with a radio transceiver for the 760 – 928 MHz band that also
connects to the MCU via an SPI interface.

2.1.2 Minding the spectrum gaps

Javier Lara Peinado[4]use the two boards developed by López and Sánchez and added
network booting functionality. The goal was to have a boot program stored in the flash
memory of the processor that upon power up would use the Dynamic Host Configuration
Protocol (DHCP) to:(1) get an IP address, (2) learn the name of a file to be loaded and
executed, and (3) learn the IP address of the file server from which this file could be retrieved
using the Trivial File Transfer Protocol (TFTP).Furthermore, the complete configuration of
the gateway was done by means of DHCP options[8], while the installation of software to be
run was to be done by TFTP. Unfortunately, he did not complete the implementation of using
TFTP to load the code into the MCU’s flash memory. However, he did implement software
that scans the radio spectrum over a programmed range for “gaps”, i.e., white spaces where no
devices are transmitting. These measurements of the spectrum occupancy are sent to a server
via UDP datagrams.

2.1.3 Fixing the PoE functionality

Julia Alba Tormo Peiró in her master thesis using a number of white space
sensors[9]needed to address a problem with the PoE functionality as the PoE power
subsystem of the motherboard was not providing enough power to runs the radio scanning
process continuously. She successfully fixed this issue and was able to carry out white space
sensing with a number of the motherboards together with their daughter board.

4

2.1.4 Smart Door Lock

Rafid Karim and Haidara Al-Fakhri utilized the motherboard and an existing near field
communication board (designed as an Arduino shield) to build a prototype of a network
powered NFC capable door lock[10].The main idea of their bachelor’s thesis project was to
simplify the user’s life. For example, a homeowner could send one-time key to a repairperson
or give two weeks access to his/her neighbor while he/she is on vacation so the neighbor can
water the plants.

2.2 Dynamic Host Configuration Protocol
The Dynamic Host Configuration Protocol (DHCP) is a network protocol that describes

how a computer can dynamically obtain network settings from a DHCP server[8], [11]. The
DHCP protocol is based on the Internet Protocol (IP) [12] and works with User Datagram
Protocol (UDP) [13] packets. The main feature of DHCP protocol is that it reduces the need
for human interaction each time a client joins the network. This protocol is used by the
embedded platform to connect to the network.

2.3 Trivial File Transfer Protocol
Trivial File Transfer Protocol[14] is a protocol that uses UDP to transfer files. It was first

defined in January 1980 by Karen R. Sollins in IEN 133[15]and revised in July 1992 by
Karen R. Sollins in RFC 1350 [16].

The simplicity of this protocol is the main reason for its usage in our project. This protocol
was designed to be small and easy to implement. The only functionality of TFTP is to read
and write files from/to a remote server. The protocol is similarities to other Internet protocols
in passing 8-bit bytes of data.

Every transfer begins with a request to read or write a file. A response from the server
indicates an open connection between the client and server. Each data packet that is send has a
fixed length blocks of 512 bytes that has to be acknowledged by the receiver. When a packet
is sent with less than 512 bytes this means that it is the last data packet. A timeout will occur
at the recipient when a packet is lost in the network. It is up to the receiver to ask for a
retransmission of the packet by the sender. Because of this stop-and-wait protocol, TFTP
provides flow control and eliminates the need of reordering the incoming packets.

Almost all errors cause a termination of the connection. An error is signaled by an error
packet, which does not have to been acknowledged or retransmitted. There are three types of
events that cause errors: (1) not being able to satisfy the request (e.g., file not found, access
violation, or no such user), (2) receiving a packet which cannot be explained by a delay or
duplication in the network (e.g., an incorrectly formed packet), and (3) losing access to a
necessary resource (e.g., disk full or access denied during a transfer). The only case where an
error does not cause a termination of the connection is when the source port of a received
packet is incorrect. In this case, an error packet is sent to the originating host.

2.3.1 Structure of a packet

Since TFTP was designed to be implemented on the top of the UDP, the datagram is
carried inside an Internet Protocol packet. The resulting packet has an IP header, a UDP
header, a TFTP header, and the TFTP data being sent. In addition, a link layer header is added
by the interface to allow the packet to be delivered to its destination. TFTP does not specify
any values in the IP header; however, TFTP does set some specific values in the UDP header.
The UDP header has four fields. The UDP source and destination ports indicate the UDP ports

used by
optional
Identifie

2.3.2
A T

receive
commun
packet t
for each
request

TID
number
destinat
number
the serv
is used a

2.3.3
TFT

Table 2-

Figu
opcode
field co
mode. W
own stri
field. Th
hosts. B
value 0

y the sender
l checksum
ers (TIDs) a

Initial

FTP client
an ACK f

nication est
that is bein
h successiv
will be zero

Ds are rando
is chosen b

tion ports. A
69 of the s

ver itself as i
as the destin

TFTP p

TP has five t
1: TFTP o

ure 2-1 show
field (Op #

ontains “octe
When netas
ing format.
hemode fiel

Because, the
indicates th

r and receiv
m can be us
are used for

connect

initially sen
for a WRQ
tablishes a
g acknowle

ve data bloc
o.

omly chose
by two clie
A requestin
serving hos
its source T
nation TID.

packets

types of pac
opcodes

Opc

1

2

3

4

5

ws the read
#). The opc
et”, “netasc
cii mode is
The filenam

ld makes it
ere is no cen
he end of a R

ver. The dat
sed to detec
the port nu

tion

nds a write r
Q or the fir

transfer. A
edged. The
ck. The blo

en at each e
ents is very
ng host sen
t. The respo

TID, while s
 This pair o

ckets with a

ode Ope

1

2

3

4

5

d request an
code indicat
cii”, or “ma
s used, the h
me field is
possible to

ntral authori
RRQ or WR

Figure

tagram’s len
ct errors, w

umbers in th

request (WR
rst data pac

ACK packet
block num

ock number

end of the
low. These

nds its initi
onse of the

source TID
of TIDs are

an opcode fo

eration

Read reques

Write reque

Data (DATA

Acknowledg

Error (ERR

nd write req
tes if this i

ail”. In our
host transla
followed by

o define oth
ity this mus
RQ packet.

e 2-1: RRQ

ngth reflects
which may
he UDP data

RQ) or read
cket in res
ts contain t

mbers begin
r of a posit

connection
e TID’s are
ial request

e server to t
from the req
used until t

or each type

st (RRQ)

est (WRQ)

A)

gement (ACK

OR)

quest packe
is a RRQ o
case the sen

ates the data
y a byte con

her modes o
st be done w

Q/WRQ

s the length
have been

agram.

d request (R
ponse to a
the block n
with one a
ive respons

n so probab
 used for th
to the wel
he request
quest messa
he transfer

e (see Table

K)

et format. T
or WRQ pac
nder and re
a in the File
ntaining a z
f cooperatin

with care. A

h of the pac
occurred.

RRQ) and ex
a RRQ. Thi
number of
and are incr
se to the fir

bility that t
he UDP sou
ll-known U
is a TID ch
age by the r
ends.

e 2-1).

The first fie
cket. The F

ecipient use
ename field
zero (0) and
ng between
byte contai

5

cket. The
Transfer

xpects to
is initial
the data

remented
rst write

he same
urce and

UDP port
hosen by
requestor

eld is the
Filename
e netascii
d into its
d a mode
n pairs of
ining the

6

DAT
(opcode
data is s
that data

Ever
enable t
with the
this AC
a transfe

Figu
5. The e
string an

TA packets
e = 3). The
send. The d
a block is th

ry data pack
the other pa
e opcode 4.
K indicates

fer a WRQ i

ure 2-4show
error code
nd the pack

 transfer the
block num

data field co
he last block

ket should b
arty to send/
. Figure 2-3
s the block n
s acknowle

ws the struc
field indica

ket ends with

e actual dat
mber begins
ontains the
k.

Figure 2

be acknowle
/request the
3 shows the
number of th
dged with b

Figure

ture of an E
ates the typ
h a zero byt

Figure 2

ta. Figure 2
with one a
actual data

2-2: DATA

edged to en
e next block
e structure
he DATA p
block numb

2-3: ACK

ERROR pac
pe of error.
te.

2-4: ERRO

2-2 shows th
and increme
a and is 512

A packet

nsure the co
k. This is do
of an ACK

packet being
er of zero.

K packet

cket. The o
The error m

OR packet

he structure
ents each ti
2 bytes long

nsistency o
one by send

K packet. Th
g acknowled

pcode of an
message is

e of a DATA
ime a new
g; if not, thi

of the transfe
ding an ACK
he block nu
dged. At the

n ERROR p
in netascii

A packet
block of
is means

fer and to
K packet
umber in
e start of

packet is
 and the

7

3 Method
This chapter explains how we will achieve the goals of this project. Additionally, the tools

that used to realize these goals are discussed.

3.1 Objectives
Several sub goals were defined for this project based upon the goals of the project (as

described in Section 1.2). These sub goals are divided into two sets:

1. TFTP boot loading:

• Connecting the board to the network in such a way that each board has its own IP
address,

• Detect the cause of the TFTP loading problem, and
• Finally, applying the best solution to solve this problem.

2. IP stack evaluation:

• Measuring the transfer rate from the MCU to a remote PC (located on the same
isolated local area network) and

• Measuring Ethernet controller buffer to PC transfer rate.

3.2 Hardware
This section discusses the hardware used in this project.

3.2.1 Motherboard

As stated earlier the motherboard has been used in a number of projects (previously
described in Section 2.1). The motherboard uses one SPI interface to connecting a
daughterboard. This enables the user to attach a new daughterboard without needing to change
any other part of the motherboard. The first daughterboard was a radio module for the 868
MHz band (see Section 2.1.1). The second daughterboard was an Arduino NFS shield(see
Section 2.1.4).

Figure 3-1 shows the front and back of the motherboard. The board consists of two means
of powering the supplies powering, processing, networking, and in interface to a
daughterboard. This motherboard together with an optional daughter card is an embedded
networked computing platform. The motherboard can be powered by an external DC power
supply or via PoE. The selection of the power source is up to the user by changing the
position of the jumper to choose the desired option. The board can work with any DC supply
that provides power between 3.3V and 60V because of the TL2575HV step-down
converter[17].PoE is the preferred energy source because the platform will typically be
connected to a PoE capable Ethernet switch* to provide both power and network connectivity.

* This switch will act as Power Sourcing Equipment (PSE). Alternative a PoE power injector could be used.

8

The
microco
Instructi
4 KB of
that we
very car
one is,
connect
Etherne
Instrum
features

Ther
Loader
only the
microco

Furt
while th
our case

(Fro

main co
ontroller. Th
ion Set Co
f Static Ran
can store r

reful with u
as we alrea

t to the Eth
et controller

ments TPS23
s needed to r

re are two
(BSL) inte

e JTAG inte
ontroller.

thermore, th
he use of the
e we have p

ont)

omponent o
his is a 16-

omputer (RI
ndom Acces
elatively lar
using the R
ady discusse
hernet contr
r is connect
375[18]8-pi
realize an IE

possible w
erface or the
erface is inc

he motherbo
e other is pr

programmed

of the bo
-bit MCU f
ISC) mixed
ss Memory
rge amount

RAM of the
ed, used to
roller. The
ted to an R
in integrate
EEE 802.3a

ays to prog
e Joint Tes
cluded in th

oard is equi
rogrammabl
d this button

oard is th
from TI’s M
d signals fa

(SRAM) a
ts of data an
microcontr
 connect th
Ethernet co

RJ45 socket
ed circuit (I
af [19] comp

gram the m
st Action G
he board we

ipped with
le, so the de
n to jump to

he Texas
MSP430 ul
amily. This
nd 256 KB
nd instructio
roller. This
he daughterb
ontroller is
t. To provid
IC) is used
pliant powe

icrocontroll
Group (JTAG
e used the J

two buttons
eveloper can

o the program

Instruments
tra-low pow
version of
of Flash m

ons in flash
microcontr

board and t
a Microchi
de PoE fun
d. This IC
ered device.

ler. Either u
G) interface
JTAG interf

s. One butto
n do whatev
m loaded us

s MSP430
wer MCU R
f the chip h

memory. Thi
h, but we ha
roller has tw
the other is
ip ENC28J
nctionality,
contains al

.

using the B
e.[20][21] B
face to prog

on is a rese
ver he/she w
sing TFTP.

0F5437A
Reduced
has only
is means
ave to be
wo SPIs:
s used to
60. This
a Texas

ll of the

Bootstrap
Because,
gram our

et button,
wants. In

(Bac

3.2.2
We

ProCurv

3.2.3
A D

running
8139/81

3.2.4
To

program
Emulati
flash m
program

*A Linux
PCs, but a

ck)
Fi

HP Pro

need both
ve Switch 2

Dell O

Dell Optiple
g a openSUS
139C/8139C

MSP43

program t
mmer [26].F
ion Tool (F

memory of t
m the flash o

 distribution i
are also availa

igure 3-1:

oCurve S

a power su
2626 [22].

ptiplex G

ex GX620 d
SE[24]Linu
C+ Ethernet

30 Progr

the MSP43
Figure 3-2
FET) for de
the microco
of the MCU

s an Operating
able for wide

Views of th

Switch 26

upply and

GX620

desktop PC
ux distributio
t interface[2

rammer

30F5437A
shows this
bugging the
ontroller. T

U.

g System (OS
variety of syst

he front and

626

network co

C runs the D
on*. This P

25] to the sw

we used
programm

e code line
The 14 pin

S) build on top
tems up to the

 back of the

onnectivity.

DHCP and
C is connec

witch descri

a Texas I
mer. The pro

 by line an
JTAG conn

p of the Linux
e supercompu

motherboa

For this w

TFTP serv
cted via a R
bed above.

Instruments
ogrammer

nd to transfe
nector is u

kernel. These
ters, or to the

rd

we have use

vers[23]. Th
Realtek mod

 MSP-FET
can act as
er a program

used by the

e are usually t
smallest syste

9

ed a HP

his PC is
del RTL-

T430UIF
a Flash

m to the
FET to

targeted at
ems.

10

3.3 S
In th

3.3.1
Wire

packets
program
function
that allo
sending
data we
transfer

3.3.2
The

Instrum
provide
negative
has also
the TFT
able to u

*Promiscu
only the f
indicated

Software
his section,

Wiresh

eshark[27]i
by setting

m is widel
nality is sim
ows the us

g and receivi
e expected.
s between t

Code C

Integrated
ments’ Eclip

s everythin
e part of th
o a free vers
TP Boot pro
use the free

uous mode is
frames that are
it is interested

e
we will disc

hark

is a very p
g the Netw
ly used fo

milar to tcpd
er to easily
ing packets
 For exam
he embedde

Compose

Developme
pse IDE [29
ng necessar
his IDE is th
sion that is

ogram has a
 version of

a configuratio
e specifically
d in.

Figure 3-2

cuss the sof

popular free
work Interfa
or troublesh
dump [28],b
y sort and
, Wireshark

mple, we us
ed platform

er Studio

ent Environ
9]based Co
ry to devel
he price. Th
limited in c
code size o
this IDE.

on of the NIC
for this NIC,

: TI MSP-

ftware tools

e and open
ace Control
hooting, p

but the prog
filter captu

k was used t
ed Wiresha

m and the PC

o

nment (IDE)
ode Compo
op a progr
he full vers
code size (u
of about 14

that causes th
broadcast fram

-FET430UIF

s we used to

n-source pa
ller (NIC)
acket anal

gram has a G
ured packet
to analyze w
ark to chec

C that serves

) that we us
ser Studio
ram for the
sion is quite
up to 16 KB
KB this iss

he NIC to rece
mes, or multic

o achieve ou

acket analy
in promisc
ysis, and

Graphical U
s. Since th

whether the
ck if there
s as a server

sed during t
(CCS) ver

e MSP430
e expensive
B) or in tim
sue not an o

eive all incomi
cast frames tha

ur goals.

yzer use to
cuous mode
much mor

User Interfac
his project i

packets con
were DHC

r.

this project
rsion 5.4.[3
MCU fam

e. Fortunate
me (180 days
obstacle, so

ming frames rat
hat the NIC ha

capture
e * . This
re. This
ce (GUI)
involved
ntain the

CP/TFTP

is Texas
30] CCS

mily. The
ely, CCS
s). Since
we were

ther than
s

11

3.4 Connecting the embedded platform to the network
This section explains how the embedded platform is attached to the network and how it

obtains an IP address and then downloads programs.

3.4.1 DHCP server

The platform needs an IP address to join the network, to learn what file it is to download,
and to learn the IP address of the TFTP server, hence we need a DHCP server. This DHCP
server runs on top of the openSUSE operating system. When the platform is initially
connected to the server via the PoE capable switch, it will automatically ask for an IP address
from the DHCP server (running on the desktop PC). This IP address is assigned based upon
the MAC address that is established by the “TFTPboot” program (written previously by Javier
Lara Peinado – see Section 2.1.2). This network boot loader not only implements the DHCP
client, but it will make TFTP requests to retrieve the program, and saves the received program
in the flash memory.

The DHCP server is installed with YaST[31], an management tool for openSUSE. In
addition to installing the DHCP server, we also need to configure it correctly. This means that
we need to make an entry in the DHCP server’s configuration file configured for the specific
device that we want to connect. This means that we make a host specific entry in the
configuration file using the same MAC address that we have programmed into the platform
when installing the TFTPboot loader in both block of the flash memory. As noted in Javier
Lara Peinado’s thesis we use an address from the Locally Administered Address Range x2-
xx-xx-xx-xx-xx, specifically from 02-00-00-xx-xx-xx.

3.4.2 TFTP server

One of the biggest advantages of a TFTP server is that is simplifies providing programs to
embedded platforms. This project will take advantage of the TFTP server installed on the
desktop PC. The TFTP server was also installed and configured using YaST. However, before
we could use this to load our network interface testing programs we first had to overcome the
problem of downloading programs via TFTP and storing them in the flash memory. The
details of how this problem was solved are given in Section 4.2.

4 An
This

This inv
the sour
"https://

4.1 N
Figu

connect
connect

Whe
server to
“Verifyi
thesis[3
some co
the TFT
initially

nalysis
s chapter w
volved prog
rce code an
/github.com

Network
ure 4-1 illus
ted via an E
ts the PC (ru

en the moth
o obtain an
ing the ne
2].After the
onfiguration
TP server), t
y did not do

will explain
gramming th
nd addition

m/kekovski/M

k topolog
strates the n
Ethernet ca
uns a DHCP

herboard is
IP address

twork conn
e DHCP se
n (specifica
the TFTPbo
what it sup

the method
he MSP430

nal documen
MSP430", w

gy
network top

able to the
P and a TFT

initially co
. Detailed in
nection” of
erver has as
lly the nam
oot program
posed to do

Figure 4-1

13

ds used to a
0 MCU and
nts are pub
whose struc

pology of t
HP ProCur

TP server).

onnected to
nformation
f Rafid Ka
ssigned the

me of the pr
m[33]starts r
o. Details of

: Networ

accomplish
d making a
blicly availa
cture is expl

the test env
rve Switch

the network
about this

arim and H
motherboar
ogram to be
running. Un
f this are giv

rk topology

the goals s
series of m

able via the
ained in App

vironment. T
2626. Ano

k it negotia
process is g

Haidara Al-
rd an IP ad
e loaded an
nfortunately
ven in the n

stated in Ch
measuremen
e Github re
ppendix A.

The mother
other Ethern

ates with th
given in Sec
-Fakhri's ba
ddress and p
nd the IP ad
y, this boot
next subsect

hapter 3.
nt. All of
epository

rboard is
net cable

e DHCP
ction 4.1
achelor's
provided
ddress of
program
ion.

14

4.2 T
This

boot loa

4.2.1
First

Wiresha
the PoE
boot. Th
from the
the TFT
the serv
problem
timeout

4.2.2
It w

data pac
was loa
MCU w

4.2.2.

The
allocate
memory
program
memory
bytes. A
cause fo
the MC
was full
changin
160 to 1
in the R
program
MSP430

TFTP loa
s section di
ading.

Sympt

t step was
ark the pack
E switch. Fi
his series o
e DHCP se

TP server go
ver did not g
m was that t

would occu

Causes

was obvious
cket, but nev
aded in the
was debugge

.1 RAM

first probl
ed 160 byte
y for use by
m buffered t
y had been a
As soon as
or the TFTP
U received
l, the progr

ng propertie
1024. The v
RAM to sto

m. These lin
0 Linker →

ding pro
scusses the

tom

 to determ
kets sent an
igure 4-2sh

of packets s
erver, but no
ot the corre
get an ACK
the motherb
ur and the s

Figure 4-2:

s of the

that the pro
ver acknow
MSP430. U

ed to resolve

M allocat

lem encoun
es of RAM
y the progra
the received
allocated to
the 160 by

Pboot progr
the DATA

am crashed
s in the link

value 1024 w
ore a DAT
nker setting
 Basic Opti

oblem
 process of

mine the so
d received v

hows the pa
show that th
ot the requi
ect RRQ an

K message b
board did no
erver would

Wireshar

problem

oblem was i
wledged it. T
Using the M
e the proble

tion prob

ntered durin
M memory f

am as the he
d TFTP DA
 store a TFT
ytes were e
ram not bei

A packet, sta
d before sen
ker. The "-h
was chosen

TA packet a
gs are chan
ons.

f diagnosing

ource of th
via the Ethe
ackets captu
he motherb
ired boot fi
nd started by
back from th
ot send an A
d resend the

rk capture of

m& fixes

in the moth
The first step
MSP430-US
em(s).

blem

ng debuggin
for use as
eap (despite
ATA packe
TP data pac
exhausted, t
ing able to
arted to pro
nding an AC
heap_size" a

because th
and give so

nged in CCS

g and the fi

e problem.
ernet NIC o
ured when

board succe
le from the
y sending t

he motherbo
ACK messa
e first data p

f the failed T

herboard sin
p was to deb

SB-Debug-I

ng was that
a stack and
e the MCU

et in RAM
cket - which
the program
send back a
cess it, but

CK message
and "-stack_
is would all
ome margin
S via Proje

ixing the pr

 To do th
of the PC tha

the mother
ssfully obta
TFTP serv

the first dat
oard. Thus,
age back to
packet.

TFTP process

nce the moth
bug the TFT
nterface M

t the TFTP
d another 1
having 16
memory, ho

h has a maxi
m crashed.
an ACK me
as soon as

e. This prob
_size" flags
locate more
n for future
ect → Prop

roblems wit

his I captur
at was conn
rboard attem
ained an IP
ver. More p
ta packet. H
the sympto
the server,

s

herboard re
TPboot cod
SP-FET430

Pboot progr
160 bytes o
KB of RAM

however not
imum lengt
This was t

essage. In s
the allocate

blem was so
were chang

e than enoug
e extension
perties → B

th TFTP

red with
nected to
mpted to
P address
precisely,
However,
om of the
 hence a

eceived a
de, which
0UIF the

ram only
of RAM
M). This
t enough
th of 558
the main
summary
ed RAM
olved by
ged from
gh space

ns to the
Build →

4.2.2.

Unfo
again. A
written
occurs i

The
creates
the MSP
the flash
linker g
in flash
a byte to
crashed

The
change
to the n
system m
is 14 K
should s
downloa
to avoid
address
the first
of the fl
the amo
amount

.2 Ove

fortunately,
After hours

to the flas
is it necessa

TI-TXT fil
a TI-TXT f
P430F5437A
h memory. F

generates a f
memory an

o the flash
.

solution is
the starting

next free ava
memory ma

KB is size. H
start to load
aded progra
d conflicts
for FLASH

t 14 KB of
flash memor
ount of avai
of flash me

erwrite p

after succe
of debuggi

sh memory
ary to under

le format is
file when y
A the linker
Figure 4-3 s
file to be lo
nd starts at
memory it

Figure

s to find the
g address of
ailable mem
ap in the Li
Hence with
ded the new
am should b
with the b

H has to be
flash memo
ry is on the
ilable Flash
emory givin

roblem

essfully buf
ing it turned
the progra

stand the fo

s a ASCII h
you build a
r indicates t
shows the m
aded at 5C0
5C00h. Thu
tried to ove

e 4-3: Me

e last used
f the program
mory addres
inker Comm
h simple ma

w program. A
be loaded. T

boot loader.
changed fro
ory and star
e same line
h memory s
ng 6B80h.Fi

ffering the
d out that e

am stopped
ormat of a T

hexadecimal
project. By
that the pro
memory ma
00h. Howev
us, each tim
erwrite itsel

emory map o

address by
m to be load
ss in the fla

mand File ha
ath is it po
Adding 14 K
Therefore,
. In the Lin
om 0x5C00
rt loading th
as the start

shrinks, hen
igure 4-4 sh

first DATA
each time th

working.
TI-TXT file

l file contain
y default wh
gram shoul

ap of the MS
ver, the TFT

me the TFTP
lf. The resu

of MSP430F5

y the TFTPb
ded into fla
ash memory
ad to be cha

ossible to ca
KB (3800h)
9400h was
nker Comm

0 to 0x9400
he program
ting address

nce 3800h is
hows the me

A packet th
he first byte
To understa
[34].

ning a MSP
hen a progra
d start from

SP430F5437
TPboot prog
Pboot progr
ult of this w

5437A

boot in the
sh memory

y. To do thi
anged. The
alculate the
) to 5C00h
chosen as t

mand File o
. This tells t
from addre

s and must
s subtracted
emory map

he program
es were abo
tand why th

P430 progra
ram is gener
m the first ad
7A. In this
gram is also
ram wanted

was that the

e flash mem
y via the boo
is, the value
TFTPboot

e address w
indicates w
the starting

on line 63
the program
ess 9400h.
also be cha

d from the p
after these

15

crashed
out to be
his error

am. CCS
rated for
ddress in
case, the
o located
d to write

program

mory and
otloader-
es of the
program

where we
where the
g address
the start

m to skip
The size
anged as
previous
steps.

16

4.2.2.

Not
Several
logic. N
"WRON
the void
This lin

4.2.3
Afte

the MSP
message
memory

Figure

.3 Sma

everything
small erro

Namely an
NG_FORMA
d Flash_seg
ne of code is

Result

er all these
P430F5437A
es received
y contents in

e 4-4: Me

all fixes

g was fixed
rs in the co

n equal sig
AT_ERROR
gmentErase
s located on

t

steps was i
A's flash m

d for each
n the MSP4

emory map o

d after solvi
ode were d

gn was for
". Subseque
(unsigned

 line 74 of f

it possible t
memory. Figu

of them. F
430's flash m

of MSP430F5

ing the RA
detected. Th
rgotten on
ently an unn
intbaseAdd

flash.c. This

to downloa
ure 4-5disp

Furthermore
memory bef

5437A after

AM allocati
he first one

line 143
necessary re
dress, unsig
s reset caus

d a TI-TXT
lays the DA

e, Figure 4
fore and afte

flashing TFT

on and ove
was a bad

of Parser.c
eset of poin

gned char *F
ed also a cr

T file from
ATA packet
-7 and Fig
er download

TPboot

erwriting pr
d loop in th
c, which c
nter was exe
Flash_ptr)

rash of the p

the TFTP s
ts sent and t
gure 4-8 sh
ding the pro

roblems.
he parser
caused a
ecuted in
method.

program.

server to
the ACK
hows the
ogram.

Figgure 4-5:

Figure

Success in s

 4-6: Mem

sending TI-TX

mory before

XT file to the

e loading TI-T

e motherboa

TXT file

ard

17

18

CCS
bootload
user los
applicat
one wer
points t
already
image o

4.3 I
The

for the
evaluati
measure
program
[36]).

4.3.1
The

PC's Eth
stack’s
platform
maximu

*This pro

S's free vers
der does no
ses 14 KB
tion include
re really pr
to the subro
included in

of the progra

P stack
major goal
MSP430F5

ion and giv
ements a te

m contains

UDP P

first test m
hernet port.
UDP modu

m a good o
um UDP da

gram is availa

Figure

sion does no
ot have this

of flash m
es the DHC
ressed for f
outines in t
n the boot l
am being do

evaluat
l of this pro
5437A and
ve an over
est program
a code snip

acket se

measures ho
 This measu
ule. The res
overview h

ata rate they

able from the

e 4-7: Me

ot allow us
s limitation,

memory to t
P, UDP, IP
flash memo
the TFTPbo
loader could
ownloaded)

tion
oject was to

running on
rview of th
m called "A
ppet from a

ending fr

ow fast the M
urement tes
sults from

how fast th
y can expect

Github reposi

emory after

to load mor
 thus avoid
the TFTPbo

P, and Ether
ory space i
oot applica
d be reused
).

o evaluate th
n this moth
he measure
Analyze" w
another per

rom MCU

MCU can c
sts the transm
these tests

he MCU ca
t. The progr

itory.

loading TI-TX

re than 16 K
ding this res
oot applica
rnet control
it would be
ation so tha
d (rather tha

he Microch
herboard. T
ements that

was written
rformance t

U to PC

create UDP
mit perform
will give a

an send UD
ram sends 1

XT file

KB of code
striction of C
ation. Note
ler interfaci

e possible t
t the netwo

an including

ip TCP/IP s
This section
t were mad
for the MC

testing prog

P packets an
mance of the
application
DP packets
1024 UDP p

e. However,
CCS. Howe
that the TF
ing function
to expose t
orking relat
g it yet aga

stack when
n will descr
de. To mak
CU*. The
gram (see [

nd send the
e Microchip
developers

s, i.e., wha
packet with

the new
ever, the
FTPboot
nality. If
he entry
ted code
in in the

n adapted
ribe this
ke these
Analyze
[35] and

m to the
p TCP/IP
 for this
at is the
h a given

sized U
512, an
payload
includes
loop. Fi
MCU to
from th
packet b

Fig

4.3.1.

As m
captured
captures
average
1024 UD
to know
interfac

UDP payload
nd 1024 by
d were deter
s how long
igure 4-8 ill
o the Ether

he Wireshar
being sent.

gure 4-8:

.1 Mea

mentioned
d each UDP
s it is pos

e throughpu
DP packets

w the standa
e is operatin

d. For this
ytes. Using
rmined and

g it takes to
lustrates the
rnet controll
rk capture i

Flowchart o

asuremen

earlier diff
P packets re
sible to co

ut, and the s
with differ

ard deviatio
ng in 10Mb

measureme
Wireshark

d the transm
o open a soc
e flowchart
ler. From th
is the time

of the Analyz

nts

ferent sized
eceived by
ompute som
standard de
rent sized pa
on, shown i
bps mode.

ent, the pay
the durati

mit rate of t
cket, transm
of the Anal
he flowcha
from one U

ze program f

UDP pack
the PC’s E

me simply
eviation. Fig
ayloads. In
in Figure 4

yload sizes
on of the U

the stack is
mit one pac
lyze program
art we can s
UDP packe

for sending U

kets were se
Ethernet con

statistics m
gure 4-9 sh
addition to

4-10. It shou

were 8, 16
UDP transf
calculated.

cket, and cl
m for sendin
see that wh
et being sen

UDP packets

ent during
ntroller. Bas
minimum, m
hows the st
these statis

uld be note

6, 32, 64, 1
fers for eac
. This meas
lose the soc
ng packets

hat can be o
nt to the ne

s from the M

the test. W
sed on thes
maximum,
tatistics for
stics is it als
ed that the

19

28, 256,
ch sized
surement
cket in a
from the
observed
ext UDP

MCU

Wireshark
e packet
median,
sending

so useful
Ethernet

20

Figure 4-9: Transmission time for sending individual UDP packets of different sizes from the

MCU to the PC's Ethernet controller

 Minimum and maximum time: The minimum and maximum transmission times
increases as the payload size is increased. However, the difference between the
minimum and maximum value is relatively small. This small difference is not
surprising as the MCU is only executing the loop of "Analyze" test program shown
in Figure 4-8.

 Median time: These statistics clearly show an exponential pattern. We did a
regression analysis of this data to compute the base time to do the socket opening
and closing as well as the time to invoke the packet sending process, then we
found the coefficient of the term representing the size of the packet. This
coefficient gives us the time per byte of payload.

8 16 32 64 128 256 512 1024
Min 0.986 1.042 1.206 1.520 2.197 3.535 6.177 11.471
Max 1.008 1.117 1.262 1.614 2.267 3.577 6.213 11.520
Median 0.996 1.079 1.234 1.567 2.234 3.555 6.200 11.497
Avg 0.996 1.079 1.234 1.567 2.233 3.555 6.200 11.497

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Tr
an

sm
is

si
on

 ti
m

e
[in

 m
s]

UDP Payload [Bytes]

Transmission time for sending individual UDP
packets of different sizes from the MCU to the

PC's Ethernet controller

Min

Max

Median

Avg

21

Regression analysis (times given in ms)
Regression Statistics

Multiple R 0.999999482
R Square 0.999998963
Adjusted R Square 0.99999879
Standard Error 0.004026769

Observations 8

ANOVA
 df SS MS F

Regression 1 93.83381421 93.83381421 5786899.254
Residual 6 9.72892E-05 1.62149E-05

Total 7 93.8339115

 Coefficients Standard Error t Stat P-value
Intercept 0.908904725 0.001796636 505.8924481 4.0265E-15

UDP payload 0.010338609 4.29773E-06 2405.597484 3.48309E-19

Now is it possible to compose a formula to compute the time to send a packet with some
amount of payload.

Time to send a packet = fixed cost + transmission per byte of payload * x

fixed cost = intercept coefficient

transmission per byte of payload = UDP payload coefficient

x = UDP payload size

Because of the extremely small P-value is it possible to predict almost 100% exactly how
much time it will take to transmit a UDP packet containing some amount of payload. The
formula above is applied and Table 4-1 and shows the comparison between the estimated and
measured results. Note that the fixed cost of sending a zero byte sized payload UDP packet is
0.908904725 ms.This time represents the time required to open and close the socket as well as
the time to issue the command to send the packet buffered in the Ethernet controller.
Table 4-1: Estimated transmission time of a single UDP packet based on the regression analysis

UDP Payload Estimated
transmission
time (ms)

Measured
transmission
time(ms)

8 0.9916136 0.996000

16 1.0743225 1.079000

32 1.2397402 1.234000

64 1.5705757 1.567000

128 2.2322467 2.234000

256 3.5555886 3.555000

512 6.2022725 6.200000

1024 11.4956403 11.497000

22

 Average time: The small difference between average and median speed indicates
that there are not that many exceptional cases (i.e. very fast or very slow).

 Standard deviation: Standard deviation is very small. This means that the
transmission time is almost the same for every packet; however, there is a clear
dependence of the standard deviation on the packet size – as would be expected
since any variance in the performance of the operations inside the loop should be
dependent upon the size of the payload – since all of the other operations (opening
and closing the socket) should not depend upon the payload size.

Figure 4-10: Standard deviation of the transmission times shown in the previous figure (MCU to

PC)

4.3.1.2 Theoretical vs measured transmission time
It is useful to know how much the overhead is for each UDP payload size. Therefore, the

theoretical time to send a UDP packet over an unloaded 10Mbps Ethernet with minimum
Interframe Space was calculated to compare it with the measured results. Figure 4-11
illustrates the difference between the theoretical and measured transmission time to send a
UDP packet. Also the values are given in the table below the figure. The difference between
the differences is exponential. This indicates the larger the UDP packet, the higher the
overhead is. For more detailed measurements see the Theoretical tab of
Analysis/Statistics.xlsx file in the GitHub repository.

0.000

1.000

2.000

3.000

4.000

5.000

6.000

8 16 32 64 128 256 512 1024

Ti
m

e
[in

 m
s]

UDP Payload [in bytes]

Standard Deviation (MCU to PC)

St.Dev.

Figure

4.3.2
Not

transfer
interesti
resend t
result w
in the p
sending

Fig

Th
M

Ti
m

e
[in

 m
s]

4-11: Theo

UDP P

only is the
bytes to/f

ing. In this
the packet

was a faster
previous me
g packets alr

gure 4-12:

heoretical 0
Measured 0

0.000
2.000
4.000
6.000
8.000

10.000
12.000
14.000

The

oretical vs. m

acket se

e transmit ti
from the M
measureme
that is alre
transmissio
easurement
ready contai

Flowchart o

8 16
.701 0.701
.996 1.079

eoretica

measured tra

ending fr

ime of pack
MCU to th
ent rather th
ady availab

on time from
s. Figure 4
ined in the E

of the Analyz

ENC

32
1 0.893 1
9 1.234 1

UDP pa

al vs. me

ansmission t
size

rom ENC

kets departin
he ENC28J
han creating
ble in the E
m the ENC2
4-12illustrat
ENC28J60’

ze program (

C28J60’s buf

64 128
1.050 1.42
1.567 2.23

ayload size [in

easured

time to send

28J60 b

ng from MC
J60 Ethern
g a new UD
Ethernet con
28J60 to the
tes the logi
’s buffer to

sending exis

ffer)

8 256
6 2.225
4 3.555

n bytes]

d transm

d a UDP pack

uffer to

CU interest
et controlle
P packet ea
ntroller's bu
e PC's Ethe
c of the An
the PC’s Et

sting UDP pa

512 102
3.852 7.12
6.200 11.4

mission t

ket of the ind

PC

ting, but the
er’s buffer
ach time, w
uffer. The e
ernet contro
nalyze prog
thernet cont

ackets from

24
23

497

time

The

Me

23

dicated

e time to
is also

e simply
expected

oller than
gram for
troller.

the

eoretical

asured

24

4.3.2.1 Measurements

As stated earlier this set of measurements is based upon sending the UDP packet already
available in the ENC28J60 Ethernet controller's buffer. As a rest there is no need for a transfer
of data from the MCU to the Ethernet controller’s buffer – hence only commands are being
sent over the SPI from the MCU to the Ethernet controller to send this buffered packet. This
packet is sent1024 times in a loop. Wireshark is again used to capture packets. Again, the
minimum, maximum, median, average transmission times and standard deviation values
calculated. Figure 4-13 shows the statistics for sending UDP packets with different payload
sizes from the Ethernet controller to the PC’s Ethernet controller. The standard deviations are
shown in Figure 4-14.

Figure 4-13: Transmission time for individual UDP packets of the indicated sizes (i.e., transmission

time of an existing packet in the ENC28J60’s buffer to PC)

Note that the times to send 8 and 16 bytes of UDP payload should be the same since the
minimum network payload size of a 10 Mbps Ethernet frame is 46 bytes. After subtracting 20
bytes for the IP header and another 8 bytes for the UDP header, we have 46-28=18 bytes and
this is larger than both an 8 byte and a 16 byte UDP payload.

 Minimum and maximum transmission time: As the first measurement the
minimum and maximum speed increases as the payload gets bigger. However, the
difference between the minimum and maximum value is relatively small. Except
32 and 64 bytes payload packets have an exceptional high maximum value. These

8 16 32 64 128 256 512 1024
Min 119.000 119.000 131.000 151.000 203.000 302.000 494.000 913.000
Max 134.000 135.000 276.000 322.000 227.000 323.000 550.000 941.000
Median 126.000 126.000 138.000 161.000 219.000 312.000 522.000 929.000
Avg 126.458 126.440 138.247 161.484 218.224 312.424 521.626 928.589

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

1000.000

Tr
an

sm
is

si
on

 ti
m

e
[μ

s]

UDP Payload [Bytes]

Transmission speed of UDP packets from
ENC28J60 buffer to PC's Ethernet port

Min

Max

Median

Avg

25

high values appeared only one time in their categories. The reason for these
outliers is probably a failure in one of steps in the loop to send the data in the
buffer. Possibly the code retake the loop step and sends it again. This causes an
almost double so high transmission speed.

 Median transmission time: This statistic shows clearly an exponential pattern as
did the previous measurements. However, the transmission time is roughly 11 to
12 times smaller than the time measured when the MCU also has to transfer the
payload of the packet across the SPI to the Ethernet controller’s buffer. This allows
us to compute the time required to transfer the data of the UDP packets via the
8MHz SPI from the processor, see Table 4-2.

Table 4-2: SPI processing speed

UDP
Payload
(bytes)

UDP Packet
size (bytes)

UDP Packet size (bits) Transmission via 8MHz SPI -
Theoretical(µs)

8 64 512 64
16 64 512 64
32 78 624 78
64 110 880 110

128 174 1392 174
256 302 2416 302
512 558 4464 558

1024 1070 8560 1070

 Average transmission time: As for the earlier measurements, the small difference
between average and median speed indicates that there are not many exceptional
cases (i.e., very fast or very slow).

 Standard deviation: Standard deviation indicates a very small difference between
the transmission time for each of the different sized packets.

Figure 4-14: Standard deviation (ENC28J60 to PC)

0

1

2

3

4

5

6

8 16 32 64 128 256 512 1024

Ti
m

e
[μ

s]

UDP Payload [Bytes]

Standard deviation (ENC28J60 to PC)

St.Dev.

26

Considering the case of a 1024 byte UDP payload we see that it should take about 1 ms to
transfer the payload from the MCU to the Ethernet controller’s buffer and about 0.9 ms to
transmit the packet – so the fact that it takes 11.497 ms to transmit a 1024 byte UDP payload
packet from the MCU to the PC’s Ethernet interface means that there is a lot of unexplained
time (11.497-(1.066-0.929) = ~9.5 ms).

4.3.3 Analysis of TFTP processing

It may also useful be useful for the developer to know how much time is needed to
perform the TFTP and flash programming for a given sized program. Therefore, the Analyze
program's TI-TXT file is loaded into MSP430's Flash memory by means of TFTPboot
program while this action is captured by Wireshark.

4.3.3.1 TFTP transfer byterate

Wireshark captured every step of the TFTP process. This section examines how quickly
the RRQ, DATA, and ACK packets are processed. Figure 4-15shows how fast the TFTP
process runs. The peaks are clearly visible when DATA and ACK packets are sent. The first
peak is the RRQ packet bit rate where the short peak at the end is the last DATA packet that is
less than 512 bytes long. Using this measurement was possible to calculate a down load bit
rate of11.4817514 KBps.

Figure 4-15: TFTP processing bit rate

4.3.3.2 TFTP processing speed

Many programs can be written for the MSP430, hence the size of the programs can differ.
Since the bit rate for the TFTP and flash programming is known, we can compute the time
required to download and store any sized file. Table 4-3 shows this for different sized files
starting from 1 KB to 230 KB (this is the upper bound because a maximum of 229 KB are
available in the Flash memory as some of the space is taken by the TFTP boot program).
Figure 4-16 shows this data as chart. Note that this table and figure were computed assuming
that the time for TFTP and programming the flash is linear increase in the file size.

0

1000

2000

3000

4000

5000

6000

0 1 2 3

Da
ta

 [i
n

bi
ts

]

Time [in seconds]

TFTP process bit rate

TFTP data

27

Table 4-3: TFTP download and flash programming times for different sized files

Boot file size (KB) Processing time (seconds) Boot file size (KB) Processing time (seconds)
1 0.087 205 17.854
5 0.435 210 18.290

10 0.871 215 18.725
15 1.306 220 19.161
20 1.742 225 19.596
25 2.177 230 20.032
30 2.613
35 3.048
40 3.484
45 3.919
50 4.355
55 4.790
60 5.226
65 5.661
70 6.097
75 6.532
80 6.968
85 7.403
90 7.839
95 8.274

100 8.709
105 9.145
110 9.580
115 10.016
120 10.451
125 10.887
130 11.322
135 11.758
140 12.193
145 12.629
150 13.064
155 13.500
160 13.935
165 14.371
170 14.806
175 15.242
180 15.677
185 16.113
190 16.548
195 16.983
200 17.419
205 17.854

28

Figure 4-16: TFTP boot loading processing time as a function of file size

4.3.4 Conclusion

It is logical that the transmission times for different sized UDP payloads are different. The
first test consisted of a loop, which creates a new UDP packet and sends it. This obviously
requires more time than simply retransmitting a packet that is already in the buffer of the
Ethernet controller. These measurements give developers the ability to predict the
performance of a UDP application on this platform. The differential measurement (i.e., using
the data from the two sets of UDP measurements) enables us to compute the per byte transfer
time across the SPI bus, the time to perform a socket open, close, and send a UDP packet.
These measurements provide programmers with a good overview of the maximum
transmission rates they can expect from this platform.

0

5

10

15

20

25

0 50 100 150 200 250

Ti
m

e
ne

ed
 to

 p
ro

ce
ss

 th
e

fil
e

[in
 se

co
nd

s]

Size of file [in kilobytes]

TFTP boot loading processing time

Boot file

29

5 Conclusions and future work
This chapter presents conclusions based on the performed tasks and analysis. The initial

goals of the project and our achievements are compared. Furthermore, some suggestions are
made of future work. Finally, several economic, social, environmental, and ethical reflections
are given.

5.1 General conclusions
The main objectives of this project were to fix the TFTP boot loading problem and to

evaluate the Microchip TCP/IP stack when using a TI MSP430 MCU and a Microchip
ENC28J60 Ethernet controller connected via SPI. The first goal, namely TFTP boot loading
now works. The TFTP boot loader program correctly downloads a program into flash memory
from a TFTP server. However, some additional improvements could have been made. Since
the board has two programmable buttons and one is used for resetting the motherboard.
Pressing this button resets the motherboard and downloads an updated version of the file
provided by the TFTP server -if there is such a file available on the TFTP server. The second
button could have been configured as a soft reset button. When this second button is pushed,
the motherboard could simply restart the already loaded program. Unfortunately, I was not
able to realize this functionality. A hard reset can be done by simply unplugging and plugging
the Ethernet cable. As I had already spent a lot of time to solve the basic boot loading problem
I decided not to spend more time introducing this new functionality.

The second goal of this project was to evaluate the Microchip TCP/IP stack’s
performance. Several measurements and calculations were done. However, it is possible to do
more measurements and calculations. I focused on UDP transmission from the MCU to the
PC’s Ethernet controller. Additionally, I calculated how fast a TFTP boot file is processed by
the embedded board. In the future, it would be interesting to measure the Transmission
Control Protocol (TCP) protocols throughput. Since I was close to the deadline for this
project, I decided to skip measurements of TCP.

This was my first experience with hardware, thus I learned a lot about microcontrollers
and how to program them. Before this project, my knowledge of the C programming language
was very limited. This lead to many struggles when programming the MCU. However, by
reading datasheets I gained insight into the MSP430 MCU family. Furthermore, the extensive
use of Wireshark motivated me to learn how to use this handy tool much better than I could
before this project. Additionally, I inspected every detail of the TFTP protocol and learned
how to create UDP packets in the MCU.

If I was to do this project all over again, I would probably start with the IP stack
evaluation instead of fixing the TFTP issue. I feel that I could have done a much more
extensive evaluation of the IP stack. Unfortunately, I lost a lot of time trying to fix the TFTP
problem. However, I would probably not have learned as much as I did about how to program
microcontrollers and how the IP stack works at a low level.

My advice to future contributors to this project is to make much more extensive use of the
Ethernet controller's buffer when possible. According to my measurements it is possible to
decrease the time needed to generate and send UDP packets if one were to make fuller use of
the capabilities of this Ethernet controller. Of course, a clear task is to evaluate the TCP
module of this IP stack. Additionally, carefully reading the data sheets and documentation can
save a lot of time and annoyance.

30

5.2 Future work
As discussed earlier, evaluation of the TCP functionality of the IP stack has not been done,

but clearly should be done. Additionally, it is possible to do many interesting calculations
based on the existing observations. In this way the capabilities of the motherboard will be
much better documented for future developers.

Another area of tests and measurements is to determine the maximum rate at which data
contained in UDP packets can be transferred from the PC to the MCU. As the current
measurements only consider traffic going in the other direction.

Moreover, the programmable buttons can be used to better effect. It is recommended that
both hard and soft reset functionalities be implemented.

A potentially interesting idea is to develop a monitoring program for the network, which
uses this embedded platform. A program could monitor a number of these boards to see if
they are active or not and to detect failures as soon as possible. A benchmark tool could be
implementing to help developers measure and analyze the throughput and latency of different
nodes in the network. Furthermore, the TFTP boot loader has an important place in facilitating
future tests and measurement. In summary it is it up to future developers to exploit this Swiss
knife of a lower power PoE networked computing platform.

5.3 Required reflections
This project reduces costs by exploiting the TFTP boot loading functionality. Future users

can develop programs with a code size larger than 16 KB. This can save a developer a lot of
money, considering that a node locked single user license of CCS costs US$495.00. This can
be a big gain for an organization that needs, for example, to support 50 developers which
would otherwise cost US$19,994.00*.

Avoiding these costs raises the question if it is ethical to do this or not. Some people
would say that this is ethical because the user does not load program code larger than 16 KB
via the IDE. While others might say it is not because the user should pay the company for the
use of the IDE. It is up to the user to decide if the usage of TFTPboot loading system is ethical
or not. It should also be noted that the TFTPboot loading system can be used with code
compiled using other development tools.

While carrying out this project no environmental or sustainability issues were
encountered. However, in retrospect the use of the TFTP boot loader does contribute to
sustainability as it allows the same hardware to easily be reprogrammed for many different
uses – in fact, the same hardware can be potentially dynamically used for different purposes at
different times (the maximum number of times that the flash memory can be reprogrammed
will set an upper limit on this reuse). Furthermore, this project does not seem to have a
positive or negative effect on society, although it facilitates the development of new
applications that might have positive or negative effects on society.

*Given the current price for CCS at http://www.ti.com/tool/ccstudio.

31

References
[1] A. López and F. J. Sánchez, “Exploiting Wireless Sensors: A gateway for 868 MHz

sensors,” Master’s thesis, KTH Royal Institute of Technology, School of Information
and Communication Technology, Stockholm, Sweden, 2012.

[2] “TI MSP430F5437A Datasheet.” .
[3] “ENC28J60 Data Sheet.” .
[4] J. Lara Peinado, “Minding the spectrum gaps: First steps toward developing a distributed

white space sensor grid for cognitive radios,” Master’s thesis, KTH Royal Institute of
Technology, School of Information and Communication Technology, Stockholm,
Sweden, 2013.

[5] “SPI Block Guide V03.06.” .
[6] P. M. in D. Mah, “What does the new Power over Ethernet standard mean for IT pros?,”

TechRepublic. [Online]. Available: http://www.techrepublic.com/blog/data-center/what-
does-the-new-power-over-ethernet-standard-mean-for-it-pros/. [Accessed: 23-May-
2014].

[7] “IEEE SA - 802.3af-2003.” [Online]. Available:
http://standards.ieee.org/findstds/standard/802.3af-2003.html. [Accessed: 25-May-2014].

[8] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor Extensions,” Internet
Request for Comments, vol. RFC 2132 (Draft Standard), Mar. 1997.

[9] J. Alba Tormo Peiró,, “Spectrum sensing based on specialized microcontroller based
white space sensors: Measuring spectrum occupancy using a distributed sensor grid,”
Master’s thesis, KTH, School of Information and Communication Technology,
Communication Systems, Stockholm, Sweden, 2013.

[10] R. Karim and H. Al-Fakhri, “Smart Door Lock : A first prototype of a networked power
lock controller with an NFC interface.,” Bachelor’s Thesis, KTH, School of Information
and Communication Technology, Communication Systems, Stockholm, Sweden, 2013.

[11] R. Droms, “Dynamic Host Configuration Protocol,” Internet Request for Comments, vol.
RFC 2131 (Draft Standard), Mar. 1997.

[12] J. Postel, “Internet Protocol,” Internet Request for Comments, vol. RFC 791
(INTERNET STANDARD), Sep. 1981.

[13] J. Postel, “User Datagram Protocol,” Internet Request for Comments, vol. RFC 768
(INTERNET STANDARD), Aug. 1980.

[14] K. R. Sollins, “TFTP Protocol (revision 2),” Internet Request for Comments, vol. RFC
783, Jun. 1981.

[15] K. R. Sollins, “The TFTP Protocol.” [Online]. Available: http://www.rfc-
editor.org/ien/ien133.txt. [Accessed: 23-May-2014].

[16] K. Sollins, “The TFTP Protocol (Revision 2),” Internet Request for Comments, vol. RFC
1350 (INTERNET STANDARD), Jul. 1992.

[17] “TL2575HV-ADJ | Step-Down (Buck) Converter | Converter (Integrated Switch) |
Description & parametrics.” [Online]. Available: http://www.ti.com/product/tl2575hv-
adj. [Accessed: 23-May-2014].

[18] “TPS2375 | Powered Device | Power Over Ethernet (PoE)/LAN Solutions | Description
& parametrics.” [Online]. Available: http://www.ti.com/product/tps2375. [Accessed: 23-
May-2014].

[19] “IEEE-SA -IEEE Get 802 Program - 802.3: Ethernet.” [Online]. Available:
http://standards.ieee.org/about/get/802/802.3.html. [Accessed: 23-May-2014].

[20] “Introduction to JTAG | Embedded.” [Online]. Available:
http://www.embedded.com/electronics-blogs/beginner-s-corner/4024466/Introduction-
to-JTAG. [Accessed: 23-May-2014].

32

[21] “Texas Instruments MSP430 JTAG header pinout.” [Online]. Available:
http://www.jtagtest.com/pinouts/msp430. [Accessed: 23-May-2014].

[22] “ProCurve Switch 2626 (J4900B) specifications - HP Products and Services Products.”
[Online]. Available: http://h10010.www1.hp.com/wwpc/ca/en/sm/WF06b/12136296-
12136298-12136298-12136298-12136316-12136318-31539227.html?dnr=2. [Accessed:
23-May-2014].

[23] “Dell OptiPlex GX620.” [Online]. Available:
http://www.dell.com/support/drivers/us/en/19/Product/optiplex-gx620. [Accessed: 23-
May-2014].

[24] “openSUSE.” [Online]. Available: http://en.opensuse.org/Main_Page. [Accessed: 23-
May-2014].

[25] “Realtek RTL8139 Ethernet controller.” [Online]. Available:
http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=6&Level=5&
Conn=4&ProdID=16. [Accessed: 28-May-2014].

[26] “MSP430 USB Debugging Interface - MSP-FET430UIF - TI Software Folder.”
[Online]. Available: http://www.ti.com/tool/msp-fet430uif. [Accessed: 23-May-2014].

[27] “Wireshark · Go Deep.” [Online]. Available: http://www.wireshark.org/. [Accessed: 23-
May-2014].

[28] “Tcpdump/Libpcap public repository.” [Online]. Available: http://www.tcpdump.org/.
[Accessed: 23-May-2014].

[29] “Eclipse - The Eclipse Foundation open source community website.” [Online].
Available: http://www.eclipse.org/. [Accessed: 23-May-2014].

[30] “CCS - Texas Instruments Wiki.” [Online]. Available:
http://processors.wiki.ti.com/index.php/Download_CCS. [Accessed: 23-May-2014].

[31] “Portal:YaST - openSUSE.” [Online]. Available: http://en.opensuse.org/Portal:YaST.
[Accessed: 23-May-2014].

[32] R. Karim and H. Al-Fakhri, “Smart Door Lock : A first prototype of a networked power
lock controller with an NFC interface.,” Bachelor’s Thesis, KTH, School of Information
and Communication Technology, Communication Systems, Stockholm, Sweden, 2013.

[33] J. L. Peinado, “Mind-the-gaps GitHub,” GitHub. [Online]. Available:
https://github.com/cazulu/mind-the-gaps. [Accessed: 23-May-2014].

[34] “TI-TXT file format -srec_ti_txt Linux man page.” [Online]. Available:
http://linux.die.net/man/5/srec_ti_txt. [Accessed: 23-May-2014].

[35] H. Schlunder, “UDP Performance Test microcontrollers.” [Online]. Available:
https://github.com/exosite-garage/mcp_dv102412_cloud. [Accessed: 23-May-2014].

[36] “Microchip TCP/IP Stack Help.” .

33

Appendix A

GitHub repository

All the source code and related documents of this project are publicly available on a
GitHub repository. The link to this repository is https://github.com/kekovski/MSP430 and
consists of several folders:

 Analysis: Calculations and charts based on the measurements

 Captures: All the Wireshark captures

 The source code is divided in two parts

• Analyze: Program for IP stack evaluation

• Updated version of a TFTP program loader for MSP430

 Figures: All of the used figures in the final report

