TFTP loading of programs into a
Microcontroller’s flash memory
and evaluation of Microchip’s
TCP/IP stack with ENC28J60

Kenan Alci

2014-05-28

Project for IK2553 performed at Department of Communication Systems

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology
Stockholm, Sweden






Abstract

This project began with a microprocessor platform developed by two master’s students:
Albert Lopez and Francisco Javier Sanchez. Their platform was designed as a gateway for
sensing devices operating in the 868 MHz band. The platform consists of a Texas Instruments
MSP430F5437A microcontroller and a Microchip ENC28J60 Ethernet controller connected to
the MSP430 processor by a Serial Peripheral Interface.

Javier Lara Peinado implemented prototype white space sensors using the platform
developed by the earlier two students. As part of his effort, he partially implemented a Trivial
File Transfer Protocol (TFTP) system for loading programs into the flash memory of the
microcontroller using Microchip’s TCP/IP stack. However, he was not successful in loading
programs into the flash as the TFTP transfer got stuck at the first block.

The first purpose of this project was to find and fix the error(s) in the TFTP loading of
programs into the MSP430’s flash memory. The second purpose of this project was to
evaluate Microchip’s TCP/IP stack in depth. This report describes measurements of UDP
transmission rates. Additionally, the TFTP processing rate is measured and the TFTP program
loading code is documented. The report concludes with suggestions for possible
improvements of this system.

Keywords: TFTP loading, MSP430 flash, IP stack evaluation






Sammanfattning

Projektet startade med en mikroprocessor-plattform som utvecklades av tva
masterstudenter: Albert Lopez och Francisco Javier Sdnchez. Deras plattform var utformad
som en inkoOrsport for avkdnning av apparater som arbetar i 868 MHz-bandet. Plattformen
bestar av en Texas Instruments MSP430F5437A mikrokontroller och en Microchip
ENC28J60 Ethernet controller ansluten till MSP430-processor med en SPI-granssnitt (Serial
Peripheral Interface).

Javier Lara Peinado genomfGrde prototypvitt utrymme sensoreranvianda plattformen som
utvecklades av de tvd tidigare ndimnda studenter. Som en del av sitt arbete genomforde han
delvis ett Trivial File Transfer Protocol (TFTP) system for lastning program i flashminne
mikrokontroller med hjilp av Microchips TCP / IP-stack. Men han var inte framgéngsrik i
lastning program i flash som TFTP-6verforingen fastnade vid det forsta blocket.

Det forsta syftet for detta projekt var att hitta och atgédrda felet(er) i TFTP laddning av
program i MSP430 flashminne. Det andra syftet for detta projekt var att utviardera Microchips
TCP/IP- stack pa djupet. I denna rapport beskrivs métningar av UDP Overforingshastighet.
Dessutom médts TFTP  bearbetningshastighet och TFTP programladdningskoden
dokumenteras. Rapporten avslutas med forslag pd mdjliga forbéttringar av systemet.

Nyckelord: TFTP programladdning, MSP430 flashminne, IP-protokollstackenutvirdering






Table of contents

N 015 = U3 i
SammanfattniNg ..o e iii
Table Of CONTENTS. .. ... et e e e aaaaaaas \Y
1S3 0 8 T U > vii
IS W0 ) B =T 01 =T IX
List of acronyms and abbreviations ..o Xi
1 I 1 o 1 0 o LT3 o[ ] o 1
1.1 Problem desCription .....coooiiiiiiiiii e 1
0 €T - | 1
1.3 Structure of this report. . ... e 2
2 BaCKQOrOUNG ...t ettt ettt ettt 3
2.1 What others already have done ..........oooiiiiiiiiiii i 3
2.1.1  EXPlOiting WIir€lESS SENSOIS...uvuieiiiiiiiieirreeeeeeeeeeccctieree e e e e eeseerraeeeeeeeseesnrrrreeeaeeeens 3
2.1.2  Minding the SPECIIUM SaPS....uuuiiiiieeieiiirieeeee et e e e e eeearrrre e e e e e eesatrreeeeeeeens 3
2.1.3  Fixing the POE functionality .........ccooeiiieieiiie e 3

D 0 S o - A B T Yo Yl I Yol USSR 4

2.2 Dynamic Host Configuration Protocol............oooooiiiiiiiiiiiiiniiiins 4
2.3 Trivial File Transfer ProtocCol ... e 4
2.3.1  Structure of @ PaCKet ... e e 4

D T N 1 V1 =Y ol o] V=Yt [ o 1SRRI 5
2.3.3  TFTP PACKELS e eteeee ettt st e e s te e e e nbaeeeeas 5

B S 1Y/ 1= o o 7
Gt R © ] o ] 1= 03 Y 7

B 2 = 10 1YY= 1 7
02 RN |V, To 1 o 1T o T - o [P PRRRR 7
3.2.2  HP ProCurve SWItCh 2626 ........cceieiiiiieciiiieiee e ettt e eeecteee e e e e e e cnnrraeeeea e 9
3.2.3  Dell OPtIPIEX GXB20 ...ttt en s 9
3.2.4  MSPA30 ProgrammMer ..cccciiiiiiiiiiiiiiieeeeeeeee e e s s s 9
3.8 SO WA i i 10
331 WIrESharK oo e e e e e e e e e e e ans 10
3.3.2  Code ComMPOSEr StUIO.....ccuuiiiiieeee et e e e e e e e e e e e snrareeeeeaeeas 10

3.4 Connecting the embedded platform to the network ................... 11
3141 DHCP SBIVEN ittt 11
34,2 TFTP SEIVEL ettt e e e s e e e e s e e e e e e e s eseseeas 11

4 N 7= 1 Y25 1 13
4.1 NetwOrk tOPOIOgY ... 13
4.2 TFTP loading problem. . ... e 14

v 50 2 RNV ¢ 01 o] o] o o P PP PP PP R PPPPPPPPIRt 14
4.2.2  Causes of the problem& fiXes ......cuveiieiciiiiee e 14
e B (=T 1| | U 16
4.3 1P stack evaluation ... 18



4.3.1 UDP Packet sending from MCU 0 PC .......cuvvveviiiiiiicinieeeeee e 18

4.3.2 UDP Packet sending from ENC28J60 buffer to PC .......cccceeeevvecvrveeeeeeeeiecnrnenenn. 23
4.3.3  ANalysis Of TFTP ProCESSING....cccvvvveriieeeiiiiiiirrereeeeeeierreereeeeeesentreeeeeeeseesnnssseeens 26
e S 0] o Vol [ U1 o IR PRSP 28

5 Conclusions and future WOIK .......ooruiiiii i aaaaes 29
5.1 General CONCIUSIONS ...t eee e e aaaeeeennns 29
5.2 FULUIE WOFK ettt et aee e eeans 30
5.3 Required reflections ... 30
=Y (=1 =] [0 =1 31
Y & 01T o T 1 33

Vi



List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:

Figure 4-9:

Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:

Figure 4-15:
Figure 4-16:

RROQ/WRQ.....cooeeeeeeeeeeeeeee e e s ees e s ses s eeseeessaeeseeees e ses e ees e
DATA PACKEL ...ttt et sttt s
ACK PACKET .ottt ettt ettt sttt e st eaeesabeenbaessseensaens
ERROR PACKET.....c.uiiiiiiiiiiiieeiieie ettt ettt ettt et ete e e
Views of the front and back of the motherboard .............cccoveeiiiiiiiincnninn,
TIMSP-FETA30UIF .....c..ooiiiiiiieteeieseee ettt
NEtWOTK tOPOLOZY ..vveeiiiieeiieeeie ettt e e
Wireshark capture of the failed TFTP process .......cccceeeevveevieeenieeecieeeieeeen.
Memory map of MSPA430FS5437A ..c..ooiiiiiiiiecteeeeeeeeeeeeee e
Memory map of MSP430F5437A after flashing TFTPboot...........cccccoeriine.
Success in sending TI-TXT file to the motherboard .............cccooevveiieniiennnen.
Memory before loading TI-TXT file .......ccceeeeiiiniiiiiiiieeiieeeeee e
Memory after loading TI-TXT file ......cccoeveiieiiiriiieiieciieeeceeeeee e
Flowchart of the Analyze program for sending UDP packets from the

Transmission time for sending individual UDP packets of different sizes
from the MCU to the PC's Ethernet controller .............coccevviiniiniiinnniee
Standard deviation of the transmission times shown in the previous figure
(MCU 0 PC) ettt st
Theoretical vs. measured transmission time to send a UDP packet of the
INAICALEA SIZE ..ottt et s
Flowchart of the Analyze program (sending existing UDP packets from

the ENC28J60°S DUTET) ....ccviiieiieiieciieiiecie ettt e
Transmission time for individual UDP packets of the indicated sizes (i.e.,
transmission time of an existing packet in the ENC28J60’s buffer to PC) ......
Standard deviation (ENC28J60 t0 PC) .....coouiieiiiiiiiiiiiiieeeeeeeeee e
TETP processing bit Tate.........c.ceveeriieriieniieiiie ettt ettt
TFTP boot loading processing time as a function of file size ...........cc.ccceneee.

Vii






List of Tables

Table 2-1:
Table 4-1:

Table 4-2:
Table 4-3:

TETP OPCOAES ...ttt ettt et e 5
Estimated transmission time of a single UDP packet based on the

TEETESSION ANALYSIS ..eeevvieiiieiieeiieetieeite ettt et et eebeesate e bt e ssbeeseesaeeenbeessnesnsaens 21
SPI ProcesSiNg SPEEA .....cecuvieuieiiieiieeiieiee ettt ettt e eaeeaee b enes 25
TFTP download and flash programming times for different sized files........... 27






List of acronyms and abbreviations

CCS
CPU
DHCP
FET
GUI
IC
IDE
IP
JTAG
LAN
MCU
NIC
oS
PC
PoE
PSE
RAM
RISC
RRQ
SPI
SRAM
TCP
TETP
TI
TID
UDP
USDh
WRQ

Code Composer Studio

Central Processing Unit

Dynamic Host Configuration Protocol
Flash Emulation Tool

Graphical User Interface
Integrated Circuit

Integrated Development Environment
Internet Protocol

Joint Test Action Group

Local Area Network
Microcontroller Unit

Network Interface Controller
Operating System

Personal Computer

Power over Ethernet

Power Sourcing Equipment
Random Access Memory
Reduces Instruction Set Computer
Read Request

Serial Peripheral Interface

Static Random Access Memory
Transmission Control Protocol
Trivial File Transfer Protocol
Texas Instruments

Transfer Identifier

User Datagram Protocol

United States Dollar

Write Request

Xi






1 Introduction

This chapter specifies the problems that were addressed in this project, the problems
encountered during the project, the goals of the project, and a brief overview of the objectives
of the project.

1.1 Problem description

This project began with a microprocessor platform developed by Albert Lopez and
Francisco Javier Sanchez as part of their master’s thesis project[1]. Their platform was
designed as a gateway for sensing devices operating in the 868 MHz band. The platform
consists of a Texas Instruments MSP430F5437A microcontroller unit (MCU) [2] and a
Microchip ENC28J60 Ethernet controller[3] connected to the MSP 430 processor by a Serial
Peripheral Interface (SPI).

Javier Lara Peinado implemented prototype white space sensors using the platform
developed by the earlier two students[4]. As part of his effort he partially implemented a
Trivial File Transfer Protocol (TFTP) based bootloader to load programs into the MCU’s
flash memory using Microchip’s TCP/IP stack. However, he was not successful in loading
programs into the flash memory as the TFTP transfer got stuck at the first block.

The first purpose of this project was to find and fix the error(s) in the TFTP loading of
programs into the MSP430’s flash memory. Due to this, a user is unable to easily load new
software into the processor. Instead, the user must manual program each board using a Joint
Test Action Group (JTAG) programmer. This makes it much harder to develop and deploy
applications for this platform.

The second purpose of this project was to evaluate Microchip’s TCP/IP stack in depth.
The reason for this examination is that the MCU is connected to the Ethernet controller by an
SPI interface. This means analyzing and documenting the system's performance and if
possible identifying bottlenecks. For example, does this SPI’s data rate limit the performance
of the processor’s maximum sending and receiving data rates. As part of this evaluation
measurements of UDP transmission rates were made.

Additionally, the TFTP processing rate was measured and the TFTP program loading code
was documented.

1.2 Goals

The main goal was to solve the TFTP loading issue in order to improve the usability of the
system, specifically to make it easier to write and deploy new applications, such as the test
programs to be used to assess the performance of the platform’s TCP/IP stack. This lead to the
following subtasks:

e Solve the TFTP loading problem — so that programs could be loaded from a TFTP
server into the MCU’s flash memory,
Measuring transfer rates with different configurations of the platform,

e Identify bottlenecks in the system, and
Suggest improvementsto the system.



1.3 Structure of this report

This report exists of five chapters. The first chapter introduced the purpose of the project,
stated the project’s goals, and defined a series of subtasks. The second chapter provides the
readers background information concerning what has already been done and what the reader
needs to know in order to understand this report. The third chapter explains the methods and
approaches to be used to solve the problems. The fourth chapter evaluates what was done and
gives a comprehensive analysis of the measurement results. Finally, the last chapter
summarizes our conclusions, describes what was not achieved, suggests future work that
could lead to improvements, and reflects upon several issues related to the project.



2 Background

This chapter provides the reader with a survey of related work. This is followed by a
description of two protocols (DHCP and TFTP) to allow the reader to better understanding the
content of this report.

2.1 What others already have done

As stated in the introduction, this project builds upon previous projects. This section
discusses what these previous students did in more detail.

2.1.1 Exploiting wireless sensors

Albert Lopez and Francisco Javier Sanchez developed a gateway to sniff wireless sensor
traffic in the 868 MHz band in order to use this data for multiple purposes[1]. The main
component of the motherboard is a Texas Instruments’ (TI) MSP430F5437A MCU]J2]. This
MCU was developed for ultra-low power applications. For network connectivity, they used an
Ethernet controller. A Microchip ENC28J60[3] Ethernet controller was chosen due its Serial
Peripheral Interface (SPI)[5] enabling it to communicate with the MSP430 MCU. An
additional advantage of using this Ethernet controller is that there is no need for an external
memory as the Ethernet controller integrates a dual port Random Access Memory (RAM)
buffer for receiving and sending data packets. Due to the low power consumption of this
platform (motherboard and radio daughterboard), the motherboard was designed so that it
could be powered by Power over Ethernet (PoE)[6][7]. In addition to the motherboard, they
developed a daughterboard with a radio transceiver for the 760 — 928 MHz band that also
connects to the MCU via an SPI interface.

2.1.2 Minding the spectrum gaps

Javier Lara Peinado[4]use the two boards developed by Lopez and Sanchez and added
network booting functionality. The goal was to have a boot program stored in the flash
memory of the processor that upon power up would use the Dynamic Host Configuration
Protocol (DHCP) to:(1) get an IP address, (2) learn the name of a file to be loaded and
executed, and (3) learn the IP address of the file server from which this file could be retrieved
using the Trivial File Transfer Protocol (TFTP).Furthermore, the complete configuration of
the gateway was done by means of DHCP options[8], while the installation of software to be
run was to be done by TFTP. Unfortunately, he did not complete the implementation of using
TFTP to load the code into the MCU’s flash memory. However, he did implement software
that scans the radio spectrum over a programmed range for “gaps”, i.e., white spaces where no
devices are transmitting. These measurements of the spectrum occupancy are sent to a server
via UDP datagrams.

2.1.3 Fixing the PoE functionality

Julia Alba Tormo Peir6é in her master thesis using a number of white space
sensors[9]needed to address a problem with the PoE functionality as the PoE power
subsystem of the motherboard was not providing enough power to runs the radio scanning
process continuously. She successfully fixed this issue and was able to carry out white space
sensing with a number of the motherboards together with their daughter board.



2.1.4 Smart Door Lock

Rafid Karim and Haidara Al-Fakhri utilized the motherboard and an existing near field
communication board (designed as an Arduino shield) to build a prototype of a network
powered NFC capable door lock[10].The main idea of their bachelor’s thesis project was to
simplify the user’s life. For example, a homeowner could send one-time key to a repairperson
or give two weeks access to his/her neighbor while he/she is on vacation so the neighbor can
water the plants.

2.2 Dynamic Host Configuration Protocol

The Dynamic Host Configuration Protocol (DHCP) is a network protocol that describes
how a computer can dynamically obtain network settings from a DHCP server[8], [11]. The
DHCP protocol is based on the Internet Protocol (IP) [12] and works with User Datagram
Protocol (UDP) [13] packets. The main feature of DHCP protocol is that it reduces the need
for human interaction each time a client joins the network. This protocol is used by the
embedded platform to connect to the network.

2.3 Trivial File Transfer Protocol

Trivial File Transfer Protocol[14] is a protocol that uses UDP to transfer files. It was first
defined in January 1980 by Karen R. Sollins in IEN 133[15]and revised in July 1992 by
Karen R. Sollins in RFC 1350 [16].

The simplicity of this protocol is the main reason for its usage in our project. This protocol
was designed to be small and easy to implement. The only functionality of TFTP is to read
and write files from/to a remote server. The protocol is similarities to other Internet protocols
in passing 8-bit bytes of data.

Every transfer begins with a request to read or write a file. A response from the server
indicates an open connection between the client and server. Each data packet that is send has a
fixed length blocks of 512 bytes that has to be acknowledged by the receiver. When a packet
is sent with less than 512 bytes this means that it is the last data packet. A timeout will occur
at the recipient when a packet is lost in the network. It is up to the receiver to ask for a
retransmission of the packet by the sender. Because of this stop-and-wait protocol, TFTP
provides flow control and eliminates the need of reordering the incoming packets.

Almost all errors cause a termination of the connection. An error is signaled by an error
packet, which does not have to been acknowledged or retransmitted. There are three types of
events that cause errors: (1) not being able to satisfy the request (e.g., file not found, access
violation, or no such user), (2) receiving a packet which cannot be explained by a delay or
duplication in the network (e.g., an incorrectly formed packet), and (3) losing access to a
necessary resource (e.g., disk full or access denied during a transfer). The only case where an
error does not cause a termination of the connection is when the source port of a received
packet is incorrect. In this case, an error packet is sent to the originating host.

2.3.1 Structure of a packet

Since TFTP was designed to be implemented on the top of the UDP, the datagram is
carried inside an Internet Protocol packet. The resulting packet has an IP header, a UDP
header, a TFTP header, and the TFTP data being sent. In addition, a link layer header is added
by the interface to allow the packet to be delivered to its destination. TFTP does not specify
any values in the IP header; however, TFTP does set some specific values in the UDP header.
The UDP header has four fields. The UDP source and destination ports indicate the UDP ports

4



used by the sender and receiver. The datagram’s length reflects the length of the packet. The
optional checksum can be used to detect errors, which may have been occurred. Transfer
Identifiers (TIDs) are used for the port numbers in the UDP datagram.

2.3.2 Initial connection

A TFTP client initially sends a write request (WRQ) or read request (RRQ) and expects to
receive an ACK for a WRQ or the first data packet in response to a RRQ. This initial
communication establishes a transfer. ACK packets contain the block number of the data
packet that is being acknowledged. The block numbers begin with one and are incremented
for each successive data block. The block number of a positive response to the first write
request will be zero.

TIDs are randomly chosen at each end of the connection so probability that the same
number is chosen by two clients is very low. These TID’s are used for the UDP source and
destination ports. A requesting host sends its initial request to the well-known UDP port
number 69 of the serving host. The response of the server to the request is a TID chosen by
the server itself as its source TID, while source TID from the request message by the requestor
is used as the destination TID. This pair of TIDs are used until the transfer ends.

2.3.3 TFTP packets

TFTP has five types of packets with an opcode for each type (see Table 2-1).
Table 2-1: TFTP opcodes

Opcode Operation

1 Read request (RRQ)

2 Write request (WRQ)

3 Data (DATA)

4 Acknowledgement (ACK)
5 Error (ERROR)

Figure 2-1 shows the read request and write request packet format. The first field is the
opcode field (Op #). The opcode indicates if this is a RRQ or WRQ packet. The Filename
field contains “octet”, “netascii”, or “mail”. In our case the sender and recipient use netascii
mode. When netascii mode is used, the host translates the data in the Filename field into its
own string format. The filename field is followed by a byte containing a zero (0) and a mode
field. Themode field makes it possible to define other modes of cooperating between pairs of
hosts. Because, there is no central authority this must be done with care. A byte containing the

value 0 indicates the end of a RRQ or WRQ packet.

Op & Format without header
2 Bytes ! String . 1Byte @ String & 1Byte
01/02 Filename 0 Mode 0

Figure 2-1: RRQ/WRQ



DATA packets transfer the actual data. Figure 2-2 shows the structure of a DATA packet
(opcode = 3). The block number begins with one and increments each time a new block of
data is send. The data field contains the actual data and is 512 bytes long; if not, this means
that data block is the last block.

Op # Format without header
2 Bytes ' 2 Bytes ' n Bytes
03 Block # Data

Figure 2-2:  DATA packet

Every data packet should be acknowledged to ensure the consistency of the transfer and to
enable the other party to send/request the next block. This is done by sending an ACK packet
with the opcode 4. Figure 2-3 shows the structure of an ACK packet. The block number in
this ACK indicates the block number of the DATA packet being acknowledged. At the start of
a transfer a WRQ is acknowledged with block number of zero.

Op# Format without header
2 Bytes 2 Bytes

04 Block #

Figure 2-3:  ACK packet

Figure 2-4shows the structure of an ERROR packet. The opcode of an ERROR packet is
5. The error code field indicates the type of error. The error message is in netascii and the
string and the packet ends with a zero byte.

Op & Format without header
2 Bytes ! 2 Bytes ' String ! 1Byte

05 ErrorCode ErrorMessage 0

Figure 2-4:  ERROR packet



3 Method

This chapter explains how we will achieve the goals of this project. Additionally, the tools
that used to realize these goals are discussed.

3.1 Objectives

Several sub goals were defined for this project based upon the goals of the project (as
described in Section 1.2). These sub goals are divided into two sets:

1. TFTP boot loading:

e Connecting the board to the network in such a way that each board has its own IP
address,

e Detect the cause of the TFTP loading problem, and

e Finally, applying the best solution to solve this problem.

2. 1P stack evaluation:

e Measuring the transfer rate from the MCU to a remote PC (located on the same
isolated local area network) and
e Measuring Ethernet controller buffer to PC transfer rate.

3.2 Hardware

This section discusses the hardware used in this project.

3.2.1 Motherboard

As stated earlier the motherboard has been used in a number of projects (previously
described in Section 2.1). The motherboard uses one SPI interface to connecting a
daughterboard. This enables the user to attach a new daughterboard without needing to change
any other part of the motherboard. The first daughterboard was a radio module for the 868
MHz band (see Section 2.1.1). The second daughterboard was an Arduino NFS shield(see
Section 2.1.4).

Figure 3-1 shows the front and back of the motherboard. The board consists of two means
of powering the supplies powering, processing, networking, and in interface to a
daughterboard. This motherboard together with an optional daughter card is an embedded
networked computing platform. The motherboard can be powered by an external DC power
supply or via PoE. The selection of the power source is up to the user by changing the
position of the jumper to choose the desired option. The board can work with any DC supply
that provides power between 3.3V and 60V because of the TL2575HV step-down
converter[17].PoE is the preferred energy source because the platform will typically be
connected to a PoE capable Ethernet switch” to provide both power and network connectivity.

" This switch will act as Power Sourcing Equipment (PSE). Alternative a PoE power injector could be used.



The main component of the board is the Texas Instruments MSP430F5437A
microcontroller. This is a 16-bit MCU from TI’s MSP430 ultra-low power MCU Reduced
Instruction Set Computer (RISC) mixed signals family. This version of the chip has only
4 KB of Static Random Access Memory (SRAM) and 256 KB of Flash memory. This means
that we can store relatively large amounts of data and instructions in flash, but we have to be
very careful with using the RAM of the microcontroller. This microcontroller has two SPIs:
one is, as we already discussed, used to connect the daughterboard and the other is used to
connect to the Ethernet controller. The Ethernet controller is a Microchip ENC28J60. This
Ethernet controller is connected to an RJ45 socket. To provide PoE functionality, a Texas
Instruments TPS2375[18]8-pin integrated circuit (IC) is used. This IC contains all of the
features needed to realize an IEEE 802.3af [19] compliant powered device.

There are two possible ways to program the microcontroller. Either using the Bootstrap
Loader (BSL) interface or the Joint Test Action Group (JTAG) interface.[20][21] Because,
only the JTAG interface is included in the board we used the JTAG interface to program our
microcontroller.

Furthermore, the motherboard is equipped with two buttons. One button is a reset button,
while the use of the other is programmable, so the developer can do whatever he/she wants. In
our case we have programmed this button to jump to the program loaded using TFTP.

"‘J.l.'nh'n LT P

s 2MAC 02::02. 255

ENC28J60 Ethernet socket TPS2375
Ethernet controller PoE ontroller
(Front)



(Back)

Figure 3-1:  Views of the front and back of the motherboard

3.2.2 HP ProCurve Switch 2626

We need both a power supply and network connectivity. For this we have used a HP
ProCurve Switch 2626 [22].

3.2.3 Dell Optiplex GX620

A Dell Optiplex GX620 desktop PC runs the DHCP and TFTP servers[23]. This PC is
running a openSUSE[24]Linux distribution . This PC is connected via a Realtek model RTL-
8139/8139C/8139C+ Ethernet interface[25] to the switch described above.

3.2.4 MSP430 Programmer

To program the MSP430F5437A we used a Texas Instruments MSP-FET430UIF
programmer [26].Figure 3-2 shows this programmer. The programmer can act as a Flash
Emulation Tool (FET) for debugging the code line by line and to transfer a program to the
flash memory of the microcontroller. The 14 pin JTAG connector is used by the FET to
program the flash of the MCU.

"A Linux distribution is an Operating System (OS) build on top of the Linux kernel. These are usually targeted at
PCs, but are also available for wide variety of systems up to the supercomputers, or to the smallest systems.



Figure 3-2: Tl MSP-FET430UIF

3.3 Software

In this section, we will discuss the software tools we used to achieve our goals.

3.3.1 Wireshark

Wireshark[27]is a very popular free and open-source packet analyzer use to capture
packets by setting the Network Interface Controller (NIC) in promiscuous mode”. This
program is widely used for troubleshooting, packet analysis, and much more. This
functionality is similar to tcpdump [28],but the program has a Graphical User Interface (GUI)
that allows the user to easily sort and filter captured packets. Since this project involved
sending and receiving packets, Wireshark was used to analyze whether the packets contain the
data we expected. For example, we used Wireshark to check if there were DHCP/TFTP
transfers between the embedded platform and the PC that serves as a server.

3.3.2 Code Composer Studio

The Integrated Development Environment (IDE) that we used during this project is Texas
Instruments’ Eclipse IDE [29]based Code Composer Studio (CCS) version 5.4.[30] CCS
provides everything necessary to develop a program for the MSP430 MCU family. The
negative part of this IDE is the price. The full version is quite expensive. Fortunately, CCS
has also a free version that is limited in code size (up to 16 KB) or in time (180 days). Since
the TFTP Boot program has a code size of about 14 KB this issue not an obstacle, so we were
able to use the free version of this IDE.

"Promiscuous mode is a configuration of the NIC that causes the NIC to receive all incoming frames rather than
only the frames that are specifically for this NIC, broadcast frames, or multicast frames that the NIC has
indicated it is interested in.

10



3.4 Connecting the embedded platform to the network

This section explains how the embedded platform is attached to the network and how it
obtains an IP address and then downloads programs.

3.4.1 DHCP server

The platform needs an IP address to join the network, to learn what file it is to download,
and to learn the IP address of the TFTP server, hence we need a DHCP server. This DHCP
server runs on top of the openSUSE operating system. When the platform is initially
connected to the server via the PoE capable switch, it will automatically ask for an IP address
from the DHCP server (running on the desktop PC). This IP address is assigned based upon
the MAC address that is established by the “TFTPboot” program (written previously by Javier
Lara Peinado — see Section 2.1.2). This network boot loader not only implements the DHCP
client, but it will make TFTP requests to retrieve the program, and saves the received program
in the flash memory.

The DHCP server is installed with YaST[31], an management tool for openSUSE. In
addition to installing the DHCP server, we also need to configure it correctly. This means that
we need to make an entry in the DHCP server’s configuration file configured for the specific
device that we want to connect. This means that we make a host specific entry in the
configuration file using the same MAC address that we have programmed into the platform
when installing the TFTPboot loader in both block of the flash memory. As noted in Javier
Lara Peinado’s thesis we use an address from the Locally Administered Address Range x2-
XX-XX-XX-XX-XX, specifically from 02-00-00-xx-xx-XX.

3.4.2 TFTP server

One of the biggest advantages of a TFTP server is that is simplifies providing programs to
embedded platforms. This project will take advantage of the TFTP server installed on the
desktop PC. The TFTP server was also installed and configured using YaST. However, before
we could use this to load our network interface testing programs we first had to overcome the
problem of downloading programs via TFTP and storing them in the flash memory. The
details of how this problem was solved are given in Section 4.2.

11






4 Analysis

This chapter will explain the methods used to accomplish the goals stated in Chapter 3.
This involved programming the MSP430 MCU and making a series of measurement. All of
the source code and additional documents are publicly available via the Github repository
"https://github.com/kekovski/MSP430", whose structure is explained in Appendix A.

4.1 Network topology

Figure 4-1 illustrates the network topology of the test environment. The motherboard is
connected via an Ethernet cable to the HP ProCurve Switch 2626. Another Ethernet cable
connects the PC (runs a DHCP and a TFTP server).

When the motherboard is initially connected to the network it negotiates with the DHCP
server to obtain an IP address. Detailed information about this process is given in Section 4./
“Verifving the network connection” of Rafid Karim and Haidara Al-Fakhri's bachelor's
thesis[32].After the DHCP server has assigned the motherboard an IP address and provided
some configuration (specifically the name of the program to be loaded and the IP address of
the TFTP server), the TFTPboot program[33]starts running. Unfortunately, this boot program
initially did not do what it supposed to do. Details of this are given in the next subsection.

Dell Optiplex GX620
DHCP + TFTP sener

HP ProCurve Switch 2626
PoE switch

Nod Nod Node 3
1 2 -
MAC 02::02 MAC 02::03 MAC 02::04

Figure 4-1:  Network topology

13



4.2 TFTP loading problem

This section discusses the process of diagnosing and the fixing the problems with TFTP
boot loading.

4.2.1 Symptom

First step was to determine the source of the problem. To do this I captured with
Wireshark the packets sent and received via the Ethernet NIC of the PC that was connected to
the PoE switch. Figure 4-2shows the packets captured when the motherboard attempted to
boot. This series of packets show that the motherboard successfully obtained an IP address
from the DHCP server, but not the required boot file from the TFTP server. More precisely,
the TFTP server got the correct RRQ and started by sending the first data packet. However,
the server did not get an ACK message back from the motherboard. Thus, the symptom of the
problem was that the motherboard did not send an ACK message back to the server, hence a
timeout would occur and the server would resend the first data packet.

Ne. Time Source Destination Protocel Length Info

4 0.939209000 0.0.0.0 255.255.255.255 DHCP 342 DHCP Discover - Transaction ID 0x12233456

5 0.000241000 192.168.1.1 255.255.255.255 DHCP 342 DHCP offer - Transaction ID 0x12233456

6 0.010964000 0.0.0.0 255, 255,255,255 DHCP 342 DHCP Request - Transaction ID 0x12233456

7 0.000212000 192.168.1.1 255,255.255.255 DHCP 342 DHCP ACK - Transaction ID 0x12233456

10 0.002888000 192.168.1.7 192.168.1.1 TFTP 71 read Request, File: frequencyScanner.txt, Transfer type: octet
11 0.000991000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 1

12 1.001426000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 1

14 1.964087000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 1

21 0.002026000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 1

Figure 4-2:  Wireshark capture of the failed TFTP process

4.2.2 Causes of the problem& fixes

It was obvious that the problem was in the motherboard since the motherboard received a
data packet, but never acknowledged it. The first step was to debug the TFTPboot code, which
was loaded in the MSP430. Using the MSP430-USB-Debug-Interface MSP-FET430UIF the
MCU was debugged to resolve the problem(s).

4.2.2.1 RAM allocation problem

The first problem encountered during debugging was that the TFTPboot program only
allocated 160 bytes of RAM memory for use as a stack and another 160 bytes of RAM
memory for use by the program as the heap (despite the MCU having 16 KB of RAM). This
program buffered the received TFTP DATA packet in RAM memory, however not enough
memory had been allocated to store a TFTP data packet - which has a maximum length of 558
bytes. As soon as the 160 bytes were exhausted, the program crashed. This was the main
cause for the TFTPboot program not being able to send back an ACK message. In summary
the MCU received the DATA packet, started to process it, but as soon as the allocated RAM
was full, the program crashed before sending an ACK message. This problem was solved by
changing properties in the linker. The "-heap size" and "-stack size" flags were changed from
160 to 1024. The value 1024 was chosen because this would allocate more than enough space
in the RAM to store a DATA packet and give some margin for future extensions to the
program. These linker settings are changed in CCS via Project — Properties — Build —
MSP430 Linker — Basic Options.

14



4.2.2.2 Overwrite problem

Unfortunately, after successfully buffering the first DATA packet the program crashed
again. After hours of debugging it turned out that each time the first bytes were about to be
written to the flash memory the program stopped working. To understand why this error
occurs is it necessary to understand the format of a TI-TXT file [34].

The TI-TXT file format is a ASCII hexadecimal file containing a MSP430 program. CCS
creates a TI-TXT file when you build a project. By default when a program is generated for
the MSP430F5437A the linker indicates that the program should start from the first address in
the flash memory. Figure 4-3 shows the memory map of the MSP430F5437A. In this case, the
linker generates a file to be loaded at SCOOh. However, the TFTPboot program is also located
in flash memory and starts at SCOOh. Thus, each time the TFTPboot program wanted to write
a byte to the flash memory it tried to overwrite itself. The result of this was that the program
crashed.

045BFFh

010000h Flash

OOFF80h Interrupt vectors

005C00h Flash

001C00h RAM

001800h | Information memory

001000h BSL

000000h Peripherals

Figure 4-3: Memory map of MSP430F5437A

The solution is to find the last used address by the TFTPboot in the flash memory and
change the starting address of the program to be loaded into flash memory via the bootloader-
to the next free available memory address in the flash memory. To do this, the values of the
system memory map in the Linker Command File had to be changed. The TFTPboot program
is 14 KB is size. Hence with simple math is it possible to calculate the address where we
should start to loaded the new program. Adding 14 KB (3800h) to SC00h indicates where the
downloaded program should be loaded. Therefore, 9400h was chosen as the starting address
to avoid conflicts with the boot loader. In the Linker Command File on line 63 the start
address for FLASH has to be changed from 0x5C00 to 0x9400. This tells the program to skip
the first 14 KB of flash memory and start loading the program from address 9400h. The size
of the flash memory is on the same line as the starting address and must also be changed as
the amount of available Flash memory shrinks, hence 3800h is subtracted from the previous
amount of flash memory giving 6B80h.Figure 4-4 shows the memory map after these steps.

15



045BFFh

010000h Free flash

00FF80h Interrupt vectors

009400h Free flash
005C00h TFTPboot
001C00h RAM

001800h | Information memory

001000h BSL

000000h Peripherals

Figure 4-4:  Memory map of MSP430F5437A after flashing TFTPboot

4.2.2.3 Small fixes

Not everything was fixed after solving the RAM allocation and overwriting problems.
Several small errors in the code were detected. The first one was a bad loop in the parser
logic. Namely an equal sign was forgotten on line 143 of Parser.c, which caused a
"WRONG FORMAT ERROR". Subsequently an unnecessary reset of pointer was executed in
the void Flash segmentErase (unsigned intbaseAddress, unsigned char *Flash ptr) method.
This line of code is located on line 74 of flash.c. This reset caused also a crash of the program.

4.2.3 Result

After all these steps was it possible to download a TI-TXT file from the TFTP server to
the MSP430F5437A's flash memory. Figure 4-5displays the DATA packets sent and the ACK
messages received for each of them. Furthermore, Figure 4-7 and Figure 4-8 shows the
memory contents in the MSP430's flash memory before and after downloading the program.

16



No.

Time Source Destination Protocol Length Info ~ )
178 0.000028000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 47
179 0.051919000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 47
180 0.000027000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 48
181 0.052004000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 48
182 0.000028000 192.168.1.1 192.168.1.7 TETP 558 pata Packet, Block: 49
183 0.052003000 192.168.1.7 192.168.1.1 TETP 60 acknowledgement, Block: 49
184 0.000093000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 50
185 0.051955000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 50
186 0.000089000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 51
187 0.051890000 192.168.1.7 192.168.1.1 TETP 60 Acknowledgement, Block: 51
188 0.000036000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 52
189 0.052011000 192.168.1.7 192.168.1.1 TETP 60 Acknowledgement, Block: 52
190 0.000029000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 53
191 0.052003000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 53
192 0.000028000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 54
193 0.051989000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 54
194 0.000029000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 55
195 0.052043000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 55
196 0.000029000 192.168.1.1 192.168.1.7 TETP 558 pData Packet, Block: 56
197 0.051955000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 56
198 0.000036000 192.168.1.1 192.168.1.7 TETP 558 pata Packet, Block: 57
199 0.052025000 192.168.1.7 192.168.1.1 TFTP 60 acknowledgement, Block: 57
200 0.000027000 192.168.1.1 192.168.1.7 TFTP 558 Data Packet, Block: 58
201 0.052004000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 58
202 0.000073000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 59
203 0.051892000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 59
204 0.000093000 192.168.1.1 192.168.1.7 TETP 558 pata Packet, Block: 60
205 0.051888000 192.168.1.7 192.168.1.1 TFTP 60 acknowledgement, Block: 60
206 0.000131000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 61
207 0.051880000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 61
208 0.000096000 192.168.1.1 192.168.1.7 TFTP 558 pata Packet, Block: 62
209 0.051901000 192.168.1.7 192.168.1.1 TETP 60 acknowledgement, Block: 62
210 0.000042000 192.168.1.1 192.168.1.7 TFTP 558 Data Packet, Block: 63
211 0.051938000 192.168.1.7 192.168.1.1 TFTP 60 Acknowledgement, Block: 63
212 0.000043000 192.168.1.1 192.168.1.7 TFTP 331 pata Packet, Block: 64 (last)
213 0.018426000 192.168.1.7 192.168.1.1 TFTP 60 acknowledgement, Block: 64
Figure 4-5:  Success in sending TI-TXT file to the motherboard
| 0x9400 via nBlgl > a3~ =0

009400: 0000 BRA @rc ~

009402: 0000 BRA @rc

2e9404: eeee BRA @rc

009406: 0000 BRA @rc

209403 eeee BRA @rc

00940a: 0000 BRA @rc

©@940c: eeeo BRA @ec

00940e: 0000 BRA @rc

©09410: eeee BRA @rc

099412: eeee BRA @rc

009414:  @00e BRA @rc

009416: eeee BRA @rc

209418:  eeee BRA @Pc

90941a: 2ere BRA @rc

20941c: eeo0 BRA @rc

P@94le: eeee BRA @rc

eega2e:  eeee BRA @rc

009422: eeee BRA @rc

009424:  @eoRe BRA @pc

909426: eeee BRA @rc

009428:  @e@Re BRA @rc

00942a: eeee BRA @rc

20942c: 2000 BRA @ec

00942e: eeee BRA @rc

209430:  eeee BRA @rc

299432: oeeo BRA @rc

209434:  eeee BRA @rc

909436: eeee BRA @rc

009438: eeee BRA @rc

20943a:  @eee BRA @rc v

< =
Figure 4-6: Memory before loading TI-TXT file

17



22 Disassembly £ 0x9400 v &) BBl 2. 292 ¥ =0
T T e
eesseo: 4031 5Cee MOV.W #@x5cee,spP )
ee94e4: 13Be BC42 CALLA #0x8bcd2
@e9408: 93ec TST.W R12
00940a: 2402 IEQ (ex9410)
8e94ec: 13B@ B@66 CALLA  #exebeses
eeg941e: 43ecC CLR.W R12
829412: 138@ AEA4 CALLA  #OxPaead
209416: 13B@ BC46 CALLA #0x@bcdb
ee941a: 3e31 IN (ex947e)

@0941c: 3432 IGE (0x9482)

ee94le: ees2 eeee MOVA PC,i@x20000

809422: eeee BRA @PC

e09424: 148A PUSHM.A #1,R18

B8@9426: 8321 DECD.W SP

809428 434A CLR.B R1©

20942a: 421F 1C@2 MOV.W  &@x1ce2,R15

80942e: 831F DEC.W R15

8@9430: 983F eeec CMP.W  #@exeeac,R15

ee9434: 2D92 JHS (ex975a)

ee9436: @65F RLAM.W #2,R15

@09438: 1860 4F5@ 943E MOVX.A ©x@943e(R15),PC
ee943e: 96BC eeee CMP.W @RrR6+,0x0000(R12)
829442 96DE 2800 963A CMP.B  ©x0@000(R6),0x963a(R14)
2094435: eeee BRA @PC

00944a: 9658 0000 CMP.B  ©x0000(R6),RS

ee944e: 9566 CMP.B @R5,R6

229450: eeee BRA @rc

@69452:  94DE @008 9522 CMP.B  @x00@e(R4),8x9522(R14)
ee9458: eeee BRA @rc

ARQASa - Q4RF rMP R ARA m14 N

Figure 4-7:  Memory after loading TI-TXT file

CCS's free version does not allow us to load more than 16 KB of code. However, the new
bootloader does not have this limitation, thus avoiding this restriction of CCS. However, the
user loses 14 KB of flash memory to the TFTPboot application. Note that the TFTPboot
application includes the DHCP, UDP, IP, and Ethernet controller interfacing functionality. If
one were really pressed for flash memory space it would be possible to expose the entry
points to the subroutines in the TFTPboot application so that the networking related code
already included in the boot loader could be reused (rather than including it yet again in the
image of the program being downloaded).

4.3 1P stack evaluation

The major goal of this project was to evaluate the Microchip TCP/IP stack when adapted
for the MSP430F5437A and running on this motherboard. This section will describe this
evaluation and give an overview of the measurements that were made. To make these
measurements a test program called "Analyze" was written for the MCU". The Analyze
program contains a code snippet from another performance testing program (see [35] and

[36]).
4.3.1 UDP Packet sending from MCU to PC

The first test measures how fast the MCU can create UDP packets and send them to the
PC's Ethernet port. This measurement tests the transmit performance of the Microchip TCP/IP
stack’s UDP module. The results from these tests will give application developers for this
platform a good overview how fast the MCU can send UDP packets, i.e., what is the
maximum UDP data rate they can expect. The program sends 1024 UDP packet with a given

"This program is available from the Github repository.

18



sized UDP payload. For this measurement, the payload sizes were 8, 16, 32, 64, 128, 256,
512, and 1024 bytes. Using Wireshark the duration of the UDP transfers for each sized
payload were determined and the transmit rate of the stack is calculated. This measurement
includes how long it takes to open a socket, transmit one packet, and close the socket in a
loop. Figure 4-8 illustrates the flowchart of the Analyze program for sending packets from the
MCU to the Ethernet controller. From the flowchart we can see that what can be observed
from the Wireshark capture is the time from one UDP packet being sent to the next UDP
packet being sent.

Initialize
components

L]

Run DHCP
client

v

Initialize UDP

L]

Open UDP
socket

v

Send UDP
packet

L]

Close UDP
socket

Y

v <SRy

e
( Stop .':]

Figure 4-8:  Flowchart of the Analyze program for sending UDP packets from the MCU

4.3.1.1 Measurements

As mentioned earlier different sized UDP packets were sent during the test. Wireshark
captured each UDP packets received by the PC’s Ethernet controller. Based on these packet
captures it is possible to compute some simply statistics minimum, maximum, median,
average throughput, and the standard deviation. Figure 4-9 shows the statistics for sending
1024 UDP packets with different sized payloads. In addition to these statistics is it also useful
to know the standard deviation, shown in Figure 4-10. It should be noted that the Ethernet
interface is operating in 10Mbps mode.

19



Transmission time for sending individual UDP
packets of different sizes from the MCU to the
PC's Ethernet controller
14.000
12.000
'g‘ 10.000
£
°§’ 8.000
2 6.000 ® Min
£
§ B Max
= 4000 ® Median
2.000 "Ave
8 16 32 64 128 256 512 1024
B Min 0.986 1.042 1.206 1.520 2.197 3.535 6.177 11.471
B Max 1.008 1.117 1.262 1.614 2.267 3.577 6.213 11.520
m Median| 0.996 1.079 1.234 1.567 2.234 3.555 6.200 11.497
HAvg 0.996 1.079 1.234 1.567 2.233 3.555 6.200 11.497
UDP Payload [Bytes]

Figure 4-9:  Transmission time for sending individual UDP packets of different sizes from the

MCU to the PC's Ethernet controller

» Minimum and maximum time: The minimum and maximum transmission times
increases as the payload size is increased. However, the difference between the
minimum and maximum value is relatively small. This small difference is not
surprising as the MCU is only executing the loop of "Analyze" test program shown
in Figure 4-8.

» Median time: These statistics clearly show an exponential pattern. We did a
regression analysis of this data to compute the base time to do the socket opening
and closing as well as the time to invoke the packet sending process, then we
found the coefficient of the term representing the size of the packet. This
coefficient gives us the time per byte of payload.

20



Regression analysis (times given in ms)

Regression Statistics

Multiple R 0.999999482
R Square 0.999998963
Adjusted R Square  0.99999879
Standard Error 0.004026769
Observations 8
ANOVA
df SS MS F

Regression 1 93.83381421 93.83381421 5786899.254
Residual 6 9.72892E-05 1.62149E-05
Total 7 93.8339115

Coefficients Standard Error t Stat P-value
Intercept 0.908904725 0.001796636 505.8924481 4.0265E-15
UDP payload 0.010338609 4.29773E-06 2405.597484 3.48309E-19

Now is it possible to compose a formula to compute the time to send a packet with some

amount of payload.

Timeto send a packet = fixed cost + transmission per byte of payload * x

fixed cost = intercept coefficient

transmission per byte of payload = UDP payload coefficient

x = UDP payload size

Because of the extremely small P-value is it possible to predict almost 100% exactly how
much time it will take to transmit a UDP packet containing some amount of payload. The
formula above is applied and Table 4-1 and shows the comparison between the estimated and
measured results. Note that the fixed cost of sending a zero byte sized payload UDP packet is
0.908904725 ms.This time represents the time required to open and close the socket as well as
the time to issue the command to send the packet buffered in the Ethernet controller.

Table 4-1: Estimated transmission time of a single UDP packet based on the regression analysis

UDP Payload Estimated Measured

transmission transmission
time (ms) time(ms)

8 0.9916136 0.996000

16 1.0743225 1.079000

32 1.2397402 1.234000

64 1.5705757 1.567000

128 2.2322467  2.234000

256 3.5555886 3.555000

512 6.2022725 6.200000

1024 11.4956403 11.497000

21




» Average time: The small difference between average and median speed indicates
that there are not that many exceptional cases (i.e. very fast or very slow).

» Standard deviation: Standard deviation is very small. This means that the
transmission time is almost the same for every packet; however, there is a clear
dependence of the standard deviation on the packet size — as would be expected
since any variance in the performance of the operations inside the loop should be
dependent upon the size of the payload — since all of the other operations (opening
and closing the socket) should not depend upon the payload size.

Standard Deviation (MCU to PC)

6.000

5.000

E 2.000 - m St.Dev.

8 16 32 64 128 256 512 1024
UDP Payload [in bytes]

Figure 4-10: Standard deviation of the transmission times shown in the previous figure (MCU to

PC)

4.3.1.2 Theoretical vs measured transmission time

It is useful to know how much the overhead is for each UDP payload size. Therefore, the
theoretical time to send a UDP packet over an unloaded 10Mbps Ethernet with minimum
Interframe Space was calculated to compare it with the measured results. Figure 4-11
illustrates the difference between the theoretical and measured transmission time to send a
UDP packet. Also the values are given in the table below the figure. The difference between
the differences is exponential. This indicates the larger the UDP packet, the higher the
overhead is. For more detailed measurements see the Theoretical tab of
Analysis/Statistics.xIsx file in the GitHub repository.

22



Theoretical vs. measured transmission time

14.000
12.000
10.000
8.000
6.000
4.000

2.000
0.000 _____-_____-_ B Measured
8 16 32 64 128 256 512 1024

M Theoretical| 0.701 | 0.701 | 0.893 | 1.050 | 1.426 | 2.225 | 3.852 | 7.123
H Measured | 0.996 | 1.079 | 1.234 | 1.567 | 2.234 | 3.555 | 6.200 | 11.497
UDP payload size [in bytes]

Time [in ms]

B Theoretical

Figure 4-11: Theoretical vs. measured transmission time to send a UDP packet of the indicated
size

4.3.2 UDP Packet sending from ENC28J60 buffer to PC

Not only is the transmit time of packets departing from MCU interesting, but the time to
transfer bytes to/from the MCU to the ENC28J60 Ethernet controller’s buffer is also
interesting. In this measurement rather than creating a new UDP packet each time, we simply
resend the packet that is already available in the Ethernet controller's buffer. The expected
result was a faster transmission time from the ENC28J60 to the PC's Ethernet controller than
in the previous measurements. Figure 4-12illustrates the logic of the Analyze program for
sending packets already contained in the ENC28J60’s buffer to the PC’s Ethernet controller.

- N
( Start )
Initialize 3
components Send UDP packet
; | available in the
Ethemet controller
Run DHCP buffer
client
v
Initialize UDP No >

——< End Iochi\;»

~

¥ “:i
Yes
Open UDP P ~
socket ( Stop )

¥

Send UDP
packet

¥

Close UDP
socket

Figure 4-12: Flowchart of the Analyze program (sending existing UDP packets from the
ENC28J60’s buffer)

23




4.3.2.1 Measurements

As stated earlier this set of measurements is based upon sending the UDP packet already
available in the ENC28J60 Ethernet controller's buffer. As a rest there is no need for a transfer
of data from the MCU to the Ethernet controller’s buffer — hence only commands are being
sent over the SPI from the MCU to the Ethernet controller to send this buffered packet. This
packet is sent1024 times in a loop. Wireshark is again used to capture packets. Again, the
minimum, maximum, median, average transmission times and standard deviation values
calculated. Figure 4-13 shows the statistics for sending UDP packets with different payload
sizes from the Ethernet controller to the PC’s Ethernet controller. The standard deviations are
shown in Figure 4-14.

Transmission speed of UDP packets from
ENC28J60 buffer to PC's Ethernet port

1000.000

900.000

800.000

700.000

600.000

500.000

400.000 H Min

B Max

Transmission time [ps]

300.000

200.000 Median

HAvg
100.000

0.000

8 16 32 64 128 256 512 1024
B Min 119.000 | 119.000 | 131.000 | 151.000 | 203.000 | 302.000 | 494.000 | 913.000

H Max 134.000 | 135.000 | 276.000 | 322.000 | 227.000 | 323.000 | 550.000 | 941.000

Median | 126.000 | 126.000 | 138.000 | 161.000 | 219.000 | 312.000 | 522.000 | 929.000

HAvg 126.458 | 126.440 | 138.247 | 161.484 | 218.224 | 312.424 | 521.626 | 928.589
UDP Payload [Bytes]

Figure 4-13: Transmission time for individual UDP packets of the indicated sizes (i.e., transmission

time of an existing packet in the ENC28J60’s buffer to PC)

Note that the times to send 8 and 16 bytes of UDP payload should be the same since the
minimum network payload size of a 10 Mbps Ethernet frame is 46 bytes. After subtracting 20
bytes for the IP header and another 8 bytes for the UDP header, we have 46-28=18 bytes and
this is larger than both an 8 byte and a 16 byte UDP payload.

» Minimum and maximum transmission time: As the first measurement the
minimum and maximum speed increases as the payload gets bigger. However, the
difference between the minimum and maximum value is relatively small. Except
32 and 64 bytes payload packets have an exceptional high maximum value. These

24



high values appeared only one time in their categories. The reason for these
outliers is probably a failure in one of steps in the loop to send the data in the
buffer. Possibly the code retake the loop step and sends it again. This causes an
almost double so high transmission speed.

» Median transmission time: This statistic shows clearly an exponential pattern as
did the previous measurements. However, the transmission time is roughly 11 to
12 times smaller than the time measured when the MCU also has to transfer the
payload of the packet across the SPI to the Ethernet controller’s buffer. This allows
us to compute the time required to transfer the data of the UDP packets via the
8MHz SPI from the processor, see Table 4-2.

Table 4-2: SPI processing speed

uDP UDP Packet UDP Packet size (bits)  Transmission via 8MHz SPI -
Payload size (bytes) Theoretical(us)
(bytes)
8 64 512 64
16 64 512 64
32 78 624 78
64 110 880 110
128 174 1392 174
256 302 2416 302
512 558 4464 558
1024 1070 8560 1070

» Average transmission time: As for the earlier measurements, the small difference
between average and median speed indicates that there are not many exceptional
cases (i.e., very fast or very slow).

» Standard deviation: Standard deviation indicates a very small difference between
the transmission time for each of the different sized packets.

Standard deviation (ENC28J60 to PC)
6
5
— 4
3
v 3
£
>y B St.Dev.
o I il [
O n T T T T T T T
8 16 32 64 128 256 512 1024
UDP Payload [Bytes]

Figure 4-14: Standard deviation (ENC28J60 to PC)

25



Considering the case of a 1024 byte UDP payload we see that it should take about 1 ms to
transfer the payload from the MCU to the Ethernet controller’s buffer and about 0.9 ms to
transmit the packet — so the fact that it takes 11.497 ms to transmit a 1024 byte UDP payload
packet from the MCU to the PC’s Ethernet interface means that there is a lot of unexplained
time (11.497-(1.066-0.929) = ~9.5 ms).

4.3.3 Analysis of TFTP processing

It may also useful be useful for the developer to know how much time is needed to
perform the TFTP and flash programming for a given sized program. Therefore, the Analyze
program's TI-TXT file is loaded into MSP430's Flash memory by means of TFTPboot
program while this action is captured by Wireshark.

4.3.3.1 TFTP transfer byterate

Wireshark captured every step of the TFTP process. This section examines how quickly
the RRQ, DATA, and ACK packets are processed. Figure 4-15shows how fast the TFTP
process runs. The peaks are clearly visible when DATA and ACK packets are sent. The first
peak is the RRQ packet bit rate where the short peak at the end is the last DATA packet that is
less than 512 bytes long. Using this measurement was possible to calculate a down load bit
rate of11.4817514 KBps.

TFTP process bit rate

6000

5000

IS
o
o
o

3000
== TFTP data

Data [in bits]

N
o
o
o

1000 -

0 1 2 3

Time [in seconds]

Figure 4-15: TFTP processing bit rate

4.3.3.2 TFTP processing speed

Many programs can be written for the MSP430, hence the size of the programs can differ.
Since the bit rate for the TFTP and flash programming is known, we can compute the time
required to download and store any sized file. Table 4-3 shows this for different sized files
starting from 1 KB to 230 KB (this is the upper bound because a maximum of 229 KB are
available in the Flash memory as some of the space is taken by the TFTP boot program).
Figure 4-16 shows this data as chart. Note that this table and figure were computed assuming
that the time for TFTP and programming the flash is linear increase in the file size.

26



Table 4-3: TFTP download and flash programming times for different sized files

Boot file size (KB) Processing time (seconds)

15

25

35

45

55

65

75

85

95

105

115

125

135

145

155

165

175

185

195

205

0.435

1.306

2.177

3.048

3.919

4.790

5.661

6.532

7.403

8.274

9.145

10.016

10.887

11.758

12.629

13.500

14.371

15.242

16.113

16.983

17.854

Boot file size (KB)

210

220

230

Processing time (seconds)

18.290

19.161

20.032

27



TFTP boot loading processing time
25

N
o

[ER
(%2

Boot file

[
o

Time need to process the file [in seconds]

(63}

0 T T T T 1
0 50 100 150 200 250

Size of file [in kilobytes]

Figure 4-16: TFTP boot loading processing time as a function of file size

4.3.4 Conclusion

It is logical that the transmission times for different sized UDP payloads are different. The
first test consisted of a loop, which creates a new UDP packet and sends it. This obviously
requires more time than simply retransmitting a packet that is already in the buffer of the
Ethernet controller. These measurements give developers the ability to predict the
performance of a UDP application on this platform. The differential measurement (i.e., using
the data from the two sets of UDP measurements) enables us to compute the per byte transfer
time across the SPI bus, the time to perform a socket open, close, and send a UDP packet.
These measurements provide programmers with a good overview of the maximum
transmission rates they can expect from this platform.

28



5 Conclusions and future work

This chapter presents conclusions based on the performed tasks and analysis. The initial
goals of the project and our achievements are compared. Furthermore, some suggestions are
made of future work. Finally, several economic, social, environmental, and ethical reflections
are given.

5.1 General conclusions

The main objectives of this project were to fix the TFTP boot loading problem and to
evaluate the Microchip TCP/IP stack when using a TI MSP430 MCU and a Microchip
ENC28J60 Ethernet controller connected via SPI. The first goal, namely TFTP boot loading
now works. The TFTP boot loader program correctly downloads a program into flash memory
from a TFTP server. However, some additional improvements could have been made. Since
the board has two programmable buttons and one is used for resetting the motherboard.
Pressing this button resets the motherboard and downloads an updated version of the file
provided by the TFTP server -if there is such a file available on the TFTP server. The second
button could have been configured as a soft reset button. When this second button is pushed,
the motherboard could simply restart the already loaded program. Unfortunately, I was not
able to realize this functionality. A hard reset can be done by simply unplugging and plugging
the Ethernet cable. As I had already spent a lot of time to solve the basic boot loading problem
I decided not to spend more time introducing this new functionality.

The second goal of this project was to evaluate the Microchip TCP/IP stack’s
performance. Several measurements and calculations were done. However, it is possible to do
more measurements and calculations. I focused on UDP transmission from the MCU to the
PC’s Ethernet controller. Additionally, I calculated how fast a TFTP boot file is processed by
the embedded board. In the future, it would be interesting to measure the Transmission
Control Protocol (TCP) protocols throughput. Since I was close to the deadline for this
project, I decided to skip measurements of TCP.

This was my first experience with hardware, thus I learned a lot about microcontrollers
and how to program them. Before this project, my knowledge of the C programming language
was very limited. This lead to many struggles when programming the MCU. However, by
reading datasheets I gained insight into the MSP430 MCU family. Furthermore, the extensive
use of Wireshark motivated me to learn how to use this handy tool much better than I could
before this project. Additionally, I inspected every detail of the TFTP protocol and learned
how to create UDP packets in the MCU.

If I was to do this project all over again, I would probably start with the IP stack
evaluation instead of fixing the TFTP issue. I feel that I could have done a much more
extensive evaluation of the IP stack. Unfortunately, I lost a lot of time trying to fix the TFTP
problem. However, [ would probably not have learned as much as I did about how to program
microcontrollers and how the IP stack works at a low level.

My advice to future contributors to this project is to make much more extensive use of the
Ethernet controller's buffer when possible. According to my measurements it is possible to
decrease the time needed to generate and send UDP packets if one were to make fuller use of
the capabilities of this Ethernet controller. Of course, a clear task is to evaluate the TCP
module of this IP stack. Additionally, carefully reading the data sheets and documentation can
save a lot of time and annoyance.

29



5.2 Future work

As discussed earlier, evaluation of the TCP functionality of the IP stack has not been done,
but clearly should be done. Additionally, it is possible to do many interesting calculations
based on the existing observations. In this way the capabilities of the motherboard will be
much better documented for future developers.

Another area of tests and measurements is to determine the maximum rate at which data
contained in UDP packets can be transferred from the PC to the MCU. As the current
measurements only consider traffic going in the other direction.

Moreover, the programmable buttons can be used to better effect. It is recommended that
both hard and soft reset functionalities be implemented.

A potentially interesting idea is to develop a monitoring program for the network, which
uses this embedded platform. A program could monitor a number of these boards to see if
they are active or not and to detect failures as soon as possible. A benchmark tool could be
implementing to help developers measure and analyze the throughput and latency of different
nodes in the network. Furthermore, the TFTP boot loader has an important place in facilitating
future tests and measurement. In summary it is it up to future developers to exploit this Swiss
knife of a lower power PoE networked computing platform.

5.3 Required reflections

This project reduces costs by exploiting the TFTP boot loading functionality. Future users
can develop programs with a code size larger than 16 KB. This can save a developer a lot of
money, considering that a node locked single user license of CCS costs US$495.00. This can
be a big gain for an organization that needs, for example, to support 50 developers which
would otherwise cost US$19,994.00".

Avoiding these costs raises the question if it is ethical to do this or not. Some people
would say that this is ethical because the user does not load program code larger than 16 KB
via the IDE. While others might say it is not because the user should pay the company for the
use of the IDE. It is up to the user to decide if the usage of TFTPboot loading system is ethical
or not. It should also be noted that the TFTPboot loading system can be used with code
compiled using other development tools.

While carrying out this project no environmental or sustainability issues were
encountered. However, in retrospect the use of the TFTP boot loader does contribute to
sustainability as it allows the same hardware to easily be reprogrammed for many different
uses — in fact, the same hardware can be potentially dynamically used for different purposes at
different times (the maximum number of times that the flash memory can be reprogrammed
will set an upper limit on this reuse). Furthermore, this project does not seem to have a
positive or negative effect on society, although it facilitates the development of new
applications that might have positive or negative effects on society.

“Given the current price for CCS at http://www.ti.com/tool/ccstudio.

30



References

[11 A.Lopezand F.J. Sanchez, “Exploiting Wireless Sensors: A gateway for 868 MHz
sensors,” Master’s thesis, KTH Royal Institute of Technology, School of Information
and Communication Technology, Stockholm, Sweden, 2012.

[2] “TIMSP430F5437A Datasheet.” .

[3] “ENC28J60 Data Sheet.” .

[4] J. Lara Peinado, “Minding the spectrum gaps: First steps toward developing a distributed
white space sensor grid for cognitive radios,” Master’s thesis, KTH Royal Institute of
Technology, School of Information and Communication Technology, Stockholm,
Sweden, 2013.

[5] “SPI Block Guide V03.06.” .

[6] P.M. in D. Mah, “What does the new Power over Ethernet standard mean for IT pros?,”
TechRepublic. [Online]. Available: http://www.techrepublic.com/blog/data-center/what-
does-the-new-power-over-ethernet-standard-mean-for-it-pros/. [Accessed: 23-May-
2014].

[7] “IEEE SA - 802.3af-2003.” [Online]. Available:
http://standards.ieee.org/findstds/standard/802.3af-2003.html. [Accessed: 25-May-2014].

[8] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor Extensions,” Internet
Request for Comments, vol. RFC 2132 (Draft Standard), Mar. 1997.

[9] J. Alba Tormo Peiro6,, “Spectrum sensing based on specialized microcontroller based
white space sensors: Measuring spectrum occupancy using a distributed sensor grid,”
Master’s thesis, KTH, School of Information and Communication Technology,
Communication Systems, Stockholm, Sweden, 2013.

[10] R. Karim and H. Al-Fakhri, “Smart Door Lock : A first prototype of a networked power
lock controller with an NFC interface.,” Bachelor’s Thesis, KTH, School of Information
and Communication Technology, Communication Systems, Stockholm, Sweden, 2013.

[11] R. Droms, “Dynamic Host Configuration Protocol,” Internet Request for Comments, vol.
RFC 2131 (Draft Standard), Mar. 1997.

[12] J. Postel, “Internet Protocol,” Internet Request for Comments, vol. RFC 791
(INTERNET STANDARD), Sep. 1981.

[13] J. Postel, “User Datagram Protocol,” Internet Request for Comments, vol. RFC 768
(INTERNET STANDARD), Aug. 1980.

[14] K. R. Sollins, “TFTP Protocol (revision 2),” Internet Request for Comments, vol. RFC
783, Jun. 1981.

[15] K. R. Sollins, “The TFTP Protocol.” [Online]. Available: http://www.rfc-
editor.org/ien/ien133.txt. [Accessed: 23-May-2014].

[16] K. Sollins, “The TFTP Protocol (Revision 2),” Internet Request for Comments, vol. RFC
1350 (INTERNET STANDARD), Jul. 1992.

[17] “TL2575HV-ADIJ | Step-Down (Buck) Converter | Converter (Integrated Switch) |
Description & parametrics.” [Online]. Available: http://www.ti.com/product/t12575hv-
adj. [Accessed: 23-May-2014].

[18] “TPS2375 | Powered Device | Power Over Ethernet (PoE)/LAN Solutions | Description
& parametrics.” [Online]. Available: http://www.ti.com/product/tps2375. [ Accessed: 23-
May-2014].

[19] “IEEE-SA -IEEE Get 802 Program - 802.3: Ethernet.” [Online]. Available:
http://standards.ieee.org/about/get/802/802.3.html. [ Accessed: 23-May-2014].

[20] “Introduction to JTAG | Embedded.” [Online]. Available:
http://www.embedded.com/electronics-blogs/beginner-s-corner/4024466/Introduction-
to-JTAG. [Accessed: 23-May-2014].

31



[21] “Texas Instruments MSP430 JTAG header pinout.” [Online]. Available:
http://www.jtagtest.com/pinouts/msp430. [Accessed: 23-May-2014].

[22] “ProCurve Switch 2626 (J4900B) specifications - HP Products and Services Products.”
[Online]. Available: http://h10010.www 1.hp.com/wwpc/ca/en/sm/WF06b/12136296-
12136298-12136298-12136298-12136316-12136318-31539227.html?dnr=2. [Accessed:
23-May-2014].

[23] “Dell OptiPlex GX620.” [Online]. Available:
http://www.dell.com/support/drivers/us/en/19/Product/optiplex-gx620. [Accessed: 23-
May-2014].

[24] “openSUSE.” [Online]. Available: http://en.opensuse.org/Main_Page. [Accessed: 23-
May-2014].

[25] “Realtek RTL8139 Ethernet controller.” [Online]. Available:
http://www.realtek.com.tw/products/productsView.aspx?Langid=1&PFid=6&Level=5&
Conn=4&ProdID=16. [Accessed: 28-May-2014].

[26] “MSP430 USB Debugging Interface - MSP-FET430UIF - TI Software Folder.”
[Online]. Available: http://www.ti.com/tool/msp-fet430uif. [Accessed: 23-May-2014].

[27] “Wireshark - Go Deep.” [Online]. Available: http://www.wireshark.org/. [Accessed: 23-
May-2014].

[28] “Tcpdump/Libpcap public repository.” [Online]. Available: http://www.tcpdump.org/.
[Accessed: 23-May-2014].

[29] “Eclipse - The Eclipse Foundation open source community website.” [Online].
Available: http://www.eclipse.org/. [Accessed: 23-May-2014].

[30] “CCS - Texas Instruments Wiki.” [Online]. Available:
http://processors.wiki.ti.com/index.php/Download CCS. [Accessed: 23-May-2014].

[31] “Portal:YaST - openSUSE.” [Online]. Available: http://en.opensuse.org/Portal:YaST.
[Accessed: 23-May-2014].

[32] R. Karim and H. Al-Fakhri, “Smart Door Lock : A first prototype of a networked power
lock controller with an NFC interface.,” Bachelor’s Thesis, KTH, School of Information
and Communication Technology, Communication Systems, Stockholm, Sweden, 2013.

[33] J. L. Peinado, “Mind-the-gaps GitHub,” GitHub. [Online]. Available:
https://github.com/cazulu/mind-the-gaps. [Accessed: 23-May-2014].

[34] “TI-TXT file format -srec_ti_txt Linux man page.” [Online]. Available:
http://linux.die.net/man/5/srec_ti_txt. [Accessed: 23-May-2014].

[35] H. Schlunder, “UDP Performance Test microcontrollers.” [Online]. Available:
https://github.com/exosite-garage/mcp_dv102412 cloud. [Accessed: 23-May-2014].

[36] “Microchip TCP/IP Stack Help.” .

32



Appendix A

GitHub repository

All the source code and related documents of this project are publicly available on a
GitHub repository. The link to this repository is https://github.com/kekovski/MSP430 and
consists of several folders:

» Analysis: Calculations and charts based on the measurements
» Captures: All the Wireshark captures
» The source code is divided in two parts
e Analyze: Program for IP stack evaluation
e Updated version of a TFTP program loader for MSP430
» Figures: All of the used figures in the final report

33



