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Abstract 
Most major cell phone manufacturers have been releasing cell phones equipped with Near Field 

Communication (NFC). At the same time there is also increasing use of mobile payments and user 
verification with the use of the NFC technology. These trends indicate both the increasing popularity 
and great potential for increased use of NFC in today’s society. As a result NFC has a huge potential to 
simplify our everyday tasks, ranging from paying for items to accessing our office or home. 

In this context we will focus on using NFC together with a Power over Ethernet (PoE) powered 
circuit board and NFC reader to realize a simple system for granting access to open a locked door. One 
of the purposes of this realization is to explore what services can be realized when such a system is 
connected to the home/building network and connected to the Internet. A second purpose is to learn 
how to use network attached devices, as the concept of the Internet of Things is considered by many to 
be a driving force in the next generation Internet.  This project uses very in expensive and low power 
hardware, as the number of devices is potentially very large and thus in order to minimize the 
technology’s impact on the environment we must consider how to minimize the power used – while 
maintaining the desired user functionality. 

This bachelor’s thesis project made it possible for a PoE powered circuit board containing a 
MSP430 microcontroller to work along with a NFC reader, which was connected through the Serial 
Peripheral Interface (SPI).  

We hope that the end result of this project will lead to a simpler life by exploiting this increasingly 
ubiquitous technology. For example, a homeowner could send a one-time key to a repair person who is 
coming to fix their sink. Similarly a homeowner could send a key to their neighbor which is valid for 
two weeks so that their neighbor could come into their home to water the plants while they are away 
on vacation. Another example is lending your apartment key to a friend while you are out of town. 

 

Keywords: Near Field Communication, Power over Ethernet, secure access, Internet of 
Things, Serial Peripheral Interface, MSP430 
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Sammanfattning 
Det blir allt vanligare med närfältskommunikation (NFC) i dagens samhälle, mobiltelefons-

tillverkarna börjar utveckla nya telefoner med NFC teknik inbyggd, samtidigt som användningen av 
NFC ökat. 

Det sker även en utveckling inom mobila betalningar och användar-verifiering med användning av 
NFC, då NFC förenklar detta. 

Med detta sagt kommer vi att arbeta med detta i detta kandidatexamens-arbete där vi fokuserar på 
NFC samt Power over Ethernet som använder MSP430 chippet som kärna. Med dessa enheter 
kombinerade kommer en enkel rörelse med ett NFC kort över en NFC läsare som sedan skall ge 
åtkomst till en låst dörr. Detta i större kombination med en Internetuppkoppling kunna ge ägaren 
möjligheten att kunna skicka ut dörrnycklar till andra användare. 

I detta kandidatexamensarbete gjorde vi det möjligt för ett PoE kretskort bestående av ett MPS430 
mikroprocessor att samarbeta med en NFC läsare genom SPI protokollet.   

Genom att utveckla detta projekt hoppas vi att vårt slutresultat leder till en enklare delning av 
nycklar med hjälp av denna teknologi. 

Nyckelord: Närfältskommunikation, Ström via nätverk, Säker åtkomst, Sakernas Internet, 
Synkron Seriekommunikation, MSP430
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1 Introduction 
In this chapter we will give a short overview and explanation of this thesis project. 

1.1 General introduction to the area 
In the last several years, smartphones have become more powerful and have been designed to be 

used as pocket-sized personal computers. As different designers and smartphone manufacturer try to 
“win” market share they are constantly adding new features and improving the performance of their 
different models of smartphones. This has enabled other companies to develop new tools and services 
which utilizes smartphones. Today, Near Field Communication (NFC) is provided in many 
smartphones. This has enabled applications to verify the user’s location* and in some cases their 
identity by using a smartphone. This technique in combination with others can be used in various 
applications and services. 

Computer communication systems and the Internet are playing an important role in our everyday 
environment. Today almost any device (workstation, television, lamp, etc.) can be connected to the 
Internet. Increasingly smartphones are constantly connected to the Internet over third and fourth 
generation networks. This network connectivity will play an important part in our project. 

As technology develops, the demands for new products and services to make our life more 
efficient also grow. Consider the simple use case of lending your apartment key to a friend while you 
are out of town. This could be made easier by use of NFC and smartphones in combination with the 
Internet communication, as you can simply issue you friend a digital certificate which he or she can 
present to your door via their smartphone’s NFC interface. To realize this use case we will use a 
combination of technologies to prototype a Smart Door lock. 

1.2 Problem definition 
To develop our smart door lock there are some sub-problems we need to solve. First we need to 

study two basic technologies: NFC technology (as used in smartphones) and a network attached door 
lock. We will combine these technologies to develop our smart door lock. Based upon our study of 
NFC we must create an application that can run on a smartphone† to respond to the NFC reader when 
it is queried. We need a corresponding application running in either the network attached door lock or 
in the cloud to query the smartphone via NFC. Given the NFC communication between the reader and 
the smartphone an application running in either the network attached door lock or in the cloud will 
determine whether the door should be unlocked or not. 

While we have some basic experience with microcontrollers and some knowledge of computer 
communication systems, we did not yet have any knowledge of NFC technology. Combining these 
different technologies in one project should take our knowledge to the next level. Our first step in 
doing this is to connect a microcontroller to the Internet, and then connect a NFC reader to this 
microcontroller. Note that one of the other areas that we want to explore is the use of Power over 
Ethernet (PoE) technology, so that we do not need a separate connection from our microcontroller to 
the building’s power mains. 

1.3 Goal 
The main goal of this project is to develop a smart door lock system where an administrator or 

owner of an apartment or building can manage and send “digital keys” to other persons in order to 
allow them to access an apartment, building, or specific room in a building by using their NFC 
equipped smartphone or a NFC smartcard. 
                                                            

* See for example the use case of a security guard in the recent thesis by Thi Van Anh Pham, Security of NFC 
applications [1] 
†In order to achieve to this during our time of the project,  the smartphones required to run in Card Emulation 
mode, something that we didn’t have the possibility to use, but was later introduced in Android KitKat 4.4 
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2 Background 
In this chapter we will briefly describe the embedded platform that we will use and we will 

introduce some of the concepts that are useful to understand the rest of this thesis. This chapter will 
also describe some of the related work that is relevant to this thesis project. 

2.1 What have others already done? 
Some previous research has been done that is related to our project. We will summarize these 

related projects in this section. This is particularly the case for our basic platform, as we will re-use the 
microcontroller and PoE network circuit board developed by earlier master’s thesis students at this 
department. Following this we will introduce some of the related work done regarding door locks, 
access control, and cloud based services. 

2.1.1 Exploiting Wireless Sensors 
The master’s thesis[3] by Albert López and Francisco Javier Sánchez concerned sniffing wireless 

sensor traffic in order to collect this sensor data and use it for multiple purposes. They worked with 
sensors in the 868 MHz band. They designed and created a motherboard with a TI MSP430 
microcontroller as the core of their gateway. Since the MSP430 is a very low power consumption chip 
it was ideal for use with PoE. They utilized a Microchip ENC28J60 network interface. This network 
interface was connected to the microcontroller via a serial peripheral interface (SPI). The ENC28J60 
Microchip offers dual port random access memory for sending and receiving data packets, as this 
network interface provides the buffering needed for packets being sent and received, there was no need 
for external memory. In order to supply power to this board they used PoE technology. In their project 
they also used an SPI interface to connect a daughterboard with a radio transceiver for the 760 to 
928 MHz band. 

2.1.2 White space sensor platform 
Javier Lara Peinado in his thesis project [4] took the sensor platform developed by López and 

Sánchez and added a new boot program to provide network based booting, configuration of the device 
via the dynamic host configuration protocol (DHCP), and installation of application software via the 
trivial file transfer protocol (TFTP)*. Using this new software base he implemented a white space 
sensor platform that sent its measurement results to a central server via UDP. White spaces can be 
shortly described as licensed frequencies that are not used all the time.  

2.1.3 Fixing the PoE and building a white space sensor grid 
Julia Alba Tormo Peiró in her thesis project [5], extended the work of Peinado and corrected the 

problem with respect to limited power of the PoE circuit of the board developed by López and 
Sánchez. We will make use of this modification to the board and the additional boards which she made 
in our experiments. 

2.1.4 Lockitron and other commercial lock company efforts 
The company Lockitron has developed a similar smartlock that is placed over your current interior 

latch for a deadbolt lock. The Lockitron product does not use the PoE technology, but rather it uses a 
battery for its power. Also the Lockitron product uses Wi-Fi for its network communication and can 
only work with specific deadbolt locks, which makes it less universal. 

Assa Abloy has also created a smartlock solution for door locks. Assa Abloy’s Seos product uses 
NFC for locking and unlocking doors [6]. Yale locks has also developed an NFC lock system, it uses 
the mobile lock platform that Assa Abloy developed [7]. 

                                                            

* See section 2.3. 
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Vingcard Elsafe is another company that is marketing an NFC-compatible lock. At this time the 
product is primarily for hotel rooms. Because of its product design, this product seems invisible to the 
user [8]. 

Telcred has implemented a service that allows access to facilities with the help of digital tickets. 
By using these digital keys in conjunction with NFC technology they have realized a highly flexible 
solution for visitors to the EIT ICT Labs Centre in Stockholm [9]. (One floor below where we are 
carrying out our project.) After we finished the laboratory work for out project, Telcred installed three 
of their lock systems in doors near the laboratory where we did our project. 

2.2 NFC  
NFC is a contactless communication technology. Today NFC is used in higher end smartphones 

and tablets[10, 11]. NFC uses radio-frequency identification (RFID) techniques to communicate with 
another NFC device. The two devices should not be more than 10 cm from each other (a theoretical 
limit)  and their separation should be less than 4 cm for stable communication[12]. The most common 
uses of NFC today are for identification and tickets. Mobile payments using NFC[13, 14] is another 
popular topic because of its speed and security. Given that Visa (the world leader in electronic 
payment) has now teamed up with Samsung (the company which sold the most phones 2013) to enable 
smartphones with NFC to be used as a credit or debit card [15], it seems that the future of NFC is 
bright. 

2.2.1 Using an NFC reader 
NFC operates at 13.56 MHz and it uses RFID technology for its communication. There are mainly 

two sorts of NFC devices: a passive NFC device and an active device that is always connected to a 
power source. The passive device has no internal power source; therefore it dependents on the 
electromagnetic field produced by the NFC reader. The active device generates an electromagnetic 
field that powers the passive device it wants to communicate with. 

Two active NFC devices can exchange data with each other using peer-to-peer mode. Peer-to-peer 
mode is standardized in International Organization for Standardization (ISO) 18092 [1]. An NFC 
reader can also function in Card Emulation mode. 

2.2.2 Security of NFC applications 
Every NFC-enabled application requires appropriate security. The type of security is related to 

what kind of function the application provides. For example, a service that performs a monetary 
transaction must be highly secure (at least proportionately to the maximum value of transaction or 
transactions that can be performed). 

In contrast, simple services such as receiving (with the help of using your NFC smartphone) 
discount “coupons” as you enter a shop entrance would require very little or almost no security at all. 
The case of an NFC-enabled restaurant menu is explained in detail in the recent master’s thesis of Thi 
Van Anh Pham [1]. 

2.2.3 Secure elements 
A secure element (SE) is a platform were an application can be installed, managed, personalized, 

and executed securely. An SE is a combination of hardware, software interfaces, and protocols that 
allows secure storage and usage of credentials for payments, authentication, and other services[16]. 
SEs can be categorized into three types: 

• An embedded SE is a non-removable SEs that can manage business- and personal 
information in a safe way. Embedded SEs is installed in the unit at manufacturing. 

• A smartcard for mobile phone terminals in GSM- and UMTS-band (UICC*) is a genetic, 
standardized, physical, and logical platform for smart card applications. A UICC is used by 

                                                            

* Universal Integrated Circuit Card 
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telephone companies to include a USIM (3G SIM card) application on the card to verify a user 
for a 3G network. 

• A micro SD-card (µSD-card) is a memory card with an embedded chip that is used as a SE. 
There are some SD-cards with embedded NFC antennas. 

The form of SE used by cellular operators or payment services in conjunction with a NFC enabled 
phone is decided by the companies that are involved [17]. Companies have selected each of the three 
types of SEs described above in order to achieve their specific goals. 

2.2.4 Security and Privacy of NFC applications 
As mentioned earlier, the security of NFC applications is very dependent upon what kind of 

service the application provides. As a result there are different approaches to privacy in NFC 
applications. Privacy in NFC applications is almost entirely reliant on the design of the application. 
For example consider the matter of default settings; for privacy reasons the NFC communication 
capability should be inactive when a user’s smartphone is locked or inactive. However, this is not 
always the default setting for every smartphone. Additionally every NFC application should inform a 
user about what action it is going to take when it is being used. For example, when an application is 
going to open a web browser or when the application will send a text message. An advantage of NFC 
from the point of view of transaction privacy is that NFC is independent of Global Positioning System 
(GPS) activation in the phone and can even be independent of the cellular network. These features 
provide the user with greater anonymity and increase the user’s privacy. 

2.3 TFTP 
The Trivial File Transfer Protocol (TFTP) is a very simple protocol used to transfer files between 

network devices. TFTP was developed in the late 1970s, but stabilized in the 1980s[18]. TFTP is 
commonly used to transfer configuration and boot files to hardware that lack persistent memory or 
disk space, thus a device need not have a disk or stable storage for more than a network boot loader. 
As a result TFTP is widely used for upgrading or restoring firmware in routers. 

TFTP uses the UDP protocol for its transfers. Typically it uses UDP port 69, but it is also possible 
to configure a TFTP server so it uses another UDP port number. 

Since the board that we will be using supports TFTP, we have adopted this as a means for booting 
up the device, installing its software, and configuring the hardware. This means that we can easily 
install new software, without needing to use an EEPROM programmer or other similar device. 
However, it does mean that we need to implement a Dynamic Host Configuration Protocol (DHCP) 
server and a TFTP server for our experiments. 

2.4 Dynamic Host Configuration Protocol server 
We will use a DHCP server to supply an IP address to each of the network attached 

microcontroller circuit boards based upon a MAC address that we have configured into the network 
boot loader. The DHCP server will also provide the board with the IP address of the TFTP server and 
the name of the file that this board is to load via TFTP. The DHCP configuration file that we have 
used is shown in Appendix A. 

2.5 PoE 
Power over Ethernet (PoE) enables Ethernet cables to transfer both data and electrical power to 

devices. PoE can theoretically deliver up to a maximum of 15W of DC power. In practice the 
maximum available power is about 12.95W because of the losses in the cables. PoE was standardized 
in the IEEE 802.3af standard [19]. 

2.5.1 Advantages of PoE 
USB does not always provide sufficient power required for some types of hardware to function. 

Additionally, in a smart door lock scenario the likely distances will be greater than those supported by 
USB. USB can provide 5W of power over a cable with a maximum length of 5m, while PoE devices 
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using CAT5 cable and provide 12.95W of power to devices 100m away[20], CAT5e cables can 
provide 30W of power. 

2.5.2 Disadvantages of PoE 
The main disadvantage of implementing the PoE interface is that not all network switches supports 

the PoE interface, those switches that supports the PoE is usually more expensive. If there is no switch 
that implements the PoE interface available, there is PoE injectors to buy to add power to the PoE 
interface. 

Also because the network cable is providing power there might be a concern of the cables heating 
up, however, this is not an issue because the power limitation at 30W for CAT5e cables is well under 
the safety margin from the cable bundle heating up as the CAT5e cables have a lower resistance drop 
[21].   

2.5.3 Alternatives to PoE 
Power might be provided to the device via an alternate means, such as a separate cable from an 

AC to DC power converter. However, in this case there is a need to run a separate power cable to the 
device (in addition to the cable used for communication) and there is the need to locate the AC to DC 
power converter at an electrical outlet. Using an AC to DC converter connected to mains power likely 
increases the cost, as an outlet may needs to be installed near the door or there is the cost of additional 
cabling. 

Another alternative power source for the device is a battery or supercapacitor. This alternative 
avoids the need to externally power the device at the cost of adding a battery or supercapacitor. 
Additionally, this complicates the system as there now needs to be some means to replace or recharge 
this power source. There may also be a problem about whether the lock should open when it runs out 
of power or whether it should remain locked. The later alternative may introduce the need for another 
means of opening the lock if there is no power, while the former may eliminate the security that was 
offered by the lock. 
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3 Method 
In this chapter we will explain our goals and what we have to do to reach our goals. There are 

many steps and new things we have to learn before building the Smart door lock system. 

In order to realize the Smart Door Lock is a system we need to achieve these goals: 

• Connect the microprocessor circuit board to a network, 
• Make the microprocessor download its application at boot time, 
• Connect a NFC reader to this microprocessor, 
• Create an application for a smartphone that can send messages to the NFC reader, 
• Create custom UDP packets to be sent and received by this microprocessor, 
• Connect sensors to this microprocessor, 
• Connect and control a servo motor connected to this microprocessor, and 
• Set up a web server and a homepage to control this microprocessor. 

All of these sub goals have to be achieved and the different elements of the system have to work 
together properly. For example: the NFC reader should send data to the microprocessor which the 
microprocessor will forward as data inside a UDP datagram to our webserver. We will also have to do 
the same encapsulation of data from the sensors and in order to receive commands from the web server 
we will decapsulate the commands received within a UDP datagram to lock or unlock the door. 

3.1 Software 
In this section we will explain the software we have used to develop the Smart door lock. 

3.1.1 Wireshark 
Wireshark* is very popular computer program that analyzes network traffic. Since our project is 

partly based on sending and receiving data exchange from both the motherboard and the DHCP/TFTP 
server, Wireshark was a very useful tool for troubleshooting and analyzing if the packets contained 
what we expected and were send/received when we expected. We used Wireshark to verify if there 
was DHCP and TFTP activity. This was very useful when we started to send our custom made UDP 
packets. 

3.1.2 Code Composer Studio 
We have used Texas Instruments’ Code Composer Studio™ (CCStudio) [22] as our integrated 

development environment when writing code for the microprocessor. 

3.2 Hardware 
In this section we will describe the hardware tools that we used to develop the Smart door lock. 

3.2.1 Mixed signal Oscilloscope 
To develop and verify the signals transmitted and received from/to the microcontroller we need to 

actually see the signals, to do this we used an oscilloscope. The oscilloscope that we used is a HP 
54645D, now known as Agilent 54645D [23], which is a mixed signal oscilloscope with two analog 
inputs and 16 digital channels for mixed signal analysis. 

This oscilloscope supports triggering which allowed us to easily find the signals that we want to 
see by selecting one signal to trigger on when this signal entered the state that we wanted to 
investigate. 

3.2.2 Programmer 
The programmer that we used to flash our code to the MSP430 microcontroller is the MSP-

FET430UIF from Texas Instruments (TI) [24]. The programmer is officially referred to as a Flash 
                                                            

* www.wireshark.org 
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Emulation Tool (FET); this tool can be used for writing the program to the MSP430 microcontroller 
and controlling the microcontroller manually for debugging a program, it can even provide power to 
the microcontroller. 

The standard FET device from TI connects via the USB interface, although there are older 
versions that connect via the serial-port interface. This FET can program the processor using either the 
Joint test action group (JTAG) or Spy-Bi-Wire (SBW) protocol through a 14 (2x7) pin connection that 
is available on the motherboard (section 3.3.1). 

3.2.3 Arduino 
The Arduino board is a microcontroller board with open open-source hardware. The specific 

Arduino board we used was an Arduino Uno R3 [25] based on the ATmega328 [26] microcontroller. 
The board also has 14 digital input/output pins which can be used for different functions. The board 
contains a USB connection where can also be used to power the board when connected to a computer. 
Of course one can also power the board other ways, as so long as the power supplied is not over 
5 volts. 

There are many different daughter boards (so called shields) that can be easily attached to the 
Arduino board through I2C and SPI communication.  We used one such shield equipped with an NFC 
interface (this shield is decribed in section 3.3.2). The main reason why we used the Arduino Uno R3 
board is because we wanted to investigate the necessary connections beyond the SPI interface between 
the NFC shield and the Arduino board. 

3.2.4 HP ProCurve Switch 2626  
For testing our system we connected our motherboard’s network interface to an HP ProCurve 

Switch 2626 [27] switch. This is a PoE capable switch; hence it could power the system. We also 
connected this switch to a Dell model Optiplex GX620 [28] computer via a secondary Ethernet 
interface. 

3.2.5 Desktop PC 
A Dell model Optiplex GX620 desktop computer running openSUSE [29] acted as the DHCP 

server (see section 3.4.1) and TFTP server (see section 3.4.2 ). This computer also ran Wireshark – 
which was used to capture and observe the traffic to and from the system that we were developing. 
This computer could also be used to provide the services that in a real deployment of the system would 
be provided by a server running in a cloud. 

3.3 Description of the embedded platform 
In this part of the thesis we will briefly describe the embedded platform that was developed by 

previous master students (as described in sections 2.1.1 to 0) to function as a wireless sensor sniffer. 
For further details about the platform we refer the reader to the individual master’s thesis indicated in 
these sections. The platform can be separated into a main motherboard with a SPI* interface for 
connecting a daughterboard. The SPI interface on the motherboard provides the adaptability to connect 
a daughterboard of the user’s choice without having to modify any other part of the circuit board. In 
the case of the former master’s thesis projects the SPI was used to connect a daughterboard with a 
radio module operating in the hundreds of MHz frequency range, but in our project we are going to 
utilize a NFC daughterboard which works in the 13.56 MHz frequency band. We believed that it 
would be relatively simple to change to the daughterboard which will be described in section 3.3.2. 

3.3.1 Motherboard 
Figure 3-1 and Figure 3-2 shows the motherboard that is responsible for providing power and 

performing the computing required of our embedded platform. The board is designed around a Texas 
Instruments MSP430F5437A [30] microcontroller (MCU). This processor (shown in Figure 3-2) 
includes two SPIs: one is used to connect the Ethernet controller and the other connects to a 

                                                            

* Serial Peripheral Interface, see section 3.5 
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daughterboard of the user’s choice. The Ethernet controller is an ENC28J60 [31] chip which 
communicates with the MCU via the SPI.  

The MCU supports two programming interfaces either Bootstrap Loader (BSL) or Joint Test 
Action Group (JTAG). Our board only included with the JTAG interface and therefore this is the 
interface we used to install the boot loader code. 

With the help of the jumpers (shown in Figure 3-1) a user can choose between getting power from 
PoE or an external DC power supply. The TL2575HV (shown in Figure 3-2) is a step-down converter 
[32] which makes it possible to use any DC voltage supply between 3.3V and 60V. In our project we 
will only utilize PoE (as described in section 2.5). The Ethernet cable from the motherboard needs to 
be connected to the power sourcing equipment (PSE). This PSE function is generally provided by a 
switch or router with PoE functionality. The TPS2375 [33] chip takes care of the PoE signaling to tell 
the host (PSE) the amount of power that it requires. Our board is designed to be a class 1 Powered 
Device (PD); hence its maximum power is 3.84W. Based upon our initial estimates of the amount of 
power that we will require, 3.84W is more than enough power. 
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As mentioned above, the master initializes the communication between the devices. Before 
initiating this communication the master first configures the serial clock of the selected SPI to a 
frequency which is less or equal to the maximum frequency supported by the slave device. For 
example, in our case this frequency is either 5 MHz for the NFC-reader or 8 MHz for the ENC28J60 
Ethernet controller. The code* to configure the SPI interface used to connect to the Ethernet controller 
is shown below: 

  

                                                            

* Extracted from the config.c file of the TFTPboot program. Note that the code has been reformatted for 
inclusion in this thesis. 
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From hardware_board.c 
// ENC28J60 
#define ETH_CS  BIT0 
#define ETH_CS_IN  P3IN 
#define ETH_CS_OUT  P3OUT 
#define ETH_CS_DIR  P3DIR 
#define ETH_CS_REN  P3REN 
 
#define ETH_INT  BIT2 
#define ETH_INT_IN  P1IN 
#define ETH_INT_DIR  P1DIR 
#define ETH_INT_OUT  P1OUT 
#define ETH_INT_REN  P1REN 
#define ETH_INT_IES  P1IES 
#define ETH_INT_IE  P1IE 
#define ETH_INT_IFG  P1IFG 
 
#define ETH_RST  BIT3 
#define ETH_RST_OUT  P1OUT 
#define ETH_RST_DIR  P1DIR 
 

From config.c: 
// ENC28J60 SPI port 
#define ETH_SIMO  BIT1 
#define ETH_SOMI  BIT2 
#define ETH_SCLK  BIT3 
#define ETH_SPI_IN  P3IN 
#define ETH_SPI_OUT  P3OUT 
#define ETH_SPI_DIR  P3DIR 
#define ETH_SPI_REN  P3REN 
#define ETH_SPI_SEL  P3SEL 
 
void InitializeEthSpi(void)  
{ 
 // Activate reset state 
 UCB0CTL1 |= UCSWRST; 
  
 // Configure ports 
 ETH_SPI_SEL |= ETH_SCLK + ETH_SIMO + ETH_SOMI; 
          // Special functions for SPI pins 
 
 ETH_SPI_DIR |= ETH_SIMO + ETH_SCLK; // Outputs 
 ETH_CS_DIR |= ETH_CS; 
 ETH_CS_OUT |= ETH_CS; 
  
 // Configure SPI registers 
 UCB0CTL0 |= UCCKPH + UCMSB + UCMST + UCSYNC; 
          // Clock phase 0, Clock pol 0, 8-bit 
 // MSB first, Master mode, 3-pin SPI, Synch 
 UCB0CTL1 |= UCSSEL_2; // SMCLK clock source 
 UCB0BR0 = 0; // No Prescaler (8MHz) 
 UCB0BR1 = 0; 
 UCA0MCTL = 0; 
 
 // Deactivate reset state 
 UCB0CTL1 &= ~UCSWRST; 
} 

The master then selects the desired slave by pulling the SS line to the “low” state. The slaves that 
have not been activated by the master using its slave select will disregard the serial clock and MOSI 
signals from the master. In this manner the master selects only one slave at the time [39]. 

When the slave wishes to communicate with the microprocessor (master) the slave can use an 
interrupt line to indicate that an event has occurred. Otherwise the master needs to poll the slave(s) to 
see if it (they) have any input. 
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4.2 UDP Echo software 
In order to ensure that we could send and receive UDP packets containing our own data, we 

decided to start by implemented a simple program to echo a string that we sent to the board from the 
PC. Since our board used the ENC28J60 for its network communication we had to learn the steps that 
are necessary for sending UDP Packets, so by looking into frequency scanner project file in the master 
project of Javier Lara Peinado [4] and also reading into the UDP.c file provided by Microchip we 
finally managed to understand the steps required for our goal. These steps are described below. 

In order to send a UDP packet we must: 

1. Call the “ARPResolve” routine to obtain the MAC of the IP destination we wish to 
send the UDP datagram to. 

2. Call UDPOpen to open a socket to be used to send our UDP Packets. 
3. Call UDPisPutReady (sets the current socket as the active socket, and determines how 

many bytes can be written to this UDP socket). This step is important because the 
ENC28J60 provides the buffering for the IP packet (or packets), hence the processor 
does not have to buffer the complete datagram – thus reducing the amount of RAM 
memory that the program needs. 

4. Call UDPPut (or UDPPutArray) for building and storing the data into the packet 
within the ENC28J60. 

5. Call UDPFlush to send our packet to the desired destination. 
6. Call UDPClose to close the socket (this is not mandatory) 

When the Ethernet controller receives UDP packets, then we need to use the following two 
functions: 

1. Call UDPisGetReady (sets the current socket as the active one, and determines how 
many bytes can be read from the UDP socket) and 

2. Call UDPGet (reads a byte from the currently active socket). 

For this testing we used a shell window on the PC that was hosting the DHCP server. We invoked 
our test program with the destination IP address and the port of the board to send our text message and 
received the expected response back from the board. The result of test is shown in Figure 4-2, where 
we sent the string “TEST” and received this response echoed back from our board. We could have 
chosen to use the Transmission control protocol (TCP) for our data packets, but since we also wanted 
the TFTP in our project and it already used the UDP for its file transfers, we thought it would be better 
to stay with the UDP protocol, also the UDP protocol has faster file transfer speed and if case of a 
packet drop then one would have to just resend the packet. 
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To configure the SPI interface used to connect the daughter card (NFC-shield) to the master 
(MSP430-microcontroller) there is some settings that need to be set for the SPI interface to work 
properly. As mentioned earlier the daughter card is based on a PN532 microchip which needs to have 
the settings [41] shown in Table 3. 
Table 3: PN532 SPI settings 

The mode used for the clock is Mode 0 
Data is always sampled on the first clock edge of SCK 
SCK is active High 
The data order used is LSB first 

These settings are set in the control register of the SPI interface we are using, in our case 
UCA1CTL0. We also have to choose a clock source for the signals to be sent. The unified clock 
system (UCS) module in the MSP430 provides various clocks. There is up to five clock sources to 
choose from [30]: 

XT1CLK Low-frequency or high-frequency oscillator that can be used with low 
frequency 32768 Hz watch crystals, standard crystals, resonators, or external 
clock sources in the 4 MHz to 32 MHz range. 

VLOCLK Internal very low power, low frequency oscillator with a typical frequency of 
10 kHz. 

REFOCLK Internal, trimmed, low-frequency oscillator with 32768 Hz typical frequency. 

DCOCLK Internal digitally-controlled oscillator (DCO)  

XT2CLK Optional high-frequency oscillator that can be used with standard crystals, 
resonators or external clock sources in the 4 MHz to 32 MHz range. 

Three clock signals are available from the UCS module: 

ACLK Auxiliary clock (32 kHz). 

MCLK Master clock (8 MHz). 

SMCLK Subsystem master clock (8MHz). 

These three clocks (ACLK, MCLK, SMCLK) are software selectable as XT1CLK, REFOCLK, 
VLOCKL, DCOCLK, and when available, XT2CLK. ACLK and SMCLK are software selectable by 
individual peripheral modules and are available externally at a pin, and MCLK is used by the CPU and 
system. All these clocks can be divided by 1, 2, 4, 8, 16, or 32 to provide the desired clock frequency. 
As mentioned in section 3.4 the maximum SPI clock frequency for the PN532 is 5 MHz, to generate 
the desired clock frequency we chose to use the SMCLK as our clock source and divided it by 2 to get 
a 4 MHz clock source which the PN532 can utilize. 

4.5 Implementing the SPI functions 
SeeedStudio, the developer of the NFC-shield, provided some example source code for their NFC-

Shield for the Arduino board. This source code does not include the actual transmit and receive 
functions for the SPI interface as these examples were written for the Arduino board which provides 
SPI functions via a SPI library. Because we are using the MSP430-microcontroller we had to 
implement these SPI functions for the MSP430 in order to make the example code work. 

Energia [42] is a prototyping platform with the goal to bring the Arduino framework to the Texas 
Instruments MSP430. However, Energia only supports the MSP430 LaunchPad and FraunchPad, 
which are not based on the MSP430f5437a (the microcontroller that we are using). The main 
difference is the pin map of the boards and the registers, as mentioned in section 4.4 are we using the 
UCA1CTL0 register for the SPI connection (NFC-shield), as the LaunchPad and FraunchPad may use 
other interfaces. However, the transmit and receive functions should work with a change in the 
register. 
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the SPI operates in LSB mode*. The command is sent during the first clock sequence and during the 
second clock sequence the NFC shield replies with its status, in this case the value 1 which means that 
the SPI device is ready. 

4.7 Setting up appropriate triggering of the mixed 
oscilloscope 

An important element of the debugging describe in the previous section was setting up an 
appropriate trigger – so that one could see the SPI commands and responses. 

The signals that are shown on the oscilloscope are in real time, this means that the signals are 
shown as they are sent and this happens very fast, which makes it hard to inspect the signals. One can 
pause the oscilloscope on a signal but this method is not very precise or effective as the screen is 
paused at the moment the button is pressed, which means that there might not be any or the right 
signals shown on the screen of the oscilloscope. This is why we had to use the trigger function of the 
oscilloscope. 

To set up the oscilloscope to use the trigger function we have to set up a pattern to trigger on, to do 
this we simply pressed the Pattern button on the oscilloscope, this brings up a new menu to set up the 
pattern to follow on each line connected to the oscilloscope. We can choose from triggering on a 
falling edge of a signal or on a rising edge. The oscilloscope that we used only supports triggering on 
one line, which means that we can only select one signal to follow and edge trigger on, however, the 
pattern can be configured to include other lines but this only checks if the other lines is in High or Low 
mode depending on the pattern we set. For example: if we would like to trigger on the first signal 
when we send data we set up the pattern to trigger on the rising edge of the data line, we also know 
that the SS line should be in Low state as the slave board is selected, this pattern should freeze the 
screen on the oscilloscope at the moment when there is a rising edge of the data line and the SS line is 
in Low state. There is a lot of options to set up a pattern, in our case we used the “and” operator to 
choose a pattern, however, one can use the “or”, “exclusive or”, etc. to setup a pattern between the 
different inputs. 

4.8 Android application and NFC Tags 
As mentioned in section 2.2 NFC is a contactless communication technology, it allows a data 

transfer between two NFC enabled devices. An NFC tag could be realized as a sticker which contains 
a small microchip that can store a small amount of data and transfer it to a NFC enabled device. How 
much data you can store depends on which type of tag you are using, since different types of tags have 
different memory capacities. The tags used in our project are MIFARE Classic tags [44] with a 
memory size of 1 Kilobyte (KB). The MIFARE Classic tags are widely used today in public 
transportation, electronic toll collection, and in loyalty cards. Our tags are also NFC Data Exchange 
Format (NDEF) enable and formatable. This means that one can store messages or homepages and 
even different application-defined actions on the tag to be viewed or used from any NFC enabled 
device. Since the tags are formatable an application can delete the data stored on the tag and write new 
content to be stored by the tag. The tags we used also contain a Unique Identifier Number (UID) 
which we used in our project to identify a specific. 

In order to read the UID of each NFC tag we used the Android application TagWriter [45] from 
the Google play application market. This application was developed by the company NXP 
Semiconductors [46], the same company as makes the PN532 NFC chip used on the shield. 

We implemented an application in the motherboard. This application simply sends a UID read 
requests to the NFC shield. If an NFC tag is located near the antenna of the NFC shield the NFC shield 
will get a response from the tag. The application places the tag’s UID into a UDP packet and sends it 
to our UDP server (a program running on the PC acts as a UDP server). The UDP server compares this 
tag against entries in a list of acceptable NFC tag UIDs associated with this smart door lock system. If 

                                                            

* See section 4.4 
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the UID of this tag is in the list, then the UDP server sends an UDP packet to the board informing it to 
either lock or unlock the lock. For our testing we indicated whether access was granted or denied by 
turning on a green (granted) or orange (denied) LED on the board. 

4.9 UDP Server 
The UDP server program was written in the programming language Python [47] because of the 

simplicity of writing the code. The server program also generates console output indicating if the 
scanned NFC tag is to granted or denied access followed by an OPEN or CLOSE message being sent 
back to application running on the motherboard. For learning how to write a UDP server in Python we 
looked into the wiki page of Python for UDP communications [48]. When we had learned and 
understood how to create UDP sockets and transfer and receive UDP packets, we created our own very 
simple server which received different blocks of the NFC Tag UID.  There were a total of 4 blocks 
received and each block represents 8bits. Once all the blocks are received from the NFC tag UID and 
converted from hexadecimal to decimal values we then utilized this value to lookup if this card should 
grant access or not. There are of course some flaws with this method since another Tag’s UID might 
have the same value and then we would grant access even those we should not do so. However, this 
simple server was sufficient to verify that our UDP server combined with the motherboard reading the 
NFC Tag’s UID was working. 

The python server program is included in the appendix. 

4.10 The Smart Door Lock 
Now that everything is working, it was time for to test the whole system. This means that the 

board sends a UDP packet to the UDP (Python) server followed by receiving a UDP packet from the 
server which tells whether access was granted or denied. Finally the motherboard replies to the UDP 
server telling it if the lock has been opened or locked. 

Figure 4-11 displays the output of Wireshark and the console output of the UDP server in the case 
when access is granted. We can see that a UDP packet was sent from the board to the UDP server 
which examines the tag’s UID and the server’s response UDP packet informing the board of its 
answer, followed by another UDP packet from the board informing the server if the lock is at that 
moment OPEN or CLOSED. In this example the tag will unlock the lock and grant access to the user. 
A similar procedure was used with a tag that was not registered with the UDP server resulted in a 
decision to deny access. We can see from these exchanges that the basic functionality of the smart 
door lock system has been realized. 
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The system does not operate in the active state all the time. In active mode all the systems’ 
functions are running, this includes the motherboard and all the components of the NFC Shield, as well 
as the electromagnetic field that the antenna produces to power the NFC tag. In standby mode the 
system does not send any packets through the Ethernet interface, also there is no NFC tag to provide 
with power. 

The measurements are made the same way as Julia Alba Tormo Peiró describes in her master’s 
thesis in section 3.2.1.1.6 [5]. 
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5 Conclusions and Future work 
This chapter summarizes our conclusions and suggests some future work that could be built upon 

what has been done and could address the parts of the original problem that have not been realized. 
The chapter ends with some reflections on the economic, social, and ethical issues considered during 
this thesis project. 

5.1 Conclusions 
To make a system that would achieve the project goal as stated in section 1.3 required that we 

achieve eight different sub goals (as stated that in the beginning of chapter 3). While we did not 
succeed in realizing some of our goals, we did managed to develop a working NFC reader that can 
read the UID of an NFC tag by using a NFC shield connected to a MSP430537a microcontroller via a 
SPI interface. We also managed to send UDP packets containing the NFC tag’s UID to our UDP 
server that based upon the UID either granted or denied access to the user. Although the result of the 
access decision was indicated via a green or orange LED on the board, this could easily be turned into 
a signal to control a relay to activate an electric strike plate for a period of time or to active an 
alternative means of unlock/locking the door’s lock. 

Because the project spans of a wide range of disciplines involving both hardware and software, 
there were a lot of tools for us to learn and use. Programming a microcontroller and learning how to 
connect two different SPI devices included some debugging which led us to learn how to use a mixed 
signal oscilloscope. Also, we learned how to create, send, and receive UDP packets with the 
microcontroller. In addition to using the microcontroller we learned how to send and receive UDP 
packets using Python programming to realize our UDP server. 

For monitoring the network traffic we used the software Wireshark. We learned how to make use 
of this software both for examining the protocols and packets that were being exchanged. Additionally, 
we learned that we could generate UDP messages within the application running on the 
microcontroller to display debugging information via Wireshark. 

If we were to do the project again one of the things we would do differently is to read more about 
what is required of the components to function together before starting our coding. We would also not 
take for granted that things will work correctly right away. Furthermore, we will be more aware that 
there might be information missing in the documentation of the product, such as we experienced with 
the need for the second power source for the TXB0104PWR chip on the NFC shield. We think that 
reading the documentation and looking at the schematics of the components would prevent errors such 
as this from taking as much time as it did. 

Additionally, rather than getting stuck on one problem in the early stage of the project one should 
focus on going further with the other goals rather than spending too much time attempting to fix one 
specific problem. In the end we managed to get a working system, despite some parts of the project 
being modified or eliminated because of the limited time for this project. For the future we learned that 
when developing a system we should do a lot more research (specifically reading and studying the 
documentation) in order to avoid minor problems causing a lot of frustration and unnecessary time 
being spend on them. 

The most significant outcome of this project was that we learned how to interface the NFC shield 
to any SPI capable microcontroller, rather than requiring that the NFC shield be plugged into an 
Arduino. When doing research on this project we found that no one had previously solved this 
problem despite many people having encountered problems when trying to make use of NFC shields 
with platforms other than the Arduino. We published our solution to this in a posting* to the TI E2E 
Community on October 17 2013 at 06:56 AM so that others could build upon our solution. 

                                                            

* http://e2e.ti.com/support/microcontrollers/msp430/f/166/p/292483/1020503.aspx 
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5.2 Future work 
Currently we have a NFC reader that only reads a NFC tag’s UID then sends this information in a 

UDP packet to a simple UDP server that makes a decision and responds with an access granted or 
denied response. Our NFC reader is currently only reading a tag in MiFare target id mode; the next 
step would be to make it work in peer to peer mode so it can communicate with a smartphone with an 
NFC interface. Once the NFC reader works in peer to peer mode, then one could develop an Android 
application that will use NDEF for transferring a message. On the 31st of October 2013 Google 
introduced KitKat 4.4 [49], a version of Android which makes it possible for an Android smartphone 
with NFC to emulate a NFC smart card. This was something that we did not have during our project. 
This card emulation mode will be very helpful for future communication between the NFC reader and 
a smartphone. 

Creating a full-fledged server with a database of all the NFC tag UIDs which should be granted 
access should be developed together with a webpage to manage the keys, update the database, and 
generate one-time or limited use soft tags that could be used by a smart phone – rather than being 
limited to making an access or deny decision based simply upon a tag’s UID.  

Because of the limited time we did not research how the lock should be installed on the door. The 
system needs to have a set of sensors and motors to be able to detect if a door is opened/closed and 
locked/unlocked, what type of sensors and motors should be used and how they should be installed is 
something that needs to be researched and developed. 

An additional area that has not been explored in this thesis project is how to implement 
appropriate security for this system. This includes how to realize the appropriate cryptographic 
functions in the motherboard and how to realize them at the server. Using these cryptographic 
functions is should be possible to secure the boot loader (so that only properly signed code could be 
loaded), so that cryptographic tokens could be utilized for access control (rather than using UIDs 
which could easily be generated using a NFC equipped smartphone), and developing timed challenge 
response security so that one could ensure that the NFC device is actually in front of the NFC reader 
and not elsewhere (in order to avoid relaying of NFC communication). Also in the case of NFC tags 
there is unused memory in them which could be used to put in some security functions. Since our NFC 
reader forwards data to a UDP server there is a need of securing this transportation over the network, 
and using a usual Transport Layer Security might be a good idea to look into.  

Last but not least it would be great to make the network bootloader work, since it would ease the 
process of distributing updates to the software that should be run in the board, while avoiding the need 
to physically attach the FET debugger to the board. 

5.3 Reflections 
The goal with our bachelor’s thesis project was to simplify a way to control access via a locked 

door. Since NFC technology is becoming more widespread - as seen in public transportation, loyalty 
cards, and smartphones - the choice of using the NFC technology together with the UDP packets 
seems a very smart and useful tool for the future. In this sense we consider this bachelor’s thesis 
project to have a positive social impact if this solution can be realized and deployed in the future. 

The use of the MSP430F5437a ultra low power microcontroller together with NFC shield and 
having everything powered via PoE makes the hardware of this project energy efficient, this means 
environmental considerations were taken in the choice of the hardware. Moreover, because the board 
we used supported PoE all of the power for the system was sent over the Ethernet cable, thus 
eliminating the materials and labor costs associated with having to provide mains or another separate 
wiring plant to power the system. 

As our board utilized the NFC shield designed for an Arduino by interconnecting the shield via an 
SPI interface with a MSP430F537a microcontroller with an ENC28J60 for its network 
communication, we avoided the need for an Arduino with two shields – one for NFC and for Ethernet 
and an external power supply and a nearby mains power outlet, thus there was a lower economic cost 
by using this hardware. 
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We have not encountered any ethical issues when carrying out this bachelor’s thesis project other 
than the issue of identifying users to be given access to a door based upon the UID of their NFC tag. 
This requirement could be removed in a future implementation that used cryptographic tokens. As 
noted in the previous section all security considerations have been ignored in this project and remain 
for future work. 
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Appendix  
 

Source Code 
All the files and source codes involved in our bachelor project are available in this Dropbox folder 

https://www.dropbox.com/sh/43h519564hspkw2/RcXkXGtCqQ. The subfolders in this main folder 
link to different sections in our project. 

• The DHCP CONFIG folder contains the DHCP server configuration we used in the 
openSUSE PC so that the board could connect to it and receive an IP. 

• The UDP Server folder contains the necessary UDP server code in the language Python 
which received and responded with UDP packets to our board. 

• The UDPSmartLock contains all the necessary code for our board in order to read NFC 
UID Tags and also send/receive UDP packets.  
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DHCP server CONFIG 
 

option tftp-server-address code 150 = ip-address; 
option tftp-server-address 192.168.1.1; 
option bootfile-name "frequencyScanner.txt"; 
option boot-size 76; 
ddns-update-style none; 
default-lease-time 86400; 
max-lease-time 86400; 
authoritative ; 
subnet 192.168.1.0 netmask 255.255.255.0 { 
  option subnet-mask 255.255.255.0; 
  option broadcast-address 192.168.1.255; 
  option routers 192.168.1.2; 
  range 192.168.1.5 192.168.1.20; 
  host NFC-Shield { 
    hardware ethernet 02:00:00:00:00:02; 
    fixed-address 192.168.1.7; 
  } 
  host Scannerboard { 
    hardware ethernet 02:00:00:00:00:03; 
    fixed-address 192.168.1.5; 
  } 
} 
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UDP Python Server 
from socket import * 
import sys 
import select 
import ast 
import os 
 
#address of the UDP server and port 
address = ('192.168.1.1', 8837) 
 
#create socket for internet and UDP  
server_socket = socket(AF_INET, SOCK_DGRAM) 
#bind this socket to our address 
server_socket.bind(address) 
  
while(1): 
      
    print "Waiting for TAG ID " 
    #buffer size is 65535 bytes (random choice) 
    recv_data, addr = server_socket.recvfrom(65535) 
    #first block (8bits) of received message 
    int1=recv_data[0] 
    #second block (8bits) of received message 
    int2=recv_data[1] 
    #third block (8bits) of received message 
    int3=recv_data[2] 
    #fourth block (8bits) of received message 
    int4=recv_data[3] 
    #convert blocks from hexadecimal to decimal 
    intsum1=ord(int1) 
    intsum2=ord(int2) 
    intsum3=ord(int3) 
    intsum4=ord(int4) 
    #summarize the values 
    intsum = (intsum1+intsum2+intsum3+intsum4) 
     
#in this case the value 654 represents the tag UID e29847cd  in decimal   
    if 654 == intsum: 
    server_socket1 = socket(AF_INET, SOCK_DGRAM) 
        data1 = 'OPEN'  
        print "Grant Access" 
     #if granted then send 'OPEN' to our board 
    server_socket1.sendto(data1, addr) 
      
    elif recv_data != intsum: 
    server_socket2 = socket(AF_INET, SOCK_DGRAM) 
        print "Denied" 
        data2 = "CLOSE" 
      #if denied then send 'CLOSE' to our board 
    server_socket2.sendto(data2, addr) 
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UDPSmartLock critical functions 
 
//Spi for UCA1 
uint8_t spi_send(const uint8_t _data) { 
 while (!(UCA1IFG & UCTXIFG)) 
  //UC0IFG & UCB0TXIFG 
  ;// wait for previous tx to complete 
 
 UCA1TXBUF = _data; // setting TXBUF clears the TXIFG flag 
 
 while (!(UCA1IFG & UCRXIFG)) 
  ; // wait for an rx character? 
 
 return UCA1RXBUF; // reading clears RXIFG flag 
} 
 
 
//SS, shifts the output on SS pin (pin5) 
void digitalWrite(uint8_t val) { 
 if (val == LOW) { 
  P5OUT &= ~BIT5; 
  P5DIR = BIT5; // set bit 5 to output 
 } else { 
  P5OUT |= BIT5; 
  P5DIR = BIT5; // set bit 5 to output 
 } 
} 
 
/*Function:Transmit a byte to PN532 through the SPI interface. */ 
inline void write(uint8_t _data) { 
 spi_send(_data); 
} 
 
/*Function:Receive a byte from PN532 through the SPI interface */ 
inline uint8_t read0(void) { 
 uint8_t data_ = spi_send(0); 
 return data_; 
} 

These functions are the necessary functions to make example code from SeeedStudio to work, the 
example code can be found on http://www.seeedstudio.com/wiki/File:PN532_SPI_V2.zip 



www.kth.se

TRITA-ICT-EX-2013:257


