
Degree project in
Communication Systems

First level, 15.0 HEC
Stockholm, Sweden

R A F I D K A R I M
a n d

H A I D A R A A L - F A K H R I

 A first prototype of a networked power lock controller with an NFC interface

 Smart Door Lock

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Smart Door Lock
A first prototype of a networked power lock controller with an NFC interface

Rafid Karim
and

Haidara Al-Fakhri
2013-12-01

Kandidatexamensarbete

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology

 Stockholm, Sweden

i

Abstract
Most major cell phone manufacturers have been releasing cell phones equipped with Near Field

Communication (NFC). At the same time there is also increasing use of mobile payments and user
verification with the use of the NFC technology. These trends indicate both the increasing popularity
and great potential for increased use of NFC in today’s society. As a result NFC has a huge potential to
simplify our everyday tasks, ranging from paying for items to accessing our office or home.

In this context we will focus on using NFC together with a Power over Ethernet (PoE) powered
circuit board and NFC reader to realize a simple system for granting access to open a locked door. One
of the purposes of this realization is to explore what services can be realized when such a system is
connected to the home/building network and connected to the Internet. A second purpose is to learn
how to use network attached devices, as the concept of the Internet of Things is considered by many to
be a driving force in the next generation Internet. This project uses very in expensive and low power
hardware, as the number of devices is potentially very large and thus in order to minimize the
technology’s impact on the environment we must consider how to minimize the power used – while
maintaining the desired user functionality.

This bachelor’s thesis project made it possible for a PoE powered circuit board containing a
MSP430 microcontroller to work along with a NFC reader, which was connected through the Serial
Peripheral Interface (SPI).

We hope that the end result of this project will lead to a simpler life by exploiting this increasingly
ubiquitous technology. For example, a homeowner could send a one-time key to a repair person who is
coming to fix their sink. Similarly a homeowner could send a key to their neighbor which is valid for
two weeks so that their neighbor could come into their home to water the plants while they are away
on vacation. Another example is lending your apartment key to a friend while you are out of town.

Keywords: Near Field Communication, Power over Ethernet, secure access, Internet of
Things, Serial Peripheral Interface, MSP430

iii

Sammanfattning
Det blir allt vanligare med närfältskommunikation (NFC) i dagens samhälle, mobiltelefons-

tillverkarna börjar utveckla nya telefoner med NFC teknik inbyggd, samtidigt som användningen av
NFC ökat.

Det sker även en utveckling inom mobila betalningar och användar-verifiering med användning av
NFC, då NFC förenklar detta.

Med detta sagt kommer vi att arbeta med detta i detta kandidatexamens-arbete där vi fokuserar på
NFC samt Power over Ethernet som använder MSP430 chippet som kärna. Med dessa enheter
kombinerade kommer en enkel rörelse med ett NFC kort över en NFC läsare som sedan skall ge
åtkomst till en låst dörr. Detta i större kombination med en Internetuppkoppling kunna ge ägaren
möjligheten att kunna skicka ut dörrnycklar till andra användare.

I detta kandidatexamensarbete gjorde vi det möjligt för ett PoE kretskort bestående av ett MPS430
mikroprocessor att samarbeta med en NFC läsare genom SPI protokollet.

Genom att utveckla detta projekt hoppas vi att vårt slutresultat leder till en enklare delning av
nycklar med hjälp av denna teknologi.

Nyckelord: Närfältskommunikation, Ström via nätverk, Säker åtkomst, Sakernas Internet,
Synkron Seriekommunikation, MSP430

v

Table of contents

Abstract .. i
Sammanfattning ... iii
Table of contents .. v
List of Figures .. vii
List of Tables .. ix
List of acronyms and abbreviations .. xi
1 Introduction .. 1

1.1 General introduction to the area ... 1
1.2 Problem definition .. 1
1.3 Goal ... 1
1.4 Structure of the thesis .. 3

2 Background ... 5
2.1 What have others already done? .. 5

2.1.1 Exploiting Wireless Sensors .. 5
2.1.2 White space sensor platform ... 5
2.1.3 Fixing the PoE and building a white space sensor grid 5
2.1.4 Lockitron and other commercial lock company efforts 5

2.2 NFC ... 6
2.2.1 Using an NFC reader .. 6
2.2.2 Security of NFC applications ... 6
2.2.3 Secure elements ... 6
2.2.4 Security and Privacy of NFC applications 7

2.3 TFTP .. 7
2.4 Dynamic Host Configuration Protocol server 7
2.5 PoE .. 7

2.5.1 Advantages of PoE .. 7
2.5.2 Disadvantages of PoE .. 8
2.5.3 Alternatives to PoE .. 8

3 Method ... 9
3.1 Software ... 9

3.1.1 Wireshark .. 9
3.1.2 Code Composer Studio ... 9

3.2 Hardware .. 9
3.2.1 Mixed signal Oscilloscope ... 9
3.2.2 Programmer ... 9
3.2.3 Arduino ... 10
3.2.4 HP ProCurve Switch 2626 ... 10
3.2.5 Desktop PC .. 10

3.3 Description of the embedded platform ... 10
3.3.1 Motherboard ... 10
3.3.2 Daughterboard (NFC Shield v1.0) .. 12

3.4 Connecting the platform to the network .. 13
3.4.1 Configuring the DHCP server ... 13
3.4.2 Configuring the TFTP server .. 14

vi

3.5 Serial Peripheral Interface (SPI) ... 14
4 Implementation and Analysis .. 19

4.1 Verifying the network connection .. 19
4.2 UDP Echo software ... 20
4.3 Network Booting .. 21
4.4 SPI Drivers configuration ... 22
4.5 Implementing the SPI functions ... 23
4.6 Connecting the daughterboard and debugging 24
4.7 Setting up appropriate triggering of the mixed oscilloscope 29
4.8 Android application and NFC Tags ... 29
4.9 UDP Server ... 30
4.10 The Smart Door Lock ... 30
4.11 Power consumption ... 31

5 Conclusions and Future work .. 33
5.1 Conclusions ... 33
5.2 Future work .. 34
5.3 Reflections .. 34

References .. 37
Image Reference .. 39
Appendix ... 41
DHCP server CONFIG .. 43
UDP Python Server ... 45
UDPSmartLock critical functions .. 47

vii

List of Figures

Figure 1-1: An overview on how the smart door locks system works (Note that the
figure does not show the connection to the electric strike plate or latch.) 2

Figure 1-2: A latch to mechanically control the door lock on a door 3
Figure 3-1: The front side of the motherboard .. 12
Figure 3-2: The back side of the motherboard .. 12
Figure 3-3: The front side (a) and the backside (b) of the NFC shield 13
Figure 3-4: A screen capture of the DHCP process ... 14
Figure 3-5: SPI timing diagram, the vertical red line represent CPHA = 0 and the blue

line CPHA = 1 .. 17
Figure 4-1: Wireshark capture of the ICMP request and the respond back. 19
Figure 4-2: The dark blue line shows the message TEST being echoed back from our

board. .. 21
Figure 4-3: File Blinker.txt is requested from 192.168.1.100 and successfully received. .. 22
Figure 4-4: The SPI, power, and ground connection between the boards 24
Figure 4-5: Get Firmware Version command on the motherboard without any response .. 25
Figure 4-6: Board layout of the NFC shield (displayed by Eagle) 26
Figure 4-7: The connection between the Arduino board and the NFC shield with the

oscilloscope connected to examine the signals ... 27
Figure 4-8: Get Firmware Version command on the Arduino board with response 27
Figure 4-9: The final connection with the oscilloscope connected to examine the

signals ... 28
Figure 4-10: Read SPI Status sent from the MSP430 to the NFC shield with a response 28
Figure 4-11: Tag with UID e29847cd is read and access is granted followed by response

from the board. .. 31

ix

List of Tables

Table 1: SPI signals .. 14
Table 2: The four different clock modes ... 17
Table 3: PN532 SPI settings ... 23
Table 4: The power consumption of the different parts of the system 31

xi

List of acronyms and abbreviations

BSL Bootstrap Loader
DCO Digitally-Controlled Oscillator
DHCP Dynamic Host Configuration Protocol
FET Flash Emulation Tool
GSM Global System for Mobile
GPS Global Positioning Systems
ISO International Organization for Standards
JTAG Joint Test Action Group
KB Kilo Byte
MCU Micro Controller Unit
MSP Mixed-Signal Processor
NDEF NFC Data Exchange Format
NFC Near Field Communication
PCB Printed Circuit Board
PD Power Device
PoE Power over Ethernet
PSE Power Sourcing Equipment
RFID Radio Frequency Identification
SBW Spy-Bi-Wire
SPE Source Power Equipment
SPI Serial Peripheral Interface
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
UDP User Datagram Protocol
UID Unique Identifier Number
UICC Universal Integrated Circuit Card
UMTS Universal Mobile Telecommunications System
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
Wi-Fi Wireless Fidelity

1

1 Introduction
In this chapter we will give a short overview and explanation of this thesis project.

1.1 General introduction to the area
In the last several years, smartphones have become more powerful and have been designed to be

used as pocket-sized personal computers. As different designers and smartphone manufacturer try to
“win” market share they are constantly adding new features and improving the performance of their
different models of smartphones. This has enabled other companies to develop new tools and services
which utilizes smartphones. Today, Near Field Communication (NFC) is provided in many
smartphones. This has enabled applications to verify the user’s location* and in some cases their
identity by using a smartphone. This technique in combination with others can be used in various
applications and services.

Computer communication systems and the Internet are playing an important role in our everyday
environment. Today almost any device (workstation, television, lamp, etc.) can be connected to the
Internet. Increasingly smartphones are constantly connected to the Internet over third and fourth
generation networks. This network connectivity will play an important part in our project.

As technology develops, the demands for new products and services to make our life more
efficient also grow. Consider the simple use case of lending your apartment key to a friend while you
are out of town. This could be made easier by use of NFC and smartphones in combination with the
Internet communication, as you can simply issue you friend a digital certificate which he or she can
present to your door via their smartphone’s NFC interface. To realize this use case we will use a
combination of technologies to prototype a Smart Door lock.

1.2 Problem definition
To develop our smart door lock there are some sub-problems we need to solve. First we need to

study two basic technologies: NFC technology (as used in smartphones) and a network attached door
lock. We will combine these technologies to develop our smart door lock. Based upon our study of
NFC we must create an application that can run on a smartphone† to respond to the NFC reader when
it is queried. We need a corresponding application running in either the network attached door lock or
in the cloud to query the smartphone via NFC. Given the NFC communication between the reader and
the smartphone an application running in either the network attached door lock or in the cloud will
determine whether the door should be unlocked or not.

While we have some basic experience with microcontrollers and some knowledge of computer
communication systems, we did not yet have any knowledge of NFC technology. Combining these
different technologies in one project should take our knowledge to the next level. Our first step in
doing this is to connect a microcontroller to the Internet, and then connect a NFC reader to this
microcontroller. Note that one of the other areas that we want to explore is the use of Power over
Ethernet (PoE) technology, so that we do not need a separate connection from our microcontroller to
the building’s power mains.

1.3 Goal
The main goal of this project is to develop a smart door lock system where an administrator or

owner of an apartment or building can manage and send “digital keys” to other persons in order to
allow them to access an apartment, building, or specific room in a building by using their NFC
equipped smartphone or a NFC smartcard.

* See for example the use case of a security guard in the recent thesis by Thi Van Anh Pham, Security of NFC
applications [1]
†In order to achieve to this during our time of the project, the smartphones required to run in Card Emulation
mode, something that we didn’t have the possibility to use, but was later introduced in Android KitKat 4.4

2

The
and the
commun
approach
because

Figu
the door
access b
over Eth
NFC rea
technolo
where th
can be d

Figure 1-1
co

The
dependin
bolt; the
outside a
managin
the insid
microcon
the latch

Ther
the door
a key pa
can be c
should a

The

project can
NFC reade

nication betw
h based upo
of the flexib

ure 1-1 show
r and the mi
by someone o
hernet (PoE)
ader, and el
ogy will be g
he administra
esigned to w

: An ove
nnection to the

system mus
ng on the typ
ese locks use
and a latch o
ng the lock, h
de of the doo
ntroller if th

h is in the loc

re are also el
when it gets

ad for PIN-c
connected to
actually funct

detailed sub

be divided i
er connected

ween the micr
on the energy
bility that a cl

ws the overall
icrocontrolle
outside the d
capable swi

ectric strike
given in sec
ator of a lock

work only dur

erview on how t
e electric strike

st be connect
pe of lock in
e a metal bo
on the inside
hence we hav
or to lock or u
he door is loc
cked- or unlo

lectronic doo
s a signal fro
odes. For th
the lock me

tion and wha

 goals to be a

nto two part
d to the mi
rocontroller a
y savings sh
loud based se

l system. As
r will be pla
door. The m
itch. This ne

plate (or m
tion 2.5 on

k can create e
ring a specifi

the smart door
e plate or latch

ted to the ac
nstalled on th
lt that slides
(see Figure
ve to install
unlock the d
cked or unlo

ocked-mode.

or locks that
om a controll
ese kinds of

echanism as
at kind of loc

achieved are

ts: the first p
icrocontrolle
and a cloud
hown by Go
ervice will o

shown in th
aced inside

microcontrolle
etwork conne
motor to turn

page 7. The
electronic ke

fic time or ev

r locks system w
.)

ctual lock on
he door. The
s into the do
1-2). For the
a motor, ser

door, this wil
ocked, these

t already hav
ler unit. This
f locks the m
a second co

cks to use is n

e listed at the

part concerni
r and the s
service. We

oce Talagano
offer.

his figure a N
the building
er will be co
ection provid
n the latch).
e system wil
eys and mana
ven be a one-

works (Note th

n the door; th
e most comm
oor jamb wh
ese kinds of l
rvo, or a sole
ll require som
sensors can

ve a build in
s controller c
microcontroll
ntroller unit
not the focus

e start of Cha

ng the NFC
second part
have adopted

ov in his ma

NCF reader w
g where it ca
onnected to
des power to
. Further inf
ll be manage
age the lock.
time-only ke

hat the figure d

his can be do
mon lock use
ich is contro
locks, were t
enoid that ca
me type of se
be buttons t

motor or sol
can be attach
ler of the sm
. However h
s of this proje

apter 3.

module in t
which conc

d a cloud dep
aster’s thesis

will be place
annot be mo
a server via

o the microc
formation ab
ed through a
. Note that th
ey.

does not show t

one in differ
ed in houses
olled by a ke
there is no el
an switch the
ensor that ca
that will be p

lenoid which
hed to a card
mart door loc
how the phys
ect.

the phone
cerns the
ployment
s [2] and

ed outside
odified or
a a Power
ontroller,
bout PoE
a website
hese keys

the

rent ways
is a dead

ey on the
lectronics
e latch on
an tell the
pushed if

h unlocks
reader or

ck system
sical lock

3

Figure 1-2

1.4 S
This

Chapter
concepts
related w
goals wh
tested ou
of our go
suggestin
what we

: A latch

Structure
s thesis is div

2 will give
s that will be
work relevan
hich contains
ur prototype
oals, chapter
ng what cou
 would have

 to mechanical

e of the
vided into fiv
e the reader
e subsequent
nt to this proj
s a range of
to see if it fu

r 5 reviews o
ld be done in
 done differe

lly control the d

 thesis
ve chapters.
r basic back
tly used in th
ject. Chapter
both softwa

ulfilled our p
our conclusio
n future wor
ently in the p

door lock on a

Chapter 1 gi
kground mat
his project. T
r 3 covers th

are and hardw
purposes with
on and descr
rk to build up
project if we

door

ives an overv
terial so tha
This chapter
he methods u
ware tools. D
h the project
ribes what w
pon this proj
were to do it

view of wha
t the reader
will also sum

used in the p
Described in
t. Since we d

we have left u
ect. The fina
t again.

at the project
r can unders

ummarize som
project to ach
n chapter 4 is
did not accom
undone in ad
al chapter al

t is about.
stand the
me of the
hieve our
s how we
mplish all
ddition to
so covers

5

2 Background
In this chapter we will briefly describe the embedded platform that we will use and we will

introduce some of the concepts that are useful to understand the rest of this thesis. This chapter will
also describe some of the related work that is relevant to this thesis project.

2.1 What have others already done?
Some previous research has been done that is related to our project. We will summarize these

related projects in this section. This is particularly the case for our basic platform, as we will re-use the
microcontroller and PoE network circuit board developed by earlier master’s thesis students at this
department. Following this we will introduce some of the related work done regarding door locks,
access control, and cloud based services.

2.1.1 Exploiting Wireless Sensors
The master’s thesis[3] by Albert López and Francisco Javier Sánchez concerned sniffing wireless

sensor traffic in order to collect this sensor data and use it for multiple purposes. They worked with
sensors in the 868 MHz band. They designed and created a motherboard with a TI MSP430
microcontroller as the core of their gateway. Since the MSP430 is a very low power consumption chip
it was ideal for use with PoE. They utilized a Microchip ENC28J60 network interface. This network
interface was connected to the microcontroller via a serial peripheral interface (SPI). The ENC28J60
Microchip offers dual port random access memory for sending and receiving data packets, as this
network interface provides the buffering needed for packets being sent and received, there was no need
for external memory. In order to supply power to this board they used PoE technology. In their project
they also used an SPI interface to connect a daughterboard with a radio transceiver for the 760 to
928 MHz band.

2.1.2 White space sensor platform
Javier Lara Peinado in his thesis project [4] took the sensor platform developed by López and

Sánchez and added a new boot program to provide network based booting, configuration of the device
via the dynamic host configuration protocol (DHCP), and installation of application software via the
trivial file transfer protocol (TFTP)*. Using this new software base he implemented a white space
sensor platform that sent its measurement results to a central server via UDP. White spaces can be
shortly described as licensed frequencies that are not used all the time.

2.1.3 Fixing the PoE and building a white space sensor grid
Julia Alba Tormo Peiró in her thesis project [5], extended the work of Peinado and corrected the

problem with respect to limited power of the PoE circuit of the board developed by López and
Sánchez. We will make use of this modification to the board and the additional boards which she made
in our experiments.

2.1.4 Lockitron and other commercial lock company efforts
The company Lockitron has developed a similar smartlock that is placed over your current interior

latch for a deadbolt lock. The Lockitron product does not use the PoE technology, but rather it uses a
battery for its power. Also the Lockitron product uses Wi-Fi for its network communication and can
only work with specific deadbolt locks, which makes it less universal.

Assa Abloy has also created a smartlock solution for door locks. Assa Abloy’s Seos product uses
NFC for locking and unlocking doors [6]. Yale locks has also developed an NFC lock system, it uses
the mobile lock platform that Assa Abloy developed [7].

* See section 2.3.

6

Vingcard Elsafe is another company that is marketing an NFC-compatible lock. At this time the
product is primarily for hotel rooms. Because of its product design, this product seems invisible to the
user [8].

Telcred has implemented a service that allows access to facilities with the help of digital tickets.
By using these digital keys in conjunction with NFC technology they have realized a highly flexible
solution for visitors to the EIT ICT Labs Centre in Stockholm [9]. (One floor below where we are
carrying out our project.) After we finished the laboratory work for out project, Telcred installed three
of their lock systems in doors near the laboratory where we did our project.

2.2 NFC
NFC is a contactless communication technology. Today NFC is used in higher end smartphones

and tablets[10, 11]. NFC uses radio-frequency identification (RFID) techniques to communicate with
another NFC device. The two devices should not be more than 10 cm from each other (a theoretical
limit) and their separation should be less than 4 cm for stable communication[12]. The most common
uses of NFC today are for identification and tickets. Mobile payments using NFC[13, 14] is another
popular topic because of its speed and security. Given that Visa (the world leader in electronic
payment) has now teamed up with Samsung (the company which sold the most phones 2013) to enable
smartphones with NFC to be used as a credit or debit card [15], it seems that the future of NFC is
bright.

2.2.1 Using an NFC reader
NFC operates at 13.56 MHz and it uses RFID technology for its communication. There are mainly

two sorts of NFC devices: a passive NFC device and an active device that is always connected to a
power source. The passive device has no internal power source; therefore it dependents on the
electromagnetic field produced by the NFC reader. The active device generates an electromagnetic
field that powers the passive device it wants to communicate with.

Two active NFC devices can exchange data with each other using peer-to-peer mode. Peer-to-peer
mode is standardized in International Organization for Standardization (ISO) 18092 [1]. An NFC
reader can also function in Card Emulation mode.

2.2.2 Security of NFC applications
Every NFC-enabled application requires appropriate security. The type of security is related to

what kind of function the application provides. For example, a service that performs a monetary
transaction must be highly secure (at least proportionately to the maximum value of transaction or
transactions that can be performed).

In contrast, simple services such as receiving (with the help of using your NFC smartphone)
discount “coupons” as you enter a shop entrance would require very little or almost no security at all.
The case of an NFC-enabled restaurant menu is explained in detail in the recent master’s thesis of Thi
Van Anh Pham [1].

2.2.3 Secure elements
A secure element (SE) is a platform were an application can be installed, managed, personalized,

and executed securely. An SE is a combination of hardware, software interfaces, and protocols that
allows secure storage and usage of credentials for payments, authentication, and other services[16].
SEs can be categorized into three types:

• An embedded SE is a non-removable SEs that can manage business- and personal
information in a safe way. Embedded SEs is installed in the unit at manufacturing.

• A smartcard for mobile phone terminals in GSM- and UMTS-band (UICC*) is a genetic,
standardized, physical, and logical platform for smart card applications. A UICC is used by

* Universal Integrated Circuit Card

7

telephone companies to include a USIM (3G SIM card) application on the card to verify a user
for a 3G network.

• A micro SD-card (µSD-card) is a memory card with an embedded chip that is used as a SE.
There are some SD-cards with embedded NFC antennas.

The form of SE used by cellular operators or payment services in conjunction with a NFC enabled
phone is decided by the companies that are involved [17]. Companies have selected each of the three
types of SEs described above in order to achieve their specific goals.

2.2.4 Security and Privacy of NFC applications
As mentioned earlier, the security of NFC applications is very dependent upon what kind of

service the application provides. As a result there are different approaches to privacy in NFC
applications. Privacy in NFC applications is almost entirely reliant on the design of the application.
For example consider the matter of default settings; for privacy reasons the NFC communication
capability should be inactive when a user’s smartphone is locked or inactive. However, this is not
always the default setting for every smartphone. Additionally every NFC application should inform a
user about what action it is going to take when it is being used. For example, when an application is
going to open a web browser or when the application will send a text message. An advantage of NFC
from the point of view of transaction privacy is that NFC is independent of Global Positioning System
(GPS) activation in the phone and can even be independent of the cellular network. These features
provide the user with greater anonymity and increase the user’s privacy.

2.3 TFTP
The Trivial File Transfer Protocol (TFTP) is a very simple protocol used to transfer files between

network devices. TFTP was developed in the late 1970s, but stabilized in the 1980s[18]. TFTP is
commonly used to transfer configuration and boot files to hardware that lack persistent memory or
disk space, thus a device need not have a disk or stable storage for more than a network boot loader.
As a result TFTP is widely used for upgrading or restoring firmware in routers.

TFTP uses the UDP protocol for its transfers. Typically it uses UDP port 69, but it is also possible
to configure a TFTP server so it uses another UDP port number.

Since the board that we will be using supports TFTP, we have adopted this as a means for booting
up the device, installing its software, and configuring the hardware. This means that we can easily
install new software, without needing to use an EEPROM programmer or other similar device.
However, it does mean that we need to implement a Dynamic Host Configuration Protocol (DHCP)
server and a TFTP server for our experiments.

2.4 Dynamic Host Configuration Protocol server
We will use a DHCP server to supply an IP address to each of the network attached

microcontroller circuit boards based upon a MAC address that we have configured into the network
boot loader. The DHCP server will also provide the board with the IP address of the TFTP server and
the name of the file that this board is to load via TFTP. The DHCP configuration file that we have
used is shown in Appendix A.

2.5 PoE
Power over Ethernet (PoE) enables Ethernet cables to transfer both data and electrical power to

devices. PoE can theoretically deliver up to a maximum of 15W of DC power. In practice the
maximum available power is about 12.95W because of the losses in the cables. PoE was standardized
in the IEEE 802.3af standard [19].

2.5.1 Advantages of PoE
USB does not always provide sufficient power required for some types of hardware to function.

Additionally, in a smart door lock scenario the likely distances will be greater than those supported by
USB. USB can provide 5W of power over a cable with a maximum length of 5m, while PoE devices

8

using CAT5 cable and provide 12.95W of power to devices 100m away[20], CAT5e cables can
provide 30W of power.

2.5.2 Disadvantages of PoE
The main disadvantage of implementing the PoE interface is that not all network switches supports

the PoE interface, those switches that supports the PoE is usually more expensive. If there is no switch
that implements the PoE interface available, there is PoE injectors to buy to add power to the PoE
interface.

Also because the network cable is providing power there might be a concern of the cables heating
up, however, this is not an issue because the power limitation at 30W for CAT5e cables is well under
the safety margin from the cable bundle heating up as the CAT5e cables have a lower resistance drop
[21].

2.5.3 Alternatives to PoE
Power might be provided to the device via an alternate means, such as a separate cable from an

AC to DC power converter. However, in this case there is a need to run a separate power cable to the
device (in addition to the cable used for communication) and there is the need to locate the AC to DC
power converter at an electrical outlet. Using an AC to DC converter connected to mains power likely
increases the cost, as an outlet may needs to be installed near the door or there is the cost of additional
cabling.

Another alternative power source for the device is a battery or supercapacitor. This alternative
avoids the need to externally power the device at the cost of adding a battery or supercapacitor.
Additionally, this complicates the system as there now needs to be some means to replace or recharge
this power source. There may also be a problem about whether the lock should open when it runs out
of power or whether it should remain locked. The later alternative may introduce the need for another
means of opening the lock if there is no power, while the former may eliminate the security that was
offered by the lock.

9

3 Method
In this chapter we will explain our goals and what we have to do to reach our goals. There are

many steps and new things we have to learn before building the Smart door lock system.

In order to realize the Smart Door Lock is a system we need to achieve these goals:

• Connect the microprocessor circuit board to a network,
• Make the microprocessor download its application at boot time,
• Connect a NFC reader to this microprocessor,
• Create an application for a smartphone that can send messages to the NFC reader,
• Create custom UDP packets to be sent and received by this microprocessor,
• Connect sensors to this microprocessor,
• Connect and control a servo motor connected to this microprocessor, and
• Set up a web server and a homepage to control this microprocessor.

All of these sub goals have to be achieved and the different elements of the system have to work
together properly. For example: the NFC reader should send data to the microprocessor which the
microprocessor will forward as data inside a UDP datagram to our webserver. We will also have to do
the same encapsulation of data from the sensors and in order to receive commands from the web server
we will decapsulate the commands received within a UDP datagram to lock or unlock the door.

3.1 Software
In this section we will explain the software we have used to develop the Smart door lock.

3.1.1 Wireshark
Wireshark* is very popular computer program that analyzes network traffic. Since our project is

partly based on sending and receiving data exchange from both the motherboard and the DHCP/TFTP
server, Wireshark was a very useful tool for troubleshooting and analyzing if the packets contained
what we expected and were send/received when we expected. We used Wireshark to verify if there
was DHCP and TFTP activity. This was very useful when we started to send our custom made UDP
packets.

3.1.2 Code Composer Studio
We have used Texas Instruments’ Code Composer Studio™ (CCStudio) [22] as our integrated

development environment when writing code for the microprocessor.

3.2 Hardware
In this section we will describe the hardware tools that we used to develop the Smart door lock.

3.2.1 Mixed signal Oscilloscope
To develop and verify the signals transmitted and received from/to the microcontroller we need to

actually see the signals, to do this we used an oscilloscope. The oscilloscope that we used is a HP
54645D, now known as Agilent 54645D [23], which is a mixed signal oscilloscope with two analog
inputs and 16 digital channels for mixed signal analysis.

This oscilloscope supports triggering which allowed us to easily find the signals that we want to
see by selecting one signal to trigger on when this signal entered the state that we wanted to
investigate.

3.2.2 Programmer
The programmer that we used to flash our code to the MSP430 microcontroller is the MSP-

FET430UIF from Texas Instruments (TI) [24]. The programmer is officially referred to as a Flash

* www.wireshark.org

10

Emulation Tool (FET); this tool can be used for writing the program to the MSP430 microcontroller
and controlling the microcontroller manually for debugging a program, it can even provide power to
the microcontroller.

The standard FET device from TI connects via the USB interface, although there are older
versions that connect via the serial-port interface. This FET can program the processor using either the
Joint test action group (JTAG) or Spy-Bi-Wire (SBW) protocol through a 14 (2x7) pin connection that
is available on the motherboard (section 3.3.1).

3.2.3 Arduino
The Arduino board is a microcontroller board with open open-source hardware. The specific

Arduino board we used was an Arduino Uno R3 [25] based on the ATmega328 [26] microcontroller.
The board also has 14 digital input/output pins which can be used for different functions. The board
contains a USB connection where can also be used to power the board when connected to a computer.
Of course one can also power the board other ways, as so long as the power supplied is not over
5 volts.

There are many different daughter boards (so called shields) that can be easily attached to the
Arduino board through I2C and SPI communication. We used one such shield equipped with an NFC
interface (this shield is decribed in section 3.3.2). The main reason why we used the Arduino Uno R3
board is because we wanted to investigate the necessary connections beyond the SPI interface between
the NFC shield and the Arduino board.

3.2.4 HP ProCurve Switch 2626
For testing our system we connected our motherboard’s network interface to an HP ProCurve

Switch 2626 [27] switch. This is a PoE capable switch; hence it could power the system. We also
connected this switch to a Dell model Optiplex GX620 [28] computer via a secondary Ethernet
interface.

3.2.5 Desktop PC
A Dell model Optiplex GX620 desktop computer running openSUSE [29] acted as the DHCP

server (see section 3.4.1) and TFTP server (see section 3.4.2). This computer also ran Wireshark –
which was used to capture and observe the traffic to and from the system that we were developing.
This computer could also be used to provide the services that in a real deployment of the system would
be provided by a server running in a cloud.

3.3 Description of the embedded platform
In this part of the thesis we will briefly describe the embedded platform that was developed by

previous master students (as described in sections 2.1.1 to 0) to function as a wireless sensor sniffer.
For further details about the platform we refer the reader to the individual master’s thesis indicated in
these sections. The platform can be separated into a main motherboard with a SPI* interface for
connecting a daughterboard. The SPI interface on the motherboard provides the adaptability to connect
a daughterboard of the user’s choice without having to modify any other part of the circuit board. In
the case of the former master’s thesis projects the SPI was used to connect a daughterboard with a
radio module operating in the hundreds of MHz frequency range, but in our project we are going to
utilize a NFC daughterboard which works in the 13.56 MHz frequency band. We believed that it
would be relatively simple to change to the daughterboard which will be described in section 3.3.2.

3.3.1 Motherboard
Figure 3-1 and Figure 3-2 shows the motherboard that is responsible for providing power and

performing the computing required of our embedded platform. The board is designed around a Texas
Instruments MSP430F5437A [30] microcontroller (MCU). This processor (shown in Figure 3-2)
includes two SPIs: one is used to connect the Ethernet controller and the other connects to a

* Serial Peripheral Interface, see section 3.5

11

daughterboard of the user’s choice. The Ethernet controller is an ENC28J60 [31] chip which
communicates with the MCU via the SPI.

The MCU supports two programming interfaces either Bootstrap Loader (BSL) or Joint Test
Action Group (JTAG). Our board only included with the JTAG interface and therefore this is the
interface we used to install the boot loader code.

With the help of the jumpers (shown in Figure 3-1) a user can choose between getting power from
PoE or an external DC power supply. The TL2575HV (shown in Figure 3-2) is a step-down converter
[32] which makes it possible to use any DC voltage supply between 3.3V and 60V. In our project we
will only utilize PoE (as described in section 2.5). The Ethernet cable from the motherboard needs to
be connected to the power sourcing equipment (PSE). This PSE function is generally provided by a
switch or router with PoE functionality. The TPS2375 [33] chip takes care of the PoE signaling to tell
the host (PSE) the amount of power that it requires. Our board is designed to be a class 1 Powered
Device (PD); hence its maximum power is 3.84W. Based upon our initial estimates of the amount of
power that we will require, 3.84W is more than enough power.

12

Figure 3-1

Figure 3-2

3.3.2 D
For

(shown i
commun

: The fro

: The ba

Daughterbo
our daughter
in Figure 3-3

nication with

ont side of the m

ck side of the m

oard (NFC S
rboard we se
3) is an NFC

h any motherb

motherboard

motherboard

Shield v1.0)
elected an N
C transceiver
board that su

)
NFC shield v
r that contain
upports SPI.

version 1.0 fr
ns all the nec

rom Seeedstu
cessary hard

udio [34]. Th
dware compo

his board
onents for

13

The
complete
built in P
help of a
board (i.
widely u
selected

Figure 3-3

3.4 C
In th

be conne
to be con
configur
that we p
to be ex
configur
address
previous
JTAG (s

3.4.1 C
Ther

built-in
compute
order to
door loc
network,

For o
[36]. The

* https://g

shield is bu
e module for
Printed Circ
a Texas Instr
.e., shield) to
used NFC ch
this board fo

: The front side

Connecti
his section w
ected to a ne
nnected to a
red a DHCP
programmed

xecuted will
re a TFTP s
and an app

s master stud
section 3.2.2)

Configuring
re are many
DHCP serve

er that is alre
keep the cos

ck system wi
, hence we ch

our project w
e configurati

github.com/caz

ilt around th
r contactless
uit Board (P

ruments TXB
o connect to
hip, on-board
or our projec

(a)
e (a) and the ba

ing the
we explain ho
etwork in ord
 network. To
server to pr

d into the net
be transferr
erver on the

plication to r
dent, wrote.
) programme

g the DHCP
y different w
er. Alternati

eady connect
sts of the pro
ill be installe
hose to utiliz

we used a de
ion of the DH

zulu/mind-the

he popular an
s communica
PCB) antenn
B0104 [35] le
Arduino mo

d antenna, an
ct.

ackside (b) of t

platform
ow we config
der to be able
o provide the
rovide an IP
twork boot lo
red at boot t
e network. T
run we used
We loaded h

er connected

P server
ways to reali
ively, DHCP
ted to the net
oduct as low
ed will alrea
ze one of the

esktop compu
HCP server c

e-gaps/tree/ma

nd widely us
ation in the
a and suppo
evel translato

otherboards. H
nd the possib

he NFC shield

m to the
gured the DH
e to identify
e motherboa
-address to t
oader. As de
time from a
To ensure th
d the TFTP
his code into
to one of ou

ize a DHCP
P server sof
twork to hav
as possible w

ady have one
ese computer

uter running
can be made

aster/TFTPbo

sed NXP PN
13.56 MHz b

orts both 3.3V
or. This NFC
However, be

bility to link

e networ
HCP and the

and manage
ard’s network
the motherbo

escribed in se
TFTP serve

hat the moth
Pboot* progra
o the mother

ur laptop com

P server. For
ftware can b
ve it act as a
we have assu
e or more co
rs to act as a

openSUSE
e by editing a

ot

N532 chip. Th
band. The N
V and 5V po

C shield was
ecause of its
it to our mo

(b)

rk
TFTP server
keys, hence

k interface w
oard based u
ection 2.1.1 t
er. Therefore

herboard corr
am, that Jav
rboard using

mputers.

r example, m
be installed

DHCP serve
umed that the
omputers att
DHCP serve

[29] to run th
a configurati

The PN532 p
NFC shield a
ower supply
created as a
low price, it

otherboard vi

r. As the sys
e the motherb
with an IP ad
upon a MAC
the actual ap
e, we also n
rectly asks f
vier Lara Pe
g a MSP-FE

many router
and configu
er for the ne
e site where
tached to a l
er.

the ISC DHC
ion file for th

rovides a
also has a
y with the

breakout
t use of a
ia SPI we

tem must
board has
ddress we
C address
pplication
needed to
for an IP
einado, a
T430UIF

rs have a
ured on a
twork. In
the smart

local area

CP Server
he DHCP

14

server (s
and insta

To v
network
acknowl
configur
Wireshar
192.168.

Figure 3-4

3.4.2 C
As m

this purp
that was
openSUS
DHCP se
which w

Whe
request a
experime

3.5 S
SPI

impleme
micropro
micropro

The
slaves c
provides
ENC28J
sends da
use these
Table 1:

* Note tha

see the confi
alling tool fo

verify that th
traffic; thu

ledge messag
red for it. F
rk. Note th
.1.100.

4: A scree

Configuring
mentioned be
pose we set
s acting as t
SE PC dekst
erver, we ve

was the TFTP

en connecting
and then dow
ents this did

Serial Pe
is a data lin

ented by m
ocessor (mic
ocessors that

SPI protoco
connected to
s a clock for
J60 Ethernet
ata, under the
e names for t

SPI sign

Signal Nam
SCLK
MOSI/SIM
MISO/SOM
SS (CE)

at there are oth

iguration file
or the openSU

he DHCP s
us we coul
ges were exc
Figure 3-4 s
hat the DHC

en capture of th

g the TFTP
efore a TFTP
up a TFTP s
the DHCP s
top. By usin

erified that th
P server).

g the mother
wnload the c
not happen f

eriphera
nk which ca

microprocesso
crocontroller
t support SPI

ol is designed
o a serial b
r synchroniz
controller) w
e control of
these signals
nals

me
S

MO M
MI M

S

her commonly

e in Appendi
USE [29] sys

erver works
d verify th

changed and
shows a scr
CP server w

he DHCP proce

server
P server simp
server. We d
server. The
ng Wireshark
he TFTP serv

rboard to the
configured a
faultlessly. T

al Interf
an operate in
ors. Using e
r) to comm
I.

d to support
us. The ma
ation. The s

which respon
the micropro

s in our descr

Serial Clock
Master Outpu
Master Input
Slave Select (

y used names

ix A) or by u
stem.

s we used W
hat the expe

that the mot
reen capture
was running

ss

plifies the loa
decided to se
TFTP serve

k on the wor
ver worked b

e network, th
application fr
This is also la

face (SP
n full or hal
either a 4-w

municate wit

a single mas
aster (the m
slave is a de
nds to the ma
rocessor. Tab
ription*. SPI

Desc

ut Slave Inpu
Slave Outpu
(Chip Enable

for these sign

using the Ya

Wireshark (S
ected DHCP
therboard rec
e of the DH
g on a com

ading of a ne
et up the TF
r was also c

rkstation that
by transferrin

he motherboa
from the TFT
ater explaine

PI)
lf duplex mo
wire (or 3-
th other dev

ster device t
microprocesso

vice (in our
ater’s commu
ble 1 shows
utilizes 8 bit

ription

ut
ut
e)

nals.

aST [37] whi

ee section 3
P discover,
ceived the IP
HCP handsh
mputer with

ew applicatio
FTP server o
configured t
t was hosting
ng files betw

ard should in
TP server. H
ed in section

ode. This in
wire) conne
vices such

o communic
or) initiates

case either
unication, rec
the signals u
t bytes [38].

ich is a conf

3.1.1) to mo
offer, requ

P address tha
hake as cap
h the IP ad

on into the b
on the same
through YaS
g both the T

ween two PC`

nitially make
However in o

4.3.

nterface is co
ection SPI
as sensors

cate with one
communica
a NFC-read

ceives comm
used by SPI.

figuration

onitor the
uest, and
at we had
ptured by
ddress of

board. For
computer

ST in the
TFTP and
`s (one of

e a DHCP
our initial

ommonly
allows a
or other

e or more
ation and
der or the
mands and
. We will

15

As mentioned above, the master initializes the communication between the devices. Before
initiating this communication the master first configures the serial clock of the selected SPI to a
frequency which is less or equal to the maximum frequency supported by the slave device. For
example, in our case this frequency is either 5 MHz for the NFC-reader or 8 MHz for the ENC28J60
Ethernet controller. The code* to configure the SPI interface used to connect to the Ethernet controller
is shown below:

* Extracted from the config.c file of the TFTPboot program. Note that the code has been reformatted for
inclusion in this thesis.

16

From hardware_board.c
// ENC28J60
#define ETH_CS BIT0
#define ETH_CS_IN P3IN
#define ETH_CS_OUT P3OUT
#define ETH_CS_DIR P3DIR
#define ETH_CS_REN P3REN

#define ETH_INT BIT2
#define ETH_INT_IN P1IN
#define ETH_INT_DIR P1DIR
#define ETH_INT_OUT P1OUT
#define ETH_INT_REN P1REN
#define ETH_INT_IES P1IES
#define ETH_INT_IE P1IE
#define ETH_INT_IFG P1IFG

#define ETH_RST BIT3
#define ETH_RST_OUT P1OUT
#define ETH_RST_DIR P1DIR

From config.c:
// ENC28J60 SPI port
#define ETH_SIMO BIT1
#define ETH_SOMI BIT2
#define ETH_SCLK BIT3
#define ETH_SPI_IN P3IN
#define ETH_SPI_OUT P3OUT
#define ETH_SPI_DIR P3DIR
#define ETH_SPI_REN P3REN
#define ETH_SPI_SEL P3SEL

void InitializeEthSpi(void)
{
 // Activate reset state
 UCB0CTL1 |= UCSWRST;

 // Configure ports
 ETH_SPI_SEL |= ETH_SCLK + ETH_SIMO + ETH_SOMI;
 // Special functions for SPI pins

 ETH_SPI_DIR |= ETH_SIMO + ETH_SCLK; // Outputs
 ETH_CS_DIR |= ETH_CS;
 ETH_CS_OUT |= ETH_CS;

 // Configure SPI registers
 UCB0CTL0 |= UCCKPH + UCMSB + UCMST + UCSYNC;
 // Clock phase 0, Clock pol 0, 8-bit
 // MSB first, Master mode, 3-pin SPI, Synch
 UCB0CTL1 |= UCSSEL_2; // SMCLK clock source
 UCB0BR0 = 0; // No Prescaler (8MHz)
 UCB0BR1 = 0;
 UCA0MCTL = 0;

 // Deactivate reset state
 UCB0CTL1 &= ~UCSWRST;
}

The master then selects the desired slave by pulling the SS line to the “low” state. The slaves that
have not been activated by the master using its slave select will disregard the serial clock and MOSI
signals from the master. In this manner the master selects only one slave at the time [39].

When the slave wishes to communicate with the microprocessor (master) the slave can use an
interrupt line to indicate that an event has occurred. Otherwise the master needs to poll the slave(s) to
see if it (they) have any input.

17

The
connect,
polarity

Figure 3-5

At C
of the cl
clock’s r
the clock
CPHA =
with CPH
of the clo

Thes
these dif
Table 2:

SPI interface
 there are f
and phase; F

: SPI tim

CPOL = 0 (c
lock is one.
rising edge a
k’s falling e

= 0 data are
HA = 1 data
ock.

se settings re
fferent mode

The fou

e can work i
four clock m
Figure 3-5 sh

ming diagram, th

clock polarity
When CPOL

and data are
edge and dat
captured on

a are captured

esult in a tot
s.
ur different clo

n different c
modes. The
hows a timing

he vertical red

y) the base v
L = 0 is cho
transmitted
ta are transm
clock’s falli

d on the cloc

tal of four c

ck modes

Mode

0

1

2

3

clock modes
clock mode
g diagram of

line represent

value of the c
osen at CPHA
on the fallin

mitted on the
ing edge and
ck’s rising ed

clock modes

CPOL

0

0

1

1

depending o
e depends on
f the differen

CPHA = 0 and t

clock is zero
HA = 0 (clock
ng edge, with
e clock’s ris
d data is tran
dge and data

that can be

CPHA

0

1

0

1

n the microc
n the config

nt clock mode

the blue line CP

o and at CPO
k phase) data
h CPHA = 1
sing edge. W
nsmitted on t

is transmitte

configured.

controller yo
guration of t
es.

PHA = 1

OL = 1 the b
a are capture
 data are cap

When CPOL
the rising ed
ed on the fal

 Table 2 sum

u want to
the clock

ase value
ed on the
ptured on
= 1 and

dge, while
lling edge

mmarizes

4 Im
In th

included
at the D
gives a s

This
verify ne
packets.
in sectio
section 4
The who
conclude

4.1 V
As w

ensure th
used Wir
board ha
echo req
network
network

Figu
Server)
192.168.

Figure 4-1

mpleme
his chapter w
d programmin
Dropbox link
short descript

s chapter beg
etwork conn
In section 4

on 4.4 and t
4.6. The NFC
ole system w
es with a des

Verifying
we use UDP
hat our syste
reshark to vi

ad requested
quest messag

interface of
stack was ru

ure 4-1 displa
with the IP
.1.7.

: Wiresh

entation
we will expla
ng, reading a

k https://www
tion of what

gins with a d
nectivity and
4.3 we descri
the debuggin
C tags, the a
working tog

scription of th

g the ne
P packets to
em was com
iew the traffi
and received

ge to our bo
f the board
unning on the

ays an ICMP
address of

hark capture of

n and A
ain the steps
and a lot of
w.dropbox.co
the folders c

description i
d in section
ibe the idea o
ng of the co
android appli
gether with
he complete

etwork c
send data to

mmunicating
ic between th
d an IP addre
oard just to
had no prob
e microproce

P Echo reque
192.168.1.1

the ICMP requ

19

nalysis
s we toke to
debugging. A
om/sh/43h51
contain and w

in section 4.
4.2 we desc
of network b

onnection bet
ication and th
a Python U
smart door l

connecti
o and from t

correctly w
he DHCP ser
ess we used
see if it wo

blems receiv
essor.

est from the
and a respo

uest and the re

s
achieve the
All the files
19564hspkw
what they we

.1 of how w
cribe how w
booting. The
tween the b
he python se

UDP server i
lock system.

ion
the motherbo
ith our DHC
rver and our
the program

ould respond
ving and sen

computer (t
onse from o

spond back.

goals we se
used in this
2/RcXkXGtC

ere used to do

we could ping
we transferre

SPI configu
oard and sh
erver are des
is described

oard of our s
CP server. In

board. After
m ping on the

correctly. T
nding ICMP

hat was also
our board wi

et in chapter
project can

tCqQ . The
o.

g the mother
ed and receiv
urations are d
hield are des
scribed in sec

in 4.8. The

system we w
n order to do
r establishin

e PC to send
This verified
packets and

o acting as ou
ith the IP ad

3, which
be found
appendix

rboard to
ved UDP
described
scribed in
ction 4.5.
e chapter

wanted to
o this we
g that the
an ICMP

d that the
d that the

ur DHCP
ddress of

20

4.2 UDP Echo software
In order to ensure that we could send and receive UDP packets containing our own data, we

decided to start by implemented a simple program to echo a string that we sent to the board from the
PC. Since our board used the ENC28J60 for its network communication we had to learn the steps that
are necessary for sending UDP Packets, so by looking into frequency scanner project file in the master
project of Javier Lara Peinado [4] and also reading into the UDP.c file provided by Microchip we
finally managed to understand the steps required for our goal. These steps are described below.

In order to send a UDP packet we must:

1. Call the “ARPResolve” routine to obtain the MAC of the IP destination we wish to
send the UDP datagram to.

2. Call UDPOpen to open a socket to be used to send our UDP Packets.
3. Call UDPisPutReady (sets the current socket as the active socket, and determines how

many bytes can be written to this UDP socket). This step is important because the
ENC28J60 provides the buffering for the IP packet (or packets), hence the processor
does not have to buffer the complete datagram – thus reducing the amount of RAM
memory that the program needs.

4. Call UDPPut (or UDPPutArray) for building and storing the data into the packet
within the ENC28J60.

5. Call UDPFlush to send our packet to the desired destination.
6. Call UDPClose to close the socket (this is not mandatory)

When the Ethernet controller receives UDP packets, then we need to use the following two
functions:

1. Call UDPisGetReady (sets the current socket as the active one, and determines how
many bytes can be read from the UDP socket) and

2. Call UDPGet (reads a byte from the currently active socket).

For this testing we used a shell window on the PC that was hosting the DHCP server. We invoked
our test program with the destination IP address and the port of the board to send our text message and
received the expected response back from the board. The result of test is shown in Figure 4-2, where
we sent the string “TEST” and received this response echoed back from our board. We could have
chosen to use the Transmission control protocol (TCP) for our data packets, but since we also wanted
the TFTP in our project and it already used the UDP for its file transfers, we thought it would be better
to stay with the UDP protocol, also the UDP protocol has faster file transfer speed and if case of a
packet drop then one would have to just resend the packet.

21

Figure 4-2

4.3 N
As m

TFTP pr
immedia
that the
program
the latest

We
immedia
to send t
12.04 LT
receives

: The da

Network
mentioned in
rotocol. We

ately after th
board would

mmer to the b
t version of t

set up a TFT
ately after it r
the file to an
TS in a Virt
the file from

rk blue line sho

k Booting
n section 2.3
 wanted to
e board has
d directly loa
board. In the
the software

TP server wh
received an

nother PC co
tual-box [40]
m our TFTP s

ows the messag

g
 we knew th
take advant
received an
ad its code t
case of depl
when it next

hich include
IP address. B

onnected to th
]. Figure 4-3
server.

ge TEST being e

he TCP/IP st
tage of to a
IP address f

through the n
loyed system
t rebooted or

d an exampl
Before we tr
the same TFT
3 displays th

echoed back fr

tack implem
automatically
from a DHCP
network, thu

m this would
r when comm

le file that w
ied to send t
TP server. T
he Wireshark

om our board.

mented in our
y transfer ou
P server. Th

us avoiding t
d mean that e
manded to.

was meant to
this file to ou

The other PC
k output as

r board supp
ur code to t
he thought of
the need to c
each device

o be sent to o
ur board we

C was running
Ubuntu requ

ported the
the board
f this was
connect a
could get

our board
first tried
g Ubuntu
uests and

22

Figure 4-3

Now
was to h
DHCP r
requested
kept loop
which m
transfer t

 Due
this reaso

4.4 S
The

below. T
// RF S
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

: File Blin

w that we kn
have the sys
response from
d a small pa
ping request

made the TF
to our board

e to other pri
on debuggin

SPI Drive
declarations

These ports u
SPI port
e RF SIMO
e RF SOMI
e RF SPI
e RF SPI O
e RF SPI D
e RF SPI R
e RF SPI

e RF SCLK
e RF SPI
e RF SPI

nker.txt is requ

new that the
stem (mother
m the DHC

art of the file
ting the first
TP server re
.

iorities in our
ng the TFTP l

ers conf
s that define
use the UCA1

IN
OUT
DIR
REN
SEL

SCLK DIR
SCLK SEL

uested from 19

TFTP and D
rboard) requ

CP server. H
 and stored i
t block becau
esend the fir

r project we
loading of an

figuratio
the pins to b
1 register on

B
B
P
P
P
P
P

B
P
P

92.168.1.100 an

DHCP config
uest the file

However, her
it in the first
use the moth
rst block. B

never succee
n application

on
be used for th

the MSP430

BIT6
BIT7
P5IN
P5OUT
P5DIR
P5REN
P5SEL

BIT6
P3DIR
P3SEL

nd successfully

guration hav
from the TF

re we ran in
t block of the
herboard nev

Because of th

eded in findi
n remains as

he interface t
0.

received.

e had no pro
FTP server t
nto a problem
e memory. A
ver acknowle
his our file

ing a solution
future work.

the NFC dau

oblems, our
that it learn
m as the bo

After this, the
edges the fir
was not suc

n to this prob
.

ughter card a

next step
ed in the
oard only
e transfer
rst block,
ccessfully

blem. For

are shown

23

To configure the SPI interface used to connect the daughter card (NFC-shield) to the master
(MSP430-microcontroller) there is some settings that need to be set for the SPI interface to work
properly. As mentioned earlier the daughter card is based on a PN532 microchip which needs to have
the settings [41] shown in Table 3.
Table 3: PN532 SPI settings

The mode used for the clock is Mode 0
Data is always sampled on the first clock edge of SCK
SCK is active High
The data order used is LSB first

These settings are set in the control register of the SPI interface we are using, in our case
UCA1CTL0. We also have to choose a clock source for the signals to be sent. The unified clock
system (UCS) module in the MSP430 provides various clocks. There is up to five clock sources to
choose from [30]:

XT1CLK Low-frequency or high-frequency oscillator that can be used with low
frequency 32768 Hz watch crystals, standard crystals, resonators, or external
clock sources in the 4 MHz to 32 MHz range.

VLOCLK Internal very low power, low frequency oscillator with a typical frequency of
10 kHz.

REFOCLK Internal, trimmed, low-frequency oscillator with 32768 Hz typical frequency.

DCOCLK Internal digitally-controlled oscillator (DCO)

XT2CLK Optional high-frequency oscillator that can be used with standard crystals,
resonators or external clock sources in the 4 MHz to 32 MHz range.

Three clock signals are available from the UCS module:

ACLK Auxiliary clock (32 kHz).

MCLK Master clock (8 MHz).

SMCLK Subsystem master clock (8MHz).

These three clocks (ACLK, MCLK, SMCLK) are software selectable as XT1CLK, REFOCLK,
VLOCKL, DCOCLK, and when available, XT2CLK. ACLK and SMCLK are software selectable by
individual peripheral modules and are available externally at a pin, and MCLK is used by the CPU and
system. All these clocks can be divided by 1, 2, 4, 8, 16, or 32 to provide the desired clock frequency.
As mentioned in section 3.4 the maximum SPI clock frequency for the PN532 is 5 MHz, to generate
the desired clock frequency we chose to use the SMCLK as our clock source and divided it by 2 to get
a 4 MHz clock source which the PN532 can utilize.

4.5 Implementing the SPI functions
SeeedStudio, the developer of the NFC-shield, provided some example source code for their NFC-

Shield for the Arduino board. This source code does not include the actual transmit and receive
functions for the SPI interface as these examples were written for the Arduino board which provides
SPI functions via a SPI library. Because we are using the MSP430-microcontroller we had to
implement these SPI functions for the MSP430 in order to make the example code work.

Energia [42] is a prototyping platform with the goal to bring the Arduino framework to the Texas
Instruments MSP430. However, Energia only supports the MSP430 LaunchPad and FraunchPad,
which are not based on the MSP430f5437a (the microcontroller that we are using). The main
difference is the pin map of the boards and the registers, as mentioned in section 4.4 are we using the
UCA1CTL0 register for the SPI connection (NFC-shield), as the LaunchPad and FraunchPad may use
other interfaces. However, the transmit and receive functions should work with a change in the
register.

24

Look
was criti
needed t
and the s

The
simply tr
response

We h
microcon
slave is t

4.6 C
We u

we had t
motherbo
Similarly
access co
shows th

Figure 4-4

The
device an
the get-f
version i
the oscil
Figure 4
shield (li

* See app

king at the e
ical for the
to implemen
slave select (

transmit and
ransmit a zer
e.

had to write
ntroller we a
to be selected

Connecti
used SPI to
to connect th
oard brough
y the NFC s
onnector. Th
hese connecti

4: The SP

NFC shield
nd sends bac
firmware-ver
it is running
lloscope, des

4-5 shows the
ine 3). Note

endix

example sou
example cod

nt was the tra
(SS) function

d receive fu
ro and then r

the SS func
are using. Th
d, and the rev

ing the d
connect the

he connection
ht the SPI s
hield’s SPI p

his would see
ions between

I, power, and g

d (daughterbo
ck a respond
rsion comma
. This metho
scribed in se
e command
that line 1 on

urce code fro
de to work
ansmit functi
n to select the

unctions are t
read the resp

tion ourselve
his function s
versed when

daughte
daughterboa

ns mentioned
signals, 3.3 V
pins, 3.3 V p
em to have m
n these two b

ground connect

oard) had a
d to that comm
and to the N
od was used
ection 3.2.1,
being sent fr
n the display

om SeeedStu
on the MSP
ion* (which
e SPI slave t

the same fu
ponse. When

es because th
simply chang

n unselected.

erboard
ard (NFC Sh
d in Table 3
V power, a
power input,

made it easy t
boards.

tion between t

built in pro
mmand. For e
NFC shield,

to verify th
, to see if th
from the MS
y shows the c

udio we cou
P430. The m
is basically t

to communic

nction, as w
we transmit

he one provi
ges the SS p

 and de
hield) to the
-1, as well a
nd ground t
, and ground
to connect th

he boards

ogram that g
xample; if th
the shield sh
at the SPI co

here was any
P430 (line 2

clock signal f

ld determine
most critical S

the same as
cate with.

when we wan
t data we sen

ded from En
in from HIG

bugging
motherboard
s provide po
to an easy

d were broug
he two board

ets comman
he master dev
hould respon
onnection wa
y response fr
2) and no res
from the SPI

e which SPI
SPI function
the receive

nt to receive
nd data and i

nergia did no
GH to LOW

g
rd. In order t
ower and gro
to access c

ght to a conv
ds together. F

nd from a SP
vice (MSP43
nd with the

was working.
from the NF
sponse from
I master.

 function
n that we
function)

e data we
gnore the

ot suit the
when the

to do this
ound. The
onnector.

venient to
Figure 4-4

PI master
30) sends
firmware
We used
C shield,
the NFC

25

Figure 4-5

As t
there wa
connecte
looked a
connecti
too many
NFC shi
of the N
Figure 4

* Easily A
schematic

: Get Fir

the NFC shie
as another co
ed. To find th
at the SPI sig
ions (8 of wh
y for us to ex
ield to see ex

NFC shield (
-6) and they

Applicable Gra
cs of PCBs.

mware Version

eld was desi
onnection in a
hat connectio

gnals and oth
hich are grou
xamine to fin
xactly what
(SeeedStudio
provided a s

aphical Layou

n command on

igned to be
addition to th
on we decide

her signals on
unds) betwee
nd which con
each of the c

o) provided a
schematic for

ut Editor (EAG

 the motherbo

used with th
he SPI signa
ed to attach
n the oscillos
en the shield
nnection was
connectors w
a board layo
r the board (

GLE) is an ele

ard without an

he Arduino b
als, 3.3 V pow
the NFC shi
scope. Howe

d and the Ard
s missing, we
was connecte
out of the b
(also in Eagle

ectronic desig

ny response

board, there
wer, and grou
eld to an Ar

ever, there w
duino board.
e looked at th
ed to. Fortun
oard in Eag
e format).

n automation

was a suspi
und that nee

rduino board
were approxim

As this seem
he board layo
nately, the de
gle* format (s

application to

icion that
eded to be

and then
mately 58
med to be
out of the
evelopers
shown in

o make

26

Figure 4-6

In ad
interfacin
across th
many of
examinin
not actu
after exa
side of t
connecto
level tra
interface
datashee
sources
ground c

Afte
sent the
any resp

* The defi

: Board l

ddition, to th
ng to our m

he top and th
f these conne
ng the board

ually connect
amining whic
the board on
or on the bott
anslator [43]
e, power, an
et for the vol
to function.

connector thi

er connecting
get firmware
onse. Figure

finition of the

layout of the N

he SPI conn
otherboard)

he bottom of
ectors were c
d layout we
t to anything
ch signals w
ne of the con
tom of the bo
(marketed U

nd ground c
ltage-level tr

However, w
is effectively

g power to th
e version com

e 4-8 shows t

commands fo

NFC shield (disp

nections on t
when the sh

f the board a
connected to
could exclud
g on the shi
ere interface
nnections th
oard. Follow
U6 on the s
connector an
ranslator we
with only a
y isolated all

he level trans
mmand* to th
the command

r the PN532 N

played by Eagle

the right end
hield is plugg
are connected
 different pa
de most of t
ield (despite
ed to at the S
hat we did n
wing this conn
schematic) w
nd from the
learned that
single powe
of the SPI si

slator (using
he NFC shie
d being sent

NFC shield ca

)

d of the boar
ged into to t
d. Based upo
arts of the log
the connecto
e what the s
SPI, power, a
not have was
nection lead

which gets p
e Arduino p
t the voltage-
er source fro
ignals from t

the dark gre
eld from the
on line 2 and

an be found in

rd (to which
the Ardunio
on the schem
gic on this sh
rs on the bo
chematics su
and ground c
s the connec
us to the TX

power from t
power interf
-level transla

om the SPI i
the PN532 ch

een wire show
Arduino boa
d that there a

the file gw.h

h we connec
board the co

matic we beli
shield. Howe
oard because
uggested). M
connector on
ction from th
XB0104PWR
two sources
face. Lookin
ator needs tw
interface, po
hip!

own in Figure
ard to see if t
a response on

in the project

ted when
onnectors
ieved that
ever, after
 they did

Moreover,
n the right
he power

R voltage-
, the SPI

ng at the
wo power
ower, and

e 4-7) we
there was
n line 3.

t folder

27

Figure 4-7
ex

Figure 4-8

Now
NFC shi

Figu
green ca
(Note th
oscillosc

: The con
xamine the sign

: Get Fir

w that all the
eld to the M

ure 4-9 show
able on the t
hat this is 3.3
cope in Figur

nnection betwe
nals

mware Version

 connection
SP430 moth

s the final, w
top of the N
3V.). The sig
re 4-10.

een the Arduin

n command on

had been fo
erboard and

working, com
FC shield is

gnals that are

no board and th

 the Arduino b

ound and test
connected th

mmunication
s the additio
e transmitted

he NFC shield w

oard with resp

ted with the
he oscillosco

between the
nal power c

d and receive

with the oscillos

onse

Arduino boa
ope to examin

MSP430 an
onnection fo

ed are shown

oscope connect

ard we conn
ne the signal

nd the NFC s
or the level t
n on the scre

ed to

nected the
ls.

hield, the
translator

een of the

28

Figure 4-9

Figure 4-1

Line
slave-in
select (S
comman

: The fin

0: Read S

e 1 on the os
(MOSI) con

SS) line. Line
nd consist of

al connection w

PI Status sent f

scilloscope i
nnection, line
e 2 shows the
the hexadec

with the oscillo

from the MSP4

in Figure 4-1
e 3 is the sla
e read SPI st

cimal value o

oscope connect

430 to the NFC

10 is the clo
ave-out-mas
tatus comma
of 2, which c

ted to examine

shield with a re

ock of the M
ter-in (MISO

and being sen
can be seen o

e the signals

esponse

MSP430, line
O) connectio
nt to the NFC
on line 2 in F

e 2 is the ma
on, line 4 is
C shield, the
Figure 4-10,

aster-out-
the slave
 read SPI
note that

29

the SPI operates in LSB mode*. The command is sent during the first clock sequence and during the
second clock sequence the NFC shield replies with its status, in this case the value 1 which means that
the SPI device is ready.

4.7 Setting up appropriate triggering of the mixed
oscilloscope

An important element of the debugging describe in the previous section was setting up an
appropriate trigger – so that one could see the SPI commands and responses.

The signals that are shown on the oscilloscope are in real time, this means that the signals are
shown as they are sent and this happens very fast, which makes it hard to inspect the signals. One can
pause the oscilloscope on a signal but this method is not very precise or effective as the screen is
paused at the moment the button is pressed, which means that there might not be any or the right
signals shown on the screen of the oscilloscope. This is why we had to use the trigger function of the
oscilloscope.

To set up the oscilloscope to use the trigger function we have to set up a pattern to trigger on, to do
this we simply pressed the Pattern button on the oscilloscope, this brings up a new menu to set up the
pattern to follow on each line connected to the oscilloscope. We can choose from triggering on a
falling edge of a signal or on a rising edge. The oscilloscope that we used only supports triggering on
one line, which means that we can only select one signal to follow and edge trigger on, however, the
pattern can be configured to include other lines but this only checks if the other lines is in High or Low
mode depending on the pattern we set. For example: if we would like to trigger on the first signal
when we send data we set up the pattern to trigger on the rising edge of the data line, we also know
that the SS line should be in Low state as the slave board is selected, this pattern should freeze the
screen on the oscilloscope at the moment when there is a rising edge of the data line and the SS line is
in Low state. There is a lot of options to set up a pattern, in our case we used the “and” operator to
choose a pattern, however, one can use the “or”, “exclusive or”, etc. to setup a pattern between the
different inputs.

4.8 Android application and NFC Tags
As mentioned in section 2.2 NFC is a contactless communication technology, it allows a data

transfer between two NFC enabled devices. An NFC tag could be realized as a sticker which contains
a small microchip that can store a small amount of data and transfer it to a NFC enabled device. How
much data you can store depends on which type of tag you are using, since different types of tags have
different memory capacities. The tags used in our project are MIFARE Classic tags [44] with a
memory size of 1 Kilobyte (KB). The MIFARE Classic tags are widely used today in public
transportation, electronic toll collection, and in loyalty cards. Our tags are also NFC Data Exchange
Format (NDEF) enable and formatable. This means that one can store messages or homepages and
even different application-defined actions on the tag to be viewed or used from any NFC enabled
device. Since the tags are formatable an application can delete the data stored on the tag and write new
content to be stored by the tag. The tags we used also contain a Unique Identifier Number (UID)
which we used in our project to identify a specific.

In order to read the UID of each NFC tag we used the Android application TagWriter [45] from
the Google play application market. This application was developed by the company NXP
Semiconductors [46], the same company as makes the PN532 NFC chip used on the shield.

We implemented an application in the motherboard. This application simply sends a UID read
requests to the NFC shield. If an NFC tag is located near the antenna of the NFC shield the NFC shield
will get a response from the tag. The application places the tag’s UID into a UDP packet and sends it
to our UDP server (a program running on the PC acts as a UDP server). The UDP server compares this
tag against entries in a list of acceptable NFC tag UIDs associated with this smart door lock system. If

* See section 4.4

30

the UID of this tag is in the list, then the UDP server sends an UDP packet to the board informing it to
either lock or unlock the lock. For our testing we indicated whether access was granted or denied by
turning on a green (granted) or orange (denied) LED on the board.

4.9 UDP Server
The UDP server program was written in the programming language Python [47] because of the

simplicity of writing the code. The server program also generates console output indicating if the
scanned NFC tag is to granted or denied access followed by an OPEN or CLOSE message being sent
back to application running on the motherboard. For learning how to write a UDP server in Python we
looked into the wiki page of Python for UDP communications [48]. When we had learned and
understood how to create UDP sockets and transfer and receive UDP packets, we created our own very
simple server which received different blocks of the NFC Tag UID. There were a total of 4 blocks
received and each block represents 8bits. Once all the blocks are received from the NFC tag UID and
converted from hexadecimal to decimal values we then utilized this value to lookup if this card should
grant access or not. There are of course some flaws with this method since another Tag’s UID might
have the same value and then we would grant access even those we should not do so. However, this
simple server was sufficient to verify that our UDP server combined with the motherboard reading the
NFC Tag’s UID was working.

The python server program is included in the appendix.

4.10 The Smart Door Lock
Now that everything is working, it was time for to test the whole system. This means that the

board sends a UDP packet to the UDP (Python) server followed by receiving a UDP packet from the
server which tells whether access was granted or denied. Finally the motherboard replies to the UDP
server telling it if the lock has been opened or locked.

Figure 4-11 displays the output of Wireshark and the console output of the UDP server in the case
when access is granted. We can see that a UDP packet was sent from the board to the UDP server
which examines the tag’s UID and the server’s response UDP packet informing the board of its
answer, followed by another UDP packet from the board informing the server if the lock is at that
moment OPEN or CLOSED. In this example the tag will unlock the lock and grant access to the user.
A similar procedure was used with a tag that was not registered with the UDP server resulted in a
decision to deny access. We can see from these exchanges that the basic functionality of the smart
door lock system has been realized.

31

Figure 4-1

4.11
As w

below sh
Table 4:

Hardwa

MSP430

Motherb

NFC Shi

Complet

*This val
in the cal
† This me

1: Tag wit

Pow
we aimed to
hows the pow

The po

are

0f5437a

board

ield

te system

lue is based on
culation.

easurement is

th UID e29847c

wer cons
develop a c

wer consume
wer consumpt

Active

~ 0.00

~ 0.96

~ 0.44

~ 1.4 W

n the informat

based on the v

cd is read and a

sumptio
cheap system
ed by the diff
ion of the diffe

e

024 W*

6 W†

4 W†

W†

tion provided

value shown o

access is grante

on
m, we have t
ferent parts o
erent parts of t

Standby

~ 0.000

-

~ 0.34 W

~ 1.3 W

in the data sh

on the Multim

ed followed by

to consider t
of the system
he system

y

004 W*

W†

W†

eet for the com

meter.

response from

the power co
m running in d

mponent, the h

m the board.

onsumption;
different mo

highest values

the table
des.

s are used

32

The system does not operate in the active state all the time. In active mode all the systems’
functions are running, this includes the motherboard and all the components of the NFC Shield, as well
as the electromagnetic field that the antenna produces to power the NFC tag. In standby mode the
system does not send any packets through the Ethernet interface, also there is no NFC tag to provide
with power.

The measurements are made the same way as Julia Alba Tormo Peiró describes in her master’s
thesis in section 3.2.1.1.6 [5].

33

5 Conclusions and Future work
This chapter summarizes our conclusions and suggests some future work that could be built upon

what has been done and could address the parts of the original problem that have not been realized.
The chapter ends with some reflections on the economic, social, and ethical issues considered during
this thesis project.

5.1 Conclusions
To make a system that would achieve the project goal as stated in section 1.3 required that we

achieve eight different sub goals (as stated that in the beginning of chapter 3). While we did not
succeed in realizing some of our goals, we did managed to develop a working NFC reader that can
read the UID of an NFC tag by using a NFC shield connected to a MSP430537a microcontroller via a
SPI interface. We also managed to send UDP packets containing the NFC tag’s UID to our UDP
server that based upon the UID either granted or denied access to the user. Although the result of the
access decision was indicated via a green or orange LED on the board, this could easily be turned into
a signal to control a relay to activate an electric strike plate for a period of time or to active an
alternative means of unlock/locking the door’s lock.

Because the project spans of a wide range of disciplines involving both hardware and software,
there were a lot of tools for us to learn and use. Programming a microcontroller and learning how to
connect two different SPI devices included some debugging which led us to learn how to use a mixed
signal oscilloscope. Also, we learned how to create, send, and receive UDP packets with the
microcontroller. In addition to using the microcontroller we learned how to send and receive UDP
packets using Python programming to realize our UDP server.

For monitoring the network traffic we used the software Wireshark. We learned how to make use
of this software both for examining the protocols and packets that were being exchanged. Additionally,
we learned that we could generate UDP messages within the application running on the
microcontroller to display debugging information via Wireshark.

If we were to do the project again one of the things we would do differently is to read more about
what is required of the components to function together before starting our coding. We would also not
take for granted that things will work correctly right away. Furthermore, we will be more aware that
there might be information missing in the documentation of the product, such as we experienced with
the need for the second power source for the TXB0104PWR chip on the NFC shield. We think that
reading the documentation and looking at the schematics of the components would prevent errors such
as this from taking as much time as it did.

Additionally, rather than getting stuck on one problem in the early stage of the project one should
focus on going further with the other goals rather than spending too much time attempting to fix one
specific problem. In the end we managed to get a working system, despite some parts of the project
being modified or eliminated because of the limited time for this project. For the future we learned that
when developing a system we should do a lot more research (specifically reading and studying the
documentation) in order to avoid minor problems causing a lot of frustration and unnecessary time
being spend on them.

The most significant outcome of this project was that we learned how to interface the NFC shield
to any SPI capable microcontroller, rather than requiring that the NFC shield be plugged into an
Arduino. When doing research on this project we found that no one had previously solved this
problem despite many people having encountered problems when trying to make use of NFC shields
with platforms other than the Arduino. We published our solution to this in a posting* to the TI E2E
Community on October 17 2013 at 06:56 AM so that others could build upon our solution.

* http://e2e.ti.com/support/microcontrollers/msp430/f/166/p/292483/1020503.aspx

34

5.2 Future work
Currently we have a NFC reader that only reads a NFC tag’s UID then sends this information in a

UDP packet to a simple UDP server that makes a decision and responds with an access granted or
denied response. Our NFC reader is currently only reading a tag in MiFare target id mode; the next
step would be to make it work in peer to peer mode so it can communicate with a smartphone with an
NFC interface. Once the NFC reader works in peer to peer mode, then one could develop an Android
application that will use NDEF for transferring a message. On the 31st of October 2013 Google
introduced KitKat 4.4 [49], a version of Android which makes it possible for an Android smartphone
with NFC to emulate a NFC smart card. This was something that we did not have during our project.
This card emulation mode will be very helpful for future communication between the NFC reader and
a smartphone.

Creating a full-fledged server with a database of all the NFC tag UIDs which should be granted
access should be developed together with a webpage to manage the keys, update the database, and
generate one-time or limited use soft tags that could be used by a smart phone – rather than being
limited to making an access or deny decision based simply upon a tag’s UID.

Because of the limited time we did not research how the lock should be installed on the door. The
system needs to have a set of sensors and motors to be able to detect if a door is opened/closed and
locked/unlocked, what type of sensors and motors should be used and how they should be installed is
something that needs to be researched and developed.

An additional area that has not been explored in this thesis project is how to implement
appropriate security for this system. This includes how to realize the appropriate cryptographic
functions in the motherboard and how to realize them at the server. Using these cryptographic
functions is should be possible to secure the boot loader (so that only properly signed code could be
loaded), so that cryptographic tokens could be utilized for access control (rather than using UIDs
which could easily be generated using a NFC equipped smartphone), and developing timed challenge
response security so that one could ensure that the NFC device is actually in front of the NFC reader
and not elsewhere (in order to avoid relaying of NFC communication). Also in the case of NFC tags
there is unused memory in them which could be used to put in some security functions. Since our NFC
reader forwards data to a UDP server there is a need of securing this transportation over the network,
and using a usual Transport Layer Security might be a good idea to look into.

Last but not least it would be great to make the network bootloader work, since it would ease the
process of distributing updates to the software that should be run in the board, while avoiding the need
to physically attach the FET debugger to the board.

5.3 Reflections
The goal with our bachelor’s thesis project was to simplify a way to control access via a locked

door. Since NFC technology is becoming more widespread - as seen in public transportation, loyalty
cards, and smartphones - the choice of using the NFC technology together with the UDP packets
seems a very smart and useful tool for the future. In this sense we consider this bachelor’s thesis
project to have a positive social impact if this solution can be realized and deployed in the future.

The use of the MSP430F5437a ultra low power microcontroller together with NFC shield and
having everything powered via PoE makes the hardware of this project energy efficient, this means
environmental considerations were taken in the choice of the hardware. Moreover, because the board
we used supported PoE all of the power for the system was sent over the Ethernet cable, thus
eliminating the materials and labor costs associated with having to provide mains or another separate
wiring plant to power the system.

As our board utilized the NFC shield designed for an Arduino by interconnecting the shield via an
SPI interface with a MSP430F537a microcontroller with an ENC28J60 for its network
communication, we avoided the need for an Arduino with two shields – one for NFC and for Ethernet
and an external power supply and a nearby mains power outlet, thus there was a lower economic cost
by using this hardware.

35

We have not encountered any ethical issues when carrying out this bachelor’s thesis project other
than the issue of identifying users to be given access to a door based upon the UID of their NFC tag.
This requirement could be removed in a future implementation that used cryptographic tokens. As
noted in the previous section all security considerations have been ignored in this project and remain
for future work.

37

References
[1] T. V. A. Pham, 'Security of NFC applications', Master’s thesis, Royal Institute of Technology,

School of Information and Communication Technology, Stockholm, Sweden, June 2013,
TRITA-ICT-EX;2013:125, Available at http://kth.diva-
portal.org/smash/record.jsf?searchId=2&pid=diva2:634369.

[2] G. Talaganov, 'Green VoIP : A SIP Based Approach', Master’s thesis, Royal Institute of
Technology, School of Information and Communication Technology, Stockholm, Sweden,
2012, TRITA-ICT-EX;2012:162. Available at http://kth.diva-
portal.org/smash/record.jsf?pid=diva2:539142.

[3] A. Lopez Garcia and F. J. Sanchez Galisteo, “Exploiting wireless sensors: A gateway for 868
MHz sensors”, Master’s thesis, Royal Institute of Technology, School of Information and
Communication Technology, Stockholm, Sweden, Jun. 2012, TRITA-ICT-EX; 2012:110.
[Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98209 [accessed July 1,
2013].

[4] J. Lara Peinado, "Minding the spectrum gaps : First steps toward developing a distributed white
space sensor grid for cognitive radios", Master’s thesis, Royal Institute of Technology, School
of Information and Communication Technology, Stockholm, Sweden, 2013, TRITA-ICT-
EX;2013:102. [Online]. Available at http://kth.diva-
portal.org/smash/record.jsf?pid=diva2:627307

[5] T. P. J. Alba, ‘Spectrum sensing based on specialized microcontroller based white space
sensors : Measuring spectrum occupancy using a distributed sensor grid’, Master’s thesis, Royal
Institute of Technology, School of Information and Communication Technology, Stockholm,
Sweden, 2013, TRITA-ICT-EX; 2013:177. [Online]. Available: http://kth.diva-
portal.org/smash/record.jsf?searchId=1&pid=diva2:636617. [Accessed: 11-November-2013].

[6] ‘Lockitron’. [Online]. Available: https://lockitron.com/preorder. [Accessed: 01-July-2013].
[7] ‘Yale unveils NFC door locks - NFC World’, NFC World. [Online]. Available:

http://www.nfcworld.com/2011/09/09/39785/yale-unveils-nfc-door-locks/. [Accessed: 04-July-
2013].

[8] ‘Vingcard debuts invisible door lock - NFC World’, NFC World. [Online]. Available:
http://www.nfcworld.com/2012/07/06/316689/vingcard-debuts-invisible-door-lock/. [Accessed:
04-July-2013].

[9] ‘European Institute of Innovation and Technology – Innovative NFC access control solution
from Telcred opens the doors to EIT ICT Labs Stockholm Co-location Centre’. [Online].
Available: http://eit.europa.eu/newsroom-and-media/article/innovative-nfc-access-control-
solution-from-telcred-opens-the-doors-to-eit-ict-labs-stockholm-co-loc/. [Accessed: 04-July-
2013].

[10] ‘List of NFC phones’. [Online]. Available: http://www.nfcworld.com/nfc-phones-list/.
[Accessed: 01-July-2013].

[11] ‘Tablet • NFC phones and other devices • NFC World’. [Online]. Available:
http://www.nfcworld.com/nfc-data/tablet/. [Accessed: 01-July-2013].

[12] ‘npelly_jham_how-to-nfc_FINAL - how_to_nfc.pdf’. Available at
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/sv//event
s/io/2011/static/presofiles/how_to_nfc.pdf, [accessed July 1, 2013].

[13] ‘What is PayPass NFC? | MasterCard®’. [Online]. Available:
http://www.mastercard.com/us/paypass/phonetrial/whatispaypass.html. [Accessed: 01-July-
2013].

[14] ‘Visa payWave for Mobile’. [Online]. Available: https://developer.visa.com/paywavemobile.
[Accessed: 01-July-2013].

[15] ‘Visa Teams Up With Samsung on Contactless Mobile Payments - Bloomberg’. [Online].
Available: http://www.bloomberg.com/news/2013-02-25/visa-teams-up-with-samsung-on-
contactless-mobile-payments.html. [Accessed: 01-July-2013].

[16] ‘Alternatives for Banks to Offer Secure Mobile Payments.doc - MObey Forum 3 - 2010 -
Alternatives for Banks.pdf’. Available at

38

https://www.nacha.org/userfiles/File/The_Internet_Council/Resources/MObey%20Forum%203
%20-%202010%20-%20Alternatives%20for%20Banks.pdf, [accessed July 4, 2013].

[17] S. Kabir, "Säkerhetsstandard för ett mjukvarubaserat säkerhetselement." Bachelor’s thesis,
Royal Institute of Technology, School of Information and Communication Technology,
Stockholm, Sweden, 2013, TRITA-ICT-EX; 2013:136. [Online] Available at http://kth.diva-
portal.org/smash/record.jsf?searchId=1&pid=diva2:631622

[18] ‘The TCP/IP Guide - TFTP Overview, History and Standards’. [Online]. Available:
http://www.tcpipguide.com/free/t_TFTPOverviewHistoryandStandards.htm. [Accessed: 01-
July-2013].

[19] ‘IEEE-SA -IEEE Get 802 Program - 802.3: Ethernet’. [Online]. Available:
http://standards.ieee.org/about/get/802/802.3.html. [Accessed: 15-November-2013].

[20] ‘What is Power over Ethernet 102909.ppt - introduction_to_poe_ieee802.3af_802.3at.pdf’.
Available at http://www.ieee.li/pdf/viewgraphs/introduction_to_poe_ieee802.3af_802.3at.pdf,
[accessed July 1, 2013].

[21] ‘What does the new Power over Ethernet standard mean for IT pros? - TechRepublic’. [Online].
Available: http://www.techrepublic.com/blog/data-center/what-does-the-new-power-over-
ethernet-standard-mean-for-it-pros/. [Accessed: 29-November-2013].

[22] ‘Code Composer Studio (CCStudio) Integrated Development Environment (IDE) v5 -
CCSTUDIO - TI Tool Folder’. [Online]. Available: http://www.ti.com/tool/ccstudio. [Accessed:
15-November-2013].

[23] ‘54645D 100-MHz 200-MSa/s Mixed Signal Oscilloscope [Obsolete] | Agilent’. [Online].
Available: http://www.home.agilent.com/en/pd-1000001438%3Aepsg%3Apro-pn-54645D/100-
mhz-200-msa-s-mixed-signal-oscilloscope?&cc=SE&lc=eng. [Accessed: 15-November-2013].

[24] ‘MSP430 USB Debugging Interface - MSP-FET430UIF - TI Software Folder’. [Online].
Available: http://www.ti.com/tool/msp-fet430uif. [Accessed: 08-November-2013].

[25] ‘Arduino - ArduinoBoardUno’. [Online]. Available:
http://arduino.cc/en/Main/arduinoBoardUno. [Accessed: 08-November-2013].

[26] ‘ATmega48PA/88PA/168PA/328P - doc8161.pdf’. Available at
http://www.atmel.com/Images/doc8161.pdf, [accessed November 8, 2013].

[27] ‘ProCurve Switch 2626 (J4900B) specifications - HP Products and Services Products’. [Online].
Available: http://h10010.www1.hp.com/wwpc/ca/en/sm/WF06b/12136296-12136298-
12136298-12136298-12136316-12136318-31539227.html?dnr=2. [Accessed: 20-November-
2013].

[28] ‘Drivers & Downloads | Dell US’. [Online]. Available:
http://www.dell.com/support/drivers/us/en/19/Product/optiplex-gx620. [Accessed: 20-
November-2013].

[29] ‘openSUSE’. [Online]. Available: http://en.opensuse.org/Main_Page. [Accessed: 07-November-
2013].

[30] ‘MSP430F543xA, MSP430F541xA Mixed Signal Microcontroller (Rev. C) -
msp430f5437a.pdf’. Available at http://www.ti.com/lit/ds/symlink/msp430f5437a.pdf,
[accessed July 29, 2013].

[31] ‘ENC28J60 Data Sheet - 39662c.pdf’. Available at
http://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf, [accessed July 29, 2013].

[32] ‘TL2575, TL2575HV 1-A Simple Step-Down Switching Voltage Regulators (Rev. B) -
tl2575hv-adj.pdf’. Available at http://www.ti.com/lit/ds/symlink/tl2575hv-adj.pdf, [accessed
July 29, 2013].

[33] ‘TPS237x: IEEE 802.3af PoE Powered Device Controllers (Rev. B) - tps2375.pdf’. Available at
http://www.ti.com/lit/ds/symlink/tps2375.pdf, [accessed July 29, 2013].

[34] ‘NFC Shield [SLD80453P] - $29.50 : Seeed Studio Bazaar, Boost ideas, extend the reach’.
[Online]. Available: http://www.seeedstudio.com/depot/nfc-shield-p-916.html. [Accessed: 29-
July-2013].

[35] ‘TXB0104 4-Bit Bidirectional Voltage-Level Translator (Rev. F) - txb0104.pdf’. Available at
http://www.ti.com/lit/ds/symlink/txb0104.pdf, [accessed July 29, 2013].

[36] ‘Internet Systems Consortium | DHCP’. [Online]. Available:
http://www.isc.org/downloads/dhcp/. [Accessed: 26-July-2013].

39

[37] ‘Portal:YaST - openSUSE’. [Online]. Available: http://en.opensuse.org/Portal:YaST. [Accessed:
07-November-2013].

[38] ‘Tutorials | Gustavo Litovsky’. [Online]. Available: http://glitovsky.com/blog/?page_id=21.
[Accessed: 29-July-2013].

[39] ‘SPI Interface in embedded systems’. [Online]. Available:
http://www.eeherald.com/section/design-guide/esmod12.html. [Accessed: 29-July-2013].

[40] ‘Oracle VM VirtualBox’. [Online]. Available: https://www.virtualbox.org/. [Accessed: 07-
November-2013].

[41] ‘User Manual - 141520.pdf’. Available at
http://www.nxp.com/documents/user_manual/141520.pdf, [accessed July 29, 2013].

[42] ‘Energia Reference - Introduction’. [Online]. Available: http://energia.nu/. [Accessed: 20-
November-2013].

[43] ‘Voltage Level Translation - Dual Supply Translator - TXB0104 - TI.com’. [Online]. Available:
http://www.ti.com/product/txb0104. [Accessed: 15-November-2013].

[44] ‘MIFARE Classic :: NXP Semiconductors’. [Online]. Available:
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ic
s/mifare_classic/. [Accessed: 07-November-2013].

[45] ‘NFC TagWriter by NXP - Android-appar på Google Play’. [Online]. Available:
https://play.google.com/store/apps/details?id=com.nxp.nfc.tagwriter&hl=sv. [Accessed: 07-
November-2013].

[46] ‘Home :: NXP Semiconductors’. [Online]. Available: http://www.nxp.com/. [Accessed: 07-
November-2013].

[47] ‘Python Programming Language – Official Website’. [Online]. Available:
http://www.python.org/. [Accessed: 07-November-2013].

[48] ‘UdpCommunication - Python Wiki’. [Online]. Available:
https://wiki.python.org/moin/UdpCommunication. [Accessed: 20-November-2013].

[49] ‘Android KitKat | Android Developers’. [Online]. Available:
http://developer.android.com/about/versions/kitkat.html. [Accessed: 15-November-2013].

Image Reference
Figure 3-5: Wikipedia, URL: http://en.wikipedia.org/wiki/File:SPI_timing_diagram2.svg Retrieved:
2013-10-10

41

Appendix

Source Code
All the files and source codes involved in our bachelor project are available in this Dropbox folder

https://www.dropbox.com/sh/43h519564hspkw2/RcXkXGtCqQ. The subfolders in this main folder
link to different sections in our project.

• The DHCP CONFIG folder contains the DHCP server configuration we used in the
openSUSE PC so that the board could connect to it and receive an IP.

• The UDP Server folder contains the necessary UDP server code in the language Python
which received and responded with UDP packets to our board.

• The UDPSmartLock contains all the necessary code for our board in order to read NFC
UID Tags and also send/receive UDP packets.

43

DHCP server CONFIG

option tftp-server-address code 150 = ip-address;
option tftp-server-address 192.168.1.1;
option bootfile-name "frequencyScanner.txt";
option boot-size 76;
ddns-update-style none;
default-lease-time 86400;
max-lease-time 86400;
authoritative ;
subnet 192.168.1.0 netmask 255.255.255.0 {
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 option routers 192.168.1.2;
 range 192.168.1.5 192.168.1.20;
 host NFC-Shield {
 hardware ethernet 02:00:00:00:00:02;
 fixed-address 192.168.1.7;
 }
 host Scannerboard {
 hardware ethernet 02:00:00:00:00:03;
 fixed-address 192.168.1.5;
 }
}

45

UDP Python Server
from socket import *
import sys
import select
import ast
import os

#address of the UDP server and port
address = ('192.168.1.1', 8837)

#create socket for internet and UDP
server_socket = socket(AF_INET, SOCK_DGRAM)
#bind this socket to our address
server_socket.bind(address)

while(1):

 print "Waiting for TAG ID "
 #buffer size is 65535 bytes (random choice)
 recv_data, addr = server_socket.recvfrom(65535)
 #first block (8bits) of received message
 int1=recv_data[0]
 #second block (8bits) of received message
 int2=recv_data[1]
 #third block (8bits) of received message
 int3=recv_data[2]
 #fourth block (8bits) of received message
 int4=recv_data[3]
 #convert blocks from hexadecimal to decimal
 intsum1=ord(int1)
 intsum2=ord(int2)
 intsum3=ord(int3)
 intsum4=ord(int4)
 #summarize the values
 intsum = (intsum1+intsum2+intsum3+intsum4)

#in this case the value 654 represents the tag UID e29847cd in decimal
 if 654 == intsum:
 server_socket1 = socket(AF_INET, SOCK_DGRAM)
 data1 = 'OPEN'
 print "Grant Access"
 #if granted then send 'OPEN' to our board
 server_socket1.sendto(data1, addr)

 elif recv_data != intsum:
 server_socket2 = socket(AF_INET, SOCK_DGRAM)
 print "Denied"
 data2 = "CLOSE"
 #if denied then send 'CLOSE' to our board
 server_socket2.sendto(data2, addr)

47

UDPSmartLock critical functions

//Spi for UCA1
uint8_t spi_send(const uint8_t _data) {
 while (!(UCA1IFG & UCTXIFG))
 //UC0IFG & UCB0TXIFG
 ;// wait for previous tx to complete

 UCA1TXBUF = _data; // setting TXBUF clears the TXIFG flag

 while (!(UCA1IFG & UCRXIFG))
 ; // wait for an rx character?

 return UCA1RXBUF; // reading clears RXIFG flag
}

//SS, shifts the output on SS pin (pin5)
void digitalWrite(uint8_t val) {
 if (val == LOW) {
 P5OUT &= ~BIT5;
 P5DIR = BIT5; // set bit 5 to output
 } else {
 P5OUT |= BIT5;
 P5DIR = BIT5; // set bit 5 to output
 }
}

/*Function:Transmit a byte to PN532 through the SPI interface. */
inline void write(uint8_t _data) {
 spi_send(_data);
}

/*Function:Receive a byte from PN532 through the SPI interface */
inline uint8_t read0(void) {
 uint8_t data_ = spi_send(0);
 return data_;
}

These functions are the necessary functions to make example code from SeeedStudio to work, the
example code can be found on http://www.seeedstudio.com/wiki/File:PN532_SPI_V2.zip

www.kth.se

TRITA-ICT-EX-2013:257

