
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

D R A G A N C A B A R K A P A

 Authorization Architecture for SWoT

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

AALTO UNIVERSITY

School of Science and Technology

Faculty of Information and Natural Sciences

Department of Computer Science and Engineering

Dragan Cabarkapa

Authorization Architecture for SWoT

Master’s Thesis
Espoo, August 26, 2013

DRAFT! — August 26, 2013 — DRAFT!

Supervisors: Professor Gerald Q. Maguire Jr., KTH Royal Institute of Technology, Sweden
Professor Tuomas Aura, Aalto University, Finland

Instructors: Christian Schaefer, Ericsson Research, Sweden
Farjola Zaloshnja, Ericsson Research, Sweden

AALTO UNIVERSITY
School of Science and Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

ABSTRACT OF MASTER’S
THESIS

Author: Dragan Cabarkapa

Title: Authorization Architecture for SWoT

Date: August 26, 2013 Pages: ix + 105

Professorship: Data Communication Software Code: T-110

Supervisors: Professor Gerald Q. Maguire Jr., Professor Tuomas Aura

Instructors: Christian Schaefer, Farjola Zalosnja

Social Web of Things (SWoT) is a user centric framework which facilitates
interaction between software agents deployed on smart things and in the cloud.
Software agents deployed on smart things are remotely accessible, host sensitive
resources, and often represent high value targets. SWoT currently does not
feature adequate security mechanisms which could protect software agents from
unauthorized access. In this thesis, we aim to rectify this deficiency by introducing
platform independent, flexible, and user centric authorization mechanism in
SWoT.

We derive requirements and design of abstract authorization architecture from the
preceding seminal work performed in SENSEI project. SENSEI and SWoT share
same problem domain, but while SENSEI addresses enterprise use cases SWoT
focusses on consumer use cases. This single but fundamental difference motivates
adaptations of SENSEI contributions for application in SWoT. To realize concrete
authorization architecture we perform extensive study of various authorization
solutions. Results of our study indicate that novel User Managed Access (UMA)
protocol represents promising solution for SWoT.

We present the Authorization as a Service solution for SWoT framework, based on
UMA protocol. This solution enables users to manage and control communication
between software agents deployed on smart things and in the cloud from single
centralized location. It also features runtime association of software agents,
management, evaluation, and enforcement of access permissions for resources
provided by software agents.

Keywords: SWoT, Security, Authorization, User Managed Access

Language: English

ii

AALTO-UNIVERSITETET
Tekniska Högskolan
Fakulteten for Informations och Naturvetenskaper
Utbildningsprogrammet för Datateknik

SAMMANFATTNING AV
DIPLOMARBETE

Utfört av: Dragan Cabarkapa

Arbetets
namn:

!Fixme Thesis title in Swedish. Fixme!

Datum: 2013 Sidantal: ix + 105

Professur: Datakommunikationsprogram Kod: T-110

Övervakare: Professor Gerald Q. Maguire Jr., Professor Tuomas Aura

Handledare: Christian Schaefer, Farjola Zalosnja

!Fixme Write thesis abstract in Swedish. Fixme!

Nyckelord: !Fixme Keywords in Swedish. Fixme!

Spr̊ak: Engelska

iii

Acknowledgements

First of all, I would like to thank Ericsson AB for providing me an opportunity
to work on this exceptional research project. My gratitude goes to my
supervisors, Christian Schaefer and Farjola Zalosnja for their continual
support. Without their advices through countless discussions this thesis
would not be possible.

I would like to specially thank my supervisors, Prof. Gerald Q. Maguire Jr.
and Prof. Tuomas Aura for their excellent supervision and valuable feedback
throughout this thesis work.

I owe gratitude to NordSecMob program coordinators first for creating it and
second for providing me an opportunity to be part of it. I am also grateful
for their patience and consideration when I had difficulties keeping with the
initial thesis schedule.

My biggest thanks goes to my family, my girlfriend, and my friends whose
support helped me navigate through educational endeavors, gave me strength
to overcome all obstacles, and achieve this final accomplishment.

Stockholm, August 26, 2013

Dragan Cabarkapa

iv

Abbreviations and Acronyms

AAA Authentication, Authorization, Accounting
AAPI Authorization API
AAT Authorization Access Token
ABAC Attribute Based Access Control
ALS Application Layer Service
API Application Programming Interface
AS Authorization Server
CL Capability List
COS Cloud Operating System
DB Database
DS Directory Service
DoS Denial of Service
FP Framework Provider
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IP Internet Protocol
IoT Internet of Things
JSON JavaScript Object Notation
LCA Light Controller Application
LDA Light Device Application
OASIS Organization for the Advancement of Structured

Information Standards
OS Operating System
PAP Policy Administration Point
PAPI Protection API
PAT Protection Access Token
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point

v

QoS Quality of Service
RBAC Role Based Access Control
REST Representational State Transfer
RLS Resource Layer Service
RP Resource Provider
RPT Requesting Party Token
RS Resource Server
RU Resource User
SAC Social Access Controller
SAML Security Assertion Markup Language
SOAP Simple Object Access Protocol
SP Service Provider
SQL Structured Query Language
SSO Single Sign On
SSU Spring Security UMA
SWoT Social Web of Things
TCB Trusted Computing Base
TLS Transport Layer Security
UMA User Managed Access
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
WoT Web of Things
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language

vi

Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Research Goals and Contributions 3
1.4 Thesis scope and approach . 4
1.5 Thesis structure . 5

2 Background 6
2.1 SWoT system . 7

2.1.1 Architecture Model . 7
2.1.2 Actors and Artefacts 7
2.1.3 Interaction Model . 12
2.1.4 Trust Model . 13
2.1.5 Threat Model . 14

2.2 Related work . 15

3 Study of security mechanisms 21
3.1 Distributed systems and security architecture 21
3.2 Security components and procedures 23

3.2.1 Identity management system 23
3.2.1.1 Registration 25
3.2.1.2 Authentication 26

3.2.2 Access management system 26
3.2.2.1 Authorization 27
3.2.2.2 Access control 29
3.2.2.3 Delegation . 29

3.3 Security mechanisms . 30
3.3.1 Kerberos . 32
3.3.2 Security Assertion Markup Language 33

vii

3.3.2.1 SAML analysis 34
3.3.3 XACML . 34

3.3.3.1 XACML analysis 35
3.3.4 OAuth . 36

3.3.4.1 OAuth analysis 38
3.3.5 User Managed Access Profile of OAuth 2.0 39

3.3.5.1 UMA analysis 43
3.4 Security mechanisms analysis 43

4 System specification 47
4.1 Bootstrap phase . 47

4.1.1 Service registration . 47
4.1.2 Service association . 50

4.2 Configuration phase . 52
4.2.1 Resource registration 52
4.2.2 Resource discovery . 53
4.2.3 Resource administration 55

4.3 Operation phase . 56
4.3.1 Authentication . 56
4.3.2 Authorization . 58
4.3.3 Authorization evaluation 60

5 Implementation 63
5.1 Libraries . 63
5.2 UMA Resource Server . 65
5.3 UMA Client . 67
5.4 UMA Authorization Server . 68

6 Analysis and Discussion 73
6.1 Functional analysis . 73

6.1.1 Use case components 73
6.1.2 Evaluation test cases 75

6.2 Security analysis . 77
6.2.1 Overview of assumptions and features 77
6.2.2 UMA threats . 78

6.3 Performance analysis . 82
6.3.1 UMA flows . 82

6.3.1.1 Obtaining RPT flow 82
6.3.1.2 First resource access flow 83
6.3.1.3 Second and subsequent resource access flow . 84

6.3.2 Performance of UMA flows 85

viii

6.3.3 Parameters affecting performance 87
6.3.3.1 Permission expiration period 89
6.3.3.2 Resource granularity 89
6.3.3.3 Application interaction patterns 90

6.4 Discussion . 91

7 Conclusions 93
7.1 Summary . 93
7.2 Future Work . 94
7.3 Reflections . 95

ix

If we had a reliable way to label our toys good and bad, it would be easy
to regulate technology wisely. But we can rarely see far enough ahead to
know which road leads to damnation. Whoever concerns himself with
big technology, either to push it forward or to stop it, is gambling in
human lives.

Freeman Dyson, Disturbing the Universe

As the planet’s population continues to increase, it becomes even more
important for people to become stewards of the earth and its resources.
In addition, people desire to live healthy, fulfilling, and comfortable lives
for themselves, their families, and those they care about. By combining
the ability of the next evolution of the Internet (IoT) to sense, collect,
transmit, analyze, and distribute data on a massive scale with the way
people process information, humanity will have the knowledge and
wisdom it needs not only to survive, but to thrive in the coming months,
years, decades, and centuries.

Dave Evans, The Internet of Things

There was of course no way of knowing whether you were being watched
at any given moment. How often, or on what system, the Thought
Police plugged in on any individual wire was guesswork. It was even
conceivable that they watched everybody all the time. But at any rate
they could plug in your wire whenever they wanted to. You had to
live-did live, from habit that became instinct-in the assumption that
every sound you made was overheard, and, except in darkness, every
movement scrutinized.

George Orwell, 1984

It is only by the rational use of technology; to control and guide what
technology is doing; that we can keep any hopes of a social life more
desirable than our own: or in fact of a social life which is not appalling
to imagine.

Charles Percy Snow

Chapter 1

Introduction

Social Web of Things (SWoT) [1] is a research project lead by Ericsson.
The primary goal of this project is to explore opportunities and challenges
of applying Internet of Things (IoT) concepts in smart home application
domain. The research within the project is performed through realization
of the SWoT framework, a consumer oriented middleware solution. The
primary purpose of the SWoT framework is to enable integration of cloud
and smart device hosted services which are part of different administrative
domains. Within SWoT project researchers are exploring and solving various
challenges. For example, they are developing novel interface paradigms to
facilitate user understanding and monitoring of service to service interactions,
they are developing mechanisms for autonomous integration of heterogeneous
services, and they are evaluating different interaction paradigms. However,
their focus has been primarily on functional aspects of the SWoT platform.
Due to this some important non-functional aspects, such as security, have
not been properly considered.

1.1 Motivation

It is well known that Internet based solutions, both consumer or enterprise
oriented, should not be deployed in production without suitable security
mechanisms which will protect them from malicious adversaries. Otherwise
actions of malicious adversaries may result in system compromise and
damages in extent proportional to system capabilities. IoT solutions
are not an exception to this rule. On the contrary, security aspect in
realization of IoT solutions is even more emphasized due to their inherent
characteristics (they are able to actuate, sense, and record information
related to the physical environment, they are remotely controllable, and they

1

CHAPTER 1. INTRODUCTION 2

are pervasive).
Security issues for smart devices which are remotely controllable and

globally accessible have for some time been identified and emphasized in
different research works [2][3][4]. Recent security incidents related to the
early stage IoT solutions, prove that identified security risks are real and still
mostly unaddressed [5][6][7]. Despite this, researchers in IoT domain mainly
focus on challenges related to the functional requirements in their solutions
and decide to neglect present security requirements [8][9].

IoT products feature radically different characteristics from currently
typical Web solutions (such as Web services): they have constrained physical
resources, they are expected to be managed by end users, which are not
experts, and their number continuously increases [10][11]. Moreover, in
contrast to Web solutions where one to one interactions are typical, in IoT
solutions many to many interactions are more emphasized as implementation
of particular use case scenario often includes interactions with multiple smart
devices. Current well established Web based security mechanisms have not
been designed to cope with these characteristics and use cases. Therefore,
question which researchers often ask is: are current web based security
mechanisms capable enough to individually or in combination satisfy security
requirements present in IoT solutions.

In the SWoT project the primary focus in the development of SWoT
framework has been on functional requirements. Therefore, all previously
mentioned security issues, requirements, and questions are also largely
unaddressed. This thesis project represents an initial effort in analysing
and addressing subset of SWoT’s security requirements.

1.2 Problem statement

The SWoT framework is envisaged to enable service to service interactions
across different administrative domains. Overall system security risks are
high due to inherent capabilities of remotely controllable smart devices.
Therefore, adequate security mechanisms need to be in place. Security
solution to be developed has to take into account following high level
requirements:

• The system which SWoT framework defines is a distributed system
that consists of numerous services deployed in the cloud and on the
smart devices. The common trait of all these services is that they act
on behalf of specific user. The interaction between services is governed
by the user with the help of security solution provided by the SWoT

CHAPTER 1. INTRODUCTION 3

framework. Therefore, while the overall system is distributed, system
administration functionality is centralized.

• Both SWoT framework and security solution to be developed as its
integral part are expected to be used by the non expert users. Since
users may not be familiar with inner workings of security mechanisms
it is important that the system from user perspective is characterized
as simple, unobtrusive, and transparent. Therefore, preferred security
mechanisms are those which reduce user effort in system administration
and facilitate more autonomous establishment of security context that
spans over and includes different SWoT system entities.

• The SWoT framework relies on Web based technologies for service
integration. Therefore, developed security solution should rely on same
set of technologies in order to enable frictionless third party application
development and integration.

The combination of characteristics and requirements present in the SWoT
system, which is a distributed, through inclusion of smart devices ubiquitous,
and by the enactment of the user to be main administration authority user
centric, represents serious challenge in the realization of an adequate security
solution.

1.3 Research Goals and Contributions

This thesis project studies the challenges in realization of the authorization
architecture suitable for SWoT framework. Our study has three main goals.
The first goal is to design authorization architecture for the SWoT framework.
The second goal of this thesis project is to study and identify suitable
security protocols for previously defined authorization architecture. The
third goal of this thesis project is to implement and evaluate a proof of
concept solution. Evaluation study should determine the impact of proposed
solution on individual system entities and overall system from usability,
security, and performance perspective.

The first contribution of this thesis project is the design of the autho-
rization architecture for the SWoT framework. Our solution is largely based
on the authorization architecture design developed in SENSEI project [12].
However, we have also adapted architecture suggested in SENSEI as well as
related artifacts, such as authorization system requirements, trust model, and
threat model, to take into account characteristics of the SWoT framework.

CHAPTER 1. INTRODUCTION 4

The second contribution of this thesis project is the extensive study
of security mechanisms including Kerberos, SAML, XACML, OAuth, and
UMA. In this study we have evaluated security mechanisms based on several
different criteria including: their support for user centric authorization, their
support for runtime introduction of service providers, and their usage of web
based technologies.

The third contribution of this thesis project is our implementation of
UMA framework. Our implementation is based on Spring Security and
Spring Security OAuth libraries. It provides modules which facilitate
implementation of authorization server, client, and resource server entities.
In addition, we provide results of functional, security, and performance
evaluation of our solution.

1.4 Thesis scope and approach

For the design and development of the fully functional SWoT security archi-
tecture it would be necessary to consider numerous security aspects (such
as authentication, authorisation, and accounting) in different computing
domains (embedded computing and cloud computing) and security domains
(physical, network, and computer security). Since this is an immensely
complex task and inappropriate for a master’s thesis project, our approach
here is much more modest and narrower in scope.

In this thesis project we focus on realization of the authorization
component which is considered core component of the security architecture.
Even in this reduced scope we do not consider all problem aspects. For
example, we do not discuss how authorization attributes are encoded and
exchanged. We also do not consider how access control policies should
be defined and evaluated. We only partially consider registration (trust
establishment) and authentication system components in extent required to
elicit authorization system inputs.

We do not consider issues related to the physical security nor we take
into account resource limitations of smart devices. We assume presence of
network security mechanisms which provide confidentiality and integrity of
system entities’ communication. Readers interested in these closely related
security aspects are encouraged to read the deliverables from the SENSEI
project, which discuss these and many other security aspects extensively in
[12].

The SWoT framework development at the time this thesis project began
had already progressed significantly so that even small changes in the
implemented security architecture or mechanisms would have a ripple effect

CHAPTER 1. INTRODUCTION 5

on whole framework. As a result, the SWoT management decided to run
this project independently from the main SWoT project with the goal of
integrating results later if evaluation of newly developed security architecture
provided promising results.

This clean slate approach resulted in several concrete benefits. First we
were able to reduce the scope of the work and make it more appropriate
to the thesis project. Second we were able to reduce the complexity of our
prototype system’s design, implementation, and evaluation. Finally, since
the problem that we are addressing is quite common and our analysis and
solution decoupled from the specifics of the current SWoT implementation,
our contributions are applicable in a wider range of domains.

1.5 Thesis structure

The rest of the thesis is structured as follows. In Chapter 2 we describe SWoT
system architecture, actors, artefacts, interaction, trust, and threat models.
In Chapter 3 we survey security protocols with the goal of identifying suitable
solutions for realization of the proposed SWoT authorization architecture.
In Chapter 4 we describe how we integrate and apply selected security
mechanisms. Chapter 5 documents our implementation efforts with a
particular focus on implementation of the UMA framework. In Chapter 6
we present functional, security, and performance evaluation of our system.
Chapter 7 provides a summary of thesis contributions and suggests directions
for future work.

Chapter 2

Background

Internet of Things (IoT) is a vision of the Internet with the smart devices
integrated into the common communication infrastructure [13][14][15]. In
its narrow definition, IoT research domain covers technical solutions which
enable integration of smart devices on the infrastructure level. In its more
broader definition IoT research domain also covers any application level
solution which incorporates or relies on the capabilities of smart devices.
This broad definition includes more specific research domains, such as Web
of Things [16][17][18], in which researchers adopt Web based technologies for
handling application level integration.

The concept of integration of physical and digital worlds is not new.
Researchers in domains of ubiquitous computing, pervasive computing,
and ambient intelligence, have explored for some time now challenges and
solutions similar to those present in IoT. However, maturing hardware
technology, wide adoption of mobile devices, coupled with financial support
from numerous small and large business entities is bringing us closer to the
realization of IoT.

Both the potential and challenges for realization of IoT solutions lie in
characteristics of smart devices [13]. Smart devices feature specific functions
and capabilities. Each individual device is considered important, even though
it features same functionality as some other smart device. They are deployed
in physical environment, and manufactured, owned, and operated by different
entities. With the exception of the most simple use case scenarios, the
systems developed to realize IoT applications are highly distributed systems.
This is mainly due to moving application logic from the smart devices to the
higher level services [8], and more prominent use of mashup like applications
for complex automation scenarios.

6

CHAPTER 2. BACKGROUND 7

2.1 SWoT system

Social Web of Things (SWoT) is an Ericsson research project in the domain
of ambient intelligence. The main deliverable is a platform which enables
connecting services deployed on things and in the cloud. In contrast to
industry oriented platforms such as ThingWorx [19] and Axeda [20], SWoT
is focused on the consumer market in which the end users are individuals.
This perspective introduces unique challenges and drives the need for equally
unique solutions in various domains including security and authorization.

2.1.1 Architecture Model

Within the context of SWoT project two alternative architecture models
are recognized: loosely coupled and tightly coupled architecture model (see
Figure 2.1). Both of the architecture models share same control plane
which includes security and service discovery related interactions. However,
their data planes which include interactions directly related to functions of
smart devices being part of the SWoT domain, differ. In loosely coupled
architecture data plane interactions are performed directly between services
part of the SWoT domain, while in tightly coupled architecture data plane
interactions are mediated by the SWoT framework services. This mediation
in tightly coupled architecture results in three different data plane parts,
marked in Figure 2.1 as data plane 2a, 2b, and 2c. Each of these data plane’s
parts viewed individually has similar configuration of actors and functional
interactions as in loosely coupled architecture. Due to this we consider
tightly coupled architecture model to be more complex version of loosely
coupled architecture model and that the prerequisite for the realization of
tightly coupled architecture is the realization of loosely coupled architecture.
This thesis project explores realization of the control plane’s security service
based on the requirements present in loosely coupled architecture model. The
realization of the security service that satisfies more complex requirements
present in tightly coupled architecture model is part of future work.

2.1.2 Actors and Artefacts

A resource layer service (RLS) is a term used in SWoT project to refer
to a class of services which are provided on smart devices. RLSs expose
resources through which other SWoT entities take advantage of sensing
and/or actuating capabilities built into smart devices hosting RLSs. The
functionality offered through RLSs is closely associated with the function
of the smart device. For example, smart lock device [21] may host RLS

CHAPTER 2. BACKGROUND 8

John’s SWoT
Domain

Data plane 2a

Data plane 1

Control plane

Data planes

Legend

SS – Security Service

DS – Discovery Service

PSx – Platform Service

SS DS

PS4
PS3

PS2
PS1

SWoT
Framework

SWoT
Framework in

this thesis

Tightly controlled
architecture

Loosely controlled
architecture

RLS1

RLS2
RLS3

ALS1

ALS2 ALS3

ALSx – Application Layer Service

RLSx – Resource Layer Service

Data plane 2c

Data plane 2b

Figure 2.1: Left: Loosely controlled architecture with distributed service
delivery (1). Right: Tightly controlled architecture with centralized service
delivery (2a and 2b).

which offers functionality for locking and unlocking operation, smart light
device [22] may provide RLS which offers functionality for turning on or
turning off the light. The main characteristic of RLS is that they do not
host complex application logic. The entities hosting and providing complex
application logic are RLS clients. Moving application logic to the client side
decouples infrastructure and application layer. Moreover, it provides benefits
of faster and friction less application development as well as easier reuse of
smart devices by multiple applications [8]. However, this approach has many
implications as it diverges from conventional approach applied in Web, in
which application logic is located on the server. The main implication is
that users are expected to take advantage of smart device capabilities through
RLS clients rather than in direct interaction with the RLSs. Consequently,
the application programming interface (API) designed for service to service
communication becomes the primary interface of RSLs. This is in contrast
to current web services where primary interfaces are primarily consumed by
browsers on behalf of human users.

For the purpose of this thesis project RLSs are considered to be
implemented as Representational State Transfer (REST) services. In this
aspect they are similar to Web services which offer REST APIs. This
particular implementation approach is underlines research efforts in Web of
Things (WoT) research community [16][17][18][8].

An application layer service (ALS) is a term used in SWoT project

CHAPTER 2. BACKGROUND 9

to refer to a class of services which are RLS clients and have following
characteristics: they are multiuser web applications, they are managed by
ALS developer, and they are deployed as cloud services. ALSs are developed
to interact with particular types of RLSs. Therefore, their functionality
is closely related to the capabilities of RLSs with which they interact.
However, ALS enhance functionality of RLSs by implementing more complex
application logic. In addition, they can simultaneously interact with multiple
RLSs hosted on different smart devices. These ALSs capabilities enable
realization of more complex use case scenarios. For example, particular ALS
may enable users to control multiple smart lights with single action, or even
automate this action to be invoked at specific time. Other ALS may enable
users to monitor energy consumption of their smart appliances in raw or
processed form, and based on this information to compete with other users
in minimizing their energy consumption. ALSs can be classified as mashup
service. However, they are more complex from mashup services typical today
as they interact with larger number of services. For example, today typical
mashup service combines user information from three or more social network
services which are same for all users, while an ALS combines information
from tens of different smart devices, which are of the same RLS type, but
still distinct RLS instances.

SWoT framework is an integration service enabling interaction between
RLSs and ALSs. Moreover, it is a single user web application. It is expected
that each user will have their own SWoT framework instance. These instances
are physically isolated from other SWoT framework instances to preclude
SWoT framework resource misuse and reduce potential damage in case of
SWoT framework instance compromise. SWoT framework user centric design
is amenable for different deployment scenarios (cloud hosted, or self hosted)
and different business models (subscription, and profit sharing).

SWoT framework in scope considered here (see Figure 2.1) features
two components: discovery service and security service. Discovery service
function is to facilitate configuration and operation of ALSs. ALSs in
interaction with the discovery service may obtain information related to
RLSs, which are of interest to ALSs, and which belong to particular user.
Presence of discovery service obviates the need for the user to manually
inform ALSs about the location, version, and type of RLSs that user manages.
For example, instead of user entering information about each smart light
service (set of RLSs) that he or she manages at the smart light controller
service (single ALS), smart light controller can retrieve this information
automatically in interaction with the discovery service. For discovery service
to be able to provide RLS related information it first needs to obtain it. This
is achieved through interaction with RLSs which provide this information in

CHAPTER 2. BACKGROUND 10

specified format and by following predetermined protocol.
Security service, which realization is the main goal of this thesis project,

is envisaged as core component of the SWoT framework. Its purpose is to
protect resources of entities belonging to SWoT administrative domain. This
includes resources which are known at design time, such as functionality for
RLS resources registration and discovery provided by discovery service, and
resources which are added to the administrative domain at run time, such as
resources provided by RLSs. In fulfilling this purpose security service needs to
provide four different functions. First function of security service is to enable
user driven establishment of authorization context which would span over
different RLSs and ALSs and across different administrative domains. This
effectively enables the user to add/remove new RLS or ALS to/from his/her
SWoT domain at any time. Second function of security service is to provide
means using which user may define access control policies. Closely related to
this function is management of different attributes related to entity accessing
the resource, resource being accessed, or even environment conditions, such
as time of day, as access control policies may be based on these attributes.
Third function of security service is to evaluate defined access control policies
and derive adequate access decisions upon adequate request. Fourth function
of security service is to enforce previously derived access control decisions in
cooperation with SWoT domain entities hosting the resources which are to
be protected.

For actors in context of particular domain we use terms resource
provider (RP), resource user (RU), and framework provider (FP) to refer to
RLS, ALS, and SWoT framework instances acting on behalf of particular
person respectively (see Figure 2.2). This terminology enables us to refer to
particular person - software agent combination. For example, specific smart
light controller (ALS) may be integral part of multiple RUs as it can act
on behalf of various users while particular RU identifies both the ALS and
the user on which behalf this ALS acts. Even in the case of single user
systems such as SWoT framework, it is helpful to express that particular
instance is acting on behalf of specific person as this is the only distinction
between different SWoT framework instances. This terminology helps us also
to define the meaning of SWoT domain, which in this thesis project is viewed
as a logical unit consisting of a set of RPs, a set of RUs, and a single FP which
all act on behalf of the same person. Furthermore, this person interacts with
software entities in different roles: it is an administrator in RPs, a user in
RUs, and a user in FP.

Main artifacts in SWoT system are a resource, a resource description, and
a service description.

A resource, abstractly defined, is an representation of a functionality

CHAPTER 2. BACKGROUND 11

role: user

Framework Provider

RUx – Resource User

Legend
ALS1

ALS2 ALS3

RLS1

RLS2 RLS3

John

RP1
RP2

RP3

RU1
RU2

RU3

RPx – Resource Provider
SS DS

role: user

role: administrator

SS – Security Service

DS – Discovery Service

ALSx – Application Layer Service

RLSx – Resource Layer Service

Figure 2.2: Actors in SWoT domain.

which provides information or performs particular action based on specific
input. Resources in SWoT represent different capabilities of smart devices,
such as sensing or actuation capabilities. Other services through interaction
with the resources gather information from or influence processes in the
physical environment. In addition to usage of resource concept to abstract
smart device’s physical capabilities, the resource concept is also used to
abstract smart device management functionality. This enables the use of the
same mechanisms for interacting with the resources as well as for managing
smart devices and resources that they host. Interactions with resources
are performed through a uniform REST interface and communicated using
Hypertext Transfer Protocol (HTTP). Each resource is identified by a
globally unique identifier in form of a Uniform Resource Identifier (URI).
In addition each resource is associated with the corresponding resource
description.

A resource description is a SWoT artefact which enables the SWoT
framework to manage and advertise resources part of SWoT domain.
Resource description contains metadata relevant for a particular resource
such as resource identifier, a resource type, and other semantic information
describing resource’s capabilities. In addition, the resource description fea-
tures information relevant for access control mechanisms, such as operations
and permissions required for interaction with the particular resource. SWoT
framework obtains resource descriptions from RLS when a new RLS is added
to a SWoT domain or new RLS resource is created.

A service description is a SWoT artefact which enables the framework

CHAPTER 2. BACKGROUND 12

John’s SWoT
Domain

Resource access inter.

Discovery service inter.

Legend

SS – Security Service

DS – Discovery Service

SS DS

SWoT
FrameworkRLS

ALS

ALS – Application Layer Service

RLS – Resource Layer Service

Security service inter.
Resource

Access

Resource
Registration

Service/Resource
Discovery

2

1

3

Figure 2.3: Interaction model.

to manage and advertise RLSs and ALSs part of the SWoT domain. Service
description contains metadata, such as service identifier, type, version,
user friendly description, icon, and etc. Service descriptions are used for
facilitating interaction between RLS and ALS and for populating SWoT
framework service management user interface.

2.1.3 Interaction Model

To facilitate interaction between ALS and RLS, SWoT framework provides
discovery service functionality. This functionality enables autonomous
discovery of RLSs by ALSs and obviates the need for human user involvement.
However, for discovery service to advertise RLSs and resources which they
offer, RLSs need first to provide required information in predetermined
format. The interaction in which RLSs provide resource descriptions is known
as resource registration (step 1 in Figure 2.3). ALSs interested in particular
type of RLS or resource provided by the RLSs may initiate service/resource
discovery process (step 2 in Figure 2.3). In this process ALSs interact
with the SWoT framework’s DS and retrieve service or resource description
artefacts containing various information (such as location of resource end
points, RLS version, or RLS type). ALSs with this information in possession,
may initiate interaction with the corresponding RLS. The interaction in
which ALS directly communicates with the RLS and accesses particular
resource (step 3 in Figure 2.3) represents core system interaction as at this
step smart device’s actuation and sensing capabilities are actually utilized.
All other interactions performed within the system are necessary but serve
as system support functionality.

Previously described interactions are time separated and do not happen

CHAPTER 2. BACKGROUND 13

with same frequency. For example, resource registration interaction is
performed only when resource provided by a RLS is modified in some way
(created, removed, or its description is changed due to smart device firmware
update). Similarly service/resource discovery interaction is performed during
ALS initial configuration and later on regular time intervals or in reaction
to particular human user actions. In contrast to these interactions, resource
access interaction, is expected to happen much more often.

2.1.4 Trust Model

When the smart device and application level services which utilize capabilities
of the device are managed by single entity security trust model is relatively
simple. However, when smart device and application level services which
interact with the device are managed by different entities, security trust
model becomes more complex and consequently complexity of the security
solution required to address it increases. Since SWoT needs to integrate
services from different administrative domains, its security architecture needs
to satisfy more complex set of security requirements.

Every system has trusted components on which it relies. In SWoT system
these trusted components are SWoT framework which is trusted for the
overall system operation, and RLSs which are trusted for system operations
that rely on RLSs. System cannot avoid trusting RLSs as they represent
original source of information and final executor of actions. In some respect,
this is similar to operating systems which trust and rely on physical hardware
devices (such as hard disks, network controllers) to operate as expected.

SWoT system also features components which are initially totally un-
trusted. These are ALSs which through interaction with the SWoT
framework and under user defined conditions obtain specific permissions and
trust in extent defined by the granted permissions.

Based on two different trust models (see Section [12]) two alternative
approaches for handling authorization on RP’s side are envisaged. These are:
identity based approach, where access privileges are granted and associated
with the identity of the RU; and billing based approach, where access is
allowed to any RU willing to pay. Based on these two approaches, identity
based and billing based trust model are defined respectively.

Both models are applicable in studied problem domain. However, the
identity based trust model is more generic [23]. Taking into account this fact
and due to our limited resources we have made the decision to focus our study
here only on identity based trust model. Study of requirements, architecture
and mechanisms required to realize solution based on billing trust model is
left for future work. However, we believe that results provided in this thesis

CHAPTER 2. BACKGROUND 14

will facilitate this future endeavor as two trust models have much in common.

2.1.5 Threat Model

We provide here a high level threat model based on previously described
interaction model. Interactions present in our interaction model represent
subset of those found in SENSEI interaction model. As a result threats
listed in Table 2.1 represent subset of those identified and documented in
Section 8.5.2 of [23]. Each row contains identified threat, attackers benefit,
impact and likelihood of the threat. Impact and likelihood are quantitatively
described with high, medium and low grades. In addition each row contains
short list of main mitigation approaches with their classification: Te -
technical solution, Le - legal solution, Tr - part of trusted computing base. To
indicate how threats in our model map to those present in SENSEI threat
model we provide in index column in parentheses references to indexes of
corresponding threats in SENSEI threat model. We here describe threats
listed in Table 2.1 grouped by their mitigation approaches.

Technical measures - SWoT entities are part of logical domain and
they are not physically isolated from the rest of the Internet. Which
means that FP or RPs can be remotely accessed by both authorized and
unauthorized entities. To mitigate threats in which third party or SWoT
entity impersonates other SWoT entity (threats 1, 2, 3) authentication is
used. With the help of authentication entities providing resources FP and
RPs know identity of RUs. However knowing identity is only the prerequisite.
To mitigate threats in which entity, with asserted identity, accesses resources
that it is not supposed to access (threats 4, 5) authorization is used. With the
help of authorization FP and RPs know which RUs can access which resources
and under which conditions. Authentication and authorization combined
provide basic security architecture. However this security architecture is not
considered complete without accounting mechanisms which enable tracing
all security interesting events in the system. Without it detecting flaws in
configurations of authentication and authorization mechanisms (threats 4, 5)
or attack attempts whether successful or unsuccessful (threats 6, 7) would
be impossible.
Denial of Service (DoS) measures - Denial of service (DoS) is a threat
directed against service availability (threats 6, 7). Attackers can cause DoS
by applying particular form of the DoS attacks such as resource exhaustion
attack [24]. Both FP and RPs can be contacted directly by malicious entities
and therefore they may be susceptible to this threat. We expect that FP will
have at its disposal significantly more resources compared to RPs individually
and therefore will be more capable to sustain attacks of this type. However

CHAPTER 2. BACKGROUND 15

even resources at the disposal of FP will be limited since SWoT is envisaged
as user centered system. Impact of this threat on the SWoT system depends
whether RP or FP is attacked. In case of successful attack on individual
RP impact on the system depends on importance of particular RP. In case
of successful attack on FP whole system stops functioning. Addressing this
threat is challenging since both its impact and likelihood are high while
effectiveness of defence mechanisms is limited.
Non-technical measures - Even though technical measures are irreplace-
able part for creating secure systems they alone are insufficient. This is
especially true for a system such as SWoT in which entities produced by
different manufacturers are not only involved in its operation but they are
trusted part of the system. For example in SWoT system RPs are trusted to
comply with prescribed security protocol. To mitigate this trust being broken
it is necessary to introduce combination of technical and legal measures e.g.
certification and quality assurance program for RPs software agents or legal
contracts describing who should be held accountable in situations falling
outside system’s normal operation. Many of the threats listed in Table 2.1
require this type of measures (threats 4,5,6,7,8,9,10).

Technical measures for securing the system may be complex. However
when considered in combination with legal measures complexity increases
significantly. Research works focusing on the intersection of these two
domains are rare but available. Contributions from researchers range from
those low level and directly associated with technical measures [25] to those
with primary focus on legal issues [26] [4] [27].

2.2 Related work

SENSEI [28] was a large scale project which explored challenges and
required solutions to enable integration of physical and digital worlds. The
main project deliverable was SENSEI framework, a middleware solution
designed to broker interaction between services deployed on physical devices
and those services deployed in the cloud. SENSEI and SWoT projects
share similar goals, but their scopes and adopted design approaches differ.
For example, SENSEI project scope covers federation of different SENSEI
framework instances while currently this use case scenario is not envisaged
for SWoT framework. Moreover, SENSEI framework has been designed to be
organization centric solution while SWoT framework is user centric solution.
These fundamental differences are reflected in projects’ deliverables. While
SENSEI solutions for SWoT use case are overly complex and not directly
applicable, the SENSEI project deliverables discussing system and security

CHAPTER 2. BACKGROUND 16

architecture design [23][12] provide many useful contributions. Some of these
contributions have been incorporated into the SWoT models (architecture,
interaction, trust, and threat model).

Cloud operating system (COS) [29] is a vision of novel class of
user centric cloud hosted solutions. COS is introduced by analogy with
the classical operating systems (such as Linux, Windows, and OS X) which
execute in a isolated computation space defined by personal computer. COS
is also envisaged to execute in a isolated user specific computation space.
However, this user space is not tied to the specific physical hardware. There
are many properties in which COS differs from classical operating systems.
For example, COS is always on, it is easily expandable with additional storage
and computation resources, and it is always available independent of users
physical location. However, the characteristics which define COS include its
capability to: establish and manage identities of distributed entities in the
context of specific COS instance, mediate and abstract different Web APIs,
and manage COS owner’s personal data.

SWoT framework as a user centric solution is similar to COS. The
security solution which we have developed in this thesis project is based
on UMA security protocol, the same mechanism used in COS to establish
authorization context spanning over different entities and across different
administrative domains. However, UMA is not complete solution as it covers
only system external interactions. In our solution we also discuss system
internal security mechanisms, such as ABAC access control model based on
XACML and its integration with UMA protocol. Moreover, we provide more
detail depiction of these security mechanisms characteristics as well as their
application in SWoT specific use case.

Solutions and research works from ubiquitous systems domain,
such as Gaia OS [30][31][32], provide extensive study of requirements, security
models, and security mechanisms used to realize concepts of smart and
active spaces. The central concept in Gaia OS is that of physical space.
This physical space has its administrator who defines policies governing
interactions between users, devices, and software entities operating within
this physical space. Gaia OS security solution takes into account security
requirements from both physical and virtual environment. In addition,
Al-Muhtadi et al. [31] describe and realize context aware access control
system for Gaia OS with all required supporting infrastructure and software
services. Gaia OS and its security component represent perfect example of
how complex security requirements and corresponding security solutions are
in systems which integrate virtual (software) entities with physical devices
and their capabilities.

SWoT framework, compared to Gaia OS, is still in its infancy stage.

CHAPTER 2. BACKGROUND 17

Moreover, it features different design approach as the user (device owner) and
not physical space is the integration point or central concept. Within SWoT
project, at current stage, physical requirements both in system and security
architecture development are not considered, even though their importance is
recognized. Our security solution developed in this thesis project integrates
state of the art security mechanism (OAuth, UMA, and XACML), which have
not been available at the time when Gaia OS was developed. In addition, our
solution relies on contemporary communication and application technologies
(Internet, Web) that were available when Gaia OS was developed but were
at that time considered inappropriate for application in Gaia OS use case
scenarios. We view our security solution as a basic infrastructure for future
Gaia OS like system enhanced and developed with more modern technologies.

Social Access Controller (SAC) [33] is a user centric solution
which enables users to share with other users access to their devices. It
relies on functionality provided by popular social networking sites for user
authentication. In addition, social networks are used for advertising and
discovery of devices. SAC was proposed to address limitations of centralized
platforms which act as a centralized data repositories and restrict direct
interaction with devices. SAC addresses this limitation by transparently
exposing device resources and proxying all the communication to/from the
device. To be able to access devices, SAC requires from the owner to
manually configure SAC with credentials necessary to access each device.
Moreover, SAC relies on crawling resource endpoints exposed on the device
to discover resource which need to be protected. Based on the information
retrieved in this process user specifies access controls rules which SAC
enforces.

Guinard et al. provide very limited description of SAC security
functionality. Moreover, they rely on unconventional approach for handling
resource discovery for the purpose of retrieving input information for access
control system. Our security solution is comprehensive, and based on current
established or draft standards. It also addresses more complex use cases
which is sharing access permissions with third party software agents instead
of users relying on browsers. In addition, our solution is amenable for
implementing fine grained and context aware access control.

Smart home gateway architecture [34] integrates heterogeneous
protocols used in home networks. This gateway architecture is designed
to proxy the communication between cloud services and physical devices
deployed within the home. In their solution Kim et al. integrate a semantic
model of a smart home which enables integration of new applications at
runtime. Moreover, they introduce novel access control mechanism based on
XACML. Policy model which is integral part of this access control mechanism

CHAPTER 2. BACKGROUND 18

includes roles, permissions, and attributes (such as device type, device status,
time, and location). Policy evaluation is supported by use of ontologies.

The SWoT framework and solution of Kim et al. share same problem
domain. However, approaches used in these projects for addressing problem
domain challenges differ significantly. For example, while smart home
gateway is a solution that integrates web technologies on one side with current
smart home communication technologies on the other, SWoT framework
supports exclusively web based technologies and in this aspect is more future
oriented. While smart home gateway is a solution deployed in the home,
SWoT framework is location independent and may be deployed in the home
or cloud. Smart home gateway proxies all communication, while SWoT
framework enables direct interaction between cloud services and devices. In
development of access control mechanism for smart home gateway Kim et
al. consider use case in which users grant access permissions to other users.
In our work we consider more demanding use case scenario in which access
permissions are delegated to software agents acting on behalf of particular
user.

These fundamental differences reflect in corresponding solutions. For
example, in this thesis there is a strong emphasis on realizing basic security
infrastructure and determining the implications of this security infrastructure
on cloud and device services implementation. The higher level concepts
which build upon on this infrastructural solution, such as development of
application specific policy model, or use of ontologies is left for future work.
Compared to work of Kim et al. our solution is incomplete. However, we
explore more thoroughly particular problem aspect - security architecture.

Service centric platforms, such as Xively [35], Paraimpu [36][37],
ThingSpeak [38], and others share problem domain with SWoT framework,
but adopt service centric design approach (single platform instance). They
offer various functionalities, and capabilities, such as creating ad hoc mashups
to direct device output to social networks, or to invoke action on the
particular device based on the input from user defined source, such as Twitter
feed. However, all the configuration is performed manually by users. In
addition, users define semantics of APIs exposed on the devices, as well as of
their device resource representations exposed on the platform. As resources
and their semantics vary between different users development of standardized
applications is difficult. Their current operation more closely resembles the
function of data broker than the platform which could abstract device APIs
and enable creation of standardized mashup applications.

Since these platforms realize less complex use case scenario than one
envisaged for SWoT framework, security mechanisms which these platforms
adopt are not capable to satisfy all security requirements present in SWoT

CHAPTER 2. BACKGROUND 19

framework. In addition, the inner workings of these platforms’ access
control systems have not been publicly documented as they are proprietary
solutions. While the most of the security features that these platforms
offer is not directly applicable in SWoT, they way how they handle device
provisioning and initial association of the devices with the platform (also
known as bootstrap process) is relevant for SWoT [39]. Even though this
particular problem aspect has been out of scope for this thesis project, we
have considered it partially in order to better understand requirements for
dynamic creation of authorization context.

CHAPTER 2. BACKGROUND 20

Table 2.1: High level SWoT Threat Model.

ID
T

h
re

a
t

A
tt

a
ck

e
r’

s
b

e
n

e
fi

t
Im

p
a
c
t

L
ik

e
li

h
o
o
d

M
it

ig
a
ti

o
n

a
p

p
ro

a
ch

M
it

ig
a
ti

o
n

1
(1

)
S

om
eo

n
e

(R
U

,
R

P
,

th
ir

d
p

ar
ty

)
im

p
er

so
n

at
es

R
U

A
cc

es
s

to
se

n
si

ti
ve

d
a
ta

or
ac

tu
at

io
n

ca
p

a
b

il
it

ie
s

H
ig

h
H

ig
h

T
e

A
u

th
en

ti
ca

ti
o
n

2
(1

3)
S

om
eo

n
e

(R
U

,
R

P
,

th
ir

d
p

ar
ty

)
im

p
er

so
n

at
es

R
P

C
ol

la
te

ra
l

b
en

efi
t

fr
o
m

m
is

le
ad

in
g

F
P

a
n

d
R

U
s

M
ed

M
ed

T
e

A
u

th
en

ti
ca

ti
o
n

3
(5

)
S

om
eo

n
e

im
p

er
so

n
at

es
F

ra
m

ew
or

k
P

ro
v
id

er

A
cc

es
s

to
se

n
si

ti
ve

d
a
ta

or
ac

tu
at

io
n

ca
p

a
b

il
it

ie
s

H
ig

h
H

ig
h

T
e

A
u

th
en

ti
ca

ti
o
n

4
(7

)
F

P
is

ac
ce

ss
ed

b
y

u
n

au
th

or
iz

ed
en

ti
ti

es
A

cc
es

s
to

se
n

si
ti

ve
d

a
ta

H
ig

h
M

ed
T

e,
L

e,
T

r

A
u

th
o
ri

za
ti

o
n

,
L

eg
a
l

m
ea

su
re

s
to

p
re

ve
n
t

ci
rc

u
m

ve
n
ti

o
n

,
o
f

a
u

th
o
ri

za
ti

o
n

.
F

P
p

a
rt

o
f

T
C

B

5
(1

5,
19

,2
4)

R
P

is
ac

ce
ss

ed
b
y

u
n

au
th

or
iz

ed
en

ti
ti

es

A
cc

es
s

to
se

n
si

ti
ve

d
a
ta

or
ac

tu
at

io
n

ca
p

a
b

il
it

ie
s

H
ig

h
M

ed
T

e,
L

e,
T

r

A
u

th
o
ri

za
ti

o
n

,
L

eg
a
l

m
ea

su
re

s,
Q

o
S

,
T

ru
st

M
a
n

a
g
em

en
t.

R
P

s
p

a
rt

o
f

T
C

B

6
(4

)

S
om

eo
n

e
fl

o
o
d

s
th

e
F

P
w

it
h

re
q
u

es
ts

C
ol

la
te

ra
l

b
en

efi
t

fr
o
m

d
en

ia
l

of
se

rv
ic

e
H

ig
h

H
ig

h
T

e,
L

e
A

cc
o
u

n
ti

n
g
,

L
eg

a
l

m
ea

su
re

s,
D

o
S

-a
w

a
re

d
es

ig
n

7
(4

)

S
om

eo
n

e
fl

o
o
d

s
th

e
R

P
w

it
h

re
q
u

es
ts

C
ol

la
te

ra
l

b
en

efi
t

fr
o
m

d
en

ia
l

of
se

rv
ic

e
M

ed
H

ig
h

T
e,

L
e

A
cc

o
u

n
ti

n
g
,

L
eg

a
l

m
ea

su
re

s,
D

o
S

-a
w

a
re

d
es

ig
n

8
(1

2)
A

R
P

m
is

-a
d

ve
rt

is
es

it
s

se
rv

ic
e

C
ol

la
te

ra
l

b
en

efi
t

fr
o
m

m
is

le
ad

in
g

F
P

a
n

d
R

U
s

M
ed

M
ed

L
e

L
eg

a
l

m
ea

su
re

s,
Q

o
S

,
T

ru
st

M
a
n

a
g
em

en
t

9
(2

0)

A
R

P
p

ro
d

u
ce

s
er

ro
n

eo
u

s
d

at
a

or
b
y

er
ro

r
ex

ec
u

te
s/

n
ot

ex
ec

u
te

s
p

ar
ti

cu
la

r
ac

tu
at

io
n

ac
ti

on

C
ol

la
te

ra
l

b
en

efi
t

fr
o
m

m
is

le
ad

in
g

se
rv

ic
e

M
ed

M
ed

L
e

L
eg

a
l

m
ea

su
re

s,
Q

o
S

,
T

ru
st

M
a
n

a
g
em

en
t

1
0

(2
7)

A
R

P
fa

ls
ifi

es
ac

co
u

n
ti

n
g

P
re

ve
n
ti

n
g

d
et

ec
ti

o
n

o
f

u
n

au
th

or
iz

ed
a
cc

es
s

H
ig

h
M

ed
L

e
L

eg
a
l

m
ea

su
re

s,
Q

o
S

,
T

ru
st

M
a
n

a
g
em

en
t

Chapter 3

Study of security mechanisms

In this chapter we provide high level overview of different types of distributed
systems and architectural approaches for handling security in these systems.
Moreover, we describe basic security components, such as identity and access
management, and security procedures, such as authentication, authorization,
and delegation. In the rest of the chapter we analyse multiple security pro-
tocols and select those most suitable for realization of SWoT’s authorization
architecture.

3.1 Distributed systems and security archi-

tecture

Continuous trend in development of computing systems over recent decades
has been the shift from the local, isolated, centralized systems towards
network connected, collaborative, and distributed systems. Increasing
systems interconnectedness enables realization of novel applications and
businesses opportunities. However, this same trend burdens realization of
security systems as it becomes more difficult to achieve desired security
requirements. The primary reason is that in these systems functional
and security (non-functional) requirements are conflicting. Functional
requirements drive the need for seamless interaction, resource sharing,
and more openness. On the other hand, security demands isolation and
reducing exposure in order to preclude resource access by unauthorized
entities. Therefore, design of distributed systems (such as SWoT) requires
careful balancing of functional and non functional requirements. Otherwise,
resulting system may be insecure - if functional requirements are prioritized
or inflexible - if applied security mechanisms are too restrictive.

The most simple distributed system in which one party interacts over

21

CHAPTER 3. STUDY OF SECURITY MECHANISMS 22

the network with the single service providing resources is illustrated in
Figure 3.1a. The distinctive characteristic of this type of distributed system
is that the service handles all security requirements individually without
any dependence on third party services. The inner security architecture
for this type of services is depicted in Figure 3.2 while the description
of depicted security components is provided in section 3.2. This security
architecture is relatively simple. Characteristic of this architecture is that
all system components are tightly integrated. Moreover, components are
managed by the system authority in isolation from other systems. The
security system interacts with the outside external parties only for the
purpose of authentication. All other procedures which are responsibilities
of authorization and accounting security components are performed within
system’s boundaries.

Previous security architecture is suitable for simple services provided
by single provider. However, it is unsuitable in cases when the system
in question is more complex, e.g. single service provider offers multiple
services (such as the case illustrated in Figure 3.1b). Previous approach
for handling security in this more complex scenario is inadequate as would
lead to many inefficiencies and it would be necessary that service provider
manages each service completely separately. The common approach for
addressing security requirements in these more complex scenario is to extract
and assign responsibilities common for multiple services to a single internal
service within the system. For example, instead of each service, which
addresses particular functional needs, containing full authentication system,
they implement only small part of authentication system requirements while
for the rest of the authentication system functionality they rely and delegate
to the specifically designated authentication service. This architectural
approach (illustrated in Figure 3.1b) may also be used for addressing other
security aspects such as, authorization, and accounting. However, as we
will see in study of security mechanisms, realizing authorization as a service
is difficult as it is more tightly integrated system operation compared to
authentication.

Further proliferation of services and service providers introduces the need
for increased integration of services across different administrative domains
(scenario illustrated in Figure 3.1c). Primary drivers behind this additional
level of integration is an opportunity to realize novel applications and improve
system usability for end users. External system integration introduces
dependencies, but it also enables services to delegate non core responsibilities
to other services. This delegation is desirable in security domain as it enables
centralized system management and monitoring. In systems which are deeply
integrated, boundaries between administrative domains become less visible.

CHAPTER 3. STUDY OF SECURITY MECHANISMS 23

An example of this type of distributed system architecture are ecosystems of
services which rely on large identity providers (such as, Google, Facebook,
or Twitter). Integration in these systems is primarily focused on addressing
identity management and authentication requirements. An another example
is SWoT system architecture in which each smart thing is consider a service in
its own administrative domain. In this architecture services to be integrated
rely on services provided by the SWoT framework instance to handle their
authorization and accounting requirements in addition to authentication
requirements as in the previous example.

Approaches for handling authentication and authorization in distributed
systems have evolved over time. Two major alternatives for orchestrating
security protocols are explicit and implicit model [40]. In literature these
two models are also recognized as pull and push model respectively [41].
Explicit model is simpler while implicit model is more flexible and suitable
for application in complex systems. In explicit model client is not aware
of security service presence as the communication between service provider
and security service is direct and hidden from the client. On the other
hand, in implicit model client is aware of security service presence as the
communication between service provider and security service involves indirect
exchange of message via the client. All the security protocols which we survey
in section 3.3 are realizations of the implicit model.

3.2 Security components and procedures

In security architectures two major components with distinct responsibilities
can be recognized: identity management and access management component.
These two components satisfy most of the system’s security requirements.
At the same time they are essential in orchestrating and handling security
procedures, such as, registration, authentication, authorization, or delega-
tion. We describe each component and relevant procedures in following
section. Other security components exist (such as, accounting) and security
procedures (such as, logging), but we do not discuss them as they are out of
scope of this thesis project.

3.2.1 Identity management system

Secure identification of system entities is considered foundational in re-
alization of security systems. This particular security function is the
responsibility of identity management system. Identity management system
is involved in registration and authentication of system entities. The notion

CHAPTER 3. STUDY OF SECURITY MECHANISMS 24

Client

Service

(a) Simple distributed system.

Client

(b) Centralized distributed system.

Client

Security components

Data flow

Control flow

Administrative domain boundaries

(c) Federated distributed system.

Figure 3.1: Evolution of distributed systems.

CHAPTER 3. STUDY OF SECURITY MECHANISMS 25

of identity varies between different systems as it depends on particular system
requirements and in this aspect it is similar to other security concepts that we
describe here. For example, identity may be coarse grained and represent set
of entities (such as organization, group of devices, etc.) or fine grained and
indicate specific entity (such as particular user, software agent, or device).
The design decisions adopted in realization of identity management system
affect user’s privacy. For example, system which requires users to use real
names is often viewed as privacy invasive while system which allows use of
pseudonyms is viewed as more privacy aware.

3.2.1.1 Registration

Registration represents the procedure for establishing trust between a client
and a service provider. Moreover, it is a way to assign and associate
system internal records with the specific third party entity (such as, human
user, software agent, or physical device). Typically registration includes
generation of new credentials which are later used to assert client’s identity
in authentication procedure.

One of the distinctive characteristics of distributed systems (such as those
in Figure 3.1) is that the procedures and mechanisms for establishing identity
are more complex compared to non-distributed systems. In non-distributed
computing systems, such as desktop or mobile operating systems, managing
and asserting identity is system provided feature and it is relatively simple
to achieve. On the other hand, in distributed systems it is necessary to
rely on relatively complex protocols and each service provider needs to
provide necessary functionality in order to manage user’s registration and
later authentication.

Performing registration for each client service provider pair is inconve-
nient and not scalable especially in systems with large number of clients and
services (such as, SWoT framework). These limitations are often avoided
by adoption of mechanisms for brokering trust. One such widely adopted
mechanism is a public key infrastructure through which a small set of trusted
certificate authorities enables verification of user’s identity without previous
registration. An alternative approach, often adopted in consumer web
services is to use services provided by large identity providers (such as Google,
Facebook, or Github) for retrieving already established and sometimes even
verified client’s identity.

CHAPTER 3. STUDY OF SECURITY MECHANISMS 26

3.2.1.2 Authentication

Authentication represents the procedure for secure identification of system
entities. This procedure relies on proofs of identity possession - credentials
(such as password, secret key, certificate) which are established and issued in
direct or indirect interaction of system entities with the identity management
system during registration. In distributed systems (such as SWoT) authen-
tication protocols specify how credentials are exchanged between the system
performing authentication and the entity being authenticated. In addition,
authentication protocols also define how exchanged credentials are verified.
There are many different authentication protocols with characteristics that
vary in many aspects. For example, different authentication protocols
are suitable for different operating conditions, types, and characteristics
of system entities, authentication system architectures, or desired levels of
security.

In design of authentication part of security system the emphasis is often
on components handling interaction with the external entities based on
a particular protocol. However, effects of authentication have important
impact on system’s internal operation. Successful authentication typically
results in instantiation of internal record which is entity’s representation
within the system. This record may be simple and contain single identifier
or complex and contain other entity related information in addition to
entity’s internal identifier. This record is central artifact in enabling,
tracing, and correlating entity’s actions within the system. For example,
in access control system the information from this record is used to locate
and retrieve entity’s rights while in accounting system it is used to log
and subsequently monitor actions of particular entity. As potential failures
in operation of authentication system could result in violation of system’s
security requirements, it is essential to guarantee its proper operation.

3.2.2 Access management system

Function of access management system is to enable authorized entities to
access system resources and services in a way and an extent predefined by
a system authority while at the same time preventing unauthorized entities
to achieve the same. Access management system is central component of
every system security architecture. Access management system cooperates
with other security components (such as, identity management system) and
distributed services to form fully operational security system. For example,
access management system relies on inputs from the identity management
system (such as, system’s internal identifier for the entity requesting access).

CHAPTER 3. STUDY OF SECURITY MECHANISMS 27

Authentication

Access Control

Accounting

R4R3R2R1

Resources

Administration

Reference
Monitor

Authorization
Data

Logging

SYSTEM

Identity
Management

Access
Management

Request

Authenticator
Authentication

Data

System
Monitoring

Control plane

Data plane

Legend

Client

RU ID

Figure 3.2: Security architecture.

Moreover, access management system interacts with accounting system and
provides information about security events of interest (such as, successful or
unsuccessful authorization). In addition, access management system provides
functionality for administrators to manage overall system. For example,
administrators are able to define access control attributes, policies, and assign
them to chosen system entities.

3.2.2.1 Authorization

Authorization represents the procedure for determining if the already
authenticated user is permitted to access a resource. It involves evaluation of
properties associated with the user’s account or some other artefact present
in the system (such as, resource accessed, action performed, or environment
conditions). For example, particular properties may indicate that the user is
in specific role (such as, administrator, regular user, or guest), resource state
(such as, confidential, secret, top secret), or environment conditions (such as,
access requested from local or remote network). All these different properties

CHAPTER 3. STUDY OF SECURITY MECHANISMS 28

are referenced in authorization rules which are evaluated by authorization
mechanisms.

When considering authorization it is necessary to analyse three impor-
tant and closely related aspects. First, already discussed, is the access
management aspect which is responsible for providing mechanisms for
defining authorization rules, authorization properties, and for assigning
them to designated system artefacts. The second aspect is responsible
for authorization evaluation and it is typically addressed by adoption
of particular access control model implementation. The third aspect
is responsible for queering and distributing evaluation decisions. The
importance of this last component is especially emphasized in distributed
systems where procedures governing interactions between system entities
may be complex. In these systems authorization protocols represent a class
of solutions which address this particular aspect.

Access control models represent a class of solutions which provide
theoretical and practical foundations for applying and implementing various
authorization approaches. Different access control models have different
properties and vary in complexity. For example, early access control models
such as, access control matrix [42], access control list [43], and capability
list are simple to implement but unsuitable for more complex systems. Role
based access control model [44] is standardized [45], widely adopted, and
applied in various systems. The attribute access control model through
implementations such as, XACML [46], offers highest level of flexibility, but
it is significantly more complex to use and manage.

Authorization protocols are a class of solutions for standardizing and
handling interactions between system entities in a distributed systems which
are performed for the purpose of querying and distributing authorizations.
Authorization protocols exhibit different characteristics since requirements,
assumptions, operating conditions, and goals for which they have been
designed vary. Moreover, since non-functional interactions in distributed
systems result in performance overhead it is common that all security
interactions are addressed with a single solution. In addition, it is common
that data exchanged in these interactions provides necessary input for both
authentication and authorization systems.

All these three aspects of authorization are essential to realize fully
functional authorization solution. However, in thesis project we focus
on authorization protocols (their analysis and application in the SWoT
platform) while we will consider the other two aspects in future work.
This decision was motivated by the realization that authorization protocols
and the system architecture to which they are applied represent the most
challenging and least addressed aspect in SWoT project (in its current state).

CHAPTER 3. STUDY OF SECURITY MECHANISMS 29

3.2.2.2 Access control

Access control is a procedure for enforcing required security measures on a
resource. Access controls allow or deny resource access based on inputs such
as, information about the user requesting access and authorizations granted
to the user, received from the authentication and authorization system
respectively. In distributed systems, access controls implementation is tightly
integrated with the functionality implementing security protocols. This is
mainly due to reliance of access controls on data inputs from authentication
and authorization services. Moreover, access controls are responsible
for intercepting initial resource request and initiating authentication and
authorization procedures.

Inadequate functioning and application of access controls may result
in system security compromise. In this aspect they are similar to other
security components. Access controls in web services are often implemented
as integral part of various security frameworks. Implementation of access
controls in security frameworks is often performed by developers with security
expertise. Due to this errors in access control implementation are less
common source of security vulnerabilities. However, access control placement
and configuration are often performed by application developers with limited
expertise in security. As a result, most security vulnerabilities are caused by
access control misconfiguration or their inadequate application.

Access control term is often erroneously used interchangeably with
the term authorization. However, access control and authorization are
different concepts with different responsibilities. For example, while access
control encompasses various technical measures and focuses on enforcing
access decisions, authorization encompasses access control models, security
protocols with authorization related interactions, and focusses on evaluation
and distribution of access decisions.

3.2.2.3 Delegation

SWoT system can be described as a dynamic (entities become part of the
system at runtime) and distributed (as entities are not physically collocated)
system. In systems, such as SWoT, emphasis is on enabling collaboration
and flexible service composition. Dynamic and flexible interactions require
equally dynamic and flexible access control systems. One potential solution
for realization of such systems is delegation. The concept of delegation
in information technology domain has not yet been clearly defined and it
is often used in various contexts and scopes. However, Pham et al. [47]
define delegation as a “proxy process in which one entity makes available the

CHAPTER 3. STUDY OF SECURITY MECHANISMS 30

necessary rights to another entity to enable the receiver to perform certain
duties on their behalf while addressing specified obligations and meeting
particular constraints”.

The application of delegation concept within particular system requires
thorough understanding of system’s characteristics. For example, for
applying delegation in particular system it is necessary first to specify system
boundary, the entities involved in delegation, and their relation. Moreover,
it is necessary to define which rights should be delegated, how much it
should be delegated, and for how long these rights should be delegated. To
realize delegation on a technical level, it is necessary to choose particular
implementation approach and appropriate mechanisms which are suitable for
that approach. For example, delegation can be performed through exchange
of tokens or by issuing policies [47]. Both approaches define procedures for
issuing and honouring delegated rights as well as artefacts which are used to
distribute those rights.

In systems in which delegation is applied most of the security system
components have to be adapted to be able to support delegation and enable
proper system operation. For example, access controls need to be adapted
to properly handle delegation credentials. Logging mechanisms need to
support checking who performed resource access and on behalf of whom.
As a result, these security components are tightly coupled with delegation
mechanisms and jointly share responsibilities. Due to interdependent nature
of security components with delegation mechanisms, any improper handling
of delegation within the system has a direct impact on overall security system
operation. For more thorough discussion of delegation and its related aspects
we refer interested readers to seminal work of Pham et al.[47].

3.3 Security mechanisms

While conceptually service integration from different systems is similar to
service integration from single systems, requirements and challenges are
distinctively different and require unique solutions. For example, security
protocols’ properties, such as standardization, flexibility, and security of
service to service interactions are all more emphasized in case of service
integration from multiple administrative domains.

In distributed systems the specialization of services for specific functions
and operations increases importance of service interactions. In addition, this
process also emphasises difficulties present in integrating distributed services,
such as defining and standardizing interactions, message formats, and
message content. Addressing these issues with non standardized solutions

CHAPTER 3. STUDY OF SECURITY MECHANISMS 31

or on an individual system basis is cost ineffective and it does not provide
adequate results. For example, non standardized solutions do not undergo
close scrutiny of field experts. Moreover, they require additional resources as
common solutions do not exist and cannot be reused. Therefore, it is more
common to rely on standardized security protocols such as those discussed
in this section.

Security protocols which enable integration of services across adminis-
trative domains have to be flexible. This means that they need to support
dynamic, runtime integration, and require minimal intervention from the
system administrator. Security solutions which enable only design time
integration and with large involvement of system administrators may be
suitable for custom systems with small number of services. However, for
systems such as SWoT, which is envisaged to enable integration of significant
number of services, these more rigid security solutions are inadequate.
Moreover, in case of SWoT there is an additional emphasis on security
solution to be user friendly as administrators (end users) posses minimal
knowledge from security domain.

Service to service integration across administration domains requires
adequate mechanisms to be in place to protect communication confidentiality
and integrity. Absence or improper configuration of these security mecha-
nisms may invalidate security requirements and result in partial or full system
compromise. Therefore, security protocols must feature built-in mechanisms
for this purpose or rely on other widely adopted and well tested mechanisms
specifically designed to provide communication confidentiality and integrity.

Security solutions applicable in service to service integration scenarios
are often designed for particular set of technologies. For example, some
solutions may be based on XML and Web services while other may adopt
more modern technologies, such as JSON for its message encoding format
and REST architectural style for designing and implementing services. It is
desirable that security solutions are based on same set of technologies used
for implementation of functional services. Otherwise, integration of these
solutions can become cumbersome due to various interoperability issues.
Moreover, requirement that application developers know two different sets
of technologies may affect system adoption in developer community.

We have surveyed several prominent security solutions which are relevant
for SWoT use case scenario. We present them and their characteristics in
following material.

CHAPTER 3. STUDY OF SECURITY MECHANISMS 32

3.3.1 Kerberos

Kerberos is an authentication protocol initially developed at the Mas-
sachusetts Institute of Technology (MIT) in the 1980s. Through years it
has gone through several revisions and its latest standardized version is
Kerberos v5 from 2005 [48]. Kerberos is widely used solution in enterprise
settings with many actors. In these systems Kerberos satisfies primarily
authentication requirements and features limited support for authorization
functions, such as support for communicating authorization privileges in
standardized format.

Kerberos is a trusted third party authentication system which enables
runtime introduction of Kerberos clients and services via Kerberos central
entity, known as key distribution center (KDC) (detail description of the
protocol is available in [48][40]). The Kerberos standard does not cover the
process of establishing trust relation with the KDC as this particular system
aspect is handled by system administrators during system design time.

The main underlying assumption in Kerberos design is that the attacker
may read, modify and insert network packets at will [49]. Therefore,
Kerberos protocol (depicted in Figure 3.3) has been designed to incorporate
cryptographic mechanisms for authentication over untrusted communication
network. However, Kerberos protocol provides only protection for the
messages exchanged during authentication procedure. The communication
between client and service which follows authentication is not protected by
the standard application of Kerberos protocol.

Kerberos, similarly to all other third party authentication systems that
we cover here, is centralized and represents single point of failure. If KDC for
some reason is unavailable overall system that includes clients and services
stops operating. Since KDC is core component of the system and one
which all other entities trust, its compromise may result in complete system
compromise. Therefore, as KDC represents high value attack target it is
essential to be properly protected.

Kerberos is a protocol that relies directly on TCP and UDP transport
protocols. Its design had and still has influence on design of modern security
mechanisms. However, Kerberos has been designed before modern transport
layer security mechanisms (such as TLS) and Web technologies (such as
HTTP, HTTPS) have been even introduced. Therefore, it misses their
characteristics and features. Due to all this, Kerberos application in Web
based solutions is cumbersome and often inadequate.

CHAPTER 3. STUDY OF SECURITY MECHANISMS 33

Client

Key Distribution Center
(KDC)

1

Service

1: TGT Request: c, nonce

2: Response: {Kc,tgs, nonce} Kc, {Tc,tgs} Ktgs

3: Service Ticket Request: {Ac}Kc,tgs, {Tc,tgs}Ktgs, s, nonce

4: Response: {Kc,s ,nonce}Kc,tgs, {Tc,s}Ks

5: Service Request: {Ac}Kc,s, {Tc,s}Ks

3

Authentication
Service (AS)

Ticket-Granting
Service (TGS)

2

4

5

Kerberos

Figure 3.3: Kerberos (adapted from [40]).

3.3.2 Security Assertion Markup Language

Security Assertion Markup Language (SAML) is an OASIS standard and an
XML based framework for exchanging authentication and authorization data.
The latest version SAML 2.0 [50] has been introduced in 2005. SAML is a
trusted third party authentication and authorization system. It is a popular
solution for web based enterprise systems with complex authentication and
authorization requirements. SAML is often integral part of security solutions
in service oriented architecture system implementations.

SAML recognizes subjects (typically human user, but may also be a
software agent), services, and central SAML authority (also known as
identity, attribute, or authorization authority) as actors in SAML solution.
SAML authority is the source of assertions which represent containers of
authentication and authorization information (such as identity attributes,
non-identity attributes, and authorization privileges). SAML assertions are
exchanged within the system and consumed by services. SAML does not
specify how subjects and services establish trust relation with the SAML
authority. This particular issue is of out of scope of the standard as it is
expected to be handled by system administrators during system design time.

Core part of the SAML standard is abstract generic solution which can
be applied in different settings [50]. This part of the SAML standard defines
assertions and protocols. For implementation of protocols using specific
technologies (such as SOAP or HTTP) SAML defines different bindings. For

CHAPTER 3. STUDY OF SECURITY MECHANISMS 34

application in particular use case scenario SAML standard defines various
profiles. Profiles facilitate SAML’s feature selection and combination for
SAML application in concrete use case scenario.

3.3.2.1 SAML analysis

SAML’s main use cases which are of interest for this thesis project, are
centralized authentication and centralized authorization [51]. Centralized
authentication, also known as Single Sign On (SSO), enables the SAML
authority to manage authentication of subjects on behalf of the services. SSO
simplifies identity management at services side, improves user experience by
obviating the need for subjects to authenticate at each service provider, and
improves overall security as subject’s credentials are shared only with the
SAML authority. Centralized authorization enables the SAML authority to
centrally manage authorization attributes (privileges, rights) of the subjects
and to provide them to services on their request. SAML defines format
and request/response protocols for communicating authorization attributes.
However, SAML does not define how actual attribute values are specified or
evaluated.

SAML by itself does not provide protection for communication between
SAML actors. As a result, SAML standard recommends usage of transport
layer security mechanisms [52] (such as TLS) to maintain confidentiality and
integrity of communicated messages. SAML defines comprehensive set of
features and mechanisms required for different use case scenarios and different
technologies. This SAML’s characteristic is its strength, as every feature
required is often already available, and its limitation at the same time, as
SAML solutions are complex to learn, configure, and manage.

3.3.3 XACML

eXtensible Access Control Markup Language (XACML) is an OASIS stan-
dard [46]. It is XML based language for specifying access control policies
and encoding access decision requests and responses. In addition, XACML
specification describes an abstract authorization architecture.

XACML architecture (illustrated in Figure 3.4) features several compo-
nents with distinct functions. Policy Enforcement Point (PEP) is guardian of
protected resources. It intercepts resource requests and sends corresponding
access decision request to the PDP. Based on the content of access decision
response PEP allows or denies access to the specific resource. Policy
Desion Point (PDP) is a focal component in XACML architecture. PDP
processes access decision requests coming from the PEP. It retrieves required

CHAPTER 3. STUDY OF SECURITY MECHANISMS 35

policies and attributes. PDP also evaluates policies and returns evaluation
results to the PEP. Policy Administration Point (PAP) is a component
responsible for storing access control policies and providing functionality for
their retrieval. Mechanisms for managing policies vary between different
PAP implementations. Policy Information Point (PIP) manages storage
and retrieval of attributes associated with the subject, action, resource,
and environment. Mechanisms for managing attributes also vary between
different PIP implementations. Context handler abstracts implementation
details of different components and enables loose coupling. For example, it
facilitates decoupling of PEP - PDP and PDP - PIP components. In XACML
implementations this component is a layer around PDP’s core functionality
(e.g. SunXACML [53]).

Normal operation of XACML based system features many interactions
between different system components. PAP manages policies and makes
them available to PDP before any access request is received (step 1 in
Figure 3.4). Access requester sends resource request which PEP intercepts
(step 2). PEP authenticates the requester and from the content of the
resource request extracts required attributes (such as subject identifier,
resource identifier, action identifier, etc). Then, PEP sends an access request
with the attributes, encoded in a predetermined format, to the context
handler (step 3). The context handler processes access request, builds
XACML request context and sends it to the PDP (step 4). PDP requests
from the context handler additional attributes that it requires for processing
access request (step 5). The context handler in interaction with PIP retrieves
required subject, resource, action, and environment attributes (steps 6 to 8)
and makes them available to the PDP (step 9). The PDP evaluates policy
based on received attributes and returns response context (containing access
decision) to the context handler (step 10). The context handler processes
request context and sends access decision response to the PEP (step 11).
The PEP fulfils obligations present in access decision response (step 12) and
depending on the result of access request evaluation provided in the access
decision response permits or denies resource access (not shown).

3.3.3.1 XACML analysis

XACML has many strengths. XACML is standardized which enables
development of interoperable implementations and tools. XACML has strong
community with many business entities offering XACML based products.
XACML is also a generic solution. It has been applied in systems belonging
to different sectors, such as health care, education, financial, military, etc.
XACML architecture is distributed and loosely coupled. As a result it

CHAPTER 3. STUDY OF SECURITY MECHANISMS 36

Access
Requestor

PDP

PAP

PEP

Context Handler

Obligation Service

PIP

Subject
Attributes

Resource
Attributes

Environment
Attributes

1

2

3

11

4

5
6

8

12

9

10

1: Load policies

2: Request resource access

3: Request access decision

4: Forward acc. dec. request

5: Retrieve required attributes

6: Retrieve required attributes

7a,b,c: Obtain adequate attributes

8: Attributes

9: Attributes

10: Access decision

11: Access decision

12: Process obligations

7c

7b

7a

13

13: Allow or deny resource access

Figure 3.4: The XACML data flow, adapted from [46].

is extensible and very flexible. For example, policies or attributes can
be retrieved in myriad ways. Moreover, XACML language is extremely
expressive. In addition to rich set of elements defined in the language
there are also extension mechanism for defining new elements. XACML has
many extensions (such as SAML profile, RBAC profile, etc.) which enhance
XACML with the missing functionality.

XACML has its limitations also. For example, XACML does not define
transport protocol for PEP - PDP interaction. XACML does not specify
how PEP requests should be authenticated by the PDP, nor how to handle
case when there are multiple PEPs which are not equally trusted by the
PDP. Note that these issues are present only when components of XACML
architecture are distributed and not collocated as part of a single monolithic
application. XACML language syntax is extremely complex which precludes
direct modification of access policies. Publicly available XACML policy
editors [54][55] do not improve user experience significantly.

3.3.4 OAuth

The OAuth is an authorization framework which enables third party
applications to obtain restricted set of privileges to access resources hosted at
particular service through a set of well defined interactions. OAuth 1.1 [56]
and OAuth 2.0 [57] are two versions of OAuth protocol currently in wide use.
While these two protocol versions are suited for same use case scenarios, their
inner workings differ in large extent. In this thesis we consider exclusively

CHAPTER 3. STUDY OF SECURITY MECHANISMS 37

OAuth 2.0, to which we refer simply as OAuth.
Main actors in OAuth are: a client which is a generic third party

application accessing resources provided by services; authorization server
(AS) which is a central entity and a software agent responsible for managing
different kinds of credentials, credential distribution to clients, as well as
credential validation upon request from resource servers; resource server
(RS) which is a software agent that in cooperation with AS guards access to
resources hosted by particular service; resource owner a user which owns
resources and is responsible for delegating its own resource access permissions
to clients.

Main artefacts in OAuth are credentials of different types and scopes
which represent OAuth specific form for communicating granted permissions.
The OAuth features two types of credentials authorization grant and
access token. Authorization grant is a temporary credential issued to the
client by the AS upon user consent to grant particular permissions. The
only purpose of authorization grant credential is to be exchanged for access
token credential. Access token is time constrained credential, that may be
implemented in a form of a handle or self contained assertion. It is used to
indicate the context in which particular client interacts with service as well
as the permissions granted to the client within that context’s scope.

OAuth classifies clients as confidential clients which are capable of
keeping credentials secure due to the way they are implemented (such as
server based client with robust security mechanisms restricting access to
credentials only to the client) and public clients which are incapable of
maintaining confidentiality of their client credentials. Moreover, OAuth
specification considers web application, browser based application and native
application as different client profiles due to their inherently different
characteristics and consequently security requirements. For example, web
applications are considered to be confidential clients while browser based
and native application are considered public clients as confidentiality of their
credentials cannot be guaranteed.

OAuth defines multiple protocol flows (authorization grant types) which
are accustomed to different client types (confidential or public), client profiles
(web, browser, or native application), and use case scenarios. These are:
authorization code, implicit, resource owner password credentials, and client
credentials. Each protocol flow contains slightly different set of interactions
resulting in four variations of OAuth protocol. However, one of interest to
us in this thesis project is authorization code flow which is designed for web
applications considered to be confidential clients. The authorization code
protocol flow consists of three different interactions, depicted in Figure 3.5.
First interaction represents request response exchange via user’s browser in

CHAPTER 3. STUDY OF SECURITY MECHANISMS 38

Resource Owner

Client Authorization Server

1: Authorization Request

2: Authz. Response: + Authz. Grant

3: Access Token Req. + Authz. Grant

4: Acc. Token Resp. + Access Token

5: Resource Access + Access Token

6: Protected Resource

OAuth 2

1

2

4

6

Service

5

3

Administrative Domain

(Design time)

Resource Server

Figure 3.5: OAuth 2 authorization code protocol.

which client asks for particular permission and receives authorization code
from the AS upon resource owner consent (steps 1 and 2). Second interaction
is performed directly between the client and the authorization server. During
this interaction client exchanges authorization code for adequate access token
(steps 3 and 4). In third interaction client accesses service protected by
resource server OAuth component (step 5). Client provides access token as a
assertion of permissions that it possesses. If permissions associated with the
token are sufficient to access resource, service responds to the client request
with adequate response (step 6).

3.3.4.1 OAuth analysis

OAuth protocol addresses authentication and authorization system require-
ments as previously described security protocols. However, the distinctive
characteristic of OAuth protocol is the introduction of human user, in role
of a resource owner, in protocol operation. The OAuth through security
concept known as delegation, in which resource owner plays significant role,
addresses resource administration requirements. One part of this delegation
process is runtime creation of user specific context. User context represents
unification of distributed entities (client, service provider, and resource
owner) into single, unique, logical domain. The other part of the delegation
process relates to the credentials required for interaction with particular user
context. These credentials are managed (created, updated, removed) by the
service provider and used by clients so that interactions between entities and

CHAPTER 3. STUDY OF SECURITY MECHANISMS 39

consequently their effects may be associated and applied within particular
user context.

OAuth protocol support for runtime creation of an authorization context
is OAuth’s distinctive feature. Other often considered positive characteristics
of OAuth are its relative simplicity and design that relies on specific Web
technologies which are currently considered best practices in design of web
based solutions (such as RESTful design, JSON encoding format, adoption
of TLS for transport layer security, etc.). Due to these characteristics OAuth
is widely adopted. OAuth is also viewed as one of the main enablers of recent
proliferation of Web APIs [58][59].

While OAuth is comprehensive security solution it does not address all
security requirements in systems for which assumptions adopted in OAuth
design do not apply. For example, while OAuth addresses the problem
aspect of dynamically establishing trust between clients and central party,
it does not cover the problem aspect of establishing trust between services
and central party. This is due to the assumption that the services will be
configured to trust central party at design time as they are implemented
and managed by the same business entity. Moreover, the approach used in
OAuth for addressing authorization requirements is based on the assumption
that the nature and type of resources to be protected is known at the
design time. This is reflected in implementation of OAuth artifacts known
as scopes (privileges) which are determined at design time, and typically
coarse grained. In addition, OAuth specification does not consider how in
this distributed system central party gets updated with changes related to the
resources (such as introduction of new resource on the service or its deletion).

3.3.5 User Managed Access Profile of OAuth 2.0

User-Managed Access (UMA) profile of OAuth 2.0 [60] is a novel solution for
user centric access control. UMA has initially been proposed and developed
by Machulak et al. [61][62] with the goal to design solution for addressing
authorization requirements in systems with distributed services which have
common trait that the user is the party responsible for administering resource
access. Currently, the UMA work group [63], which is part of Kantara Iniative
[64], oversees UMA development. UMA specification at the moment is in
draft stage and represents work in progress.

UMA incorporates and augments OAuth with artefacts and interactions
which enable realization of systems that feature dynamic (runtime) intro-
duction of services in addition to dynamic (runtime) introduction of clients
addressed by plain OAuth. UMA achieves this by considering services
which provide resources as OAuth clients regarding their interaction with

CHAPTER 3. STUDY OF SECURITY MECHANISMS 40

Client

Authorization
Server

Resource Owner

Service

Requesting Party

OAuth
Context

OAuth
Context

UMA
Context

Figure 3.6: UMA and OAuth contexts.

the authorization server (see Figure 3.6). OAuth does not consider this
particular interaction segment at all. Moreover, UMA overlays OAuth
protocol with additional interactions between system actors which enable
realization of authentication, authorization, and administration system
requirements. There are many other differences which depict flexibility and
consequently complexity of UMA when compared to OAuth. For example, in
OAuth authorization server and services which provide resources are typically
developed and managed by same business entity. In UMA the relation
between services providing resources and authorization server is established
by the resource owner at runtime. Therefore, they may or may not be
developed by same business entity. While OAuth supports only protection
of resources which are known at design time, UMA supports protection of
resources which are known at design time or introduced at run time. All
these fundamental differences lead to a radically different solution. Therefore,
UMA designation as ”profile of OAuth” may be slightly misleading.

UMA specification reuses terms defined in OAuth to refer to UMA actors
and artefacts even though these do not match in many aspects. Due to this
readers should be careful not to equate them. UMA client is an enhanced
version of an OAuth client which accesses resources provided by services.
UMA authorization server is an OAuth protected service with a specific
function to manage and orchestrate UMA interactions. UMA resource
server in cooperation with authorization server guards access to resources
hosted and provided by the particular service. Even though its high level
function is similar to OAuth resource server, UMA resource server realization

CHAPTER 3. STUDY OF SECURITY MECHANISMS 41

incorporates functionality for UMA specific interactions. UMA resource
owner similarly to the OAuth is the owner of resources and the entity
responsible for their administration. Resource owner may dynamically add
new UMA compatible services to his/her domain. These services may or may
not be developed by the same entity as the authorization server. In UMA
person (natural or legal) may also act in requesting party role, in which
it is responsible for brokering establishment of client - authorization server
OAuth context. Simpler and more specific case is when person which acts as
requesting party is the same person acting as resource owner. More generic
and at the same more complex use case is when persons in these two roles
differ.

The most important new artefact in UMA is the requesting party
token credential. Requesting party token indicates the UMA context
in which interactions between client and the service are performed (see
Figure 3.6). It is also a reference handle to a record which contains
permissions granted to the client acting in requesting party OAuth context for
service acting in resource owner OAuth context. Moreover, UMA introduces
ticket artefact which represents opaque handle to authorization server hosted
record with permission requested but not yet claimed. UMA covers aspects
of dynamic introduction of services into the system. For the realization of
this particular system aspect UMA defines following artefacts: resource set,
scope, and permission. Resource set represents service defined, smallest
logical grouping of access-restricted resources. Moreover, resource set is an
unit of management in UMA system. Scope is a service defined, logical
operation applicable to particular resource set. Multiple different scopes
may be defined for specific resource set (e.g. read, write, and manage scope).
A permission is scope granted and associated with the client acting on behalf
of specific requesting party.

Distinct procedures in UMA based system operation are: establishment
of resource owner OAuth context, resource set registration and delegation
of resource protection to the authorization server based on interactions in
previously established resource owner context, establishment of requesting
party OAuth context, and UMA core protocol with resource access and
all other supporting interactions which are performed in resource owner
and requesting party OAuth context. For establishment of resource owner
and requesting party OAuth contexts UMA relies on plain OAuth protocol.
For resource set registration UMA adopts OAuth resource set registration
protocol [65].

UMA core protocol, depicted in Figure 3.7, includes following interactions
which support resource access interaction: 1) issuing of requesting party
token (steps 3 and 4 in Figure 3.7); 2) verification of requesting party token

CHAPTER 3. STUDY OF SECURITY MECHANISMS 42

Client
Authorization

Server

2

34 1: Resource Request

2: Request Denied

3: RPT Issue Request

4: RPT Issue Response + RPT

5: Resource Request + RPT

6: RPT Status Request + RPT

UMA

7: RPT Status Response + RPT Metadata

8: Perm. Reg. Req. +RPT, resource, scopes

9: Perm. Reg. Response + Ticket

10: Resource Request Denied + Ticket

11: Perm. Claim Request + Ticket

12: Perm. Claim Result

13: Resource Request + RPT

14: RPT Status Request + RPT

15: RPT Status Response + RPT Metadata

16: Resource Req. Approved + Resource

68

10
1112

14

16

Administrative Domain

(Run time)

PAPI

A
A

P
I

Resource Server

13

Service 9

7

5

1

15

Figure 3.7: UMA protocol.

(steps 6 and 7); 3) permission request registration (steps 8 and 9); and 4)
permission claim (steps 11 and 12). UMA core protocol without permission
request registration and permission claim interactions enables protection
of resources based on statically granted permissions and in this respect is
similar to other previously described protocols. However, with permission
request registration and permission claim interactions clients may obtain
dynamically new permissions without user involvement which significantly
increases system flexibility.

The core component of UMA is the authorization server which implements
server side functionality for previously introduced interactions. Moreover,
it provides protection API (PAPI) meant to be used by services and
authorization API (AAPI) meant to be used by clients. PAPI contains
OAuth protected permission registration endpoint and token verification
endpoint. AAPI contains OAuth protected requesting party token issuance
endpoint and permission claim endpoint. Tokens that grant access to PAPI
and AAPI are OAuth access tokens named protection API Token (PAT) and
authorization API Token (AAT) respectively.

We have provided here only high level overview of UMA core protocol
and authorization server component. More detail description is available in
Chapter 4 and UMA specification [60]. UMA incorporates other protocols
and extensions (such as dynamic client registration protocol [66] and
requesting party claim retrieval protocol [60]), but we do not discuss them
as they are out of scope of this thesis project.

CHAPTER 3. STUDY OF SECURITY MECHANISMS 43

3.3.5.1 UMA analysis

UMA protocol is still in early stage of development. However, it features
capabilities which make it suitable for adoption in systems such as, SWoT.
For example, UMA protocol enables dynamic (runtime) integration of
services. Moreover, administration efforts required to manage UMA based
system are relatively small as features enabling dynamic integration are built
into the protocol.

UMA is by design an authorization as a service solution. It provides
comprehensive set of features for handling authentication and authorization
requirements in a distributed system that spans across multiple administra-
tion domains. In addition, through set of related specifications other non-
core features are also addressed. This wide coverage of issues by UMA related
specifications facilitates implementation efforts and enables interoperability
of UMA based solutions.

UMA adopts same Web technologies as OAuth (REST services, JSON
encoding format, TLS for protecting confidentiality and integrity of commu-
nication, etc.). This facilitates integration with already developed OAuth
solutions as well as their reuse for realization of comprehensive UMA
frameworks. Moreover, it reduces effort in understanding and applying UMA
as many web developers are familiar with these technologies.

3.4 Security mechanisms analysis

The Kerberos protocol is an inadequate mechanism for the SWoT autho-
rization architecture for several reasons: it addresses only authentication
requirements, it is a low level solution incompatible with web based
technologies on which SWoT framework relies, does not support runtime
registration of service providers, nor it is envisaged to be administered by
non expert users.

SAML addresses both authentication and authorization requirements.
However, it is a comprehensive solution for enterprise environments. Its
complexity is a limitation in SWoT context, as it hinders development of third
party applications. Moreover, SAML does not support runtime registration
of third party service providers, nor it is a user friendly solution. In addition,
SAML relies on Web services, SOAP, and XML, while SWoT framework
adopts REST services, HTTP, and JSON as basic technologies. Due to these
incompatibilities we do not consider SAML to be suitable solution for SWoT’s
authorization architecture.

XACML is a suitable solution for implementing authorization evalua-

CHAPTER 3. STUDY OF SECURITY MECHANISMS 44

SAML

UMA

OAuth

XACML

Authorization

Enforcement EvaluationEnablement

Enterprise

Consumer

Integration specified

Integration not specified

Security
functions

Authorization
functions

Security
mechanisms

Access Control
Models

Auth. and Authz.
Protocols

Reg. and Deleg.
Protocols

Kerberos

Authentication

Figure 3.8: High level comparison of security mechanisms.

tion systems. However, XACML does not define transport protocol nor
interactions between PEPs and PDP (service providers and authorization
server respectively). This XACML limitation prevents its application in
environments with third party service providers, such as SWoT. In enterprise
systems, XACML is often coupled with the SAML as these two mechanisms
address complementary aspects of the authorization architecture. However,
even combined they do not satisfy SWoT requirements due to previously
described SAML’s limitations.

In our use case scenario for protecting resources provided by platform
services we have chosen OAuth security mechanism. We know at design
time which resources SWoT framework hosts and we can define adequate
permissions (OAuth scopes). We expect that framework’s services will be
collocated. Due to this, lack of OAuth specification for an authorization
server - services communication does not represent an issue. However, for
protecting resources at third party resource providers OAuth is inadequate
solution as we cannot define permissions for them at design time as we do
not know their characteristics at design time. Moreover, lack of OAuth
specification for authorization server - services communication in this case
represents an issue as interaction between entities from different domains
requires standardized solution.

In our use case scenario for protecting resources provided by third party
resource providers we have chosen UMA security mechanism. UMA is
designed to enable a centralized authorization service to protect resources
hosted by third party resource providers. UMA with related specifications

CHAPTER 3. STUDY OF SECURITY MECHANISMS 45

defines runtime registration of resources and permissions applicable to these
resources. This information is essential for enabling authorization service to
offer to users resource access administration functionality. UMA also specifies
the protocol for interaction between the authorization server and third party
resource providers, as well as number of other extensions which are required
for fulfilling this more complex use case scenario.

OAuth and UMA protocol are responsible for interactions in which
resource servers query authorization server if particular client can access
resource and receive response from the authorization server with the
corresponding decision. However, OAuth and UMA are not responsible for
evaluating access decision requests based on access control policies defined by
the user. This is the responsibility of access control models (see Figure 3.8).
Study, implementation, and integration of a suitable access control model
with the UMA authorization protocol is left for future work.

CHAPTER 3. STUDY OF SECURITY MECHANISMS 46

Table 3.1: Characteristics of selected security mechanisms.

C
h

a
ra

c
te

ri
st

ic
s/

M
e
ch

a
n

is
m

K
e
rb

e
ro

s
[4

8
]

S
A

M
L

[5
0
]

X
A

C
M

L
[4

6
]

O
A

u
th

[5
7
]

U
M

A
[6

0
]

S
y
st

e
m

a
u

th
o
ri

ty
K

D
C

S
A

M
L

A
u

th
o
ri

ty
P

D
P

A
u

th
z.

S
er

v
er

A
u

th
z.

S
er

v
er

R
e
so

u
rc

e
u

se
r

C
li

en
t

S
u

b
je

ct
S

u
b

je
ct

C
li

en
t

C
li

en
t

R
e
so

u
rc

e
p

ro
v
id

e
r

S
er

v
ic

e
P

ro
v
id

er
S

er
v
ic

e
P

ro
v
id

er
P

E
P

R
es

o
u

rc
e

S
er

v
er

R
es

o
u

rc
e

S
er

v
er

F
o
c
u

s
A

u
th

en
ti

ca
ti

o
n

A
u

th
z.

E
n

fo
r.

A
u

th
z.

E
va

l.
A

u
th

z.
E

n
fo

r.
A

u
th

z.
E

n
fo

r.

D
e
le

g
a
ti

o
n

N
o

N
o

Y
es

Y
es

Y
es

R
u

n
ti

m
e

d
o
m

a
in

fo
rm

a
ti

o
n

–
–

–
P

a
rt

ia
l

(R
U

)
F

u
ll

(R
U

a
n

d
R

P
)

T
a
rg

e
t

d
o
m

a
in

E
n
te

rp
ri

se
E

n
te

rp
ri

se
E

n
te

rp
ri

se
E

n
te

rp
./

C
o
n

s.
E

n
te

rp
./

C
o
n

s.

C
o
n

fi
d

e
n
ti

a
li

ty
,

In
te

g
ri

ty
B

u
il

t
in

T
L

S
–

T
L

S
T

L
S

T
ra

n
sp

o
rt

P
ro

to
c
o
l

T
C

P
or

U
D

P
H

T
T

P
o
r

S
O

A
P

–
H

T
T

P
H

T
T

P

D
a
ta

fo
rm

a
t

B
in

ar
y

(A
S

N
1
)

X
M

L
X

M
L

J
S

O
N

J
S

O
N

Chapter 4

System specification

In this chapter we provide a detailed description of all system interactions.
We cover interactions defined by the UMA and OAuth protocol, as well
as interactions protected by these security mechanisms. On a high level we
divide all system interactions into three distinct phases of system’s operation:
bootstrap phase, configuration phase, and operation phase. Interactions from
first two phases are not the primary focus of this thesis. However, they are
crucial for understanding how our system (illustrated in Figure 5.1) operates.
The third phase covers core system interactions.

4.1 Bootstrap phase

The bootstrap phase includes interactions for service (RLS and ALS)
registration and initial authorization by which entities join SWoT domain
in their role as RU or RP. We discuss service registration only partially, as
it is out of scope of this thesis (see Chapter 3). However, we describe in
detail service authorization by which they become part of SWoT domain.
Bootstrap phase features exclusively interactions of services with the SWoT
framework.

4.1.1 Service registration

Registration is a process during which SWoT for the first time establishes
a relation with a particular service (ALS or RLS). In the process of service
registration the service provides to the SWoT Framework its description (step
1 in Figure 4.2). This service description is an extensible set of various
information items, such as service name in a user friendly form, short service
description, icon, etc. This information is used in the SWoT Framework to

47

CHAPTER 4. SYSTEM SPECIFICATION 48

SWoT User
UMA Client

SWoT Framework

UMA RS

SWoT Domain

manages

OAuth RS
UMA

AS

RLS

ALS

OAuth
AS

DS

d
at

a
fl

o
w

control flow

control flow

OAuth RS

Figure 4.1: SWoT system.

enhance the user experience in various operations involving both ALSs and
RLSs. In response to a registration request SWoT establishes an internal
record and it generates an authentication credentials (e.g. client id and
secret) that uniquely identify the service (step 2 in Figure 4.2). These
credentials are then provided to the service (step 3 in Figure 4.2). Service is
required to present authentication credentials in all future interactions with
the SWoT Framework .

We recognize two alternative approaches for implementing this registra-
tion procedure in contemporary systems. In first approach, more common,
this procedure is performed manually by a service developer. The developer
enters the required information via a web form, based on the provided
information the platform generates internal record and an authentication
credential, developer retrieves the credential and embeds it into its service
code. During this process the developer is also required to accept the
platform’s terms of use by which the developer is held accountable for
service’s operation in its interaction with the platform. This step is a
mechanism for establishing trust between the platform and the service.
Today popular Web platforms rely predominantly on this approach.

In second approach the process of registration consists of two separate
sub-processes. In the first sub-process the service developer agrees to
follow the platform’s terms of use; the platform generates a bootstrap
credential, which is required for second sub-process; and developer embeds

CHAPTER 4. SYSTEM SPECIFICATION 49

AAA

OAuth AS

DB

2. Generate and store
Client id, Client secret

1. Register: Token
retrieved out of band

3. Client id, Client secret

ALS / RLS

OAuth Client

Figure 4.2: ALS and RLS Registration.

this credential into its service code. In second sub-process the service
autonomously registers with the platform: the service requests registration
and provides the bootstrap credential; the platform correlates this service
with its developer using the bootstrap credential; if this correlation is
successful then the registration request is satisfactory and the service
receives in response a newly generated authentication credential. This
approach enables realization of more advanced use cases. For example,
multiple instances of the same service can register and configure themselves
independently with unique authentication credentials. The first sub-process
in this approach is platform specific and not well suited for standardization.
However, second sub-process, named dynamic client registration, is focus of
recent standardization efforts [67][66].

In the SWoT domain two types of services with different characteristics
exist (see Chapter 2). For ALSs which are single instances and managed by
the service developer both approaches are suitable but the first is used more
often. For RLSs which are multi instance and managed by end users, the
second registration approach is more adequate as each instance will obtain
its own set of authentication credentials.

We have provided here only a general overview of the registration ap-
proaches, as concrete implementation mechanisms are out of the scope of this
thesis. However, readers interested in concrete implementation mechanisms
should consult the Generic Bootstrapping Architecture explained in Section
8.3.1 of SENSEI Security Architecture [12], Security Bootstrapping Solution
for resource-constrained devices [68] and Xively provisioning API[39]. All of
the previous mechanisms were directed towards scenarios focused on services
with RLS characteristics, which are more challenging compared to those
involving the ALS.

CHAPTER 4. SYSTEM SPECIFICATION 50

RLS AAA

OAuth AS

DB

Browser

OAuth 2

1
. A

tt
em

p
t

ac
ce

ss

2
. R

ed
ir

ec
t

to
 O

A
u

th
 A

S

1
0

. A
cc

es
s

w
it

h

au
th

o
ri

za
ti

o
n

 c
o

d
e

3. Redirected access

4. Challenge

5. User credentials

9. Redirect to requester
with authorization code

8. Generate and save
authorization code

12. Lookup and
validate authz. code

13. Generate and save
OAuth Access Token

 for client

11. Exchange code for
 access token

14. PAT/AAT

6. User consent required

7. User consent

ALS

OAuth Client

Figure 4.3: Association.

4.1.2 Service association

A prerequisite for a service (both ALS and RLS) being able to operate within
a SWoT system is that they are registered. We have explained how this
may be achieved in the previous subsection. However, possessing solely an
identity is insufficient. The fact that service is entity who it claims to be,
moreover one which SWoT system recognizes, does not automatically entitle
it to operate within a SWoT system. What is necessary is that a SWoT user
delegates the proper rights to it. Since there are two different roles (RU and
RP) in the SWoT system there are also two rights that can be delegated.
The first right entitles a service to act as RU, while the second entitles it to
act as RP. We note readers that in this thesis we assume that an ALS will
only act as an RU, while a RLS will only act as RP. We do not consider cases
in which ALS acts as RP, RLS acts as RU, or an ALS or RLS act as both a
RU and a RP. Study of these use case scenarios is left for future work.

In Chapter 3 we have identified that OAuth 2.0 is a suitable mechanism
for delegating authorization rights. Moreover, that authorization code is
a suitable authorization grant. Therefore we present here its application
for our use case. Figure 4.3 depicts all interactions between the involved

CHAPTER 4. SYSTEM SPECIFICATION 51

entities, while bellow we describe each of them. Note that this is simplified
explanation of OAuth 2.0 protocol (detailed explanation is available in [57]).

1. A SWoT and ALS user using a browser requests a particular resource
from the ALS. To satisfy this request ALS needs to access user’s
resources at SWoT (e.g. those resources provided by the DS).

2. The ALS processes user’s request and determines that it does not have
the required credentials to interact with the SWoT’s discovery service.
To retrieve credentials it initiates the OAuth authorization code flow
with a redirect response destined to the SWoT’s OAuth AS. With this
action the ALS requests the RU right.

3. The browser processes the response and follows the redirect to the
SWoT’s OAuth AS.

4. In order to delegate rights the user needs to be signed in at the SWoT.
If this is the case, this and the following step are skipped. A common
mechanism for user authentication in web applications is form based
authentication. This process starts by the OAuth AS returning a
response to the browser requesting the user’s credentials.

5. The user enters the required information, e.g. user name and
password, and submits the request. OAuth AS validates credentials
and authenticates the user.

6. At this stage the user is authenticated and the OAuth AS starts
processing the initial request originating from the ALS. OAuth AS
returns a response to the user’s browser requesting its consent to issue
a RU right to the ALS.

7. The user submits its consent to the OAuth AS.

8. Now the OAuth AS generates an authorization code.

9. The OAuth AS redirects the user’s browser back to the ALS. Redirect
response contains an authorization code destined for the ALS.

10. The browser follows the redirect by issuing a resource request with all
the necessary information received from the OAuth AS to the ALS.

11. The ALS processes the request and retrieves an authorization code
from the request. Following the OAuth protocol the ALS sends this
authorization code to the OAuth AS service.

12. The OAuth AS validates received authorization code.

13. If this validation is successful the OAuth AS generates an access token
and internally associates with it a RU right. In UMA terminology

CHAPTER 4. SYSTEM SPECIFICATION 52

Authorization Access Token (AAT) is term used to refer to an access
token with a RU right.

14. The OAuth AS in response to the ALS provides a AAT. The ALS saves
the AAT and uses it in all subsequent interactions with the SWoT’s
services.

Through previously described set of interactions user delegates a right to
the ALS to act as RU. The procedure in which SWoT user delegates right
to the RLS to act as RP is almost identical to the previous one. The only
difference is that a right which RLS requests and receives is a RP right. The
OAuth AS in response to the RLS request issues the access token associated
with the RP right, which in UMA terminology is known as a protection access
token (PAT).

As an outcome of procedures in this phase we have a SWoT domain
with registered an ALS and a RLS which are authorized to interact with the
SWoT framework in RU and RP roles, respectively. In the following sections
we describe operations that they perform in these roles.

4.2 Configuration phase

The configuration phase includes interactions between services, viewed at
this stage as RPs and RUs, with the Discovery Service (DS) component of
the SWoT framework. These interactions include resource registration and
resource discovery in which a RP and a RU interact with a DS, respectively.
We also describe SWoT’s administration capabilities. Configuration phase,
same as the bootstrap phase, does not include interactions between RUs and
RPs.

We limit our discussion of a DS here to a high level overview. The
intricacies and implementation details of a DS are out of the scope of this
thesis. However, the protection of the DS from unauthorized access is within
the scope of this thesis. Therefore, on example of DS we explain how our
authorization solution protects SWoT’s internal services.

4.2.1 Resource registration

The resource registration interaction is an essential interaction in the SWoT
system. Through this interaction the SWoT framework becomes aware of
the resources which third party resource providers host. In addition, the
SWoT framework relies on information exchanged in resource registration
interaction for performing resource management.

CHAPTER 4. SYSTEM SPECIFICATION 53

The RP interacts with DS to register resource descriptions (see Fig-
ure 4.4). This interaction consists of following steps:

1. SWoT user (RLS admin) using browser requests from RLS to register
all its resources with SWoT. This step may be optional if the RLS
performs this operation automatically, e.g. after joining the user’s
SWoT domain.

2. The RLS acting in the RP role submits resource descriptions to the
DS.

3. The DS processes each request for resource registration and saves the
resource descriptions.

4. The DS indicates the status of each registration request’s processing
in a response. In case this response indicates that the registration
was successful, RLS starts delegating resource protection to SWoT(see
Subsection 4.3).

The procedure for registering resource descriptions and the resource
description format are defined by a UMA related specification [65]. However,
in UMA context resource registration is not performed for the purpose
of enabling later resource discovery, but for enabling a user to identify
a particular resource and to specify access control policy for that same
resource. As a result of this design characteristic resource description format
is simple, but inadequate for applications with different requirements. For
example, feature rich discovery service requires more expressive resource
description format. Therefore, this problem aspect requires research into
more appropriate resource description formats which would provide UMA
required features and be able to support feature rich discovery service.

4.2.2 Resource discovery

The resource discovery interaction enables the RUs to discover at runtime
the RPs and the resources which they provide. Through this interaction the
SWoT framework facilitates interaction of RUs and RPs as well as realization
of complex mash-ups.

The RU interacts with DS to obtain information about resources of
interest (see Figure 4.4). This interaction consists of following steps:

6. SWoT user (ALS user) using browser requests from ALS to discover
resources at SWoT relevant to its function. This step may be optional
if the ALS performs this operation automatically, e.g. after joining the
user’s SWoT domain.

CHAPTER 4. SYSTEM SPECIFICATION 54

RLS

OAuth Client

Directory
Service

DB

Browser

1. Externalize
access control

to SWoT 2. Register resources

4. OK

3. Store resource
descriptions

UMA

ALS

OAuth Client

7. Retrieve
resource providers

and resource descriptions

Not standardized

6. Discover RPs and
resources

8. RP and resource
descriptions

5. Configure

AAA

 OAuth AS

OAuth RS

OAuth RS

Figure 4.4: Resource registration and discovery.

7. The ALS acting in the RU role submits a resource discovery request to
the SWoT’s DS.

8. The DS processes requests and retrieves the matching resource descrip-
tions as well as service descriptions of the RPs hosting them.

9. The DS returns to the ALS matching service/resource descriptions.

The DS provides information about resources and the RPs hosting them.
This information may include the RP’s endpoint, which a RU can use to
directly interact with a RP. Moreover, DS may provide information such as
the RP’s name, icon, and description that could enable the RU to provide
a better user experience. In contrast to the resource registration which is in
process of standardization, resource discovery in the context of the SWoT
project is currently not covered by any specification.

SWoT’s services such as DS are protected by OAuth. This is depicted in
Figure 4.4 where requests in steps 2 and 6 are intercepted by the OAuth RS
and validated in cooperation with the OAuth AS. Depending on credentials
provided and results of their validation OAuth RS allows or denies further
processing of the particular request. For example, a RLS is required to
provide valid PAT for its resource registration request to reach DS. Similarly,
an ALS is required to provide valid AAT for its resource discovery request
to be processed by DS.

CHAPTER 4. SYSTEM SPECIFICATION 55

4.2.3 Resource administration

In our solution we adopt XACML language for policy specification. XACML
policies are expressions over four different classes of attributes including: sub-
ject, resource, action, and environment attributes. Subjects in our particular
case are ALSs acting as RUs and relevant subject attributes express this. We
envisage following attributes: service identifier, service developer, and service
function for which system provides values, or attributes such as service trust
level for which user defines values. Resources are what needs to be protected.
There are many resource attributes as resources are heterogeneous and vary
between different resource providers. In addition to those simple such as
resource identifier we envisage following attributes: resource type (sensor,
actuator etc.), resource provider identifier (fridge, oven, lamp 1, lamp 2),
resource provider type (fridge, lamp, door lock), location of resource provider
(home, kitchen, living room). Actions represent applicable operations for
resources. In our system we use a single action attribute and that is an action
identifier. Defining additional action attributes is possible but for our use
case unnecessary. Environment attributes provide contextual information.
Most prominent attributes of this class are time based attributes which are
useful for defining access control policies with time based constraints. Their
values are provided directly by the system when access control policies are
evaluated.

We define a subject and a resource provider attribute values during the
registration of the ALS and RLS at SWoT. For example, system assigns
unique value to subject and resource provider identifier attributes. Values for
other static attributes, such as a service type or service developer, can also be
generated at the registration time. However, dynamic contextual attributes
(such as, current location of resource provider) cannot be generated at
the registration time and require additional communication between system
entities. We define resource attributes and their corresponding values when
they are registered at the DS. For example, system assigns a unique value
to resource identifier attribute when that same resource is registered. Value
for other resource attributes are extracted from the resource description.
Resource registration also enables definition of action attributes. Actions
and their identifiers are based on UMA scopes which are integral part of a
resource description. Time attributes are not related to third party entities
and therefore their values are managed internally. As they are dynamic their
values are generated at runtime.

XACML based access control policies are extremely expressive. SWoT
user can reference single or multiple attributes from different attribute classes
when defining access control policies. By choosing particular attributes

CHAPTER 4. SYSTEM SPECIFICATION 56

and their values user can restrict and expand applicability of his policies.
This means that user may have single policy which applies to all resources
or multiple access policies which apply to different sets of resources. For
example, SWoT user may define access policy which references particular
resource identifier and therefore applies only to that resource. However,
this approach is inefficient. Instead, user can define policy which applies
to a set of resources by referencing an attribute which is shared between
multiple resources. For example, if user wants to specify access control policy
which would apply to all lamp devices, then it needs to reference a resource
provider type attribute with the value lamp. User can also choose to leave
out particular attributes and even whole attribute classes. We describe how
system evaluates these policies in Section 4.3.3.

4.3 Operation phase

The operation phase includes resource access interaction between services
(RUs and RPs), as well as all other interactions required to secure it. These
interactions are token retrieval, token verification, permission registration and
permission retrieval which are system external interactions and permission
evaluation which is system internal interaction. SWoT framework, more
precisely its UMA AS, has a pivotal role in all interactions during this phase.

4.3.1 Authentication

Process of authentication (illustrated in 4.5) consists of following steps:

1. The RU requests a resource from the RP. Since this is the initial
interaction between the RU and the RP, the request does not contain
the required credential (RPT).

2. At the RP a security component intercepts the request. It detects that
request does not contain a RPT and returns a response indicating an
error, with information in response that the RU can retrieve a valid
RPT from the SWoT framework.

3. The RU detects via the error response that it needs an RPT for
accessing the RP. To retrieve this RPT the RU sends a request to
the SWoT’s UMA AS indicating in the request for which RP a new
RPT will be used. Since the RPT issuing service at UMA AS is
OAuth protected the RU embeds in its request the required credentials:
first a credential asserting the ALS’s identity and the second credential
(OAuth Access Token) asserting that it has the RU right.

CHAPTER 4. SYSTEM SPECIFICATION 57

4. The UMA AS processes this request for new RPT. It generates a
internal record representing the relationship between a RU and a RP.
RPT represents unique string token which indexes this internal record.

5. The UMA AS returns a response to the RU with the new RPT as part
of the response.

6. The RU extracts the RPT and retries its access of the resource at the
RP.

7. At the RP the security component detects that the request contains a
RPT. However, it does not know if it is valid. To determine this RP
requests the UMA AS to validate the RPT. Since the RPT validation
service provided by the UMA AS is OAuth protected the RP embeds
in its request the required credentials: first a credential asserting
the RLS’s identity and the second credential (OAuth Access Token)
asserting that it has the RP right.

8. The UMA AS processes the request for RPT validation by performing
two checks. First it checks that there is an internal record identified
with this particular RPT and second that the RP specified in the record
matches RP which requested validation. If both checks are successful,
then the UMA AS retrieves a capability list (CL) associated with this
RPT. Initially this CL is empty.

9. The UMA AS returns a response to RP indicating the result of the RPT
validation. If the validation was successful the response also contains
a CL.

10. At the RP the security component processes the response from the
UMA AS. If validation is unsuccessful, then it responds as in step 2.
If validation is successful, then it allows further processing of the RU
request from step 6. At this stage the security component in the RP
creates an internal record for the RU. The RPT identifies this record
which contains a CL received from the UMA AS in the previous step.
Depending on required authorization granularity at the RP we can
have one of two different cases. In the first case when coarse grained
authorization is implemented at the RP, then a valid RPT grants the
RU access to all RP resources. This case is described here and depicted
in Figure 4.5. In the second case the RU has to have a valid RPT and
the CL associated with it needs to contain appropriate rights. This case
requires additional interactions and we describe it in subsection 4.3.2.

11. As a result of successful authorization in the previous step the original
request is processed.

CHAPTER 4. SYSTEM SPECIFICATION 58

ALS

UMA Client

AAA

UMA AS

RLS

UMA RS

3. Retrieve RPT for Host

5. Redirect with RPT

8. Retrieve RPT and
RU’s CL identified by it

11. Resource
Access

10. Authorisation check

1
. A

cc
es

s
w

it
h

o
u

t
R

P
T

2
. R

ed
ir

ec
te

d
 t

o
 A

M

6
. A

cc
es

s
w

it
h

 R
P

T

DB

4. Generate and store
RPT

9. RPT validation result
and RU’s CL 7. Validate RPT

UMA

AAA

OAuth AS

OAuth RS

OAuth RS

Figure 4.5: Authentication flow.

4.3.2 Authorization

When RU does not possess required permissions RP initiates permission
obtaining flow which consists of interactions depicted in Figure 4.6. These in-
teractions represent continuation of the process described in subsection 4.3.1
and include following steps:

10. The RP security component is preconfigured with information about
rights which the RUs need to have to successfully access resources.
Based on this information the RP performs an authorization check. It
determines if a particular RU in the associated CL has the required
rights. As we are continuing the process described in subsection 4.3.1
we know that the CL is initially empty. Therefore access is not granted.

11. The RP security component submits a request to the UMA AS in which
it provides an RPT (which identifies the RU) and the list of rights that
the RU is lacking for successful access to the resource.

12. The UMA AS performs the necessary checks and creates an internal
record containing a RPT and a list of the rights received from the RP. It
identifies this record using a unique string token, also known as ticket
in UMA terminology.

CHAPTER 4. SYSTEM SPECIFICATION 59

13. The UMA AS returns a response to the RP indicating the result of
request processing. If the processing was successful, then the response
contains a ticket.

14. The RP extracts the ticket from the UMA AS’s response and embeds
it in response to the RU’s request from step 6 indicating that resource
access is denied.

15. The RU detects from the error response that it is missing some rights to
access resource. It does not know which rights nor how many of them it
needs. However, it knows that it can try to retrieve them by submitting
a request to the UMA AS with a RPT and a ticket embedded in the
request.

16. The UMA AS uses the ticket to retrieve the internal record with the
missing rights and performs the necessary checks. The UMA AS uses
retrieved information to populate the evaluation request.

17. The UMA AS relies on the implementation of the abstract request
evaluator interface to evaluate if the RU can obtain the necessary
rights. The UMA AS initiates evaluation process by sending a suitable
evaluation request to the Request Evaluator component.

18. The Request Evaluator component evaluates the request and returns a
response containing a decision.

19. If decision is to grant rights, then the UMA AS will add those rights
to the RU’s CL and store it. Otherwise, CL will not be modified and
the RU will not receive any additional rights.

20. The UMA AS returns a response to the RU indicating the result of
the request processing. If the result indicates failure, then the RU
knows that its request for additional rights has been denied and that
it cannot access the resource. However, if the result indicates success,
then it knows that the missing rights have been granted to it and it
continues the access procedure.

21. The RU retries accessing the resource at the RP. This request is
identical to the request in step 6 in Figure 4.5.

22. Same as step 7 in Figure 4.5.

23. Similar to step 8 in Figure 4.5. The only difference is that CL is no
longer empty, but contains some rights.

24. Same as step 9 in Figure 4.5.

25. The RP processes the response from the UMA AS. From the response
which indicates that the RPT is valid the RP retrieves new CL. It

CHAPTER 4. SYSTEM SPECIFICATION 60

ALS

UMA Client

AAA

UMA AS

RLS

UMA RS

15. Request permission for RPT, ticket

20. Request approved

26. Trusted
access

10. Authorisation check

2
1

. A
cc

es
s

w
it

h
 R

P
T

DB

11. Register permission request

13. Ticket

1
4

. R
ed

ir
ec

te
d

 t
o

 A
M

w
it

h
 t

ic
ke

t

12. Store permission
request with the ticket

Request
Evaluator

17. Evaluation
request
18. Evaluation
decision

22. Validate RPT

23. Retrieve RPT and
RU’s CL identified by it

25. Authorisation check

24. RPT validation result
and RU’s CL

UMA

19. Store RU’s CL
identified by RPT

AAA

OAuth AS

OAuth RS

OAuth RS

16. Retrieve perms.
using the ticket

Figure 4.6: Authorization flow.

compares the rights required for accessing the resource with those
present in the CL. If the CL contains all of the necessary rights, then
the authorization succeeds, if this is not the case the authorization
procedure restarts from step 10.

26. As a result of a successful authorization in the previous step the original
request is processed.

4.3.3 Authorization evaluation

Authorization evaluation represents a set of internal system operations
through which system issues new and invalidates old permissions granted
to RUs (ALSs acting on behalf of specific user). Figure 4.7 depicts the
internal interactions and those external which drive them. Two main artifacts
are permission requested record and requesting party token record. First
record contains permissions which are requested and are to be evaluated,
while the second contains permissions that have been already granted. The
permission requested record is generated when RLS registers permissions
necessary to access particular resource on behalf of specific user (steps 11
and 12 in Figure 4.6). Permissions in the permission requested record are

CHAPTER 4. SYSTEM SPECIFICATION 61

evaluated on reception of the permission claim request from the ALS (step 15
in Figure 4.6). The internal system interaction flow (illustrated in Figure 4.7)
features following system operations which combined perform permission
request evaluation:

1. The UMA AS retrieves previously registered permission requested
record from the database. From this record it retrieves necessary
information, such as permissions requested, resource identifier, resource
provider identifier, etc.

2. The UMA AS encodes this information into predetermined format and
submits the access decision request to the concrete implementation of
request evaluator.

3. The request evaluator processes request, retrieves necessary informa-
tion from the request, and retrieves applicable access control policies
from the database.

4. The request evaluator retrieves attributes referenced in applicable
access control policies, performs access control policy evaluation, and
derives access decision.

5. The request evaluator provides the access decision to the UMA AS in
the access decision response.

6. The UMA AS parses the response and processes the access decision. If
the access decision is to grant new permissions, then system associates
new permissions with the corresponding requesting party token record.
Otherwise, system does not modify requesting party token record.

When the system processes permission request it provides the result of
the evaluation to the ALS. A success status in the response indicates that
requested permissions have been granted (step 20 in Figure 4.6), while the
response with a failure status indicates that permissions cannot be granted
as resource’s access control policy does not allow it. The new permissions
granted to the RU, in the case of successful evaluation, are visible to the RLS
on the next RPT validation request (step 22 in Figure 4.6).

Permissions granted to the RU are time limited, which forces RUs to
go through permission evaluation process more frequently. This approach
is realized with a parameter - permission expiration period, associated
and stored with permissions in the requesting party token record. This
particular parameter is provided in the CL sent to the RLS in response
to RPT validation request. Within RLSs permission expiration period is

CHAPTER 4. SYSTEM SPECIFICATION 62

SWoT

 UMA AS

Protection API (PAPI)

Authorization API (PAPI)

System Logic Request Evaluator

RLS

ALS

Permission
Requested records

RPT records

1

6

2

5

3

4

Access control
policies

Attributes

Figure 4.7: Permission request evaluation.

used as an input for caching mechanism. The permission expiration period
assigned to granted permissions may affect overall system operation as with
different permission expiration periods overall system behaves differently.
For example, when permission expiration period is short system behaves
as it is an implementation of dynamic access control. On the other hand,
when permission expiration period is relatively long system behaves as a
static access control system. Permission expiration period also affects system
performance (for detailed discussion see Chapter 6).

Our overall system architecture resembles the classical XACML architec-
ture described in Chapter 3. UMA RSs share characteristics of XACML
PEP entities. UMA clients are similar to XACML access requesters.
UMA authorization server provides functionality for orchestrating various
authorization flows with which it enhances the request evaluator component
which resembles XACML PDP.

Chapter 5

Implementation

UMA is novel protocol. As a result, very few implementations are currently
available. UMA WG documentation [69] lists several implementation efforts
out of which SMARTAM driven by UMA/j framework and Fraunhofer
AISEC solutions stand out as most complete. SMARTAM project published
prototype implementation of UMA client and resource server components
[70]. However implementation of UMA authorization server, main component
in UMA, has not been published. Fraunhofer UMA implementation has been
open sourced in July 2012 and it is publicly available since then. At the time
when we started our implementation effort these solutions were not available.
Therefore we have implemented our own UMA framework to which we refer
as Spring Security UMA (SSU) framework.

In rest of this section we explain how our SSU framework realizes UMA
roles of authorization server, resource server, and client as well as where and
why our implementation deviates from the draft UMA specification. Our
implementation is based on Spring Security and Spring Security OAuth2
libraries. Therefore we first provide short introduction of these two solutions.
We continue with discussion of SSU framework from high level architectural
perspective. More detail discussion would require detail explanation of Spring
Security and Spring Security OAuth, which is out of scope for this thesis
project as this topic is more suitable for a book [71].

5.1 Libraries

Spring framework [72] is an open source solution for developing Java based
enterprise applications. Previous implementation efforts in SWoT project
have been based on Spring framework. In order to facilitate future integration
of our prototype solution with the rest of the SWoT project we have

63

CHAPTER 5. IMPLEMENTATION 64

SWoT

 Resource Layer Service

 Application Layer Service

UMA RS

AAPI + DS

Client
OAuth

client

Service L

Service L

Service L

Data L

Data L

Data L

API L

O
A

u
th

 R
S

R

R

R

PAPI Client
OAuth

Client

Web L

PAPI

AAPI

DS API

Web L

Web L

UMA

client

UMA specific functionality

Spring Security OAuth framework

OAuth AS

1

2

4

3

5 6
9

8

7

Figure 5.1: System implementation.

made a design decision to base our solution also on Spring framework.
Spring framework is a mature solution with many extensions. One of those
extensions is a Spring Security library [73], a comprehensive solution for
addressing authentication and authorization requirements in Spring based
applications. Its modular design enables development and integration of
extensions with more specific functionality and support for more specific
security mechanisms (such as different authentication methods and protocols
[71]).

One of these Spring Security extensions is Spring Security OAuth library
[74]. Spring Security OAuth features support for OAuth v1.0 and OAuth
v2.0. It has been developed and maintained by Spring Source, creators of
Spring framework. It is used in enterprise level commercial and open source
products, such as Cloud Foundry [75] (open source platform as a service
product).

In order to test and evaluate our UMA authorization server implementa-
tion which is part of SWoT framework we were required to implement UMA
client and resource server roles even though this has not been our primary
goal. We have implemented RU and RP applications also as Spring based
solutions. This decision was motivated with the desire to reduce number of
different solutions in use in order to reduce implementation effort and obviate

CHAPTER 5. IMPLEMENTATION 65

the need for learning additional solutions. We feel that choosing Spring for
UMA authorization server implementation has been the correct decision.
However, for RP applications which are deployed on resource constraint
devices Spring based solution is inadequate. This is mainly due to high
resource demands and significant codebase size of Spring based applications.
Therefore, readers should note that RU and RP implementations do not
fulfil all requirements present in production scenarios consider for SWoT
framework.

One of the main contributions of this thesis project is Spring Security
UMA (SSU) framework. SSU is a UMA framework written in Java, based
on Spring Security and Spring Security OAuth. SSU provides functionality
which is necessary to realize all UMA roles including a client, a resource
server, and a authorization server.

We have designed SSU framework as a modular solution. SSU features
three main modules which correspond to UMA roles. This modularity enables
use of only those framework parts relevant for implementation of particular
UMA role. For example, to realize RP application which acts as UMA
resource server it is necessary to use only UMA resource server part of SSU
framework.

Spring Security OAuth is a monolithic library that features support
for OAuth roles (client, authorization server, and resource server) in a
single tightly coupled codebase. However, to support modular design of
SSU framework we needed parts of Spring Security OAuth. Therefore, we
extracted parts which contained functionality required to realize OAuth client
role and OAuth resource server role.

5.2 UMA Resource Server

UMA resource server component of SSU framework features two modules:
first which fulfils function similar to function of OAuth resource server, and
second which fulfils function similar to function of OAuth client.

The first module is responsible for receiving and processing resource
requests originating from UMA clients. Larger part of this module’s imple-
mentation originates from Spring Security OAuth library, more precisely from
the part of the library which provides OAuth resource server functionality.
This part handles integration with the Spring Security authentication
and authorization mechanisms. For example, it provides implementations
of important Spring Security artefacts, such as authentication processing
filter, access denied handler, and access decision voter. In addition, it
provides functionality for managing system internal objects that represent

CHAPTER 5. IMPLEMENTATION 66

authenticated subjects. Our contribution extends Spring Security OAuth
resource server to address UMA specific requirements. This extension
includes: functionality for handling UMA bearer tokens, functionality for
generating and responding with UMA defined responses on UMA client
requests, functionality for communicating parsed requesting party tokens to
the second module for verification and permission retrieval, and functionality
for making access decisions based on permissions associated with the
requesting party token after it has been verified.

The second module is used to interact with the UMA authorization server
as defined by UMA protocol. This module contains two submodules: first
which contains OAuth client functionality, and second which contains UMA
specific functionality. The first module is responsible for providing OAuth
support to UMA resource server in its interaction with UMA authorization
server. Larger part of this module is client functionality extracted from
the Spring Security OAuth library. It provides functionality for managing
OAuth client access tokens (such as functionality to retrieve, store, and
embed tokens into HTTP messages) and for parsing and handling OAuth
errors (such as expired access token). We have introduced relatively small
set of modifications into this submodule and most of them with the intention
to enable integration with the second submodule that contains UMA specific
functionality. The second submodule relies on first submodule for OAuth
support. The second submodule encapsulates client side functionality for
interacting with the protection API of the UMA authorization server. This
includes functionality for performing requesting party token verification and
requesting party permission registration. In addition, it features support for
processing UMA specific errors that may arise in communication with the
UMA authorization server’s protection API, such as invalid resource set id
and invalid scope (see Section 3.2 in [60]).

During the implementation we have tried to follow UMA specification
as close as possible. However, in several cases we diverged from UMA
specification. For example, the design of Spring Security and OAuth
libraries lead us to adopt slightly different approach than that suggested
in UMA specification for performing token verification. In these solutions
authentication and authorization are separated in time. First authentication
is performed, during which all authorization attributes are retrieved from
internal records (e.g. database record) and loaded into memory in form
of an object representing authenticated subject. Then at some later
moment in resource request processing authorization is performed. During
authorization, authorization attributes from the object present in memory
are compared with those required to access particular resource. Note that
when authentication is performed there is no information about resource to

CHAPTER 5. IMPLEMENTATION 67

be accessed nor when authorization is performed retrieving of authorization
attributes. This effectively prevents retrieval of authorization attributes
for particular resource at the moment when authorization is performed
(approach indicated by UMA specification). In the approach we have adopted
UMA resource server in token verification interaction retrieves all permissions
associated with the requesting party token in regard to all resources provided
by the RP. Considering system performance this approach is more efficient
as it reduces number of interactions between UMA resource and UMA
authorization server. Due to change in response content in token verification
interaction it was also necessary to modify corresponding format of the
response.

We have designed UMA resource server part of SSU framework having
in mind characteristics of our RP applications. These applications are
relatively simple, single user applications, where user manages all application
resources. Moreover, we have made a design decision to hardcode OAuth
client credentials as their retrieval process was out of scope of this project.
In addition, due to time constraints we were not able to implement some
features which are necessary in realistic scenarios (e.g. caching of requesting
party token information). Due to all these design decisions SSU framework
in its current form is inadequate for more generic RP applications (multiuser
RP applications) and more complex use cases (RP applications expected to
interact with multiple SWoT instances simultaneously, or those that register
with SWoT instances at runtime). For these use cases it will be necessary to
extend SSU framework.

5.3 UMA Client

UMA client component of SSU framework features two modules: first
which is similar to function of the barebone OAuth client (5), while second
integrates OAuth client functionality to realize UMA client responsibilities
in interaction with UMA authorization server (6).

First module is responsible for enabling communication between service
layer of RU and entities acting as UMA resource servers. This module
retrieves from internal records requesting party token and embeds it into
corresponding HTTP requests, it parses responses indicating access denied
and retrieves the ticket, and it forwards the ticket to the second module for
following interactions with the UMA authorization server.

The second module integrates standard OAuth client functionality as
all communication between UMA client and UMA authorization server is
performed in particular user context, established by the OAuth protocol.

CHAPTER 5. IMPLEMENTATION 68

The functionality which builds on top of OAuth client module handles
UMA specific interactions such as requesting party token issuing procedure,
permission claim procedure (specified by UMA) and discovery of RP and
resources (not specified by UMA). The UMA specified part is activated upon
request from the first module, and upon finishing corresponding procedure
adequate response is returned to the first module. The non UMA specific
part which handles interaction with the DS API is activated upon request
coming from the service layer of the RU. This part handles encoding and
decoding of data present in messages communicated between the RU and
the SWoT instance.

Current implementation of UMA client supports multiuser RU appli-
cations. However, as this is prototype implementation it has also certain
limitations. For example, implementation supports establishing multiple
UMA contexts per OAuth context, but only one OAuth context per user.
Therefore, user using RU may interact with multiple RPs, but all RPs have
to be part of same SWoT domain and to rely on same UMA authorization
server for protection of resources which RPs host. There is no support
for establishing initial trust (dynamic registration) between RU and SWoT
instance. Instead, client credentials (client id and password) are hardcoded.
Considering discovery service its implementation at this stage is quite
rudimentary with basic support for discovering RPs rather than specific
resources. RU applications are expected to feature built-in knowledge of
semantics of APIs provided by discovered RPs.

While implementing RU application we have found similarity between
how we handle RP discovery and communication with RP with how this
functions have been performed in distributed Enterprise JavaBeans EJB
based applications. More precisely, discovery of RPs is conceptually similar
with the Java Naming and Directory Interface (JNDI) mechanism, while
interaction between RU and RP is conceptually similar with the interaction
between the client and the remote beans. Noticing this similarity in concepts
on abstract level, enabled us to apply well established and popular design
patterns for same problems. For example, we relied on service locator pattern
for implementing discovery of RPs, and we have adopted business delegate
pattern for abstracting communication with remote entities from inner parts
of RU implementation.

5.4 UMA Authorization Server

SWoT features UMA authorization server functionality as its core part. This
functionality includes protection API, directed towards UMA resource server,

CHAPTER 5. IMPLEMENTATION 69

and an authorization API, directed towards UMA clients. Both APIs are
protected by the OAuth. OAuth resource server intercepts all requests
directed towards these two APIs (see Figures 5.1, 5.2, 5.3), verifies them
in interaction with OAuth authorization server (which in our case is tightly
integrated with the OAuth resource server), and based on the verification
result allows or denies further request processing.

Both protection and authorization API are implemented as three tier
web applications in which functionality is divided into the web, service
and data layer. For the implementation of the web layer we relied on
Spring Model View Controller (MVC) framework. As our overall solution
is Spring framework based the design decision to choose this particular MVC
framework for the web layer was logical. In addition, in this implementation
effort we have found beneficial that Spring MVC features strong support for
building REST based web APIs. Main responsibility of the web layer as we
have implemented it is to decode requests and encode (based on JavaScript
Object Notation (JSON) format) results of processing performed in the
service layer. The service layer contains core business logic: functionality
to retrieve required internal records from the data layer, functionality
that performs required checks, and functionality that processes request
autonomously or in cooperation with XACML based service for specific
requests (see Figure 5.3). For the implementation of the data access layer we
relied on a persistence framework MyBatis [76]. MyBatis provides support
for custom SQL queries, advanced mappings, and automatic generation of
Java interfaces based on database schema. These MyBatis features enabled
us to handle interaction with the database in elegant and seamless way. The
last piece of the infrastructure in our solution is the MySQL database used for
storing internal records including: OAuth artefacts, UMA artefacts, client,
user credentials, and descriptions of resources provided by RPs.

Protection API consists of three separate functions which are imple-
mented as three distinct web controllers (see Figure 5.2): resource regis-
tration controller, requesting party token status controller, and permission
registration controller. Controllers receive requests, and verify that the
content of the request matches that required for the function which they
implement. If verification is successful controllers invoke corresponding
functionality provided by resource registration service, requesting party token
status service, and permission registration service. These three service layer
components are required to interact with objects from data access layer to
accomplish their function.

Resource registration service retrieves information from the resource
provider data access object, and retrieves and stores information from/to
resource and scope (actions applicable on the resource) data access objects

CHAPTER 5. IMPLEMENTATION 70

RP (UMA resource server)

RLS

Scope DAO

Resource DAO

RP DAO

RPT DAO

Protection API

Resource

Registration

Controller

RPT Status

Controller
O

A
u

th
2

 R
e

s
o

u
rc

e
 S

e
rv

e
r

R

HTTP

Permission

Registration

Controller

RPT Status

Service

Resource

Registration

Service

Permission

Registration

Service Permission DAO

Figure 5.2: Protection API.

in its operation. Information from resource provider data access object is
required for performing certain checks, as well as retrieving its identifier
so that in operations such as storing resource description adequate internal
record refers to correct RP which registers the resource. Scope and resource
data objects contain information about scopes and resources respectively.

RPT status service retrieves information from resource provider, request-
ing party token, and permission data access objects in order to fulfil its
function. Requesting party token provided in the request originating from
the RP is used to locate the corresponding internal record in requesting
party token data access object. If this is successful then RPT status
service retrieves information about permissions associated with the particular
requesting party token from permission data access object. The retrieved
permissions are provided in response to the RP (UMA resource server)
request. Information from the resource provider data access object is required
to parametrize queries directed towards other two data access objects with
which RPT status service interacts.

Permission registration service retrieves information from the scope,
requesting party token, and permission data access object, while it stores
information into the permission data access object. In request originating
from the RP requesting party token and scopes to be assigned to requesting
party token are provided. Since these artefacts are only handles to
internal records permission registration service is required, by relying on
these artefacts, to retrieve corresponding internal records from data access
objects. When permission registration service retrieves data from scope and

CHAPTER 5. IMPLEMENTATION 71

requesting party token data access objects it generates internal record, which
represents permission to be claimed identified by the new handle known as
ticket, in permission data access object. The ticket itself is provided in
response to the RP (UMA resource server).

Authorization API consists of two separate functions implemented by
two different web controllers (see Figure 5.3): requesting party token request
controller, and permission request controller. As in the case of protection API
these authorization API controllers are responsible for decoding, encoding,
and verifying contents of requests and responses. However, for real processing
of requests web controllers invoke functionality in their associated service
layer components: requesting party token request service, and permission
request service. These two service components in their operation interact
with several data access objects that abstract different database records.

Requesting party token request service stores and retrieves information
to/from resource user and requesting party token data access object, and
retrieves information from the resource provider data access object. When
RU (UMA client) request requesting party token in its request it provides an
identifier of the RP. Requesting party token request service retrieves internal
resource provider record identified by the provided identifier, and internal
resource user record. Based on the information present in these records RPT
request service generates new requesting party token record which represents
creation of the new UMA context. Each requesting party token record is
identified by the requesting party token which is provided in the response to
the RU.

Permission request service is a core component in the overall system. It is
the place where new permissions are granted or denied. Permission request
service in its operation retrieves information from several different data access
objects including: resource user, requesting party token, resource provider,
resource, and permission data access object. Permission request service also
stores information in RPT data access object after permission have been
successfully granted and removes records from the permission data access
object after they have been claimed or expired. Since requesting party token
is provided in the request coming from the RU (UMA client) internal record
from RPT data access object is the first retrieved. Using information present
in retrieved RPT record, permission request service retrieves other records
such as resource provider record. The artefact which is also provided as
part of UMA client request is the ticket. Permission service using ticket
retrieves internal record from the permission data access object containing
set of scopes that need to be granted to RU in order to successfully perform
operation on RP’s resources. Permission request service provides all this
information (identity of the party accessing resources, resources which are

CHAPTER 5. IMPLEMENTATION 72

RU DAO

RU (UMA client)

ALS

Authorization API

RPT

Request

Controller

Permission

Request

Controller

RPT DAO

RP DAO

Resource DAO

Policy Decision

Service

Permission DAOO
A

u
th

2
 R

e
s
o

u
rc

e
 S

e
rv

e
r

R

HTTP
Permission

Request

Service

Policy

Enforcement

Point

RPT Request

Service

Figure 5.3: Authorization API.

accessed, and set of desired actions on the resources) to the XACML part of
the system (policy enforcement point and policy decision point) for evaluation
if requested scopes (actions) should be allowed or denied. If the response
from the XACML part of the system is that these actions are allowed,
permission request service adds these actions to the internal requesting
party token record accompanied with their expiration time. If the response
from the XACML part of the system is that these actions are not allowed,
permission request service does not modify internal requesting party token
record. In first case RU (UMA client) receives response indicating success,
in second case RU receives response indicating that new privileges have not
been granted to the RU and consequently that RU cannot access particular
resource.

Chapter 6

Analysis and Discussion

In this chapter we present an analysis of our solution based on three
different aspects: functional - how the system satisfies the functional
requirements, security - how the system addresses the security requirements,
and performance - how the system performs. This chapter ends with a
discussion of the most interesting issues that we have considered during this
thesis project.

6.1 Functional analysis

To evaluate our system we designed and implemented simple use case. We
selected a use case in which a user controls numerous smart lights with the
help of a single service. We were inspired to utilize this use case as it is
used in the Lifx project [22]. To realize this use case we developed two
applications: a light device application which represents a RLS and a light
controller application which represents an ALS.

6.1.1 Use case components

The Light Device Application (LDA) is a simple, single user web application
hosted at the device owner’s premises. It provides access to the light device’s
functionality, e.g. checking if a light is on or off or to change its state, through
two different interfaces. The first interface is an administration interface
through which the device owner may directly interact with the light device.
Using the functionality provided via this first interface the owner manages
(activates, deactivates) a second LDA interface which is light service API.
This light service API is offered to other applications so that they can access
the light device’s functionality. Applications using the light’s service API are

73

CHAPTER 6. ANALYSIS AND DISCUSSION 74

developed with built in knowledge of this API’s semantics. The light service
API offers a single resource with two operations:

• GET /light - Check light state

• POST /light - Change light state

As unlimited access to these resources is undesirable, appropriate access
control mechanisms need to be in place to protect and limit access to
resources of this type. It would be inconvenient for the user to manage
access control directly at the LDA. This is why the LDA supports the UMA
protocol, more precisely the LDA acts as UMA RS. The LDA enables a
user to request externalization of resource protection to the SWoT platform
(configured as a UMA AS at development time). After a resource has been
registered with the SWoT in response to particular user action, the LDA
starts processing resource requests at the light service API in accordance
with the UMA protocol.

The Light Controller Application (LCA) is a multi user web application.
It is a mashup application which combines instances of the same service
API offered by different resource providers, e.g. LDA. In this it differs from
current mashup applications which typically combine different service APIs.
LCA can interact with and control light devices which implement and expose
the light service API. Using LCA users invoke operations targeting a specific
light device or group of light devices. For example, users of LCA could
preconfigure which lights should be turned on or turned off in their home for
a particular setting, such as party or movie playback and then later easily
invoke this specific light configuration. The LCA could be extended to enable
users to configure lights to turn on or off at specific time by utilizing time
attributes.

LCA was developed to follow the UMA protocol, more precisely LCA
acts as UMA client. After a user authorizes the LDA to interact with the
SWoT, the LCA finds all of the light devices that are discoverable via the
SWoT’s DS in the user’s context. The LCA uses the retrieved information to
present all of these instances via a GUI. The user through the GUI requests
operations on particular light devices and the LCA interacts via the light
service API of a specific LDA to perform this operation. The result of the
operation is returned to the user via the GUI. In order to perform operations
on LDA resources the LCA needs adequate permissions. The SWoT’s UMA
AS grants these permissions based on the registered resource’s access policies
defined by the user.

CHAPTER 6. ANALYSIS AND DISCUSSION 75

6.1.2 Evaluation test cases

Fir our test cases we assume that a user has several smart lights. Each light
has its own instance of LDA. Initially the user accesses each LDA application
and requests the resources to be protected by the user’s SWoT framework
instance. After this the user is no longer required to interact directly with
any LDA.

The user interacts indirectly with LDAs indirectly by utilizing a LCA.
However, before this can happen the user needs to authorize the LCA to
interact with their SWoT. As a result of this authorization this LCA becomes
a member of the user’s SWoT domain and it is allowed to access the resource
discovery service.

The user of the SWoT framework can view all LDAs that are part of his
or her SWoT domain, as well as all of the resources that they have registered.
The user can also view all the ALSs that are part of his or her domain. In
this concrete use case there is only one - LCA. Via the user’s SWoT the user
is able to define attributes, attribute values, and assign these attributes to
the resources or to the applications (such as the LCA).

Test case 1: The default SWoT resource access policy is to deny resource
access. Therefore if a user has not specified any access policy or none of
the available policies is applicable then the LCA will not be able to obtain
permission and consequently access the resource.

Precondition: User has not defined any access policy.
Success scenario: User initiates action at LCA to check the state or change
the state of a specific LDA. The action results in a error report being
displayed at the LCA informing the user that this LCA is not authorized
for this action and that the user should modify policies which apply to the
LCA at the user’s SWoT instance.
Failure scenario: The user initiates an action at the LCA to check the state
or change the state of a specific LDA. Action is performed successfully.

Test case 2: The user defines an attribute trust level and range of attribute
values applicable to it: low, medium, and high. Next it assigns a low trust
level to the LCA. Then it creates a XACML access policy which grants all
applications (subjects in XACML terminology) with low trust level access to
check any LDA’s state resource.

Success scenario: The user initiates action at the LCA to check the state of
a specific LDA. The action is successful.

CHAPTER 6. ANALYSIS AND DISCUSSION 76

Failure scenario: The user initiates action at the LCA to check the state of
a specific LDA. However, action returns an error indicating that the LCA is
not authorized.

Test case 3: The user sets the LCA’s trust level to medium. Then the
user creates a new XACML access policy which grants all applications with
medium trust level, access to any check or change the state of any LDA.

Success scenario: The user initiates action at the LCA to check the state or
change the state of a specific LDA. The action is successful.
Failure scenario: The user initiates action at the LCA to check the state
or change the state of a specific LDA. However, action returns an error
indicating that LCA is not authorized. The action is unsuccessful.

Test case 4: User modifies a XACML access policy to add a time based
constraint, such that the access policy allows all applications with a medium
trust level to access and check the state or change the state of any LDA’s
resource, but only during the period from 17:00 to 23:00 (e.g. when this user
is usually home).

Precondition: current time outside of constrained time period.
Success scenario: The user initiates action at the LCA to check the state or
change the state of a specific LDA. Action results in an error report displayed
at the LCA informing the user that the LCA is not authorized for this action
and that the user should modify policies which apply to the LCA at the
user’s SWoT instance.
Failure scenario: The user initiates action at the LCA to check the state or
change the state of a specific LDA. Action is successfully performed.

Precondition: current time is part of constrained time period.
Success scenario: The user initiates action at the LCA to check the state or
change the state of a specific LDA. Action is successfully performed.
Failure scenario: The user initiates action at the LCA to check the state or
change the state of a specific LDA. Action results in an error report displayed
at the LCA informing the user that the LCA is not authorized for this action
and that the user should modify policies which apply to the LCA at the
user’s SWoT instance.

CHAPTER 6. ANALYSIS AND DISCUSSION 77

6.2 Security analysis

Our overall system is a set of technical measures for addressing threats
according to the high level threat model presented in Chapter 2. However,
on a more detailed level OAuth and UMA entities may also be at risk of
a compromise. A comprehensive threat model for the OAuth 2.0 protocol
discussing security features built into the protocol, threats, countermeasures,
and assumptions under which they apply is given in [77]. However,
comprehensive threat model for UMA has not yet been developed. The UMA
specification refers to the OAuth threat model [77] for security considerations.
Although contributions from OAuth’s threat model are useful for UMA, we
consider the OAuth threat model incomplete for UMA purposes as it covers
only OAuth. However, UMA addresses more complex use case, hence it has
artifacts (e.g. requesting party token) and interactions (with protection and
authorization API) that OAuth does not have. We expect that there are
additional threats due to the additional features.

Defining a comprehensive UMA threat model is out of the scope of this
thesis project. Instead we provide a basic threat model covering a set of
UMA specific threats and issues. In contrast to our high level threat model
(described in Chapter 2) where the focus was on malicious internal parties,
here we concentrate on outside attackers. Therefore, in our analysis we
assume that the authorization server, resource server, and client correctly
follow the UMA protocol and comply with all applicable obligations from
the UMA binding obligations specification [25].

6.2.1 Overview of assumptions and features

In our analysis we assume that the attacker has full access to the network
between all UMA parties: client - authorization server, client - resource
server, and resource server - authorization server. As a result the attacker is
able to eavesdrop on any communication between these parties. Moreover,
the attacker has unlimited resources at their disposal for performing an
attack.

Considering the parties involved in a system’s operation we assume that
the authorization server stores the following artifacts: user credentials, client
credentials, OAuth credentials (refresh and access token), HTTPS certificate,
and UMA specific artifacts (such as requesting party tokens and tickets). We
also assume that each resource server stores: user data, HTTPS certificate,
this resource server’s credentials for each authorization server (i.e., its client
ID and secret), OAuth credentials for each end user (i.e., a refresh and

CHAPTER 6. ANALYSIS AND DISCUSSION 78

protection access token), and UMA artifacts for each request (i.e., the
requesting party token and ticket). The resource server does not have access
to clients’ secrets, clients’ refresh tokens, or clients’ authorization access
token. Moreover, we expect that each client stores: its credentials for each
authorization server (i.e., its client ID and secret), OAuth credentials for each
end user (i.e., a refresh and authorization access token), and UMA credential
for each resource server (i.e., a requesting party token).

UMA builds on top of OAuth by adding additional security features
required to mitigate certain types of attacks and security issues. These
additions include artifacts such as a requesting party token and a ticket. Both
of these artifacts in the current UMA specification are primarily described
by usage of a handle based token design. The UMA specification indicates
that a requesting party token can also be implemented as an assertion
(self contained token). Using an assertion design eliminates the need ti
perform token validation at the resource server via an interaction with an
authorization server. However, due to the UMA protocol design using an
assertion design for a ticket is inadequate as this approach does not bring any
benefits. Detailed explanation of handles and assertions is given in Section
3.1 of [77]).

The requesting party token can be used in requests to resource servers as
a bearer token or proof token. A bearer token is more convenient for client
applications as its possession is all that is needed for its usage. In contrast,
a proof token is less convenient, but more secure as it is digitally signed with
a secret corresponding to that particular token.

OAuth defines scope and limited lifetime as token constraints resulting in
an increase in the overall system security. Considering UMA specific artifacts
(i.e., a requesting party token and a ticket), we recognize that a limited
lifetime is an applicable constraint. However, scope constraint is unnecessary
for the requesting party token and ticket, since by UMA’s protocol design
these artifacts are already constrained to being used at a specific resource
server and under specific conditions.

6.2.2 UMA threats

In this section we present an extension of the OAuth threat model with UMA
specific threats. We first present threats related to the UMA specific artifact:
requesting party token. We do not consider threats related to the ticket as
they are identical to those related to requesting party token. In remainder
of this section we discuss threats directed towards the UMA client - UMA
resource server interaction. Where applicable we provide references to similar
threats defined in OAuth threat model as described in [77].

CHAPTER 6. ANALYSIS AND DISCUSSION 79

Threat 1: Obtaining a requesting party token

The attacker can obtain a requesting party token directly from UMA
parties having access to it. For example, an attacker may perform a SQL
injection attacks, circumvent inadequate storage protection measures, or
exploit misconfiguration of database security settings. When then requesting
party token is a bearer token (such as in our solution), a successful attacker
can access all resources to extent granted to the client and associated with
the requesting party token. Countermeasures include mechanisms envisaged
in the UMA protocol specification, such as using a proof token instead of a
bearer token and more specific measures recommend by the OAuth threat
model (see Section 4.1.3 in [77]):

• Keep a requesting party token only in transit memory (applicable to
client and resource server),

• Store requesting party token hashes only (applicable to the authoriza-
tion server),

• Keep the requesting party token lifetime short,

• Enforce system security measures,

• Enforce standard SQL injection countermeasures.

Threat 2: Eavesdropping requesting party token

In a handle based design, which we have adopted for our solution, a requesting
party token is transported from authorization server to client, from client
to resource server, and from resource server to authorization server as an
artifact in different interactions. Therefore, there are multiple interception
points where attackers may eavesdrop this communication. The impact of
this threat is same as of threat 1 in which attackers are also in possession of
a requesting party token. However, here the countermeasures differ:

• Use of transport layer security mechanisms such as TLS [78, 79] to
protect the communication between all parties (as recommended by
the UMA specification) and

• If end-to-end confidentiality cannot be guaranteed, the extent of
damages may be reduced by limiting permissions that can be associated
with the token, by shortening the token’s lifetime and/or permissions
expiry time.

CHAPTER 6. ANALYSIS AND DISCUSSION 80

Threat 3: Guessing requesting party tokens (see Section 4.6.3
of [77])

If an attacker knows how the requesting party tokens are generated the
attacker might try to guess them. If an attacker succeeds, then the attacker
may have access to resources of a particular resource server to extent which
a requesting party token that was guessed has. Countermeasures for this
threat include:

• Requesting party tokens should have a high level of entropy, so that
guessing valid token is infeasible,

• Usage of proof tokens thwarts this attack, as even though an attacker
correctly guesses a token’s value it cannot access protected resources,
and

• Limiting a token lifetime may reduce possible damage in the absence
of the previous more suitable measures.

Threat 4: Replay of authorized resource server requests (see
Section 4.6.2 of [77])

An attacker may intercept and then later replay valid requests sent by a client
to a resource server. This threat differs from others, as attacker does not need
to possess confidential information, but still may succeed in achieving an
unauthorized resource server operation. For example, if a resource server
hosts functionality for locking and unlocking an entrance door, then an
attacker by replaying previous valid requests from an authorized client for
locking and unlocking door may achieve the same result even though the
attacker is unauthorized. Countermeasures are:

• Usage of transport layer mechanisms, such as TLS, to prevent an
attacker from capturing requests and

• Usage of additional security features, such as signed requests, proof
tokens, nonces, and timestamps, to ensure that requests are fresh and
unique.

Threat 5: Requesting party token phishing by counterfeit resource
server (see Section 4.6.4 of [77])

An attacker may pretend to be a resource server. If the client provides its
requesting party token to a counterfeit resource server, then the attacker

CHAPTER 6. ANALYSIS AND DISCUSSION 81

will be able to use this requesting party token to access resources at the
resource server. An attack in which an attacker tunnels traffic from one
party to another (the client and original resource server in our case) and
back is known as man in the middle. Countermeasures are:

• The client should authenticate the resource server before presenting a
requesting party token and

• Limiting token lifetime may reduce the damage in absence of more
suitable measures.

Threat 6: Leak of confidential data (see Section 4.6.6 and 4.6.7
of [77])

Often requests on their way from client to resource server pass through HTTP
proxies and caches. Moreover, these requests are often logged. Improper
configuration of these mechanisms or weaknesses in the log’s protection may
enable attacker to access confidential artifacts, such as a requesting party
token. Countermeasures include:

• Proper usage of HTTP mechanisms such, as Cache-Control to avoid
caching of confidential artefacts,

• Proper configuration of logging mechanism,

• Restricting access to log files,

• Usage of proof tokens, and

• Limiting token lifetime to reduce possible damage.

Threat 7: Denial of service (DoS) attacks

An attacker who owns a botnet and has knowledge of the IP addresses of
resource servers can request access providing random requesting party tokens.
This results in establishing HTTPS sessions to each resource server which
ties up some amount of resources. Furthermore, each resource server needs to
validate the requesting party token with the central authorization service. As
this interaction also requires establishing a HTTPS session it uses additional
resources both at the resource server and authorization server. This may
result in a DoS attack on a resource server which has limited impact or on
an authorization server which has a high impact as the authorization server
represents single point of failure. Countermeasure is:

CHAPTER 6. ANALYSIS AND DISCUSSION 82

• Usage of proof tokens or assertion based tokens to avoid tying
up additional resources during token validation operation. The
disadvantage of these measures is that system management becomes
harder, e.g. distributing secrets, certificates, etc.

6.3 Performance analysis

In this section we discuss major factors affecting our system’s performance
including: UMA interactions, permission expiration period, resource gran-
ularity, and application interaction patterns. We also provide results of
performance measurements for our simple use case. Our future work will
include comprehensive performance analysis for a more complex application
scenario with concrete deployment scenario.

6.3.1 UMA flows

The UMA protocol is an authorization protocol that features three different
protocol flows: obtaining RPT flow establishes the authorization context,
through first resource access flow client retrieves missing permissions, and
in second and subsequent resource access flow client accesses the resource
with all necessary permissions. These flows (illustrated in Figure 6.1) consist
of different number of message exchanges. In addition, the frequency by
which these flows are repeated within the system varies. For example,
obtaining RPT flow is performed whenever an authorization context has
to be established which happens relatively rare compared to other two flows.
First resource access flow is performed whenever client tries to access resource
without required permissions. Second and subsequent resource access flow is
performed whenever client has all necessary permissions to access resource
and in general it is the flow most frequently repeated.

6.3.1.1 Obtaining RPT flow

This flow of the protocol includes two request/response exchanges (the first
of which is optional). The first interaction is between a client and a RS
(node CR in Figure 6.1) and results in an access denied response. From this
interaction the client learns where the authoritative AS for this particular RS
is located. This interaction is required in systems where a client does not have
an already established relation with the AS. In our system, all third party
entities are preconfigured to interact with specific SWoT instance. Therefore,
this interaction is optional. In the second interaction the client obtains from

CHAPTER 6. ANALYSIS AND DISCUSSION 83

Table 6.1: Request/Response exchanges in UMA Protocol.

Symbol Description Client Server
CR Resource Access Client RS
RA1 Retrieve RPT meta-information RS AS
RA2 Register client permission RS AS
CA1 Retrieve RPT Client AS
CA2 Claim permission Client AS

the AS a RPT for a specific RS by providing the RS identifier (node CA1 in
Figure 6.1). In our system the client obtains this RS identifier by interacting
with the SWoT’s DS, in systems that strictly follow UMA protocol the client
receives this identifier in an access denied response from the RS.

6.3.1.2 First resource access flow

This flow requires at least six request/response exchanges assuming following:

• A1: A client provides a valid RPT in its interaction with the RS.

• A2: The RPT that a client provides to the RS does not have any
permissions associated with it that are applicable for resource being
accessed.

Client initiates the process by requesting resource access at the RS (CR in
Figure 6.1). The RS in interaction with the AS retrieves the RPT meta-
information and permissions associated with it (RA1 in Figure 6.1). Since
this RPT is valid (by assumption A1) and does not have the necessary
permissions (by assumption A2) the RS registers the permission in an
interaction with AS (RA2 in Figure 6.1). The result of this interaction is
a ticket which the RS provides to a client as a response in the previous CR
exchange. This process continues with an interaction between the client and
AS in which the client claims permissions by providing a ticket and a RPT
(CA2 in Figure 6.1). Two outcomes are possible as a result of this CA2
interaction:

• Permission association is not allowed. The AS response indicates a
failure and therefore the client cannot access this resource.

• Permission association is allowed. The AS internally associates this
permission with the RPT and returns a response indicating success.

In case of a successful CA2 interaction, then the client tries again to access
the resource at the RS (CR in Figure 6.1). The RS in interaction with the

CHAPTER 6. ANALYSIS AND DISCUSSION 84

CR

RPT present?

CA1
Caching present?

RPT Found?

RPT has
necessary perms.?

RA1

RPT has
necessary perms.?

RA2

CA2

Permission granted?

[No]

[No]

[Yes]

[Yes]

[Yes]
[Yes] [No]

[Yes]

[No]

Resource Access
Success

Resource Access
Fail

[No]

1

2

1 2

3

4

5 6

1

1 2

[No]

[Yes]

Obtaining RPT

First resource access

Second and subsequent resource access
without Caching

Second and subsequent resource
access with Caching

Figure 6.1: Request/Response exchanges in UMA protocol. Rectangles
indicate different interactions (their definition is available in Table 6.1,
numbers enumerate their order in different cases marked by different colors).

AS retrieves the RPT’s status and permissions associated with it (RA1 in
Figure 6.1). Since this RPT is valid (by assumption A1) and now it has
the necessary permissions the RS satisfies the resource access request. In
summary six interactions were necessary to successfully access a resource for
the first time (CR, RA1, RA2, CA2, CR, RA1 in Figure 6.1).

6.3.1.3 Second and subsequent resource access flow

This flow requires two request/response exchanges when the RS does not
utilize caching. Otherwise, only one request/response exchange is required.
This case assumes the following:

• A3: Previous resource access was successful.

• A4: Permissions previously associated with the RPT that were
necessary for accessing the resource have not been invalidated in the
meantime.

The client as in the previous case initiates the process by requesting resource
access at the RS (CR). The RS in interaction with the AS retrieves the RPT’s

CHAPTER 6. ANALYSIS AND DISCUSSION 85

meta-information and permissions associated with it (RA1 in Figure 6.1).
Since this RPT is valid (by the assumption A1) and it has the necessary
permissions (by assumptions A3 and A4) the RS satisfies the resource access
request. If assumption A4 does not hold, then the process continues with
interactions as in the first resource access starting with the RA2 interaction.
This case can be optimized by caching RPT’s meta-information at the RS.
If this optimization is applied, then only one interaction is required (CR).

6.3.2 Performance of UMA flows

Performance evaluation of distributed systems is difficult since it has to
consider the computational performance of all components involved in the
system’s operation, as well as the communication overhead present in the
system’s (normal) operation [80]. In Internet based distributed systems,
it is common that communication overhead has a much larger impact
on the overall system’s performance than the computational performance.
However, measuring communication overhead is hard as it is affected by many
non controllable factors (such as, network throughput, network congestion,
physical distance, etc.).

In our performance evaluation setup all three system entities are running
on the same machine. LDA, LCA, and SWoT framework instance are
executing in a virtual machine running Ubuntu 11.04 Natty Narwhal, 32-bit
operating system, with 2GB RAM, and a 2.2GHz Intel Core 2 Duo processor.
While this setup does not provide realistic overall performance measurements
(collocating system entities minimizes communication overhead), it reduces
the complexity of evaluating computation performance. This is mainly
because homogeneous execution environment establishes common referent
system (there are no variations due to heterogeneous hardware resources)
and timing measurements are synchronized (they rely on a same clock).

We have utilized application level logs as a source of timing information.
We recorded 20 observations for each flow (described in subsection 6.3.1).
In addition to recording the time necessary to perform whole flow (our
main variable of interest) we have recorded timing information for each
interaction (such as, retrieving RPT token, retrieving RPT status, registering
permission, etc.). Moreover, we have instrumentalized application code in a
particular way so that we can differentiate between the time which system
entities spend in processing inputs from the time which system entities spend
in communication. Therefore, our measurements allow us to assess overall
system performance both on a coarse and fine grain level.

From obtained measurements we have determined that the time necessary
to perform each flow cannot be characterized by the normal distribution. In-

CHAPTER 6. ANALYSIS AND DISCUSSION 86

 Obtaining RPT1st Resource Access2nd Resource Access

2nd Res.

Access

with

Caching

Median: 0.095 0.2905 0.0335 0.005

MAD: 0.0215 0.053 0.007 0.002

Ti
m

e
 (

se
c)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Obtaining

RPT

1st
Resource

Access

2nd
Resource

Access

2nd Res.
Access with

Caching

Figure 6.2: Time measurements for different UMA flows.

stead, the measurements resemble more complex long tail distributions (such
as, log-normal, Weibull, or Rayleigh distribution). All these distributions
as well as our measurements feature positive skew where the mass of the
distribution is on the left side and a long tail of outliers on the right side of
the graph. Moreover, due to characteristics of these distributions the mean
and the standard deviation are inappropriate statistics as they are strongly
affected by the outliers. On the other hand, the median and the median
absolute deviation are more appropriate statistics as they are resistant to
outliers. Therefore, we use the median and the median absolute deviation
to characterize the time necessary to perform different flows (illustrated in
Figure 6.2).

Even though retrieving RPT token is a single interaction flow, similar to
second resource access flow with caching applied, it takes more time than the
second resource access flow in both modes (with and without caching). This
is mainly due to the complexity of retrieving RPT token operation, which at
the UMA authorization server includes multiple database operations (both
inserts and queries). In contrast, second resource access interactions (such
as, retrieving RPT status and resource access) often do not interact with
the database due to the application of caching mechanisms or have small
number of database read operations. We feel that there is a lot of place for

CHAPTER 6. ANALYSIS AND DISCUSSION 87

improvement in our database design which backs UMA authorization server.
These improvements when realized may result in a more optimized database
operations and more efficient system interactions which rely heavily on the
database (such as retrieving RPT token).

As shown in the graph (Figure 6.2), the first resource access flow takes
significantly more time than the other flows. This does not come as a surprise
as the first resource access flow is the most complex flow which embeds
multiple interactions. The interactions which are part of first resource flow
have been described in subsection 6.3.1 and there individual contribution to
the duration of the overall flow is represented in Figure 6.3a. The interactions
which dominate the first resource access flow are permission registration
and permission claim operation. Figure 6.3a presents these two operations
as integral units even though they consist of components which describe
processing time, communicating request, and communicating response times.
In Figure 6.3b and Figure 6.3c we depict these three components separately
for permission registration and permission claim operation respectively. It
is noticeable from these graphs that the time for performing these two
operations mainly depends on the time UMA authorization server takes for
performing them.

Second resource access flow measurements are present in the graph in
two forms (with and without caching). The results indicate that with the
caching, second resource access flow takes approximately seven times less
time than without the caching applied. Overall second resource access flow
is the shortest operation with the smallest computation and communication
overhead.

We have performed measurements for both GET and POST based
resource access operation. Our results show that in all three flows which
contain resource access interaction (first resource access, second resource
access without caching, and second resource access with caching) the GET
operation is slightly faster. However, the difference in duration between
same flows with GET and POST operation is small and can be attributed
to the overhead in encoding and decoding parameters present during POST
operation. As these observations do not provide any relevant insights for this
thesis project we have left out discussion and measurements for flows with
POST based resource access interaction.

6.3.3 Parameters affecting performance

In order to increase the performance of the overall system it is necessary
to minimize the number of non-functional interactions within the system.
This means that the frequency of repeating certain UMA flows should be big

CHAPTER 6. ANALYSIS AND DISCUSSION 88

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
 (

se
c)

resource access request (1a) retrieve RPT status (1) register permission

resource access response (1b) claim permission resource access request (2a)

retrieve RPT status (2) resource access response (2b)

(a) All operations combined.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
 (

se
c)

request delivery processing response delivery

(b) Permission registration operation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
 (

se
c)

request delivery processing response delivery

(c) Permission claim operation.

Figure 6.3: First resource access flow measurements.

CHAPTER 6. ANALYSIS AND DISCUSSION 89

enough to support system’s security requirements but still small enough to
not introduce undesirable level of overhead. As the security and performance
requirements vary between different application use case scenarios, we cannot
determine exact value appropriate in all use case scenarios. Instead, we
can identify parameters which affect the frequency of UMA flows. These
parameters will be utilized for modelling system performance in different
applications, planned for future work.

6.3.3.1 Permission expiration period

Permissions associated with the RPT expire. When permissions expire the
client has to go through the whole process of obtaining permission which
results in significant overhead. How often this happens depends on the
permission expiration period value. By modifying the value of this parameter
we can alternate the system’s behavior. For example, if permission expiration
period is small enough, but not smaller than the time a client needs to
access a resource at least once, then permissions expire often and the system
exhibits dynamic access control. A side effect of this approach is the
significant communication overhead due to required UMA interactions. If
permission expiration period is set to have a large value than permissions
rarely expire, and as they are cached at the RS communication overhead
is reduced to a minimum. This approach also requires the introduction
of a permission revocation mechanism. UMA currently does not feature
permission revocation mechanism.

For our implementation we have adopted an approach where all per-
missions get same permission expiration period, as this approach is the
simplest. However, we envisage an alternative approach in which different
permission expiration period values are assigned to different permissions.
For example, for operation on a sensitive resource, such as opening door,
the permission expiration period value assigned may be small so that it is
necessary to go through permission obtaining procedure more often, but
for other less important resources such as manipulating a light a larger
permission expiration period value may be assigned. However, this approach
requires deeper understanding of resources, clients, and their application
interactions. Therefore, the approach for handling permission expiration
period parameter depends on the specific system requirements.

6.3.3.2 Resource granularity

Another factor that has impact on the system’s performance is the or-
ganization of resources by a RS. When a RS manages resources on fine

CHAPTER 6. ANALYSIS AND DISCUSSION 90

grained level, e.g every sensor is a different resource, this enables a fine
grained access decision making process. For example, it is possible to allow
a particular client to access one sensor but not any other. However, this
affects the system’s performance. For example, client needs to go through
UMA procedure for obtaining permission twice in order to access two different
sensors. If a RS registered all sensors as a single resource, then a resource
owner would be able to grant only coarse grained permission. However, a
client which obtains this permission would be able to access all sensors and
would not be required to go through multiple UMA permission obtaining
procedures.

Alternative approach to handle resource organization is using resource
hierarchies. This approach may result in better system performance as it
can reduce number of UMA interactions. For example, client can be granted
permission to access parent resource which will allow it to access all its child
resources at the same time. Resources hierarchies may be defined by RS
or based on standardized classifications (ontologies) which could facilitate
their management and implementation in authorization server. Resource
hierarchies in some extent resemble hierarchies in file systems. Therefore,
there is possibility that approaches for handling permissions in file systems
may be applied for handling permissions in resource hierarchies. UMA
currently does not define approach for handling resource hierarchies.

6.3.3.3 Application interaction patterns

Application interaction patterns may also affect system performance. For
example, an application which interacts with a single resource provider
differs from a mashup application which interacts with multiple resource
providers even though their function may look alike to the user. The most
relevant difference for our analysis, is that mashup application must establish
a security context for each resource provider independently. As security
related interactions negatively affect performance the user may experience
large variations in perceived performance between applications with different
interaction patterns due to these underlying causes.

Within SENSEI project the problem of establishing multiple security
contexts by single application has been identified and explored. Moreover,
special component in the SENSEI security architecture, named resource
access proxy service, has been introduced which can establish security context
for multiple resource providers on behalf of client applications [12]. This
approach results in a more efficient system operation for more complex
application interaction patterns. However, it also makes overall system
more complex as implementation of different application interaction patterns

CHAPTER 6. ANALYSIS AND DISCUSSION 91

within the system differs.

6.4 Discussion

The goal of this thesis project was to design and prototype an authorization
solution for a user centric integration of application and resource layer
services envisaged in a future Web enhanced with smart things. We dis-
covered requirements and defined an authorization architecture by studying
various platforms, frameworks, and their approaches for service integration.
However, SENSEI’s project contributions had the largest impact on this
aspect of our work.

After defining the authorization architecture we studied how this architec-
ture could be realized. We analysed various security mechanisms considering
their characteristics and how they relate to each other. Based on our analysis
of selected mechanisms we determined that our problem requires application
of two protocols UMA and OAuth. We also specified how these mechanisms
should be incorporated into SWoT framework. This specification included
discussion of how services join SWoT domain, how users administer resources’
access policies, and how the permission requests are evaluated.

Even with a working design, the implementation phase required signif-
icant effort. The majority of our implementation effort went into imple-
menting the UMA framework, as at the time there was no publicly available
implementation. In addition, Spring Security and Spring Security OAuth
libraries, which our solution integrates and adapts, represent relatively
complex solutions to learn. However, we believe that basing our work on these
two enterprise grade libraries has increased the quality of our implementation.

Our functional evaluation shows that our solution facilitates administra-
tion of multiple resource providers and that its utility increases as the number
of resource providers increases. The solution also simplifies implementation
of the resource providers as it provides pluggable module for addressing
their security requirements. Our design decision to extract evaluation of
permission requests into a special module, ensures that the solution can
be enhanced with more flexible mechanisms in the future. For example,
the solution may easily be modified to support dynamic access control by
replacing our evaluation solution with XACML.

Our security evaluation and the analysis of countermeasures for threats
related to the OAuth (given in [77]) and UMA (discussed in Section 6.2)
indicates that the usage of transport layer security mechanism, such as TLS,
is required for interactions between all parties in UMA system. Consequently,
SWoT entities should adopt TLS, or an adequate alternative mechanism, to

CHAPTER 6. ANALYSIS AND DISCUSSION 92

protect the communication. In addition, assertion based token design, even
though more complex than handle based token design, increases the security
of the overall system and may improve system performance by eliminating
the need for token validation interactions.

Our current system implementation does not use transport layer security
mechanism nor an assertion based design for tokens. Our limited time and
resources for this thesis project are the primary reasons for not adopting
these mechanisms. Moreover, our high level approach to the problem without
details of the particular deployment scenario prevented us from making
concrete design decisions. For example, for resource servers implemented on
resource constrained devices the TLS protocol may not be the proper solution
and additional analysis is required [68][81]. Therefore, implementation
improvements which address the above recommendations and take into
consideration the requirements of a particular deployment scenario will be
part of future work.

Our performance evaluation in Section 6.3 indicates that on initial
resource access the overhead of UMA related interactions is significant.
However, subsequent requests to same resource do not introduce significant
overhead, especially when the resource server caches the RPT’s meta-
information. Our analysis identified that the permission expiration period,
resource granularity, and application interaction patterns may have signif-
icant impact on the overall system’s performance. Since these parameters
are application dependent their analysis is infeasible without more realistic
application use cases. Therefore, detail analysis of previously mentioned
parameters and of their impact on the system performance is left for future
work.

Chapter 7

Conclusions

This final chapter provides a short summary of the thesis contributions and
describes directions for future work. Moreover, we provide summary of our
reflections on social, economic, and ethical aspects of this thesis.

7.1 Summary

The goal of this thesis project was to explore authorization requirements and
architecture for user controllable integration of smart things and services.
We started our research by comparing contemporary solutions from different
domains. Results of this study enabled us to identify role model solutions on
which to base our work. Contributions from the SENSEI project enabled us
to define suitable authorization architecture. Contributions from the Cloud
OS concept solution enabled us to recognize specific requirements which novel
user centric solutions introduce.

To realize desired authorization architecture it was necessary to identify
suitable authorization mechanisms. Therefore, we performed extensive study
of various security protocols considering previously identified authorization
requirements. We determined that UMA protocol which integrates OAuth
protocol is adequate mechanism for the envisaged authorization architecture.
We proceeded with the specification of the UMA application in SWoT.

In addition, we have implemented designed authorization architecture as a
prototype solution. Our UMA framework implementation represents its core
part. It incorporates Spring Security and Spring Security OAuth libraries
which provide necessary underlying functionality. Our implementation effort
also included development of software agents prototypes which could be
deployed on smart things or in the cloud, for the purpose of evaluating
proposed authorization solution.

93

CHAPTER 7. CONCLUSIONS 94

We evaluated our prototype solution in extent feasible for its capa-
bilities. This study included functional evaluation, where we analysed
if our implementation follows the specification, security evaluation, where
we explored what are the threats and their possible countermeasures, and
performance evaluation, where we analysed how much overhead do security
related interactions introduce into the system operation.

In this thesis we have explored subset of SWoT’s security requirements.
As a result, our suggested solution represents only a small piece of future
more comprehensive security solution that has yet to be developed. However,
we strongly believe that our work performed in this thesis provides a solid
foundation for this future effort.

7.2 Future Work

Research performed during this thesis project has revealed several alternative
directions for future work.

First direction encompasses efforts which focus on characteristics and
requirements of a smart thing rather than focusing on platform as in this
thesis project. Majority of research performed within IoT research domain
takes this perspective. As a result there is a vast body of related work that
will need to be analysed and incorporated. Our efforts along this direction
will analyse applicability of our authorization framework for smart things,
taking into account their resource and deployment environment limitations.
We expect that analysis results will elicit more specific security requirements
than those considered in this thesis project. Consequently, authorization and
corresponding evaluation framework will be improved.

Second direction features efforts which will extend proposed authorization
framework and transform it into a comprehensive security solution. As a first
step in this direction we suggest evaluating integration with XACML. This
access control mechanism enables flexible system administration based on
fine grained and dynamically evaluated access control policies. However,
XACML is a complex solution designed for expert level users. Therefore,
previous effort will need to be coupled with studies and contributions from
usability domain. Following steps may include integration and evaluation of
suitable authentication and accounting mechanisms.

Third direction encapsulates studies which will analyse requirements and
propose solutions for realization of more flexible use case scenarios. In use
case scenario considered in this thesis project all software agents act on behalf
of same human user. In future work we will consider more generic use case
scenario featuring interaction between software agents operating on behalf

CHAPTER 7. CONCLUSIONS 95

of different entities (both natural and legal persons). We envisage that this
use case will put emphasis on authentication system and introduce the need
for incorporating additional UMA features (such as UMA Claims). Another
option along this same direction would be to explore possible solutions for
federating SWoT instances. Similar use case scenario has been explored
within SENSEI project, but on a more abstract level.

7.3 Reflections

Today, it is common business practice for web service providers to generate
profit by monetizing user generated data. In return, users are entitled to
use service without paying for it. However, users rarely receive any kind of
monetary compensation. Moreover, in this exchange they harm their own
privacy by sharing their personal information with service providers. These
practices in which real value of information is concealed for the benefit of
service providers may have far reaching implications on the society [82].
Same business practices with small variations can also be applied in future
IoT. For example, smart things may be provided for free in exchange for
exclusive access to information which they generate. If these practices
become widely adopted we may witness further erosion of users privacy as
well as continuation of redistribution of wealth towards service providers.
Alternative approach envisages enabling users to monetize their data and
by extension data produced by their smart things [83][84][82]. Our solution
architecture is amenable for such mode of operation. However, it needs to
be extended with suitable accounting and billing mechanisms.

Our solution enables smart thing owners to mediate communication
between smart things and services. As a result of decoupling smart things
and services, economic incentives emerge which are more aligned with the
interests of smart things owners. For example, device manufacturers may
compete based on the price, features, and interoperability of smart things
with different services. Service providers may compete based on the price,
features, and their adoption of socially acceptable practices. Moreover,
architecture design minimizes effects of data lock in practices. For example,
when user decides to replace particular service there are no costs, nor
waste, as the smart things and their capabilities may be reused by other
services. Therefore, service providers have incentive to respect user’s privacy
as otherwise they could be replaced.

Different legal measures may be adopted to mitigate possible misuses
of smart things capabilities. However, due to different reasons, such
as conflicting business incentives, undemocratic governments, or users’

CHAPTER 7. CONCLUSIONS 96

ignorance these legal measures may not be enforceable. The alternative is
to preclude possible misuses by design. Studies of core Internet protocols
show that protocol characteristics have significant political, economic, and
social implications [85]. UMA protocol may also have significant implications
as it challenges currently well established business practices. However, as
UMA is a novel, not yet widely adopted solution, it is too early to estimate
extent of these implications. Our solution exploits UMA protocol features to
obviate the need for fully trusting various service providers. Consequently,
it empowers users to control data dissemination as ultimately they are the
most appropriate entity to make decision whether their data can be accessed
and how it will be accessed.

Bibliography

[1] “The social web of things,” Mar. 2011. [Online]. Available:
http://www.youtube.com/watch?v=i5AuzQXBsG4

[2] R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and
M. D. Mickunas, “Towards security and privacy for pervasive
computing,” in Proceedings of the 2002 Mext-NSF-JSPS international
conference on Software security: theories and systems, ser. ISSS’02.
Berlin, Heidelberg: Springer-Verlag, 2003. ISBN 3-540-00708-3 pp.
1–15. [Online]. Available: http://dl.acm.org/citation.cfm?id=1765533.
1765535

[3] P. Ahonen, P. Alahuhta, B. Daskala, S. Delaitre, P. D. Hert,
R. Lindner, I. Maghiros, A. Moscibroda, W. Schreurs, and
M. Verlinden, Safeguards in a World of Ambient Intelligence, ser.
The International Library of Ethics, Law and Technology, D. Wright,
M. Friedewald, Y. Punie, S. Gutwirth, and E. Vildjiounaite, Eds.
Springer, 2010, vol. 1, DOI: 10.1007/978-1-4020-6662-7. [Online].
Available: http://www.springerlink.com/content/978-90-481-8786-7/
#section=145633&page=1

[4] R. H. Weber, “Internet of things - new security and privacy
challenges,” Computer Law & Security Review, vol. 26, no. 1,
pp. 23–30, 2010. doi: 10.1016/j.clsr.2009.11.008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0267364909001939

[5] Chester Wisniewski, “Smart meter hacking can disclose
which TV shows and movies you watch,” Jan. 2012.
[Online]. Available: http://nakedsecurity.sophos.com/2012/01/08/
28c3-smart-meter-hacking-can-disclose-which-tv-shows-and-movies-you-watch/

[6] Dan Goodin, “How an internet-connected samsung
TV can spill your deepest secrets,” Dec. 2012.

97

http://www.youtube.com/watch?v=i5AuzQXBsG4
http://dl.acm.org/citation.cfm?id=1765533.1765535
http://dl.acm.org/citation.cfm?id=1765533.1765535
http://www.springerlink.com/content/978-90-481-8786-7/#section=145633&page=1
http://www.springerlink.com/content/978-90-481-8786-7/#section=145633&page=1
http://www.sciencedirect.com/science/article/pii/S0267364909001939
http://nakedsecurity.sophos.com/2012/01/08/28c3-smart-meter-hacking-can-disclose-which-tv-shows-and-movies-you-watch/
http://nakedsecurity.sophos.com/2012/01/08/28c3-smart-meter-hacking-can-disclose-which-tv-shows-and-movies-you-watch/

BIBLIOGRAPHY 98

[Online]. Available: http://arstechnica.com/security/2012/12/
how-an-internet-connected-samsung-tv-can-spill-your-deepest-secrets/

[7] Lesley Ciarula Taylor, “U.S. chamber of commerce
details ’sophisticated’ 6-month hacking of its computers,”
The Toronto Star, Dec. 2011. [Online]. Available:
http://www.thestar.com/news/world/2011/12/21/us chamber of
commerce details sophisticated 6month hacking of its computers.html

[8] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic
from the firmware to the cloud: Towards the thin server architecture
for the internet of things,” in 2012 Sixth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), Jul. 2012. doi: 10.1109/IMIS.2012.104 pp. 751–756.

[9] B. Ostermaier, F. Schlup, and K. Romer, “WebPlug: a framework
for the web of things,” in 2010 8th IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2010. doi: 10.1109/PERCOMW.2010.5470522 pp. 690–695.

[10] Ericsson, “More than 50 billion connected devices,” White Paper,
Feb. 2011. [Online]. Available: http://www.ericsson.com/res/docs/
whitepapers/wp-50-billions.pdf

[11] Dave Evans, “The internet of things: How the next evolution of
the internet is changing everything,” Apr. 2011. [Online]. Available:
http://www.cisco.com/web/about/ac79/iot/index.html

[12] T. Bauge, C. Sorge, A. Waller, G. Selander, J. Bohli, O. Ugus,
and D. Williams, Security and Accounting for SENSEI, Jun. 2010.
[Online]. Available: http://www.ict-sensei.org/index.php?option=com
chronocontact&chronoformname=SENSEI WP3 D3.5

[13] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelffle, “Vision and
challenges for realising the internet of things,” CERP-IoT, European
Commission, Luxembourg, 2010. [Online]. Available: http://www.
internet-of-things-research.eu/pdf/IoT Clusterbook March 2010.pdf

[14] Luigi Atzori, Antonio Iera, and Giacomo Morabito, “The internet of
things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–
2805, 2010. doi: 10.1016/j.comnet.2010.05.010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610001568

http://arstechnica.com/security/2012/12/how-an-internet-connected-samsung-tv-can-spill-your-deepest-secrets/
http://arstechnica.com/security/2012/12/how-an-internet-connected-samsung-tv-can-spill-your-deepest-secrets/
http://www.thestar.com/news/world/2011/12/21/us_chamber_of_commerce_details_sophisticated_6month_hacking_of_its_computers.html
http://www.thestar.com/news/world/2011/12/21/us_chamber_of_commerce_details_sophisticated_6month_hacking_of_its_computers.html
http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf
http://www.ericsson.com/res/docs/whitepapers/wp-50-billions.pdf
http://www.cisco.com/web/about/ac79/iot/index.html
http://www.ict-sensei.org/index.php?option=com_chronocontact&chronoformname=SENSEI_WP3_D3.5
http://www.ict-sensei.org/index.php?option=com_chronocontact&chronoformname=SENSEI_WP3_D3.5
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.sciencedirect.com/science/article/pii/S1389128610001568

BIBLIOGRAPHY 99

[15] E. Fleisch, “What is the internet of things? an
economic perspective,” Auto-ID Labs Whitepaper, Jan. 2010.
[Online]. Available: http://www.wew.autoidlabs.org/uploads/media/
AUTOIDLABS-WP-BIZAPP-53.pdf

[16] D. Guinard and V. Trifa, “Towards the web of things: Web mashups for
embedded devices,” in Workshop on Mashups, Enterprise Mashups and
Lightweight Composition on the Web (MEM 2009), in proceedings of
WWW (International World Wide Web Conferences), Madrid, Spain,
2009.

[17] Dominique Guinard, “A web of things application architecture -
integrating the real-world into the web,” Ph.D., ETH Zurich, 2011.
[Online]. Available: http://webofthings.org/dom/thesis.pdf

[18] Vlad Trifa, “Building blocks for a participatory web of things:
Devices, infrastructures, and programming frameworks,” Ph.D., ETH
Zurich, 2011. [Online]. Available: http://vladtrifa.com/research/files/
phd-thesis.pdf

[19] “ThingWorx: M2M application platform,” Mar. 2013. [Online].
Available: http://www.thingworx.com/

[20] “Axeda: Machine cloud & M2M platform.” [Online]. Available:
http://www.axeda.com/

[21] “Lockitron: Internet connected door lock.” [Online]. Available:
https://lockitron.com/

[22] “LIFX: the light bulb reinvented.” [Online]. Available: http://www.
kickstarter.com/projects/limemouse/lifx-the-light-bulb-reinvented

[23] F. Carrez, M. Bauer, T. Bauge, and J. Bernat,
SENSEI Reference Architecture, Jan. 2008. [Online].
Available: http://www.ict-sensei.org/index.php?option=com
chronocontact&chronoformname=SENSEI WP3 D3.2

[24] “Resource exhaustion attack.” [Online]. Available: https://www.owasp.
org/index.php/Resource exhaustion

[25] E. Maler and T. Hardjono, “Binding obligations on user-managed access
(UMA) participants,” Internet-Draft, vol. draft-maler-uma-trust-00,
Jan. 2013. [Online]. Available: http://docs.kantarainitiative.org/uma/
draft-uma-trust.html

http://www.wew.autoidlabs.org/uploads/media/AUTOIDLABS-WP-BIZAPP-53.pdf
http://www.wew.autoidlabs.org/uploads/media/AUTOIDLABS-WP-BIZAPP-53.pdf
http://webofthings.org/dom/thesis.pdf
http://vladtrifa.com/research/files/phd-thesis.pdf
http://vladtrifa.com/research/files/phd-thesis.pdf
http://www.thingworx.com/
http://www.axeda.com/
https://lockitron.com/
http://www.kickstarter.com/projects/limemouse/lifx-the-light-bulb-reinvented
http://www.kickstarter.com/projects/limemouse/lifx-the-light-bulb-reinvented
http://www.ict-sensei.org/index.php?option=com_chronocontact&chronoformname=SENSEI_WP3_D3.2
http://www.ict-sensei.org/index.php?option=com_chronocontact&chronoformname=SENSEI_WP3_D3.2
https://www.owasp.org/index.php/Resource_exhaustion
https://www.owasp.org/index.php/Resource_exhaustion
http://docs.kantarainitiative.org/uma/draft-uma-trust.html
http://docs.kantarainitiative.org/uma/draft-uma-trust.html

BIBLIOGRAPHY 100

[26] R. H. Weber, “Internet of things - need for a new legal environment?”
Computer Law & Security Review, vol. 25, no. 6, pp. 522–
527, Nov. 2009. doi: 10.1016/j.clsr.2009.09.002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0267364909001514

[27] R. Weber, “Accountability in the internet of things,” Computer
Law & Security Review, vol. 27, no. 2, pp. 133–138, Apr.
2011. doi: 10.1016/j.clsr.2011.01.005. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0267364911000069

[28] M. Presser, P. Barnaghi, M. Eurich, and C. Villalonga, “The SENSEI
project: integrating the physical world with the digital world of the
network of the future,” IEEE Communications Magazine, vol. 47, no. 4,
pp. 1–4, Apr. 2009. doi: 10.1109/MCOM.2009.4907403

[29] Craig Burton, Scott David, Drummond Reed, Doc Searls, and
Phillip J. Windley, “From personal computers to personal clouds:
The advent of the cloud OS,” Apr. 2012. [Online]. Available:
http://www.windley.com/docs/2012/cloudos.pdf

[30] P. Viswanathan, B. Gill, and R. Campbell, “Security architecture in
gaia,” University of Illinois at Urbana-Champaign, Champaign, IL,
USA, Tech. Rep., 2001. [Online]. Available: http://dl.acm.org/citation.
cfm?id=870854

[31] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. Mickunas,
“Cerberus: a context-aware security scheme for smart spaces,” in
Pervasive Computing and Communications, 2003.(PerCom 2003).
Proceedings of the First IEEE International Conference on, 2003, pp.
489–496.

[32] M. Covington, P. Fogla, Z. Zhan, and M. Ahamad, “A context-aware
security architecture for emerging applications,” in Computer Security
Applications Conference, 2002. Proceedings. 18th Annual, 2002, pp. 249–
258.

[33] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks
in a composable web of things,” in 2010 8th IEEE International
Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops). IEEE, Mar. 2010. doi: 10.1109/PER-
COMW.2010.5470524. ISBN 978-1-4244-6605-4 pp. 702–707.

[34] Kim, J.E., Boulos, G., Yackovich, J., Barth, T., and Mosse, D.,
“Seamless integration of heterogeneous devices and access control in

http://www.sciencedirect.com/science/article/pii/S0267364909001514
http://www.sciencedirect.com/science/article/pii/S0267364911000069
http://www.sciencedirect.com/science/article/pii/S0267364911000069
http://www.windley.com/docs/2012/cloudos.pdf
http://dl.acm.org/citation.cfm?id=870854
http://dl.acm.org/citation.cfm?id=870854

BIBLIOGRAPHY 101

smart homes,” in Proceedings of the 8th International Conference on
Intelligent Environments (IE 2012). Guanajuato, Mexico, 2012. [Online].
Available: http://vs.inf.ethz.ch/publ/papers/beckel-2012-seamless.pdf

[35] “Xively.” [Online]. Available: https://xively.com

[36] “Paraimpu: The web of things is more than things in the web.”
[Online]. Available: http://paraimpu.crs4.it/

[37] A. Pintus, D. Carboni, and A. Piras, “The anatomy of a large
scale social web for internet enabled objects,” in Proceedings of the
Second International Workshop on Web of Things, ser. WoT ’11.
New York, NY, USA: ACM, 2011. doi: 10.1145/1993966.1993975.
ISBN 978-1-4503-0624-9 pp. 6:1–6:6. [Online]. Available: http:
//doi.acm.org/10.1145/1993966.1993975

[38] “ThingSpeak: internet of things application platform.” [Online].
Available: https://www.thingspeak.com/

[39] “Xively: Device management API.” [Online]. Available: https:
//xively.com/dev/docs/api/product management/provisioning/

[40] M. Benantar, Access Control Systems: Security, Identity Management
and Trust Models. Springer, Jun. 2006. ISBN 9780387277165

[41] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross,
B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence, “RFC 2904:
AAA authorization framework,” Network Working Group, The Internet
Society, 2000. [Online]. Available: http://tools.ietf.org/html/rfc2904

[42] B. Lampson, “Protection,” ACM SIGOPS Operating Systems Review,
vol. 8, no. 1, pp. 18–24, 1974.

[43] H. Stiegler, “A structure for access control lists,” Software: Practice and
Experience, vol. 9, no. 10, pp. 813–819, 1979.

[44] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access
control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[45] A. INCITS, “INCITS 359-2004,” Role based access control, 2004.

[46] Tim Moses, Ed., eXtensible Access Control Markup Language
(XACML) Version 2.0, committee specification ed. OASIS, Feb.
2005. [Online]. Available: http://docs.oasis-open.org/xacml/2.0/access
control-xacml-2.0-core-spec-os.pdf

http://vs.inf.ethz.ch/publ/papers/beckel-2012-seamless.pdf
https://xively.com
http://paraimpu.crs4.it/
http://doi.acm.org/10.1145/1993966.1993975
http://doi.acm.org/10.1145/1993966.1993975
https://www.thingspeak.com/
https://xively.com/dev/docs/api/product_management/provisioning/
https://xively.com/dev/docs/api/product_management/provisioning/
http://tools.ietf.org/html/rfc2904
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

BIBLIOGRAPHY 102

[47] Q. Pham, J. Reid, A. McCullagh, and E. Dawson, “On a taxonomy
of delegation,” Computers & Security, vol. 29, no. 5, pp. 565–
579, Jul. 2010. doi: 10.1016/j.cose.2009.12.009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404809001473

[48] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The kerberos
network authentication service (v5),” RFC 4120 (Standards Track),
Jul. 2005. [Online]. Available: http://tools.ietf.org/html/rfc4120

[49] B. Neuman and T. Ts’o, “Kerberos: an authentication service for
computer networks,” IEEE Communications Magazine, vol. 32, no. 9,
pp. 33 –38, Sep. 1994. doi: 10.1109/35.312841

[50] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions
and protocols for the OASIS security assertion markup language
(SAML) v2.0,” OASIS, vol. Standard, Mar. 2005. [Online]. Available:
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[51] N. Ragouzis, J. Hughes, R. Philpott, E. Maler, P. Madsen,
and T. Scavo, “Security assertion markup language (SAML) v2.0
technical overview,” OASIS, vol. Committee Draft 02, Mar. 2008.
[Online]. Available: http://www.oasis-open.org/committees/download.
php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf

[52] Frederick Hirsch, Rob Philpott, and Eve Maler, “Security and privacy
considerations for the OASIS security assertion markup language
(SAML) v2.0,” OASIS, vol. Standard, Mar. 2005.

[53] Sun Microsystems, Inc., “SunXACML,” Jul. 2004. [Online]. Available:
http://sunxacml.sourceforge.net/

[54] “UMU XACML editor.” [Online]. Available: http://xacml.dif.um.es/

[55] “Xacml studio: An authorization policy editor.” [Online]. Available:
http://xacml-studio.sourceforge.net/

[56] E. Hammer-Lahav, “The OAuth 1.0 protocol,” RFC 5849
(Informational), Apr. 2010. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc5849.txt

[57] D. Hardt and D. Recordon, “The OAuth 2.0 authorization
framework,” RFC 6749, Oct. 2012. [Online]. Available: http:
//tools.ietf.org/html/rfc6749

http://www.sciencedirect.com/science/article/pii/S0167404809001473
http://tools.ietf.org/html/rfc4120
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://sunxacml.sourceforge.net/
http://xacml.dif.um.es/
http://xacml-studio.sourceforge.net/
http://www.rfc-editor.org/rfc/rfc5849.txt
http://www.rfc-editor.org/rfc/rfc5849.txt
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

BIBLIOGRAPHY 103

[58] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web APIs
on the world wide web,” in 2010 IEEE 8th European Conference on Web
Services (ECOWS), Dec. 2010. doi: 10.1109/ECOWS.2010.9 pp. 107 –
114.

[59] ProgrammableWeb.com, “API dashboard: ProgrammableWeb,” Mar.
2013. [Online]. Available: http://www.programmableweb.com/apis

[60] T. Hardjono, “User-managed access (UMA) profile of OAuth
2.0,” Internet-Draft, vol. draft-hardjono-oauth-umacore-07b, Jan.
2013. [Online]. Available: http://docs.kantarainitiative.org/uma/
draft-uma-core.html

[61] M. P. Machulak, L. Moren, and A. van Moorsel, “Design and
implementation of user-managed access framework for web 2.0
applications,” in Proceedings of the 5th International Workshop on
Middleware for Service Oriented Computing, ser. MW4SOC ’10. New
York, NY, USA: ACM, 2010. doi: 10.1145/1890912.1890913. ISBN
978-1-4503-0452-8 pp. 1–6. [Online]. Available: http://doi.acm.org/10.
1145/1890912.1890913

[62] M. P. Machulak, E. L. Maler, Domenico Catalano, and Aad van
Moorsel, “User-managed access to web resources,” in Proceedings of
the 6th ACM workshop on Digital identity management, ser. DIM
’10. New York, NY, USA: ACM, 2010. doi: 10.1145/1866855.1866865.
ISBN 978-1-4503-0090-2 pp. 35–44. [Online]. Available: http:
//doi.acm.org/10.1145/1866855.1866865

[63] “User managed access work group.” [Online]. Available: http:
//kantarainitiative.org/groups/user-managed-access-work-group/

[64] “Kantara initiative.” [Online]. Available: http://kantarainitiative.org

[65] T. Hardjono, “OAuth 2.0 resource set registration,” Internet-Draft, vol.
draft-hardjono-oauth-resource-reg-00, Dec. 2013. [Online]. Available:
http://tools.ietf.org/html/draft-hardjono-oauth-resource-reg-00

[66] T. Hardjono, M. Machulak, E. Maler, and C. Scholz, “OAuth
dynamic client registration protocol,” Internet-Draft, vol. draft-oauth-
dyn-reg-v1-03 (work in progress), Oct. 2011. [Online]. Available:
http://tools.ietf.org/html/draft-oauth-dyn-reg-v1-03

http://www.programmableweb.com/apis
http://docs.kantarainitiative.org/uma/draft-uma-core.html
http://docs.kantarainitiative.org/uma/draft-uma-core.html
http://doi.acm.org/10.1145/1890912.1890913
http://doi.acm.org/10.1145/1890912.1890913
http://doi.acm.org/10.1145/1866855.1866865
http://doi.acm.org/10.1145/1866855.1866865
http://kantarainitiative.org/groups/user-managed-access-work-group/
http://kantarainitiative.org/groups/user-managed-access-work-group/
http://kantarainitiative.org
http://tools.ietf.org/html/draft-hardjono-oauth-resource-reg-00
http://tools.ietf.org/html/draft-oauth-dyn-reg-v1-03

BIBLIOGRAPHY 104

[67] N. Sakimura, J. Bradley, and M. Jones, “OpenID connect
dynamic client registration 1.0,” May 2012. [Online]. Available:
http://openid.net/specs/openid-connect-registration-1 0.html

[68] B. Sarikaya, Y. Ohba, R. Moskovitz, Z. Cao, and R. Cragie,
“Security bootstrapping solution for resource-constrained devices,”
Internet-Draft, vol. draft-sarikaya-core-sbootstrapping-05 (work in
progress), Jul. 2012. [Online]. Available: http://tools.ietf.org/html/
draft-sarikaya-core-sbootstrapping-05

[69] “UMA implementations.” [Online]. Available: http://kantarainitiative.
org/confluence/display/uma/UMA+Implementations

[70] “Puma,” Apr. 2012. [Online]. Available: http://smartjisc.wordpress.
com/2012/04/13/releasing-puma/

[71] P. Mularien, Spring Security 3. Packt Publishing Ltd, 2010. ISBN
9781847199751

[72] “Spring framework.” [Online]. Available: http://www.springsource.
org/spring-framework

[73] “Spring security.” [Online]. Available: http://www.springsource.org/
spring-security

[74] “Spring security OAuth.” [Online]. Available: http://www.springsource.
org/spring-security-oauth

[75] “Cloud foundry.” [Online]. Available: http://www.cloudfoundry.com/

[76] “MyBatis.” [Online]. Available: http://mybatis.github.com/mybatis-3/

[77] T. Lodderstedt, M. McGloin, and P. Hunt, “OAuth 2.0 threat model
and security considerations,” RFC 6819 (Informational), Jan. 2013.
[Online]. Available: http://tools.ietf.org/html/rfc6819

[78] T. Dierks and E. Rescorla, “The transport layer security (TLS)
protocol version 1.2,” RFC 5246 (Standards Track), Aug. 2008.
[Online]. Available: http://tools.ietf.org/html/rfc5246

[79] E. Rescorla, “HTTP over TLS,” RFC 2818 (Informational), May 2000.
[Online]. Available: http://tools.ietf.org/html/rfc2818

http://openid.net/specs/openid-connect-registration-1_0.html
http://tools.ietf.org/html/draft-sarikaya-core-sbootstrapping-05
http://tools.ietf.org/html/draft-sarikaya-core-sbootstrapping-05
http://kantarainitiative.org/confluence/display/uma/UMA+Implementations
http://kantarainitiative.org/confluence/display/uma/UMA+Implementations
http://smartjisc.wordpress.com/2012/04/13/releasing-puma/
http://smartjisc.wordpress.com/2012/04/13/releasing-puma/
http://www.springsource.org/spring-framework
http://www.springsource.org/spring-framework
http://www.springsource.org/spring-security
http://www.springsource.org/spring-security
http://www.springsource.org/spring-security-oauth
http://www.springsource.org/spring-security-oauth
http://www.cloudfoundry.com/
http://mybatis.github.com/mybatis-3/
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc2818

BIBLIOGRAPHY 105

[80] G. Denaro, A. Polini, and W. Emmerich, “Early performance testing of
distributed software applications,” in Proceedings of the 4th international
workshop on Software and performance, ser. WOSP ’04. New York, NY,
USA: ACM, 2004. doi: 10.1145/974044.974059. ISBN 1-58113-673-0 pp.
94–103. [Online]. Available: http://doi.acm.org/10.1145/974044.974059

[81] O. Garcia-Morchon, S. Keoh, S. Kumar, R. Hummen, and
R. Struik, “Security considerations in the IP-based internet of
things,” Internet-Draft, vol. draft-garcia-core-security-04 (work in
progress), Mar. 2012. [Online]. Available: http://tools.ietf.org/html/
draft-garcia-core-security-04

[82] J. Lanier, Who Owns the Future? New York, NY, USA: Simon &
Schuster, May 2013. ISBN 9781451654967

[83] World Economic Forum, “Personal data: The emergence of a new
asset class,” Jan. 2011. [Online]. Available: http://www.weforum.org/
reports/personal-data-emergence-new-asset-class

[84] Martin Kuppinger, “Life management platforms: Control
and privacy for personal data,” Mar. 2012.
[Online]. Available: http://www.kuppingercole.com/report/
advisorylifemanagementplatforms7060813412

[85] A. R. Galloway, Protocol: How Control Exists After Decentralization.
MIT Press, 2004. ISBN 9780262072472

http://doi.acm.org/10.1145/974044.974059
http://tools.ietf.org/html/draft-garcia-core-security-04
http://tools.ietf.org/html/draft-garcia-core-security-04
http://www.weforum.org/reports/personal-data-emergence-new-asset-class
http://www.weforum.org/reports/personal-data-emergence-new-asset-class
http://www.kuppingercole.com/report/advisorylifemanagementplatforms7060813412
http://www.kuppingercole.com/report/advisorylifemanagementplatforms7060813412

www.kth.se

TRITA-ICT-EX-2013:231

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Research Goals and Contributions
	1.4 Thesis scope and approach
	1.5 Thesis structure

	2 Background
	2.1 SWoT system
	2.1.1 Architecture Model
	2.1.2 Actors and Artefacts
	2.1.3 Interaction Model
	2.1.4 Trust Model
	2.1.5 Threat Model

	2.2 Related work

	3 Study of security mechanisms
	3.1 Distributed systems and security architecture
	3.2 Security components and procedures
	3.2.1 Identity management system
	3.2.1.1 Registration
	3.2.1.2 Authentication

	3.2.2 Access management system
	3.2.2.1 Authorization
	3.2.2.2 Access control
	3.2.2.3 Delegation

	3.3 Security mechanisms
	3.3.1 Kerberos
	3.3.2 Security Assertion Markup Language
	3.3.2.1 SAML analysis

	3.3.3 XACML
	3.3.3.1 XACML analysis

	3.3.4 OAuth
	3.3.4.1 OAuth analysis

	3.3.5 User Managed Access Profile of OAuth 2.0
	3.3.5.1 UMA analysis

	3.4 Security mechanisms analysis

	4 System specification
	4.1 Bootstrap phase
	4.1.1 Service registration
	4.1.2 Service association

	4.2 Configuration phase
	4.2.1 Resource registration
	4.2.2 Resource discovery
	4.2.3 Resource administration

	4.3 Operation phase
	4.3.1 Authentication
	4.3.2 Authorization
	4.3.3 Authorization evaluation

	5 Implementation
	5.1 Libraries
	5.2 UMA Resource Server
	5.3 UMA Client
	5.4 UMA Authorization Server

	6 Analysis and Discussion
	6.1 Functional analysis
	6.1.1 Use case components
	6.1.2 Evaluation test cases

	6.2 Security analysis
	6.2.1 Overview of assumptions and features
	6.2.2 UMA threats

	6.3 Performance analysis
	6.3.1 UMA flows
	6.3.1.1 Obtaining RPT flow
	6.3.1.2 First resource access flow
	6.3.1.3 Second and subsequent resource access flow

	6.3.2 Performance of UMA flows
	6.3.3 Parameters affecting performance
	6.3.3.1 Permission expiration period
	6.3.3.2 Resource granularity
	6.3.3.3 Application interaction patterns

	6.4 Discussion

	7 Conclusions
	7.1 Summary
	7.2 Future Work
	7.3 Reflections

