
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

S Y E D A M I R S H A H Z A D

 Route aggregation in Software-defined
Networks

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Route aggregation in Software-defined Networks

Syed Amir Shahzad

Master of Science Thesis

Communication Systems
School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

23rd June 2013

Examiner: Professor Gerald Q. "Chip" Maguire Jr.

c© Syed Amir Shahzad, 23rd June 2013

Abstract

Software-defined Networking (SDN) is an emerging trend in communication
networks that facilitates decoupling the control and data plane of multilayer
switches. A logically centralized controller hosted on a server configures the
forwarding tables (flow tables) of switches in order to route the various data flows.
To implement SDN, OpenFlow technology has been adopted by packet switching
vendors as it provides increased flexibility for the control and management of a
packet switched domain. OpenFlow technology provides flow based switching
that is controlled by a network management control application running in an
OpenFlow controller. In this thesis work we investigate how an OpenFlow
Controller communicates with a legacy network via the OSPF routing protocol,
how the size of the OpenFlow network effects the resources (memory and CPU)
of a legacy router to whom the controller communicates. Also we examine
bandwidth utilization of the link (between the OpenFlow network and legacy
router). The main goal of this thesis is to find methods to reduce the consumption
of resources of a legacy router. This study shows that the size of OpenFlow
network directly affects the usage of the link’s bandwidth, and the memory and
CPU usage of a legacy router. Aggregated information from the OpenFlow
controller which is sent towards the legacy router can reduce the utilization of
these resources. Finally we proposed several algorithms and design models
that can be implemented for route aggregation in Software-defined Networks.
Implementation of the solutions suggested in this thesis will allow automatic
route aggregation in SDN. ISPs deploying SDN architecture could benefit from
the proposed design models and route aggregation solution.

i

Sammanfattning

Software-definierade nätverk (SDN) är en framväxande trend i kommunikationsnät
som underlättar frikoppling kontroll och uppgifter plan flerskiktade switchar. Ett
logiskt centraliserad styrenhet på en server konfigurerar vidarebefordran tabeller
(flödestabeller) av växlar för att dirigera de olika dataflöden. För att genomföra
SDN har OpenFlow teknik har antagits av paketförmedlande leverantörer eftersom
det ger ökad flexibilitet för kontroll och förvaltning av en påslagen paket
domän. OpenFlow teknik ger flöde baserad omkoppling som styrs av ett nätverk
ledningens kontroll som körs i en OpenFlow controller. I detta examensarbete
undersöker vi hur en OpenFlow Controller kommunicerar med ett äldre nätverk
via OSPF routing protokoll, hur storleken på OpenFlow nätverkseffekter de
resurser (minne och CPU) av en äldre router till vilken styrenheten kommunicerar.
Också vi undersöker bandbreddsutnyttjandet av sambandet (mellan OpenFlow
nätverket och äldre router). Det huvudsakliga målet med detta examensarbete
är att hitta metoder för att minska konsumtionen av resurser från en äldre
router. Denna studie visar att storleken på OpenFlow nätverk direkt påverkar
användningen av länkens bandbredd och minne och CPU-användning av en äldre
router. Samlad information från OpenFlow styrenhet som sändes mot äldre router
kan minska utnyttjandet av dessa resurser. Slutligen föreslog vi flera algoritmer
och modeller konstruktion som kan genomföras för route aggregation i Software
Defined-nätverk. Genomförandet av de lösningar som föreslås i denna avhandling
kommer att möjliggöra automatisk route aggregation i SDN. Internetleverantörer
distribuerar SDN arkitektur kunde dra nytta av den föreslagna utformningen
modeller och route aggregation lösning.

iii

Acknowledgements

I would like to acknowldge my adviser’s help and guidlines at every step in
completing my thesis work. He is really a very co-operative and kind person.

v

Contents

1 Introduction 1
1.1 Software-defined Networking and Legacy Network Architectures . 1
1.2 This Thesis Project . 4
1.3 Related Work . 5
1.4 Motivation . 6
1.5 Methodology . 6

2 Technology 7
2.1 OpenFlow Technology . 7

2.1.1 OpenFlow Switch . 7
2.1.1.1 Flow Table . 8
2.1.1.2 OpenFlow Secure Channel 8
2.1.1.3 OpenFlow Protocol 9

2.1.2 OpenFlow Network Controller 9
2.2 Routing protocol . 9

2.2.1 OSPF . 10
2.2.2 OSPF network design 10

2.2.2.1 Number of routers in an area 10
2.2.2.2 Number of neighbors for any one router 11
2.2.2.3 Number of areas supported by any one router . . 11
2.2.2.4 Backbone area 11
2.2.2.5 Areas Consideration 11
2.2.2.6 OSPF addressing and Route summarization . . 12

2.2.3 OSPF convergence . 12
2.2.4 OSPF Network Scalability 13

2.2.4.1 Memory . 13
2.2.4.2 CPU . 13
2.2.4.3 Bandwidth . 13

vii

viii CONTENTS

3 Experimental Setup, Experiments, and Results 15
3.1 What Equipment was used . 15

3.1.1 PC . 15
3.1.2 Agilent N2X Traffic Generator 16
3.1.3 Juniper Router M7i . 16

3.2 Scenarios . 17
3.2.1 Scenario 1 . 17
3.2.2 Scenario 2 . 20

3.3 Experiments . 21
3.3.1 Experiments: Scenario 1 (case 1) 21

3.3.1.1 Router Memory 22
3.3.1.2 Link Bandwidth 24

3.3.2 Experiments: Scenario 1 case 2 26
3.3.3 Experiments: Scenario 2 28

3.3.3.1 Router Memory 28
3.3.3.2 Link Bandwidth 30

3.3.4 Router CPU . 31

4 Proposed Solution 33
4.1 Solution 1 . 33
4.2 Naive solution . 34

4.2.1 Modified DFS algorithm 36
4.2.1.1 Operations of the modified DFS algorithm . . . 37

5 Conclusion and Future work 43
5.1 Conclusions . 43
5.2 Future work . 43
5.3 Required reflections . 44

Bibliography 45

List of Figures

1.1 Traditional switches verses OpenFlow/SDN switches 2
1.2 OpenFlow/SDN . 3
1.3 OpenFlow Network . 4

3.1 Experimental Setup . 17
3.2 Scenario-1 Case:1 Router LSAs 18
3.3 Scenario-1 Case(2) Single Router LSA 18
3.4 Router LSA format . 19
3.5 Scenario-2 Summary LSA . 20
3.6 Summary LSA format . 21
3.7 Memory usage as a function of the number of router LSAs 24
3.8 Link bandwidth usage versus number of router LSAs 26
3.9 Single Router LSA versus memory usage in bytes 27
3.10 Memory usage as a function of the Number of Summary LSAs . . 29
3.11 Link bandwidth usage as a function of the number of Summary

LSAs . 31
3.12 Memory usage of Summary LSA versus Single router LSA 32

4.1 Proposed Solution Model 1 . 34
4.2 Proposed Solution Naive Model 35
4.3 Example . 36
4.4 Step by step procedure to create the aggregation list 38
4.5 Request for non-existing network received 40
4.6 Insertion of x-list values in the tree 41
4.7 Step by step procedure to create the aggregation list 42

ix

List of Tables

2.1 Fields . 8

3.1 PC . 15
3.2 Agilent N2X Traffic Generator 16
3.3 Juniper Router M7i . 16
3.4 OSPF related processes which use memory 23
3.5 Router LSAs and measured memory usage 24
3.6 Router LSAs and link bandwidth usage (Byte/sec) 25
3.7 Single Router LSA and memory usage 27
3.8 Summary LSAs and memory usage 28
3.9 Summary LSAs and link bandwidth usage 30

4.1 Network prefixes stored in database 35
4.2 Aggregation List . 37

xi

List of Acronyms and Abbreviations

ABR Area Border Router

CPU Central Processing Unit

CAPEX Capital Expenditure

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISP Internet Service Provider

LSA Link State Advertisement

MAC Medium Access Control

NOS Network Operating System

OFS OpenFlow Switch

OPEX Operational Expenditure

ONF Open Networking Foundation

OFLOPS Open framework for OpenFlow switch evaluation

OSPF Open Shortest Path First

QoS Quality of Service

SPARC Split architecture for carrier grade networks

SSL Socket Secure Layer

TE Traffic Engineering

TCAM Ternary Content Addressable Memory

xiii

xiv LIST OF ACRONYMS AND ABBREVIATIONS

TCP Transmission Control Protocol

VLAN Virtual Local Area Network

Chapter 1

Introduction

The communication networks industry has adopted new designs for network
architectures in order to fulfill the requirements of their users. However, these
network architectures have become very complex and inflexible due to the
increasing number of protocols, making it impossible for network operators,
vendors, and researchers to innovate the communication networks to meet
customer’s requirements [1]. Modern mobile devices, server virtualization, and
cloud services are driving the networking industry to rethink and redesign the
existing networking architectures. Moreover, data flow patterns are changing
and users with different types of devices and different applications are accessing
various databases and servers. The traffic volume pressure on access networks is
increasing rapidly due to the rapid grow in use of mobile devices, such as smart
phones, notebooks, and tablets. The huge growth in the amount data traffic that is
passing over the network requires parallel processing in order to satisfy the various
customers. Some of the limitations of the existing networking architecture are
high network complexity, inconsistent network policies, inability to easily scale
the network, and vendor dependence. These limitations have lead the networking
industry to the software-defined networking (SDN) architecture [2].

1.1 Software-defined Networking and Legacy Network
Architectures

SDN is a modern trend in communication networks that facilitates decoupling
the control and data plane of multilayer switches. A centralized controller hosted
on a server, configures the forwarding tables (flow tables) of switches in order
to route the various data flows. These switches realize the routes calculated by
the controller by forwarding the packets according to the forwarding table entries
that have been instantiated. The separation of management and the forwarding

1

2 CHAPTER 1. INTRODUCTION

function has several advantages, specifically: flexibility, high efficiency, cost
reduction, and ease of control. The OpenFlow protocol is widely supported by
the communication networks industry. OpenFlow can be used to implement SDN.
SDN is expected to have a strong influence on the future of the communication
network industry. Figure 1.1 shows the difference between the existing legacy
network architecture and a SDN architecture. In the legacy network architecture
the control plane and the data plane are implemented in the same box. While in
the SDN architecture the network control plane is decoupled from forwarding (i.e.,
data plane). The network control plane is programmable in the SDN architecture
[2]. The protocol that couples the control and data plane is called the OpenFlow
protocol. The control plane consist of a network OS (NOS) that realizes the logical
view of the entire network and controls applications, written by programmers that
manipulate the logical map of the network [2].

Network of vertically integerated
Closed, proprietary Switches

OpenFlow/SDN
Seperation of Control and data Plane

 OF
Switch

TERouting Mobility

NOS

Specialized Packet
Forwarding H/W

NOS

Control Plane

Data PlaneFeatures Features

NOS

Specialized Packet
Forwarding H/W

Features Features

NOS

Specialized Packet
Forwarding H/W

Features Features

NOS

Specialized Packet
Forwarding H/W

Features Features

 OF
Switch

 OF
Switch

 OF
Switch

Figure 1.1: Traditional switches verses OpenFlow/SDN switches

SDN enables innovation by realizing a network operating system and allows
network virtualization. SDN provides flexibility to network application developers
who can now manipulate the actual network graph, without to worry about the
complexity of the actual network topology. As a result a developer can manipulate
the network graph by implementing different piece of codes, thus making it easier
to perform experiments. The separation of data and control planes by an agnostic
interface enables network operators to become independent of specific vendors
of devices, hence they have a choice and can even select different control and
data plane vendors. The resulting SDN is more flexible than today’s network

1.1. SOFTWARE-DEFINED NETWORKING AND LEGACY NETWORK

ARCHITECTURES 3

architecture which is complex and mostly dependent upon specific vendors. The
SDN control plane is programmable, hence a researcher can experiment with his
or her own ideas rather than being restricted to what a vendor has implemented
in their router. A network can be logically divided into a research network and a
production network, thus a researcher can play with the research network without
effecting the production network[2].

Some of the world’s largest network providers, including Deutsche Telekom,
Facebook, Google, Microsoft, Verizon, and Yahoo!, have created the Open
Networking Foundation (ONF), to standardize and promote the SDN/OpenFlow
architecture. Over 40 companies and 15 vendors are now members of the Open
Networking Foundation [2].

OpenFlow networks consist of two main elements: OpenFlow switches and
one or more controller as shown in Figure 1.2. There are two main functions
involved in routing: fast packet forwarding (along the data path) and high level
routing decisions (which utilize the control path). In a traditional router these two
function reside in the same device, but in the SDN architecture these functions
can be located in different locations. The fast packet forwarding still resides in
the network node, but the control functions reside in a separate controller. This
controller is generally running in a networked attached server. As stated earlier
the protocol connecting the control and data planes that is the OpenFlow protocol.
OpenFlow technology will be discussed in more details in Chapter 2.

 OF
Switch

TERouting Mobility

NOS

 OF
Switch

 OF
Switch

 OF
Switch

Control Plane

Data Plane

OpenFlow Protocol

Figure 1.2: OpenFlow/SDN

4 CHAPTER 1. INTRODUCTION

1.2 This Thesis Project

The main object of this thesis project is to analyze the presentation of an
OpenFlow network by an OpenFlow controller to a legacy router (in this thesis this
is a Juniper M7i router). We have set of OpenFlow switches that are connected
and we want to tell an existing legacy router about them, we do this by having a
network application (speaking OSPF) running on an OpenFlow Controller which
tells the router that the collection of OpenFlow switches is actually a single router,
with many (up to say 10K) external interfaces. What are the limits? How many
external interfaces are allowed in theory by the OSPF protocol? What are the
limits in practice, how does a Juniper router react when you try telling it that an
other router has 10000 interfaces? After finding the practical and theoretical limits
we proposed solutions, in which the controller sends summarized information to
the legacy router. The implementation of these proposed solutions will reduce the
usage of link bandwidth and also memory and CPU usage on the legacy router.
The OpenFlow controller is connected to a large number of OpenFlow Switches as
shown in Figure 1.3. The OpenFlow switches are connected to customer networks.
As noted earlier the OpenFlow controller communicates with the legacy network
via OSPF.

Clients OPENFLOW NETWORK

Routing
Protocols

IP / MPLS Core

MPLS
CP

MPLS
CP

MPLS
CP

Controller

Topology &
Rout ing

Transport
Services

Client

Client

Core
MPLS

Core
MPLS

Core
MPLS

OF
Edge

OF
Edge

OF
Switch

OF
Switch

OF
Switch

Figure 1.3: OpenFlow Network

1.3. RELATED WORK 5

1.3 Related Work

Manuel Palacin Mateo wrote a related master thesis entitled "OpenFlow Switching
Performance"[3]. He analyzed the OpenFlow switching technology and deployed
a test-bed to compare OpenFlow performance with layer-2 switch technology
and layer-3 IP routing technology. In his conclusion he states: "OpenFlow
switching technology is a serious alternative to software Ethernet Switching or
IP Routing because it does the same layer-2 and layer-3 functions with a high
performance and scalability. OpenFlow does not just do layer-2 and layer-3
forwarding, but also can do port forwarding and layer-4 forwarding, so we can
consider it more flexible and configurable. This added with VLAN capabilities
do it a highly recommended switching technology for isolate flows and network
communications"[3].

Acreo AB is working on Software-defined Networking (SDN), primarily
within the framework of the EU project SPARC (Split architecture for carrier-
grade networks). In the SPARC project the Acreo AB has focused on different
areas, namely ISP access and aggregation networks [4]. This thesis project is also
a small part of this larger project.

Xin, Liu, Yaoqing, Wang and Zhang in a conference paper entitled "On the
aggregatability of router forwarding tables" presented a deep analysis of FIB
(Forwarding Information Base) aggregation and they have suggested an algorithm
that can reduce of FIB by up to 70 percent. No software and hardware changes
are required in the existing ISP setup. They state that their solution is a short term
solution and they are expecting long-term solution by the research community.
Moreover, their FIB aggregation can co-exist with a long-term solution to reduce
the ISP’s operational cost[5]. This paper gave us an idea how to store customers
networks also it helps us in designing algorithm for automatic aggregation.

In the article entitled "Scalability Aspects of Centralized Control of MPLS
Access-Aggregation Network" Jocha, Kern, and Yedavalli looked for possible
scalability limitations when applying an OpenFlow-based centralized control
solution to the access-aggregation segments of service provider networks. They
proposed a numerical model to understand and discover possible scalability
constraints. With this model they estimated scale and performance numbers,
which need to be matched by a centralized controller, considering various access-
aggregation network sizes [6]. From this article we learn how the size of
aggregation network effects the performance of controller in OpenFlow networks
environment.

6 CHAPTER 1. INTRODUCTION

1.4 Motivation
OpenFlow is an open standard that enables researchers to run experimental
protocols in the campus and other networks. Support for OpenFlow has been
added to many commercial Ethernet switches, wireless access points, and routers.
As a result a researcher can perform experiments without knowledge of these
network devices. OpenFlow enabled switches are available in the market from
different vendors[7], for example HP and IBM. In our studies we are concerned
with how the OpenFlow technology meets the requirements of households and
business cutomers in an operator’s network. Operators connect their customers
via the operator’s access network to the operator’s legacy core network. We
will be specifically concerned with how the OpenFlow controller represents the
customer’s networks to the legacy network, what are the effects of the OpenFlow
network’s size on the legacy network resources (specifically the router(s)). We
expect that the large numbers of routing entries that a large OpenFlow network
could potentially generate will add significant burdens to the legacy router(s). As
a result of this study we will propose some solutions that can be implemented in
an OpenFlow network in order to aggregate the customers’ networks in order to
reduce the amount of routing table entries that the legacy router(s) must deal with.

1.5 Methodology
This master’s thesis consist of three logical parts. The first part describes
SDN, OpenFlow technology, and the routing protocol that has been used. The
second part concerns the design one or more potential solutions and describes an
experimental setup and the experiments that will be used to evaluate this proposed
solution. The third part presents the results of these experiments and discuss which
solutions are most appropriate to efficiently represent the customers’ networks in
the legacy router(s).

This thesis consists of five chapters: the first chapter gives introduction
that briefly describes the SDN/OpenFlow architecture. The second chapter
provides further background about OpenFlow technology and the routing protocol
that is used in our study. The third chapter describes the experimental setup,
experiments, and descriptions of our findings. The fourth chapter proposed a
solution, including several models and algorithms. The final chapter outlines our
conclusions, suggests future work, and gives some required reflections.

Chapter 2

Technology

This chapter describes the technology that we used in our study. Section 2.1
briefly explains OpenFlow technology and its networks elements. Section 2.2
describes the routing protocol used between the OpenFlow Controller and legacy
router, this section describes the OSPF protocol and presents some OSPF network
design issues.

2.1 OpenFlow Technology
In today’s communication networks, OpenFlow technology is being used as a
control framework to enable a programmer to explore new networking protocols
that could be used to better satisfy a user’s requirements. This technology
decouples the data and control plane, which are coupled in many legacy networking
devices (e.g., switches, access points, and routers). To implement SDN, OpenFlow
technology has been widely adopted by packet switching vendors as it provides
increased flexibility for the control and management of a packet switched domain.
OpenFlow technology provides flow based switching that is controlled by a
network management application running in an OpenFlow controller[8].

OpenFlow technology is realized in a set of network elements (consisting of
both hardware and software). These elements will be discussed in detail in the
following sections. This discussion is based on an OpenFlow white paper[7] and
the OpenFlow specification[7].

2.1.1 OpenFlow Switch

There are two types of OpenFlow switches in the market. The first type is a
hardware based commercial switches whose flow table is constructed using a
ternary content addressable memory (TCAM). Such a switch can forward packets

7

8 CHAPTER 2. TECHNOLOGY

at line rate to implement switching, routing, QoS, and other functions. The
second type of OpenFlow switch is software based. Such a switch typically uses
the UNIX/Linux system to implement the OpenFlow switching functions. In an
OpenFlow switch the control of the OpenFlow table is done by the OpenFlow
controller. The controller is programmable and hence the solution is quite flexible.
Flows are defined broadly in OpenFlow switching, for example a flow can be a
specific TCP connection, all packets from a particular MAC address, or all packets
destined to a particular IP address, switch port, and having same VLAN tag. The
main building blocks of an OpenFlow switch are a Flow Table, a secure channel
to the controller, and the OpenFlow Protocol. Each of these will be described in
further detail below.

2.1.1.1 Flow Table

Each flow table consists of flow entries and actions associated with each flow. The
basic actions related to flows are:

• If the packet matches the flow entry then it is forwarded to a specific port
associated with this specific flow.

• A packet can be encapsulated and forwarded towards the OpenFlow
controller.

• The switch can drop the packet.

An example of an entry in a flow table is shown in Table 2.1. In this tables the
field "Instructions" represent the action or actions that should be taken if the match
fields match.

Table 2.1: Fields

Match Fields Counters Instructions

2.1.1.2 OpenFlow Secure Channel

An OpenFlow Secure Channel realizes an interface between the OpenFlow switch
and the controller. Through this secure channel the controller configures and
manages the switch, receives and sends packets, and sends and receive events to
and from the switch. The secure channel messages utilize the OpenFlow Protocol
format and are encrypted using Secure Sockets Layer (SSL).

2.2. ROUTING PROTOCOL 9

2.1.1.3 OpenFlow Protocol

The OpenFlow protocol is a communication protocol between OpenFlow devices.
It supports three important messages types: (1)Controller-to-Switch messages
are initiated by the controller and used to directly manage or inspect the state
of the switch; (2)Asynchronous messages are initiated by the switch and used
to update the controller of network events and changes to the switch state; and
(3)Symmetric messages are initiated by either the switch or the controller and
sent without solicitation.

2.1.2 OpenFlow Network Controller

An OpenFlow network controller is responsible for adding and removing flow
entries from the OpenFlow flow table in the appropriate OpenFlow devices. There
are two types of controllers:

Static A static controller can be a device that can adds and removes flows
statically.

Dynamic A dynamic controller dynamically manipulates the flow entries
according to some configuration[7].

There are different types of controllers available in the market, for example:
NOX and ONIX. In our studies we are using a NOX controller, as it can operate in
both proactive and reactive modes. In proactive mode the controller first computes
all the forwarding data, then forward this configuration to the switches; while
in proactive mode, the first packet of each flow is sent to the controller which
computes a new set of flow table entries, updates the relevant flow tables, and
forwards the packet back to the switch that set it (for processing via the new
flow table entry). The NOX controller provides a complete view of the network
topology, hence it knows the location of all of the hosts. In larger OpenFlow
networks more than one NOX controller can be used and they can work parallel.
Whenever a new flow comes to the network, a notification is sent to one of
the NOX controllers. According to Tavakoli, et al. currently deployed NOX
controllers can handle at least 30K new flow installs per second while maintaining
a sub-10ms flow install time[9].

2.2 Routing protocol
The OpenFlow controller can communicate with legacy routers by using different
routing protocol. In our study we will use the OSPF protocols. The OpenFlow
controller is responsible for informing the routers that it is link to about the
networks behind it, just as if this controller was a traditional OSPF router. Note all

10 CHAPTER 2. TECHNOLOGY

information regarding OSPF are refrenced from the article entitled "Internetwork
Design Guide – Designing Large-Scale IP Internetworks" [10].

2.2.1 OSPF

OSPF is a wel-known link state protocol. It was developed by the OSPF working
group of the Internet Engineering Task Force. OSPF enable routers to advertise
and learn routes from neighboring routers. The OSPF protocol sends link state
advertisements(LSAs) that contains information about links. As OSPF is a link
state protocol each OSPF router keeps track of links and uses these to compute
route. It should be noted that OSPF and supports classless IP addresses. From the
perspective of OSPF a network is divided into areas, so that OSPF can manage
the network in a hierarchical structure. Route information is summarized based
upon OSPF areas. A designated router and backup designated routers are elected
through a OSPF process to reduce the frequency of LSAs.

In OSPF the best path is that path whose cost to the destination is lowest
according to a selected metric. Every interfaces(with each interface connected
to a link) of the router is assigned a cost. The total cost of a route is the sum
of costs of all the links between the source and destination. For a successful
OSPF implementation we should do the following activities carefully: define
areas and make address assignments. If OSPF areas and address assignment are
planned carefully and implemented properly, then the performance of OSPF in
increased. This can make a large difference in the performance for a large OSPF
domain. Next we will discuss OSPF network design, OSPF addressing and route
summarization, OSPF convergence, and OSPF network scalability.

2.2.2 OSPF network design

The most important activity in designing an OSPF network is to decide which
routers are included in backbone area (area 0) and which are to be included in
different OSPF areas. When designing an OSPF topology we should keep in mind
the following guidelines described in the following paragraphs.

2.2.2.1 Number of routers in an area

OSPF uses the Dijkstra algorithm for calculating the shortest path. This algorithm
is CPU intensive and its calculation complexity depends on the number on nodes.
For n number of nodes the computation complexity is of the order O(n log n). As
the number nodes increase the algorithm is becomes more CPU hungry which can
create performance problems. So it is recommended that an OSPF area should not

2.2. ROUTING PROTOCOL 11

have more than 50 routers. By limiting number of routers per area the computation
time is more stable than where an area can have a large number of routers.

2.2.2.2 Number of neighbors for any one router

As OSPF floods all the link states changes to all the routers in an area, when there
is any change in the link-state a router with a large number of neighbors has to do
a lot. So it is better that a router should have maximum 60 neighbors.

2.2.2.3 Number of areas supported by any one router

A router runs Dijkstra algorithm for each area in which it resides, as this algorithm
is CPU intensive, then to maximize stability a router should not be in more than
three areas. Every area border router (ABR) is in at least two areas, area 0 and the
area for with it is ABR.

2.2.2.4 Backbone area

The backbone area (area 0) is very important in an OSPF network domain.
Keeping the size of backbone area small increases the stability and redundancy
of the network topology. In the backbone area, every router is directly connected
to the other backbone routers, so no single link failure can affect the network
topology. OSPF includes the concept of virtual links. A virtual link creates a path
between two ABRs that are not directly connected. A virtual link can be used to
heal a partitioned backbone. However, it is a bad idea to design an OSPF network
to require the use of virtual links. The stability of a virtual link is determined by
the stability of the underlying areas.

2.2.2.5 Areas Consideration

While designing areas, we should keep in mind that individual areas are contiguous.
Areas should contain a set of networks (and their corresponding subnet addresses)
that can be easily summarized. To minimize the chance of a disconnection from
the backbone area, an area can have more than one ABRs. While creating a
large scale OSPF network the definition of areas and the assignment of resources
to areas should be done very carefully, it ensures the flexibility, reliability and
performance of the network. Wisely designed and small areas will reduce the
effect of route flapping caused by unstable links.

12 CHAPTER 2. TECHNOLOGY

2.2.2.6 OSPF addressing and Route summarization

To make an OSPF domain scalable and stable the address assignment to the
OSPF areas should be done carefully, as a carefully designed addressing scheme
facilitates route summarization. We should keep this addressing scheme as
simple as possible. The simplicity in addressing saves time when operating
and troubleshooting the network, it also simplifies the route summarization that
must be performed by the ABRs. In the OSPF domain route summarization is
done between each area and the backbone area. Summarization is configured
manually in OSPF. When planning your OSPF internetwork, you must consider
the following issues:(1) be careful that your network addressing scheme is
configured so that the range of subnets assigned within an area is contiguous
and create an address space that will permit you to split areas easily as your
network grows; and (2) you should plan for future growth in number of routers
in your OSPF environment. These new routers should be inserted appropriately
as area, backbone, or border routers. However the addition will modify the
network’s topology, that effects the performance of OSPF route computation. It
is recommended that each area should have a separate address structure. This
approach offers the following benefits: configuration of routers is easy, address
assignment is easy to remember, and it is simple to do route summarization.

2.2.3 OSPF convergence

Fast convergence is an attractive features of OSPF which enables it to quickly
adapt to topology changes. There are two components of OSPF convergence:
(1) detection of topology changes and (2) the computation of new routes. OSPF
uses two mechanisms to detect topology changes, interface status changes (link
failure), and when OSPF fails to receive hello packet from its neighboring router
within a timing window called a dead timer. When the timer is expired, the router
assumes that this neighbor is down. The dead timer is configured manually by
using a user interface configuration command. The default value of the dead timer
is four times the value of the Hello interval, this results in a dead timer default of
40 seconds for broadcast networks and 2 minutes for non broadcast networks.
Once a failure has been detected, the router that detected the failure sends a link-
state packet with the changed information to all routers in the area. All the routers
run the Dijkstra algorithm to compute new routes. The time required to run the
algorithm depends on a combination of the size of the OSPF database and number
of routers in the area.

2.2. ROUTING PROTOCOL 13

2.2.4 OSPF Network Scalability
As we have outlined in the preceding discussions concerning network topology
and route summarization, adopting a hierarchical addressing environment and a
structured address assignment will be the most important factors in determining
the scalability of our OpenFlow Network in the OSPF domain. Network
scalability is affected by two main considerations: Operationally: OSPF areas
should be designed so that they can accommodate the network growth, hence
address space should be reserved for new areas, and Technically: Scaling
is determined by the utilization of three resources: memory, CPU, and link
bandwidth. As each OSPF router in a given area has the same state information
(since the LSAs were flooded), each of them performs the same computation,
hence the memory and CPU resources are the same in each router in this OSPF
area.

2.2.4.1 Memory

As the number of routers increases within the area, an OSPF router requires more
memory to store all of the link states. Additionally, it must do so for all of the
areas that it is in. The router can also store summaries and information about
external networks. The preceding guidelines about network design and route
summarization can useful for substantially reducing the amount of memory used.

2.2.4.2 CPU

The Dijkstra algorithm is CPU hungry computation with a computation complexity
of O(|E|+|V|log|V|) (where |V| is the number of node (vertices) and |E| is the
number of edges). Whenever a link-state change occurs every router in the area
computes its routes using the Dijkstra algorithm. Keeping areas small and using
summarization dramatically reduces CPU use and creates a more stable OSPF
domain.

2.2.4.3 Bandwidth

OSPF sends partial updates when a link-state change occurs. These updates are
flooded to all routers in the area. In a quiet network (i.e. one with few changes),
OSPF is a quiet protocol. By following the guidelines mentioned in above
discussion, we can design a reliable OSPF network with substantial topology
changes, minimizes the amount of bandwidth used.

Chapter 3

Experimental Setup, Experiments,
and Results

This chapter describes the resources used, experimental setup, experiments, and
findings. Section 3.1 briefly describes the equipments used in this project. Section
3.2 describes the scenarios that were the basis for the experiments. Section 3.3
describes the experiments and our findings.

3.1 What Equipment was used

In our experiments we used a PC, Agilent Tester, and Juniper router. The
specification of each device is given in subsections below.

3.1.1 PC

We used a PC with the attributed shown shown in Table 3.1. This PC has been
used for router configuration and monitoring purposes.

Table 3.1: PC

CPU Intel Core2 Duo E6750 2.66 Ghz
RAM 8 GB 1066MHz

HARD 40 GB
NIC 2 x Intel PRO/1000 PT dual port 1 Gbps PCI-Express

Operating System Linux Ubuntu 8.10 64 bit. Kernel 2.6.27

15

16 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

3.1.2 Agilent N2X Traffic Generator
To generate OSPF traffic, we used an Agilent N2X router tester. This device
specifications are shown in Table 3.2. Note that we will pre-compute OSPF
messages for this tester to later send to the legacy router. These OSPF messages
are based upon the topology and topology changes that we simulate happening in
a large OpenFlow network. The OpenFlow controller that would be attached to
the legacy router would send these OSPF message to the router.

Table 3.2: Agilent N2X Traffic Generator

Used modules E7919A 1000Base-X GBIC-RJ45 and E7919A 1000Base-X
Modular chassis In our testing we used 2 modules stated in the row above
Release Software N2X Packets 6.4 System Release traffic analyzer software

3.1.3 Juniper Router M7i
The System Under Test (SUT) in our studies is a Juniper router whose specifications
as shown in Table 3.3.

Table 3.3: Juniper Router M7i

Modular chassis 4, plus 2 additional fixed FE
Aggregate Half-Duplex Throughput 10Gbps

In the experimental setup we use an Agilent Router Tester for traffic generation
as shown in Figure 3.1. The Agilent Router Tester plays the role of an OpenFLow
controller and it is connected to the Juniper router. The routing protocol used is
OSPF version 2.

3.2. SCENARIOS 17

IN
OUT

IN

OUT

M
O

D
M

O
D

A
g

ile
n

t
T

ra
ff

ic
 G

en
er

at
o

r

OUT

OUT

IN

IN

J
u

n
ip

e
r/C

is
c

o
 R

o
u

te
r

N
IC

N
IC

Ethernet UTP CAT 5

Tester SUT

Figure 3.1: Experimental Setup

3.2 Scenarios
Before doing experiments we would like to discuss scenarios which show how an
OpenFlow controller exposes the OpenFlow network to the legacy router . In our
study we consider two scenarios as follows.

3.2.1 Scenario 1

In the first scenario we have two cases. In case 1 the OpenFlow controller exposes
the whole OpenFlow network to the legacy router (see Figure 3.2). The routing
protocol between the OpenFlow network and legacy network is OSPF. For every
node in OpenFlow network, the controller sends the router an LSA using OSPF.
We used Agilent Router Tester to emulate the OpenFlow controller. This tester
for generates a large amount of OSPF traffic towards the legacy router. Using this
tester we can simulate different routing protocols (OSPF, BGP, RIP) and we can
create diffrent network topologies (grid, ring , tree). In our first case we use grid
topology. Due to limitation of our tester, it can create a grid with a maximum 20
rows and 20 columns, i.e., a maximum of 20 * 20 = 400 routers in a grid. We can
add multiple grids in our routing session to generate more OSPF traffic. Every
router in the grid sends a Router LSA towards the legacy router (Juniper). The
format of a router LSA is shown in Figure 3.4. In scenario 1 we have second case
where the OpenFlow controller represents itself as a single router with a large

18 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

Clients OPENFLOW NETWORK

OSPF
Protocol

Controller

Topology &
Rout ing

Transport
Services

Client

Client

OF
Edge

OF
Edge

OF
Switch

OF
Switch

OF
Switch

Router 1

Router 2

Router 3

Router 4

LEGACY NETWORK

Router LSAs

Grid of Routers

 OF
Switch

Legacy Router

Figure 3.2: Scenario-1 Case:1 Router LSAs

number of interfaces as shown in Figure 3.3. In this case the controller will send
a single router LSA with a large number of links attached. A longer explanation
of this second case will be given in the section about the experiments.

Controller

To p o lo g y & Tr a n sp o r t

The large number
 of links

To Legacy Network

Router

ServicesRouting

Single
Router
 LSA

Figure 3.3: Scenario-1 Case(2) Single Router LSA

3.2. SCENARIOS 19

In scenario 1 in both cases the router LSA is sent to the legacy router, so it is
very important to understand the format of the router LSA. In a Route Link state
Advertisement (Type 1) the router announces its presence and lists the links to
other routers or networks in the same area, together with the metrics to them. Type
1 LSAs are only flooded across the area only. The link-state ID of a type 1 LSA is
the originating router’s ID. There are other LSA types defined in OSPF (such as
Type 2 - Network LSA, Type 3 - Summary LSA, Type 4 - ASBR-Summary LSA,
Type 5 - External LSA, Type 6 - Group Membership LSA, and more upto Type
11). In our study we will consider only two LSA types: Type 1 - Router LSA and
Type 3 - Summary LSA. Type-3 LSA will be discussed in scenario 2.

Figure 3.4: Router LSA format

In the experiments (for scenario 1) we are using router LSAs. The reason for
the experiments with scenario 1 is that the size of LSA will increase as the number
of links increases. In scenario 1 we examine the case where there is either multiple
originating source router IDs or a single source router ID. These different router
LSAs will enable us is good to analyze the memory and CPU usage of the legacy
router. It should be noted that since the Router LSAs are flooded across the area
only these Router LSA will not propagate into other areas.

20 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

3.2.2 Scenario 2
In the second scenario OpenFlow controller represents itself as an ABR. An ABR
takes the information it has learned from one of its attached areas and summarizes
this information before sending it out to the other areas it is connected to. Because
an ABR sends summary LSAs this helps improve scalability as it removes detailed
topology information which is unnecessary for other areas. The result is that a set
of because their routing information can be summarized simply as an address
prefix and a metric. The summarization process can be configured to remove a lot
of detailed address prefixes and replace them with a single summary prefix, this
also helps improve scalability. The link-state ID of these summary LSA will be
the destination network number for type 3 LSAs. Figure 3.5 shows our second
scenario. The format of summary LSA is shown in Figure 3.6

Controller

To p o lo g y & Tr a n sp o r t

The large number
 of networks

To Legacy Router

Router

ServicesRouting

Area Border
Summary
 LSAs

Figure 3.5: Scenario-2 Summary LSA

3.3. EXPERIMENTS 21

Figure 3.6: Summary LSA format

3.3 Experiments

Using the experimental setup shown in Figure 3.1 a number of experiments are
performed. In all of these experiments the Agilent Router Tester acts as if it were
the OpenFlow controller. The tester only does traffic generation, thus it does not
perform other OpenFlow controller functions. All of these experiments are based
on scenario 1 and scenario 2. In all of these experiments we will investigate usage
of memory, calculated memory, and the usage of the link’s bandwidth (i.e., the
link between tester and Juniper router). Note we have not performed experiments
for CPU utilization, only theoratical explanation of CPU utilization is presented
in this study.

3.3.1 Experiments: Scenario 1 (case 1)

The experimental setup was established for our first scenario. In this case the
controller represents itself as many different routers. Using Agilent router tester
we can create a grid topology in an OSPF domain. As noted earlier the maximum
size of each grid was limited by the tester to 400 routers, so we created a large
number of grids. The OSPF database at legacy router after 400 router LSAs will
know about 400 routers. We can increase the number of grids to increase the
apparent number of routers. In this scenario we assume that Agilent Tester and
Juniper router are in the same OSPF area, as router LSAs are only shared within

22 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

the same area.

3.3.1.1 Router Memory

Before starting experiments we found that the available memory of the juniper
router was 745,377,792 bytes. We added 10 grids, each grid have 400 routers.
To get information regarding memory usage and details of the OSPF database
detail we used Juniper’s commands show process task memory and show ospf
database detail. We saved the output of these commands in files for later analysis.

By analyzing the amount of memory used in the legacy router we found that
memory usage increase linearly with number of routers. When we had a single
grid of 400 routers, we received 400 router LSAs. Out of these 400 LSAs, 324
routers had 9 links (each router), 73 routers had 7 links and 3 routers had 5 links.
After we added a new grid with an additional 400 routers then we received 800
router LSAs. The number of routers with 9 links increased to 648, with 7 links
increased to 146, and with 5 links increased to 6. The number of routers with
9,7, and 5 links have been increased in the same ratio. As every OSPF LSA has
a 24 byte header and every link in router LSA contain 12 bytes, then the size of a
router LSA with 1 link will be 24 + 12*1 = 36 bytes. Similarly the size of single
router LSA with 7 links would be 24+12*7=108 bytes. We have calculated the
memory usage for 400, 800,.. 4000 routers, and the size of the router LSAs are
shown in Table 3.5. We also notice that the measured memory is considerably 22
times more than calculated memory. The experiments show that as we increase the
number of routers in the network the size of OSPF database will increase linearly
and neighboring router will require more memory space to store the database.
The increase in measured memory is more than the calculated memory due to
the OSPF processes (shown in Table 3.4) occupy memory space. However, the
explanation for the memory consumed by these processes is outside the scope of
this thesis.

3.3. EXPERIMENTS 23

Table 3.4: OSPF related processes which use memory

The processes
1-patroot
2-ospf spf linkage
3-ospf lsa topo entry
4-ospf lsa topo link
5-rt tsi
6-itable8 bucket t
7-Timer auto parent re
8-rt metrics
9-ospf rt entry
10-ospf spf entry
11-ospf spf result
12-ospf rt block
13-ospf lsdb entry

The results in Table 3.5 can be represented in the form of a graph as shown in
Figure 3.7. The blue squares represent the measured amount of memory. We can
see that this increases as the number of router LSAs. The red squares represents
the calculated memory (simply based upon the size of the LSA) that also increases
linearly along with the number of router LSAs. The experiments shows memory
usage at legacy router not only depends on the size of OSPF LSAs upadates but
also storage structure of database.

24 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

Table 3.5: Router LSAs and measured memory usage

Router LSAs Measured Memory(Bytes) Calculated Memory(Bytes)
400 1141400 51044
800 2246560 101972

1200 3373684 152900
1600 4477512 203828
2000 5574256 254756
2400 6672368 305684
2800 7766604 356612
3200 8868896 407540
3600 9954376 458468
4000 10061660 509396

Figure 3.7: Memory usage as a function of the number of router LSAs

3.3.1.2 Link Bandwidth

The amount of link bandwidth consumed increases with number of advertisements
as this information must be transferred in order to add it into the OSPF database.
A OSPF LS update is sent periodically after 30 minutes (1800 seconds). For 400
Router LSAs the average refresh rate will be (1800/400) 4.5 seconds. As these

3.3. EXPERIMENTS 25

LSAs are encapsulated in an IP packet which we assume is transmitted over an
Ethernet link to the router. With this information we can compute that the size of
IP packet header is 20 bytes to which 18 bytes of Ethernet frame header, and 4
bytes of CRC trailer are added. The transport header’s 20 bytes has to be included.
The resulting size of an Ethernet frame carrying a router LSA with 9 links will be
20 + 20 + 18 + (24 + 12*9) +4 = 194 Bytes. The results are shown in Table 3.6.

Table 3.6: Router LSAs and link bandwidth usage (Byte/sec)

Router LSAs Average refresh rate B/W Usage Average B/W Usage
400 4.50 43.11 37.77
800 2.25 86.22 75.55

1200 1.50 129.33 113.33
1600 1.12 172.44 151.11
2000 0.90 215.55 188.88
2400 0.75 258.66 226.66
2800 0.64 301.77 264.44
3200 0.56 344.88 302.22
3600 0.50 388.00 340.00
4000 0.45 431.11 377.77

The graphical representation of the above results of the bandwidth usage are
shown in Figure 3.8. The red squares shows the maximum bandwidth usage at
each step. Maximum bandwidth increases linearly as the number of router LSAs
increase. The green triangles shows the average bandwidth usage by OSPF router
LSAs. Given that the link data rate is more 1 Gbps or more, the 500 bytes per
second of LSA traffic is insignificant for such a link. Our purpose in doing these
experiments is to show that the bandwidth of the link which is used will be effected
by the size of OSPF routing domain.

26 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

Figure 3.8: Link bandwidth usage versus number of router LSAs

3.3.2 Experiments: Scenario 1 case 2

In second case of the first scenario the OpenFlow controller is acts as a single
router and presents OpenFlow network to the legacy router using OSPF . The
controller acts as if it were a router with a large number of interface connected
to different networks. As each link in the Router LSA is 12 bytes, thus so a
router with 10 links will send send a router LSA of size 24 + (12*10) = 144
bytes. When the size of single router LSA is larger than 1500 bytes the IP
fragmentation is required as the MTU limit for IP packet over Ethernet is 1500
bytes. The maximum size of a type 1 OSPF message is 64KB. Given 24 bytes
of common LSA header and 12 bytes to represent each link, a type 1 LSA can
advertise a maximum of 5331 links[11]. OSPF LSAs are encapsulated in the
an IP packet. If LSA size greater than the maximum size of a IP packet then
fragmentation of the LSA message is required. The standard IP fragmentation
procedure works fine for OSPF. However, the defragmentation procedure will add
additional overhead for the legacy router. The experimental results are shown in
Table 3.7. These experimental results shows that the measured memory is 2 times
more than calculated memory. Note: due to limitations in Agilent tester we can
simulate a single router LSA with maximum 500 links.

A graphical representation of these results is shown in Figure 3.9. The blue
squares show the calculated memory increases linearly and red squares show that
the measured memory also increase linearly with an increase in the number of

3.3. EXPERIMENTS 27

Table 3.7: Single Router LSA and memory usage

Number of links Calculated memory Measured memory
50 740 1580

100 1340 2220
150 1940 2604
200 2540 4524
250 3140 4662
300 3740 5524
350 4340 8620
400 4940 9630
450 5540 11845
500 6140 12626

links.

Figure 3.9: Single Router LSA versus memory usage in bytes

In this case links bandwidth usage is insignificant as a OSPF LS update is
sent periodically after 30 minutes (1800 seconds). If there is no change in the
network topology, an LS update will be sent after 30 minutes that does not effect
the bandwidth of the link.

28 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

3.3.3 Experiments: Scenario 2
In scenario 2, the controller acts as an ABR of an OSPF area. Type-3 Network-
Summary-LSAs are originated by the ABR to advertise the subnets in an area
(omitting information about Type-1 and Type-2 LSAs) to neighboring routers
outside the area. Type-1 and Type-2 LSAs stay within an area, when an ABR
receives a Type-1 or Type-2 LSA, it generates a Type-3 LSA for the network
learnt via the Type-1 or Type-2 LSA to other areas. Type-3 Network-Summary-
LSAs are not being summarized and therefore do not (by default) contain
summary routes.

3.3.3.1 Router Memory

The format of network summary LSA is shown in Figure 3.6. It contain 24 bytes
of common LSA header and subnet mask of 4 bytes for each network that the
ABR advertises to other OSPF areas. The experiments shows that if we have 50
subnets in the area, then the ABR will advertise 50 network summary LSAs. The
size of each of these summary LSAs is 28 bytes. These results are shown in Table
3.8. We also notice that the measured memory is 14 times more than calculated
memory. Note: due to limitations in Agilent tester we can simulate maximum 500
summary LSAs in a test session.

Table 3.8: Summary LSAs and memory usage

Number of links Calculated memory Measured memory
50 1516 24144

100 2916 31136
150 4316 70256
200 5716 86080
250 7116 117032
300 8516 121016
350 9916 125872
400 11316 143872
450 12716 151632
500 14116 186144

A graphical representation of these results is shown in Figure 3.10. In the
graph red square indicates the measured memory (as the results of memory detail
command), the amount of memory changes as a function of both the number of
links and the various OSPF processes that are running. With an increase in number
of networks or routers in an area the memory usage also increases. The blue

3.3. EXPERIMENTS 29

square shows the calculated memory, this increases linearly. The graph shows
that the number of network summary LSAs will directly effect the memory of
legacy router.

Figure 3.10: Memory usage as a function of the Number of Summary LSAs

30 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

3.3.3.2 Link Bandwidth

The usage of bandwidth of the link is also effected with the number LSA updates.
As these LSAs are encapsulated in an IP packet which we assume is transmitted
over an Ethernet link to the router. With this information we can compute that the
size of IP packet header is 20 bytes to which 18 bytes of Ethernet frame header,
and 4 bytes of CRC trailer are added. The transport header’s 20 bytes are also
included. The resulting size of an Ethernet frame carrying a summary LSA will
be 20 + 20 + 18 + (24 + 4) + 4 = 90 bytes. The results are shown in Table 3.9.

Table 3.9: Summary LSAs and link bandwidth usage

Number of Summary LSAs Average refresh rate B/W Usage
50 36.0 2.5

100 18.0 5.0
150 12.0 7.5
200 9.0 10.0
250 7.2 12.5
300 6.0 15.0
350 5.1 17.5
400 4.5 20.0
450 4.0 22.5
500 3.6 25.0

However, since today’s links have such high bandwidths, a few bytes/sec
is insignificant for these links. However our main purpose is to show that the
increase in LS updates will directly effect the bandwidth of the link. A graphical
representation of these results is shown in Figure 3.11.

3.3. EXPERIMENTS 31

Figure 3.11: Link bandwidth usage as a function of the number of Summary LSAs

The following graph as shown in Figure 3.12 represents combined measurement
results with reference to Table 3.7 and Table 3.8. It shows memory usage
(measured) of Summary LSA versus Single router LSA. The analysis shows that
representation of OpenFlow network towards the legacy router by Summary LSAs
is worse than single router LSA by factor of 15x in terms of memory usage.

3.3.4 Router CPU
The OSPF functions that consume CPU processing power are: the Shortest
Path First (SPF), the packet processing and flooding. As we know the Dijkstra
algorithm is a well-known algorithm for finding a shortest path, OSPF uses this
algorithm to build and calculate the shortest path to all known destinations. As we
know that the size of routing information update, the frequency of updates, and
the lack of good network design are coomon factors that influnce the utilization
of CPU. As the size of routing domain grows, the algorithm utilizes more CPU
cycle to compute the shortest paths. The Dijkstra calculations are of order (n*
log(n)) where n is the number of nodes in the OSPF domain. Also when link-
states changes occur in OSPF domain, the router must recompute the costs using
the Dijkstra algoirhtm. If the OSPF routing domain is divided into multiple
areas, then overhead on Dijkstra algorithm is reduced which minimize the CPU

32 CHAPTER 3. EXPERIMENTAL SETUP, EXPERIMENTS, AND RESULTS

Figure 3.12: Memory usage of Summary LSA versus Single router LSA

utilization[12].
The experiments and discussions in previous sections show that as we increase

the size of network domain, three resources were affected: memory, CPU, and
link’s bandwidth. The OpenFlow controller is responsible for communicating
with a legacy neighboring router, the way in which this controller exposes its
network directly affects the memory and CPU usage of neighboring router and the
bandwidth used. The experiments show that when OpenFlow controller represents
itself as a single router (scenario 1 case 2) with a large number of interfaces,
these rsources utilization is reduced dramatically. Resource consumption can be
reduced by implementing the solutions proposed in Chapter 4.

Chapter 4

Proposed Solution

This chapter suggests two propsed solutions and algorithms for the problem that
we discussed in Chapter 3. Section 4.1 proposes solution 1 and section 4.2
suggests a naive solution that can be implemented in SDN environment.

4.1 Solution 1

Figure 4.1 show the proposed solution. The rectangle in the diagram shows the
physical node (i.e. OpenFlow Switch (OFS)) and the black dots show instance
of the virtual machine. OFS can be directly connected to the controller or be
connected by a TCP connection as shown by the dotted lines in Figure 4.1

The controller has a database of all the network that exists in its domain. Also
it has a map of physical the topology of the networks. The Virtual Machine Server
(VM-Server) can create a virtual machine for each physical node. An intelligent
program can be written to divide the map of topology in different OSPF areas,
i.e., area 0, area 1, area 2, and so on. Every VM runs the OSPF routing protocol.
The areas are allocated according to their physical connectivity. All areas are
connected to area 0 by ABRs. As we discussed in OSPF section the ABR is
responsible for sending a network summary LSA to area 0, hence all of the nodes
in the area do not need to send their LSAs to area 0. Only a single LSA will
be send to area 0 if route summarization is configured at ABR. The format of
a network summary LSA is shown in Figure 3.6. The network summary LSA
includes only prefixes and does not include any other routing information. As
we know that each OSPF domain communicates with the other OSPF domains
through area 0. Every area know only the network summary of other areas through
area 0. If there is any change in the topology of area 1 it does not affect the other
areas.

By implementing our proposed model the controller will only send summary

33

34 CHAPTER 4. PROPOSED SOLUTION

Controller

TCP Connection

VM-Server

Link to legacy router

Physical Link

Phhysical Node OFS

Virutal machine

Area 1

Area 2

Area 0

ABR

ABR

ABR

ABR

ABR

OpenFlow Network

Database

Figure 4.1: Proposed Solution Model 1

LSA to each OSPF area. This will result reduced memory usage, CPU usage and
bandwidth usage of link. Drawback: The solution we proposed is efficient with
respect to the three important resources of the legacy router (memory, CPU, and
links bandwidth). However, this solution increases the overhead on the controller,
as the controller has to control the VM-Server for each physical node, hence the
VM-Server’s cost is an overhead on the complete network.

4.2 Naive solution

We first propose a naive solution. According to this model, we introduce Topology
Server (T-Server) which is responsible for storing information about all of the
OpenFlow networks in the form of a binary tree, in order to support for fast and
efficient IP lookup. Figure 4.2 illustrates our proposed solution which we propose
that a controller should implement. Suppose the following customer’ networks
stored in database as shown in Table 4.1.

The T-Server maintains a binary tree as shown in Figure 4.2. In this example
there are 6 networks prefixes stored at leaf nodes in Figure 4.3. The nodes with

4.2. NAIVE SOLUTION 35

Table 4.1: Network prefixes stored in database

Network Prefixes
192.168.0.0/19
192.168.32.0/19
192.168.64.0/19
192.168.128.0/19
192.168.160.0/19
192.168.224.0/19

Controller

T-Server

Link to legacy router

OpenFlow Network

Database

Physical Connection

TCP Connection

Physical Node OFS

H

D

B

A C

F

E ---

J

I

L

N

K --- O

0

0

0

1

1
10

1

1

1

0

0

0
1

192.168.0.0/16
192.168.0.0/17

192.168..0.0/18

192.168.0.0/19 192.168..32.0/19 192.168.64.0/19 192.168.96.0/19 192.168.128.0/19 192.168.160.0/19 192.168.192.0/19 192.168.224.0/19

192.168.64.0/18

192.168.128.0/17

192.168.128.0/118 192.168.192.0/18

Figure 4.2: Proposed Solution Naive Model

dots indicates empty nodes. Here we will consider two cases, in first case we
want to aggregate customers’ networks and send this aggregated information to
the legacy router. Along with aggregated routes, specific routes are also sent to
legacy router.

To create a list prefixes that contains aggregated and specific routes, we

36 CHAPTER 4. PROPOSED SOLUTION

H

D

B

A C

F

E ---

J

I

L

N

K O

0

0

0

1

1

1
0

1

1

1

0

0

0
1

192.168.0.0/16
192.168.0.0/17

192.168..0.0/18

192.168.0.0/19 192.168..32.0/19 192.168.64.0/19 192.168.96.0/19 192.168.128.0/19 192.168.160.0/19 192.168.192.0/19 192.168.224.0/19

192.168.64.0/18

192.168.128.0/17

192.168.128.0/118 192.168.192.0/18

Figure 4.3: Example

performed a recursive Depth First Search (DFS). A post-order implementation
of the recursive DFS algorithm is modified to meet our requirements to create an
aggregation list. In a post-order traversal, the algorithm traverses the left subtree,
right subtree, and then root node. By using this algorithm, at visit of every node
we perform some actions to create an aggregation list as shown in the algorithm 1
(described in detail in the next section).

4.2.1 Modified DFS algorithm
We use a recursive DFS algorithm and then modify it, to generate aggregation list.

Algorithm 1 Compute the aggregation list
1: Visit left child node if any and store its key value in the aggregation list
2: Visit right child node if any and store its key value in the aggregation list
3: Visit parent node, check if left AND right child node’s key values exist in the

aggregation list, If "yes" remove them and save parent node’s key value

4.2. NAIVE SOLUTION 37

4.2.1.1 Operations of the modified DFS algorithm

Before the algorithm runs, the aggregation list is empty. As we know that DFS
defines a way to traverse the tree structure, here we are using a postorder traversal
method and we modify the algorithm for our purpose to calculate the aggregation
list. As mentioned in previous section the modified algorithm first traverses the
left subtree when it reaches a leaf node, it stores its key value into the list. Here we
represent the key values with letters for the purpose of an illustration. In step 1 the
aggregation list will contain a A, then when the right child node is visited and C
will be stored in the list. After visiting the left and the right child node, the parent
node is visited and we check whether its left and right child’s key values are in
the list, if they are both in the list, they are removed and parent node’s key value is
stored in the aggregation list. This means that A and C will be removed and B will
be inserted to the list. By following the same procedure when we come to node F
the condition is not fulfilled, so key value of E is not removed and key value of F
is not inserted. Later I and K are removed and key value of J is inserted into the
list. As a result of this algorithm we will have an aggregation list containing the
key values B E J O.

Figure 4.4 shows the step by step procedure to create aggregation list. Here
in our example we have 6 networks prefixes in our data base that are stored in a
tree structure as shown in Figure 4.3. For simplicity they are represented by the
letters A,C,E,I,K, and O, without applying this aggregation algorithm we would
have to tell the legacy router about all the prefixes, this would negatively affect its
available memory, would use CPU resource, and bandwidth of the link between
OFS and legacy router. After applying the aggregation algorithm the number
of prefixes are reduced from 6 to 4. As a result we are exposing our network
information without lying to the legacy router. Our algorithm do aggregation as
much as possible to reduce the information that needs to be shared with the legacy
neighboring router. Table 4.2 show the final aggregation list.

Table 4.2: Aggregation List

Aggregation List
B
E
J
O

38 CHAPTER 4. PROPOSED SOLUTION

Aggregation List

Empty

Step 6
B
E
I
K

Step 7
B
E
J

Step 8
B
E

O
J

I and K are removed
J is inserted into list

A
Step 1

Step 2

A

C

Step 3

B

Step 4

B

E

A and C are removed
B is inserted into list

Step 5
B
E
I

Figure 4.4: Step by step procedure to create the aggregation list

In the second case we want to reduce more routing information between
OpenFlow network and legacy router. Here we will be lying about some prefixes
that we do not actually have in our database, but we will claim that we have
them in our database. Instead of sending 4 network prefixes as in the first case,
controller will send only a single network prefix (H) in our example. In this
case the controller has to maintain a list of those network prefixes for which it
lied about as if it receives any request for a network that it does not atcually
have, then there will be a black hole. The OFS that is connected with the
legacy router will drop these request packets as it does not know what to do
with such a request. The neighboring router will continue sending requests and
OFS will drop the packets or forwarding to the controller for instructions as to
what to do with this packet. To overcome this problem the controller has to
maintain a list of those network prefixes that it does not have in its database.
Let us represents the siblings of E and O with letters G and M respectively.
We will maintain a list x-list, of those prefixes that we do not actually have
in our database, i.e., we need to remember that we lying about them. The x-
list can be calculated very easily by using a recursive DFS (Post-order traversal)
algorithm, if the parent node is missing left child then the key value of missing

4.2. NAIVE SOLUTION 39

node can be calculated easily, it will have the same prefix value as parent node
but subnet mask is incremented by 1. Suppose we are missing M then its prefix
value will be 192.168.192.0 as this is M’s parent node’s key value, but and
subnet mask will be 19, we notice that this prefix value is same as parent node
N, only the subnet mask is incremented by 1. Now consider the right child is
missing as represented by G, it can be calculated from parent (F) node’s key value.
The bit representation of the F prefix is 11000000.10101000.01000000.00000000
(192.168.64.0), its right child value can be calculated by changing the status
of bit ON next to the most significant ON bit of the prefix in the parent node
(11000000.10101000.01000000.00000000). After changing its status the value
will become 11000000.10101000.01100000.00000000 (192.168.96.0) and the
subnet mask will be incremented by 1, it will become 19. By using the above
method and a recursive DFS (post-order) algorithm, the empty node’s key values
can be calculated and save into the x-list. In our example the x-list will contain
192.168.96.0/19 and 192.168.192.0/19 represented by G and M respectively.
Algorithm 2 will be applied in the T-Server to compute an aggregation list.

Algorithm 2 Compute the aggregation list
1: Visit left child node if any and store its key value in the aggregation list
2: Visit right child node if any and store its key value in the aggregation list
3: Visit parent node, check if left OR right child node’s key values exist in the

aggregation list, If "yes" remove them and save parent node’s key value

After applying algorithm 2 the aggregation list contains H. Now the controller
will send only an single (aggregated) network prefix to the legacy router, the
resource consumption of the legacy router is greatly reduced as compare to first
case. In this case OFS (connected to legacy router) has to store an extra list that is
the list of non-existing networks, this is an additional overhead for the controller
and OFS to periodically store and update the x-list and aggregation list. Let us
consider what happens when we receive the request for those prefixes (G,M) that
we do not have in our database. Figure 4.5 illustrates what happens when our
border OFS receives a request for the network prefix that it has in the x-list.

For example, the border OFS receives a request for 192.168.96.0/19, then the
OFS does not know what to do with this request, so it will inform the controller.
Now the controller will communicate with T-Sever and instruct it to do the
following actions: remove the prefix (for which a request was received) from
the x-list, insert the rest of x-list values in their respective places in the tree and
then apply algorithm 1 to calculate the new aggregation list. According to these
instructions the T-Serer will remove G from x-list and insert M into the binary
tree as shown in Figure 4.6. M will be inserted as a left child of node (N). After
this algorithm 1 is applied to compute a new aggregation list.

40 CHAPTER 4. PROPOSED SOLUTION

Controller

Link to legacy router

OpenFlow Network

Database

Physical Connection

TCP Connection

Physical Node OFS

Routing Protocol

Request for 192.168.96.0/19 Network

H

Aggregation List

G

M

X- List

Figure 4.5: Request for non-existing network received

Figure 4.7 shows the step by step procedure to calculate a new aggregation list
by applying algorithm 1. We notice that new aggregation list have aggregated and
specific network prefixes. After computing this aggregation list, the temporarily
inserted values are deleted from the tree, which means that in our case M will
be deleted. Overall conclusion of this chapter is that aggregated information
will reduce the consumption of resources (memory and CPU) at legacy router to
whome OpenFlow controller communicates and bandwidth utilization of the link
(between the OpenFlow network and the legacy network) will also be reduced.

4.2. NAIVE SOLUTION 41

H

D

B

A C

F

E ---

J

I

L

N

K M

0

0

0

1

1
1

0

1

1

1

0

0

0
1

192.168.0.0/16
192.168.0.0/17

192.168..0.0/18

192.168.0.0/19 192.168..32.0/19 192.168.64.0/19 192.168.96.0/19 192.168.128.0/19 192.168.160.0/19 192.168.192.0/19 192.168.224.0/19

192.168.64.0/18

192.168.128.0/17

192.168.128.0/118 192.168.192.0/18

O

Figure 4.6: Insertion of x-list values in the tree

42 CHAPTER 4. PROPOSED SOLUTION

Aggregation List

Empty

Step 6

B
E
I
K

Step 7
B
E
J

Step 8
B
E

M
J

I and K are removed
J is inserted into list

A
Step 1

Step 2

A

C

Step 3

B

Step 4

B

E

A and C are removed
B is inserted into list

Step 5
B
E
I

B
E

M
J

O

B
E

N
J

B
E
L

M and O are removed
N is inserted into list

J and N are removed
L is inserted into list

Step 9

Step 10

Step 11

X- List

M

G is removed
form x-list and
other key values are
inserted in the tree
at their respective
place, here M only

All key values
are removed from
aggregation list

Figure 4.7: Step by step procedure to create the aggregation list

Chapter 5

Conclusion and Future work

This chapter consist of three sections. Section 5.1 concludes the whole thesis
work. Section 5.2 suggests some future work and section 5.3 describes required
reflections.

5.1 Conclusions
In this study we presented, what is the difference between traditional routing
architecture and Software-defined Networks architecture. We also discussed
different possible scenarios that can be used to present OpenFlow networks
to the legacy network via OSPF. The experiments and discussions shows that
size of OpenFlow network domain directly effects the resources (memory and
CPU) of neighboring legacy router. The link’s bandwidth is also effected. To
overcome these problems we suggested several models for aggregation in an
SDN environment, also we developed two algorithms that can automate the route
aggregation. Aggregating information from the OpenFlow controller towards the
legacy router can reduce the consumption of memory, CPU, and human resources
(that would have been expended manually performing route aggregation).

5.2 Future work
The proposed solutions in this study are very innovative but they need improvements
in future research. Some of suggested future work are introduced in this section.
One of the basic future step for this thesis work is the implementation of design
models and algorithms in real environment. Future researcher with programming
skills can improve the algorithm. Second suggestion for future work is to pre-
calculate all possible aggregation lists for all networks prefixes that we have in
x-list. Furthermore we suggest an introduction of a new type of LSA (x-LSA) in

43

44 CHAPTER 5. CONCLUSION AND FUTURE WORK

OSPF that contains all network prefixes that are in x-list. Through this x-LSA the
neighboring router will be informed about the networks prefixes that we do not
have in our database. In this way the legacy router router will not send request for
those networks.

5.3 Required reflections
This thesis work presents an automatic way of route aggregation in Software-
defined Networks. In this study the introduction of new servers (VM-Server and
T-Server) in proposed design models effects CAPEX (Capital expenditure) and
OPEX (Operational expenditure) of an ISP. Despite increasing the CAPEX and
OPEX for the ISP, the proposed solution can reduce the labor cost as the ISP no
longer needs to do aggregation manually and this solution dramatically reduces
the consumption of resources (memory and CPU) of the legacy router. As a part of
an industrial project, this thesis project is expected to have positive impact on the
Software-defined Networks industry. Implementation of the solutions suggested
in this thesis will allow automatic route aggregation in SDN. ISPs deploying SDN
architecture could benefit from the proposed design models and route aggregation
solution.

Bibliography

[1] Anastasius Gavras and Adam Kapovits. Software-defined-networks.
http://www.eurescom.eu/news-and-events/eurescommessage/eurescom-
messge-2-2012/software-defined-networks.html/, September 2012.

[2] Open Networking Foundation. The new norm for networks.
https://www.opennetworking.org/images/stories/downloads/white-
papers/wp-sdn-newnorm.pdfl/, September 2012.

[3] Manuel Palacin Mateo. Master thesis, openflow switching performance,
school: Politecnico di torino, torino, italy, 2009.

[4] M. Kind, Westphal, A. Gladisch, and S. Topp. SplitArchitecture: Applying
the Software Defined Networking Concept to Carrier Networks. In World
Telecommunications Congress (WTC), 2012, pages 1–6. IEEE, 2012.

[5] Xin Zhao, Yaoqing Liu, Lan Wang, and Beichuan Zhang. On
the aggregatability of router forwarding tables. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. IEEE, 2010.

[6] Dávid Jocha, András Kern, and Kiran Yedavalli. Scalability aspects of
centralized control of mpls access/aggregation network.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[8] D. Simeonidou, R. Nejabati, and S. Azodolmolky. Enabling the future
optical internet with openflow: A paradigm shift in providing intelligent
optical network services. In Transparent Optical Networks (ICTON), 2011
13th International Conference on, pages 1–4. IEEE, 2011.

[9] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying nox to the
datacenter. Proc. HotNets (October 2009), 2009.

45

46 BIBLIOGRAPHY

[10] Cisco : Internetwork design guide – designing large-scale ip internetworks.

[11] Jeff Doyle. Scaling ospf and is-is, 2005.

[12] John Moy. Rfc 1245: Ospf protocol analysis. 1991.

www.kth.se

TRITA-ICT-EX-2013:101

	Introduction
	Software-defined Networking and Legacy Network Architectures
	This Thesis Project
	Related Work
	Motivation
	Methodology

	Technology
	OpenFlow Technology
	OpenFlow Switch
	Flow Table
	OpenFlow Secure Channel
	OpenFlow Protocol

	OpenFlow Network Controller

	Routing protocol
	OSPF
	OSPF network design
	Number of routers in an area
	Number of neighbors for any one router
	Number of areas supported by any one router
	 Backbone area
	Areas Consideration
	OSPF addressing and Route summarization

	OSPF convergence
	OSPF Network Scalability
	Memory
	CPU
	Bandwidth

	Experimental Setup, Experiments, and Results
	What Equipment was used
	PC
	Agilent N2X Traffic Generator
	Juniper Router M7i

	Scenarios
	Scenario 1
	Scenario 2

	Experiments
	Experiments: Scenario 1 (case 1)
	Router Memory
	Link Bandwidth

	Experiments: Scenario 1 case 2
	Experiments: Scenario 2
	Router Memory
	Link Bandwidth

	Router CPU

	Proposed Solution
	Solution 1
	Naive solution
	Modified DFS algorithm
	Operations of the modified DFS algorithm

	Conclusion and Future work
	Conclusions
	Future work
	Required reflections

	Bibliography

