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Abstract 

The smartphone industry has grown immensely in recent years. The two leading platforms, 
Google Android and Apple iOS, each feature marketplaces offering hundreds of thousands of 
software applications, or apps. The vast selection has facilitated a maturing industry, with 
new business and revenue models emerging. As an app developer, basic statistics and data for 
one's apps are available via the marketplace, but also via third-party data sources.  

This report regards how mobile software is evaluated and rated quantitatively by both end-
users and developers, and which metrics are relevant in this context. A selection of freely 
available third-party data sources and app monitoring tools is discussed, followed by 
introduction of several relevant statistical methods and data mining techniques. The main 
object of this thesis project is to investigate whether findings from app statistics can provide 
understanding in how to design more successful apps, that attract more downloads and/or 
more revenue. 

After the theoretical background, a practical implementation is discussed, in the form of 
an in-house application statistics web platform. This was developed together with the app 
developer company The Mobile Life, who also provided access to app data for 16 of their 
published iOS and Android apps. The implementation utilizes automated download and 
import from online data sources, and provides a web based graphical user interface to display 
this data using tables and charts. 

Using mathematical software, a number of statistical methods have been applied to the 
collected dataset. Analysis findings include different categories (clusters) of apps, the 
existence of correlations between metrics such as an app’s market ranking and the number of 
downloads, a long-tailed distribution of keywords used in app reviews, regression analysis 
models for the distribution of downloads, and an experimental application of Pareto’s 80-20 
rule which was found relevant to the gathered dataset. 

Recommendations to the app company include embedding session tracking libraries such 
as Google Analytics into future apps. This would allow collection of in-depth metrics such as 
session length and user retention, which would enable more interesting pattern discovery.  

Keywords: mobile, smartphone, application, app, Android, iOS, statistics, data, metrics, 
quantitative, measure, downloads, rating, Pareto, successful, developer, publisher, data mining, 
R, ETL, API 
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Sammanfattning 

Smartphonebranschen har växt kraftigt de senaste åren. De två ledande operativsystemen, 
Google Android och Apple iOS, har vardera distributionskanaler som erbjuder 
hundratusentals mjukvaruapplikationer, eller appar. Det breda utbudet har bidragit till en 
mognande bransch, med nya växande affärs- och intäktsmodeller. Som apputvecklare finns 
grundläggande statistik och data för ens egna appar att tillgå via distributionskanalerna, men 
även via datakällor från tredje part.  

Den här rapporten behandlar hur mobil mjukvara utvärderas och bedöms kvantitativt av 
båda slutanvändare och utvecklare, samt vilka data och mått som är relevanta i sammanhanget. 
Ett urval av fritt tillgängliga tredjeparts datakällor och bevakningsverktyg presenteras, följt av 
en översikt av flertalet relevanta statistiska metoder och data mining-tekniker. Huvudsyftet 
med detta examensarbete är att utreda om fynd utifrån appstatistik kan ge förståelse för hur 
man utvecklar och utformar mer framgångsrika appar, som uppnår fler nedladdningar 
och/eller större intäkter. 

Efter den teoretiska bakgrunden diskuteras en konkret implementation, i form av en intern 
webplattform för appstatistik. Denna plattform utvecklades i samarbete med apputvecklaren 
The Mobile Life, som också bistod med tillgång till appdata för 16 av deras publicerade iOS- 
och Android-appar. Implementationen nyttjar automatiserad nedladdning och import av data 
från datakällor online, samt utgör ett grafiskt gränssnitt för att åskådliggöra datan med bland 
annat tabeller och grafer. 

Med hjälp av matematisk mjukvara har ett antal statistiska metoder tillämpats på det 
insamlade dataurvalet. Analysens omfattning inkluderar en kategorisering (klustring) av appar, 
existensen av en korrelation mellan mätvärden såsom appars ranking och dess antal 
nedladdningar, analys av vanligt förekommande ord ur apprecensioner, en 
regressionsanalysmodell för distributionen av nedladdningar samt en experimentell 
applicering av Paretos ”80-20”-regel som fanns lämplig för vår data. 

Rekommendationer till appföretaget inkluderar att bädda in bibliotek för 
appsessionsspårning, såsom Google Analytics, i dess framtida appar. Detta skulle möjliggöra 
insamling av mer detaljerad data såsom att mäta sessionslängd och användarlojalitet, vilket 
skulle möjliggöra mer intressanta analyser.  

Nyckelord: mobil, smartphone, applikation, app, Android, iOS, statistik, data, mätvärden, 
kvantitativ, mätning, nedladdningar, betyg, Pareto, framgångsrik, utvecklare, utgivare, data 
mining, R, ETL, API 
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1 Introduction 

The smartphone paradigm shift has caused an immense increase in the number and variety 
of mobile applications, or apps for short. The two leading mobile platforms, Google’s 
Android OS and Apple’s iOS, come with app catalogues – often called markets – each 
exceeding 700,000 apps [1]. In terms of numbers of downloads, the Google Play store has 
surpassed 25 billion app downloads (and probable installations1) [2]. 

Developers and publishers are becoming increasingly interested in gathering and 
exploiting data to improve their app’s ratings and sales. There are clearly strong financial 
incentives for doing so. For example, according to financial analyst firms, a typical day on the 
Apple App Store yields in excess of US$15M in revenue [3], in a market that increased 47% 
since the same quarter last year [4]. ABIresearch projections that total mobile app revenues 
will be up to $46 billion in 2016 [20]. 

While both the Apple App Store and Google Play provide basic data regarding the number 
of downloads, user ratings, and demographics; more in-depth data (see chapters 6.1.8 through 
6.1.12) that could be useful to publishers is often unavailable. Although there may be in 
aggregate a lot of data about apps, this data is not always publicly available or if it is available 
it may not be easily accessible. This gap has facilitated the rise of third-party analyst firms 
and tools, such as Flurry [125], Distimo [126], App Annie [127], and TestFlight [128], among 
others. (We will look at each of these in detail in sections  7.4,  7.5,  7.6, and  7.7; and the final 
sections of Chapter  7.) 

These tools provide for access to more specific data about individual applications, but this 
data is still not sufficient from a developer’s or publisher’s perspective. There is also a sense 
of risk in not actually owning and controlling the data, when simply viewing this data via 
some third-party’s website. 

The introductory chapters will focus on the theoretical background needed to understand 
the rest of the thesis, including a brief market competition analysis; descriptions of the most 
commonly used & measured metrics for assessing apps, and a description of some of the 
existing third-party tools. Also a brief presentation of some data mining and statistical 
analysis tools that could be applied to the collected app data is given in Chapter  8.  

Due to the immaturity of the smartphone industry, there exist only a small number of 
scientific papers on subject matter related to this thesis project. However, I have attempted to 
reference as much of the relevant recent material as possible when citing the relevant statistics. 
A thorough description of the current situation will be helpful when evaluating the 
implementation phase of this work, which consists of designing, implementing, and 
evaluating an in-house smartphone app statistics web platform.  
 

                                                 
1 The app store can only really count downloads and does not know if the user has actually installed or continues 
to use any specific application. 
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2 Background 

Official mobile app statistics are available from the marketplaces, such as Google Play 
and Apple App Store. However, these are often insufficiently detailed for an app publisher’s 
needs. The interim solution of third-party data tools that gather and compile additional data 
are often based on the premise that app publishers are willing to share their official 
marketplace credentials with this third party, so that their software may act on the app 
publisher’s behalf. These third party tools are generally web-based tools that restrict access to 
some of the raw data. Additionally, while these third party tools may be useful for generating 
simple charts and reports, they are often not suitable for spotting trends. In addition there are 
third party tools that require modifications of the app itself, for example to embed specific 
libraries for tracking purposes. 

The optimal app statistics solution would be in-house in order to avoid dependence on 
external services that may or may not exist in the future or whose cost may increase. Storing 
all app metrics in a local database would also be an advantage over a third-party site where 
the data is read-only for the app developer. A single local data source offers better 
possibilities for statistical analysis and ensures traceability of the data. The size and system 
requirements should not be substantial, either. Normally, all data is also anonymized for 
personal integrity reasons. 

What is conceptually very interesting is to combine many of the existing app statistics 
tools into a complete solution covering all aspects from demographics and device distribution, 
to number of downloads and rating version tracking, market ranking based on category and 
region, in-app usage patterns, app review analysis, and even automatic handling of bugs and 
software issues. Of course, for relative comparison of ones own apps versus competition some 
reliable third-party data sources must still be used. Nonetheless, having access to data for all 
these areas could potentially be a very powerful tool. Giving selected customers access to it 
would be even more powerful. 

Controlling the database also creates the possibility for sharing this app data with others. 
This sharing might be done by using a specific API or by allowing read-only access to some 
portion of or the entire database by others. Another possibility is RSS feeds. For instance, an 
app publishing firm may share statistics for App A with Company B over a web service which 
ensures that only Company B can access the data about App A. Company B could embed or 
further publish this data on their own, subject to their agreement with the app publishing firm 
who provide this data. The statistics platform could provide semi-automated report generation, 
which currently requires considerable manual effort to compile the statistics obtained from 
several different sources. 
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3 Smartphone platforms 

This chapter briefly reviews the dominant standards for smartphones, their history, and 
features. In addition, the chapter provides some statistics about these platforms. 

As Android and iOS together account for approximately 86% of the total smartphone 
market [4], this chapter as well as the rest of this thesis will focus on these two platforms, but 
we will mention several of the smaller competing platforms, such as Windows Phone and 
BlackBerry with 2.4% and 5.3% market share (respectively) [4]. 

While Android is doing very well, now having 72% of the market up from 53% at the 
same quarter last year (see Table 1), it should be noted that some analysts forecast that iOS 
will regain some of the market. It is believed that many potential “iDevice” buyers were 
awaiting an upgrade until Apple’s iPhone 5 was released just recently, or they were awaiting 
the release of the iPad Mini. 

Table 1 – Worldwide device sales by operating system 3Q12 [4] 

 3Q12 3Q11 

Operating System thousand units Market Share 

(%) 
thousand units Market Share 

(%) 

Android 122,480.0 72.4 60,490.4 52.5 

iOS 23,550.3 13.9 17,295.3 15.0 

Research In Motion 8,946.8 5.3 12,701.1 11.0 

Bada 5,054.7 3.0 2,478.5 2.2 

Symbian 4,404.9 2.6 19,500.1 16.9 

Microsoft 4,058.2 2.4 1,701.9 1.5 

Others 683.7 0.4 1,018.1 0.9 

Total 169,178.6 100.0 115,185.4 100.0 

3.1 Google Android 

The Android platform is an open-source Linux-based operating system controlled largely 
by Google in a coalition with more than 300 partner companies [6]. It was first publicly 
released in 2008 and is at the time of publication at version 4.2, also called Jelly Bean. The 
Android Software Development Kit (SDK) is free and based on the Java programming 
language. 

3.1.1 Devices 

In addition to a plethora of different smartphones, Android is also a popular OS choice for 
vendors of tablets, media center systems, and other consumer electronics, as it does not come 
with substantial license costs. While Android’s versatility has given it a dominant position in 
the smartphone OS race, the diversity of devices that are running Android has led to device 
fragmentation, which is often criticized by developers, as they find it increasingly difficult to 
support all the different types of hardware, screen sizes, and screen resolutions. An app 
publisher recently collected user data from its ~700,000 users and found 3,997 different 
models of Android-powered devices [7]. OS version fragmentation is also a burden with 
regard to developers needing to consider backwards compatibility for their apps. 
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3.1.2 Marketplace – Google Play 

Apps are officially distributed via the Google Play marketplace, previously known as 
Android Market. This marketplace is unregulated with regard to pricing, which allows the app 
publisher to decide which sales strategy they wish to employ: priced, free, subscriptions, in-
app purchases, or combinations thereof. The app publisher keeps 70% of the revenue, with 
Google and its partners getting 30% [8]. The registration fee for this marketplace is a one-
time cost of US$25. However, since the Android OS is open, another possibility is to 
distribute apps via third-party marketplaces or directly to the end-user via executable 
containers in the “.apk” file format. Apps published on Google Play are not specifically 
evaluated or verified by Google, so the responsibility for quality assurance lies solely with the 
app publisher. 

3.2 Apple iOS 

Apple released its first iPhone in 2007 [9], powered by the first version of iOS which can 
be seen as a light-weight version of the Mac OS. The latest version, released jointly with 
iPhone 5, is iOS 6 [27]. Unlike Android, iOS is proprietary software and has not been licensed 
to third-party hardware manufacturers. 

Native apps developed for iOS are written in Objective-C with the Cocoa Touch 
framework, using the developer environment Xcode [28]. While Android development is 
open for all platforms, Xcode requires an Apple Macintosh computer. The SDK and other 
necessary software are free, but limited to testing of the app running on an iOS emulator. For 
testing on physical iDevices and to publish apps in Apple’s App Store, a $99/year license is 
required. 

3.2.1 Devices 

Apple’s product range is known for being relatively small, uniform, and compatible. The 
company ships four device series with iOS: iPod, iPhone, iPad (including the most recent iPad 
Mini), and Apple TV (a media center TV set top box). The tightly-controlled product family 
has ensured fewer problems with backwards compatibility and fragmentation than is the case 
with Android, at the expense of few choices available to the consumer. Figure  3-1 shows the 
difference in iPad use as percentage of the total iOS use, by country. 
 

 

Figure  3-1 – iPad percentage of iOS app downloads, by country [3] 

3.2.2 Marketplace – App Store 

Each iOS app is verified by Apple before the app is accepted into the App Store. This 
evaluation is according to the guidelines and recommendations [33] that the developer had to 
accept when enrolling in the iOS Developer program. This process usually takes a week or so. 
Just as for Android, the revenue from sold apps are shared 70-30 between the app publisher 
and Apple [12]. There is support for in-app advertisements and in-app purchases as well. 
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However, app distribution via other channels is very limited, although Apple permits ad hoc 
distribution of an app in the executable container “.ipa” file format on up to 100 iOS devices 
per app per email or server. Apple also has a mechanism for within company distribution of 
an app via the Apple iOS Enterprise Distribution program [89]. 

While Google Play saw a big increase in numbers of app downloads and market share 
during 2012, the Apple App Store was far more successful financially for developers. For 
every $1 a developer made on an iOS app, he or she would make approximately $0.24 on the 
corresponding Android version of the app [21]. 

A simplified explanation for the great App Store advantage in profitability is the higher 
average app price for iOS [10] and that iDevices generally attract a higher-income customer 
base, as will be detailed in chapter 4 of this report. However, as we will see in following 
chapters, there are more profound explanations related to the difference in app business 
models. 

3.3 Mobile web 

While not a ‘platform’ per se, mobile websites are another way for developers and 
publishers to make their content available on smartphones. This approach has the inherent 
advantage of being cross-platform, assuring the largest possible user base by default; although 
studies show that thus far smartphone users prefer using an app over a mobile web site – in 
fact users prefer apps to surfing the web in general (see Figure  3-2) – both desktop and mobile 
editions of the web. 

 

Figure  3-2 – Mobile apps versus Web consumption (US), minutes per day [36] 

Another advantage of the mobile web is the relative maturity of the web and the number 
of available tools and the inherent possibilities of user session tracking (e.g. with cookies), as 
this enables powerful profiling using tools such as Google Analytics (see section  7.3 on page 
27). 

Some industry standards for the mobile web are settling. Additionally, there are 
techniques to bridge the gap between apps and mobile web, while ensuring platform-
independence at the same time. Some of these techniques are described below. 
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3.3.1 jQuery Mobile 

The jQuery JavaScript library that has been popular for the web for years and is available 
in a mobile version, jQuery Mobile. This is a “touch-optimized web framework for 
smartphones and tables” [37]. It is also compatible with HTML5. The library comes with 
extra tools, such as drag-and-drop interface design and CSS plug-ins. 

3.3.2 PhoneGap 

For cross-platform mobile apps, PhoneGap has proven popular, with roughly 3.4% of the 
Android market [35]. This mobile development framework, purchased by Adobe, enables 
apps to be written in JavaScript, HTML5, and CSS; instead of the native programming 
languages (e.g. Java for Android and Objective-C for iOS). This makes a PhoneGap app 
platform agnostic. The difference from jQuery Mobile or other mobile web techniques is that 
the app is compiled and packaged as a native executable file – for instance, one for iOS and 
one for Android. Because of this, PhoneGap apps have access to the native OS libraries. The 
developer does not even have to have access to any device, but simply uploads their source 
code to a “cloud compiler” which will generate a platform executable for all the supported 
platforms. 

3.4 Others 

There are some other key smartphone players, although collectively they share 14% of the 
market (the remainder of the market left by Android and iOS). The primary contenders are 
Microsoft with its Windows Phone and the BlackBerry platform, owned by BlackBerry 
(formerly known as Research in Motion). 

As shown in Table 1 (on page 5), BlackBerry controls 5.3% of the global smartphone 
market while Windows Phone had 2.4% [4]. Recent data concerning newly started app 
projects (see Figure  3-3) suggests that Windows Phone is reducing that gap. 

 

Figure  3-3 – Flurry report on new project starts: RIM (BlackBerry) versus Microsoft Windows Phone [14] 

3.4.1 Windows Phone 

Windows Phone is Microsoft’s current platform (since 2010) [40] for the mobile market 
segment, replacing the earlier Windows Mobile OS. The new GUI for this OS is called Metro 
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and is well aligned with the latest Windows for home computers (Windows 8) OS. Windows 
Phone is also at the time of this publication at version 8, succeeding 7.5 also known as Mango. 
Microsoft does not manufacture smartphone devices themselves, but have partnerships with 
multiple vendors, including Nokia, HTC, and Samsung.  

Applications for Windows Phone are developed using Windows Phone Developer Tools 
which is an add-on to Microsoft Visual Studio 2010 or 2012. These tools provide an emulator 
for testing. Microsoft XNA (Xbox New Architecture) is also supported. The main 
programming language for non-game applications is C#. 

The marketplace for Windows Phone apps is called Zune Marketplace and Windows 
Phone Store. The app revenue is shared 70-30 between Microsoft and the developer, exactly 
the same as for Apple’s App Store and Google Play [41]. There is an annual registration fee 
of $99, the same amount as Apple charges iOS developers. Another feature in common with 
Apple is the verification process for each app before accepting it into the Zune Marketplace or 
Windows Phone Store. 

3.4.2 BlackBerry 

BlackBerry (formerly known as Research In Motion (RIM)) owns the BlackBerry brand. 
While many still see the BlackBerry devices as PDAs or Pocket PCs rather than a standard 
smartphone, BlackBerry products are very popular in certain niche markets. For example, in 
the Caribbean BlackBerry has 45% of market share [42]. BlackBerry manufactures their 
devices themselves. At the time of this publication, the BlackBerry OS is shipping version 7 
and the new BlackBerry 10 products were just released [43]. BlackBerry devices are mostly 
non-touch screen with QWERTY mini keyboards, but there are touch-capable models too. 

BlackBerry apps are distributed in the BlackBerry App World marketplace. Apps are 
written in Java using the BlackBerry JDE (Java Development Environment) or a 
corresponding plugin to an IDE such as Eclipse. App revenue is shared 70-30, as the general 
industry expectation dictates. 

For BlackBerry tablets, powered by PlayBook OS 2.0, partial support has been launched 
for Android apps, but manual conversion is necessary and not all apps are compatible. 
Regardless, there have already been cases of pirated Android apps being resold as BlackBerry 
apps [44]. 
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4 Demographics 

Android users are generally a bit older than iPhone owners, as shown in Table 2 (data 
from August 2012) adapted from [18]. However, iPhone owners seem to generally have 
higher household incomes. This later aspect is not that surprising as the prices for the Apple 
products are generally higher compared to the prices for Android products. 

Table 2 – Age and income distributions: Android and iPhone [18] 

 Android iPhone 

Age span % of 
audience 

% of audience 

13-17 5.4 6.5 

18-24 17.2 19.9 

25-34 25.1 26.4 

35-44 21.0 18.7 

45-54 17.1 14.8 

55-64 9.3 7.7 

>64 5.0 6.0 

Household income span 

(pre-tax) 
  

<US$25k 17.2 8.1 

  US$25k to < US$50k 22.4 14.4 

  US$50k to < US$75k 20.0 19.6 

  US$75k to < US$100k 14.5 17.1 

>US$100k 25.8 40.7 

Narrowing down the demographics to the extremes – low app users and high app users, 
the Nielsen research firm found that the majority of iOS power users consist of people 25-44, 
while not surprisingly people 55 and older are more likely to be low app users. For further 
details see Figure  4-1. 



12 
 

 

Figure  4-1 – Age distributions of  high and low iOS app users, by age [19] 
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5 Business models 

In addition to the traditional sales method of offering one’s app for sale at a certain one-
off price (see section  5.1) or for a periodic fee (see section  5.2), new business models have 
emerged in the app trade. The adoption of these other business models is growing with time. 
These new business models are described in the remainder of the chapter. 

5.1 One-off payment 

This is the most obvious app business model. Develop an app, set a price, and sell it to 
users. There is only a one-time cost for unlimited app use. Revenue is split 70-30 between the 
developer and the marketplace/platform owner. 

One problem with this payment model is that the enormous selection of apps (700 000+ in 
both dominant marketplaces) has pushed prices down to levels that make it very hard to be 
profitable solely based upon the revenue stream from new downloads. The average selling 
price in Apple’s App Store is ~US$2.15 [3]. 

However, one-off payments are popular among the top game publishers (such as 
Electronic Arts and Gameloft), where 35% of their revenues in 2012 came from one-off fees 
[3]. In fact, the list of the top 100 grossing apps on App Store is often 75% games [54]. I 
believe that the reason for this is that these well-recognized publishers have gained sufficient 
consumer trust so that the up-front purchase price is not perceived as a risky investment. Of 
course, setting a one-off price for an app or game does not prevent the publisher from also 
implementing a scheme for in-app purchases. 

5.2 Subscriptions 

Apps that provide access to something – a service or feature – are often suitable for the 
subscription payment model. An example is music streaming services, with apps that are free 
to download, but require monthly renewal of the account for a fee. Online multiplayer games 
may also fit this profile. Some newspapers and magazines also offer their premium material 
(not available on their public websites) through app channels, where access requires an active 
subscription. These subscriptions may be automatically renewed or prolonged at fixed time 
intervals. 

5.3 Free or ad-sponsored 

The free app business model for the purposes of this thesis includes both completely free 
apps that may be published as promotion or by amateurs, and apps that are free to download 
but derive income from embedded advertisements (ads). Such ad components are offered by 
Google through its Admob service [45] (replacing its earlier service Adsense for mobile), 
Apple through its iAd program [47], and by others, such as Crisp Wireless’ platform [69], 
using a large variety of mobile ad types. Some of these different mobile ad types are shown in 
Table 3. 
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Table 3 – Different mobile ad types [69] 

Ad type Description 

Full screen An ad that takes up the entire screen for a limited period of time 

Expandable A smaller ad that expands upon user interaction 

Location-based Determined by geographical location (assuming the user opted in to 
be tracked) – for example directing the way to the nearest dealer or 
retailer or a product 

Tap-to-video Leads directly to a video 

Tap-to-social network Leads directly to a Social Network such as Facebook or Twitter 

Commerce-enabled Allows user to buy directly from a designated retailer, e.g. iTunes 

Tap-to-call An ad containing a phone number that can be directly called 

5.4 Freemium 

A variant of free is the business model freemium, a wordplay combination of free and 
premium coined by Jarid Lukin [26]. The idea is to release two versions of the app: a light-
weight free version of the app that creates interest for the paid profession (pro) version. The 
model resembles the shareware or demonstration concept widely used in the PC world. 

Gartner’s research report "Market Trends: Mobile App Stores, Worldwide, 2012" [5] 
projects that 89% of app downloads are free, and that this percentage will continue to rise for 
years to come. See Table 4 for details. 

Table 4 – Mobile App Store downloads, worldwide, 2010-2016 (millions of downloads) [5] 

 2011 2012 2013 2014 2015 2016 

Free Downloads 
22,044 40,599 73,280 119,842 188,946 287,933 

Paid-for 
Downloads   2,893 5,018 8,142 11,853 16,430 21,672 

Total Downloads 
24,936 45,617   81,422 131,695 205,376 309,606 

Free 
Downloads%  88.4%  89.0%  90.0%  91.0%  92.0%  93.0% 

5.5 In-app purchases 

The freemium line of reasoning has led to a growing trend of in-app purchases, where the 
app is mostly a shell and its actual content is purchased separately. For example, games could 
be provided with just a few levels and offer an in-app store that sells additional content. Data 
from the Apple App Store suggest that this business model actually creates the major part of 
app revenue today (see Figure  5-1). 
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Figure  5-1 – 2012 development of in-app purchase revenue on App Store [3] 

Analysts are concerned about the in-app purchase concentration in just the game app 
genre. Mark Beccue, senior analyst mobile services, has stated: “The vast majority of current 
in-app revenue is being generated by a tiny percentage of people who are highly-committed 

mobile game players. We don’t believe the percentage of mobile game players making in-app 

purchases will grow significantly, so for in-app purchase revenues to grow, mobile 

developers other than game developers must adopt it.” [20] His view is collaborated by 
findings that only 0.5 – 6% of players normally make in-app purchases in games [54]. 

Beccue adds that the in-app purchase revenue from Android apps could actually have been 
hindered by Google, as it did not introduce this feature until July 2011, and only for 17 
countries as late as December 2011. This can be compared with Apple, who enabled in-app 
purchases starting with iOS version 3.0 (released in September 2009) [22]. 

Another positive aspect of in-app purchases is that a developer may put together a 
functional but very light version of the app and release it via the marketplace. If it attracts 
interest, they can quickly add additional content to keep up with the demand, while if the app 
should fail, the initial time investment is reduced as is any associated loss [48]. 
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6 Metrics 

As there are extremely many different aspects of app statistics (including understanding 
hardware segmentation, user demographics, payment models, and other aspects that are of 
interest from a developer or publisher point of view), this chapter describes some of the most 
common measurements within the app trade and elaborates with examples where applicable. 

6.1 Quantitative 

Quantitative indicators are numerical, measured values of specific metrics. They are easily 
interpreted and can be used as raw input data to data mining processes such as clustering. The 
later chapters will primarily analyze data with respect to quantitative indicators. 

6.1.1 Downloads 

This measure is perhaps the most obvious. How many people downloaded my app? This 
measure may also differentiate downloads per app version. Keep in mind that an average (US) 
smartphone has 41 apps installed [31], so app usage time is bound to be diversified. 

Regardless of free or paid, a high percentage of Android and iOS apps actually attract 
very few downloads. Senior analyst Tim Shepherd stated “We estimate that up to two-thirds 
of the apps in leading consumer app store catalogs receive fewer than 1,000 downloads in 

their first year, and a significant proportion of those get none at all” [49]. These apps are 
unlikely to ever be profitable for the publisher. These apps are often grouped together and 
referred to as the ‘long-tail’, as the distribution curve of downloads flattens along the axis. 
However, it should be noted that the cumulative revenue of such long tailed distributions can 
be very profitable, see for example [90]. 

6.1.2 User rating 

Both the Apple App Store and Google Play give app users the possibility to rate each app 
with a score on a scale of 1-5 with an optional comment. According to Brown [10], the 
average app rating is virtually identical on Google Play and Apple App Store – 3.58 as 
compared to 3.56. 

Ratings seem to differ between different app categories. Educational apps seem to be rated 
the highest with average ratings over 3.8 while the News category averages less than 3.2. 

There are also notable platform differences. For instance, Android has been widely 
criticized for its weaker game selection, as is reflected in the 3.18 average rating for games, 
while the Apple App Store average is 3.70 for games. On the other hand, the Tools category 
sees Android score 3.86 on average, perhaps due to better customization options and less 
strict user policies, while the Apple App Store average score is 3.40. 

As pointed out by Hao et al. in [16], the marketplace owner receives 30% of the app 
revenue. This means that if higher ratings are correlated more sales, it is also in the 
marketplace owner’s interest to drive up ratings. This mutual dependence is worth keeping in 
mind when reading the rest of this master’s thesis. 

6.1.3 Active users (numbers and percentages) 

The recent remake of the Android Developer Console offers statistics for Device and User 
uninstalls, which means that a developer may track how many users are installing and 
uninstalling the app per day, version, country, language, device, or cell carrier. This is a very 



18 
 

crude metric, perhaps the uninstall statistic is most suitable for setting up automatic alarm 
triggers so that if a new version causes an abnormally large number of uninstalls (drop-outs), 
then the developer or publisher should be alerted so that they might know that something has 
gone wrong. No similar statistics for uninstalls are officially available via the Apple App 
Store / iTunes Connect web. Note that “active users” refers to what in this thesis project we 
will call user retention or loyalty (this will be discussed further in section  6.1.8 starting on 
page 20). 

6.1.4 Category and Market (rank and share) 

There are many types of featured placements on Google Play: Featured, Staff Picks, Top 
Free, Top New Free, Top Paid, Top New Paid, Top Grossing, Trending Apps, Editor’s Choice 
Apps, and Top Developer [38]. Apple App Store has a similar, although smaller set of 
promotional marketplace advertisement spots. So a top ranking app within a category or the 
overall marketplace not only means a top position in the listings – it also comes with free 
advertisements in these feature spots. This skew in exposure is reflected in the metrics. 

As can be seen in Figure  6-1, the top five or ten applications make dramatically more 
money based on their top ranking alone, than those just below. However, the blue line (2012) 
is less steep than the green one (2010), indicating that the ‘long-tail’ is now getting a larger 
portion of the total app revenue. This could be explained by the much larger app catalogues in 
2012 as compared to 2010. These findings are collaborated by the yearly report in [3]. These 
finding are also reinforced by results from [15] that found a 1st ranked app gets 150 times 
more downloads than an app ranked at position 200. However, at the very top of the ‘head’, 
things are more skewed as at the end of 2012 with just 7 apps accounting for 10% of the total 
Apple App Store revenue, compared to 11 apps in the beginning of 2012. For Google Play the 
figure is only 4 apps [3]. 

 

Figure  6-1 – Worldwide iOS & Android normalized revenue per rank [24] 

In terms of revenue, it is clear that games represent the number-one revenue category (see 
Figure  6-2). In fact, games account for one third of revenue and an even larger share of 
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downloads. This is largely due to in-app purchases [20] that seem to suit the game genre very 
well. Among the top 10 highest grossing cross-store publishers last year, 9 were game 
publishers [3]. 

 

Figure  6-2 – Download percentages by app genre [3] 

6.1.5 Geographic region (rank and market share) 

Apple’s iTunes Connect and the Google Play Developer Console both offer quite good 
possibilities to understand an app’s user demographics. Not only are downloads tagged with 
the user’s country, but also currency used for the purchase and the user’s selected language. 
This information can be used to create targeted advertising, decide upon additional 
localization (i.e., translation into a given language and additional customization), and more. 
For these reasons it is important to have some general knowledge of the worldwide 
smartphone penetration and revenue shares. 

App Annie Index November 2012 [25] states that for the preceding month, Japan overtook 
the USA for the first time, in terms of monthly revenue on Google Play. Japanese revenue on 
Google Play had increased ten-fold since January 2012. Japan accounted for 29% of revenue; 
US 26%, South Korea 18%, UK 4%, and the combined rest-of-world 23%. On the other 
platform, the US dominated iOS revenue for the same period with the US having 33%, Japan 
14%, UK 7%, Australia 5%, and the rest-of-world 40%. Overall the US is the largest market 
by revenue, according to [3]. Notable is the lack of iPad sales in the Japanese market (see 
Figure  3-1 on page 6).  

The smartphone penetration, e.g. the potential customer base, has of course increased 
considerably during 2012. According to the Google blog, referencing their Our Mobile Planet 
initiative [52], “Today, we're releasing new 2012 research data, and the findings are clear—
smartphone adoption has gone global. Today, Australia, U.K., Sweden, Norway, Saudi 

Arabia and UAE each have more than 50 percent of their population on smartphones. An 

additional seven countries—U.S., New Zealand, Denmark, Ireland, Netherlands, Spain and 

Switzerland—now have greater than 40 percent smartphone penetration.” - Dai Pham, Group 
Product Marketing Manager, Google Mobile Ads. 

6.1.6 Demographic (rank and share) 

Sensitive user data such as age, gender, and ethnicity is not readily available from either 
the Apple App Store or Google Play. Such data would likely be considered invasive to collect 
without asking permission2

1. However, Apple seems to track some user behaviour.  

Apple previously used a unique hardware identifier a Unique Device Identifier (UDID) to 
allow mobile advertising companies to track individual users’ behavior. However, after a 
hacker attack released 1,000,000 UDIDs in September 2012, Apple encouraged iOS 
developers to abandon functionality that requires a UDID [50]. Instead, starting with iOS 6 

                                                 
1 In fact in some countries it might be illegal for a company to collect this data. 
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the company introduced Identifier For Advertising (IDFA), which is not device-specific but 
rather is more like a web cookie. The IDFA is deleted and a new one is created when the user 
resets their device. IDFA is active by default, but may be turned off [51]. 

Some generic demographic raw data is available for download through Google’s Our 
Mobile Planet initiative [52] (see section  7.9 starting on page 33).  

6.1.7 Paying users (share) 

For freemium apps or apps offering in-app stores, the percentage of paying users measures 
how large a fraction of the users are paying customers versus those who settle for the free 
features. Note that this measurement may be skewed due to the fact that a relatively small, 
highly committed share of the user base account for the vast majority of the in-app purchase 
revenue [20]. 

For apps that are dually released in a free and a paid version, the share of paying users 
would be calculated as the number of downloads for the paid app, divided by the number of 
downloads for the free version plus the number of paying users. For apps with more complex 
business models, the calculation method for this metric is more complex. 

6.1.8 Retention after a given time period 

The retention time metric is sometime also referred to as loyalty. How many of the users 
that once downloaded the app still use it after a certain time period? Common thresholds 
include periodical use (Daily, Weekly, and Monthly Active Users – abbreviated as DAU, 
WAU, and MAU). Retention rate is highly dependent on app category and purpose (see 
Figure  6-3). Some apps are designed to be used rarely or even just once, while social media 
apps are likely intended to be used several times per day. 

Mobile analyst firm Flurry has used a sample of apps used more than 1.7 billion times 
each week to see what patterns emerge in terms of loyalty (defined as having used the app 
during the last week). The overall figures (calculated as the mean over all categories) showed 
that an app that was installed in 2012 would have a 54% probability of still being used in 30 
days, 43% after 60 days, and 35% after 90 days with an average of 3.7 app usage sessions per 
week. Interestingly enough, the 90-day retention rate was up significantly from 2009 when the 
corresponding probability was only 25%. This may be interpreted as a maturing app market 
that features apps that provide greater long-term value. The wider selection may also have 
caused the decrease in average app sessions per week from 6.7 uses in 2009 to 3.7 uses in 
2012. As seen in Figure 3-2, however, overall time spent on apps is up considerably, which 
means that we now spend more total time on apps, but divide our attention across more apps. 

Racherla, Furner, and Babb [17] speculate (along with others) that retention rate will 
become increasingly important as a metric, as smartphone penetration is projected to cover 
the majority of the potential customer base [52]. The idea is that in such a maturing market 
that it will be of greater importance to retain existing users than to attract newcomers, hence 
the business models are moving away from one-off purchases towards models that require 
user interaction: ad-sponsored apps, subscriptions, and in-app purchases. 

A further contribution to these new app business models is piracy. Kharif [34] estimates 
that app sales would be 20-50% higher if it were not for piracy. Ad-sponsored apps, 
subscription-based apps, and those apps with in-app purchases are not as sensitive to piracy. 
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Figure  6-3 – Loyalty by app category [13] 

6.1.9 Average time spent (session duration) 

We have already noted (see Figure  3-2 on page 7) that an average smartphone owner 
spends 92 minutes daily using their apps. Obviously it would be interesting for an app maker 
to know how much time is spent within their app. However such metrics, on the individual 
level, are hard to gather without invading the user’s privacy or modifying the app to include 
some method of tracking its usage (which the user might opt-in to use). 

General results from analyst firm Flurry in September 2012 [32], suggested that the 
average app session on a smartphone is 4.1 minutes and on tablets exactly twice this, 
8.2 minutes. The majority of time is spent on apps from the Games category; specifically 39% 
of smartphone app time and 67% on tablets [32]. 
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6.1.10 In-app revenue 

Statistics concerning in-app purchases seem to readily motivate the existence of this 
payment model. Even though only 0.5 – 6% of game players pay anything at all, when they 
do, they spend on average US$14 per transaction [55], with 51% of total revenue generated 
from transactions over US$20. This fact might be worth keeping in mind as a developer of an 
app with in-app purchases. 

One reason for transaction sizes being larger than some might expect, is inventions such 
as in-app wallets or even internal currencies. An example of the latter is Electronic Arts 
popular game The Sims Freeplay, where a fictive currency called Simoleons can be purchased, 
along with other virtual objects [57]. 

As shown in Figure  6-4 there are also obvious differences between the two sexes and as a 
function of age group. Men spend more than women on average per transaction, US$15.6 
compared to US$11.9 with the difference being most notable for people under 18. It can also 
be seen that the payment willingness seems to peak for the age group 25-34. 

 

Figure  6-4 – Mobile Freemium Games: Average transaction size by age and sex (amounts in US Dollars) [56] 

6.1.11 Funnel (conversion rate) 

The funnel (conversion rate) metric can be defined as the percentage of customers that are 
browsing the app download page, who actually decide to download the app (converting from 
a potential customer into a user). This definition is used by the analyst firm Distimo for its 
App-Analytics platform, where they track web landings (views of the app’s download page) 
versus the actual number of downloads [53]. 

A more general use of the funnel or conversion metric is to track an app session from start 
to a clearly defined goal. One could possibly measure the number of sessions that pass 
through defined checkpoints during a session. Typical examples include dividing booking 
procedures into steps, then keeping statistics for each step. Google Analytics is one of the 
most widely used tools within this area, but many others offer similar functionality. In the 
screenshot below from the web service Flurry Funnel Analysis, we can see multiple 
checkpoints which are being tracked for their conversion rates. 
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Figure  6-5 – Sample screenshot of Flurry Funnel Analysis 

6.1.12 Return rate (regret and bounce) 

The return rate metric should not be confused with uninstalls, since a user might uninstall 
for reasons that have nothing to do with the app, e.g. he or she might need more available 
space on the device. An app return is a claim for money back from the marketplace. Google 
Play has a once-per-app 15 minute return period which acts similar to a guarantee, so that if a 
customer purchases an obviously broken app or runs into compatibility issues before or after 
installing it, they may revert their purchase [60]. While Apple’s App Store officially has the 
policy that “all sales are final” [61], there are discussions online that suggest that if you make 
an official complaint they may grant a return request. For mobile web sites, regret is 
interpreted as a session lasting shorter than a certain number of seconds or a session 
consisting of a single page view before leaving the site’s domain. 

6.2 Qualitative 

The thesis will focus mainly on quantitative, measureable figures as interpreting human 
input manually is simply too cumbersome a task for this thesis project. However, there are 
many examples of automated web-crawling software that look for mentions of selected 
keywords to pinpoint words and topics in order to compute trends (referred to often as 
“trending” words and topics). 

Applying this type of tool is often called Social Media Monitoring (SMM). The span of 
such tools ranges from the extremely simple Google Alerts that monitor certain keywords and 
compile daily email reports, to advanced dashboard tools such as Radian6 which starts at 
US$5,000 per month [58] and is used by enterprises such as Dell and Pepsi. The more 
advanced SMM tools can monitor most social networks in addition to the regular web, and 
allow for more detailed parameters. Similar features are also available in Google Analytics 
which is more extensively evaluated in section  7.3 starting on page 27. 

The firm uTest [10] applied web-scraping SMM techniques to the particular case of app 
comments on the both major marketplaces, and found the issues shown in Figure  6-6 to be the 
most common complaints mentioned in app reviews. A brief justification of these results 
suggest that the installation process is more prone to errors on an Android handset, possibly 
because of compatibility issues (due to device fragmentation) and the need to approve each of 
the required application permission requests. Apps on the Apple App Store are generally 
much more expensive [10], as is reflected in complaints about pricing, but on the other hand 
Apple’s rigorous app verification process seems to be reflected in fewer overall complaints 
about technical issues for iOS apps. 
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Figure  6-6 – Common complaints mentioned in app reviews, by platform [10] 

The quantitative user reviews were likely mapped to separate categories using keyword 
filters, effectively turning the quantitative textual comments into a qualitative statistic. While 
this is a somewhat rough method and has considerable margins of error, it saves a lot of time 
and might be accompanied by manual follow-ups to verify the findings. I have attempted a 
similar approach of my own, which will be explained in more detail in section 10.2.8. 
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7 Web-based data collection and analysis tools 

There are plenty of available tools for app statistics, almost all of which are online or web 
based. This chapter discusses some of the more popular alternatives and their features, 
strengths and weaknesses. The tools discussed in this section are evaluated briefly (after 
registering accounts and logging in whenever applicable) – not only from the perspective of 
the app company, but also as inspiration for the in-house app statistics solution to be 
developed. All third-party tools were free in the editions I have used. 

7.1 Apple App Store 

While the general public may only browse the Apple App Store catalogue, and judge ased 
upon a select few metrics, a few additional figures are available for developers after logging 
into their account. Overall, Apple’s first-party solutions are still missing a few critical features 
however. 

7.1.1 Publicly available 

A potential app buyer browsing for apps (on the iTunes Preview website, in Apple´s 
iDevice App Store app or in their iTunes client) does not see the number of app downloads. 
He or she may only read ratings/reviews and see the average app rating (1-5 stars), the 
number of votes for the current app version, and aggregated results for all versions of the app. 

As a rating is the only metric available to the browsing customer, the feature or category 
spots are likely to be of high importance, as will be discussed in-depth statistically in the 
following chapter. Listings such as “New and Noteworthy” and “10 Essentials” function as 
advertising spots for apps successful enough to rank high enough to be included in these 
listings. There are also “Top 10” categories for free and paid apps, separately. 

7.1.2 Developer account – iTunes Connect 

Unlike consumers, iOS app developers can log into a web platform called iTunes Connect 
(iTC) where they may view basic statistics, such as downloads and percentage trend change 
for their application on either a daily or weekly basis. An example of these statistics is shown 
in Figure  7-1. Surprisingly, iTC only displays statistics from the last 14 days or the last 13 
weeks (a quarter of a year), respectively. This is a major limitation that prevents app 
publishers from understanding long-term trends (unless they themselves archive this data and 
process it themselves). This inhibits the app publisher from making basic comparisons of the 
current version of an app against previous app versions. Partly as a response to this, third-
party solutions have arisen, such as the AppDailySales script described in section  7.8 starting 
on page 33. 

In addition to statistics that can be view via the web platform, it is possible to request two 
types of reports, compiled as tab-delimited “.txt” files: apps and in-app purchases. These 
reports consist mostly of metadata about which regions and localizations the app is available 
in, along with basic information about its requirements (iPhone only or compatible with iPad, 
minimum iOS version, etc.). Although there are flags for whether the app supports the iPad or 
not, the developer may not opt to separate statistics between phone and tablet. This is another 
limitation that third-party sources have tried to rectify. 

Alternatively, reports can be downloaded with a Apple provided Java class named 

Autoingestion [39]. This class takes parameters according to java Autoingestion 
<username> <password> <vendorid> <report_type> <date_type> <report_subtype> 



26 
 

<date_yyyymmdd> and downloads the export files just as if they were manually requested 
from iTunes Connect. However, the limited date ranges still apply. 

 

Figure  7-1 – Sample screenshot of iTunes Connect 

7.2 Google Play 

While Google offers a bit more in-depth detail in their statistics, both for the app-browsing 
potential customer and the logged in developer, compared to Apple – some elementary 
features are still absent. However, the export functionalities are significantly better than for 
Apple. 

7.2.1 Publicly available 

The number of downloads per app is not displayed when browsing Google Play (nor on 
the web or in-app). However, unlike Apple’s App Store, anyone can see a rough estimate of 
the number of downloads and even view a trend chart. The number of downloads of the app 
will be presented as a range, such as “1 000 – 5 000” or “10 000 – 50 000”. These gross 
statistics give the browsing customer a general idea of this app’s popularity. 

App ratings are listed along with review comments. These ratings give the average rating 
(on a scale of 1-5). Just as for Apple’s App Store, you may flag another user’s review as 
either helpful or spam. 

Another similarity with Apple’s App Store is the presence of ‘feature spots’. Editor’s 
choice and Top sellers are prominent advertising venues, and you can even find listings of 
“Recommended for you” which is not defined in detail, but is likely based on your previous 
app history. 

7.2.2 Developer account – Developer Console 

Even without logging into the developer’s console, the publicly available download range 
data may be useful for app publishers for benchmarking their app against its competition. 
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Knowing that the competitor’s app made the featured spot and that the number of downloads 
stack has reached six figures, may assist the app publisher in making a decision of whether or 
not to launch an ad campaign. 

The following metrics are only available after logging into the Google Play Developer 
Console: 

• Ratings statistics 
o Star ratings 
o Cumulative average rating 
o Daily average rating 

• User statistics 
o Total user installs 
o Active user installs 
o Daily user installs 
o Daily user uninstalls 

• Device statistics 
o Active device installs 
o Daily device installs 
o Daily device uninstalls 
o Daily device upgrades 

All of these figures can be broken down by Android version, device, user’s country, user’s 
language, application version, and mobile carrier [38]. All of these statistics can be exportable 
to a CSV format file, where the complete history is available for every dimension (without the 
13-week limitation of Apple’s App Store). The division of data by dimension is an indicator 
that the Developer Console data may actually be seen as a tool compliant with Online 
Analytical Processing (OLAP), where the database is seen as a hypercube of facts available in 
n dimensions [78]. 

There are also automated crash log reports and Application Not Responding (ANR) 
reports. For crashes, these data are grouped together by type so that the developer may 
understand the frequency of different bugs. Complete stack traces are also available for 
debugging. 

An example screenshot from Google Play Developer Console is shown in Figure  7-2. 

 

Figure  7-2 – Sample screenshot of Google Play Developer Console 

7.3 Google Analytics 

After dominating the full-fledged web, Google Analytics is also available for mobile use. 
Their library for Android is included in approximately 7.3% of Android apps, according to 
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[35]. The tool allows (among other things) for funnel/conversion rate analysis based on 
check-points and goals. 

Google Analytics Mobile Apps SDK is at the time of this publication at version 2 and is 
available for both Android and iOS [59]. This SDK enables detailed data collection from app 
users. Many of the basic features such as OS version and device language can already be seen 
from the iTunes Connect and the Developer Console, respectively; but the difference with 
Analytics is that these statistics are available on a per user and per session level. Google 
Analytics is also available for use with the mobile web. 

Examples of the detailed metrics include average session duration, number of screen 
views, percentages of new and returning users, as well as their languages and locations. The 
developer may also track the order of viewed screens (including which screens the user leaves 
the app from), how long app elements take to load, and errors and app crash logs. Since the 
developer may set triggers on any event, such as buttons being pressed on a screen, it is not 
necessary to change the current screen view to record an event. Therefore, sessions may be 
either manually closed – typically after completing a process – or because they timeout after a 
given period. Developers may also set custom variables that are transferred from the app to 
Analytics, and these variables may be cross-referenced against apps from different 
smartphone platforms to generate an overview. 

Real-time data is available which allows following the movements of users who are 
presently using the app. There are also specially tailored funnel functions for the Ecommerce 
category. Funnels can be visualized as flows, as shown in Figure  7-3. The thicker the 
connecting line is, the more traffic flows via that connection. Red markers indicate a user quit. 

 

 

Figure  7-3 – Sample screenshot of Google Analytics: Visitors Flow 
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There are also a vast set of functions for tasks related to statistics, such as advertising 
(with the Admob package), search engine optimization, and tracking of social networks 
conversions. 

7.4 Flurry 

Flurry is primarily a tool for gathering app session data. It is available for iOS, Android, 
BlackBerry, and Windows Phone. According to its CEO, Simon Khalaf in [23], Flurry has 
stored more than one trillion unique events performed within more than 250 000 apps. It has 
gained a very strong position in the app insight field; according to [35] around 6.7% of 
Android apps have the Flurry Analytics library included. This is very close to Google 
Analytics’ share, and much of the functionality is similar. 

When logged in as a developer, for each application listed, one can study the app use 
sessions in more detail. The total number of sessions, median session length, and average 
active users are some statistics that are available. All data are available for export in to 
comma-separated value “.csv” file format. 

Session duration is a very useful metric, as it shows the distribution of sessions among 
users. For instance, a developer considering including in-app advertisements can calculate 
how many ads would be rotated into the display and thus estimate the potential ad revenue. In 
Figure  7-4, we see that most users stay within the app for 1-3 minutes. We could infer that 
users in the 0-3 seconds span could be chalked up in the bounce rate (involuntary app 
launches or crashes at start-up). If these session lengths would rise to, let us say, 10% of total 
sessions, and then we should create an alarm that sends an email alerting the developer to 
investigate the reason for abnormally many sessions shorter than three seconds. 

 

 

Figure  7-4 – Sample screenshot of a Flurry chart [63] 

Metrics for frequency of use are also available: sessions per day, week, or month per user. 
There are also statistics of how many of the users spent only one session or only one day 
using the app (bounces) and how many users returned the day after installing the app. 
Retention rate (daily, weekly, or monthly) can also be displayed, telling us how many users 
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remain active after the stated time period. Returning users can be plotted versus new users to 
further understand the app’s user turnover. 

Gauging user interest is an extremely powerful feature. Based on previously gathered data 
about a user’s, Flurry can present their dominant app categories. In Figure  7-5, we see that a 
user of the current app is 19 times more interested in news than the average user. Such insight 
is obviously very valuable for optimization of advertisements. 

 

Figure  7-5 – User interest in Flurry [63] 

Flurry’s feature set includes benchmarking against rival applications based on Flurry’s 
estimates from similar data. It is also possible to manually enter statistics that are not 
collected within the app, such as age and gender (if you have some other means of knowing or 
estimating this data). 

Finally, if the app has defined events (checkpoints), it is possible to track each and every 
event separately. This tells us which paths users take through the app, which might also be 
useful when trouble-shooting.  In Figure  7-6, we see that no user within the last hour actually 
began to use the app for its intended purpose, but rather terminated the app at the loading 
screen or from the menu. 
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Figure  7-6 – Event log in Flurry [63] 

7.5 Distimo 

A Dutch mobile-specialist analyst firm stated that their first mission was making the app 
market transparent. This company was born out of frustration over lack of insights [3]. In 
addition, to blogging and publishing yearly reports of its findings, they offer a (cross-OS) web 
platform called App Analytics that collects data regarding sales, rankings, and reviews of the 
developer’s own apps. An optional premium tool called AppIQ allows developers to estimate 
the same figures for any app, not only their own. Figure  7-7 shows the standard dashboard of 
their platform. 
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Figure  7-7 – Sample screenshot of Distimo Analytics 

7.6 App Annie 

App Annie is a web-based tool that can track statistics from Apple’s iTunes Connect and 
Google Play accounts as a third-party agent acting on a developer’s or publisher’s behalf 
(assuming that you provide it with your login credentials). It may be setup to send a daily 
email report or you can export data manually to comma-separated value files (i.e., “.csv” file 
format). 

According to their own description, App Annie indexes 150 000+ apps and their daily 
downloads, revenues, rankings, and reviews. It has to date tracked over 11 billion downloads 
and US$1.5+ billion in publisher revenues [25]. It also offers a monthly report compiling 
interesting app statistics and trends. 

At the time of this writing, the company has just launched an invitation-only beta test of 
an upcoming API. However, this was not available to me for use in my implementation. 

7.7 TestFlight 

While most other tools described earlier in this chapter are multi-platform, TestFlight only 
deals with iOS apps. It is primarily used for beta testing and processing crash log reports of 
iOS apps. One key function is the collaboration setup enabling iDevices, listed with their 
UDIDs, to install an app directly from a shared URL rather than having to go the official route 
via iTunes and “.ipa” files. This can be used to internally beta test or release an iOS 
application, without having to release it publicly on the App Store marketplace.  

If the TestFlight SDK is included as a library into the app, crash logs, Over-the-air (OTA) 
updates, live session tracking (including funnels / conversion), and in-app questionnaires for 
beta testers are also available. Results are sent back to the TestFlight web platform after each 
app session finishes [62]. An example of the TestFlight user interface is shown in Figure  7-8. 
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Figure  7-8 – Sample screenshot of TestFlight 

7.8 AppDailySales and Autoingestion 

Since iTunes Connect only keeps track of a limited subset of all app sales data, developer 
Kirby Turner published an open source Python script that screen-scrapes (i.e., extracts 
relevant data from HTML elements) and can automate and schedule report fetching [46]. 

Since this script was published as source code rather than a web service, users did not 
have to provide a third party with their iTunes Connect credentials and could modify the code 
according to own needs. The script was updated and maintained by the author over multiple 
versions, but subsequently retired after Apple offered its Autoingestion Java class that more 
or less provides the same functionality [39]. However, although Autoingestion is well 
documented, it is not open-source and is only provided as an executable file. Therefore it is 
not customizable. 

7.9 Google’s Our Mobile Planet 

Google’s Our Mobile Planet is a web platform offering yearly statistics and charts of 
smartphone statistics and usage trends. This initiative was due to Google and its partners. It is 
built around surveys that 1,000 people from each of the 41 representative countries have 
answered. This survey contains questions about sex, age, marital status, education, 
employment, and living conditions (rural or city) [52]. The uniqueness of this website is that it 
provides all of the raw data as Excel spreadsheets for downloading, thus this is an interesting 
source for app creators who are interested in cross-referencing these data against their own 
gathered metrics. The site explicitly encourages site visitors to download the raw data and “to 
dig deeper”. 
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8 Data mining and statistical analysis 

This chapter discusses some basic mathematical theory regarding distributions, 
classification, and trend spotting in data sets. The relevance to app statistics is mainly to find 
out whether correlations hold between metrics such as ratings or rankings and the actual 
number of downloads or purchases. If so, how strong are these correlations and which metrics 
have the greatest impact? Which data entries are similar and how could they be classified? 
Can trends be discovered programmatically using data from a given database? This chapter 
will discuss formulae and methods to solve these problems. 

8.1 Data mining phases and practices 

Data mining is a subfield of computer science that utilizes computations to discover 
patterns and trends in large data sets [76]. In doing so, techniques from artificial intelligence, 
machine learning, statistics, and database systems may be used. For the purposes of this 
master’s thesis, the latter two are the most applicable. 

Data mining is also known as Knowledge Discovery in Databases (KDD) [77]. KDD is 
usually divided into three main phases: pre-processing, actual data mining, and results 
validation. The following sections describe them in this order. 

8.1.1 Pre-processing – Extract, Transform, and Load (ETL) 

Pre-processing data is the first step. This step consists of three tasks: extraction, 
transformation, and loading. 

Data must first be either generated or obtained from their original sources. Techniques 
such as automatic web indexing and screen-scraping (text recognition or extraction from 
source code) may be used to do this. The AppDailySales Python script is one example of 
screen scraping. An initial validation of data is also done in this step, to reject data that is 
obviously faulty or insufficient. 

The transformation step is necessary to convert the data into a uniform format. This 
includes possible translation between languages and character encodings, conforming to 
database schema constraints or query language, removing duplicates and null values, cropping 
data according to scope, sorting datasets, and many other related tasks. 

After a successful data transformation, the cleaned dataset may be loaded into the 
database. The loading process may be a one-off import or a continuous process. In our case 
with app statistics, an initial manual import of historic data is planned, while future data will 
be automatically imported daily and be appended to the database. 

8.1.2 Data mining – Task classes 

Guidelines from the ACM SIGKDD Curriculum Committee [76] suggest that there are six 
common classes of data mining tasks: 

1. Anomaly detection – identification of unusual data records which may indicate errors 
2. Association rule learning – learning which data often appears together 
3. Clustering – discovering underlying groups and structures 
4. Classification – labelling data entries with tags or sorting them into categories 
5. Regression – training a model to best-fit the data, enabling projection 
6. Summarization – compression and visualization of the data set 
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I foresee that all of these tasks will be useful for the purposes of mobile app statistics. 
Some of these tasks are described in more detail in following sub-sections. 

8.1.3 Results validation 

Depending on which of the six data mining tasks are implemented, the validation of 
results may differ. However, a common method for validation is overfitting, which means 
applying the models and patterns that have been found to a new, not previously used dataset, 
and manually verifying the outcome. E-mail filtering is often used as an example, where 
models for detecting spam messages are derived from a training dataset, and subsequently 
evaluated on another dataset. The criteria for whether to accept a model’s accuracy or not can 
be based on the percentage of false positives or false negatives. One technique for visualizing 
these results is a confusion matrix, described in section  8.6.4.2 starting on page 43. 

8.2 Pearson correlation (r-value) 

In determining whether two sets of variables are correlated (linearly dependant), the 
standard measure is the Pearson product-moment correlation coefficient which is usually just 
referred to as the r-value. The value ranges from -1 to +1 inclusive, where +1 is a perfect 
correlation and -1 is a perfect inverse correlation. 

The r-value is calculated formally as follows: 
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where X and Y are variable sets with mean averages of X and Y . 

For the purposes of this master’s thesis, an application of this might be to investigate if the 
ranking of an app is correlated with its number of downloads. Presumably, if there is a 
relation between the two, then a lower rank (#1 being the best position), should be correlated 
with more downloads than the apps ranked below it. This is an example of an inverse 
correlation where we expect a negative r-value (as increasing rank should be correlated with 
decreasing numbers of downloads). Conversely, the correlation between the app’s customer 
rating and its number of downloads should be positively correlated, as presumably higher 
ratings indicate that more people were convinced to download the app. My intention is to 
evaluate these expected relations. 

8.3 Regression analysis and R2 

For a given set of measured data in a scatter plot (x-y coordinate pairs), the trend line or 
approximated function may be found through regression analysis. Normally this is done in the 
form of a minimized least-square sum for linear models. 

A concrete measure of the model’s goodness of fit is the R2 value, which lays within the 
interval 0 ≤ R2 ≤ 1. The R2 value is in fact the square of the r-value described above, as the 
letter implies. The closer to 1, the better the model fits the data set. Figure  8-1 shows a weak 
fit to the data used in the section 8.3.3. 
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Figure  8-1 – Example of a poorly fitted linear regression in OpenOffice Calc 

Regression analysis with a good fit may be useful to extrapolate the function in order to 
project values outside of the current data set. If projections are made based on the model, then 
good scientific practice stipulates that the uncertainty (margin of error) should be stated and 
that this margin of error should be within the stated confidence interval. 

8.4 Pareto principle and distribution 

The now-famous rule of thumb that 80% of the effect comes from 20% of the contributing 
factors is known as the 80-20 rule, or the law of the vital few or the Pareto principle after its 
author, the Italian economist Vilfredo Pareto who noticed an unequal wealth distribution in 
his country [29]. The same goes for purchases: as a general rule of thumb, 20% of the 
products account for 80% of the sales, while the ‘long-tail’ of obscure products only 
contributes a total of 20% of revenue. 

This same rule-of-thumb led to a log-linear data distribution which also bears his name. 
Obviously, the ratio does not have to be exactly 80-20 since there are both a scale and a shape 
parameter. These parameters can be found by plotting log(x) and log(y) to find a reasonably 
straight line. Regressing this line to the y-intercept and finding the slope enables us to 
approximate either x or y [64]. 

The Pareto cumulative distribution function (CDF) is defined as: 
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This produces a typical Pareto curve. For the 80-20 rule to apply literally, the shape parameter 

(α) should be approximately 1.161. 

8.4.1 Experiment by Brynjolfsson, Smith, and Hu 

Why is the Pareto distribution interesting for mobile apps and their statistics? 
Amazon.com, a major online store for primarily books, does not display the actual number of 
sales for their books. However, they display relative ranking, just as the app marketplaces do. 
In [30], Brynjolfsson, Smith, and Hu performed several clever experiments and concluded 
that a Pareto distribution can satisfactory estimate the number of purchases based on ranking 
data. Their estimation formula is: 
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log(Quantity) =  β1 + β2*log(Rank) + ε [30] 
which is in the form of the generic linear parameter: 
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They found the values for Amazon.com to be β1 = 10.526, β2 = -0.871, and R2 = 0.8008. 
Note that β2 is negative, as a lower ranking indicates a better position and presumably more 
purchases. By finding the intersection of the above equation, the model enables us to infer that, 
for instance, a book ranked 10th on Amazon.com has about 5,000 sales per week. 

8.4.2 Experiment by Garg and Telang 

Inspired by Brynjolfsson, Smith, and Hu’s results, Garg and Telang [15] conducted a 
similar experiment but applied it to the mobile app market. However, they used a different 
method, not requiring actual demand data as used by Brynjolfsson, Smith, and Hu. Instead 
they collected public marketplace data from Apple’s App Store for rankings and price over a 
period of time and inferred the Pareto distribution models from their calculations. The end 
result was not so far off, with a shape parameter of 0.86 for iPhone apps. The authors 
proceeded to calculate the relative strength of ranking positions. The formula for doing so 

used the estimated shape parameter α, also called β2: 
downloads1/downloads2 = (ranking1/ranking2)

 -0.86    [15] 

Using this estimate, the top-ranked application would attract almost twice as many 
downloads as the second [(1/2)-0.86  = 1.82]. 

8.4.3 Attempt to replicate on my own dataset 

I set out to replicate the experiment, to see if there was correlation to be found in my own 
app data. Fortunately, I had access to all data for a specific app published on Google Play. 
This app was not in the overall marketplace’s top-500 list, but in the subcategory top-500 
Tools which might make the implications weaker. For a period of about a month, the app’s 
ranking data was collected from App Annie and actual download figures were collected 
directly using the Google Play Developer Console. These data were entered into an 
OpenOffice Calc spreadsheet and plotted just as in Brynjolfsson, Smith, and Hu’s experiment. 

I took an intermediate step not considered in the reference experiment and calculated the 
correlation between rank and downloads. This function was available in OpenOffice as 
correl(). The correlation value was found to be -0.18, indicating a relation. Again, the 
negative sign is because the proportion is inverse; as lower rank is better – since it implies 
more downloads. 

My calculations found different values for the parameter estimates (β1 = 7.88, β2 = -0.8936, 
and R2 = 0.04), the function generated plausible results, as shown in Figure  8-2, even despite 
the fact that the R2 value is very weak. The β2 value is also reasonably in line with what others 
have found (see for example [30]) and to the iPhone-specific value of -0.86 found by [15]. 
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Figure  8-2 – Estimate of daily downloads at rank 300 

However, as discussed in [15], models based on calibration at low baseline sales might 
diverge for top sellers, since the “distribution of app demand is top-heavy (even within the 
200 top apps)”. The top-heavy effect was also found by Valadares who writes “The results 
also show that the rank-dependent values decline steeply with rank for the top 10 products. 

The effect of product rank on demand remains economically significant for the apps in the top 

50, but for apps ranked 50 or higher this effect is negligible” [65]. 

Using my equation to estimate how many daily downloads the number-one ranked app in 
the category receives, the answer was roughly 2,600 – far too few to be accurate. A proposed 
reason for this could be (following the authors of [15] in their method) that their model only 
fits within the range 1 ≤ x ≤ 200 since they use data from that interval, however considering 
my dataset the interval for my equation only holds for 200 ≤ x ≤ 500. 

During the implementation phase I attempted to apply this analysis to larger data sets and 
for more than just one app. As pointed out by my academic thesis supervisor, however, it is 
not certain that this model can accurately predict downloads in even the later range since the 
long-tail distribution may also be present in this case. This particular calculation has not been 
performed, but a distributional chart supporting the long-tailed distribution is to be found in 
figure 11-8. 

8.5 Principal Component Analysis 

Principal component analysis (PCA) is a technique that can reduce the dimensions of a 
dataset. For instance, if for all apps for which we have data on ranking, price, rating, number 
of reviews, percentage of active users, generated revenue, average session length, and so forth, 
we might want to determine which of these factors causes the most variance in the number of 
downloads. That is to say: Which factor is most important for the end result of predicting the 
number of downloads? 

This might be very unclear from just looking at the multidimensional raw data, even 
though the underlying pattern may be simple and mainly caused by a few factors. PCA 
performs a linear orthogonal transformation of the data set, via the intermediate step of the 
co-variance matrix [70]. This transform is defined as follows: 
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PCA can now reduce the dimensions of the dataset by finding a linear transformation of 
the above matrix so that the vectors become orthogonal [70]. This means that the vectors are 
not co-dependent. This procedure is called a diagonalization of the matrix. A subset of the 
eigenvectors that are found is used as axes for the transformed data. We may even select the 
size of this subset to contain a certain amount of the total data. Effectively, the first 
component now represents the biggest factor for the variance of the data, and the others 
follow in descending order. 

PCA is popular partly because it is parameter-less (besides the dataset), and therefore it is 
very simple to apply in a black-box manner. It does not require in-depth understanding of the 
algorithms behind it nor does it require a priori knowledge about what the most important 
components are. A common application for PCA is compression of images because it keeps 
the most important data, while filtering out data that has little effect on the overall result [70]. 

Finding out which quantitative indicators contribute most to an app’s success (for free 
apps this is the number of downloads, while for paid apps this is the revenue from the app) 
should be of interest to the app publishing company at which this thesis project is being 
undertaken. I will perform PCA on the data sets gathered to find out what these indicators are 
for the app(s) that will be considered. 

There are useful functionalities in mathematical software such as MATLAB, including the 
functions CovMat for the covariance matrix and eigs for picking out the eigenvectors [71]. 
These will no doubt be helpful in the analysis process. 

8.6 Clustering 

While PCA filters out the most important components of data, clustering is another 
technique for prioritizing and simplifying data. Clustering attempts to group similar data 
together into clusters. While normal clustering algorithms are discrete (i.e. a data entry either 
belongs to a cluster or it does not), fuzzy clustering allows for nuances via partial belonging – 
membership degree ranges from 0 to 1 [72]. 

A useful example of (discrete) clustering adopted from [73], regarding vehicles is shown 
in Table 5. We can cluster these in a scatter plot where the x-axis is top speed and y-axis 
weight. As can be seen in Figure  8-3, this results in three distinct vehicle classes: Lorries 
(heavy and slow), Medium market cars (medium weight, medium top speed), and Sports cars 
(light and fast). Note that not all of the variables are used, for example, color and air 
resistance are not in the plot. When clustering we should focus on selected aspects. Therefore 
a PCA step before the clustering might be useful to help focus on the important properties. 
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Table 5 – Sample data suitable for clustering 

Vehicle Top speed 

(km/h) 

Colour Air resistance Weight (kg) 

V1 220 Red 0.30 1300 

V2 230 Black 0.32 1400 

V3 260 Red 0.29 1500 

V4 140 Gray 0.35 800 

V5 155 Blue 0.33 950 

V6 130 White 0.40 600 

V7 100 Black 0.50 3000 

V8 105 Red 0.60 2500 

V9 110 Gray 0.55 3500 

 

 

Figure  8-3 – Clustering of similar data entries 

8.6.1 Fuzzy clustering 

In the above scenario discrete clustering is likely to be adequate, but should we add a car 
with top speed of about 180 km/h and weight around 2,000 kg, it would end up in the middle 
of all our defined classes. In such a case it could be useful to say that it partially belongs to 
each class, rather than excluding it from all classes. The degree to which it could be 
considered that the entry belongs to the respective cluster can be viewed as the “likelihood” of 
it being in that class [74]. 

There are also situations of nested clusters. Consider what would happen if we added 
some mopeds into the vehicle data set. Their weight of around 100 kg and top speeds of 45 
km/h would make them ideal for a class and cluster of their own. After this change it would 
be useful to group clusters together by vehicle type. This establishes that a data entry for the 
purposes of clustering may inherit classes; a vehicle may be an instance of a sports car, which 
in turn is an instance of a car. 
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8.6.2 Dendrograms and cophenetic correlation 

The above classifications are useful in the computation of clustering. Using the same 
vehicle example as before, we plot the clusters as classes. This is normally done in a 
dendrogram – as dendro means tree in Greek. The dendrogram displays inheritance and 
relations hierarchically in a tree structure. The vehicle example is modelled in Figure  8-4. 

 

Figure  8-4 – Sample dendrogram for classes of vehicles 

There are measurements of how well a dendrogram {Ti} represents the distances of the 
raw data entries {Xi}. One such metric is cophenetic correlation coefficient [74] which is 
calculated based on a comparison between dendrogrammatic distance between tree nodes 
Ti  and Tj , and the Euclidean distances between observations Xi − Xj . The correlation efficient 
c is then given by: 
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where x is the mean average of x(i,j) and t the mean average of t(i,j). 

8.6.3 k-means clustering 

Mathematically computing clusters can be done in a variety of ways. One famous and 
intuitively natural algorithm is k-means clustering. This algorithm belongs to the centroid-
based clustering algorithm family. 

The idea is to divide n observations into k clusters using an iterative process, so that the 
Within-Cluster Sum of Squares (WCSS) is minimized. For this reason, k-means clustering 
can be seen as an optimization problem. A generalization of [73] yields the steps: 

1. Place k cluster centers at random. 
2. Assign each data point to the nearest cluster centre. 
3. Compute the new center of each class (the centroid). 
4. Move the cluster centers accordingly. 
5. Iterate until no “visible change” happens after the center is moved. 



43 
 

After this algorithm terminates every data point ni is assigned to the closest of the k 
clusters. A membership matrix M (of dimension n*k) now holds Boolean values for whether 
or not each observation ni belongs to cluster kj. 

Fuzzy clustering using the fuzzy c-means algorithm works very much the same, but the 
membership matrix M instead contains floating point values for each observation ni indicating 
its likeliness of belonging to each cluster kj [73]. 

8.6.4 Analysing clusters – Jaccard index and Confusion matrix 

After observations are assigned to clusters it might be interesting to compare clusters 
against other clusters, especially if our constraints allow observations to belong to multiple 
clusters. Two methods for doing this are described in the paragraphs below. 

8.6.4.1 Jaccard index 

How similar are the clusters? One very simple metric that answers this question is the 
Jaccard Index, which varies from 0 to 1; where 0 means no observations are common among 
the two clusters and 1 means that the clusters contain exactly the same observations. The 
function takes parameters A and B - the two clusters (sets of observations). The Jaccard Index, 
or coefficient, is then calculated as the number of total unique observations in A and B 
divided by the total number of elements. This quotient indicates how disjunctive the clusters 
are. 

The Jaccard Index formula is: 
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8.6.4.2 Confusion matrix 

Another method for visualizing the results of a classification or clustering algorithm is to 
create a confusion matrix. This matrix is useful for identifying cases where observations may 
have been incorrectly labeled and therefore classified into suboptimal clusters. 

For the vehicle example, a likely confusion might occur if we add a helicopter to the 
vehicle set. It weighs about 1,000 kg and has a top speed of around 250 km/h. Our clustering 
algorithm would therefore be likely to cluster helicopters with cars (in the sports cars sub-
cluster). Visualizing this in a confusion matrix as shown in Table 6, it is easy to spot errors as 
all correct identifications are aligned along the diagonal. We immediately discover that the 
helicopter was mislabeled. 

Table 6 – Sample confusion matrix 

 

Incorrectly labeled data or data that is erroneous in itself is sometimes called statistical 
noise, which may weaken the accuracy of adaptive models. It is therefore desirable to remove 
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such anomalies as early as possible in the analysis, or to devise a scheme to handle them 
separately. 

8.7 Software for data mining 

Programmatically performing data mining is facilitated by many software products. There 
are modules for query languages and databases, plugins for spreadsheet programs (such as 
Microsoft Excel and OpenOffice Calc), packages in mathematical software (such as 
MATLAB and R [74, 75], and standalone programs (such as ELKI [79], KNIME [80], and 
RapidMiner [81]). 

Each type of tool has its advantages. Database export might be easiest to spreadsheet 
programs, MATLAB and R are perhaps the most well-documented tools, and standalone 
programs come pre-packaged with modules for most the clustering and PCA techniques 
described above. For the practical purposes of this master’s thesis project, I will attempt to use 
MATLAB and possibly R for manual operations and the standalone programs experimentally 
due to their complexity. 
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9 Methodology 

There are so many statistics available from publicly available reports that one might fit 
together these puzzle pieces and form a bigger picture of the app market situation. For 
instance, take the fact that Android has been criticized for a weak game selection. This is 
reflected in a lower overall rating for Android games, compared to games on iOS (with scores 
of 3.2 versus 3.7 respectively out of 5). Ratings and reviews are the only metrics available for 
a potential app buyer when browsing. We also know that games account for 1/3 of the total 
marketplace revenue and that in-app purchases are most used in the game genre [20]. Add to 
this the fact that the majority of app revenue today comes from in-app purchases (Figure  5-1). 
Summing up all these facts and figures, the almost 4:1 revenue advantage of iOS over 
Android (shown in Figure  6-1) is suddenly not so surprising. 

From an industrial business perspective, the changing trends in app business models are of 
great interest. We have seen that the traditional one-off purchase payment model is losing 
ground to models that require user interaction: ad-sponsored apps, subscriptions, and in-app 
purchases. What this means in terms of app statistics, is that the traditionally dominant metric 
“number of downloads” will be of decreasing importance, while “user retention/loyalty” will 
likely take on a more prominent role. 

While the above reasoning represents only some examples of what could be done given 
suitable statistics and analysis of them, it is exactly these types of patterns that would be 
useful to track using internally stored data from a database. Ideally these trends should be 
found programmatically without requiring much human interaction by using statistical 
analysis. This is where this thesis expects to contribute, along with an implementation that 
will be evaluated. 

9.1 Summary 

From the statistics in the earlier chapters we have learned a lot about the smartphone 
market, in terms of platform specifics and differences, user demographics, payment models, 
and trends. Mobile app statistics have been discussed, not only which metrics are of 
importance and why, but also which first- and third-party app data tools are currently on the 
market and what data they collect. Some theories about statistics and data mining have also 
been discussed. Having studied all this material, the goals for the master’s thesis project may 
be specified (as in section 9.2). 

9.2 Goals of Master Thesis 

During the literature study phase it became increasingly clear that suitable sets of 
marketplace data from Apple App Store and Google Play will not be accessible for importing 
into a local database as most of the relevant data is not publicly disclosed. This is why the 
statistical phase of this thesis project will be done through a case study, using the data sets 
from apps published by The Mobile Life [129], the company at which I am conducting this 
thesis project. Basic statistical analysis will be done on the available data sets. There will also 
be a recommendations section. This section will review whether a developer or publisher 
could utilize some combination of the publicly available tools and private data related to their 
application. This is done in order to derive satisfactory app statistics. The best suitable tools 
for this purpose will also be reviewed in this section. Most importantly, an in-house app 
statistics platform will be developed, implemented, and evaluated. 
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9.2.1 Limitations 

The literature study phase of this thesis project focused mostly on the Android and iOS 
platforms, as does the final master’s thesis – both the implementation of the tool and the data 
analysis. The statistical techniques described in the previous sections should only be viewed 
as a preliminary set of suitable tools, some of which will be used in this very report and some 
that are recommended for future use cases. 

9.2.2 Primary goals 

There are three clearly defined main goals for the app statistics implementation: storing 
data locally, presenting it suitably, and making it accessible. 

1. First and foremost, available app data from third-party tools should, whenever possible, 
be transformed into a uniform format and then imported into a local database. This 
corresponds to the ETL phase. Additionally, manual entries must be possible since 
some customers of the app publisher may not want to disclose all of the data that they 
might want to include in their copy of the database. Hence it should be possible to add 
some data manually, possibly at irregular intervals. A few benefits of local data are 
direct access to data for SQL queries and other statistical tools, local 
backup/redundancy and one single data source which facilitates easier report writing. 
The relatively small data sizes that will be imported should not require much resources 
and could be deployed onto an existing server, mainly dedicated to another purpose. 

2. This database should be accompanied by a front-end offering some visual 
representation of this data, at the very least displaying in tables; but preferably also as 
diagrams or charts. 

3. This front-end should be made available to external viewers so that their visualization 
could be done on a mobile device. This was an especially desired feature for the 
company at which this thesis project was undertaken, but which technique to use 
remains open, i.e., it could be a native app or mobile web site. 

9.2.3 Secondary goals 

The functions listed in this section are things that are not required, but would be 
considered nice additions to the system. 

1. The front-end should not only connect directly to the database, but should also offer an 
API with user access control management, so that third-parties may be given access 
the data of interest to them, without having full system access. 

2. Some type of primitive SMM tool for mapping app reviews into category buckets 
using keyword lists would be useful, if review texts are available. 

3. Alarm or trigger system. For instance, if the overall rating for App A drops below 2 
out of 5, then automatically send an email to the relevant person (or persons) to 
encourage investigation. 

4. Automatic or semi-automatic monthly reports could be generated based on the trends 
that are found. Such reports are already sent to many customers of the app company, 
and currently require all data to be manually compiled and written. 

9.3 Implementation outline 

This section discusses a rough estimate of which techniques and data sets the 
implementation phase utilized for its design and implementation. Finally a blueprint of the 
system architecture is provided. 
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9.3.1 Data collection 

The company at which this thesis project is undertaken is an app publisher, which enables 
me to use actual live data and statistics from their own published applications. I will use this 
data, but to preserve confidentially I will anonymize the actual results and findings. The 
majority of the published apps are free to download, so my statistics will not focus on price 
and revenue metrics. A few of the company’s apps have experimentally included either 
Google Analytics SDK or Flurry SDK, although these are used in a minority of the apps that 
will be studied. However, the statistics from these systems may be compared to the results 
that I find using the in-house data. 

Whenever possible, scripts for importing data from marketplaces and third-party APIs 
should be scheduled to execute every n days, so that data is always retrieved and stored safely 
into the in-house local database. Such scheduling can be done on a Unix-based server via the 
crontab command [82] or in Windows through the scheduling utility. 

Data sets can be imported from following sources: 

iOS App Annie will be used rather than directly connecting to iTunes Connect, 
since App Annie has stored data ranging further back than the 13 weeks 
available on iTunes Connect. Therefore the initial import of historic data 
should be done through App Annie export files. 

The Apple Autoingest Java class or the still-functioning AppDailySales 
Python script are probably useful for fetching current stats, since one of the 
goals of the implementation is to have as little third-party dependency as 
possible. 

Android Google Play Developer Console API is surprisingly limited, and currently only 
provides subscription statistics. Actual app data is not available over the API 
[67]. There are some reverse-engineered scripts, but most were developed for 
the previous version of the marketplace [68], when it was called Android 
Market. Furthermore, their screen-scraping nature also makes them unreliable, 
as any small change to the marketplace layout could break their functionality. 

Even though the Developer Console lacks a good API, it offers manual data 
export in the form of multiple “.csv” files available for download, and it is 
possible to request a “.zip” file containing all of these files. The file names 
shown in Figure  9-1 are mostly self-explanatory. 

The solution to this problem is to either write a script that logs into the 
Developer Console, downloads the “.csv” export file and imports it to the 
database, or to rely on a trustworthy third-party data source such as Distimo’s 
API. A more robust approach for the future might be to include the Google 
Analytics library into each app (both Android and iOS). This would be useful 
for multiple reasons, including access to more mature API. 

Cross-

platform 

 

• Distimo’s API [83] is very well-documented and is a popular third-
party source for app statistics. It appears after some initial testing to be 
suitable for integration into the final local implementation. 

• Google Analytics session data might be explored experimentally, since 
only a small fraction of the company’s apps have included the 
necessary library as of yet. 

• Flurry offers an API over XML or JSON that I may also attempt to 
utilize for session data. 

Generic / OurMobilePlanet Excel spreadsheets may be of interest for cross-referencing 
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cross-

reference 

material 

 

demographics and user behaviour. 
 

 

Figure  9-1 – The archive file containing Android .csv export data 

9.3.2 Back-end – database structure 

As the company has previously used MySQL databases for their back-ends, I have also 
used a MySQL database for this project. The server will likely be hosted in the cloud, but 
during development I will run a local MySQL server on my laptop. I will utilize Windows, 
Apache, MySQL, and PHP (the WAMP stack) during development, as it is well-documented 
and I have used it before. Many useful plug-ins and modules are also prepackaged with it. 

For compatibility reasons, at least the iOS statistics collected will follow the same 
database architecture as the official app data from iTunes Connect. These were documented 
by Apple in [39]. This structure was adapted in Table 7. 
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Table 7 – iOS report database structure 

Report Field Report Data Type Notes 

Provider CHAR(5) Typically Apple 

Provider Country CHAR(2) Typically US 

SKU VARCHAR(100) Product identifier 

Developer VARCHAR(4000)  

Title VARCHAR(600)  

Version VARCHAR(100)  

Product Type Identifier VARCHAR(20) Initial download / update, etc. 

Units DECIMAL(18,2) Aggregated number of units 

Developer Proceeds 
(per item) 

DECIMAL(18,2)  

Begin Date Date Start date of report 

End Date Date End date of report 

Customer Currency CHAR(3) Three-character ISO code 

Country Code CHAR(2) Two-character ISO code 

Currency of Proceeds CHAR(3)  

Apple Identifier DECIMAL(18,0) Apple ID for the app 

Customer Price DECIMAL(18,2) Price displayed in App Store 

Promo Code VARCHAR(10) Optional promotion code 

Parent Identifier VARCHAR(100) For in-app purchases 

Subscription VARCHAR(10) Renewal or new 

Period VARCHAR(30) Duration of subscription 

For Android, the most interesting of the .csv files in Figure  9-1 on page 48 would 
probably be overall_ratings and overall_installs. The formats for these files are: 

 

overall_installs.csv date,daily_device_installs,active_device_installs, 
daily_user_installs,total_user_installs,active_user_installs, 
daily_device_uninstalls,daily_user_uninstalls, 
daily_device_upgrades 
 
Example: 
20130112,30,2898,25,8685,2782,18,18,0 

overall_ratings.csv date,daily_avg_rating,total_avg_rating 
 
Example: 
20130112,0.0,3.4705882352941178 

 

The database will be set up with specific tables dedicated to this data and will utilize a 
very similar table layout. 

In addition to the platform specific data, whenever possible category and marketplace 
ranking will also be collected, as well as app reviews. 

9.3.3 Back-end – API specification 

As third parties must be able to access at least the most vital app statistics via a public 
interface, the back-end will host an API for this purpose. It will likely have a RESTful API 
written in PHP that accepts queries in the form of a Uniform Resource Identifier (URI) and 
responds with generated JSON or XML structured data. An example of a JSON response from 
Distimo’s API is shown in Figure  9-2. This sample might be useful for inspiration. 
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Figure  9-2 – Sample JSON response output 

The URI format is well-documented in IETF’s RFC 3986 [84] and fits well with the 
purposes described in that RFC: “a source of information with a consistent purpose (e.g., 
"today's weather report for Los Angeles")”. The app statistics equivalent would then be 
“today’s downloads for App A”. 

The final format of the URI-scheme used will be described in section 10.3.7, but 
parameters to be included are to include an identifier for which app or publisher data is being 
requested and some type of password, token, or nonce for determining whether the request 
shall be granted. As all accounts will still require manual activation from the app company, 
this security scheme shall suffice, but a future approach for authentication and authorization 
might be securing the connection using TLS or SSL. 

The easiest approach to a format would be sending parameters as URL variables, as in the 
following very preliminary draft of an API format: 

http://server/appstats/api.php?appID=[appID]&statType=[statType]&period=[period]& 
token=[token] 

Another possibility is to employ a ”cleaner” URI form with more hierarchical structure:  

http://server/appstats/appID/statType/period?token=[string]  

thus an example request might look like: 

http://123.123.123.123/appstats/1/downloads/lastMonth?token=password123 

The latter format can be achieved by altering the .htaccess file of the Apache server, using 
the mod_rewrite module [85]. This effectively redirects requests, enabling an arbitrary URL 
format. 

9.3.4 Front-end and visualization 

Considering the requirement that the statistics platform must be viewable via a 
smartphone, there are two options. Either the statistics platform must be developed in dual 
versions: for desktop computers and for smartphones; or a cross-platform hybrid developed 
based on web techniques. The advantage with the first approach is the possibility of 
developing a native app for one or more smartphone OS’s. However, as the app publishing 
company creates apps for all major smartphone platforms, it seems counterintuitive to write 
native apps for every platform, or to restrict access to only a target selected subset. This 
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suggests initially developing a web-based platform that uses responsive design – depending 
on the size of the viewport, the layout will be adapted for a nice user experience. 

One popular established front-end framework is Twitter Bootstrap [86], which is open-
source and free to use. It comes with good legacy compatibility with older browsers and has a 
responsive design, thanks to a modular grid layout that enables grid boxes to be rearranged 
based on the available space. It is also easily customizable and well-documented. For all these 
reasons, I will likely make use of it as part of the front-end implementation. Figure  9-3 shows 
a work-in-progress mock-up displaying the same page on a laptop and a smartphone side by 
side. 

 

 

Figure  9-3 – Responsive design with Twitter Bootstrap 
(laptop version on the left and smartphone version on the right) 

Another advantage of the web technique is that there are APIs and plug-ins for 
visualization, such as Google Charts API [87] and DataTables for jQuery [88], which may be 
useful when presenting the data. The pie chart in the above figure was in fact generated with 
Google Charts. It is also legacy compatible: “Charts are rendered using HTML5/SVG 
technology to provide cross-browser compatibility (including VML for older IE versions) and 

cross platform portability to iPhones, iPads and Android. No plugins are needed” [87]. 

9.3.5 Abstract system architecture 

Figure  9-4 shows a preliminary blueprint of the internal architecture of the proposed 
system. This shows schematically how the server will acquire data from external sources over 
their APIs and how data will be made available from our server via an API of our own. 



52 
 

 

Figure  9-4 – Abstract architecture of the app statistics platform and external services 
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10 Implementation phase 

This chapter describes the actual implementation of the in-house app statistics web 
platform, how it is designed and the details of some of its inner workings. For a more generic 
and architectural overview, see the previous chapter. 

 

10.1  Login and authentication 

The aforementioned Twitter Bootstrap templates include a basic login page, shown in 
Figure 10-1, which was modified somewhat but mostly used intact. Some form markup was 
added, making both fields required before submission, and in case of a failed login, a response 
message is displayed. 
 

 

Figure  10-1 – Login page after failed login attempt 

The credentials are verified against a table in the MySQL database called login, where all 
user accounts are stored. Accounts may have different privileges (both in the sense that they 
may be given access to certain apps, but also on what level data is made available). A certain 
column in the database specifies a clearance level on a scale from 0-2, as explained below: 

Table 8 – Clearance levels for user accounts 

Clearance level Privileges and access 

0 Read-only (child account): view rights of all data for certain apps. 
May not share data further, nor create child accounts of its own. 

1 Customer: view rights of all data for certain apps. Can import raw 
data from files manually, and change account settings. May create, 
edit and delete child read-only accounts and share data for select apps 
with them. 

2 Admin: view rights of all data for all apps for all customers. Can 
import raw data from files manually, and change account settings. 
May create and delete accounts of lower clearance; both customer 
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accounts and read-only child accounts. 

 
Accounts of clearance levels 0 and 1 always have to have a “parent” account, to identify 

who their superior is. Accounts of level 1 default to having Admin as their parent. However, 
the admin account itself has no parent. 
 

10.2  Menu – Structure and pages 

The clearance levels reflect directly on which pages and views are available and viewable 
to the logged in user. Figure 10-2 is an illustration of the left-hand side menu of the web 
platform – on the left are the options available to a user of clearance 1 or 2, while the read-
only account of level 0 are restricted as can be seen on the right. 
 

 

Figure  10-2  – Menu seen with different account privileges 

 
All the options from the “full” menu on the left-hand side will be described in further sub-

sections below. 

10.2.1 Dashboard 

The first page seen after a successful login is the front page or dashboard. The idea of this 
page is to give a quick overview of vital statistics for all your apps, without having to specify 
any criteria. As all other pages, the design is made using a responsive CSS template so that 
the layout depends on the viewport size. The full-fledged site is displayed for screens that 
have at least 768 pixels of width, and columns are instead made fluid (adjusted for mobile 
devices) if the width should be less [91]. Refer to figure 9-3 for an example of this. 
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The PHP function include [96] enables a very modular design in combination with the 
Twitter Bootstrap grid layout. In the dashboard page, each of the containers is injected into 
the page source using include calls, as follows: 
 
<div class="span4"> 
   <h3>Latest reviews</h3> 
   <?php include 'commentlist.php'; ?> 
</div><!--/span--> 
 
<div class="span4"> 
   <h3>Downloads</h3> 
   <?php include 'applist.php'; ?> 
</div><!--/span--> 
 
And so forth. This setup opens the door to a future customization of the dashboard where each 
logged in user may choose which “widgets” should be displayed for each box, and the 
dashboard page could simply include these pages conditionally. Such a personalization of the 
dashboard is not prioritized at the present stage, but the web platform is built with these 
options in mind. Some other calls are made using jQuery AJAX capabilities to prevent page 
reloading. I have on the other hand refrained from using iframes as this is considered by some 
to be bad practice. 

 
As the pie chart (showing app rating distribution) and line chart (showing downloads per 

day over the last month) are rendered using Google Charts [87], some custom JavaScripts 
were written by me and bound to the window.resize event to ensure that the charts would 
always make use of the full grid space made available to them. A screenshot of the full-sized 
dashboard page is displayed in Figure 10-3. 

 

 

Figure  10-3  – The dashboard page 

Other components on the dashboard include top lists over the most downloaded apps and 
top grossing apps all-time and a select portion of the latest user reviews. App names are 
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whenever possible accompanied by a small icon to indicate whether it is an Apple App Store 
app or a Google Android app. 

10.2.2 App list 

The app list page is self-explanatory – it is a list over all the apps that the currently logged 
in account may view statistics for. It can be seen in Figure 10-4. In all screenshots below, 
icons are censored, but are otherwise fetched from the app store by means of an application 
ID. The ID column also links to the public landing page of the respective marketplaces 
product page. This table, along with many others in my implementation, use the DataTables 
jQuery plugin [88] in order to provide sorting of tables along with other functionality. 
 

 

Figure  10-4  – App list page 

10.2.3 Reports 

The idea behind the report page is to allow dynamic generation of reports on a per-app 
basis. In other words, after selecting one or more apps and a defined time period, all relevant 
and available statistics should be fetched and presented in a report-friendly design. This 
should also be exportable to PDF.  

 
The settings for the output are selected through a simple form, and the user may choose to 

view a report as a web page (in HTML), PDF in the browser, or have a PDF sent to his/her 
email address as an attachment.  
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Figure  10-5  – Report generation 

Upon clicking the button, the user is met with an AJAX spinner icon from [107] indicating the 
report generation process has started. Only the metrics selected by the user are included in the 
report. Had the user opted to receive or view a PDF, then the generation is done using 
wkhtmltopdf [108], a relatively new PDF generation library built upon WebKit, which is the 
web page rendering engine used by browsers such as Chrome and Safari [109]. This is a 
reliable way to create PDF, as it is more likely to resemble the original HTML page even in 
its PDF form.  
 
The package also creates a proper Table of Contents (seen on the left-hand side in Figure 10-6) 
by means of parsing header tags in the HTML code and turning these into chapters, sub-
chapters and sections. 
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Figure  10-6  – Generated PDF report 

 
The report is optionally sent to the user’s email address, using PEAR Mail [98] and its MIME 
package for attaching the newly generated PDF. 

10.2.4 Downloads 

Based on a proof-of-concept by Karl Monaghan [92], this simple Google Chart displays 
downloads of App Store apps over the last 30 days. I have done several modifications of his 
example code, however, attempting to make it compatible with the data structures for Android 
data as well. The layout is seen in Figure 10-7. 

 
The options set a time period, selecting a single app (allowing the chart to auto-adjust axis 

scales accordingly) and changing the metric between either downloads or updates. Data is 
fetched via the jQuery .getJSON() method which retrieves data asynchronously from a PHP 
script which responds with JSON output.  
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Figure  10-7  – Downloads page 

 

10.2.5 Ratings 

All app ratings, as indicated with 1-5 stars, are listed in a table as seen in Figure 10-8. 
Apps can be selected individually and ratings may be filtered with time periods based on 
starting and/or ending date. The search text field above the table enables free-text search, and 
the table can be sorted based on any column. Dates are chosen either by typing them manually 
with the keyboard or by clicking on the popup calendar component provided by the standard 
jQuery UI library. 
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Figure  10-8  – Ratings page, by app 

10.2.6 Rankings 

This page is still under development although functional. The view still needs 
functionality to track each of the displayed categories over time. In its current state, this page 
lists the highest achieved top position for each category the app belongs to. An example of the 
page as it is at this time is shown in Figure 10-9. 
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Figure  10-9  – Rankings by category 

10.2.7 Revenue 

This page is yet to be developed. It was not prioritized – mostly because almost all of the 
apps within the set which we worked with for this project are released free of charge – but 
such a page would be a nice feature. As the automatically imported data from the iTunes 
Connect webpage features app prices and number of units purchased, the total revenue per 
app is already calculated and displayed in a widget box on the dashboard. However, the 
corresponding data is not available for Google Play. Should a third-party API prove adequate, 
a multi-platform simplified view over app revenue might be included, otherwise this view will 
only work for iOS apps. 

10.2.8 Reviews 

Much work has gone into this metric, as current third-party statistics services leave much 
to desire. The first tab of this view (see Figure 10-10) contains a toplist of frequent words 
used in the reviews of the selected app for the filtered period of time (calendar dates). This is 
done by parsing headlines and review texts from all imported reviews and counting the 
frequencies of all words of a length greater than n characters, using array_count_values in 
PHP [99]. The most frequent words are rendered into a word cloud using the jQuery plugin 
jQCloud [100] which helps to visualize the keyword trends. The more frequent a keyword is 
among reviews, the bigger font size in the word cloud. The following illustration is a practical 
example of an app where the login service was having issues, also preventing the users from 
uploading their receipts which was a core functionality of the particular app. The problems at 
hand are very easy to spot thanks to the table and word cloud. 
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However, common everyday words, often referred to as stop words [113], should 
probably be pruned using some kind of dictionary word list to increase precision. Some 
techniques for pruning and filtering out unwanted words are discussed in chapter 2.2.2 of 
[113]. As the authors also point out, if we were to expand the trend words functionality to 
allow phrases, we must not over-prune, as meaningful phrases could be built from a 
combination of stop words. 
 

 

Figure  10-10  – Trending review keywords and word cloud 

 
The second tab lists all reviews in reverse chronological order and may be filtered per app 

and date period (see Figure 10-11). Each review states the app (including version info when 
available), platform, rating (1-5 stars), review title and text, author and review date. 

  
Each review may also be tagged with labels, which are applied should the review match 

filters set up by the user. These labels are counted and presented with numbers and 
percentages at the top of the page. How these tags work will be presented in more detail in 
section 10.2.13. 
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Figure  10-11  – Review page with tags applied 

10.2.9 Session tracking 

This and the following page are mostly placeholders for upcoming integration with the 
session-tracking packages such as Google Analytics and Flurry SDK. Such functionality 
could not be incorporated into the project within the time constraints of this master’s thesis 
project, but this data is highly useful and a suitable topic for future development. 

10.2.10 User demographics 

This page is presently not implemented, but simply a placeholder menu link for future 
addition. 

10.2.11 Import 

As per the requirement from the company at which this thesis project was undertaken, 
customers must be able to manually import raw data that was exported from each marketplace. 
In order to realize this functionality, the well-documented CSV-functionality of PHP was used. 
Upon clicking the menu link – only available to accounts of clearance levels 1 or higher – a 
popup dialog appears through which a CSV format file may be selected. This dialog is shown 
in Figure 10-12, with the progress bar in current display. 



64 
 

 

Figure  10-12  – Manual import of data 

 
Then an animated progress bar indicates the file upload to server and the database 

insertion, upon which either a failure or success message is displayed to the user at the top of 
the dashboard start page (see Figure 10-13). These messages are always dismissable with a 
click on the X icon. 

 

 

Figure  10-13  – Dismissable user notices 

10.2.12 Alerts 

This view was experimentally implemented, see section 10.4 for a further description. The 
idea is to construct a form-based view, enabling any metric stored in the local database to be 
monitored, and upon satisfaction of criteria, emails should be sent out when these alerts are 
triggered. The form for setting up such an alert would ideally use components to form full 
sentences explaining the filter. A few scenarios are shown below: 

 
[E-mail me] if [App A] - [Average rating] [Gets higher than] ______ 
or 
[Notify me upon login] if [App B] - [Receives new review] [] ______ 
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10.2.13 Settings 

The settings page, only available to accounts of clearance level 1 or above, is divided 
content-wise into tabs and groups. On the main page, the user may input their login details to 
their iTunes Connect account, Google Play Developer Console, and Distimo (third-party API) 
details, in addition to their internal username, password, and email for the web platform itself. 
For each section, a checkbox or cross will indicate that details are either sufficiently and 
correctly entered or that they are not yet provided by the user. 

 

 

Figure  10-14  – Settings page: first tab 

The second clickable tab allows for creating review tags, by entering keywords and saving 
them as filters. Figure 10-15 displays some of these tags found in reviews, based on the filters 
already created by the user. The input fields are connected by a jQuery plugin called Tag-it 
[110], with a customized CSS style for turning a comma-separated word list into individually 
editable word tags. 
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Figure  10-15 – Review tag filters 

Hopefully, an upcoming version of the app stats web platform will enable alerts to be 
triggered when a specified percentage of recent reviews attract a specific label. 

 
The Child accounts tab lists any already created child accounts (with read-only permission) 

and allows for creating new ones. This tab is shown in Figure 10-16. 
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Figure  10-16  – Editing user permissions 

10.3  Data and database 

This section describes some of the underlying database schemas, how manual data import 
is done, and how external data sources are polled regularly for automated import. The outlines 
of the internal API are also discussed. 

10.3.1 Import – Initial backlog 

For current and future statistics, all metrics should be automatically fetched and imported 
from external data sources. However, statistics from the past may need to be manually 
imported. As mentioned in chapter 9, App Annie was a good source for this backlog data as it 
provides exported CSV files. However, as one such file is generated per day, this could easily 
result in hundreds of CSV files. A small utility called TxtToMy [97] allows for batch 
importation of these files, by mapping CSV column names to MySQL table column names. 
Figure 10-17 shows a sample screenshot from one such import operation. 
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Figure  10-17  – Batch import of CSV data with TxtToMy 

 

10.3.2 Import – Manual 

The code for the web platform import function (as described in section 10.2.11) contains a 
constant, associative array which can be seen as a key-value pair that allows array data. If we 
import a file with a name ending in ‘android_overall_ratings’, a function 
columnFormat($importtype) will return the corresponding column structure for this particular 
database table: (appID, date, daily_avg_rating, total_avg_rating). This allows us to 
dynamically construct our SQL INSERT statement. These mappings are applied for each 
different CSV file type allowed for import.  

The actual handling of the CSV data is facilitated by functions in PHP, such as fgetcsv 
[95]. This function takes as parameters the data set, maximum length per line, delimiter 
character, and escape characters. Extracting actual data into a workable format is quite user-
friendly and easy with this function. 

Should we attempt to import a file of unknown format, we are returned to the start page 
with a dismissible error notice. The actual file upload code snippet was based on a sample 
from W3 Schools [94]. 

10.3.3 Import – Scheduled and automated 

Two different sources are used for automated data import. 
The first is the URL set up by Apple to serve its Autoingestion Java class requests. This 

is unofficially available for other clients as well, as long as the request format is correct. The 
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script from [92] is a base for this, but many modifications have been made, such as supporting 
a dynamic number of App Store accounts. Hopefully, since Apple’s own Java class uses the 
same format, this data source should remain available for a long period of time. 

 
The second data source is via Distimo APIs for ranking, downloads, and reviews. The 

returned JSON is decomposed and stored into the database. My code ensures the import of all 
possible data by executing a data poll for each distinct user account with Distimo credentials, 
and for each app belonging to those accounts. As these imports may contain thousands of 
entries it is beneficial to use prepared statements to reduce execution time. 

 
Both of these import types are automated and scheduled to run daily at a certain time of 

day by opening the respective PHP file in a web browser. Should the computer not be turned 
on at the time, lack a network connectivity or fail for some other reason, then the scripts are 
scheduled to recover as soon as possible. Below is a screenshot of how these scripts are 
scheduled in my development environment (using Windows). The crontab command [82] has 
the corresponding functionality for a UNIX or Linux environment. 

  
One option for this scheduling is to wrap all scripts into a single call (see Figure 10-18), 

from a single scheduling PHP file. This is more convenient than scheduling multiple scripts. 
However, separating each import type into its own scheduled script enables spreading the load 
evenly over the day and enables clear log traces for all executions. It also enables a more 
robust setup compared to scheduling a single PHP file which would represent a single point-
of-failure. 

 

Figure  10-18  – Scheduling import scripts in Windows 
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10.3.4 MySQL database queries and constraints 

The database employs some standard constraints such as foreign keys between tables to 
ensure correctly entered data. For instance, appID must be consistent with an existing 
application for comments, downloads, and the other data to be imported. Constraints for 
uniqueness are also used to avoid duplicate data. More details about this are given in the 
following section regarding data principles. 

 

10.3.5 Principles 

The development process and particularly the data import scripting has been done to 
maintain a few constraints to ensure consistency and confidentiality of data. 
 

No timeout – Regardless of which PHP script is executing, manual or 
automated/scheduled, they need to override the normal server setting for a timeout which is 
30 seconds. Otherwise, should the amounts of data to insert be too large, some data could be 
accidentally excluded. The solution is to write at the top of each PHP file “set_time_limit(0);” 
where the zero may actually be changed to a non-infinite, but still generous value before 
deploying the implementation onto a production server, to protect against non-terminating 
code. 

 
No duplicates – Either by defining aggregate primary keys over all columns which may 

not be repeated in the table, or by adding a unique index, we ensure that duplicate data is not 
present in our tables. An example of the latter is ALTER IGNORE TABLE `app`.`testtabell` 
ADD UNIQUE INDEX idx_all (column1, column2, … columnN); 

 
No unnecessary polling – By ordering each table by date, finding the latest date of a 

successful import, we may set this date as the “from” parameter for our next data polling. This 
ensures that we do not have to filter through duplicates of data already imported. An example 
of a query that finds this date is SELECT begin_date FROM ios ORDER BY begin_date 
DESC LIMIT 1;. 

 

No manipulation – Even by changing user data such as HTTP GET variables in URLs 
that are editable by the user, no unauthorized access should be possible – as the PHP session 
is monitored server-side at every page load and all SQL queries include subqueries to the 
effect of …WHERE `app`.`comments`.appid IN (SELECT DISTINCT appid FROM 
`app`.`apps` WHERE publisher = 'loggedInUser') which effectively guarantees that only data 
from permitted apps is returned.  

Similarly, should there be a MySQL error, instead of the common practice $result = 
mysql_query($query) or die(mysql_error()); which details the database error and prints details 
to the browser, I have opted to simply redirect the user, using for example header('Location: 
login.php?msg=FAIL'); which does not reveal information about the underlying database, or 
its table structure. 

 

10.3.6 Server requirements 

Besides the obvious software requirements such as reasonably recent versions of PHP and 
MySQL, some add-ons were required server-side before deploying the implementation from 
my development environment (laptop) onto a corporate server.  
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For instance, the ingestion of Apple App Store data fetches data in the form of 
compressed .gz archive files. As these must be programmatically unzipped server-side before 
the import can commence, we need permission to run system or exec commands in PHP 
which is not always enabled by default. Safe mode must be turned off, file upload and cURL 
modules must be enabled, and there needs to be an unzip library present. Compared to the 
example from [92] which did not work on my test server, I instead installed GnuWin [93] on 
the server and changed the call from gunzip to gzip –d (the last flag meaning deflate). 7zip is 
another option.  

10.3.7 API outlines 

It was decided that only the most basic data should be made available through the internal 
API – partly to minimize support issues, and partly to focus on the core statistics. Statistics 
will be possible to break down by app, date period, and by type of metric. An aggregate 
metric for all the apps connected to the account should also be available. A table over the 
valid request types is shown in table 9: 

Table 9 – Valid API request types 

Metric requested Required 

parameters 

Optional 

parameters 

Output  

(JSON response structure) 

Downloads per app API key, App 
ID 

From date, to date date > metric 

Downloads total API key From date, to date appID > date > metric 

Ratings/Reviews per 
app 

API key, App 
ID 

From date, to date date > metric 

Ratings/Reviews 
total 

API key From date, to date appID > date > metric 

Rankings per app API key, App 
ID 

From date, to date date > category name > metric 

Rankings total API key From date, to date appID > date > category name > 
metric 

The above schematic is a first version of the API. It is likely to be developed further at the 
company at a later time. Optional parameters such as platform, app version, or country are 
likely additions. Revenue and other metrics would also be useful. 

A table in the database schema was created for logging purposes, storing queries, user (via 
a lookup of the API key) and request timestamp – also the IP address from which the request 
was made, by the PHP system variable $_SERVER[‘REMOTE_ADDR’]. Such logs will be 
useful in the unlikely event of abuse. 

A sample API request is shown in Figure 10-19, with the request URI and the resulting 
JSON response output. Note that faulty API requests produce a JSON compliant error 
message response and for security purposes are logged in the system logs (including 
requesting IP address) under a separate error category. For an actual code sample from the 
API function, see the Appendix A of this report. 
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Figure  10-19  – Internal API request 

 

10.4  Milestone progress evaluation 

Comparing the implementation maturity against the primary and secondary goals listed in 
sections 9.2.2 and 9.2.3, we find that while the focus and priority has been correct (emphasis 
on the primary goals deliverables), much progress has been made on the secondary goals as 
well. However, statistical analysis had been hard to perform until more data was imported. 
This is probably one area that would benefit from more attention in the future – refer to 
chapter 11 for more details on the analysis. In table 10 is a brief summary on development 
progress, compared to the stated primary and secondary goals. 

 

Table 10 – Milestone progress of primary and secondary goals 

Goal Current status Remaining 

Primary goal 1: First and 
foremost, available app data 
from third-party tools should, 
whenever possible, be 
transformed into a uniform 
format, and (automatically) 
imported into a local database. 
This corresponds to the ETL 
phase. Additionally, manual 
entries must be possible since 
some customers of the app 
publisher may not want to 
disclose all of the data that 
they might want to include in 
their copy of the database. 
Hence it should be possible to 
add some data manually. 

- Downloads, user 
ratings/reviews and 
rankings are 
automatically fetched 
from Distimo’s API as 
JSON and imported into 
local database tables. 
- Apple’s App Store data 
are also scheduled and 
auto-imported from 
iTunes Connect. 
- Manual imports of 
CSV-files from Android 
export data is working, 
but not yet for all 
dimensions (such as data 
broken down by 
country). 

- Add support for all import file 
types for Android 
- Add support for iOS manual 
import 
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Primary goal 2: This database 
should be accompanied by a 
front-end offering some visual 
representation of this data, at 
the very least in tables; but 
preferably also as diagrams or 
charts. 

A front-end is designed 
and data displayed in 
both tables and charts. 

 

Improve designs  

Primary goal 3: This front-end 
should be made available for 
external viewers so that 
visualization could be done on 
a mobile device. This was an 
especially desired feature for 
the company at which this 
thesis project is undertaken, 
but which technique to use 
remains open, i.e., it could be 
a native app or mobile web 
site. 

The technique was 
designed to be 
accessible as a mobile 
web using a responsive 
CSS template. It is 
presentable in both full-
sized web version and 
mobile edition. This 
goal is on the right track, 
but still needs final 
testing after the end of 
the master’s thesis 
project. 

Acceptance testing – preferably 
in multiple phases; internal, beta 
and public release. Internal 
testing has begun at the time of 
this publication, but shall 
continue for some period of time. 

Secondary goal 1: The front-
end should not only connect 
directly to the database, but 
also offer an API that will 
allow user access control 
management, so that third-
parties may access the data of 
interest to them, without 
having full system access. 

The API has been built 
and is working, 
generated JSON 
responses verified with 
JSONlint [111]. 

– Database logging of all 
API requests is in place 

– User management is in 
place and working (i.e. 
child accounts with 
read-only rights) 

 

Secondary goal 2: Some type 
of primitive SMM tool for 
mapping app reviews into 
category buckets using 
keyword lists would be useful, 
if review texts are available. 

– Review comment texts 
are imported 
automatically using 
Distimo API for most 
apps 

– Users can create filters 
(tags) that are 
automatically applied to 
reviews. Frequencies 
and percentages of these 
labels are calculated and 
displayed. 

– Trending review 
keywords are drawn in a 
word cloud and listed in 
a table. 

These filters should be 
incorporated into the future 
development of Secondary goal 
3, refer to the table row below. 
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Secondary goal 3: Alarm or 
trigger system. For instance, if 
the overall rating for App A 
drops below 2 out of 5, then 
automatically send an email to 
the relevant person (or 
persons) to encourage 
investigation. 

– Not implemented as of 
yet. Such a control script 
could be scheduled to 
run just after the last of 
the daily imports is 
finished. 

– The PEAR::Mail 
component in PHP [98] 
seems suitable for 
sending out the alert 
mails via any SMTP 
mail account. The 
component is already 
used for sending out 
report emails. 

Not prioritized, but a likely 
future addition 

Secondary goal 4: Automatic 
or semi-automatic monthly 
reports could be generated 
based on the trends found. 
Such reports are already sent 
to many customers of the app 
company, but currently require 
everything to be manually 
compiled and written. 

Users may generate 
reports, either in HTML 
format for direct 
viewing in the browser, 
exported to PDF using 
wkhtmltopdf [108], or as 
PDF attachments sent 
via email using 
PEAR::Mail [98]. 

Users should be able to set up 
rules for regularly automated 
reports being sent out via email.  

 

In addition to the primary and secondary goals, some comments regarding the 
implementation are: 

• I have a maximum of 16 apps (11 for iOS, 5 for Android) to gather statistics for. These 
are a select subset of the company’s app catalogue, based on data sensitivity. Since 
most of the Android apps have also been released in iOS versions, this data should in 
my opinion not skew the results too much. 

• The implementation is somewhat dependant on Distimo’s third-party API. However, 
the back-end is quite flexible so that another data source could easily append its data 
to the same database tables for interchangeability. An approach for the future might be 
to include Google Analytics SDK into every app (iOS and Android) just to get access 
to a better first-party API for data. If this is not feasible, another option is to 
investigate the upcoming API from App Annie (at the time of this publication in 
private invitation-only beta phase) so as to collect data from multiple sources. 

• An aggregated view of all available data on a per-app-basis was designed. This 
summary is the foundation of the reports view (also enabling the PDF report 
generation, requiring only a defined time period of what the report should cover). 

• Many additional modifications of the current code are necessary to make everything 
multi-platform compatible. For instance, as Apple’s App Store data includes data 
about app pricing whereas Google Play does not, revenue cannot be calculated 
automatically even from a manual import of Google Play data. Third-party API’s such 
as Distimo may have to be used for this purpose as well. 
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• For internal versioning of the app stats web platform, I will follow the Semantic 
Versioning 2.0.0-rc.1 guidelines (formed by Tom Preston-Werner, one of the co-
founders of GitHub), available from [112]. The format is <major>.<minor>.<patch> 
where each field’s increase resets the fields to the right to zero. For instance, a bugfix 
patch release would increase version number 1.0.0 to 1.0.1, and the following version 
with new features would be either 1.1.0 or 2.0.0 depending on the size of the update.  
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11 Analysis 

 Using the manually and automatically imported app data, we performed some statistical 
analysis. One approach is to tailor specific queries that return very specific data – in this 
scenario we might write SQL queries that are executed directly on the back-end database. 
Another method is to use the capabilities of mathematical software such as R [115] and its 
many add-on packages. The latter also facilitates drawing statistical findings in charts and 
diagrams.  

11.1  SQL query analysis 

An initial manual analysis phase might be done via writing SQL queries to execute on the 
local database, as it now contains substantial amounts of imported raw data. A few example 
queries, their use cases, and results (in some cases slightly censored) are given below. 
 
Which weekday is the most successful in terms of downloads? 
 (i.e. which day might be optimal for an upcoming app launch?) 
SELECT 
DATE_FORMAT(statdate, '%W') as weekday, 
sum(`value`) as downloads 
FROM `app`.`downloads ` 
GROUP BY weekday 
ORDER BY downloads DESC 

Weekday, number of downloads 

'Sunday', xx061 
'Saturday', xx773 
'Friday', xx153 
'Thursday', xx863 
'Tuesday', xx599 
'Monday', x472 
'Wednesday', x276 

 
Which platform is most successful in terms of average ratings, Android or iOS? 
(i.e. which platform should we focus on for the future, or which platform needs improvement?) 
SELECT 
case 
    WHEN appid IN (SELECT appid FROM `app`.`apps` where platform = 'Google 
Play') then 'Google Play' 
    WHEN appid IN (SELECT appid FROM `app`.`apps` where platform = 'App 
Store') then 'App Store' 
    else "Unknown platform" 
end 
as platform, 
avg(rating) as avg_rating, 
count(rating) as no_ratings 
FROM `app`.`comments` 
GROUP BY platform 

Platform, average rating, # ratings 

'App Store', x.x81586, x91 
'Google Play', x.x58065, x1 

 
Is there any correlation between the number of app versions and the app’s average rating? 
(i.e. does it pay to keep releasing new versions and fixing bugs / adding features?) 
SELECT application_name, 
  AVG(rating) as avg_rating, 
  COUNT(rating) as no_ratings, 
  COUNT(DISTINCT version) as no_versions 
FROM `app`.`comments` 
GROUP BY appid 
ORDER BY avg_rating DESC 

App, avg. rating, # ratings, # ver 

'App A', x.285714, 7, 2 
'App B', x.500000, 12, 3 
'App C', x.722222, 36, 6 
'App D', x.700935, 107, 9 
'App E', x.448276, 29, 8 
'App F', x.333333, 3, 1 
'App G', x.750000, 8, 2 
'App H', x.722222, 36, 6 
'App I', x.568627, 153, 4 
'App J', x.285714, 14, 0 
'App K', x.250000, 16, 0 
'App L', x.000000, 1, 0 
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The output from this last query was imported into OpenOffice Calc (and adjusted for those 
apps with “0” app versions). By means of the correl() function mentioned in section 8.2, we 
find a positive Pearson correlation of 0.53 between the number of app versions and the 
number of reviews (not surprisingly); but what is interesting is a positive correlation of 0.25 
was also found between the number of app versions and a higher average rating. It seems as if 
most of the time, app updates reflect positively on the aggregated rating. 
 
Even though this type of query based analysis should not be underestimated for future use, the 
idea is that those questions that we might want to track regularly should be displayed in the 
web GUI through tables and charts, both for convenience and to easily include the data into 
reports. An intermediate step to this effect is to draw and plot findings manually at first. 
 

11.2  Statistical analysis 

Apps may be developed for vastly different purposes. Within the app portfolio made 
available to me, there are apps that are intended for use on one single day per year (for a 
particular event), as well as social apps, intended for daily use. Most apps are either 
completely free of charge or a one-off purchase, but one app uses a subscription scheme with 
monthly or quarterly renewal, and another app uses premium add-on charges for SMS 
notification services.  
 

Extracting some key metrics for each app available to me, I generated a data set that 
would be suitable for statistical computations. The table includes for each app its smartphone 
platform, number of downloads and updates, the number of app versions, number of ratings 
and the aggregated average rating. I have also applied ad-hoc labels indicating whether the 
app would be considered either ‘promotional/event based’ or ‘commercial/professional’, and 
either ‘free’ or ‘paid (any business model)’. Revenue would have been an interesting addition 
under other circumstances, but too little data was available (shared from clients and collected 
from app stores) to make it meaningful in this particular case. Table 11 demonstrates the data 
set, although most sensitive data has been removed or modified for anonymity, instead 
indicating the figure sizes in digits with the respective number of letters ‘x’. 

 

Table 11 – Compiled data and metrics for in-house apps 

AppID Platform no_DL no_UPD no_ver no_ratings avg_rating pr/com free/paid 

1  App Store xxx x 1 x x,333333 pr free 

2  App Store xx x 2 x x,285714 pr free 

3  App Store xxxx xxxxx 6 xx x,722222 pr free 

4  App Store xxx x 8 xx x,448276 com  

5  App Store xxxx xx 9 xxx x,700935 com paid 

6  App Store xxx X 3 xx x,5 pr free 

7  App Store xxxx xxxxx 8 xx x,632653 com free 

8  App Store xxxxx xxxxx 4 xxx x,568627 com paid 

9  App Store xxx xx 2 x  pr free 

10  App Store xxxx xxx 2 x x,75 com paid 

11  App Store xxx xxx 3 x  com free 

12  Google Play xxxx xxxx 7 xx x,266667 com free 

13  Google Play xx x 3 x  com free 

14  Google Play xxxx xxxx 6 x x pr free 

15  Google Play xxxxx xxxx 5 xx x,235294 com paid 

16  Google Play xxx xxx 2 x  com paid 
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The overview data table (as shown above) was compiled using a handful of SQL queries, 
and their respective outputs were manually compiled into a spreadsheet table. A more 
programmatic approach would have been to write one single huge SQL query, possibly using 
SQL commands such as LEFT JOIN [105] and UNION [106], creating either result sets or 
virtual tables containing each type of metric, per app, per date. If this analysis is to be 
expanded in the future, the data set compilation should be automated. 
 

There are roughly three steps (whether manual or automated) to consider before the 
analysis, and they correspond closely with the three ETL phases. First, we import the data – 
for example from CSV files containing raw data. Secondly we need to prepare the data, 
including removing data that is not sufficiently detailed. This can be done by applying the R 
function na.omit() which simply cuts off entries where data is not available (N/A), such as app 
numbers 9,11, 13, and 16 in this case. Before plotting data, a realignment of the scale may be 
a good idea. The third and final step is to apply the statistical method upon the cleaned dataset.  

 
Caveat: the manually applied labels for free/paid and PR/commercial are omitted in most 

analysis methods. The reason is that they are nominal text values with unmeasurable distances 
between them, thus they are neither ordinal or interval values. The scale for levels of 
measurement has been further described by S. S. Stevens as early as 1946 in [120].  

 
There are ways to include nominal values into the analysis, such as assigning each label to 

a dummy numerical value (called Filmer and Prichet’s method), or using polychoric 
correlation to estimate ordinal variables as suggested by Kolenikov and Angeles, the authors 
of [118]. However, these transformations fall outside the scope of PCA. That also means, 
regrettably, that I cannot apply k-means cluster apps based upon the type of smartphone 
platform (i.e., Android or iOS). A binominal value could have been assigned, but this 
approach would not work for more platforms than two. 

 
The software RapidMiner [81] provides for a nice overview over the dataset and some 

core statistics, available directly after data import. An example of output from this software is 
shown in Figure 11-1. 

 

Figure  11-1  – Metadata in RapidMiner 

11.2.1 Pearson correlations 

Instinctively, the first thing we might want to find out is which metrics are correlated (or 
inversely correlated). Manual calculation of this is tedious – a much better way is to use R 
[115], mentioned in section 8.7. 

The R function cor() produces a correlation matrix between all components as follows: 
 

> tabell <- read.csv ("csvfile.csv", header=TRUE) 
> cormatrix <- cor(tabell, use="complete.obs", method="pearson") 
> cormatrix 
             no_downloads no_updates  no_ratings no_versions  avg_rating 
no_downloads   1.00000000  0.1818684  0.73463351 -0.08399037 -0.31796936 
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no_updates     0.18186844  1.0000000  0.26792291  0.36452805 -0.21879013 
no_ratings     0.73463351  0.2679229  1.00000000  0.33140755 -0.09957761 
no_versions   -0.08399037  0.3645280  0.33140755  1.00000000 -0.30510898 
avg_rating    -0.31796936 -0.2187901 -0.09957761 -0.30510898  1.00000000 

 
As the matrix is symmetric along the diagonal, and each component obviously is perfectly 

correlated to itself, we only need to read values either above or below the diagonal. We see 
that the number of app versions is correlated to both the number of downloads and the number 
of updates, and that the number of ratings correlates strongly with downloads as well. In the 
case of the negative correlation between avg_rating and no_downloads/no_updates, the 
explanation is probably skewed data, as one particular, very popular app had back-end server 
connection issues that lowered its rating significantly. 

 
The above matrix may be illustrated in a correlogram, indicating correlation using colors, 

symbols, texts or shapes. The below Figure 11-2 is one such correlogram using the same 
dataset. The darker the shade of blue, the stronger correlation; while the darker the shade of 
red, the stronger the inverse correlation. 

 

no_downloads

no_updates

no_ratings

no_versions

avg_rating

Correlogram(tabell)

 

Figure  11-2  – Correlogram for components 

 

11.2.2 k-means clustering 

Considering the data for all available apps, could there be some hidden categories or 
groups of apps based on these or other variables? This can be learned by applying the k-
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means clustering as described in section 8.6, using the following sample code snippets from 
[116].  
 
 
> tabell <- read.csv ("csvfile.csv", header=TRUE) 
> tabell <- na.omit(tabell) 
> tabell <- scale(tabell) 
> fit <- kmeans(tabell, 4) 
> tabell <- data.frame(tabell, fit$cluster) 
tabell 
   no_downloads no_updates   no_ratings no_versions avg_rating fit.cluster 
1   -0.43384912 -0.5457723 -0.711521399  -1.5244978  0.1308371           4 
2   -0.50366831 -0.5453849 -0.626351755  -1.1511514  2.1004928           4 
3    0.01008318  1.0034960 -0.008871838   0.3422342  0.5231670           3 
4   -0.48535508 -0.5454624 -0.157918714   1.0889270  0.2467971           1 
5   -0.39893953 -0.5437576  1.502889338   1.4622734  0.5016916           1 
6   -0.46753239 -0.5457723 -0.519889700  -0.7778050  1.3078268           4 
7   -0.24875470  2.7770995  0.267929504   1.0889270 -0.5760426           3 
8    2.97445543  0.4315384  2.482340241  -0.4044586 -0.6406351           2 
10  -0.41684398 -0.5023001 -0.605059344  -1.1511514 -0.4576573           4 
12  -0.36705489 -0.1793196 -0.456012468   0.7155806 -0.9452668           1 
14  -0.41005828 -0.4107063 -0.754106221   0.3422342 -1.2142933           1 
15   0.74751768 -0.3936584 -0.413427646  -0.0311122 -0.9769174           1 
 

As can bee seen in the output above, the appended rightmost column indicates which 
cluster each app belongs to. All numbers have at this stage been rescaled for fitting purposes 
and should no longer be read literally. Using the clusplot() function in the R package cluster, 
we may show all apps along the axes of the two primary components (the following section 
will describe the principal component analysis, PCA, in more detail). 
 
> library(cluster) 
> clusplot(tabell, fit$cluster, color=TRUE, shade=TRUE, labels=2, lines=1) 
> 
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Figure  11-3  – Clusplot in R: Four app clusters 
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As for the app data, component 1 is the number of downloads and component 2 is the 
number of updates. We can identify our four (4) clusters in Figure 11-3, printed in different 
symbols and colouring. But perhaps three (3) clusters would have sufficed seeing as the centre 
points of the green and red clusters are relatively close. An alternate clusplot using three 
clusters is shown in Figure 11-4. 
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Figure  11-4  – Clusplot in R: Three app clusters 

 
 

This is easier for a human to interpret and to use for labelling the apps into categories. 
 

Roughly, one might label the clusters as following: 
1. (Blue, Left) – Low-volume apps, both in terms of downloads and updates 

App(s): 1, 2, 6, 10 
2. (Purple, Top right) – Extreme outlier in terms of many downloads  

App(s): 8  
3. (Red, Bottom right) – “Normal” app group 

App(s): 3, 4, 5, 7, 12, 14, 15 
 

An observation is of course that cluster 2 is an extreme outlier. There are many tests for 

outliers; one is Grubb’s test (available in the ‘outliers’ R package [124]) which on the α = 
0.01 significance level guarantees that app number 8 is an extreme outlier in terms of 
downloads. However, Grubb’s test requires normal distribution, and as the data better fits a 
long-tailed distribution, we can not trust the test completely but simply use the result as an 
indicator.  
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We might also want to draw the cluster memberships in a hierarchical agglomerate 
structure, such as a dendrogram which was described in section 8.6.2. Comparing the 
dendrogram in Figure 11-5 with the cluster plot, we identify roughly the same classifications, 
only illustrated in a different way.  

 

Figure  11-5  – Cluster dendrogram in R 

 

11.2.3 Principal component analysis (PCA) 

The above clustering and its plots only display the two primary components (number of 
downloads and updates) along the x and y axes. It is often interesting when doing principal 
component analysis (PCA) to identify these components, and order them by variance impact. 
This can be done programmatically in R as follows, using the princomp() and summary() 
functions: 
 
> tabell <- read.csv("csvfile.csv", header=TRUE) 
> tabell <- na.omit(tabell) 
> fit <- princomp(tabell, cor=TRUE, na.action = na.exclude) 
> summary(fit) 
Importance of components: 
                          Comp.1    Comp.2    Comp.3    Comp.4     Comp.5 
Standard deviation     1.4590274 1.1174517 0.9297381 0.8173957 0.29998694 
Proportion of Variance 0.4257522 0.2497396 0.1728826 0.1336271 0.01799843 
Cumulative Proportion  0.4257522 0.6754918 0.8483744 0.9820016 1.00000000 
 

The cumulative proportion of variance can be plotted, as shown in Figure 11-6, by: 
 
> plot(fit,type="lines") 
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Figure  11-6  – Aggregate variance by component 

 

It is also possible to render the PCA in a biplot, such as Figure 11-7, a double-purpose 
plot type designed by Gabriel in 1971 [117]. It plots both data entries and the components in 
the same plot, also indicating how components interwork. In R, it is invoked as follows: 
 
> biplot(fit) 
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Figure  11-7  – Biplot over components and observations 

 
As for interpretation of a biplot, some guidelines are described in [119]: 
 

• The cosine of the angle between a vector and an axis indicates the importance of the 

contribution of the corresponding variable to the axis’ dimension. 

• The cosine of the angle between vectors indicates correlation between variables. 

Highly correlated variables point in the same direction; uncorrelated variables are at 

right angles to each other. 

• Points that are close to each other in the biplot represent observations with similar 

values. 

• You can approximate the coordinates of an observation by projecting the point onto 

the variable vectors within the biplot. 

 
We can, for instance, again see that the number of ratings follows the number of 

downloads (quite logically) as the angle between their vectors is small. Similarly, the number 
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of updates follows the number of released app versions which is also instinctively true. Using 
the axes and data points, projection onto the axes of two primary components displayed 
approximates their variables. As an example, app number 8 has attracted a relatively high 
number of both downloads and updates, while app number 7 has fewer downloads than 
updates. App number 2 is on the other hand very light-weight both in terms of downloads and 
updates. Also note how the biplot follows the correlation matrix from section 11.2.1. 
 

11.3  Analysis results 

Which trends and findings can we extract from all of the above? Is the data reliable? Is it 
in line with what others have found? And can the theoretical models described in this thesis 
report be applied to our dataset? This chapter breaks down the key discoveries of our 
statistical analysis. 

11.3.1 Findings 

First off, we may describe the variance impact per component. In our sample, the number 
of downloads account for about 43% of the variance, and the number of updates for an 
additional 25%. The two first principal components, then, account for an aggregated 68% of 
variance, which means they are the two metrics that vary the most. 

 
As for distribution, an interesting finding is that Pareto’s 80-20 rule (law of the vital few), 

described in section 8.4, is relevant for our dataset. Out of the 16 apps used in the analysis, 3 
of them (= 18.75%) account for 85% of the downloads, and similarly, 3 of the 16 apps 
account for 68% of the reviews.  

 
As for an approximate distribution of downloads, using regression analysis in OpenOffice 

Calc, we find a function with 0.91 in R2 value (goodness of fit), which should be considered 
to be very accurate. The long-tailed distribution is present also in this dataset, as can be seen 
in Figure 11-8. 

 

 

Figure  11-8  – In-house app download distribution and regression analysis model 
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Another application somewhat relevant to Pareto’s 80-20 rule is the rating distribution. It 
seems as if most app users would either rate an app as ‘very good’ (5/5) or ‘very bad’ (1/5). 
Basically, a user does not generally make an effort to review an app that was perceived to be 
average – hence strong satisfaction or dissatisfaction is required to motivate the user to write a 
review. 
 
The rating distribution in our dataset had an aggregated share of ‘either 1/5 or 5/5’ of about 
79%. The distribution per app is displayed below in Figure 11-9 as a bar chart: 
 

 

Figure  11-9  – Bar chart over rating distribution: 1 or 5 versus 2, 3 or 4 

 
 
 

In further analyzing the ratings, there is a strong correlation between the average rating of 
an app, and the percentage of users who have rated it. On average, each app in the dataset was 
rated by 2% of its downloaders. For the top rated apps this figure was in two instances over 
10%. These results gave a Pearson correlation of 0.68 between the percentage of reviewers 
and the average rating – although it should be stated that some calculations rely on very few 
observations. Regardless, this correlation shows the importance of encouraging power-users 
of an app to actually write a review. This goes especially for paid apps – even though only 5 
out of 16 apps were ‘paid’, they accounted for 65% of total reviews.  

 
Analyzing actual review content, I used my web platform to filter out the trending 

keywords from all reviews. Again, the keywords form a long-tail like distribution, which 
could be very close estimated by a power distribution function (R2 > 0.98). This long-tail is 
apparent in Figure 11-10. 
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Figure  11-10  – Keyword frequency distribution (words common in reviews) 

 
As previously mentioned, many of these words were adjectives, names, or other words of 

little significance, which is why the words should first be filtered against a compiled list of 
common stop words before put this analysis into real-world use. Another method is to just 
filter out nouns. Regardless, it is still conceptually very interesting that most reviewers seem 
to be discussing the same issues or features. This suggests that correctly aligned updates can 
heavily increase the customer’s satisfaction. Hopefully the keyword mining tool will be of 
assistance in this pursuit. 

 
The nominal values (app platform) and labels applied by me onto the app set could not be 

used in computational statistical methods mentioned in this chapter. However, using 
RapidMiner [81] they could be plotted for a visual overview. For instance, in Figure 11-11 
(with logarithmic x axis for readability), we see download figures indicated with their type 
(free/paid) and platform. A general summarization might be that the most downloaded apps 
are paid, and that iOS apps attract more downloads than those on Android. 
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Figure  11-11  – Dual-axis binominal chart: free/paid and Android/iOS apps 

In fact, RapidMiner provides for a very useful ‘scatter matrix’ that plots all components 
pairwise against each other. This gives a top-down view with just a few clicks. As we can see 
in the cropped-out excerpt shown in Figure 11-12, obviously below the diagonal all charts are 
simply mirrored in that the two axes have switched places. 
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Figure  11-12  – Excerpt from scatter matrix in RapidMiner 

11.3.2 Comparison against third-party findings 

Some of the above findings can be compared to publicly available figures. For instance, 
our finding that the two ‘extreme’ ratings (1/5 and 5/5) account for 79% of reviews can be 
compared against ratings of the top-25 Android apps [122]. While naturally the averages are 
higher in the toplist than for our own dataset, the percentage of downloaders who wrote a 
review was upwards of 6%. This reveals that the top apps were three times more likely to 
attract a review than the apps in our dataset.  

 
The aggregated share of ratings ‘1 or 5’ were also even bigger for these 25 apps than for 

our dataset, with the average being more than 86%. As the very top of the rankings may be 
skewed, I attempted to find another source for comparison – as the Android figures generally 
seem more publicly available, I used them once again as benchmark. In [123], the author  
scraped more than 5.6 million app reviews and their ratings, and found the distribution shown 
in Figure 11-13. 
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Figure  11-13  – Distribution of Android Market/Google Play apps [adopted from 123] 

 
 

Summing up the shares for 1/5 and 5/5 once again, the aggregate is 67.5%, slightly less 
but still within what could be considered applicable for the “law of the vital few”.  

11.4  Recommendations for further analysis 

Lack of support for nominal values is an obvious drawback in the analysis that was 
performed. It would be very useful to be able to cluster apps by the type of their smartphone 
platform, whether they are promotional or commercial, and so forth. Either an alternative 
statistical method that can handle nominal values could be used – the polycor R package [121] 
looks promising but was omitted for lack of time – or manual conversion into ordinal scales 
could be attempted.  
 

Clustering and PCA are inherently limited in that we only choose to focus on select 
components. As in this case, the number of downloads and the number of updates are the two 
principal components, the clustering based on these components might not be very 
meaningful for the developer. The Pearson correlations are also limited in that they do not 
distinguish between cause and effect – does the number of ratings increase downloads, or is it 
simply that an app with many downloads has more users and therefore get more reviews? A 
larger dataset could possibly assist in differentiating cause from effect. 

  
A more interesting approach would probably be to embed session tracking libraries such 

as Google Analytics [59] or Flurry [63], and then cluster apps by average app session lengths, 
retention rates, and other in-depth metrics. As these libraries have to be included in the app 
executable before publication on the marketplace, this is a company policy decision for the 
future. There are clearly strong financial incentives for using such libraries, as they could help 
to decide which business models would generate most revenue – should apps use in-app 
purchases, rely on embedded advertisements’ or simply be sold as one-time purchases? The 
answer is of course highly dependant on each app’s usage pattern.  
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Additionally, including this tracking could enable many new metrics to be available, such 
as OS version, screen size, and other technical specifications. Some of the latter figures are 
available in the Developer Console, but not offered over their API. Finally, one very powerful 
benefit of embedding tracking libraries into apps is the option to send arbitrary variables back 
to the developer. Anything can be recorded. As an example, for location based apps, knowing 
the GPS signal strength and (coarse) location could be extremely useful. For commercial apps, 
measuring the conversion rate and in-app sales figures are both obviously highly interesting. 

 
RapidMiner would be a good choice for these future, more in-depth analyses, based on my 

initial tests. This program enables abstract model generation as a process flow; importing, 
formatting, filtering, and analyzing data as building blocks. Below is an example process flow 
in RapidMiner, where two data sets (purple blocks) are imported, of which one is the training 
dataset and the other is the set we want to make estimations on. The training data is filtered 
for missing values (pink) and other anomalies before a polynomial regression model is created 
(green), and applied directly onto the second dataset. 

 

 

Figure  11-14  – Process development view in RapidMiner 

 
 
 
The most interesting aspect of these modelling capabilities, is that if an app company 

decides to include session tracking libraries into their future apps, this could potentially 
generate enough data to develop a model that could estimate the corresponding values for 
older apps that lack the session based tracking.  

 
Even for manual comparison, session based metrics can be compared against public data 

sources, such as the OurMobilePlanet initiative [52] where populations of recorded 
demographics have responded to questions regarding their mobile use and behaviour. 



92 
 

12 Conclusions 
This chapter summarizes the entire thesis project by making a few remarks and stating 

some conclusions. The chapter covers both the theoretical side of app statistics and the 
implementation of the web platform, ending with an outline of suggestions for future work 
and some reflections around the possible privacy issues that could ensue, if and when the 
developed platform starts to track app sessions on an individual level. 

12.1  Conclusion 

Limitations in first-party API’s are unfortunate, as these limitations prevent access to 
some highly interesting data. For instance, when doing a manual import of CSV files from 
Google Play Developer Console, we may separate app ratings and downloads per device 
(manufacturer and model). This is to my knowledge currently not available even through use 
of any third-party API. Even though this is available when logging in to the Developer 
Console, it would be very useful for automating bug tracking if we could find trends 
automatically. A concrete example from the app company involved in this thesis, is a recent 
scenario with an Android app that had a bug only present in Sony Ericsson phones of a certain 
model. This particular bug was found manually, but had the Google Play API allowed for 
extraction of app crashes per device model, it could have been found programmatically in an 
automated fashion. Hopefully, it is only a matter of time and API maturity before this data can 
be readily accessed by developers. 

 
The necessity to use third-party APIs has taught me the importance of designing software 

in a modular fashion, so that a data source or back-end may be easily replaced by another. 
Who knows which services might be available tomorrow? The best advice I could give 
someone who wanted to make their own smartphone app tool is to collect all data – enable 
the database schema to store all possible data, from all possible data sources, and start 
gathering data as soon as possible. Determining how to use and display the data is a later task, 
but the data might not be there to import tomorrow. However, a solid database schema 
facilitates tasks such as writing SQL queries against the database. Other points to consider in 
the design phase, is to separate front- and back-ends (sending data formatted as JSON, XML, 
or a similar format) which makes it easier to port the tool onto another platform in the future. 
Because of the 14-day history limitation for App Store data, the locally stored data has 
already proved helpful. 

 
The web platform implementation came to revolve more than originally planned around 

the qualitative metric: review comments. As no third-party APIs seem to extract detailed 
information from reviews, this seems to be a useful function for the in-house platform. 
Bucketing keywords transforms the qualitative texts into quantitative frequencies, enabling 
ranking of words or tags based on their popularity. The resulting ‘word cloud’ and ‘trending 
review keywords’ have already proven useful to the company, with actual live use cases for 
the company’s clients. 

 
The statistical analysis was initially expected to use a multitude of software tools - but in 

the end OpenOffice Calc and R with some additional packages were able to cover all major 
statistical methods discussed in the theory section. RapidMiner was also used briefly. The 
analysis itself follows the same theme as the web platform implementation – all the charts and 
R scripts are there, ready to be applied with more and better data. It has to be said that 
clustering is not particularly relevant in its present stage, but will instantly become more 
useful if the company distributes apps with session tracking capabilities. 
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Evaluating the final implementation outcome: all three primary goals were achieved, with 

the exception of some manual import file formats. As data import was automated, it is not as 
important however. The secondary goals were in most cases taken to a proof-of-concept level, 
with the API as the notably most interesting functionalty.  

 
Even at its current stage, the statistical findings are already helpful to the app developer. 

Some examples include the tendency that apps attract most downloads during weekends, the 
correlation between more app versions and higher average rating, and the fit of the Pareto 80-
20 rule upon both review keyword distribution and the aggregated share of 1/5 and 5/5 ratings. 
The latter indicates that a focused effort towards a few critical bugs or feature requests 
(specifically those that most reviewers mention), could dramatically improve the app average 
rating. In turn, it could be speculated that this effort would prevent many of the 1/5 reviews 
from ever being submitted, which could be another contributing factor to a higher average 
rating. The apps in the case study data set could also be divided into at least three different 
basic clusters based on their statistical profiles. 

12.2  Future work 

The ideal next addition to the app statistics platform would indeed be for all the 
company’s apps to include a session tracking library, such as either Google Analytics [59] or 
Flurry [63]. This would enable more in-depth reports, more useful clustering and trend finding 
possibilities, and provide a good way of collecting demographics and vendor/handset model 
statistics. These libraries support sending app-specific variables from the app source, which 
makes the data collection possibilities nearly unlimited. As mentioned, session tracking could 
also prove useful for decision-making in terms of choosing the optimal app business model. 

 
As for statistical modelling, it would be interesting to try and model an app’s interest over 

time; the number of daily downloads as a function of days passed since release. There are 
complications when developing such a model, as for instance app version updates will of 
course influence the app’s interest. A simplified model that assumes one single app version 
without updates could be a starting point. 

 
Hopefully, Google and Apple will in a not too distant future improve their APIs so that the 

data importation scripts that have been developed can migrate to using first-hand data sources, 
rather than depending on third-party APIs. In such an event, it would probably be wise to 
collect and save data from all sources in parallel during a transition period, to verify 
consistency. Even if neither Google nor Apple provide better data access in the future, there 
are some other data sources available if one is willing to pay for the service, such as Applyzer 
[101] and Appfigures [102]. All the tools evaluated in this thesis were free of charge in the 
versions that were tested. The additional libraries mentioned were either left for future work 
because of time limitations or the fact that they were associated with costly subscriptions. 

 
Feature-wise, the most desired new feature would be to implement the alerts/trigger 

system. Setting up filters for automatic statistics monitoring, with alert emails sent out when 
applicable, would reduce the current workload of having to periodically watch each app 
manually. General code clean-up and refactoring should then be undertaken, and a thorough 
documentation must be produced in the event that a programmer other than myself should 
overtake responsibility for the in-house app statistics tool. 
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After deploying the implementation from my development laptop onto a production server 
– and verifying that functionality is still intact – the web platform can gradually be put into 
use. During the first stage it might be only used internally for the company’s purposes, such 
as tracking and generating PDF reports for the company’s own use. Gradually, select 
customers of the app publisher may then be invited and be given their own login accounts to 
try out the platform – at first they may receive read-only accounts; but if everything works as 
intended their accounts could be upgraded to full privileges. It is my belief that this gradual 
roll-out will help to locate existing bugs or issues. 

12.3  Reflections 

Besides the technical requirements on the server environment that is necessary before 
deployment to production, there are some legal and ethical aspects to address before making 
the web platform publicly accessible. 

 
As the planned additions listed in section 12.2 include integrating live per-user session 

data for tracking purposes, the question of personal integrity becomes important, not only 
from a company’s goodwill perspective but also legally. 

 
SDKs for measuring user session data are normally clear about their terms. For instance, 

Google Analytics clearly state in their Terms & Conditions (T&C) that “You will not (and 
will not allow any third party to) use the Service to track, collect or upload any data that 

personally identifies an individual (such as a name, email address or billing information), or 

other data which can be reasonably linked to such information by Google.” [104]. Normally, 
these app sessions are identified by a anonymized nonce or number rather than actually 
transferring personal data such as name or email. This setup is very much similar to the 
previously mentioned IDFA used by Apple on their iDevices [51]. 

 

This aligns well with the Swedish personal data integrity laws, Personuppgiftslagen 
1998:204 (PUL) [114], which states that any gathered data in a structured setup must abide by 
certain directives according to Swedish law. As the supervising government agency 
Datainspektionen clarifies [103], any database storage of data would automatically be 
categorized as a structured setup. Related policies also require any site owner to inform their 
users whenever cookies are used for storing personal information. These integrity and legal 
matters must be addressed before deploying the app statistics platform onto a production 
server. 
 

In order to understand the importance of carefully designing any user identifiers, one just 
has to look at mistakes done by large online companies such as Netflix [130]. In an attempt to 
crowdsource a 10% more effective algorithm for calculating movie recommendations, Netflix 
released (what they believed to be) anonymized data sets over movie rentals. Two students 
from Texas University soon were able to reverse engineer and thus reveal the unobfuscated 
data. After settling lawsuits from users who claimed privacy damages, Netflix eventually 
called off their second contest [130]. Such scenarios highly stresses why thought must go into 
the privacy and legal issues that arise when handling personal and sensitive information.
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