
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

P E T E R S K O G S B E R G

 Quantitative indicators of a successful
mobile application

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Quantitative indicators of a

successful mobile application

Peter Skogsberg

pesk@kth.se

Master of Science Thesis

Examiner: Professor Gerald Q. Maguire Jr.

Academic supervisor: Professor Gerald Q. Maguire Jr.

Industrial supervisor: Kenneth Andersson, The Mobile Life

Communication Systems

School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

i

Abstract

The smartphone industry has grown immensely in recent years. The two leading platforms,
Google Android and Apple iOS, each feature marketplaces offering hundreds of thousands of
software applications, or apps. The vast selection has facilitated a maturing industry, with
new business and revenue models emerging. As an app developer, basic statistics and data for
one's apps are available via the marketplace, but also via third-party data sources.

This report regards how mobile software is evaluated and rated quantitatively by both end-
users and developers, and which metrics are relevant in this context. A selection of freely
available third-party data sources and app monitoring tools is discussed, followed by
introduction of several relevant statistical methods and data mining techniques. The main
object of this thesis project is to investigate whether findings from app statistics can provide
understanding in how to design more successful apps, that attract more downloads and/or
more revenue.

After the theoretical background, a practical implementation is discussed, in the form of
an in-house application statistics web platform. This was developed together with the app
developer company The Mobile Life, who also provided access to app data for 16 of their
published iOS and Android apps. The implementation utilizes automated download and
import from online data sources, and provides a web based graphical user interface to display
this data using tables and charts.

Using mathematical software, a number of statistical methods have been applied to the
collected dataset. Analysis findings include different categories (clusters) of apps, the
existence of correlations between metrics such as an app’s market ranking and the number of
downloads, a long-tailed distribution of keywords used in app reviews, regression analysis
models for the distribution of downloads, and an experimental application of Pareto’s 80-20
rule which was found relevant to the gathered dataset.

Recommendations to the app company include embedding session tracking libraries such
as Google Analytics into future apps. This would allow collection of in-depth metrics such as
session length and user retention, which would enable more interesting pattern discovery.

Keywords: mobile, smartphone, application, app, Android, iOS, statistics, data, metrics,
quantitative, measure, downloads, rating, Pareto, successful, developer, publisher, data mining,
R, ETL, API

iii

Sammanfattning

Smartphonebranschen har växt kraftigt de senaste åren. De två ledande operativsystemen,
Google Android och Apple iOS, har vardera distributionskanaler som erbjuder
hundratusentals mjukvaruapplikationer, eller appar. Det breda utbudet har bidragit till en
mognande bransch, med nya växande affärs- och intäktsmodeller. Som apputvecklare finns
grundläggande statistik och data för ens egna appar att tillgå via distributionskanalerna, men
även via datakällor från tredje part.

Den här rapporten behandlar hur mobil mjukvara utvärderas och bedöms kvantitativt av
båda slutanvändare och utvecklare, samt vilka data och mått som är relevanta i sammanhanget.
Ett urval av fritt tillgängliga tredjeparts datakällor och bevakningsverktyg presenteras, följt av
en översikt av flertalet relevanta statistiska metoder och data mining-tekniker. Huvudsyftet
med detta examensarbete är att utreda om fynd utifrån appstatistik kan ge förståelse för hur
man utvecklar och utformar mer framgångsrika appar, som uppnår fler nedladdningar
och/eller större intäkter.

Efter den teoretiska bakgrunden diskuteras en konkret implementation, i form av en intern
webplattform för appstatistik. Denna plattform utvecklades i samarbete med apputvecklaren
The Mobile Life, som också bistod med tillgång till appdata för 16 av deras publicerade iOS-
och Android-appar. Implementationen nyttjar automatiserad nedladdning och import av data
från datakällor online, samt utgör ett grafiskt gränssnitt för att åskådliggöra datan med bland
annat tabeller och grafer.

Med hjälp av matematisk mjukvara har ett antal statistiska metoder tillämpats på det
insamlade dataurvalet. Analysens omfattning inkluderar en kategorisering (klustring) av appar,
existensen av en korrelation mellan mätvärden såsom appars ranking och dess antal
nedladdningar, analys av vanligt förekommande ord ur apprecensioner, en
regressionsanalysmodell för distributionen av nedladdningar samt en experimentell
applicering av Paretos ”80-20”-regel som fanns lämplig för vår data.

Rekommendationer till appföretaget inkluderar att bädda in bibliotek för
appsessionsspårning, såsom Google Analytics, i dess framtida appar. Detta skulle möjliggöra
insamling av mer detaljerad data såsom att mäta sessionslängd och användarlojalitet, vilket
skulle möjliggöra mer intressanta analyser.

Nyckelord: mobil, smartphone, applikation, app, Android, iOS, statistik, data, mätvärden,
kvantitativ, mätning, nedladdningar, betyg, Pareto, framgångsrik, utvecklare, utgivare, data
mining, R, ETL, API

v

Acknowledgements

Many thanks go to my academic supervisor and examiner at KTH Royal Institute of
Technology, Professor Gerald Q. Maguire Jr., who has been very helpful with extensive
feedback throughout the writing process. My academic opponent, Sarwarul Islam Rizvi, also
contributed with helpful report feedback.

Thanks also go to my industrial supervisor Kenneth Andersson at the company The
Mobile Life [129], whose ideas for implementation and functionality of the web platform has
been highly useful.

Special thanks go to Professor Michael D. Smith, co-author of [30], and Jan Katrenic from
[122], for taking the time to correspond with me via email to explain details of their respective
works.

Finally, I wish to thank Remco van den Elzen at Distimo [126] and Christian Poppelreiter
at Flurry [125] for their kind permission to use their graphs and illustrations in this thesis.

vii

Table of Contents

Abstract..i
Sammanfattning.. iii
Acknowledgements ..v
Table of Contents..vii
List of Figures..xi
List of Tables .. xiii
List of abbreviations ...xv
1 Introduction ..1
2 Background...3
3 Smartphone platforms...5

3.1 Google Android ...5
3.1.1 Devices ...5
3.1.2 Marketplace – Google Play ..6

3.2 Apple iOS...6
3.2.1 Devices ...6
3.2.2 Marketplace – App Store ..6

3.3 Mobile web ..7
3.3.1 jQuery Mobile...8
3.3.2 PhoneGap..8

3.4 Others ...8
3.4.1 Windows Phone..8
3.4.2 BlackBerry..9

4 Demographics ...11
5 Business models ...13

5.1 One-off payment ..13
5.2 Subscriptions..13
5.3 Free or ad-sponsored..13
5.4 Freemium ...14
5.5 In-app purchases ..14

6 Metrics ..17
6.1 Quantitative..17

6.1.1 Downloads ..17
6.1.2 User rating ..17
6.1.3 Active users (numbers and percentages) ..17
6.1.4 Category and Market (rank and share) ...18
6.1.5 Geographic region (rank and market share) ...19
6.1.6 Demographic (rank and share) ...19
6.1.7 Paying users (share)..20
6.1.8 Retention after a given time period ..20
6.1.9 Average time spent (session duration)..21
6.1.10 In-app revenue ..22
6.1.11 Funnel (conversion rate) ...22
6.1.12 Return rate (regret and bounce) ..23

6.2 Qualitative..23
7 Web-based data collection and analysis tools ..25

7.1 Apple App Store ..25
7.1.1 Publicly available ...25

viii

7.1.2 Developer account – iTunes Connect ...25
7.2 Google Play..26

7.2.1 Publicly available ...26
7.2.2 Developer account – Developer Console ...26

7.3 Google Analytics ...27
7.4 Flurry..29
7.5 Distimo...31
7.6 App Annie..32
7.7 TestFlight ...32
7.8 AppDailySales and Autoingestion...33
7.9 Google’s Our Mobile Planet ..33

8 Data mining and statistical analysis..35
8.1 Data mining phases and practices ..35

8.1.1 Pre-processing – Extract, Transform, and Load (ETL)35
8.1.2 Data mining – Task classes ..35
8.1.3 Results validation ...36

8.2 Pearson correlation (r-value)..36
8.3 Regression analysis and R2 ..36
8.4 Pareto principle and distribution..37

8.4.1 Experiment by Brynjolfsson, Smith, and Hu..37
8.4.2 Experiment by Garg and Telang...38
8.4.3 Attempt to replicate on my own dataset ...38

8.5 Principal Component Analysis ..39
8.6 Clustering...40

8.6.1 Fuzzy clustering..41
8.6.2 Dendrograms and cophenetic correlation ...42
8.6.3 k-means clustering..42
8.6.4 Analysing clusters – Jaccard index and Confusion matrix.................................43

8.7 Software for data mining ...44
9 Methodology...45

9.1 Summary ..45
9.2 Goals of Master Thesis ..45

9.2.1 Limitations..46
9.2.2 Primary goals ..46
9.2.3 Secondary goals ..46

9.3 Implementation outline ..46
9.3.1 Data collection..47
9.3.2 Back-end – database structure ..48
9.3.3 Back-end – API specification ...49
9.3.4 Front-end and visualization ..50
9.3.5 Abstract system architecture...51

10 Implementation phase..53
10.1 Login and authentication ..53
10.2 Menu – Structure and pages ...54

10.2.1 Dashboard ...54
10.2.2 App list..56
10.2.3 Reports ..56
10.2.4 Downloads ..58
10.2.5 Ratings ..59
10.2.6 Rankings ...60

ix

10.2.7 Revenue...61
10.2.8 Reviews...61
10.2.9 Session tracking ..63
10.2.10 User demographics..63
10.2.11 Import..63
10.2.12 Alerts...64
10.2.13 Settings..65

10.3 Data and database...67
10.3.1 Import – Initial backlog ..67
10.3.2 Import – Manual ...68
10.3.3 Import – Scheduled and automated...68
10.3.4 MySQL database queries and constraints ...70
10.3.5 Principles...70
10.3.6 Server requirements ..70
10.3.7 API outlines ..71

10.4 Milestone progress evaluation..72
11 Analysis ...76

11.1 SQL query analysis ..76
11.2 Statistical analysis ..77

11.2.1 Pearson correlations ..78
11.2.2 k-means clustering ..79
11.2.3 Principal component analysis (PCA) ..82

11.3 Analysis results ..85
11.3.1 Findings...85
11.3.2 Comparison against third-party findings ..89

11.4 Recommendations for further analysis...90
12 Conclusions ...92

12.1 Conclusion..92
12.2 Future work ..93
12.3 Reflections..94

References ..95
Appendix A – Sample API code...105

xi

List of Figures
Figure 3-1 – iPad percentage of iOS app downloads, by country [3] .. 6
Figure 3-2 – Mobile apps versus Web consumption (US), minutes per day [36] 7
Figure 3-3 – Flurry report on new project starts: RIM (BlackBerry) versus Microsoft

Windows Phone [14] .. 8
Figure 4-1 – Age distributions of high and low iOS app users, by age [19] 12
Figure 5-1 – 2012 development of in-app purchase revenue on App Store [3] 15
Figure 6-1 – Worldwide iOS & Android normalized revenue per rank [24] 18
Figure 6-2 – Download percentages by app genre [3].. 19
Figure 6-3 – Loyalty by app category [13]... 21
Figure 6-4 – Mobile Freemium Games: Average transaction size by age and sex

(amounts in US Dollars) [56] ... 22
Figure 6-5 – Sample screenshot of Flurry Funnel Analysis ... 23
Figure 6-6 – Common complaints mentioned in app reviews, by platform [10] 24
Figure 7-1 – Sample screenshot of iTunes Connect ... 26
Figure 7-2 – Sample screenshot of Google Play Developer Console....................................... 27
Figure 7-3 – Sample screenshot of Google Analytics: Visitors Flow 28
Figure 7-4 – Sample screenshot of a Flurry chart [63]... 29
Figure 7-5 – User interest in Flurry [63] .. 30
Figure 7-6 – Event log in Flurry [63] ... 31
Figure 7-7 – Sample screenshot of Distimo Analytics ... 32
Figure 7-8 – Sample screenshot of TestFlight.. 33
Figure 8-1 – Example of a poorly fitted linear regression in OpenOffice Calc 37
Figure 8-2 – Estimate of daily downloads at rank 300... 39
Figure 8-3 – Clustering of similar data entries ... 41
Figure 8-4 – Sample dendrogram for classes of vehicles ... 42
Figure 9-1 – The archive file containing Android .csv export data.. 48
Figure 9-2 – Sample JSON response output... 50
Figure 9-3 – Responsive design with Twitter Bootstrap (laptop version on the left and

smartphone version on the right) .. 51
Figure 9-4 – Abstract architecture of the app statistics platform and external services 52
Figure 10-1 – Login page after failed login attempt... 53
Figure 10-2 – Menu seen with different account privileges .. 54
Figure 10-3 – The dashboard page .. 55
Figure 10-4 – App list page ... 56
Figure 10-5 – Report generation.. 57
Figure 10-6 – Generated PDF report ... 58
Figure 10-7 – Downloads page.. 59
Figure 10-8 – Ratings page, by app ... 60
Figure 10-9 – Rankings by category.. 61
Figure 10-10 – Trending review keywords and word cloud ... 62
Figure 10-11 – Review page with tags applied ... 63
Figure 10-12 – Manual import of data... 64
Figure 10-13 – Dismissable user notices ... 64
Figure 10-14 – Settings page: first tab... 65
Figure 10-15 – Review tag filters ... 66
Figure 10-16 – Editing user permissions ... 67
Figure 10-17 – Batch import of CSV data with TxtToMy.. 68
Figure 10-18 – Scheduling import scripts in Windows... 69

xii

Figure 10-19 – Internal API request .. 72
Figure 11-1 – Metadata in RapidMiner ... 78
Figure 11-2 – Correlogram for components .. 79
Figure 11-3 – Clusplot in R: Four app clusters ... 80
Figure 11-4 – Clusplot in R: Three app clusters.. 81
Figure 11-5 – Cluster dendrogram in R... 82
Figure 11-6 – Aggregate variance by component ... 83
Figure 11-7 – Biplot over components and observations .. 84
Figure 11-8 – In-house app download distribution and regression analysis model 85
Figure 11-9 – Bar chart over rating distribution: 1 or 5 versus 2, 3 or 4................................. 86
Figure 11-10 – Keyword frequency distribution (words common in reviews) 87
Figure 11-11 – Dual-axis binominal chart: free/paid and Android/iOS apps.......................... 88
Figure 11-12 – Excerpt from scatter matrix in RapidMiner .. 89
Figure 11-13 – Distribution of Android Market/Google Play apps [adopted from 123] 90
Figure 11-14 – Process development view in RapidMiner ... 91

xiii

List of Tables
Table 1 – Worldwide device sales by operating system 3Q12 [4] ... 5
Table 2 – Age and income distributions: Android and iPhone [18]... 11
Table 3 – Different mobile ad types [69] ... 14
Table 4 – Mobile App Store downloads, worldwide, 2010-2016 (millions of downloads)

[5].. 14
Table 5 – Sample data suitable for clustering... 41
Table 6 – Sample confusion matrix .. 43
Table 7 – iOS report database structure.. 49
Table 8 – Clearance levels for user accounts ... 53
Table 9 – Valid API request types.. 71
Table 10 – Milestone progress of primary and secondary goals .. 72
Table 11 – Compiled data and metrics for in-house apps .. 77

xv

List of abbreviations
AJAX Asynchronous JavaScript and XML

ANR Application Not Responding

API Application Programming Interface.

APK Application PacKage file format

ASCII American Standard Code for Information Interchange

BB BlackBerry

CEO Chief Executive Officer

CSS Cascading Style Sheets file format

CSV Comma-Separated Value file format

DAU Daily Active Users

DB DataBase

DBMS DataBase Management System

ETL Extract, Transform, Load

GUI Graphical User Interface

GZ GNU Zipped Archive

HTML HyperText Markup Language

IDE Integrated Development Environment

iOS A trade name for Apple’s OS

iTC iTunes Connect

JDE Java Development Environment

JSON JavaScript Object Notation

KDD Knowledge Discovery in Databases

IDFA IDentifier For Advertisers

IETF Internet Engineering Task Force

IPA IPhone Application file format

MAU Monthly Active Users

MIME Multipurpose Internet Mail Extensions

PC Personal Computer

PCA Principal Component Analysis

PDA Personal Digital Assistant

PDF Portable Document Format

PEAR PHP Extension and Application Repository

PHP Hypertext PreProcessor

PUL PersonUppgiftsLagen

OLAP OnLine Analytical Processing

OS Operating System

QA Quality Assurance

QWERTY The layout of ‘normal’ full-size computer keyboards

R The name of a widely used statistics program

REST REpresentational State Transfer

RFC Request For Comments

RIM Research In Motion

RSS Really Simple Syndication

SDK Software Development Kit

SKU Stock-Keeping Unit

SMM Social Media Monitoring

xvi

SMTP Simple Mail Transfer Protocol

SSL Secure Socket Layer

SQL Structured Query Language

T&C Terms & Conditions

TLS Transport Layer Security

TXT TeXT file format

UDID Unique Device Identifier

UNIX UNiplexed Information and Computing System

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAMP Windows, Apache, MySQL, PHP

WAU Weekly Active Users

WCSS Within-Cluster Sum of Squares

WP Windows Phone

XAP Silverlight Application file format

XML. EXtensible Markup Language

XNA Xbox New Architecture

1

1 Introduction

The smartphone paradigm shift has caused an immense increase in the number and variety
of mobile applications, or apps for short. The two leading mobile platforms, Google’s
Android OS and Apple’s iOS, come with app catalogues – often called markets – each
exceeding 700,000 apps [1]. In terms of numbers of downloads, the Google Play store has
surpassed 25 billion app downloads (and probable installations1) [2].

Developers and publishers are becoming increasingly interested in gathering and
exploiting data to improve their app’s ratings and sales. There are clearly strong financial
incentives for doing so. For example, according to financial analyst firms, a typical day on the
Apple App Store yields in excess of US$15M in revenue [3], in a market that increased 47%
since the same quarter last year [4]. ABIresearch projections that total mobile app revenues
will be up to $46 billion in 2016 [20].

While both the Apple App Store and Google Play provide basic data regarding the number
of downloads, user ratings, and demographics; more in-depth data (see chapters 6.1.8 through
6.1.12) that could be useful to publishers is often unavailable. Although there may be in
aggregate a lot of data about apps, this data is not always publicly available or if it is available
it may not be easily accessible. This gap has facilitated the rise of third-party analyst firms
and tools, such as Flurry [125], Distimo [126], App Annie [127], and TestFlight [128], among
others. (We will look at each of these in detail in sections 7.4, 7.5, 7.6, and 7.7; and the final
sections of Chapter 7.)

These tools provide for access to more specific data about individual applications, but this
data is still not sufficient from a developer’s or publisher’s perspective. There is also a sense
of risk in not actually owning and controlling the data, when simply viewing this data via
some third-party’s website.

The introductory chapters will focus on the theoretical background needed to understand
the rest of the thesis, including a brief market competition analysis; descriptions of the most
commonly used & measured metrics for assessing apps, and a description of some of the
existing third-party tools. Also a brief presentation of some data mining and statistical
analysis tools that could be applied to the collected app data is given in Chapter 8.

Due to the immaturity of the smartphone industry, there exist only a small number of
scientific papers on subject matter related to this thesis project. However, I have attempted to
reference as much of the relevant recent material as possible when citing the relevant statistics.
A thorough description of the current situation will be helpful when evaluating the
implementation phase of this work, which consists of designing, implementing, and
evaluating an in-house smartphone app statistics web platform.

1 The app store can only really count downloads and does not know if the user has actually installed or continues
to use any specific application.

3

2 Background

Official mobile app statistics are available from the marketplaces, such as Google Play
and Apple App Store. However, these are often insufficiently detailed for an app publisher’s
needs. The interim solution of third-party data tools that gather and compile additional data
are often based on the premise that app publishers are willing to share their official
marketplace credentials with this third party, so that their software may act on the app
publisher’s behalf. These third party tools are generally web-based tools that restrict access to
some of the raw data. Additionally, while these third party tools may be useful for generating
simple charts and reports, they are often not suitable for spotting trends. In addition there are
third party tools that require modifications of the app itself, for example to embed specific
libraries for tracking purposes.

The optimal app statistics solution would be in-house in order to avoid dependence on
external services that may or may not exist in the future or whose cost may increase. Storing
all app metrics in a local database would also be an advantage over a third-party site where
the data is read-only for the app developer. A single local data source offers better
possibilities for statistical analysis and ensures traceability of the data. The size and system
requirements should not be substantial, either. Normally, all data is also anonymized for
personal integrity reasons.

What is conceptually very interesting is to combine many of the existing app statistics
tools into a complete solution covering all aspects from demographics and device distribution,
to number of downloads and rating version tracking, market ranking based on category and
region, in-app usage patterns, app review analysis, and even automatic handling of bugs and
software issues. Of course, for relative comparison of ones own apps versus competition some
reliable third-party data sources must still be used. Nonetheless, having access to data for all
these areas could potentially be a very powerful tool. Giving selected customers access to it
would be even more powerful.

Controlling the database also creates the possibility for sharing this app data with others.
This sharing might be done by using a specific API or by allowing read-only access to some
portion of or the entire database by others. Another possibility is RSS feeds. For instance, an
app publishing firm may share statistics for App A with Company B over a web service which
ensures that only Company B can access the data about App A. Company B could embed or
further publish this data on their own, subject to their agreement with the app publishing firm
who provide this data. The statistics platform could provide semi-automated report generation,
which currently requires considerable manual effort to compile the statistics obtained from
several different sources.

5

3 Smartphone platforms

This chapter briefly reviews the dominant standards for smartphones, their history, and
features. In addition, the chapter provides some statistics about these platforms.

As Android and iOS together account for approximately 86% of the total smartphone
market [4], this chapter as well as the rest of this thesis will focus on these two platforms, but
we will mention several of the smaller competing platforms, such as Windows Phone and
BlackBerry with 2.4% and 5.3% market share (respectively) [4].

While Android is doing very well, now having 72% of the market up from 53% at the
same quarter last year (see Table 1), it should be noted that some analysts forecast that iOS
will regain some of the market. It is believed that many potential “iDevice” buyers were
awaiting an upgrade until Apple’s iPhone 5 was released just recently, or they were awaiting
the release of the iPad Mini.

Table 1 – Worldwide device sales by operating system 3Q12 [4]

 3Q12 3Q11

Operating System thousand units Market Share

(%)
thousand units Market Share

(%)

Android 122,480.0 72.4 60,490.4 52.5

iOS 23,550.3 13.9 17,295.3 15.0

Research In Motion 8,946.8 5.3 12,701.1 11.0

Bada 5,054.7 3.0 2,478.5 2.2

Symbian 4,404.9 2.6 19,500.1 16.9

Microsoft 4,058.2 2.4 1,701.9 1.5

Others 683.7 0.4 1,018.1 0.9

Total 169,178.6 100.0 115,185.4 100.0

3.1 Google Android

The Android platform is an open-source Linux-based operating system controlled largely
by Google in a coalition with more than 300 partner companies [6]. It was first publicly
released in 2008 and is at the time of publication at version 4.2, also called Jelly Bean. The
Android Software Development Kit (SDK) is free and based on the Java programming
language.

3.1.1 Devices

In addition to a plethora of different smartphones, Android is also a popular OS choice for
vendors of tablets, media center systems, and other consumer electronics, as it does not come
with substantial license costs. While Android’s versatility has given it a dominant position in
the smartphone OS race, the diversity of devices that are running Android has led to device
fragmentation, which is often criticized by developers, as they find it increasingly difficult to
support all the different types of hardware, screen sizes, and screen resolutions. An app
publisher recently collected user data from its ~700,000 users and found 3,997 different
models of Android-powered devices [7]. OS version fragmentation is also a burden with
regard to developers needing to consider backwards compatibility for their apps.

6

3.1.2 Marketplace – Google Play

Apps are officially distributed via the Google Play marketplace, previously known as
Android Market. This marketplace is unregulated with regard to pricing, which allows the app
publisher to decide which sales strategy they wish to employ: priced, free, subscriptions, in-
app purchases, or combinations thereof. The app publisher keeps 70% of the revenue, with
Google and its partners getting 30% [8]. The registration fee for this marketplace is a one-
time cost of US$25. However, since the Android OS is open, another possibility is to
distribute apps via third-party marketplaces or directly to the end-user via executable
containers in the “.apk” file format. Apps published on Google Play are not specifically
evaluated or verified by Google, so the responsibility for quality assurance lies solely with the
app publisher.

3.2 Apple iOS

Apple released its first iPhone in 2007 [9], powered by the first version of iOS which can
be seen as a light-weight version of the Mac OS. The latest version, released jointly with
iPhone 5, is iOS 6 [27]. Unlike Android, iOS is proprietary software and has not been licensed
to third-party hardware manufacturers.

Native apps developed for iOS are written in Objective-C with the Cocoa Touch
framework, using the developer environment Xcode [28]. While Android development is
open for all platforms, Xcode requires an Apple Macintosh computer. The SDK and other
necessary software are free, but limited to testing of the app running on an iOS emulator. For
testing on physical iDevices and to publish apps in Apple’s App Store, a $99/year license is
required.

3.2.1 Devices

Apple’s product range is known for being relatively small, uniform, and compatible. The
company ships four device series with iOS: iPod, iPhone, iPad (including the most recent iPad
Mini), and Apple TV (a media center TV set top box). The tightly-controlled product family
has ensured fewer problems with backwards compatibility and fragmentation than is the case
with Android, at the expense of few choices available to the consumer. Figure 3-1 shows the
difference in iPad use as percentage of the total iOS use, by country.

Figure 3-1 – iPad percentage of iOS app downloads, by country [3]

3.2.2 Marketplace – App Store

Each iOS app is verified by Apple before the app is accepted into the App Store. This
evaluation is according to the guidelines and recommendations [33] that the developer had to
accept when enrolling in the iOS Developer program. This process usually takes a week or so.
Just as for Android, the revenue from sold apps are shared 70-30 between the app publisher
and Apple [12]. There is support for in-app advertisements and in-app purchases as well.

7

However, app distribution via other channels is very limited, although Apple permits ad hoc
distribution of an app in the executable container “.ipa” file format on up to 100 iOS devices
per app per email or server. Apple also has a mechanism for within company distribution of
an app via the Apple iOS Enterprise Distribution program [89].

While Google Play saw a big increase in numbers of app downloads and market share
during 2012, the Apple App Store was far more successful financially for developers. For
every $1 a developer made on an iOS app, he or she would make approximately $0.24 on the
corresponding Android version of the app [21].

A simplified explanation for the great App Store advantage in profitability is the higher
average app price for iOS [10] and that iDevices generally attract a higher-income customer
base, as will be detailed in chapter 4 of this report. However, as we will see in following
chapters, there are more profound explanations related to the difference in app business
models.

3.3 Mobile web

While not a ‘platform’ per se, mobile websites are another way for developers and
publishers to make their content available on smartphones. This approach has the inherent
advantage of being cross-platform, assuring the largest possible user base by default; although
studies show that thus far smartphone users prefer using an app over a mobile web site – in
fact users prefer apps to surfing the web in general (see Figure 3-2) – both desktop and mobile
editions of the web.

Figure 3-2 – Mobile apps versus Web consumption (US), minutes per day [36]

Another advantage of the mobile web is the relative maturity of the web and the number
of available tools and the inherent possibilities of user session tracking (e.g. with cookies), as
this enables powerful profiling using tools such as Google Analytics (see section 7.3 on page
27).

Some industry standards for the mobile web are settling. Additionally, there are
techniques to bridge the gap between apps and mobile web, while ensuring platform-
independence at the same time. Some of these techniques are described below.

8

3.3.1 jQuery Mobile

The jQuery JavaScript library that has been popular for the web for years and is available
in a mobile version, jQuery Mobile. This is a “touch-optimized web framework for
smartphones and tables” [37]. It is also compatible with HTML5. The library comes with
extra tools, such as drag-and-drop interface design and CSS plug-ins.

3.3.2 PhoneGap

For cross-platform mobile apps, PhoneGap has proven popular, with roughly 3.4% of the
Android market [35]. This mobile development framework, purchased by Adobe, enables
apps to be written in JavaScript, HTML5, and CSS; instead of the native programming
languages (e.g. Java for Android and Objective-C for iOS). This makes a PhoneGap app
platform agnostic. The difference from jQuery Mobile or other mobile web techniques is that
the app is compiled and packaged as a native executable file – for instance, one for iOS and
one for Android. Because of this, PhoneGap apps have access to the native OS libraries. The
developer does not even have to have access to any device, but simply uploads their source
code to a “cloud compiler” which will generate a platform executable for all the supported
platforms.

3.4 Others

There are some other key smartphone players, although collectively they share 14% of the
market (the remainder of the market left by Android and iOS). The primary contenders are
Microsoft with its Windows Phone and the BlackBerry platform, owned by BlackBerry
(formerly known as Research in Motion).

As shown in Table 1 (on page 5), BlackBerry controls 5.3% of the global smartphone
market while Windows Phone had 2.4% [4]. Recent data concerning newly started app
projects (see Figure 3-3) suggests that Windows Phone is reducing that gap.

Figure 3-3 – Flurry report on new project starts: RIM (BlackBerry) versus Microsoft Windows Phone [14]

3.4.1 Windows Phone

Windows Phone is Microsoft’s current platform (since 2010) [40] for the mobile market
segment, replacing the earlier Windows Mobile OS. The new GUI for this OS is called Metro

9

and is well aligned with the latest Windows for home computers (Windows 8) OS. Windows
Phone is also at the time of this publication at version 8, succeeding 7.5 also known as Mango.
Microsoft does not manufacture smartphone devices themselves, but have partnerships with
multiple vendors, including Nokia, HTC, and Samsung.

Applications for Windows Phone are developed using Windows Phone Developer Tools
which is an add-on to Microsoft Visual Studio 2010 or 2012. These tools provide an emulator
for testing. Microsoft XNA (Xbox New Architecture) is also supported. The main
programming language for non-game applications is C#.

The marketplace for Windows Phone apps is called Zune Marketplace and Windows
Phone Store. The app revenue is shared 70-30 between Microsoft and the developer, exactly
the same as for Apple’s App Store and Google Play [41]. There is an annual registration fee
of $99, the same amount as Apple charges iOS developers. Another feature in common with
Apple is the verification process for each app before accepting it into the Zune Marketplace or
Windows Phone Store.

3.4.2 BlackBerry

BlackBerry (formerly known as Research In Motion (RIM)) owns the BlackBerry brand.
While many still see the BlackBerry devices as PDAs or Pocket PCs rather than a standard
smartphone, BlackBerry products are very popular in certain niche markets. For example, in
the Caribbean BlackBerry has 45% of market share [42]. BlackBerry manufactures their
devices themselves. At the time of this publication, the BlackBerry OS is shipping version 7
and the new BlackBerry 10 products were just released [43]. BlackBerry devices are mostly
non-touch screen with QWERTY mini keyboards, but there are touch-capable models too.

BlackBerry apps are distributed in the BlackBerry App World marketplace. Apps are
written in Java using the BlackBerry JDE (Java Development Environment) or a
corresponding plugin to an IDE such as Eclipse. App revenue is shared 70-30, as the general
industry expectation dictates.

For BlackBerry tablets, powered by PlayBook OS 2.0, partial support has been launched
for Android apps, but manual conversion is necessary and not all apps are compatible.
Regardless, there have already been cases of pirated Android apps being resold as BlackBerry
apps [44].

11

4 Demographics

Android users are generally a bit older than iPhone owners, as shown in Table 2 (data
from August 2012) adapted from [18]. However, iPhone owners seem to generally have
higher household incomes. This later aspect is not that surprising as the prices for the Apple
products are generally higher compared to the prices for Android products.

Table 2 – Age and income distributions: Android and iPhone [18]

 Android iPhone

Age span % of
audience

% of audience

13-17 5.4 6.5

18-24 17.2 19.9

25-34 25.1 26.4

35-44 21.0 18.7

45-54 17.1 14.8

55-64 9.3 7.7

>64 5.0 6.0

Household income span

(pre-tax)

<US$25k 17.2 8.1

 US$25k to < US$50k 22.4 14.4

 US$50k to < US$75k 20.0 19.6

 US$75k to < US$100k 14.5 17.1

>US$100k 25.8 40.7

Narrowing down the demographics to the extremes – low app users and high app users,
the Nielsen research firm found that the majority of iOS power users consist of people 25-44,
while not surprisingly people 55 and older are more likely to be low app users. For further
details see Figure 4-1.

12

Figure 4-1 – Age distributions of high and low iOS app users, by age [19]

13

5 Business models

In addition to the traditional sales method of offering one’s app for sale at a certain one-
off price (see section 5.1) or for a periodic fee (see section 5.2), new business models have
emerged in the app trade. The adoption of these other business models is growing with time.
These new business models are described in the remainder of the chapter.

5.1 One-off payment

This is the most obvious app business model. Develop an app, set a price, and sell it to
users. There is only a one-time cost for unlimited app use. Revenue is split 70-30 between the
developer and the marketplace/platform owner.

One problem with this payment model is that the enormous selection of apps (700 000+ in
both dominant marketplaces) has pushed prices down to levels that make it very hard to be
profitable solely based upon the revenue stream from new downloads. The average selling
price in Apple’s App Store is ~US$2.15 [3].

However, one-off payments are popular among the top game publishers (such as
Electronic Arts and Gameloft), where 35% of their revenues in 2012 came from one-off fees
[3]. In fact, the list of the top 100 grossing apps on App Store is often 75% games [54]. I
believe that the reason for this is that these well-recognized publishers have gained sufficient
consumer trust so that the up-front purchase price is not perceived as a risky investment. Of
course, setting a one-off price for an app or game does not prevent the publisher from also
implementing a scheme for in-app purchases.

5.2 Subscriptions

Apps that provide access to something – a service or feature – are often suitable for the
subscription payment model. An example is music streaming services, with apps that are free
to download, but require monthly renewal of the account for a fee. Online multiplayer games
may also fit this profile. Some newspapers and magazines also offer their premium material
(not available on their public websites) through app channels, where access requires an active
subscription. These subscriptions may be automatically renewed or prolonged at fixed time
intervals.

5.3 Free or ad-sponsored

The free app business model for the purposes of this thesis includes both completely free
apps that may be published as promotion or by amateurs, and apps that are free to download
but derive income from embedded advertisements (ads). Such ad components are offered by
Google through its Admob service [45] (replacing its earlier service Adsense for mobile),
Apple through its iAd program [47], and by others, such as Crisp Wireless’ platform [69],
using a large variety of mobile ad types. Some of these different mobile ad types are shown in
Table 3.

14

Table 3 – Different mobile ad types [69]

Ad type Description

Full screen An ad that takes up the entire screen for a limited period of time

Expandable A smaller ad that expands upon user interaction

Location-based Determined by geographical location (assuming the user opted in to
be tracked) – for example directing the way to the nearest dealer or
retailer or a product

Tap-to-video Leads directly to a video

Tap-to-social network Leads directly to a Social Network such as Facebook or Twitter

Commerce-enabled Allows user to buy directly from a designated retailer, e.g. iTunes

Tap-to-call An ad containing a phone number that can be directly called

5.4 Freemium

A variant of free is the business model freemium, a wordplay combination of free and
premium coined by Jarid Lukin [26]. The idea is to release two versions of the app: a light-
weight free version of the app that creates interest for the paid profession (pro) version. The
model resembles the shareware or demonstration concept widely used in the PC world.

Gartner’s research report "Market Trends: Mobile App Stores, Worldwide, 2012" [5]
projects that 89% of app downloads are free, and that this percentage will continue to rise for
years to come. See Table 4 for details.

Table 4 – Mobile App Store downloads, worldwide, 2010-2016 (millions of downloads) [5]

 2011 2012 2013 2014 2015 2016

Free Downloads
22,044 40,599 73,280 119,842 188,946 287,933

Paid-for
Downloads 2,893 5,018 8,142 11,853 16,430 21,672

Total Downloads
24,936 45,617 81,422 131,695 205,376 309,606

Free
Downloads% 88.4% 89.0% 90.0% 91.0% 92.0% 93.0%

5.5 In-app purchases

The freemium line of reasoning has led to a growing trend of in-app purchases, where the
app is mostly a shell and its actual content is purchased separately. For example, games could
be provided with just a few levels and offer an in-app store that sells additional content. Data
from the Apple App Store suggest that this business model actually creates the major part of
app revenue today (see Figure 5-1).

15

Figure 5-1 – 2012 development of in-app purchase revenue on App Store [3]

Analysts are concerned about the in-app purchase concentration in just the game app
genre. Mark Beccue, senior analyst mobile services, has stated: “The vast majority of current
in-app revenue is being generated by a tiny percentage of people who are highly-committed

mobile game players. We don’t believe the percentage of mobile game players making in-app

purchases will grow significantly, so for in-app purchase revenues to grow, mobile

developers other than game developers must adopt it.” [20] His view is collaborated by
findings that only 0.5 – 6% of players normally make in-app purchases in games [54].

Beccue adds that the in-app purchase revenue from Android apps could actually have been
hindered by Google, as it did not introduce this feature until July 2011, and only for 17
countries as late as December 2011. This can be compared with Apple, who enabled in-app
purchases starting with iOS version 3.0 (released in September 2009) [22].

Another positive aspect of in-app purchases is that a developer may put together a
functional but very light version of the app and release it via the marketplace. If it attracts
interest, they can quickly add additional content to keep up with the demand, while if the app
should fail, the initial time investment is reduced as is any associated loss [48].

17

6 Metrics

As there are extremely many different aspects of app statistics (including understanding
hardware segmentation, user demographics, payment models, and other aspects that are of
interest from a developer or publisher point of view), this chapter describes some of the most
common measurements within the app trade and elaborates with examples where applicable.

6.1 Quantitative

Quantitative indicators are numerical, measured values of specific metrics. They are easily
interpreted and can be used as raw input data to data mining processes such as clustering. The
later chapters will primarily analyze data with respect to quantitative indicators.

6.1.1 Downloads

This measure is perhaps the most obvious. How many people downloaded my app? This
measure may also differentiate downloads per app version. Keep in mind that an average (US)
smartphone has 41 apps installed [31], so app usage time is bound to be diversified.

Regardless of free or paid, a high percentage of Android and iOS apps actually attract
very few downloads. Senior analyst Tim Shepherd stated “We estimate that up to two-thirds
of the apps in leading consumer app store catalogs receive fewer than 1,000 downloads in

their first year, and a significant proportion of those get none at all” [49]. These apps are
unlikely to ever be profitable for the publisher. These apps are often grouped together and
referred to as the ‘long-tail’, as the distribution curve of downloads flattens along the axis.
However, it should be noted that the cumulative revenue of such long tailed distributions can
be very profitable, see for example [90].

6.1.2 User rating

Both the Apple App Store and Google Play give app users the possibility to rate each app
with a score on a scale of 1-5 with an optional comment. According to Brown [10], the
average app rating is virtually identical on Google Play and Apple App Store – 3.58 as
compared to 3.56.

Ratings seem to differ between different app categories. Educational apps seem to be rated
the highest with average ratings over 3.8 while the News category averages less than 3.2.

There are also notable platform differences. For instance, Android has been widely
criticized for its weaker game selection, as is reflected in the 3.18 average rating for games,
while the Apple App Store average is 3.70 for games. On the other hand, the Tools category
sees Android score 3.86 on average, perhaps due to better customization options and less
strict user policies, while the Apple App Store average score is 3.40.

As pointed out by Hao et al. in [16], the marketplace owner receives 30% of the app
revenue. This means that if higher ratings are correlated more sales, it is also in the
marketplace owner’s interest to drive up ratings. This mutual dependence is worth keeping in
mind when reading the rest of this master’s thesis.

6.1.3 Active users (numbers and percentages)

The recent remake of the Android Developer Console offers statistics for Device and User
uninstalls, which means that a developer may track how many users are installing and
uninstalling the app per day, version, country, language, device, or cell carrier. This is a very

18

crude metric, perhaps the uninstall statistic is most suitable for setting up automatic alarm
triggers so that if a new version causes an abnormally large number of uninstalls (drop-outs),
then the developer or publisher should be alerted so that they might know that something has
gone wrong. No similar statistics for uninstalls are officially available via the Apple App
Store / iTunes Connect web. Note that “active users” refers to what in this thesis project we
will call user retention or loyalty (this will be discussed further in section 6.1.8 starting on
page 20).

6.1.4 Category and Market (rank and share)

There are many types of featured placements on Google Play: Featured, Staff Picks, Top
Free, Top New Free, Top Paid, Top New Paid, Top Grossing, Trending Apps, Editor’s Choice
Apps, and Top Developer [38]. Apple App Store has a similar, although smaller set of
promotional marketplace advertisement spots. So a top ranking app within a category or the
overall marketplace not only means a top position in the listings – it also comes with free
advertisements in these feature spots. This skew in exposure is reflected in the metrics.

As can be seen in Figure 6-1, the top five or ten applications make dramatically more
money based on their top ranking alone, than those just below. However, the blue line (2012)
is less steep than the green one (2010), indicating that the ‘long-tail’ is now getting a larger
portion of the total app revenue. This could be explained by the much larger app catalogues in
2012 as compared to 2010. These findings are collaborated by the yearly report in [3]. These
finding are also reinforced by results from [15] that found a 1st ranked app gets 150 times
more downloads than an app ranked at position 200. However, at the very top of the ‘head’,
things are more skewed as at the end of 2012 with just 7 apps accounting for 10% of the total
Apple App Store revenue, compared to 11 apps in the beginning of 2012. For Google Play the
figure is only 4 apps [3].

Figure 6-1 – Worldwide iOS & Android normalized revenue per rank [24]

In terms of revenue, it is clear that games represent the number-one revenue category (see
Figure 6-2). In fact, games account for one third of revenue and an even larger share of

19

downloads. This is largely due to in-app purchases [20] that seem to suit the game genre very
well. Among the top 10 highest grossing cross-store publishers last year, 9 were game
publishers [3].

Figure 6-2 – Download percentages by app genre [3]

6.1.5 Geographic region (rank and market share)

Apple’s iTunes Connect and the Google Play Developer Console both offer quite good
possibilities to understand an app’s user demographics. Not only are downloads tagged with
the user’s country, but also currency used for the purchase and the user’s selected language.
This information can be used to create targeted advertising, decide upon additional
localization (i.e., translation into a given language and additional customization), and more.
For these reasons it is important to have some general knowledge of the worldwide
smartphone penetration and revenue shares.

App Annie Index November 2012 [25] states that for the preceding month, Japan overtook
the USA for the first time, in terms of monthly revenue on Google Play. Japanese revenue on
Google Play had increased ten-fold since January 2012. Japan accounted for 29% of revenue;
US 26%, South Korea 18%, UK 4%, and the combined rest-of-world 23%. On the other
platform, the US dominated iOS revenue for the same period with the US having 33%, Japan
14%, UK 7%, Australia 5%, and the rest-of-world 40%. Overall the US is the largest market
by revenue, according to [3]. Notable is the lack of iPad sales in the Japanese market (see
Figure 3-1 on page 6).

The smartphone penetration, e.g. the potential customer base, has of course increased
considerably during 2012. According to the Google blog, referencing their Our Mobile Planet
initiative [52], “Today, we're releasing new 2012 research data, and the findings are clear—
smartphone adoption has gone global. Today, Australia, U.K., Sweden, Norway, Saudi

Arabia and UAE each have more than 50 percent of their population on smartphones. An

additional seven countries—U.S., New Zealand, Denmark, Ireland, Netherlands, Spain and

Switzerland—now have greater than 40 percent smartphone penetration.” - Dai Pham, Group
Product Marketing Manager, Google Mobile Ads.

6.1.6 Demographic (rank and share)

Sensitive user data such as age, gender, and ethnicity is not readily available from either
the Apple App Store or Google Play. Such data would likely be considered invasive to collect
without asking permission2

1. However, Apple seems to track some user behaviour.

Apple previously used a unique hardware identifier a Unique Device Identifier (UDID) to
allow mobile advertising companies to track individual users’ behavior. However, after a
hacker attack released 1,000,000 UDIDs in September 2012, Apple encouraged iOS
developers to abandon functionality that requires a UDID [50]. Instead, starting with iOS 6

1 In fact in some countries it might be illegal for a company to collect this data.

20

the company introduced Identifier For Advertising (IDFA), which is not device-specific but
rather is more like a web cookie. The IDFA is deleted and a new one is created when the user
resets their device. IDFA is active by default, but may be turned off [51].

Some generic demographic raw data is available for download through Google’s Our
Mobile Planet initiative [52] (see section 7.9 starting on page 33).

6.1.7 Paying users (share)

For freemium apps or apps offering in-app stores, the percentage of paying users measures
how large a fraction of the users are paying customers versus those who settle for the free
features. Note that this measurement may be skewed due to the fact that a relatively small,
highly committed share of the user base account for the vast majority of the in-app purchase
revenue [20].

For apps that are dually released in a free and a paid version, the share of paying users
would be calculated as the number of downloads for the paid app, divided by the number of
downloads for the free version plus the number of paying users. For apps with more complex
business models, the calculation method for this metric is more complex.

6.1.8 Retention after a given time period

The retention time metric is sometime also referred to as loyalty. How many of the users
that once downloaded the app still use it after a certain time period? Common thresholds
include periodical use (Daily, Weekly, and Monthly Active Users – abbreviated as DAU,
WAU, and MAU). Retention rate is highly dependent on app category and purpose (see
Figure 6-3). Some apps are designed to be used rarely or even just once, while social media
apps are likely intended to be used several times per day.

Mobile analyst firm Flurry has used a sample of apps used more than 1.7 billion times
each week to see what patterns emerge in terms of loyalty (defined as having used the app
during the last week). The overall figures (calculated as the mean over all categories) showed
that an app that was installed in 2012 would have a 54% probability of still being used in 30
days, 43% after 60 days, and 35% after 90 days with an average of 3.7 app usage sessions per
week. Interestingly enough, the 90-day retention rate was up significantly from 2009 when the
corresponding probability was only 25%. This may be interpreted as a maturing app market
that features apps that provide greater long-term value. The wider selection may also have
caused the decrease in average app sessions per week from 6.7 uses in 2009 to 3.7 uses in
2012. As seen in Figure 3-2, however, overall time spent on apps is up considerably, which
means that we now spend more total time on apps, but divide our attention across more apps.

Racherla, Furner, and Babb [17] speculate (along with others) that retention rate will
become increasingly important as a metric, as smartphone penetration is projected to cover
the majority of the potential customer base [52]. The idea is that in such a maturing market
that it will be of greater importance to retain existing users than to attract newcomers, hence
the business models are moving away from one-off purchases towards models that require
user interaction: ad-sponsored apps, subscriptions, and in-app purchases.

A further contribution to these new app business models is piracy. Kharif [34] estimates
that app sales would be 20-50% higher if it were not for piracy. Ad-sponsored apps,
subscription-based apps, and those apps with in-app purchases are not as sensitive to piracy.

21

Figure 6-3 – Loyalty by app category [13]

6.1.9 Average time spent (session duration)

We have already noted (see Figure 3-2 on page 7) that an average smartphone owner
spends 92 minutes daily using their apps. Obviously it would be interesting for an app maker
to know how much time is spent within their app. However such metrics, on the individual
level, are hard to gather without invading the user’s privacy or modifying the app to include
some method of tracking its usage (which the user might opt-in to use).

General results from analyst firm Flurry in September 2012 [32], suggested that the
average app session on a smartphone is 4.1 minutes and on tablets exactly twice this,
8.2 minutes. The majority of time is spent on apps from the Games category; specifically 39%
of smartphone app time and 67% on tablets [32].

22

6.1.10 In-app revenue

Statistics concerning in-app purchases seem to readily motivate the existence of this
payment model. Even though only 0.5 – 6% of game players pay anything at all, when they
do, they spend on average US$14 per transaction [55], with 51% of total revenue generated
from transactions over US$20. This fact might be worth keeping in mind as a developer of an
app with in-app purchases.

One reason for transaction sizes being larger than some might expect, is inventions such
as in-app wallets or even internal currencies. An example of the latter is Electronic Arts
popular game The Sims Freeplay, where a fictive currency called Simoleons can be purchased,
along with other virtual objects [57].

As shown in Figure 6-4 there are also obvious differences between the two sexes and as a
function of age group. Men spend more than women on average per transaction, US$15.6
compared to US$11.9 with the difference being most notable for people under 18. It can also
be seen that the payment willingness seems to peak for the age group 25-34.

Figure 6-4 – Mobile Freemium Games: Average transaction size by age and sex (amounts in US Dollars) [56]

6.1.11 Funnel (conversion rate)

The funnel (conversion rate) metric can be defined as the percentage of customers that are
browsing the app download page, who actually decide to download the app (converting from
a potential customer into a user). This definition is used by the analyst firm Distimo for its
App-Analytics platform, where they track web landings (views of the app’s download page)
versus the actual number of downloads [53].

A more general use of the funnel or conversion metric is to track an app session from start
to a clearly defined goal. One could possibly measure the number of sessions that pass
through defined checkpoints during a session. Typical examples include dividing booking
procedures into steps, then keeping statistics for each step. Google Analytics is one of the
most widely used tools within this area, but many others offer similar functionality. In the
screenshot below from the web service Flurry Funnel Analysis, we can see multiple
checkpoints which are being tracked for their conversion rates.

23

Figure 6-5 – Sample screenshot of Flurry Funnel Analysis

6.1.12 Return rate (regret and bounce)

The return rate metric should not be confused with uninstalls, since a user might uninstall
for reasons that have nothing to do with the app, e.g. he or she might need more available
space on the device. An app return is a claim for money back from the marketplace. Google
Play has a once-per-app 15 minute return period which acts similar to a guarantee, so that if a
customer purchases an obviously broken app or runs into compatibility issues before or after
installing it, they may revert their purchase [60]. While Apple’s App Store officially has the
policy that “all sales are final” [61], there are discussions online that suggest that if you make
an official complaint they may grant a return request. For mobile web sites, regret is
interpreted as a session lasting shorter than a certain number of seconds or a session
consisting of a single page view before leaving the site’s domain.

6.2 Qualitative

The thesis will focus mainly on quantitative, measureable figures as interpreting human
input manually is simply too cumbersome a task for this thesis project. However, there are
many examples of automated web-crawling software that look for mentions of selected
keywords to pinpoint words and topics in order to compute trends (referred to often as
“trending” words and topics).

Applying this type of tool is often called Social Media Monitoring (SMM). The span of
such tools ranges from the extremely simple Google Alerts that monitor certain keywords and
compile daily email reports, to advanced dashboard tools such as Radian6 which starts at
US$5,000 per month [58] and is used by enterprises such as Dell and Pepsi. The more
advanced SMM tools can monitor most social networks in addition to the regular web, and
allow for more detailed parameters. Similar features are also available in Google Analytics
which is more extensively evaluated in section 7.3 starting on page 27.

The firm uTest [10] applied web-scraping SMM techniques to the particular case of app
comments on the both major marketplaces, and found the issues shown in Figure 6-6 to be the
most common complaints mentioned in app reviews. A brief justification of these results
suggest that the installation process is more prone to errors on an Android handset, possibly
because of compatibility issues (due to device fragmentation) and the need to approve each of
the required application permission requests. Apps on the Apple App Store are generally
much more expensive [10], as is reflected in complaints about pricing, but on the other hand
Apple’s rigorous app verification process seems to be reflected in fewer overall complaints
about technical issues for iOS apps.

24

Figure 6-6 – Common complaints mentioned in app reviews, by platform [10]

The quantitative user reviews were likely mapped to separate categories using keyword
filters, effectively turning the quantitative textual comments into a qualitative statistic. While
this is a somewhat rough method and has considerable margins of error, it saves a lot of time
and might be accompanied by manual follow-ups to verify the findings. I have attempted a
similar approach of my own, which will be explained in more detail in section 10.2.8.

25

7 Web-based data collection and analysis tools

There are plenty of available tools for app statistics, almost all of which are online or web
based. This chapter discusses some of the more popular alternatives and their features,
strengths and weaknesses. The tools discussed in this section are evaluated briefly (after
registering accounts and logging in whenever applicable) – not only from the perspective of
the app company, but also as inspiration for the in-house app statistics solution to be
developed. All third-party tools were free in the editions I have used.

7.1 Apple App Store

While the general public may only browse the Apple App Store catalogue, and judge ased
upon a select few metrics, a few additional figures are available for developers after logging
into their account. Overall, Apple’s first-party solutions are still missing a few critical features
however.

7.1.1 Publicly available

A potential app buyer browsing for apps (on the iTunes Preview website, in Apple´s
iDevice App Store app or in their iTunes client) does not see the number of app downloads.
He or she may only read ratings/reviews and see the average app rating (1-5 stars), the
number of votes for the current app version, and aggregated results for all versions of the app.

As a rating is the only metric available to the browsing customer, the feature or category
spots are likely to be of high importance, as will be discussed in-depth statistically in the
following chapter. Listings such as “New and Noteworthy” and “10 Essentials” function as
advertising spots for apps successful enough to rank high enough to be included in these
listings. There are also “Top 10” categories for free and paid apps, separately.

7.1.2 Developer account – iTunes Connect

Unlike consumers, iOS app developers can log into a web platform called iTunes Connect
(iTC) where they may view basic statistics, such as downloads and percentage trend change
for their application on either a daily or weekly basis. An example of these statistics is shown
in Figure 7-1. Surprisingly, iTC only displays statistics from the last 14 days or the last 13
weeks (a quarter of a year), respectively. This is a major limitation that prevents app
publishers from understanding long-term trends (unless they themselves archive this data and
process it themselves). This inhibits the app publisher from making basic comparisons of the
current version of an app against previous app versions. Partly as a response to this, third-
party solutions have arisen, such as the AppDailySales script described in section 7.8 starting
on page 33.

In addition to statistics that can be view via the web platform, it is possible to request two
types of reports, compiled as tab-delimited “.txt” files: apps and in-app purchases. These
reports consist mostly of metadata about which regions and localizations the app is available
in, along with basic information about its requirements (iPhone only or compatible with iPad,
minimum iOS version, etc.). Although there are flags for whether the app supports the iPad or
not, the developer may not opt to separate statistics between phone and tablet. This is another
limitation that third-party sources have tried to rectify.

Alternatively, reports can be downloaded with a Apple provided Java class named

Autoingestion [39]. This class takes parameters according to java Autoingestion
<username> <password> <vendorid> <report_type> <date_type> <report_subtype>

26

<date_yyyymmdd> and downloads the export files just as if they were manually requested
from iTunes Connect. However, the limited date ranges still apply.

Figure 7-1 – Sample screenshot of iTunes Connect

7.2 Google Play

While Google offers a bit more in-depth detail in their statistics, both for the app-browsing
potential customer and the logged in developer, compared to Apple – some elementary
features are still absent. However, the export functionalities are significantly better than for
Apple.

7.2.1 Publicly available

The number of downloads per app is not displayed when browsing Google Play (nor on
the web or in-app). However, unlike Apple’s App Store, anyone can see a rough estimate of
the number of downloads and even view a trend chart. The number of downloads of the app
will be presented as a range, such as “1 000 – 5 000” or “10 000 – 50 000”. These gross
statistics give the browsing customer a general idea of this app’s popularity.

App ratings are listed along with review comments. These ratings give the average rating
(on a scale of 1-5). Just as for Apple’s App Store, you may flag another user’s review as
either helpful or spam.

Another similarity with Apple’s App Store is the presence of ‘feature spots’. Editor’s
choice and Top sellers are prominent advertising venues, and you can even find listings of
“Recommended for you” which is not defined in detail, but is likely based on your previous
app history.

7.2.2 Developer account – Developer Console

Even without logging into the developer’s console, the publicly available download range
data may be useful for app publishers for benchmarking their app against its competition.

27

Knowing that the competitor’s app made the featured spot and that the number of downloads
stack has reached six figures, may assist the app publisher in making a decision of whether or
not to launch an ad campaign.

The following metrics are only available after logging into the Google Play Developer
Console:

• Ratings statistics
o Star ratings
o Cumulative average rating
o Daily average rating

• User statistics
o Total user installs
o Active user installs
o Daily user installs
o Daily user uninstalls

• Device statistics
o Active device installs
o Daily device installs
o Daily device uninstalls
o Daily device upgrades

All of these figures can be broken down by Android version, device, user’s country, user’s
language, application version, and mobile carrier [38]. All of these statistics can be exportable
to a CSV format file, where the complete history is available for every dimension (without the
13-week limitation of Apple’s App Store). The division of data by dimension is an indicator
that the Developer Console data may actually be seen as a tool compliant with Online
Analytical Processing (OLAP), where the database is seen as a hypercube of facts available in
n dimensions [78].

There are also automated crash log reports and Application Not Responding (ANR)
reports. For crashes, these data are grouped together by type so that the developer may
understand the frequency of different bugs. Complete stack traces are also available for
debugging.

An example screenshot from Google Play Developer Console is shown in Figure 7-2.

Figure 7-2 – Sample screenshot of Google Play Developer Console

7.3 Google Analytics

After dominating the full-fledged web, Google Analytics is also available for mobile use.
Their library for Android is included in approximately 7.3% of Android apps, according to

28

[35]. The tool allows (among other things) for funnel/conversion rate analysis based on
check-points and goals.

Google Analytics Mobile Apps SDK is at the time of this publication at version 2 and is
available for both Android and iOS [59]. This SDK enables detailed data collection from app
users. Many of the basic features such as OS version and device language can already be seen
from the iTunes Connect and the Developer Console, respectively; but the difference with
Analytics is that these statistics are available on a per user and per session level. Google
Analytics is also available for use with the mobile web.

Examples of the detailed metrics include average session duration, number of screen
views, percentages of new and returning users, as well as their languages and locations. The
developer may also track the order of viewed screens (including which screens the user leaves
the app from), how long app elements take to load, and errors and app crash logs. Since the
developer may set triggers on any event, such as buttons being pressed on a screen, it is not
necessary to change the current screen view to record an event. Therefore, sessions may be
either manually closed – typically after completing a process – or because they timeout after a
given period. Developers may also set custom variables that are transferred from the app to
Analytics, and these variables may be cross-referenced against apps from different
smartphone platforms to generate an overview.

Real-time data is available which allows following the movements of users who are
presently using the app. There are also specially tailored funnel functions for the Ecommerce
category. Funnels can be visualized as flows, as shown in Figure 7-3. The thicker the
connecting line is, the more traffic flows via that connection. Red markers indicate a user quit.

Figure 7-3 – Sample screenshot of Google Analytics: Visitors Flow

29

There are also a vast set of functions for tasks related to statistics, such as advertising
(with the Admob package), search engine optimization, and tracking of social networks
conversions.

7.4 Flurry

Flurry is primarily a tool for gathering app session data. It is available for iOS, Android,
BlackBerry, and Windows Phone. According to its CEO, Simon Khalaf in [23], Flurry has
stored more than one trillion unique events performed within more than 250 000 apps. It has
gained a very strong position in the app insight field; according to [35] around 6.7% of
Android apps have the Flurry Analytics library included. This is very close to Google
Analytics’ share, and much of the functionality is similar.

When logged in as a developer, for each application listed, one can study the app use
sessions in more detail. The total number of sessions, median session length, and average
active users are some statistics that are available. All data are available for export in to
comma-separated value “.csv” file format.

Session duration is a very useful metric, as it shows the distribution of sessions among
users. For instance, a developer considering including in-app advertisements can calculate
how many ads would be rotated into the display and thus estimate the potential ad revenue. In
Figure 7-4, we see that most users stay within the app for 1-3 minutes. We could infer that
users in the 0-3 seconds span could be chalked up in the bounce rate (involuntary app
launches or crashes at start-up). If these session lengths would rise to, let us say, 10% of total
sessions, and then we should create an alarm that sends an email alerting the developer to
investigate the reason for abnormally many sessions shorter than three seconds.

Figure 7-4 – Sample screenshot of a Flurry chart [63]

Metrics for frequency of use are also available: sessions per day, week, or month per user.
There are also statistics of how many of the users spent only one session or only one day
using the app (bounces) and how many users returned the day after installing the app.
Retention rate (daily, weekly, or monthly) can also be displayed, telling us how many users

30

remain active after the stated time period. Returning users can be plotted versus new users to
further understand the app’s user turnover.

Gauging user interest is an extremely powerful feature. Based on previously gathered data
about a user’s, Flurry can present their dominant app categories. In Figure 7-5, we see that a
user of the current app is 19 times more interested in news than the average user. Such insight
is obviously very valuable for optimization of advertisements.

Figure 7-5 – User interest in Flurry [63]

Flurry’s feature set includes benchmarking against rival applications based on Flurry’s
estimates from similar data. It is also possible to manually enter statistics that are not
collected within the app, such as age and gender (if you have some other means of knowing or
estimating this data).

Finally, if the app has defined events (checkpoints), it is possible to track each and every
event separately. This tells us which paths users take through the app, which might also be
useful when trouble-shooting. In Figure 7-6, we see that no user within the last hour actually
began to use the app for its intended purpose, but rather terminated the app at the loading
screen or from the menu.

31

Figure 7-6 – Event log in Flurry [63]

7.5 Distimo

A Dutch mobile-specialist analyst firm stated that their first mission was making the app
market transparent. This company was born out of frustration over lack of insights [3]. In
addition, to blogging and publishing yearly reports of its findings, they offer a (cross-OS) web
platform called App Analytics that collects data regarding sales, rankings, and reviews of the
developer’s own apps. An optional premium tool called AppIQ allows developers to estimate
the same figures for any app, not only their own. Figure 7-7 shows the standard dashboard of
their platform.

32

Figure 7-7 – Sample screenshot of Distimo Analytics

7.6 App Annie

App Annie is a web-based tool that can track statistics from Apple’s iTunes Connect and
Google Play accounts as a third-party agent acting on a developer’s or publisher’s behalf
(assuming that you provide it with your login credentials). It may be setup to send a daily
email report or you can export data manually to comma-separated value files (i.e., “.csv” file
format).

According to their own description, App Annie indexes 150 000+ apps and their daily
downloads, revenues, rankings, and reviews. It has to date tracked over 11 billion downloads
and US$1.5+ billion in publisher revenues [25]. It also offers a monthly report compiling
interesting app statistics and trends.

At the time of this writing, the company has just launched an invitation-only beta test of
an upcoming API. However, this was not available to me for use in my implementation.

7.7 TestFlight

While most other tools described earlier in this chapter are multi-platform, TestFlight only
deals with iOS apps. It is primarily used for beta testing and processing crash log reports of
iOS apps. One key function is the collaboration setup enabling iDevices, listed with their
UDIDs, to install an app directly from a shared URL rather than having to go the official route
via iTunes and “.ipa” files. This can be used to internally beta test or release an iOS
application, without having to release it publicly on the App Store marketplace.

If the TestFlight SDK is included as a library into the app, crash logs, Over-the-air (OTA)
updates, live session tracking (including funnels / conversion), and in-app questionnaires for
beta testers are also available. Results are sent back to the TestFlight web platform after each
app session finishes [62]. An example of the TestFlight user interface is shown in Figure 7-8.

33

Figure 7-8 – Sample screenshot of TestFlight

7.8 AppDailySales and Autoingestion

Since iTunes Connect only keeps track of a limited subset of all app sales data, developer
Kirby Turner published an open source Python script that screen-scrapes (i.e., extracts
relevant data from HTML elements) and can automate and schedule report fetching [46].

Since this script was published as source code rather than a web service, users did not
have to provide a third party with their iTunes Connect credentials and could modify the code
according to own needs. The script was updated and maintained by the author over multiple
versions, but subsequently retired after Apple offered its Autoingestion Java class that more
or less provides the same functionality [39]. However, although Autoingestion is well
documented, it is not open-source and is only provided as an executable file. Therefore it is
not customizable.

7.9 Google’s Our Mobile Planet

Google’s Our Mobile Planet is a web platform offering yearly statistics and charts of
smartphone statistics and usage trends. This initiative was due to Google and its partners. It is
built around surveys that 1,000 people from each of the 41 representative countries have
answered. This survey contains questions about sex, age, marital status, education,
employment, and living conditions (rural or city) [52]. The uniqueness of this website is that it
provides all of the raw data as Excel spreadsheets for downloading, thus this is an interesting
source for app creators who are interested in cross-referencing these data against their own
gathered metrics. The site explicitly encourages site visitors to download the raw data and “to
dig deeper”.

35

8 Data mining and statistical analysis

This chapter discusses some basic mathematical theory regarding distributions,
classification, and trend spotting in data sets. The relevance to app statistics is mainly to find
out whether correlations hold between metrics such as ratings or rankings and the actual
number of downloads or purchases. If so, how strong are these correlations and which metrics
have the greatest impact? Which data entries are similar and how could they be classified?
Can trends be discovered programmatically using data from a given database? This chapter
will discuss formulae and methods to solve these problems.

8.1 Data mining phases and practices

Data mining is a subfield of computer science that utilizes computations to discover
patterns and trends in large data sets [76]. In doing so, techniques from artificial intelligence,
machine learning, statistics, and database systems may be used. For the purposes of this
master’s thesis, the latter two are the most applicable.

Data mining is also known as Knowledge Discovery in Databases (KDD) [77]. KDD is
usually divided into three main phases: pre-processing, actual data mining, and results
validation. The following sections describe them in this order.

8.1.1 Pre-processing – Extract, Transform, and Load (ETL)

Pre-processing data is the first step. This step consists of three tasks: extraction,
transformation, and loading.

Data must first be either generated or obtained from their original sources. Techniques
such as automatic web indexing and screen-scraping (text recognition or extraction from
source code) may be used to do this. The AppDailySales Python script is one example of
screen scraping. An initial validation of data is also done in this step, to reject data that is
obviously faulty or insufficient.

The transformation step is necessary to convert the data into a uniform format. This
includes possible translation between languages and character encodings, conforming to
database schema constraints or query language, removing duplicates and null values, cropping
data according to scope, sorting datasets, and many other related tasks.

After a successful data transformation, the cleaned dataset may be loaded into the
database. The loading process may be a one-off import or a continuous process. In our case
with app statistics, an initial manual import of historic data is planned, while future data will
be automatically imported daily and be appended to the database.

8.1.2 Data mining – Task classes

Guidelines from the ACM SIGKDD Curriculum Committee [76] suggest that there are six
common classes of data mining tasks:

1. Anomaly detection – identification of unusual data records which may indicate errors
2. Association rule learning – learning which data often appears together
3. Clustering – discovering underlying groups and structures
4. Classification – labelling data entries with tags or sorting them into categories
5. Regression – training a model to best-fit the data, enabling projection
6. Summarization – compression and visualization of the data set

36

I foresee that all of these tasks will be useful for the purposes of mobile app statistics.
Some of these tasks are described in more detail in following sub-sections.

8.1.3 Results validation

Depending on which of the six data mining tasks are implemented, the validation of
results may differ. However, a common method for validation is overfitting, which means
applying the models and patterns that have been found to a new, not previously used dataset,
and manually verifying the outcome. E-mail filtering is often used as an example, where
models for detecting spam messages are derived from a training dataset, and subsequently
evaluated on another dataset. The criteria for whether to accept a model’s accuracy or not can
be based on the percentage of false positives or false negatives. One technique for visualizing
these results is a confusion matrix, described in section 8.6.4.2 starting on page 43.

8.2 Pearson correlation (r-value)

In determining whether two sets of variables are correlated (linearly dependant), the
standard measure is the Pearson product-moment correlation coefficient which is usually just
referred to as the r-value. The value ranges from -1 to +1 inclusive, where +1 is a perfect
correlation and -1 is a perfect inverse correlation.

The r-value is calculated formally as follows:

∑∑

∑

==

=

−−

−−
=

n

i

i

n

i

i

n

i

ii

YYXX

YYXX

r

1

2

1

2

1

)()(

))((

where X and Y are variable sets with mean averages of X and Y .

For the purposes of this master’s thesis, an application of this might be to investigate if the
ranking of an app is correlated with its number of downloads. Presumably, if there is a
relation between the two, then a lower rank (#1 being the best position), should be correlated
with more downloads than the apps ranked below it. This is an example of an inverse
correlation where we expect a negative r-value (as increasing rank should be correlated with
decreasing numbers of downloads). Conversely, the correlation between the app’s customer
rating and its number of downloads should be positively correlated, as presumably higher
ratings indicate that more people were convinced to download the app. My intention is to
evaluate these expected relations.

8.3 Regression analysis and R2

For a given set of measured data in a scatter plot (x-y coordinate pairs), the trend line or
approximated function may be found through regression analysis. Normally this is done in the
form of a minimized least-square sum for linear models.

A concrete measure of the model’s goodness of fit is the R2 value, which lays within the
interval 0 ≤ R2 ≤ 1. The R2 value is in fact the square of the r-value described above, as the
letter implies. The closer to 1, the better the model fits the data set. Figure 8-1 shows a weak
fit to the data used in the section 8.3.3.

37

Figure 8-1 – Example of a poorly fitted linear regression in OpenOffice Calc

Regression analysis with a good fit may be useful to extrapolate the function in order to
project values outside of the current data set. If projections are made based on the model, then
good scientific practice stipulates that the uncertainty (margin of error) should be stated and
that this margin of error should be within the stated confidence interval.

8.4 Pareto principle and distribution

The now-famous rule of thumb that 80% of the effect comes from 20% of the contributing
factors is known as the 80-20 rule, or the law of the vital few or the Pareto principle after its
author, the Italian economist Vilfredo Pareto who noticed an unequal wealth distribution in
his country [29]. The same goes for purchases: as a general rule of thumb, 20% of the
products account for 80% of the sales, while the ‘long-tail’ of obscure products only
contributes a total of 20% of revenue.

This same rule-of-thumb led to a log-linear data distribution which also bears his name.
Obviously, the ratio does not have to be exactly 80-20 since there are both a scale and a shape
parameter. These parameters can be found by plotting log(x) and log(y) to find a reasonably
straight line. Regressing this line to the y-intercept and finding the slope enables us to
approximate either x or y [64].

The Pareto cumulative distribution function (CDF) is defined as:

m

m xxwhere
x

x
≥








−

α

1

This produces a typical Pareto curve. For the 80-20 rule to apply literally, the shape parameter

(α) should be approximately 1.161.

8.4.1 Experiment by Brynjolfsson, Smith, and Hu

Why is the Pareto distribution interesting for mobile apps and their statistics?
Amazon.com, a major online store for primarily books, does not display the actual number of
sales for their books. However, they display relative ranking, just as the app marketplaces do.
In [30], Brynjolfsson, Smith, and Hu performed several clever experiments and concluded
that a Pareto distribution can satisfactory estimate the number of purchases based on ranking
data. Their estimation formula is:

38

log(Quantity) = β1 + β2*log(Rank) + ε [30]
which is in the form of the generic linear parameter:

∑
=

++=
p

j

ijiji XY
1

,0 εββ

They found the values for Amazon.com to be β1 = 10.526, β2 = -0.871, and R2 = 0.8008.
Note that β2 is negative, as a lower ranking indicates a better position and presumably more
purchases. By finding the intersection of the above equation, the model enables us to infer that,
for instance, a book ranked 10th on Amazon.com has about 5,000 sales per week.

8.4.2 Experiment by Garg and Telang

Inspired by Brynjolfsson, Smith, and Hu’s results, Garg and Telang [15] conducted a
similar experiment but applied it to the mobile app market. However, they used a different
method, not requiring actual demand data as used by Brynjolfsson, Smith, and Hu. Instead
they collected public marketplace data from Apple’s App Store for rankings and price over a
period of time and inferred the Pareto distribution models from their calculations. The end
result was not so far off, with a shape parameter of 0.86 for iPhone apps. The authors
proceeded to calculate the relative strength of ranking positions. The formula for doing so

used the estimated shape parameter α, also called β2:
downloads1/downloads2 = (ranking1/ranking2)

 -0.86 [15]

Using this estimate, the top-ranked application would attract almost twice as many
downloads as the second [(1/2)-0.86 = 1.82].

8.4.3 Attempt to replicate on my own dataset

I set out to replicate the experiment, to see if there was correlation to be found in my own
app data. Fortunately, I had access to all data for a specific app published on Google Play.
This app was not in the overall marketplace’s top-500 list, but in the subcategory top-500
Tools which might make the implications weaker. For a period of about a month, the app’s
ranking data was collected from App Annie and actual download figures were collected
directly using the Google Play Developer Console. These data were entered into an
OpenOffice Calc spreadsheet and plotted just as in Brynjolfsson, Smith, and Hu’s experiment.

I took an intermediate step not considered in the reference experiment and calculated the
correlation between rank and downloads. This function was available in OpenOffice as
correl(). The correlation value was found to be -0.18, indicating a relation. Again, the
negative sign is because the proportion is inverse; as lower rank is better – since it implies
more downloads.

My calculations found different values for the parameter estimates (β1 = 7.88, β2 = -0.8936,
and R2 = 0.04), the function generated plausible results, as shown in Figure 8-2, even despite
the fact that the R2 value is very weak. The β2 value is also reasonably in line with what others
have found (see for example [30]) and to the iPhone-specific value of -0.86 found by [15].

39

Figure 8-2 – Estimate of daily downloads at rank 300

However, as discussed in [15], models based on calibration at low baseline sales might
diverge for top sellers, since the “distribution of app demand is top-heavy (even within the
200 top apps)”. The top-heavy effect was also found by Valadares who writes “The results
also show that the rank-dependent values decline steeply with rank for the top 10 products.

The effect of product rank on demand remains economically significant for the apps in the top

50, but for apps ranked 50 or higher this effect is negligible” [65].

Using my equation to estimate how many daily downloads the number-one ranked app in
the category receives, the answer was roughly 2,600 – far too few to be accurate. A proposed
reason for this could be (following the authors of [15] in their method) that their model only
fits within the range 1 ≤ x ≤ 200 since they use data from that interval, however considering
my dataset the interval for my equation only holds for 200 ≤ x ≤ 500.

During the implementation phase I attempted to apply this analysis to larger data sets and
for more than just one app. As pointed out by my academic thesis supervisor, however, it is
not certain that this model can accurately predict downloads in even the later range since the
long-tail distribution may also be present in this case. This particular calculation has not been
performed, but a distributional chart supporting the long-tailed distribution is to be found in
figure 11-8.

8.5 Principal Component Analysis

Principal component analysis (PCA) is a technique that can reduce the dimensions of a
dataset. For instance, if for all apps for which we have data on ranking, price, rating, number
of reviews, percentage of active users, generated revenue, average session length, and so forth,
we might want to determine which of these factors causes the most variance in the number of
downloads. That is to say: Which factor is most important for the end result of predicting the
number of downloads?

This might be very unclear from just looking at the multidimensional raw data, even
though the underlying pattern may be simple and mainly caused by a few factors. PCA
performs a linear orthogonal transformation of the data set, via the intermediate step of the
co-variance matrix [70]. This transform is defined as follows:

40

PCA can now reduce the dimensions of the dataset by finding a linear transformation of
the above matrix so that the vectors become orthogonal [70]. This means that the vectors are
not co-dependent. This procedure is called a diagonalization of the matrix. A subset of the
eigenvectors that are found is used as axes for the transformed data. We may even select the
size of this subset to contain a certain amount of the total data. Effectively, the first
component now represents the biggest factor for the variance of the data, and the others
follow in descending order.

PCA is popular partly because it is parameter-less (besides the dataset), and therefore it is
very simple to apply in a black-box manner. It does not require in-depth understanding of the
algorithms behind it nor does it require a priori knowledge about what the most important
components are. A common application for PCA is compression of images because it keeps
the most important data, while filtering out data that has little effect on the overall result [70].

Finding out which quantitative indicators contribute most to an app’s success (for free
apps this is the number of downloads, while for paid apps this is the revenue from the app)
should be of interest to the app publishing company at which this thesis project is being
undertaken. I will perform PCA on the data sets gathered to find out what these indicators are
for the app(s) that will be considered.

There are useful functionalities in mathematical software such as MATLAB, including the
functions CovMat for the covariance matrix and eigs for picking out the eigenvectors [71].
These will no doubt be helpful in the analysis process.

8.6 Clustering

While PCA filters out the most important components of data, clustering is another
technique for prioritizing and simplifying data. Clustering attempts to group similar data
together into clusters. While normal clustering algorithms are discrete (i.e. a data entry either
belongs to a cluster or it does not), fuzzy clustering allows for nuances via partial belonging –
membership degree ranges from 0 to 1 [72].

A useful example of (discrete) clustering adopted from [73], regarding vehicles is shown
in Table 5. We can cluster these in a scatter plot where the x-axis is top speed and y-axis
weight. As can be seen in Figure 8-3, this results in three distinct vehicle classes: Lorries
(heavy and slow), Medium market cars (medium weight, medium top speed), and Sports cars
(light and fast). Note that not all of the variables are used, for example, color and air
resistance are not in the plot. When clustering we should focus on selected aspects. Therefore
a PCA step before the clustering might be useful to help focus on the important properties.

41

Table 5 – Sample data suitable for clustering

Vehicle Top speed

(km/h)

Colour Air resistance Weight (kg)

V1 220 Red 0.30 1300

V2 230 Black 0.32 1400

V3 260 Red 0.29 1500

V4 140 Gray 0.35 800

V5 155 Blue 0.33 950

V6 130 White 0.40 600

V7 100 Black 0.50 3000

V8 105 Red 0.60 2500

V9 110 Gray 0.55 3500

Figure 8-3 – Clustering of similar data entries

8.6.1 Fuzzy clustering

In the above scenario discrete clustering is likely to be adequate, but should we add a car
with top speed of about 180 km/h and weight around 2,000 kg, it would end up in the middle
of all our defined classes. In such a case it could be useful to say that it partially belongs to
each class, rather than excluding it from all classes. The degree to which it could be
considered that the entry belongs to the respective cluster can be viewed as the “likelihood” of
it being in that class [74].

There are also situations of nested clusters. Consider what would happen if we added
some mopeds into the vehicle data set. Their weight of around 100 kg and top speeds of 45
km/h would make them ideal for a class and cluster of their own. After this change it would
be useful to group clusters together by vehicle type. This establishes that a data entry for the
purposes of clustering may inherit classes; a vehicle may be an instance of a sports car, which
in turn is an instance of a car.

42

8.6.2 Dendrograms and cophenetic correlation

The above classifications are useful in the computation of clustering. Using the same
vehicle example as before, we plot the clusters as classes. This is normally done in a
dendrogram – as dendro means tree in Greek. The dendrogram displays inheritance and
relations hierarchically in a tree structure. The vehicle example is modelled in Figure 8-4.

Figure 8-4 – Sample dendrogram for classes of vehicles

There are measurements of how well a dendrogram {Ti} represents the distances of the
raw data entries {Xi}. One such metric is cophenetic correlation coefficient [74] which is
calculated based on a comparison between dendrogrammatic distance between tree nodes
Ti and Tj , and the Euclidean distances between observations Xi − Xj . The correlation efficient
c is then given by:

[] []∑∑
∑

−−

−−
=

<<

<

22)),(()),((

)),()(),((

tjitxjix

tjitxjix
c

jiji

ji
 [75]

where x is the mean average of x(i,j) and t the mean average of t(i,j).

8.6.3 k-means clustering

Mathematically computing clusters can be done in a variety of ways. One famous and
intuitively natural algorithm is k-means clustering. This algorithm belongs to the centroid-
based clustering algorithm family.

The idea is to divide n observations into k clusters using an iterative process, so that the
Within-Cluster Sum of Squares (WCSS) is minimized. For this reason, k-means clustering
can be seen as an optimization problem. A generalization of [73] yields the steps:

1. Place k cluster centers at random.
2. Assign each data point to the nearest cluster centre.
3. Compute the new center of each class (the centroid).
4. Move the cluster centers accordingly.
5. Iterate until no “visible change” happens after the center is moved.

43

After this algorithm terminates every data point ni is assigned to the closest of the k
clusters. A membership matrix M (of dimension n*k) now holds Boolean values for whether
or not each observation ni belongs to cluster kj.

Fuzzy clustering using the fuzzy c-means algorithm works very much the same, but the
membership matrix M instead contains floating point values for each observation ni indicating
its likeliness of belonging to each cluster kj [73].

8.6.4 Analysing clusters – Jaccard index and Confusion matrix

After observations are assigned to clusters it might be interesting to compare clusters
against other clusters, especially if our constraints allow observations to belong to multiple
clusters. Two methods for doing this are described in the paragraphs below.

8.6.4.1 Jaccard index

How similar are the clusters? One very simple metric that answers this question is the
Jaccard Index, which varies from 0 to 1; where 0 means no observations are common among
the two clusters and 1 means that the clusters contain exactly the same observations. The
function takes parameters A and B - the two clusters (sets of observations). The Jaccard Index,
or coefficient, is then calculated as the number of total unique observations in A and B
divided by the total number of elements. This quotient indicates how disjunctive the clusters
are.

The Jaccard Index formula is:

||

||
),(

BA

BA
BAJ

∪
∩

=

8.6.4.2 Confusion matrix

Another method for visualizing the results of a classification or clustering algorithm is to
create a confusion matrix. This matrix is useful for identifying cases where observations may
have been incorrectly labeled and therefore classified into suboptimal clusters.

For the vehicle example, a likely confusion might occur if we add a helicopter to the
vehicle set. It weighs about 1,000 kg and has a top speed of around 250 km/h. Our clustering
algorithm would therefore be likely to cluster helicopters with cars (in the sports cars sub-
cluster). Visualizing this in a confusion matrix as shown in Table 6, it is easy to spot errors as
all correct identifications are aligned along the diagonal. We immediately discover that the
helicopter was mislabeled.

Table 6 – Sample confusion matrix

Incorrectly labeled data or data that is erroneous in itself is sometimes called statistical
noise, which may weaken the accuracy of adaptive models. It is therefore desirable to remove

44

such anomalies as early as possible in the analysis, or to devise a scheme to handle them
separately.

8.7 Software for data mining

Programmatically performing data mining is facilitated by many software products. There
are modules for query languages and databases, plugins for spreadsheet programs (such as
Microsoft Excel and OpenOffice Calc), packages in mathematical software (such as
MATLAB and R [74, 75], and standalone programs (such as ELKI [79], KNIME [80], and
RapidMiner [81]).

Each type of tool has its advantages. Database export might be easiest to spreadsheet
programs, MATLAB and R are perhaps the most well-documented tools, and standalone
programs come pre-packaged with modules for most the clustering and PCA techniques
described above. For the practical purposes of this master’s thesis project, I will attempt to use
MATLAB and possibly R for manual operations and the standalone programs experimentally
due to their complexity.

45

9 Methodology

There are so many statistics available from publicly available reports that one might fit
together these puzzle pieces and form a bigger picture of the app market situation. For
instance, take the fact that Android has been criticized for a weak game selection. This is
reflected in a lower overall rating for Android games, compared to games on iOS (with scores
of 3.2 versus 3.7 respectively out of 5). Ratings and reviews are the only metrics available for
a potential app buyer when browsing. We also know that games account for 1/3 of the total
marketplace revenue and that in-app purchases are most used in the game genre [20]. Add to
this the fact that the majority of app revenue today comes from in-app purchases (Figure 5-1).
Summing up all these facts and figures, the almost 4:1 revenue advantage of iOS over
Android (shown in Figure 6-1) is suddenly not so surprising.

From an industrial business perspective, the changing trends in app business models are of
great interest. We have seen that the traditional one-off purchase payment model is losing
ground to models that require user interaction: ad-sponsored apps, subscriptions, and in-app
purchases. What this means in terms of app statistics, is that the traditionally dominant metric
“number of downloads” will be of decreasing importance, while “user retention/loyalty” will
likely take on a more prominent role.

While the above reasoning represents only some examples of what could be done given
suitable statistics and analysis of them, it is exactly these types of patterns that would be
useful to track using internally stored data from a database. Ideally these trends should be
found programmatically without requiring much human interaction by using statistical
analysis. This is where this thesis expects to contribute, along with an implementation that
will be evaluated.

9.1 Summary

From the statistics in the earlier chapters we have learned a lot about the smartphone
market, in terms of platform specifics and differences, user demographics, payment models,
and trends. Mobile app statistics have been discussed, not only which metrics are of
importance and why, but also which first- and third-party app data tools are currently on the
market and what data they collect. Some theories about statistics and data mining have also
been discussed. Having studied all this material, the goals for the master’s thesis project may
be specified (as in section 9.2).

9.2 Goals of Master Thesis

During the literature study phase it became increasingly clear that suitable sets of
marketplace data from Apple App Store and Google Play will not be accessible for importing
into a local database as most of the relevant data is not publicly disclosed. This is why the
statistical phase of this thesis project will be done through a case study, using the data sets
from apps published by The Mobile Life [129], the company at which I am conducting this
thesis project. Basic statistical analysis will be done on the available data sets. There will also
be a recommendations section. This section will review whether a developer or publisher
could utilize some combination of the publicly available tools and private data related to their
application. This is done in order to derive satisfactory app statistics. The best suitable tools
for this purpose will also be reviewed in this section. Most importantly, an in-house app
statistics platform will be developed, implemented, and evaluated.

46

9.2.1 Limitations

The literature study phase of this thesis project focused mostly on the Android and iOS
platforms, as does the final master’s thesis – both the implementation of the tool and the data
analysis. The statistical techniques described in the previous sections should only be viewed
as a preliminary set of suitable tools, some of which will be used in this very report and some
that are recommended for future use cases.

9.2.2 Primary goals

There are three clearly defined main goals for the app statistics implementation: storing
data locally, presenting it suitably, and making it accessible.

1. First and foremost, available app data from third-party tools should, whenever possible,
be transformed into a uniform format and then imported into a local database. This
corresponds to the ETL phase. Additionally, manual entries must be possible since
some customers of the app publisher may not want to disclose all of the data that they
might want to include in their copy of the database. Hence it should be possible to add
some data manually, possibly at irregular intervals. A few benefits of local data are
direct access to data for SQL queries and other statistical tools, local
backup/redundancy and one single data source which facilitates easier report writing.
The relatively small data sizes that will be imported should not require much resources
and could be deployed onto an existing server, mainly dedicated to another purpose.

2. This database should be accompanied by a front-end offering some visual
representation of this data, at the very least displaying in tables; but preferably also as
diagrams or charts.

3. This front-end should be made available to external viewers so that their visualization
could be done on a mobile device. This was an especially desired feature for the
company at which this thesis project was undertaken, but which technique to use
remains open, i.e., it could be a native app or mobile web site.

9.2.3 Secondary goals

The functions listed in this section are things that are not required, but would be
considered nice additions to the system.

1. The front-end should not only connect directly to the database, but should also offer an
API with user access control management, so that third-parties may be given access
the data of interest to them, without having full system access.

2. Some type of primitive SMM tool for mapping app reviews into category buckets
using keyword lists would be useful, if review texts are available.

3. Alarm or trigger system. For instance, if the overall rating for App A drops below 2
out of 5, then automatically send an email to the relevant person (or persons) to
encourage investigation.

4. Automatic or semi-automatic monthly reports could be generated based on the trends
that are found. Such reports are already sent to many customers of the app company,
and currently require all data to be manually compiled and written.

9.3 Implementation outline

This section discusses a rough estimate of which techniques and data sets the
implementation phase utilized for its design and implementation. Finally a blueprint of the
system architecture is provided.

47

9.3.1 Data collection

The company at which this thesis project is undertaken is an app publisher, which enables
me to use actual live data and statistics from their own published applications. I will use this
data, but to preserve confidentially I will anonymize the actual results and findings. The
majority of the published apps are free to download, so my statistics will not focus on price
and revenue metrics. A few of the company’s apps have experimentally included either
Google Analytics SDK or Flurry SDK, although these are used in a minority of the apps that
will be studied. However, the statistics from these systems may be compared to the results
that I find using the in-house data.

Whenever possible, scripts for importing data from marketplaces and third-party APIs
should be scheduled to execute every n days, so that data is always retrieved and stored safely
into the in-house local database. Such scheduling can be done on a Unix-based server via the
crontab command [82] or in Windows through the scheduling utility.

Data sets can be imported from following sources:

iOS App Annie will be used rather than directly connecting to iTunes Connect,
since App Annie has stored data ranging further back than the 13 weeks
available on iTunes Connect. Therefore the initial import of historic data
should be done through App Annie export files.

The Apple Autoingest Java class or the still-functioning AppDailySales
Python script are probably useful for fetching current stats, since one of the
goals of the implementation is to have as little third-party dependency as
possible.

Android Google Play Developer Console API is surprisingly limited, and currently only
provides subscription statistics. Actual app data is not available over the API
[67]. There are some reverse-engineered scripts, but most were developed for
the previous version of the marketplace [68], when it was called Android
Market. Furthermore, their screen-scraping nature also makes them unreliable,
as any small change to the marketplace layout could break their functionality.

Even though the Developer Console lacks a good API, it offers manual data
export in the form of multiple “.csv” files available for download, and it is
possible to request a “.zip” file containing all of these files. The file names
shown in Figure 9-1 are mostly self-explanatory.

The solution to this problem is to either write a script that logs into the
Developer Console, downloads the “.csv” export file and imports it to the
database, or to rely on a trustworthy third-party data source such as Distimo’s
API. A more robust approach for the future might be to include the Google
Analytics library into each app (both Android and iOS). This would be useful
for multiple reasons, including access to more mature API.

Cross-

platform

• Distimo’s API [83] is very well-documented and is a popular third-
party source for app statistics. It appears after some initial testing to be
suitable for integration into the final local implementation.

• Google Analytics session data might be explored experimentally, since
only a small fraction of the company’s apps have included the
necessary library as of yet.

• Flurry offers an API over XML or JSON that I may also attempt to
utilize for session data.

Generic / OurMobilePlanet Excel spreadsheets may be of interest for cross-referencing

48

cross-

reference

material

demographics and user behaviour.

Figure 9-1 – The archive file containing Android .csv export data

9.3.2 Back-end – database structure

As the company has previously used MySQL databases for their back-ends, I have also
used a MySQL database for this project. The server will likely be hosted in the cloud, but
during development I will run a local MySQL server on my laptop. I will utilize Windows,
Apache, MySQL, and PHP (the WAMP stack) during development, as it is well-documented
and I have used it before. Many useful plug-ins and modules are also prepackaged with it.

For compatibility reasons, at least the iOS statistics collected will follow the same
database architecture as the official app data from iTunes Connect. These were documented
by Apple in [39]. This structure was adapted in Table 7.

49

Table 7 – iOS report database structure

Report Field Report Data Type Notes

Provider CHAR(5) Typically Apple

Provider Country CHAR(2) Typically US

SKU VARCHAR(100) Product identifier

Developer VARCHAR(4000)

Title VARCHAR(600)

Version VARCHAR(100)

Product Type Identifier VARCHAR(20) Initial download / update, etc.

Units DECIMAL(18,2) Aggregated number of units

Developer Proceeds
(per item)

DECIMAL(18,2)

Begin Date Date Start date of report

End Date Date End date of report

Customer Currency CHAR(3) Three-character ISO code

Country Code CHAR(2) Two-character ISO code

Currency of Proceeds CHAR(3)

Apple Identifier DECIMAL(18,0) Apple ID for the app

Customer Price DECIMAL(18,2) Price displayed in App Store

Promo Code VARCHAR(10) Optional promotion code

Parent Identifier VARCHAR(100) For in-app purchases

Subscription VARCHAR(10) Renewal or new

Period VARCHAR(30) Duration of subscription

For Android, the most interesting of the .csv files in Figure 9-1 on page 48 would
probably be overall_ratings and overall_installs. The formats for these files are:

overall_installs.csv date,daily_device_installs,active_device_installs,
daily_user_installs,total_user_installs,active_user_installs,
daily_device_uninstalls,daily_user_uninstalls,
daily_device_upgrades

Example:
20130112,30,2898,25,8685,2782,18,18,0

overall_ratings.csv date,daily_avg_rating,total_avg_rating

Example:
20130112,0.0,3.4705882352941178

The database will be set up with specific tables dedicated to this data and will utilize a
very similar table layout.

In addition to the platform specific data, whenever possible category and marketplace
ranking will also be collected, as well as app reviews.

9.3.3 Back-end – API specification

As third parties must be able to access at least the most vital app statistics via a public
interface, the back-end will host an API for this purpose. It will likely have a RESTful API
written in PHP that accepts queries in the form of a Uniform Resource Identifier (URI) and
responds with generated JSON or XML structured data. An example of a JSON response from
Distimo’s API is shown in Figure 9-2. This sample might be useful for inspiration.

50

Figure 9-2 – Sample JSON response output

The URI format is well-documented in IETF’s RFC 3986 [84] and fits well with the
purposes described in that RFC: “a source of information with a consistent purpose (e.g.,
"today's weather report for Los Angeles")”. The app statistics equivalent would then be
“today’s downloads for App A”.

The final format of the URI-scheme used will be described in section 10.3.7, but
parameters to be included are to include an identifier for which app or publisher data is being
requested and some type of password, token, or nonce for determining whether the request
shall be granted. As all accounts will still require manual activation from the app company,
this security scheme shall suffice, but a future approach for authentication and authorization
might be securing the connection using TLS or SSL.

The easiest approach to a format would be sending parameters as URL variables, as in the
following very preliminary draft of an API format:

http://server/appstats/api.php?appID=[appID]&statType=[statType]&period=[period]&
token=[token]

Another possibility is to employ a ”cleaner” URI form with more hierarchical structure:

http://server/appstats/appID/statType/period?token=[string]

thus an example request might look like:

http://123.123.123.123/appstats/1/downloads/lastMonth?token=password123

The latter format can be achieved by altering the .htaccess file of the Apache server, using
the mod_rewrite module [85]. This effectively redirects requests, enabling an arbitrary URL
format.

9.3.4 Front-end and visualization

Considering the requirement that the statistics platform must be viewable via a
smartphone, there are two options. Either the statistics platform must be developed in dual
versions: for desktop computers and for smartphones; or a cross-platform hybrid developed
based on web techniques. The advantage with the first approach is the possibility of
developing a native app for one or more smartphone OS’s. However, as the app publishing
company creates apps for all major smartphone platforms, it seems counterintuitive to write
native apps for every platform, or to restrict access to only a target selected subset. This

51

suggests initially developing a web-based platform that uses responsive design – depending
on the size of the viewport, the layout will be adapted for a nice user experience.

One popular established front-end framework is Twitter Bootstrap [86], which is open-
source and free to use. It comes with good legacy compatibility with older browsers and has a
responsive design, thanks to a modular grid layout that enables grid boxes to be rearranged
based on the available space. It is also easily customizable and well-documented. For all these
reasons, I will likely make use of it as part of the front-end implementation. Figure 9-3 shows
a work-in-progress mock-up displaying the same page on a laptop and a smartphone side by
side.

Figure 9-3 – Responsive design with Twitter Bootstrap
(laptop version on the left and smartphone version on the right)

Another advantage of the web technique is that there are APIs and plug-ins for
visualization, such as Google Charts API [87] and DataTables for jQuery [88], which may be
useful when presenting the data. The pie chart in the above figure was in fact generated with
Google Charts. It is also legacy compatible: “Charts are rendered using HTML5/SVG
technology to provide cross-browser compatibility (including VML for older IE versions) and

cross platform portability to iPhones, iPads and Android. No plugins are needed” [87].

9.3.5 Abstract system architecture

Figure 9-4 shows a preliminary blueprint of the internal architecture of the proposed
system. This shows schematically how the server will acquire data from external sources over
their APIs and how data will be made available from our server via an API of our own.

52

Figure 9-4 – Abstract architecture of the app statistics platform and external services

53

10 Implementation phase

This chapter describes the actual implementation of the in-house app statistics web
platform, how it is designed and the details of some of its inner workings. For a more generic
and architectural overview, see the previous chapter.

10.1 Login and authentication

The aforementioned Twitter Bootstrap templates include a basic login page, shown in
Figure 10-1, which was modified somewhat but mostly used intact. Some form markup was
added, making both fields required before submission, and in case of a failed login, a response
message is displayed.

Figure 10-1 – Login page after failed login attempt

The credentials are verified against a table in the MySQL database called login, where all
user accounts are stored. Accounts may have different privileges (both in the sense that they
may be given access to certain apps, but also on what level data is made available). A certain
column in the database specifies a clearance level on a scale from 0-2, as explained below:

Table 8 – Clearance levels for user accounts

Clearance level Privileges and access

0 Read-only (child account): view rights of all data for certain apps.
May not share data further, nor create child accounts of its own.

1 Customer: view rights of all data for certain apps. Can import raw
data from files manually, and change account settings. May create,
edit and delete child read-only accounts and share data for select apps
with them.

2 Admin: view rights of all data for all apps for all customers. Can
import raw data from files manually, and change account settings.
May create and delete accounts of lower clearance; both customer

54

accounts and read-only child accounts.

Accounts of clearance levels 0 and 1 always have to have a “parent” account, to identify

who their superior is. Accounts of level 1 default to having Admin as their parent. However,
the admin account itself has no parent.

10.2 Menu – Structure and pages

The clearance levels reflect directly on which pages and views are available and viewable
to the logged in user. Figure 10-2 is an illustration of the left-hand side menu of the web
platform – on the left are the options available to a user of clearance 1 or 2, while the read-
only account of level 0 are restricted as can be seen on the right.

Figure 10-2 – Menu seen with different account privileges

All the options from the “full” menu on the left-hand side will be described in further sub-

sections below.

10.2.1 Dashboard

The first page seen after a successful login is the front page or dashboard. The idea of this
page is to give a quick overview of vital statistics for all your apps, without having to specify
any criteria. As all other pages, the design is made using a responsive CSS template so that
the layout depends on the viewport size. The full-fledged site is displayed for screens that
have at least 768 pixels of width, and columns are instead made fluid (adjusted for mobile
devices) if the width should be less [91]. Refer to figure 9-3 for an example of this.

55

The PHP function include [96] enables a very modular design in combination with the
Twitter Bootstrap grid layout. In the dashboard page, each of the containers is injected into
the page source using include calls, as follows:

<div class="span4">
 <h3>Latest reviews</h3>
 <?php include 'commentlist.php'; ?>
</div><!--/span-->

<div class="span4">
 <h3>Downloads</h3>
 <?php include 'applist.php'; ?>
</div><!--/span-->

And so forth. This setup opens the door to a future customization of the dashboard where each
logged in user may choose which “widgets” should be displayed for each box, and the
dashboard page could simply include these pages conditionally. Such a personalization of the
dashboard is not prioritized at the present stage, but the web platform is built with these
options in mind. Some other calls are made using jQuery AJAX capabilities to prevent page
reloading. I have on the other hand refrained from using iframes as this is considered by some
to be bad practice.

As the pie chart (showing app rating distribution) and line chart (showing downloads per

day over the last month) are rendered using Google Charts [87], some custom JavaScripts
were written by me and bound to the window.resize event to ensure that the charts would
always make use of the full grid space made available to them. A screenshot of the full-sized
dashboard page is displayed in Figure 10-3.

Figure 10-3 – The dashboard page

Other components on the dashboard include top lists over the most downloaded apps and
top grossing apps all-time and a select portion of the latest user reviews. App names are

56

whenever possible accompanied by a small icon to indicate whether it is an Apple App Store
app or a Google Android app.

10.2.2 App list

The app list page is self-explanatory – it is a list over all the apps that the currently logged
in account may view statistics for. It can be seen in Figure 10-4. In all screenshots below,
icons are censored, but are otherwise fetched from the app store by means of an application
ID. The ID column also links to the public landing page of the respective marketplaces
product page. This table, along with many others in my implementation, use the DataTables
jQuery plugin [88] in order to provide sorting of tables along with other functionality.

Figure 10-4 – App list page

10.2.3 Reports

The idea behind the report page is to allow dynamic generation of reports on a per-app
basis. In other words, after selecting one or more apps and a defined time period, all relevant
and available statistics should be fetched and presented in a report-friendly design. This
should also be exportable to PDF.

The settings for the output are selected through a simple form, and the user may choose to

view a report as a web page (in HTML), PDF in the browser, or have a PDF sent to his/her
email address as an attachment.

57

Figure 10-5 – Report generation

Upon clicking the button, the user is met with an AJAX spinner icon from [107] indicating the
report generation process has started. Only the metrics selected by the user are included in the
report. Had the user opted to receive or view a PDF, then the generation is done using
wkhtmltopdf [108], a relatively new PDF generation library built upon WebKit, which is the
web page rendering engine used by browsers such as Chrome and Safari [109]. This is a
reliable way to create PDF, as it is more likely to resemble the original HTML page even in
its PDF form.

The package also creates a proper Table of Contents (seen on the left-hand side in Figure 10-6)
by means of parsing header tags in the HTML code and turning these into chapters, sub-
chapters and sections.

58

Figure 10-6 – Generated PDF report

The report is optionally sent to the user’s email address, using PEAR Mail [98] and its MIME
package for attaching the newly generated PDF.

10.2.4 Downloads

Based on a proof-of-concept by Karl Monaghan [92], this simple Google Chart displays
downloads of App Store apps over the last 30 days. I have done several modifications of his
example code, however, attempting to make it compatible with the data structures for Android
data as well. The layout is seen in Figure 10-7.

The options set a time period, selecting a single app (allowing the chart to auto-adjust axis

scales accordingly) and changing the metric between either downloads or updates. Data is
fetched via the jQuery .getJSON() method which retrieves data asynchronously from a PHP
script which responds with JSON output.

59

Figure 10-7 – Downloads page

10.2.5 Ratings

All app ratings, as indicated with 1-5 stars, are listed in a table as seen in Figure 10-8.
Apps can be selected individually and ratings may be filtered with time periods based on
starting and/or ending date. The search text field above the table enables free-text search, and
the table can be sorted based on any column. Dates are chosen either by typing them manually
with the keyboard or by clicking on the popup calendar component provided by the standard
jQuery UI library.

60

Figure 10-8 – Ratings page, by app

10.2.6 Rankings

This page is still under development although functional. The view still needs
functionality to track each of the displayed categories over time. In its current state, this page
lists the highest achieved top position for each category the app belongs to. An example of the
page as it is at this time is shown in Figure 10-9.

61

Figure 10-9 – Rankings by category

10.2.7 Revenue

This page is yet to be developed. It was not prioritized – mostly because almost all of the
apps within the set which we worked with for this project are released free of charge – but
such a page would be a nice feature. As the automatically imported data from the iTunes
Connect webpage features app prices and number of units purchased, the total revenue per
app is already calculated and displayed in a widget box on the dashboard. However, the
corresponding data is not available for Google Play. Should a third-party API prove adequate,
a multi-platform simplified view over app revenue might be included, otherwise this view will
only work for iOS apps.

10.2.8 Reviews

Much work has gone into this metric, as current third-party statistics services leave much
to desire. The first tab of this view (see Figure 10-10) contains a toplist of frequent words
used in the reviews of the selected app for the filtered period of time (calendar dates). This is
done by parsing headlines and review texts from all imported reviews and counting the
frequencies of all words of a length greater than n characters, using array_count_values in
PHP [99]. The most frequent words are rendered into a word cloud using the jQuery plugin
jQCloud [100] which helps to visualize the keyword trends. The more frequent a keyword is
among reviews, the bigger font size in the word cloud. The following illustration is a practical
example of an app where the login service was having issues, also preventing the users from
uploading their receipts which was a core functionality of the particular app. The problems at
hand are very easy to spot thanks to the table and word cloud.

62

However, common everyday words, often referred to as stop words [113], should
probably be pruned using some kind of dictionary word list to increase precision. Some
techniques for pruning and filtering out unwanted words are discussed in chapter 2.2.2 of
[113]. As the authors also point out, if we were to expand the trend words functionality to
allow phrases, we must not over-prune, as meaningful phrases could be built from a
combination of stop words.

Figure 10-10 – Trending review keywords and word cloud

The second tab lists all reviews in reverse chronological order and may be filtered per app

and date period (see Figure 10-11). Each review states the app (including version info when
available), platform, rating (1-5 stars), review title and text, author and review date.

Each review may also be tagged with labels, which are applied should the review match

filters set up by the user. These labels are counted and presented with numbers and
percentages at the top of the page. How these tags work will be presented in more detail in
section 10.2.13.

63

Figure 10-11 – Review page with tags applied

10.2.9 Session tracking

This and the following page are mostly placeholders for upcoming integration with the
session-tracking packages such as Google Analytics and Flurry SDK. Such functionality
could not be incorporated into the project within the time constraints of this master’s thesis
project, but this data is highly useful and a suitable topic for future development.

10.2.10 User demographics

This page is presently not implemented, but simply a placeholder menu link for future
addition.

10.2.11 Import

As per the requirement from the company at which this thesis project was undertaken,
customers must be able to manually import raw data that was exported from each marketplace.
In order to realize this functionality, the well-documented CSV-functionality of PHP was used.
Upon clicking the menu link – only available to accounts of clearance levels 1 or higher – a
popup dialog appears through which a CSV format file may be selected. This dialog is shown
in Figure 10-12, with the progress bar in current display.

64

Figure 10-12 – Manual import of data

Then an animated progress bar indicates the file upload to server and the database

insertion, upon which either a failure or success message is displayed to the user at the top of
the dashboard start page (see Figure 10-13). These messages are always dismissable with a
click on the X icon.

Figure 10-13 – Dismissable user notices

10.2.12 Alerts

This view was experimentally implemented, see section 10.4 for a further description. The
idea is to construct a form-based view, enabling any metric stored in the local database to be
monitored, and upon satisfaction of criteria, emails should be sent out when these alerts are
triggered. The form for setting up such an alert would ideally use components to form full
sentences explaining the filter. A few scenarios are shown below:

[E-mail me] if [App A] - [Average rating] [Gets higher than] ______
or
[Notify me upon login] if [App B] - [Receives new review] [] ______

65

10.2.13 Settings

The settings page, only available to accounts of clearance level 1 or above, is divided
content-wise into tabs and groups. On the main page, the user may input their login details to
their iTunes Connect account, Google Play Developer Console, and Distimo (third-party API)
details, in addition to their internal username, password, and email for the web platform itself.
For each section, a checkbox or cross will indicate that details are either sufficiently and
correctly entered or that they are not yet provided by the user.

Figure 10-14 – Settings page: first tab

The second clickable tab allows for creating review tags, by entering keywords and saving
them as filters. Figure 10-15 displays some of these tags found in reviews, based on the filters
already created by the user. The input fields are connected by a jQuery plugin called Tag-it
[110], with a customized CSS style for turning a comma-separated word list into individually
editable word tags.

66

Figure 10-15 – Review tag filters

Hopefully, an upcoming version of the app stats web platform will enable alerts to be
triggered when a specified percentage of recent reviews attract a specific label.

The Child accounts tab lists any already created child accounts (with read-only permission)

and allows for creating new ones. This tab is shown in Figure 10-16.

67

Figure 10-16 – Editing user permissions

10.3 Data and database

This section describes some of the underlying database schemas, how manual data import
is done, and how external data sources are polled regularly for automated import. The outlines
of the internal API are also discussed.

10.3.1 Import – Initial backlog

For current and future statistics, all metrics should be automatically fetched and imported
from external data sources. However, statistics from the past may need to be manually
imported. As mentioned in chapter 9, App Annie was a good source for this backlog data as it
provides exported CSV files. However, as one such file is generated per day, this could easily
result in hundreds of CSV files. A small utility called TxtToMy [97] allows for batch
importation of these files, by mapping CSV column names to MySQL table column names.
Figure 10-17 shows a sample screenshot from one such import operation.

68

Figure 10-17 – Batch import of CSV data with TxtToMy

10.3.2 Import – Manual

The code for the web platform import function (as described in section 10.2.11) contains a
constant, associative array which can be seen as a key-value pair that allows array data. If we
import a file with a name ending in ‘android_overall_ratings’, a function
columnFormat($importtype) will return the corresponding column structure for this particular
database table: (appID, date, daily_avg_rating, total_avg_rating). This allows us to
dynamically construct our SQL INSERT statement. These mappings are applied for each
different CSV file type allowed for import.

The actual handling of the CSV data is facilitated by functions in PHP, such as fgetcsv
[95]. This function takes as parameters the data set, maximum length per line, delimiter
character, and escape characters. Extracting actual data into a workable format is quite user-
friendly and easy with this function.

Should we attempt to import a file of unknown format, we are returned to the start page
with a dismissible error notice. The actual file upload code snippet was based on a sample
from W3 Schools [94].

10.3.3 Import – Scheduled and automated

Two different sources are used for automated data import.
The first is the URL set up by Apple to serve its Autoingestion Java class requests. This

is unofficially available for other clients as well, as long as the request format is correct. The

69

script from [92] is a base for this, but many modifications have been made, such as supporting
a dynamic number of App Store accounts. Hopefully, since Apple’s own Java class uses the
same format, this data source should remain available for a long period of time.

The second data source is via Distimo APIs for ranking, downloads, and reviews. The

returned JSON is decomposed and stored into the database. My code ensures the import of all
possible data by executing a data poll for each distinct user account with Distimo credentials,
and for each app belonging to those accounts. As these imports may contain thousands of
entries it is beneficial to use prepared statements to reduce execution time.

Both of these import types are automated and scheduled to run daily at a certain time of

day by opening the respective PHP file in a web browser. Should the computer not be turned
on at the time, lack a network connectivity or fail for some other reason, then the scripts are
scheduled to recover as soon as possible. Below is a screenshot of how these scripts are
scheduled in my development environment (using Windows). The crontab command [82] has
the corresponding functionality for a UNIX or Linux environment.

One option for this scheduling is to wrap all scripts into a single call (see Figure 10-18),

from a single scheduling PHP file. This is more convenient than scheduling multiple scripts.
However, separating each import type into its own scheduled script enables spreading the load
evenly over the day and enables clear log traces for all executions. It also enables a more
robust setup compared to scheduling a single PHP file which would represent a single point-
of-failure.

Figure 10-18 – Scheduling import scripts in Windows

70

10.3.4 MySQL database queries and constraints

The database employs some standard constraints such as foreign keys between tables to
ensure correctly entered data. For instance, appID must be consistent with an existing
application for comments, downloads, and the other data to be imported. Constraints for
uniqueness are also used to avoid duplicate data. More details about this are given in the
following section regarding data principles.

10.3.5 Principles

The development process and particularly the data import scripting has been done to
maintain a few constraints to ensure consistency and confidentiality of data.

No timeout – Regardless of which PHP script is executing, manual or
automated/scheduled, they need to override the normal server setting for a timeout which is
30 seconds. Otherwise, should the amounts of data to insert be too large, some data could be
accidentally excluded. The solution is to write at the top of each PHP file “set_time_limit(0);”
where the zero may actually be changed to a non-infinite, but still generous value before
deploying the implementation onto a production server, to protect against non-terminating
code.

No duplicates – Either by defining aggregate primary keys over all columns which may

not be repeated in the table, or by adding a unique index, we ensure that duplicate data is not
present in our tables. An example of the latter is ALTER IGNORE TABLE `app`.`testtabell`
ADD UNIQUE INDEX idx_all (column1, column2, … columnN);

No unnecessary polling – By ordering each table by date, finding the latest date of a

successful import, we may set this date as the “from” parameter for our next data polling. This
ensures that we do not have to filter through duplicates of data already imported. An example
of a query that finds this date is SELECT begin_date FROM ios ORDER BY begin_date
DESC LIMIT 1;.

No manipulation – Even by changing user data such as HTTP GET variables in URLs
that are editable by the user, no unauthorized access should be possible – as the PHP session
is monitored server-side at every page load and all SQL queries include subqueries to the
effect of …WHERE `app`.`comments`.appid IN (SELECT DISTINCT appid FROM
`app`.`apps` WHERE publisher = 'loggedInUser') which effectively guarantees that only data
from permitted apps is returned.

Similarly, should there be a MySQL error, instead of the common practice $result =
mysql_query($query) or die(mysql_error()); which details the database error and prints details
to the browser, I have opted to simply redirect the user, using for example header('Location:
login.php?msg=FAIL'); which does not reveal information about the underlying database, or
its table structure.

10.3.6 Server requirements

Besides the obvious software requirements such as reasonably recent versions of PHP and
MySQL, some add-ons were required server-side before deploying the implementation from
my development environment (laptop) onto a corporate server.

71

For instance, the ingestion of Apple App Store data fetches data in the form of
compressed .gz archive files. As these must be programmatically unzipped server-side before
the import can commence, we need permission to run system or exec commands in PHP
which is not always enabled by default. Safe mode must be turned off, file upload and cURL
modules must be enabled, and there needs to be an unzip library present. Compared to the
example from [92] which did not work on my test server, I instead installed GnuWin [93] on
the server and changed the call from gunzip to gzip –d (the last flag meaning deflate). 7zip is
another option.

10.3.7 API outlines

It was decided that only the most basic data should be made available through the internal
API – partly to minimize support issues, and partly to focus on the core statistics. Statistics
will be possible to break down by app, date period, and by type of metric. An aggregate
metric for all the apps connected to the account should also be available. A table over the
valid request types is shown in table 9:

Table 9 – Valid API request types

Metric requested Required

parameters

Optional

parameters

Output

(JSON response structure)

Downloads per app API key, App
ID

From date, to date date > metric

Downloads total API key From date, to date appID > date > metric

Ratings/Reviews per
app

API key, App
ID

From date, to date date > metric

Ratings/Reviews
total

API key From date, to date appID > date > metric

Rankings per app API key, App
ID

From date, to date date > category name > metric

Rankings total API key From date, to date appID > date > category name >
metric

The above schematic is a first version of the API. It is likely to be developed further at the
company at a later time. Optional parameters such as platform, app version, or country are
likely additions. Revenue and other metrics would also be useful.

A table in the database schema was created for logging purposes, storing queries, user (via
a lookup of the API key) and request timestamp – also the IP address from which the request
was made, by the PHP system variable $_SERVER[‘REMOTE_ADDR’]. Such logs will be
useful in the unlikely event of abuse.

A sample API request is shown in Figure 10-19, with the request URI and the resulting
JSON response output. Note that faulty API requests produce a JSON compliant error
message response and for security purposes are logged in the system logs (including
requesting IP address) under a separate error category. For an actual code sample from the
API function, see the Appendix A of this report.

72

Figure 10-19 – Internal API request

10.4 Milestone progress evaluation

Comparing the implementation maturity against the primary and secondary goals listed in
sections 9.2.2 and 9.2.3, we find that while the focus and priority has been correct (emphasis
on the primary goals deliverables), much progress has been made on the secondary goals as
well. However, statistical analysis had been hard to perform until more data was imported.
This is probably one area that would benefit from more attention in the future – refer to
chapter 11 for more details on the analysis. In table 10 is a brief summary on development
progress, compared to the stated primary and secondary goals.

Table 10 – Milestone progress of primary and secondary goals

Goal Current status Remaining

Primary goal 1: First and
foremost, available app data
from third-party tools should,
whenever possible, be
transformed into a uniform
format, and (automatically)
imported into a local database.
This corresponds to the ETL
phase. Additionally, manual
entries must be possible since
some customers of the app
publisher may not want to
disclose all of the data that
they might want to include in
their copy of the database.
Hence it should be possible to
add some data manually.

- Downloads, user
ratings/reviews and
rankings are
automatically fetched
from Distimo’s API as
JSON and imported into
local database tables.
- Apple’s App Store data
are also scheduled and
auto-imported from
iTunes Connect.
- Manual imports of
CSV-files from Android
export data is working,
but not yet for all
dimensions (such as data
broken down by
country).

- Add support for all import file
types for Android
- Add support for iOS manual
import

73

Primary goal 2: This database
should be accompanied by a
front-end offering some visual
representation of this data, at
the very least in tables; but
preferably also as diagrams or
charts.

A front-end is designed
and data displayed in
both tables and charts.

Improve designs

Primary goal 3: This front-end
should be made available for
external viewers so that
visualization could be done on
a mobile device. This was an
especially desired feature for
the company at which this
thesis project is undertaken,
but which technique to use
remains open, i.e., it could be
a native app or mobile web
site.

The technique was
designed to be
accessible as a mobile
web using a responsive
CSS template. It is
presentable in both full-
sized web version and
mobile edition. This
goal is on the right track,
but still needs final
testing after the end of
the master’s thesis
project.

Acceptance testing – preferably
in multiple phases; internal, beta
and public release. Internal
testing has begun at the time of
this publication, but shall
continue for some period of time.

Secondary goal 1: The front-
end should not only connect
directly to the database, but
also offer an API that will
allow user access control
management, so that third-
parties may access the data of
interest to them, without
having full system access.

The API has been built
and is working,
generated JSON
responses verified with
JSONlint [111].

– Database logging of all
API requests is in place

– User management is in
place and working (i.e.
child accounts with
read-only rights)

Secondary goal 2: Some type
of primitive SMM tool for
mapping app reviews into
category buckets using
keyword lists would be useful,
if review texts are available.

– Review comment texts
are imported
automatically using
Distimo API for most
apps

– Users can create filters
(tags) that are
automatically applied to
reviews. Frequencies
and percentages of these
labels are calculated and
displayed.

– Trending review
keywords are drawn in a
word cloud and listed in
a table.

These filters should be
incorporated into the future
development of Secondary goal
3, refer to the table row below.

74

Secondary goal 3: Alarm or
trigger system. For instance, if
the overall rating for App A
drops below 2 out of 5, then
automatically send an email to
the relevant person (or
persons) to encourage
investigation.

– Not implemented as of
yet. Such a control script
could be scheduled to
run just after the last of
the daily imports is
finished.

– The PEAR::Mail
component in PHP [98]
seems suitable for
sending out the alert
mails via any SMTP
mail account. The
component is already
used for sending out
report emails.

Not prioritized, but a likely
future addition

Secondary goal 4: Automatic
or semi-automatic monthly
reports could be generated
based on the trends found.
Such reports are already sent
to many customers of the app
company, but currently require
everything to be manually
compiled and written.

Users may generate
reports, either in HTML
format for direct
viewing in the browser,
exported to PDF using
wkhtmltopdf [108], or as
PDF attachments sent
via email using
PEAR::Mail [98].

Users should be able to set up
rules for regularly automated
reports being sent out via email.

In addition to the primary and secondary goals, some comments regarding the
implementation are:

• I have a maximum of 16 apps (11 for iOS, 5 for Android) to gather statistics for. These
are a select subset of the company’s app catalogue, based on data sensitivity. Since
most of the Android apps have also been released in iOS versions, this data should in
my opinion not skew the results too much.

• The implementation is somewhat dependant on Distimo’s third-party API. However,
the back-end is quite flexible so that another data source could easily append its data
to the same database tables for interchangeability. An approach for the future might be
to include Google Analytics SDK into every app (iOS and Android) just to get access
to a better first-party API for data. If this is not feasible, another option is to
investigate the upcoming API from App Annie (at the time of this publication in
private invitation-only beta phase) so as to collect data from multiple sources.

• An aggregated view of all available data on a per-app-basis was designed. This
summary is the foundation of the reports view (also enabling the PDF report
generation, requiring only a defined time period of what the report should cover).

• Many additional modifications of the current code are necessary to make everything
multi-platform compatible. For instance, as Apple’s App Store data includes data
about app pricing whereas Google Play does not, revenue cannot be calculated
automatically even from a manual import of Google Play data. Third-party API’s such
as Distimo may have to be used for this purpose as well.

75

• For internal versioning of the app stats web platform, I will follow the Semantic
Versioning 2.0.0-rc.1 guidelines (formed by Tom Preston-Werner, one of the co-
founders of GitHub), available from [112]. The format is <major>.<minor>.<patch>
where each field’s increase resets the fields to the right to zero. For instance, a bugfix
patch release would increase version number 1.0.0 to 1.0.1, and the following version
with new features would be either 1.1.0 or 2.0.0 depending on the size of the update.

76

11 Analysis

 Using the manually and automatically imported app data, we performed some statistical
analysis. One approach is to tailor specific queries that return very specific data – in this
scenario we might write SQL queries that are executed directly on the back-end database.
Another method is to use the capabilities of mathematical software such as R [115] and its
many add-on packages. The latter also facilitates drawing statistical findings in charts and
diagrams.

11.1 SQL query analysis

An initial manual analysis phase might be done via writing SQL queries to execute on the
local database, as it now contains substantial amounts of imported raw data. A few example
queries, their use cases, and results (in some cases slightly censored) are given below.

Which weekday is the most successful in terms of downloads?
 (i.e. which day might be optimal for an upcoming app launch?)
SELECT
DATE_FORMAT(statdate, '%W') as weekday,
sum(`value`) as downloads
FROM `app`.`downloads `
GROUP BY weekday
ORDER BY downloads DESC

Weekday, number of downloads

'Sunday', xx061
'Saturday', xx773
'Friday', xx153
'Thursday', xx863
'Tuesday', xx599
'Monday', x472
'Wednesday', x276

Which platform is most successful in terms of average ratings, Android or iOS?
(i.e. which platform should we focus on for the future, or which platform needs improvement?)
SELECT
case
 WHEN appid IN (SELECT appid FROM `app`.`apps` where platform = 'Google
Play') then 'Google Play'
 WHEN appid IN (SELECT appid FROM `app`.`apps` where platform = 'App
Store') then 'App Store'
 else "Unknown platform"
end
as platform,
avg(rating) as avg_rating,
count(rating) as no_ratings
FROM `app`.`comments`
GROUP BY platform

Platform, average rating, # ratings

'App Store', x.x81586, x91
'Google Play', x.x58065, x1

Is there any correlation between the number of app versions and the app’s average rating?
(i.e. does it pay to keep releasing new versions and fixing bugs / adding features?)
SELECT application_name,
 AVG(rating) as avg_rating,
 COUNT(rating) as no_ratings,
 COUNT(DISTINCT version) as no_versions
FROM `app`.`comments`
GROUP BY appid
ORDER BY avg_rating DESC

App, avg. rating, # ratings, # ver

'App A', x.285714, 7, 2
'App B', x.500000, 12, 3
'App C', x.722222, 36, 6
'App D', x.700935, 107, 9
'App E', x.448276, 29, 8
'App F', x.333333, 3, 1
'App G', x.750000, 8, 2
'App H', x.722222, 36, 6
'App I', x.568627, 153, 4
'App J', x.285714, 14, 0
'App K', x.250000, 16, 0
'App L', x.000000, 1, 0

77

The output from this last query was imported into OpenOffice Calc (and adjusted for those
apps with “0” app versions). By means of the correl() function mentioned in section 8.2, we
find a positive Pearson correlation of 0.53 between the number of app versions and the
number of reviews (not surprisingly); but what is interesting is a positive correlation of 0.25
was also found between the number of app versions and a higher average rating. It seems as if
most of the time, app updates reflect positively on the aggregated rating.

Even though this type of query based analysis should not be underestimated for future use, the
idea is that those questions that we might want to track regularly should be displayed in the
web GUI through tables and charts, both for convenience and to easily include the data into
reports. An intermediate step to this effect is to draw and plot findings manually at first.

11.2 Statistical analysis

Apps may be developed for vastly different purposes. Within the app portfolio made
available to me, there are apps that are intended for use on one single day per year (for a
particular event), as well as social apps, intended for daily use. Most apps are either
completely free of charge or a one-off purchase, but one app uses a subscription scheme with
monthly or quarterly renewal, and another app uses premium add-on charges for SMS
notification services.

Extracting some key metrics for each app available to me, I generated a data set that
would be suitable for statistical computations. The table includes for each app its smartphone
platform, number of downloads and updates, the number of app versions, number of ratings
and the aggregated average rating. I have also applied ad-hoc labels indicating whether the
app would be considered either ‘promotional/event based’ or ‘commercial/professional’, and
either ‘free’ or ‘paid (any business model)’. Revenue would have been an interesting addition
under other circumstances, but too little data was available (shared from clients and collected
from app stores) to make it meaningful in this particular case. Table 11 demonstrates the data
set, although most sensitive data has been removed or modified for anonymity, instead
indicating the figure sizes in digits with the respective number of letters ‘x’.

Table 11 – Compiled data and metrics for in-house apps

AppID Platform no_DL no_UPD no_ver no_ratings avg_rating pr/com free/paid

1 App Store xxx x 1 x x,333333 pr free

2 App Store xx x 2 x x,285714 pr free

3 App Store xxxx xxxxx 6 xx x,722222 pr free

4 App Store xxx x 8 xx x,448276 com

5 App Store xxxx xx 9 xxx x,700935 com paid

6 App Store xxx X 3 xx x,5 pr free

7 App Store xxxx xxxxx 8 xx x,632653 com free

8 App Store xxxxx xxxxx 4 xxx x,568627 com paid

9 App Store xxx xx 2 x pr free

10 App Store xxxx xxx 2 x x,75 com paid

11 App Store xxx xxx 3 x com free

12 Google Play xxxx xxxx 7 xx x,266667 com free

13 Google Play xx x 3 x com free

14 Google Play xxxx xxxx 6 x x pr free

15 Google Play xxxxx xxxx 5 xx x,235294 com paid

16 Google Play xxx xxx 2 x com paid

78

The overview data table (as shown above) was compiled using a handful of SQL queries,
and their respective outputs were manually compiled into a spreadsheet table. A more
programmatic approach would have been to write one single huge SQL query, possibly using
SQL commands such as LEFT JOIN [105] and UNION [106], creating either result sets or
virtual tables containing each type of metric, per app, per date. If this analysis is to be
expanded in the future, the data set compilation should be automated.

There are roughly three steps (whether manual or automated) to consider before the
analysis, and they correspond closely with the three ETL phases. First, we import the data –
for example from CSV files containing raw data. Secondly we need to prepare the data,
including removing data that is not sufficiently detailed. This can be done by applying the R
function na.omit() which simply cuts off entries where data is not available (N/A), such as app
numbers 9,11, 13, and 16 in this case. Before plotting data, a realignment of the scale may be
a good idea. The third and final step is to apply the statistical method upon the cleaned dataset.

Caveat: the manually applied labels for free/paid and PR/commercial are omitted in most

analysis methods. The reason is that they are nominal text values with unmeasurable distances
between them, thus they are neither ordinal or interval values. The scale for levels of
measurement has been further described by S. S. Stevens as early as 1946 in [120].

There are ways to include nominal values into the analysis, such as assigning each label to

a dummy numerical value (called Filmer and Prichet’s method), or using polychoric
correlation to estimate ordinal variables as suggested by Kolenikov and Angeles, the authors
of [118]. However, these transformations fall outside the scope of PCA. That also means,
regrettably, that I cannot apply k-means cluster apps based upon the type of smartphone
platform (i.e., Android or iOS). A binominal value could have been assigned, but this
approach would not work for more platforms than two.

The software RapidMiner [81] provides for a nice overview over the dataset and some

core statistics, available directly after data import. An example of output from this software is
shown in Figure 11-1.

Figure 11-1 – Metadata in RapidMiner

11.2.1 Pearson correlations

Instinctively, the first thing we might want to find out is which metrics are correlated (or
inversely correlated). Manual calculation of this is tedious – a much better way is to use R
[115], mentioned in section 8.7.

The R function cor() produces a correlation matrix between all components as follows:

> tabell <- read.csv ("csvfile.csv", header=TRUE)
> cormatrix <- cor(tabell, use="complete.obs", method="pearson")
> cormatrix
 no_downloads no_updates no_ratings no_versions avg_rating
no_downloads 1.00000000 0.1818684 0.73463351 -0.08399037 -0.31796936

79

no_updates 0.18186844 1.0000000 0.26792291 0.36452805 -0.21879013
no_ratings 0.73463351 0.2679229 1.00000000 0.33140755 -0.09957761
no_versions -0.08399037 0.3645280 0.33140755 1.00000000 -0.30510898
avg_rating -0.31796936 -0.2187901 -0.09957761 -0.30510898 1.00000000

As the matrix is symmetric along the diagonal, and each component obviously is perfectly

correlated to itself, we only need to read values either above or below the diagonal. We see
that the number of app versions is correlated to both the number of downloads and the number
of updates, and that the number of ratings correlates strongly with downloads as well. In the
case of the negative correlation between avg_rating and no_downloads/no_updates, the
explanation is probably skewed data, as one particular, very popular app had back-end server
connection issues that lowered its rating significantly.

The above matrix may be illustrated in a correlogram, indicating correlation using colors,

symbols, texts or shapes. The below Figure 11-2 is one such correlogram using the same
dataset. The darker the shade of blue, the stronger correlation; while the darker the shade of
red, the stronger the inverse correlation.

no_downloads

no_updates

no_ratings

no_versions

avg_rating

Correlogram(tabell)

Figure 11-2 – Correlogram for components

11.2.2 k-means clustering

Considering the data for all available apps, could there be some hidden categories or
groups of apps based on these or other variables? This can be learned by applying the k-

80

means clustering as described in section 8.6, using the following sample code snippets from
[116].

> tabell <- read.csv ("csvfile.csv", header=TRUE)
> tabell <- na.omit(tabell)
> tabell <- scale(tabell)
> fit <- kmeans(tabell, 4)
> tabell <- data.frame(tabell, fit$cluster)
tabell
 no_downloads no_updates no_ratings no_versions avg_rating fit.cluster
1 -0.43384912 -0.5457723 -0.711521399 -1.5244978 0.1308371 4
2 -0.50366831 -0.5453849 -0.626351755 -1.1511514 2.1004928 4
3 0.01008318 1.0034960 -0.008871838 0.3422342 0.5231670 3
4 -0.48535508 -0.5454624 -0.157918714 1.0889270 0.2467971 1
5 -0.39893953 -0.5437576 1.502889338 1.4622734 0.5016916 1
6 -0.46753239 -0.5457723 -0.519889700 -0.7778050 1.3078268 4
7 -0.24875470 2.7770995 0.267929504 1.0889270 -0.5760426 3
8 2.97445543 0.4315384 2.482340241 -0.4044586 -0.6406351 2
10 -0.41684398 -0.5023001 -0.605059344 -1.1511514 -0.4576573 4
12 -0.36705489 -0.1793196 -0.456012468 0.7155806 -0.9452668 1
14 -0.41005828 -0.4107063 -0.754106221 0.3422342 -1.2142933 1
15 0.74751768 -0.3936584 -0.413427646 -0.0311122 -0.9769174 1

As can bee seen in the output above, the appended rightmost column indicates which
cluster each app belongs to. All numbers have at this stage been rescaled for fitting purposes
and should no longer be read literally. Using the clusplot() function in the R package cluster,
we may show all apps along the axes of the two primary components (the following section
will describe the principal component analysis, PCA, in more detail).

> library(cluster)
> clusplot(tabell, fit$cluster, color=TRUE, shade=TRUE, labels=2, lines=1)
>

-2 -1 0 1 2

-1
0

1
2

3
4

CLUSPLOT(tabell)

Component 1

C
o
m
p
o
n
e
n
t
2

These two components explain 69.11 % of the point variability.

12

3

4

5

6

7

8

10

1214

15
12

3

4

Figure 11-3 – Clusplot in R: Four app clusters

81

As for the app data, component 1 is the number of downloads and component 2 is the
number of updates. We can identify our four (4) clusters in Figure 11-3, printed in different
symbols and colouring. But perhaps three (3) clusters would have sufficed seeing as the centre
points of the green and red clusters are relatively close. An alternate clusplot using three
clusters is shown in Figure 11-4.

-2 -1 0 1 2

-1
0

1
2

3

CLUSPLOT(tabell)

Component 1

C
o
m
p
o
n
e
n
t
2

These two components explain 70.43 % of the point variability.

12

3

4

5

6

7

8

10

1214

15

1

2

3

Figure 11-4 – Clusplot in R: Three app clusters

This is easier for a human to interpret and to use for labelling the apps into categories.

Roughly, one might label the clusters as following:
1. (Blue, Left) – Low-volume apps, both in terms of downloads and updates

App(s): 1, 2, 6, 10
2. (Purple, Top right) – Extreme outlier in terms of many downloads

App(s): 8
3. (Red, Bottom right) – “Normal” app group

App(s): 3, 4, 5, 7, 12, 14, 15

An observation is of course that cluster 2 is an extreme outlier. There are many tests for

outliers; one is Grubb’s test (available in the ‘outliers’ R package [124]) which on the α =
0.01 significance level guarantees that app number 8 is an extreme outlier in terms of
downloads. However, Grubb’s test requires normal distribution, and as the data better fits a
long-tailed distribution, we can not trust the test completely but simply use the result as an
indicator.

82

We might also want to draw the cluster memberships in a hierarchical agglomerate
structure, such as a dendrogram which was described in section 8.6.2. Comparing the
dendrogram in Figure 11-5 with the cluster plot, we identify roughly the same classifications,
only illustrated in a different way.

Figure 11-5 – Cluster dendrogram in R

11.2.3 Principal component analysis (PCA)

The above clustering and its plots only display the two primary components (number of
downloads and updates) along the x and y axes. It is often interesting when doing principal
component analysis (PCA) to identify these components, and order them by variance impact.
This can be done programmatically in R as follows, using the princomp() and summary()
functions:

> tabell <- read.csv("csvfile.csv", header=TRUE)
> tabell <- na.omit(tabell)
> fit <- princomp(tabell, cor=TRUE, na.action = na.exclude)
> summary(fit)
Importance of components:
 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 1.4590274 1.1174517 0.9297381 0.8173957 0.29998694
Proportion of Variance 0.4257522 0.2497396 0.1728826 0.1336271 0.01799843
Cumulative Proportion 0.4257522 0.6754918 0.8483744 0.9820016 1.00000000

The cumulative proportion of variance can be plotted, as shown in Figure 11-6, by:

> plot(fit,type="lines")

83

fit

V
a
ri
a
n
c
e
s

0
.5

1
.0

1
.5

2
.0

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Figure 11-6 – Aggregate variance by component

It is also possible to render the PCA in a biplot, such as Figure 11-7, a double-purpose
plot type designed by Gabriel in 1971 [117]. It plots both data entries and the components in
the same plot, also indicating how components interwork. In R, it is invoked as follows:

> biplot(fit)

84

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

0
.6

Comp.1

C
o
m
p
.2

1

2

3

4

5

6

7

8

10

12
14

15

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

no_downloads

no_updates

no_ratings

no_versions

avg_rating

Figure 11-7 – Biplot over components and observations

As for interpretation of a biplot, some guidelines are described in [119]:

• The cosine of the angle between a vector and an axis indicates the importance of the

contribution of the corresponding variable to the axis’ dimension.

• The cosine of the angle between vectors indicates correlation between variables.

Highly correlated variables point in the same direction; uncorrelated variables are at

right angles to each other.

• Points that are close to each other in the biplot represent observations with similar

values.

• You can approximate the coordinates of an observation by projecting the point onto

the variable vectors within the biplot.

We can, for instance, again see that the number of ratings follows the number of

downloads (quite logically) as the angle between their vectors is small. Similarly, the number

85

of updates follows the number of released app versions which is also instinctively true. Using
the axes and data points, projection onto the axes of two primary components displayed
approximates their variables. As an example, app number 8 has attracted a relatively high
number of both downloads and updates, while app number 7 has fewer downloads than
updates. App number 2 is on the other hand very light-weight both in terms of downloads and
updates. Also note how the biplot follows the correlation matrix from section 11.2.1.

11.3 Analysis results

Which trends and findings can we extract from all of the above? Is the data reliable? Is it
in line with what others have found? And can the theoretical models described in this thesis
report be applied to our dataset? This chapter breaks down the key discoveries of our
statistical analysis.

11.3.1 Findings

First off, we may describe the variance impact per component. In our sample, the number
of downloads account for about 43% of the variance, and the number of updates for an
additional 25%. The two first principal components, then, account for an aggregated 68% of
variance, which means they are the two metrics that vary the most.

As for distribution, an interesting finding is that Pareto’s 80-20 rule (law of the vital few),

described in section 8.4, is relevant for our dataset. Out of the 16 apps used in the analysis, 3
of them (= 18.75%) account for 85% of the downloads, and similarly, 3 of the 16 apps
account for 68% of the reviews.

As for an approximate distribution of downloads, using regression analysis in OpenOffice

Calc, we find a function with 0.91 in R2 value (goodness of fit), which should be considered
to be very accurate. The long-tailed distribution is present also in this dataset, as can be seen
in Figure 11-8.

Figure 11-8 – In-house app download distribution and regression analysis model

86

Another application somewhat relevant to Pareto’s 80-20 rule is the rating distribution. It
seems as if most app users would either rate an app as ‘very good’ (5/5) or ‘very bad’ (1/5).
Basically, a user does not generally make an effort to review an app that was perceived to be
average – hence strong satisfaction or dissatisfaction is required to motivate the user to write a
review.

The rating distribution in our dataset had an aggregated share of ‘either 1/5 or 5/5’ of about
79%. The distribution per app is displayed below in Figure 11-9 as a bar chart:

Figure 11-9 – Bar chart over rating distribution: 1 or 5 versus 2, 3 or 4

In further analyzing the ratings, there is a strong correlation between the average rating of
an app, and the percentage of users who have rated it. On average, each app in the dataset was
rated by 2% of its downloaders. For the top rated apps this figure was in two instances over
10%. These results gave a Pearson correlation of 0.68 between the percentage of reviewers
and the average rating – although it should be stated that some calculations rely on very few
observations. Regardless, this correlation shows the importance of encouraging power-users
of an app to actually write a review. This goes especially for paid apps – even though only 5
out of 16 apps were ‘paid’, they accounted for 65% of total reviews.

Analyzing actual review content, I used my web platform to filter out the trending

keywords from all reviews. Again, the keywords form a long-tail like distribution, which
could be very close estimated by a power distribution function (R2 > 0.98). This long-tail is
apparent in Figure 11-10.

87

Figure 11-10 – Keyword frequency distribution (words common in reviews)

As previously mentioned, many of these words were adjectives, names, or other words of

little significance, which is why the words should first be filtered against a compiled list of
common stop words before put this analysis into real-world use. Another method is to just
filter out nouns. Regardless, it is still conceptually very interesting that most reviewers seem
to be discussing the same issues or features. This suggests that correctly aligned updates can
heavily increase the customer’s satisfaction. Hopefully the keyword mining tool will be of
assistance in this pursuit.

The nominal values (app platform) and labels applied by me onto the app set could not be

used in computational statistical methods mentioned in this chapter. However, using
RapidMiner [81] they could be plotted for a visual overview. For instance, in Figure 11-11
(with logarithmic x axis for readability), we see download figures indicated with their type
(free/paid) and platform. A general summarization might be that the most downloaded apps
are paid, and that iOS apps attract more downloads than those on Android.

88

Figure 11-11 – Dual-axis binominal chart: free/paid and Android/iOS apps

In fact, RapidMiner provides for a very useful ‘scatter matrix’ that plots all components
pairwise against each other. This gives a top-down view with just a few clicks. As we can see
in the cropped-out excerpt shown in Figure 11-12, obviously below the diagonal all charts are
simply mirrored in that the two axes have switched places.

89

Figure 11-12 – Excerpt from scatter matrix in RapidMiner

11.3.2 Comparison against third-party findings

Some of the above findings can be compared to publicly available figures. For instance,
our finding that the two ‘extreme’ ratings (1/5 and 5/5) account for 79% of reviews can be
compared against ratings of the top-25 Android apps [122]. While naturally the averages are
higher in the toplist than for our own dataset, the percentage of downloaders who wrote a
review was upwards of 6%. This reveals that the top apps were three times more likely to
attract a review than the apps in our dataset.

The aggregated share of ratings ‘1 or 5’ were also even bigger for these 25 apps than for

our dataset, with the average being more than 86%. As the very top of the rankings may be
skewed, I attempted to find another source for comparison – as the Android figures generally
seem more publicly available, I used them once again as benchmark. In [123], the author
scraped more than 5.6 million app reviews and their ratings, and found the distribution shown
in Figure 11-13.

90

Distribution of Rating Apps (with comments)

On a total of 5684367 comments

0/5

1/5

2/5

3/5

4/5

5/5

Figure 11-13 – Distribution of Android Market/Google Play apps [adopted from 123]

Summing up the shares for 1/5 and 5/5 once again, the aggregate is 67.5%, slightly less
but still within what could be considered applicable for the “law of the vital few”.

11.4 Recommendations for further analysis

Lack of support for nominal values is an obvious drawback in the analysis that was
performed. It would be very useful to be able to cluster apps by the type of their smartphone
platform, whether they are promotional or commercial, and so forth. Either an alternative
statistical method that can handle nominal values could be used – the polycor R package [121]
looks promising but was omitted for lack of time – or manual conversion into ordinal scales
could be attempted.

Clustering and PCA are inherently limited in that we only choose to focus on select
components. As in this case, the number of downloads and the number of updates are the two
principal components, the clustering based on these components might not be very
meaningful for the developer. The Pearson correlations are also limited in that they do not
distinguish between cause and effect – does the number of ratings increase downloads, or is it
simply that an app with many downloads has more users and therefore get more reviews? A
larger dataset could possibly assist in differentiating cause from effect.

A more interesting approach would probably be to embed session tracking libraries such

as Google Analytics [59] or Flurry [63], and then cluster apps by average app session lengths,
retention rates, and other in-depth metrics. As these libraries have to be included in the app
executable before publication on the marketplace, this is a company policy decision for the
future. There are clearly strong financial incentives for using such libraries, as they could help
to decide which business models would generate most revenue – should apps use in-app
purchases, rely on embedded advertisements’ or simply be sold as one-time purchases? The
answer is of course highly dependant on each app’s usage pattern.

91

Additionally, including this tracking could enable many new metrics to be available, such
as OS version, screen size, and other technical specifications. Some of the latter figures are
available in the Developer Console, but not offered over their API. Finally, one very powerful
benefit of embedding tracking libraries into apps is the option to send arbitrary variables back
to the developer. Anything can be recorded. As an example, for location based apps, knowing
the GPS signal strength and (coarse) location could be extremely useful. For commercial apps,
measuring the conversion rate and in-app sales figures are both obviously highly interesting.

RapidMiner would be a good choice for these future, more in-depth analyses, based on my

initial tests. This program enables abstract model generation as a process flow; importing,
formatting, filtering, and analyzing data as building blocks. Below is an example process flow
in RapidMiner, where two data sets (purple blocks) are imported, of which one is the training
dataset and the other is the set we want to make estimations on. The training data is filtered
for missing values (pink) and other anomalies before a polynomial regression model is created
(green), and applied directly onto the second dataset.

Figure 11-14 – Process development view in RapidMiner

The most interesting aspect of these modelling capabilities, is that if an app company

decides to include session tracking libraries into their future apps, this could potentially
generate enough data to develop a model that could estimate the corresponding values for
older apps that lack the session based tracking.

Even for manual comparison, session based metrics can be compared against public data

sources, such as the OurMobilePlanet initiative [52] where populations of recorded
demographics have responded to questions regarding their mobile use and behaviour.

92

12 Conclusions
This chapter summarizes the entire thesis project by making a few remarks and stating

some conclusions. The chapter covers both the theoretical side of app statistics and the
implementation of the web platform, ending with an outline of suggestions for future work
and some reflections around the possible privacy issues that could ensue, if and when the
developed platform starts to track app sessions on an individual level.

12.1 Conclusion

Limitations in first-party API’s are unfortunate, as these limitations prevent access to
some highly interesting data. For instance, when doing a manual import of CSV files from
Google Play Developer Console, we may separate app ratings and downloads per device
(manufacturer and model). This is to my knowledge currently not available even through use
of any third-party API. Even though this is available when logging in to the Developer
Console, it would be very useful for automating bug tracking if we could find trends
automatically. A concrete example from the app company involved in this thesis, is a recent
scenario with an Android app that had a bug only present in Sony Ericsson phones of a certain
model. This particular bug was found manually, but had the Google Play API allowed for
extraction of app crashes per device model, it could have been found programmatically in an
automated fashion. Hopefully, it is only a matter of time and API maturity before this data can
be readily accessed by developers.

The necessity to use third-party APIs has taught me the importance of designing software

in a modular fashion, so that a data source or back-end may be easily replaced by another.
Who knows which services might be available tomorrow? The best advice I could give
someone who wanted to make their own smartphone app tool is to collect all data – enable
the database schema to store all possible data, from all possible data sources, and start
gathering data as soon as possible. Determining how to use and display the data is a later task,
but the data might not be there to import tomorrow. However, a solid database schema
facilitates tasks such as writing SQL queries against the database. Other points to consider in
the design phase, is to separate front- and back-ends (sending data formatted as JSON, XML,
or a similar format) which makes it easier to port the tool onto another platform in the future.
Because of the 14-day history limitation for App Store data, the locally stored data has
already proved helpful.

The web platform implementation came to revolve more than originally planned around

the qualitative metric: review comments. As no third-party APIs seem to extract detailed
information from reviews, this seems to be a useful function for the in-house platform.
Bucketing keywords transforms the qualitative texts into quantitative frequencies, enabling
ranking of words or tags based on their popularity. The resulting ‘word cloud’ and ‘trending
review keywords’ have already proven useful to the company, with actual live use cases for
the company’s clients.

The statistical analysis was initially expected to use a multitude of software tools - but in

the end OpenOffice Calc and R with some additional packages were able to cover all major
statistical methods discussed in the theory section. RapidMiner was also used briefly. The
analysis itself follows the same theme as the web platform implementation – all the charts and
R scripts are there, ready to be applied with more and better data. It has to be said that
clustering is not particularly relevant in its present stage, but will instantly become more
useful if the company distributes apps with session tracking capabilities.

93

Evaluating the final implementation outcome: all three primary goals were achieved, with

the exception of some manual import file formats. As data import was automated, it is not as
important however. The secondary goals were in most cases taken to a proof-of-concept level,
with the API as the notably most interesting functionalty.

Even at its current stage, the statistical findings are already helpful to the app developer.

Some examples include the tendency that apps attract most downloads during weekends, the
correlation between more app versions and higher average rating, and the fit of the Pareto 80-
20 rule upon both review keyword distribution and the aggregated share of 1/5 and 5/5 ratings.
The latter indicates that a focused effort towards a few critical bugs or feature requests
(specifically those that most reviewers mention), could dramatically improve the app average
rating. In turn, it could be speculated that this effort would prevent many of the 1/5 reviews
from ever being submitted, which could be another contributing factor to a higher average
rating. The apps in the case study data set could also be divided into at least three different
basic clusters based on their statistical profiles.

12.2 Future work

The ideal next addition to the app statistics platform would indeed be for all the
company’s apps to include a session tracking library, such as either Google Analytics [59] or
Flurry [63]. This would enable more in-depth reports, more useful clustering and trend finding
possibilities, and provide a good way of collecting demographics and vendor/handset model
statistics. These libraries support sending app-specific variables from the app source, which
makes the data collection possibilities nearly unlimited. As mentioned, session tracking could
also prove useful for decision-making in terms of choosing the optimal app business model.

As for statistical modelling, it would be interesting to try and model an app’s interest over

time; the number of daily downloads as a function of days passed since release. There are
complications when developing such a model, as for instance app version updates will of
course influence the app’s interest. A simplified model that assumes one single app version
without updates could be a starting point.

Hopefully, Google and Apple will in a not too distant future improve their APIs so that the

data importation scripts that have been developed can migrate to using first-hand data sources,
rather than depending on third-party APIs. In such an event, it would probably be wise to
collect and save data from all sources in parallel during a transition period, to verify
consistency. Even if neither Google nor Apple provide better data access in the future, there
are some other data sources available if one is willing to pay for the service, such as Applyzer
[101] and Appfigures [102]. All the tools evaluated in this thesis were free of charge in the
versions that were tested. The additional libraries mentioned were either left for future work
because of time limitations or the fact that they were associated with costly subscriptions.

Feature-wise, the most desired new feature would be to implement the alerts/trigger

system. Setting up filters for automatic statistics monitoring, with alert emails sent out when
applicable, would reduce the current workload of having to periodically watch each app
manually. General code clean-up and refactoring should then be undertaken, and a thorough
documentation must be produced in the event that a programmer other than myself should
overtake responsibility for the in-house app statistics tool.

94

After deploying the implementation from my development laptop onto a production server
– and verifying that functionality is still intact – the web platform can gradually be put into
use. During the first stage it might be only used internally for the company’s purposes, such
as tracking and generating PDF reports for the company’s own use. Gradually, select
customers of the app publisher may then be invited and be given their own login accounts to
try out the platform – at first they may receive read-only accounts; but if everything works as
intended their accounts could be upgraded to full privileges. It is my belief that this gradual
roll-out will help to locate existing bugs or issues.

12.3 Reflections

Besides the technical requirements on the server environment that is necessary before
deployment to production, there are some legal and ethical aspects to address before making
the web platform publicly accessible.

As the planned additions listed in section 12.2 include integrating live per-user session

data for tracking purposes, the question of personal integrity becomes important, not only
from a company’s goodwill perspective but also legally.

SDKs for measuring user session data are normally clear about their terms. For instance,

Google Analytics clearly state in their Terms & Conditions (T&C) that “You will not (and
will not allow any third party to) use the Service to track, collect or upload any data that

personally identifies an individual (such as a name, email address or billing information), or

other data which can be reasonably linked to such information by Google.” [104]. Normally,
these app sessions are identified by a anonymized nonce or number rather than actually
transferring personal data such as name or email. This setup is very much similar to the
previously mentioned IDFA used by Apple on their iDevices [51].

This aligns well with the Swedish personal data integrity laws, Personuppgiftslagen
1998:204 (PUL) [114], which states that any gathered data in a structured setup must abide by
certain directives according to Swedish law. As the supervising government agency
Datainspektionen clarifies [103], any database storage of data would automatically be
categorized as a structured setup. Related policies also require any site owner to inform their
users whenever cookies are used for storing personal information. These integrity and legal
matters must be addressed before deploying the app statistics platform onto a production
server.

In order to understand the importance of carefully designing any user identifiers, one just
has to look at mistakes done by large online companies such as Netflix [130]. In an attempt to
crowdsource a 10% more effective algorithm for calculating movie recommendations, Netflix
released (what they believed to be) anonymized data sets over movie rentals. Two students
from Texas University soon were able to reverse engineer and thus reveal the unobfuscated
data. After settling lawsuits from users who claimed privacy damages, Netflix eventually
called off their second contest [130]. Such scenarios highly stresses why thought must go into
the privacy and legal issues that arise when handling personal and sensitive information.

95

References

[1] Brian Womack, “Google Says 700,000 Applications Available for Android”,
BusinessWeek, [Online] October 29, 2012, Available at:
http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-
for-android-devices (Accessed January 10, 2013).

[2] Dan Rowinski, “25B Downloads And Google Play Is Still Growing Fast”, (ReadWrite),
[Online] September 26, 2012. Available at: http://readwrite.com/2012/09/26/25-billion-app-
downloads-later-google-play-is-growing-fast (Accessed January 10, 2013).

[3] Gert Jan Spriensma, “2012 – Year in Review”, (Distimo), [Online] 2012, Available at:
http://www.distimo.com/publications/archive/Distimo Publication - Full Year 2012.pdf
(Accessed February 3, 2013).

[4] Christy Pettey and Rob van der Meulen, “Gartner Says Worldwide Sales of Mobile
Phones Declined 3 Percent in Third Quarter of 2012; Smartphone Sales Increased 47 Percent”,
(Gartner), [Online] 2012, Available at: http://www.gartner.com/it/page.jsp?id=2237315
(Accessed January 8, 2013).

[5] Christy Pettey and Rob van der Meulen, “Gartner Says Free Apps Will Account for
Nearly 90 Percent of Total Mobile App Store Downloads in 2012”, (Gartner), [Online]
September 11, 2012, Available at: http://www.gartner.com/it/page.jsp?id=2153215 (Accessed
January 8, 2013).

[6] “Android, the world’s most popular mobile platform”, Google, [Online], Available at:
http://developer.android.com/about/index.html (Accessed February 3, 2013).

[7] “Android Fragmentation Visualized”, OpenSignal, [Online], Available at:
http://opensignal.com/reports/fragmentation.php (Accessed February 3, 2013).

[8] “Transaction Fees – Google Play for Developers Help”, Google, [Online], Available at:
http://support.google.com/googleplay/android-
developer/bin/answer.py?hl=en&answer=112622 (Accessed February 3, 2013).

[9] Natalie Kerris and Steve Dowling, “Apple Reinvents the Phone with iPhone”, (Apple),
[Online] January 9, 2007, Available at: http://www.apple.com/pr/library/2007/01/09Apple-
Reinvents-the-Phone-with-iPhone.html (Accessed February 3, 2013).

[10] Mike Brown, “[Infographic] The State of Mobile App Quality: Android vs. iOS”,
(Software Testing Blog), [Online] February 2012, Available
at: http://blog.utest.com/infographic-the-state-of-mobile-app-quality-android-vs-
ios/2012/02/ (Accessed January 10, 2013).

[11] “Comparison of free and paid Android apps”, (AppBrain), [Online], Available at:
http://www.appbrain.com/stats/free-and-paid-android-applications (Accessed February 3,
2013).

96

[12] “Distribute your app – iOS Developer Program – Apple Developer”, (Apple), [Online],
Available at: https://developer.apple.com/programs/ios/distribute.html (Accessed February 3,
2013).

[13] Peter Farago, “App Engagement: The Matrix Reloaded”, (Flurry), [Online], Available at:
http://blog.flurry.com/bid/90743/App-Engagement-The-Matrix-Reloaded (Accessed January
10, 2013).

[14] Peter Farago, “Microsoft May Be Closer Than It Appears in Android’s Rearview Mirror”,
(Flurry), [Online], Available at: http://blog.flurry.com/bid/86277/Microsoft-May-Be-Closer-
Than-It-Appears-in-Android-s-Rearview-Mirror (Accessed January 10, 2013).

[15] Rajiv Garg and Rahul Telang, “Estimating App Demand from Publicly Available
Data”. (SSRN Electronic Journal), [Online] 2012, Available at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1924044 (Accessed January 10, 2013).

[16] Lin Hao et al, “The Economic Value of Ratings in App Market”, (SSRN Electronic
Journal), [Online] 2011, Available
at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1892584 (Accessed January 10, 2013).

[17] Pradeep Racherla, Christopher Furner, and Jeffry Babb, “Conceptualizing the
Implications of Mobile App Usage and Stickiness: A Research Agenda”, (SSRN Electronic
Journal), [Online] 2012, Available
at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2187056 (Accessed January 10, 2013).

[18] Dan Rowinski, “Sorry, Samsung, iPhone Is Not Your Mother’s Smartphone”,
(ReadWrite), [Online] October 8, 2012, Available at: http://readwrite.com/2012/10/08/sorry-
samsung-iphone-is-not-your-mothers-smartphone (Accessed January 11, 2013).

[19] Dan Lee, “Courting Today’s Mobile Consumer”, (Nielsen), [Online] 2012, Available at:
http://nielsen.com/content/dam/corporate/us/en/reports-downloads/2012-Webinars/courting-
the-mobile-consumer-7-18-final.pdf (Accessed February 3, 2013).

[20] “In-App Purchases to Outpace Pay-Per-Download Revenues in 2012”, (ABIresearch
technology market intelligence), [Online] 2012, Available at:
http://www.abiresearch.com/press/in-app-purchases-to-outpace-pay-per-download-reven
(Accessed February 3, 2013).

[21] Peter Farago, “App Developers Signal Apple Allegiance Ahead of WWDC and Google
I/O”, (Flurry), [Online] June 7, 2012, Available at: http://blog.flurry.com/bid/85911/App-
Developers-Signal-Apple-Allegiance-Ahead-of-WWDC-and-Google-I-O (Accessed January
11, 2013).

[22] “iTunes Store: About In-App Purchases”, Apple, [Online], Available at:
http://support.apple.com/kb/ht4009 (Accessed February 3, 2013).

[23] Simon Khalaf, “Mobile Apps: We Interrupt This Broadcast”, (Flurry), [Online]
December 5, 2012, Available at: http://blog.flurry.com/bid/92105/Mobile-Apps-We-Interrupt-
This-Broadcast (Accessed January 11, 2013).

97

[24] Peter Farago, “The Great Distribution of Wealth Across iOS and Android Apps”,
(Flurry), [Online] July 31, 2012, Available at: http://blog.flurry.com/bid/88014/The-Great-
Distribution-of-Wealth-Across-iOS-and-Android-Apps (Accessed January 11, 2013).

[25] “App Annie Index Nov 2012”, (App Annie), [Online] November 2012, Available at:
http://blog.appannie.com/app-annie-index-november-2012/ (Accessed February 3, 2013).

[26] Fred Wilson, “The Freemium Business Model”, [Online] March 2006, Available at:
http://www.avc.com/a_vc/2006/03/the_freemium_bu.html (Accessed February 3, 2013).

[27] Nat Harrison and Teresa Brewer, “Apple Introduces iPhone 5”, (Apple), [Online]
September 12, 2012, Available at: http://www.apple.com/pr/library/2012/09/12Apple-
Introduces-iPhone-5.html (Accessed February 3, 2013).

[28] “Start Developing iOS Apps Today: Introduction”, (Apple), [Online], Available at:
https://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/chapter
s/Introduction.html (Accessed February 3, 2013).

[29] F. John Reh., “Pareto’s Principle - The 80-20 Rule”, (About.com Management), [Online]
Available at: http://management.about.com/cs/generalmanagement/a/Pareto081202.htm
(Accessed January 14, 2013).

[30] Erik Brynjolfsson, Michael D. Smith, and Yu Jeffrey Hu, “Consumer Surplus in the
Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers”,
(SSRN Electronic Journal), [Online] 2003, Available at:
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=400940 (Accessed January 14, 2013).

[31] “State of the Appnation – A Year of Change and Growth in U.S. Smartphones”,
(nielsenwire), [Online] May 16, 2012, Available at:
http://blog.nielsen.com/nielsenwire/online_mobile/state-of-the-appnation-%E2%80%93-a-
year-of-change-and-growth-in-u-s-smartphones (Accessed February 3, 2013).

[32] Peter Farago, “The Truth About Cats and Dogs: Smartphone vs Tablet Usage
Differences”, (Flurry), [Online] October 29, 2012, Available
at: http://blog.flurry.com/bid/90987/The-Truth-About-Cats-and-Dogs-Smartphone-vs-Tablet-
Usage-Differences (Accessed January 14, 2013).

[33] “App Review Guidelines – Apple Developer”, Apple, Available at:
https://developer.apple.com/appstore/guidelines.html (Accessed February 3, 2013).

[34] Olga Kharif, “Piracy Cuts Into Paid App Sales”, (BusinessWeek: technology), [Online]
November 1, 2012, Available at: http://www.businessweek.com/articles/2012-11-01/piracy-
cuts-into-paid-app-sales (Accessed January 14, 2013).

[35] “AppBrain, Developer tools - Android library statistics | AppBrain.com”,
(AppBrain.com), [Online], Available at:
http://www.appbrain.com/stats/libraries/dev (Accessed January 14, 2013).

98

[36] Peter Farago, “Mobile App Usage Further Dominates Web, Spurred by Facebook”,
(Flurry), [Online] January 9, 2012, Available at: http://blog.flurry.com/bid/80241/Mobile-
App-Usage-Further-Dominates-Web-Spurred-by-Facebook (Accessed January 14, 2013).

[37] “jQuery Mobile: Touch-Optimized Web Framework for Smartphones & Tables”,
(jQuery), [Online], Available at: http://jquerymobile.com/ (Accessed February 3, 2013).

[38] “Google Play for Developers Help”, Google, Available at:
http://support.google.com/googleplay/android-developer/?hl=en (Accessed February 3, 2013).

[39] “iTunes Connect Sales and Trends Guide: App Store v7”, Apple, [Online], Available at:
http://www.apple.com/itunesnews/docs/AppStoreReportingInstructions.pdf (Accessed
February 3, 2013).

[40] “Windows Phone 7: A Fresh Start for the Smartphone”, Microsoft, [Online] October 10,
2012, Available at: http://www.microsoft.com/en-us/news/features/2010/oct10/10-
11wp7main.aspx (Accessed February 3, 2013).

[41] Brandon Watson, “New Policies for Next Gen Windows Phone Marketplace”, (Windows
Phone Developer Blog), [Online] June 7, 2010, Available at:
http://blogs.windows.com/windows_phone/b/wpdev/archive/2010/06/07/new-policies-for-
next-gen-windows-phone-marketplace.aspx (Accessed February 3, 2013).

[42] “BlackBerry ‘leading’ the smartphone charge”, (NATIONNews), [Online] November 23,
2011, Available at: http://www.nationnews.com/articles/view/blackberry-leading-the-
smartphone-charge/ (Accessed February 3, 2013).

[43] Ben Bryant, “BlackBerry 10 handsets confirmed for January 30 launch”,
(Telegraph.co.uk), [Online] November 12, 2012, Available at:
http://www.telegraph.co.uk/technology/blackberry/9672758/BlackBerry-10-handsets-
confirmed-for-January-30-launch.html (Accessed January 14, 2013).

[44] Dara Kerr, “BlackBerry App World said to hawk pirated Android apps”, (CNET),
[Online] January 8, 2013, Available at: http://news.cnet.com/8301-1035_3-57562905-
94/blackberry-app-world-said-to-hawk-pirated-android-apps/ (Accessed January 14, 2013).

[45] “AdMob – Monetize and promote your apps with ads”, Google, [Online], Available at:
http://www.google.com/ads/admob/ (Accessed February 3, 2013).

[46] Kirby Turner, “appdailysales”, (Github), [Online], Available at:
https://github.com/kirbyt/appdailysales (Accessed February 3, 2013).

[47] “iAd – Apple Developer”, Apple, [Online], Available at: https://developer.apple.com/iad/
(Accessed February 3, 2013).

[48] Tero Kuittinen, “Missing the dazzling profit potential of free apps”, (BGR), [Online]
November 19, 2012, Available at: http://bgr.com/2012/11/19/mobile-app-market-analysis-
free-apps/ (Accessed January 15, 2013).

99

[49] “Top app stores risk losing control of app discovery”, (Canalys), [Online] June 11, 2012,
Available at: http://www.canalys.com/newsroom/top-app-stores-risk-losing-control-app-
discovery (Accessed February 3, 2013).

[50] Joe Aimonetti, “Apple bolstering privacy by ending developer access to UDIDs”,
(CNET), [Online] March 28, 2012, Available at: http://news.cnet.com/8301-13579_3-
57406058-37/apple-bolstering-privacy-by-ending-developer-access-to-udids/ (Accessed
January 15, 2013).

[51] Laura Stampler, “Here’s Everything We Know About IFA, The iPhone Tracking
Technology In Apple's iOS 6”, (Business Insider), [Online] October 15, 2012, Available at:
http://www.businessinsider.com/everything-we-know-about-ifa-and-tracking-in-apples-ios-6-
2012-10 (Accessed January 15, 2013).

[52] “Our Mobile Planet”, Google, Ipsos, Mobile Marketing Association, [Online], Available
at: http://www.thinkwithgoogle.com/mobileplanet/sv/ (Accessed January 15, 2013).

[53] “App Analytics – Conversion Tracking”, (Distimo), [Online], Available at:
http://www.distimo.com/app-analytics#conversion-tracking (Accessed February 3, 2013).

[54] Jeferson Valadares, “Free-to-play Revenue Overtakes Premium Revenue in the App
Store”, (Flurry), [Online] July 7, 2011, Available at: http://blog.flurry.com/bid/65656/Free-to-
play-Revenue-Overtakes-Premium-Revenue-in-the-App-Store (Accessed January 15, 2013).

[55] Jeferson Valadares, “Consumers Spend Average of $14 per Transaction in iOS and
Android Freemium Games”, (Flurry), [Online] July 25, 2011, Available at:
http://blog.flurry.com/bid/67748/Consumers-Spend-Average-of-14-per-Transaction-in-iOS-
and-Android-Freemium-Games (Accessed January 15, 2013).

[56] Jeferson Valadares, “Mobile Freemium Games: Women Thrifty, Men Binge”, (Flurry),
[Online] September 26, 2011, Available at: http://blog.flurry.com/bid/72755/Mobile-
Freemium-Games-Women-Thrifty-Men-Binge (Accessed January 15, 2013).

[57] “Electronic Arts, The Sims Freeplay”, (App Store), [Online], Available at:
https://itunes.apple.com/us/app/the-sims-freeplay/id466965151?mt=8 (Accessed January 15,
2013).

[58] “Pricing packages to meet your needs – Salesforce marketing cloud”, (Radian6), [Online],
Available at: http://www.radian6.com/what-we-sell/radian6-pricing/ (Accessed February 3,
2013).

[59] “Google Analytics Mobile Analytics and Reporting”, Google, [Online], Available at:
http://www.google.com/analytics/features/mobile.html (Accessed February 3, 2013).

[60] “Returning apps – Google Play Help”, Google, [Online], Available at:
http://support.google.com/googleplay/bin/answer.py?hl=en&answer=134336 (Accessed
February 3, 2013).

[61] “iTunes Store – Terms and Conditions”, Apple, [Online], Available at:
http://www.apple.com/legal/itunes/us/terms.html#APPS (Accessed February 3, 2013).

100

[62] “TestFlight: Beta Testing On The Fly”, (TestFlight), [Online], Available at:
https://testflightapp.com/sdk/ (Accessed February 3, 2013).

[63] “Flurry | App Advertising and Analytics”, (Flurry), [Online], Available at:
https://dev.flurry.com/ (Accessed February 3, 2013).

[64] Allen B. Downey, Think stats: Probability and statistics for programmers, 1st ed.
O’Reilly Media, 2011.

[65] Octavian Carare, “The Impact of Bestseller Rank on Demand: Evidence from the App
Market”, (SSRN Electronic Journal), [Online] 2010, Available at:
http://papers.ssrn.com/abstract=1564314 (Accessed January 17, 2013).

[66] “Configuration and Reporting API Limits and Quotas – Google Analytics – Google
Developers”, Google, [Online], Available at:
https://developers.google.com/analytics/devguides/reporting/core/v3/limits-quotas (Accessed
February 3, 2013).

[67] “Google Play Android Developer API”, Google, [Online], Available at:
https://developers.google.com/android-publisher/quotas (Accessed February 3, 2013).

[68] Alexandre Thiel, “android-market-api – Android Market for all developers!”, [Online],
Available at: http://code.google.com/p/android-market-
api/source/browse/trunk/AndroidMarketApi/ (Accessed February 3, 2013).

[69] Chuck Martin, The Third Screen: Marketing to Your Customers in a World Gone Mobile,
1st ed. Nicholas Brealey Publishing, 2011. ISBN: 978-1857885644.

[70] Jonathon Shlens, “A Tutorial on Principal Component Analysis”, Carnegie Mellon
University, Computer Science Department, [Online] December 10, 2005, Available at:
http://www.cs.cmu.edu/~elaw/papers/pca.pdf (Accessed January 30, 2013).

[71] Jerome Lecoq, “PCA demystified”, (Matlabtips.com), [Online] March 29, 2012,
Available at: http://www.matlabtips.com/pca-demystified (Accessed January 30, 2013).

[72] Frank Höppner, “What is (fuzzy) cluster analysis?”, Ostfalia University of Applied
Sciences, [Online] March 21, 2013, Available at: http://public.fh-
wolfenbuettel.de/~hoeppnef/clustering.html (Accessed April 2, 2013).

[73] Jan Jantzen, “Tutorial On Fuzzy Clustering”, Technical University of Denmark, [Online]
August 2001, Available
at: http://www.csee.usf.edu/~manohar/Papers/Pancreas/Clustering.pdf (Accessed January 30,
2013).

[74] Jari Oksanen, “Cluster Analysis: Tutorial with R”, University of Oulu, [Online] February
2, 2012, Available at: http://cc.oulu.fi/~jarioksa/opetus/metodi/sessio3.pdf (Accessed January
31, 2013).

101

[75] “Cophenetic correlation coefficient”, (MathWorks), [Online], Available at:
http://www.mathworks.se/help/stats/cophenet.html (Accessed February 3, 2013).

[76] “Data Mining Curriculum: A Proposal (Version 1.0)”, (Intensive Working Group of
ACM SIGKDD Curriculum Committee), [Online] April 30, 2006, Available at:
http://www.sigkdd.org/curriculum/CURMay06.pdf (Accessed January 31, 2013).

[77] Usama Fayyad, Gregory Piatetsky-Shapiro and Padhraic Smyth, “From data mining to
knowledge discovery in databases,” in Association for the Advancement of Artificial
Intelligence (AAAI) 97, 1997, pp. 37-54. Available at:
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf (Accessed
February 1, 2013).

[78] “OLAP Council Whilte Paper”, Symcorp, [Online] 1997, Available at:
http://www.symcorp.com/downloads/OLAP_CouncilWhitePaper.pdf (Accessed February 1,
2013).

[79] “ELKI: Environment for Developing KDD-Applications Supported by Index-Structures”,
Ludwig-Maximilian University of Munich, [Online], Available at: http://elki.dbs.ifi.lmu.de/
(Accessed February 1, 2013).

[80] “KNIME | Konstanz Information Miner”, KNIME, [Online], Available at:
http://www.knime.org/ (Accessed February 1, 2013).

[81] “RapidMiner -- Data Mining, ETL, OLAP, BI”, SourceForge, [Online], Available at:
http://sourceforge.net/projects/rapidminer/ (Accessed February 1, 2013).

[82] “The Open Group Base Specifications Issue 7: IEEE Std 1003.1-2008”, The IEEE and
The Open group, [Online] 2008, Available at:
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html (Accessed February
1, 2013).

[83] “API Documentation”, Distimo, [Online], Available at:
https://analytics.distimo.com/support/api/v2/examples (Accessed January 24, 2013).

[84] L. Masinter, T. Berners-Lee, and R.T. Fielding, “IETF RFC 3986: Uniform Resource
Identifier (URI): Generic Syntax”, IETF, [Online] January 2005, Available
at: http://tools.ietf.org/html/rfc3986 (Accessed February 1, 2013).

[85] “Apache HTTP Server Version 2.4 – Apache Module mod_rewrite”, The Apache
Software Foundation, [Online], Available at
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html (Accessed February 1, 2013).

[86] “Bootstrap – Sleek, intuitive, and powerful front-end framework for faster and easier web
development”, Twitter, [Online], Available at: http://twitter.github.com/bootstrap/index.html
(Accessed February 1, 2013).

[87] “Google Chart Tools – Google Developers”, Google, [Online], Available at
https://developers.google.com/chart/ (Accessed February 1, 2013).

102

[88] “DataTables (table plug-in for jQuery)”, DataTables, [Online], Available at
http://www.datatables.net/index (Accessed February 1, 2013).

[89] “iOS Developer Enterprise Program”, Apple, [Online], Available at
https://developer.apple.com/programs/ios/enterprise/ (Accessed March 8, 2013).

[90] Chris Anderson, The Long Tail: Why the Future of Business is Selling Less of More.
Hyperion, 2006, ISBN: 1401302378.

[91] “Scaffolding – Bootstrap”, Twitter, [Online], Available at
http://twitter.github.com/bootstrap/scaffolding.html (Accessed March 12, 2013).

[92] Karl Monaghan, “A Sunday afternoon project: Providing App Store stats via JSON”,
[Online] September 18, 2011, Available at http://www.karlmonaghan.com/2011/09/18/a-
sunday-afternoon-project-providing-app-store-stats-via-json/ (Accessed March 12, 2013).

[93] “GnuWin”, SourceForge, [Online], Available at http://sourceforge.net/projects/gnuwin32
(Accessed March 12, 2013).

[94] “PHP File Upload”, W3schools, [Online], Available at
http://www.w3schools.com/php/php_file_upload.asp (Accessed March 12, 2013).

[95] “PHP: fgetcsv – Manual”, PHP.net, [Online], Available at
http://php.net/manual/en/function.fgetcsv.php (Accessed March 12, 2013).

[96] “PHP: include – Manual”, PHP.net, [Online], Available at
http://php.net/manual/en/function.include.php (Accessed March 12, 2013).

[97] “TxtToMy – Save time on Importing Csv (Txt) to Mysql”, WithData, [Online], Available
at http://www.withdata.com/txttomy.html (Accessed March 12, 2013).

[98] “Manual :: Mail”, PHP.net, [Online], Available at
https://pear.php.net/manual/en/package.mail.mail.php (Accessed March 12, 2013).

[99] “PHP: array_count_values – Manual”, PHP.net, [Online], Available at
http://php.net/manual/en/function.array-count-values.php (Accessed March 13, 2013).

[100] Luca Ongaro, “jQCloud – jQuery plugin for drawing neat word clouds that actually
look like clouds”, GitHub, [Online], Available at https://github.com/lucaong/jQCloud
(Accessed March 13, 2013).

[101] “APPlyzer – iOS & Mac App Rankings, Reviews”, [Online], Available at
http://www.applyzer.com/ (Accessed March 18, 2013).

[102] “appFigures Plans & Pricing”, [Online], Available at
http://www.appfigures.com/pricing (Accessed March 18, 2013).

[103] “Personuppgiftslagen – Datainspektionen”, Datainspektionen, [Online], Available at
http://www.datainspektionen.se/lagar-och-regler/personuppgiftslagen/ (Accessed March 18,
2013).

103

[104] “Google Analytics Terms of Service”, Google, [Online], Available at
http://www.google.com/analytics/terms/us.html (Accessed March 18, 2013).

[105] “MySQL :: MySQL 5.0 Reference Manual :: 13.2.8.2 JOIN Syntax”, MySQL, [Online],
Available at http://dev.mysql.com/doc/refman/5.0/en/join.html (Accessed March 18, 2013).

[106] “MySQL :: MySQL 5.0 Reference Manual :: 13.2.8.4 UNION Syntax”, MySQL,
[Online], Available at http://dev.mysql.com/doc/refman/5.0/en/union.html (Accessed March
18, 2013).

[107] “Ajaxload – Ajax loading gif generator”, [Online], Available at
http://www.ajaxload.info (Accessed March 28, 2013).

[108] Jakob Truelsen, “wkhtmltopdf – Convert html to pdf using webkit (qtwebkit)”, [Online],
Available at https://code.google.com/p/wkhtmltopdf/ (Accessed March 28, 2013).

[109] “The WebKit Open Source Project”, [Online], Available at http://www.webkit.org/
(Accessed 28 March, 2013).

[110] Levy Carneiro Jr, Alex Ehlke et al, “jQuery Tag-it! Simple and configurable tag editing
widget with autocompete support”, GitHub, [Online], Available at
http://aehlke.github.com/tag-it/ (Accessed March 28, 2013).

[111] “JSONLint – The JSON Validator”, [Online], Available at http://jsonlint.com/
(Accessed March 28, 2013).

[112] Tom Preston-Werner, “Semantic Versioning 2.0.0-rc.1”, [Online], Available from
http://semver.org/ (Accessed March 28, 2013).

[113] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to
information retrieval, New York: Cambridge University Press, ISBN: 0521865719.

[114] Personuppgiftslag (1998:204). 20 May, 1998.

[115] “The R Project for Statistical Computing”, [Online], Available at http://www.r-
project.org/ (Accessed April 9, 2013).

[116] “Quick-R: Cluster Analysis”, Statmethods, [Online], Available at
http://www.statmethods.net/advstats/cluster.html (Accessed April 9, 2013).

[117] K. Ruben Gabriel, “The biplot graphic display of matrices with application
to principal component analysis”, The Hebrew University, Jerusalem, Biometrika 58 (3) pp.
453-467.

[118] Stanislav Kolenikov and Gustavo Angeles, “The Use of Discrete Data in Principal
Component Analysis for Socio-Economic Status Evaluation”, University of North Carolina at
Chapel Hill, Carolina, NC. [Online] February 2005, Available at
http://www.unc.edu/~skolenik/talks/Gustavo-Stas-PCA-generic.pdf (Accessed April 9, 2013).

104

[119] “Multivariate Analysis: Principal Component Analysis: Biplots :: SAS/IML® Studio
3.2 User’s Guide”, SAS Institute Inc, [Online], Available at
http://support.sas.com/documentation/cdl/en/imlsug/62558/HTML/default/viewer.htm#ugmul
tpca_sect2.htm (Accessed April 9, 2013).

[120] S. S. Stevens, “On the theory of scales of measurement,” Science, vol. 103 (no 2684),
pp. 677-680, June 1946. DOI: 10.1126/science.103.2684.677.

[121] John Fox, “Polychoric and Polyserial Correlations”, R-project.org, [Online] April 3,
2010, Available at http://cran.r-project.org/web/packages/polycor/polycor.pdf (Accessed
April 12, 2013).

[122] Jan Katrenic, “Android Market App Ranklist”, Androidrank.org, [Online], Available at
http://www.androidrank.org/listcategory?category=&start=1&sort=0&price=all (Accessed
April 15, 2013).

[123] Nicolas Sorel, “Rating Statistics of the Android Market”, AndroLib.com, [Online],
Available at http://www.androlib.com/appstatsratings.aspx (Accessed April 16, 2013).

[124] Lukasz Komsta, “Tests for outliers”, R-project.org, [Online] February 15, 2013,
Available at http://cran.r-project.org/web/packages/outliers/outliers.pdf (Accessed April 19,
2013).

[125] “Flurry”, Flurry, [Online], Available at http://www.flurry.com (Accessed June 20,
2013).

[126] “App Analytics, Conversion Tracking & Market Data | Distimo”, Distimo,
[Online], Available at http://www.distimo.com (Accessed June 20, 2013).

[127] “App Annie - App Ranking, Analytics, Market Intelligence”, App Annie, [Online],
Available at http://www.appannie.com (Accessed June 20, 2013).

[128] “TestFlight - Beta Testing On The Fly”, TestFlight, [Online], Available at
http://www.testflightapp.com (Accessed June 20, 2013).

[129] “The Mobile Life”, The Mobile Life, [Online], Available at
http://www.themobilelife.com (Accessed June 20, 2013).

[130] Julianne Pepitone, “5 data breaches: From embarrassing to deadly - Netflix accidentally
reveals rental histories”, CNNMoney, [Online] December 14, 2010, Available at
http://money.cnn.com/galleries/2010/technology/1012/gallery.5_data_breaches/index.html
(Accessed June 21, 2013).

105

Appendix A – Sample API code

106

www.kth.se

TRITA-ICT-EX-2013:124

